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Abstract: Prostate cancer is one of the most significant male health concerns worldwide, various 21 
researchers carrying out molecular diagnostics have indicated that genetic interactions with biological and 22 
behavioral factors play an important role in the overall risk and prognosis of this disease. Single nucleotide 23 
polymorphisms are increasingly becoming strong biomarker candidates to identify susceptibility of 24 
prostate cancer. We carried out risk association of different stages of prostate cancer to a number of single 25 
nucleotide polymorphisms to identify the susceptible alleles in a New Zealand population and checked the 26 
interaction with environmental factors as well. We have identified a number of single nucleotide 27 
polymorphisms to have associations specifically to the risk of prostate cancer and aggressiveness of the 28 
disease, and also certain single nucleotide polymorphisms to be vulnerable to the reported behavioral 29 
factors. We have addressed “special” environmental conditions prevalent in New Zealand, which can be 30 
used as a model for a bigger worldwide study. 31 

Pictorial Abstract: 32 
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1. Introduction 36 
Prostate cancer (PCa) is one of the most significant non-skin cancer male health concerns worldwide 1. 37 

Moreover, it is estimated that at least 1 in 6 PCa patients is at risk of developing aggressive PCa 2. These are 38 
very alarming statistics. The identification of a predictive biomarker and/ or treatment of this disease is 39 
therefore of much importance, more so from the New Zealand point of view, because the highest rate of 40 
recording of men with PCa, relative to the population of men, is observed in the Oceania region 3,4. With 41 
various biological and behavioral factors established as playing crucial role in the overall risk and prognosis 42 
of PCa 1,5-7, SNPs are increasingly appealing biomarker candidates for the identification of PCa susceptibility 43 
8-10.  44 

Although, age, ethnicity, and family history are the three most widely accepted risk factors for PCa 45 
7,11,12, yet nothing much can clinically be done to alter or reverse the effect of these on human health and 46 
immunity. Of these three risk factors , age is the most significant risk factor for aggressive PCa 13,14. In the 47 
same line, we believe that healthy ageing, can control the expression of the aggressive form of this disease. 48 

We recently identified gene x environment interaction(s) and the risk of aggressive PCa in a New 49 
Zealand population and defined a trend that certain lifestyle habits and effects such as tobacco smoking, 50 
and high body mass index (BMI), also have an influence on the aggressiveness of the disease 1. Even with 51 
progressing age, which cannot be curtailed, certain lifestyle habits may stay put. Here, we employed some 52 
statistical tools and analysed data generated by genotyping single nucleotide polymorphisms (SNPs) of 53 
interest to understand the effect of ageing on external factors and effects such as tobacco smoking, alcohol 54 
consumption; and high BMI and risk of aggressive PCa.  55 

Here we present the analysis of the data obtained following the genotyping of 138 SNPs, using 56 
SEQUENOM MassArray iPLEX® assay and TaqMan® SNP genotyping procedures in a New Zealand cohort. 57 
The cohort includes New Zealand men of self-declared European ethnicity with different clinically 58 
diagnosed grades/stages of PCa, and gender matched healthy controls within similar age range. We have 59 
identified the association of SNPs as risk for aggressive PCa as well as the influence of external factors 60 
including age in risk modification. This, we believe, is the first such study on genetic and environmental risk 61 
association with ageing and risk of aggressive PCa in a New Zealand cohort. 62 

2. Materials and Methods  63 

2.1 Study population 64 
A total of 254 patients with different clinical classifications of PCa voluntarily participated in our study 65 

after providing informed consent, as mentioned in Vaidyanathan et al., (2017) (Ethics reference 66 
NTY05/06/037 by Northern B Ethics Committee, New Zealand, previously, Northern Y Ethics Committee, 67 
New Zealand) 1. Additionally, 369 males from the Auckland region of New Zealand who had no reported 68 
clinical diagnosis of PCa were considered as healthy controls for this study (Ethics reference 69 
NTY/06/07/AM04 by Northern B Ethics Committee, New Zealand, previously, Northern Y Ethics 70 
Committee, New Zealand). 71 

Because of the influence of age in this disease 14, care was taken to invite men between the age 72 
categories of 40 to 90 years (at the time of diagnosis for patients with PCa and at the time of recruitment for 73 
healthy controls) to participate in this study. We have considered men more than 65 years of age as elderly 74 
or older person, as per the norms of World Health Organization (WHO) 15. 75 

