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Abstract 

The terminal regions of eukaryotic chromosomes, composed of telomere repeat sequences 

and sub-telomeric sequences, represent some of the most variable and rapidly evolving 

regions of the genome. The sub-telomeric regions are characterised by segmentally 

duplicated repetitive DNA elements, interstitial telomere repeat sequences and families of 

variable genes. Sub-telomeric repeat sequence families are shared amongst multiple 

chromosome-ends, often rendering detailed sequence characterisation difficult. These 

regions are composed of constitutive heterochromatin and are subjected to high-levels of 

meiotic recombination. Dysfunction within telomere repeat arrays, either due to disruption 

in the chromatin structure, or because of telomere shortening, can lead to chromosomal 

fusion and the generation of large-scale genomic rearrangements across the genome. The 

dynamic nature of telomeric regions therefore provides functionally useful variation to create 

genetic diversity, but also provides a mechanism for rapid genomic evolution that can lead to 

reproductive isolation and speciation. 

  



Telomeres and the evolution of the cancer genome 

It is well known that cancer arises because of acquired somatic mutation. This creates the 

genetic diversity upon which Darwinian selection can operate to drive clonal evolution within 

the cellular ecosystem of multicellular organisms. Multiple mutational mechanisms generate 

cellular genetic diversity, including the action of APOBEC cytidine deaminases, exposure to 

mutagens, DNA replication and age, all creating distinctive mutational signatures [1]. In 

addition to this mutational burden, large-scale genomic rearrangements are frequently 

detected and represent a hallmark of cancer cells [2]. Cancers exhibiting karyotypic 

complexity display a more aggressive and rapidly evolving phenotype that confers a poorer 

prognosis [3]. Telomere dysfunction is one key mechanism that is considered to drive 

karyotypic complexity in cancer. Short telomeres, relative to the specific normal somatic 

tissues from which tumours are derived, have been identified in the majority of tumour types, 

both solid and haematological [4]. Mutations leading to the upregulation of telomerase 

activity are required for malignant progression in at least 85% of tumours [5], with the 

remaining tumours adopting the alternative lengthening of telomeres phenotype [6]. Murine 

models with a combined lack of telomerase and Tp53 demonstrate that telomere dysfunction 

can drive the types of genomic rearrangements, such as non-reciprocal translocations, that 

are frequently observed in human cancer [7]. Cancers with both short telomeres and 

telomere fusion exhibit higher levels of genomic complexity [8-10]. Importantly also, patients 

with tumours that display telomeres within the length ranges at which fusion occurs, display 

a much poorer prognosis [11-14] and an impaired response to genotoxic chemotherapeutics 

[15]. Taken together this body of evidence is consistent with the view that telomere-driven 

mutation can be one contributor to the overall genetic heterogeneity of cancer, that 

facilitates clonal progression and the evolution of the cancer genome. In this article, I consider 

how our increasingly detailed understanding of telomere biology, primarily in the context of 

cancer but also human genetic disease, may inform about the role that telomeres may play 

in modulating the evolution of the genome across species. 

 

Telomere erosion and senescence. 

The DNA sequence that constitutes the terminus of linear eukaryotic chromosomes was first 

characterised in Tetrahymena to be the hexameric nucleotide repeat sequence TTGGGG, 

tandemly repeated into variable lengthened arrays of between 20-70 repeats [16]. In the 



subsequent years, it has become apparent that the chromosomes in the majority of 

eukaryotes terminate with short G-rich repetitive sequences orientated 5ʹ to 3ʹ toward the 

terminus. The short repeat structure containing a group of 2-4 guanines appears to be largely 

conserved between taxonomic groupings, for example all vertebrates utilise the sequence 

TTAGGG [17]. Whereas within the majority of plant species TTTAGGG is utilised, with some 

exceptions for example, Nicotiana tabacum (TTAGGG) and Alliums (CTCGGTTATGGG). The 

chromosomal terminus is not blunt ended, but is instead a single-stranded 3ʹ overhang, 

composed in human cells of 200-300 nt of TTAGGG repeats [18-20]. It is considered that this 

overhang is capable of folding back and annealing within proximal regions of the telomere 

repeat array, to form the T-loop structure, that effectively sequesters the natural end of the 

chromosome and prevents its recognition as a double-stranded DNA break (DSB)[21]. The 

only exceptions to the small repeat unit paradigm for telomeric structure are the dipterans, 