2.2 Definition of aggressiveness: 76 
The aggressiveness of PCa, for this study, is based on the classification followed by the American 77 

Urological Association 16. This schema of classification, first proposed by D’Amico et al. (1998), defines 78 
high-risk or aggressive PCa as clinical T stage ≥cT2c, or Gleason score ≥8, or serum PSA level >20ng/ml 17.  79 

2.3 Statistical analysis: 80 
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SNP genotyping was done for a total of 136 SNPs, but after checking for compliance with Hardy 81 
Weinberg Equilibrium (HWE), and in linkage, 97 SNPs were employed for the final analysis 1. The HWE 82 
and linkage analyses were done by employing P-Link software version 1.07 18.  83 

Analysis of the data previously reported for SNPs association with PCa based on aggressiveness and 84 
gene x environment interaction 1 was further analysed for the influence of age using P-Link software version 85 
1.07 18 and reported in tables 2.1 to 2.3. The analysis of the influence of age was not reported prior as it was 86 
beyond the scope of the theme focused at that time. In order not to miss any relevance, to the progression of 87 
PCa, we carried out the analysis under three broad classifications being between patients with aggressive 88 
PCa and healthy controls, between patients with non-aggressive PCa and healthy controls and between 89 
patients with aggressive PCa and non-aggressive PCa. Statistical significance for variation was set at p<0·05. 90 
Correction for multiple testing was applied to the analysed data obtained, so as to maintain the linearity of 91 
genotype-phenotype relationship 19. As the tested SNPs are already proven as associated with PCa 92 
incidence by other researchers, variations that showed significance before Bonferroni correction were also 93 
considered for discussion in our study 1.  94 

3. Results 95 

3.1 Age, Pathology, BMI and lifestyle: 96 
Since the main aim of this article is to identify the role of ageing and statistically adjusting for this 97 

parameter in isolation and in combination with various demographic factors such as alcohol consumption, 98 
smoking tobacco, and with levels of obesity among the patients recruited for our study, we are presenting 99 
the data for variation in age as risk for aggressive PCa in Tables 1.1 to 1.3.  100 

Table1.1: Association between age and aggressive prostate cancer versus healthy controls. 101 
 102 

Table1.2: Association between age and aggressive prostate cancer versus non-aggressive prostate cancer. 103 

Compared groups Pathology 

N’ 

Percentage of 

men ≥65 years 

OR 

(95% CI) 
p-value G1 (≤64 

years) 

G2 (≥65 

years) 
Total 

Aggressive vs 

Healthy Control 

Aggressive 90 107 197 54.31% 3.070334 

(2.1399 – 

4.4052) 

7.979E-10 
Healthy 

Control 
266 103 369 27.91% 
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 104 
Table1.3: Association between age and non-aggressive prostate cancer versus healthy controls. 105 

 106 
Tables 1.1- 1.3 legend: N’= number; OR= Odds Ratio; 95% CI= 95% confidence interval 107 

3.2 Genetic polymorphism variations and risk of prostate cancer: 108 
The tables show the results of the statistically significant SNPs associated with risk of PCa between 109 

patients with aggressive PCa and healthy controls (Table 2.1), between patients with aggressive and 110 
non-aggressive PCa (Table 2.2), and patients with non-aggressive PCa and healthy controls (Table 2.3), all 111 
assessed before and after the adjustment for various demographic parameters with and without age aspect. 112 
Variations in the tested allele between patients recruited for this study with aggressive PCa, non-aggressive 113 
PCa and healthy controls for all the SNPs irrespective of statistical significance have been included in 114 
Supplementary Tables 1a and 1b and 2. The relevant 95% CI range has also been mentioned in the 115 
supplementary table.  116 

Compared groups Pathology 

N’ 

Percentage of 

men ≥65 years 

OR 

(95% CI) 
p-value G1 (≤64 

years) 

G2 (≥65 

years) 
Total 

Aggressive vs 

Non-Aggressive 

Aggressive 90 107 197 54.31% 0.642643 

(0.3485 – 

1.1850) 

0.173763 

Non-Aggressive 20 37 57 64.91% 

Compared groups Pathology 

N’ 

Percentage of 

men ≥65 years 

OR 

(95% CI) 
p-value G1 (≤64 

years) 

G2 (≥65 

years) 
Total 

Non-Aggressive vs 

Healthy Control 

Non-Aggressive 20 37 57 64.91% 4.778 

(2.649 – 

8.615) 

9.3852E-8 

Healthy Control 266 103 369 27.91% 



Table 2.1: Statistically significant SNP associated with gene x environment effect on risk of aggressive prostate cancer 117 
v/s healthy controls after adjusting for each environmental parameter individually and along with age 118 
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Table 2.2: Statistically significant SNP associated with gene x environment effect on risk of aggressive prostate cancer v/s 121 
non-aggressive prostate cancer after adjusting for each environmental parameter individually and along with age 122 
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Table 2.3: Statistically significant SNP associated with gene x environment effect on risk of non-aggressive prostate cancer v/s 124 

healthy controls after adjusting for each environmental parameter individually and along with age 125 
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Tables 2.1- 2.3 colour legends risk association: 127 

  

SNPs statistically significantly associated with risk of aggressive PCa across various classifications both, before and 

after adjusting for the environmental and age parameters 
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4. Discussion 128 
It is well-established that there are three major risk factors for PCa, namely, advancing age, ethnicity, 129 

and familial history 11. Recent studies indicate alterations in genetic and epigenetic make-up as the basis for 130 
the development of various malignancies 20 and is in line with our findings with regards risk of aggressive 131 
PCa 1. In the current article, the data obtained by SNP genotyping and reported in Vaidyanathan et al., 132 
(2017) 1 was further analysed to identify risk association with aggressive PCa with the effect of non-genetic 133 
or environmental factors after being adjusted statistically with and without the influence of ageing on them.  134 

Out of the 97 SNPs studied by us, only 5 SNPs were identified to be significantly associated with risk of 135 
aggressive PCa when compared with healthy control across all combinations before and after adjustment, 4 136 
SNPs were significantly associated with risk of aggressive PCa when compared with non-aggressive PCa 137 
across all combinations before and after adjustment, and no SNPs were identified to be significantly 138 
associated with risk of non-aggressive PCa compared to healthy controls across all combinations before and 139 
after adjustment.  140 

Although the genome-wide association studies (GWAS) are used for the identification of the direct role 141 
SNP association plays as for aggressive PCa, yet we believe that SNP interactions with demographic and 142 
lifestyle factors could also add to the allelic effect producing a modified risk of a disease. These SNPs 143 
identified herewith to have come up significant could be indicating a unique situation for New Zealand 144 
men with PCa, and can be used as a model for other chronic diseases.  145 

4.1 Age at diagnosis and age at recruitment (prostate cancer patients and healthy controls respectively) and risk of 146 
prostate cancer: 147 

Age is a major risk factor for PCa, as reported 14,21. However, in the data presented in our present study 148 
we did not consider the role of ageing, as we wanted to see the effect of gene and environment aspects in the 149 
expression and progression of PCa. Age, being irreversible, but other environmental factors being more 150 
under one’s control we focused on those aspects to identify any link and define the means by which 151 
high-risk PCa can be controlled.  152 

We found correlation of age to aggressive PCa when compared to healthy controls. It is often suggested 153 
that older men (≥65 years of age) are more likely to develop the aggressive form of PCa, if they develop PCa, 154 
and are also more likely to die of the same as compared to younger men (≤64 years of age) 22. This is in line 155 
with the findings in our cohort as well (Table 1.1). Consistent with the findings of other groups, we found 156 
that age of an individual is associated with risk of non-aggressive PCa when compared with healthy 157 
controls (Table 1.3), but has no significant correlation with aggressive PCa when compared with 158 
non-aggressive PCa (Table 1.2), as is understandable. Diseases such as PCa often have an onset with 159 
progressing age 23, but the aggressiveness may not be solely age-dependent 1.  160 

4.2 BMI, smoking tobacco, and alcohol consumption (external factors) at recruitment and risk of prostate cancer: 161 
In our previous approach, we combined the effect of the three external factors to extract as much from 162 

the prevalent factors common among New Zealand men and risk of PCa and not miss any SNP of interest. 163 
However, in this current analysis, we split the three parameters, and analysed the effect they have 164 
individually and with age as well as risk for PCa with statistical adjustments. 165 

The data for the demographic analyses related to high BMI, tobacco smoking, and alcohol consumption 166 
has previously been reported 1. 167 

4.3 Gene x environment interaction and risk of prostate cancer and effect of adjustment for age: 168 
Knowledge of gene x environment interaction is important for risk prediction and the identification of 169 

certain high-risk populations to inform public health strategies for targeted prevention 24. We associated the 170 
environmental factors with the genotypes of the men in our study to identify the risk alleles for specific kind 171 
of external factors such as BMI, smoking tobacco and alcohol consumption. Since these factors play an 172 
important role in the risk association of PCa and yet can be controlled by individuals, it is therefore of 173 
importance to understand and limit this disease.  174 
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4.3.1 SNP genotyping, the effect of environmental factors, and of age as a risk of aggressive prostate cancer 175 
vs healthy controls: 176 

We had previously identified 14 SNPs when we analysed the data for gene x environment interactions 177 
without any adjustments (Table 2.1) 1. This gave us a good idea of the influence of environmental factors on 178 
various SNPs in and near certain genes, and the prevalent environmental conditions in New Zealand. Of the 179 
14 SNPs, three were found near the gene MYEOV (Myeloma Overexpressed)- rs7931342, rs10896438, 180 
rs11228565; two near the gene KLK3 (Kallikrein-3)- rs2659122, rs17632542; and one each near the genes 181 
MSMB (Microseminoprotein Beta)- rs7920517, FADS2 (Fatty acid desaturase 2)- rs2727270, LEP (Leptin)- 182 
rs10244329, PPAR-γ (Peroxisome Proliferator-Activated Receptor Gamma)- rs17793693, CCHCR1 (Coiled-Coil 183 
alpha-Helical Rod protein1)- rs130067, AKR1C3 (Aldo-Keto Reductase family 1 member C3)- rs12529, SLC26A6 184 
(Solute carrier family 26 member 6)- rs887391, and NUDT11 (Nucleoside Diphosphate-linked Moiety X Motif 11)- 185 
rs5945619; and in the region 8q24- rs6983561. 186 

These results were partly expected and partly novel to New Zealand conditions and the risk of 187 
aggressive PCa. MYEOV is a putative oncogene 25, and it made absolute sense that the highest number of 188 
SNPs were recorded in this gene with regards aggressive PCa in our population 1. The genes KLK3, and 189 
MSMB are both involved in the PSA metabolism pathway were understandably identified as statistically 190 
significant in our study, due to their proven risk association to PCa, and same with the SNP in AKR1C3 1,4,7,26 191 
and the SNP in CCHCR1, which has been previously reported in rheumatoid arthritis- a possible side-effect 192 
of androgen deprivation therapy for PCa 20. The gene SLC26A6 is a fusion gene and plays a vital role in the 193 
development and progression of a number of cancers and is interestingly just 10Mb centromeric to the gene 194 
KLK3, which we have already identified as an important gene of interest with regards studies on PCa 27. 195 
NUDT11 is a paralogous human gene, and is predominantly expressed in the testes, and assumed to be 196 
playing a major role in signal transduction 28,29. Various GWAS and case control studies have also indicated 197 
about the susceptibility locus at NUDT11 being involved with the risk of PCa 30-32. The presence of a SNP as 198 
risk for PCa in the gene desert region of 8q24 has also been observed in a number of cancers including the 199 
prostate 33. 200 

With no direct connection yet established between obesity and risk of PCa, it was interesting to find 201 
SNPs associated with risk of PCa in our population in 3 genes. The genes FADS2, LEP, PPAR-γ are 202 
associated with obesity and diabetes mellitus which is a major risk of PCa 1,34,35. This is interesting because 203 
New Zealand has the third highest adult obesity rate among Organisation for Economic Co-operation and 204 
Development countries 36, and is a major external factor in the potential risk for aggressive PCa 37.  205 

When we, next, adjusted the SNP genotyping data for age of the cohort and continued to analyse the 206 
data, we found certain SNPs to have lost their power of statistical significance on risk of aggressive PCa, and 207 
certain SNPs were identified statistically significant which were not identified without the adjustment. 208 
SNPs rs632148 and rs6502051 in genes SRD5A2 (Steroid 5α-reductase type 2) and FASN (Fatty Acid Synthase) 209 
respectively were identified as statistically significant to the risk of aggressive PCa when compared to 210 
healthy controls. The gene SRD5A2 has previously been reported by groups working on various aspects 211 
related to and causing PCa in Caucasian populations and not restricted only to studies discussing its role in 212 
the quality of sperms 38. It is well established that with progressing age, there is a drop in testicular function, 213 
and thus certain genes pertaining to virility, including SRD5A2, may be functioning differentially 39. The 214 
SNP in a gene pertaining to obesity 40,41- FASN also identified as a risk for aggressive PCa is also in line with 215 
the theory that ageing may cause certain physiological alterations leading to major effects such as , and not 216 
limited to, PCa 14. Since obesity is classically considered to be proportional to progressing age 42, we feel that 217 
our findings are further strengthening the theory of age as a risk factor for PCa 14, especially aggressive PCa. 218 
The other SNPs that were identified to be statistically associated as risk for aggressive PCa, even after the 219 
adjustment for age, were rs7931342, rs10896438, and rs11228565 near the gene MYEOV; rs7920517 near the 220 
gene MSMB, rs2659122 near the gene KLK3; rs10244329 near the gene LEP; rs130067 CCHCR1; and rs887391 221 
SLC26A6. 222 

Next, we adjusted the data for BMI, and identified that apart from the SNP rs6502051 near the gene 223 
FASN, the other SNPs that were identified to have statistical significant association as risk for aggressive 224 
PCa when compared to healthy controls after adjusting for age remained significant. This helps us define 225 
the role of BMI as risk for aggressive PCa with ageing 42.  226 
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We then adjusted the data for BMI and age. Interestingly, instead of getting a lesser number of SNPs 227 
associated with the risk of aggressive PCa, we identified three more SNPs. Since the data was adjusted for 228 
BMI and age, this, statistically, implies the effect of alcohol consumption and tobacco smoking on our 229 
health. The additional SNPs identified as significantly associated with the risk of aggressive PCa were 230 
rs3918256, rs5945619, and rs6502051 present near the genes MMP9 (Matrix metallopeptidase 9), NUDT11, and 231 
FASN respectively. The SNPs in gene FASN has previously been discussed with regards its role as risk for 232 
aggressive PCa, but the SNP in the gene MMP9- an inflammation marker 43 was not previously identified 233 
when seeing the role gene x environment interaction plays. Both, tobacco smoking and alcohol consumption 234 
have been studied in the recent past to be altering the levels of expression of MMP9 protein 44,45. 235 

Next we adjusted the data for tobacco smoking only, in order to identify the risk age, BMI, and alcohol 236 
consumption have as a risk of aggressive PCa when compared to healthy controls. We identified two new 237 
SNPs, compared to the result generated by adjusting the data for age, being rs12529, in the gene AKR1C3 238 
and rs799923 near the gene BRCA1. The crosstalk between tobacco smoking and the SNP rs12529 in the gene 239 
AKR1C3 has previously been explored by our group 46. Interestingly, the identification of the SNP rs799923 240 
near the gene BRCA1, a tumour suppressor 47, indicates that with progressing age, certain genes may 241 
function differently in the presence of external stresses such as alcohol consumption .48 242 

We got further evidential proof with regards the effect of age on the expression and effect of tumour 243 
suppressor genes such as BRCA1 on diseases such as aggressive PCa, when we analysed the data after 244 
adjusting for tobacco smoking and age and found that the gene was no longer significantly associated as a 245 
risk for the disease. Interestingly the significant association of risk of aggressive PCa was lost in the SNPs in 246 
the genes AKR1C3 and KLK3 too. The result pertaining to the SNP in the gene AKR1C3 is interesting. As 247 
aforementioned, we have found some interesting correlations between the gene AKR1C3, tobacco smoking 248 
and the risk of PCa 46 and when we adjusted for age, the role of the SNP as a potential risk for aggressive 249 
PCa, compared to healthy controls, was not found to be statistically significant. We believe age-long 250 
smoking tobacco has a more potent effect on the risk of aggressive PCa rather than not. Consistent with the 251 
effect of adjusting the data for BMI and age, we identified SNP 632148 in the gene SRD5A2 to be 252 
significantly associated with the risk of aggressive PCa. This, we believe, helps understand the nexus 253 
between ageing and the effect of certain genes and the influence of external factors leading to oxidative 254 
stress in a body.  255 

In the final set of adjustments of our data to analyse the effect of SNPs as risk of aggressive PCa, we 256 
considered alcohol consumption and the combination of alcohol consumption and age. Interestingly, the 257 
SNP rs1799977 present in the gene MLH1 (MutL homolog 1), which plays a major role in DNA 258 
(deoxyribonucleic acid) mismatch repair 49, and more so because rs1799977 is an exonic SNP 1,50. DNA 259 
mismatch repair mechanism is an important fight-back against major diseases such as cancer 51. SNPs in the 260 
genes SEP15 and FASN are found significantly associated with risk of aggressive PCa when compared with 261 
healthy controls with adjustments for just alcohol and combination of alcohol and age respectively. The 262 
effects of smoking and BMI have always been a matter of controversy, but according to Kaufman et al., 263 
(2012), tobacco smoking can have a wide range of effects including limited physical activities, and it itself 264 
being a “gateway” habit, the effect on increasing BMI and obesity should be accepted 52.  265 

The use of such combinations to adjust the data and extract the fine points of a case-control study is 266 
quite an unique approach on its own, however, the SNPs in the various genes that we have identified as a 267 
risk of aggressive PCa when compared to healthy controls is quite interesting. With as many as five SNPs 268 
across three genes- MYEOV, MSMB, and SLC26A6 that remained significantly associated as risk for 269 
aggressive PCa, it is beyond doubt that these are the most important genes of interest with regards to 270 
similar studies. Having said this, it is worthy of bringing to notice that studies in larger populations need to 271 
be done to validate these results, though (Figure 1). 272 
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 273 
Figure 1: Various pathways and the genes identified to be significantly associated with a risk of aggressive 274 

prostate cancer (compared to healthy controls) 275 
 276 

4.3.2 SNP genotyping, the effect of environmental factors, and of age as a risk of aggressive prostate cancer 277 
vs non-aggressive prostate cancer: 278 

A similar approach was employed to determine the SNPs in genes of interest with regards the risk of 279 
aggressive PCa when compared to non-aggressive PCa. If the logic of progression of PCa holds true, 280 
non-aggressive PCa is the most crucial stage, as due to cell division with accumulation of cancer cells, and a 281 
prolonged weakening of immune cells, non-aggressive PCa could progress to aggressive PCa 1,14. We believe 282 
that this is one of the most important sets of data that we have analysed thus far, as knowledge of these 283 
SNPs and corresponding genes is important to arrest non-aggressive PCa from progressing to aggressive 284 
PCa.  285 

We first analysed the data without adjustment for any of the four afore mentioned factors, for the gene 286 
x environment effect as a risk of aggressive PCa compared to non-aggressive PCa and has been explained in 287 
details in one of our recent publications 1. One SNP each in the genes SRD5A2- rs632148, MLPH 288 
(Melanophilin)- rs2292884, PODXL (Podocalyxin-like)- rs3735035, LEP (Leptin)- rs10244329, TLR4 (Toll-like 289 
receptor 4)- rs11536889, SLC26A6- rs887391, KLK3- rs17632542, and MMP9- rs3918256 were identified as 290 
statistically significant risk of aggressive PCa (compared to non-aggressive PCa). As expected, we identified 291 
that there is a general trend of a typical textbook-like analysis of progression of any cancer. We identified 292 
SNPs in a fusion gene- SLC26A6 which is well established to aid the development of human cancers 1,27; 293 
MMP9 and TLR4- genes involved in the inflammation pathway 1,53; PODXL- a gene encoding for the 294 
cell-adhesion glycoprotein which has previously been reported to be associated with aggressive tumour 295 
phenotype and poor prognosis in various cancers 1,54,55; along with genes pertaining to steroid levels- 296 
SRD5A2, and overexpressed in the estrogen receptor - MLPH 56; along with a gene pertaining to obesity- an 297 
import external risk factor for aggressive PCa 1 and KLK3- involved in the PSA metabolism pathway 1. The 298 
data is indicative of a strong gene x environment interaction leading to the progression of the disease. 299 

We then adjusted the data for age to identify the genes which may be influenced by progressing age 14. 300 
Interestingly, only four of the aforementioned eight SNPs remained significantly associated with the risk of 301 
aggressive PCa when compared to non-aggressive PCa. These were identified as the SNPs in the genes 302 
SRD5A2, PODXL, LEP and MMP9. Incidentally, only these four SNPs remained significantly associated as 303 
risk for aggressive PCa when compared with non-aggressive PCa across all statistical adjustments.  304 
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The role between inflammation and the development of cancer is a very well established nexus 57,58. 305 
With the progression of cancer, the tissue(s) may change drastically, which may trigger certain homeostatic 306 
processes of tissue repair, and the recruitment of inflammatory leukocytes 58 and affect innate immunity as 307 
well 57. Not only MMP9, but other members of this family of enzymes with their role in the evolution of the 308 
immune system are well known to regulate certain inflammatory and repair processes and hence may be 309 
used for predictory analysis for various cancers 59. The fact that a SNP in this gene was identified as 310 
significantly associated as risk of aggressive PCa is understandable.  311 

PODXL is cell-adhesion glycoprotein which is also associated with a number of aggressive tumour 312 
outcomes 60. This transmembrane glycoprotein is expressed in a number of cancers including ovarian 61, 313 
epithelium 62 and prostate 1. PODXL causes an increase in cell migration as well as invasion, leading to an 314 
increase in the MMP expression 60, which has an established role in inflammation 58 and innate immunity 57.  315 

One of the other important genes that upregulates the function of some members of the MMP family 63, 316 
and is significantly associated with obesity and the risk of a number of cancers is LEP 64. There have been a 317 
number of studies to define the role of obesity in carcinogenesis 65, but it is usually poorly understood 64. 318 
With an increase in the world population’s BMI, it is vital to identify means to understand the progression 319 
of various diseases, including aggressive PCa owing to the SNPs and thereby altered expression of 320 
obesity-related genes such as LEP. 321 

As expected, the SNP rs632148 present near the gene SRD5A2 was identified to be significantly 322 
associated with the risk of aggressive PCa when compared with non-aggressive PCa, just as was when 323 
compared to the healthy controls. The enzyme produced by the gene SRD5A2 is important for the 324 
development and growth of the prostate gland 66; and assists in the conversion of the male sex hormone, 325 
testosterone into the more effective androgen dihydrotestosterone 67. With testosterone-levels being a matter 326 
of debate amongst urologists with regards the risk of PCa 68, it is interesting to find SRD5A2 as significantly 327 
associated with risk of aggressive PCa in our population, because New Zealand is predominantly an 328 
overweight population 69, and increase in BMI reduces testosterone levels 70. This reduction in testosterone 329 
levels with increased BMI is interesting, as we feel, an increase in BMI, may increase the dilution factor due 330 
to an increase in the overall size of the body, but further work needs to be done to prove this. 331 

The New Zealand story (gene x environment interactions and risk of aggressive PCa) gets firmly knit 332 
when we put the results in this section together (Figure 2). It is well established that obesity has a major 333 
contribution in the inflammatory pathway 71, which in turn leads to the progression of cancers into advance 334 
stages 57,58. Moreover, age and obesity have a role leading to alterations in testosterone levels, as previously 335 
discussed 14, and this hormonal imbalance, in turn, is a risk for aggressive PCa 7,68. Thus, the effect of age on 336 
and with obesity may be playing a major role in our population with regards the total number of cases with 337 
aggressive PCa. This, we believe, is a very unique finding. 338 

 339 

 340 
Figure 2: Various pathways and the genes identified to be significantly associated with a risk of aggressive 341 

prostate cancer (compared to non-aggressive prostate cancer) 342 
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4.3.3 SNP genotyping, the effect of environmental factors, and of age as a risk of non-aggressive prostate 343 
cancer vs healthy controls: 344 

Finally, we analysed the data with and without various statistical adjustments to understand the 345 
initiation of PCa in our population and effect of age by comparing non-aggressive PCa with healthy 346 
controls. We identified only four genes with one SNP in and/or near it that was identified as statistically 347 
significant with the risk of non-aggressive PCa. They being rs2292884 in the gene MLPH, rs3735035 in the 348 
gene PODXL, rs11536889 in the gene TLR4, and rs4965373 near the gene SEPS1 (Selenoprotein 1). With 3 out 349 
of 8 genes identified to be common with the risk of aggressive PCa without any statistical adjustments, it 350 
indicates that there is a continuation with regards the alteration of certain gene functions with the schematic 351 
progression of the disease. Interestingly, however, none of the SNPs were identified to bear any significant 352 
association with the risk of non-aggressive PCa after various statistical adjustments including for age were 353 
performed. This implies that perhaps the gene x environment interactions, rather the genes on their own 354 
play the most important role in the initiation of diseases such as PCa.  355 

The fact that a single gene involved with selenium metabolism- SEPS1 was also significantly associated 356 
with the risk of non-aggressive PCa cannot be ignored, as yet another selenoprotein- SEP15 was associated 357 
with risk of aggressive PCa (compared to healthy controls) when statistically adjusted for certain 358 
demographic parameters, as discussed above. The deficiency of trace elements such as selenium in the New 359 
Zealand soil is a well-established fact 72, and in the absence of the same, certain people take dietary 360 
supplements. However, a direct correlation between the role played by these dietary supplements and risk 361 
of PCa was recently identified 6,21,46. Two of the other three genes involved are pertaining to the 362 
inflammatory pathway- TLR4 and PODXL, which again can be due to the side-effect of the prevalence of 363 
high number of tobacco smokers in New Zealand 69, and the third one is overexpressed in the estrogen 364 
receptor- MLPH, which may be influenced by the low levels of Vitamin D among our cohort because of the 365 
lesser exposure to sunlight due to ageing 73,74 (Table 3).  366 

 367 
Table 3: “New Zealand factors” and risk of non-aggressive prostate cancer 368 

New Zealand factor(s) Reference Gene involved SNP 

Low Selenium levels in soil (leading 
to lower dietary intake) 

72
 SEPS1 rs4965373 

Low sun exposure (leading to low 
Vitamin D levels) 

73
 MLPH rs2292884 

High tobacco smoking (leading to 
inflammation)  

69
 

PODXL rs3735035 

TLR4 rs11536889 

 369 
Therefore, it does seem that the inflammatory pathway is one of the most important pathways for the 370 

initiation of PCa, along with the local factors such as life-long consumption of food low in selenium, and 371 
exposure to low levels of Vitamin D due to various factors with progressing age, and with the effect of 372 
hormones pertaining to specific organ of interest that eventually may be critical. The gene x environment 373 
interaction with the adjustment for age has brought a completely new way of looking at and understanding 374 
the risk for aggressive PCa based on the data generated from our cohort. 375 

5. Conclusions  376 
SNPs, being the most commonly observed variations in the genome, are ideal candidates for 377 

identification of biomarkers for various diseases 1. Genotyping SNPs and observing the gene x environment 378 
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interactions is a very useful tool to identify the various local factors and their effect on genes leading on to a 379 
bottle-neck population with a particular condition- in this aggressive PCa.  380 

We have identified a number of important individual lifestyle factors and their effect (either due to 381 
lifestyle exposure or due to ageing) as risk factors for PCa and aggressive PCa. We propose that the 382 
inflammatory pathway is one of the most important pathways responsible for initiating the disease, and 383 
certain local demographic factors such as obesity and tobacco smoking play crucial roles in driving 384 
non-aggressive PCa to the aggressive stage. SNPs in a putative oncogene (MYEOV) play a very influential 385 
role as risk for aggressive PCa. These findings are crucial for planning larger scale studies, because, 386 
although we recruited men of European ethnicity in our study, and genotyped SNPs that were identified as 387 
significantly associated as risk for PCa in various European populations, we could define a clear 388 
dependence of age in the progression of the disease based on gene x environment aspects. We propose that 389 
further studies based on our case- control analyses should be carried out to define specific biomarkers on a 390 
regional-basis, as this will help develop better diagnostic and treatment methods which will be tailor-made. 391 

Supplementary Materials: Table S1a: Case-control association test. Table S1b: Case-control interaction with age test. 392 
Table S2: Adjustment for multiple testing Bonferroni_Sidak_FDR_Holm.  393 
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Abbreviations 406 
The following abbreviations are used in this manuscript: 407 
AKR1C3: Aldo-keto reductase family 1 member C3 408 
BMI: body mass index 409 
CCHCR1: coiled-coil alpha-helical rod protein1 410 
DNA: deoxyribonucleic acid 411 
FADS2: Fatty acid desaturase 2 412 
FASN: Fatty Acid Synthase 413 
GWAS: Genome-wide association studies 414 
HWE: Hardy Weinberg Equilibrium 415 
KLK3: Kallikrein-3 416 
LD: linkage disequilibrium 417 
LEP: Leptin 418 
MLH1: MutL homolog 1 419 
MLPH: Melanophilin 420 
MMP9: Matrix metallopeptidase 9 421 
mRNA: messenger-ribonucleic acid 422 
MSMB: Microseminoprotein Beta 423 
MYEOV: Myeloma Overexpressed 424 
NUDT11: Nucleoside Diphosphate-linked Moiety X Motif 11 425 
PCa: prostate cancer 426 
PODXL: Podocalyxin-like 427 
PSA: prostate-specific antigen 428 
SNP: single nucleotide polymorphism 429 
SEP15: Seleoproten 15kDa 430 
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SEPS1: Selenoprotein S 431 
SLC26A6: Solute carrier family 26 member 6 432 
SRD5A2: Steroid 5α-reductase type 2 433 
TLR4: Toll-like receptor 4 434 
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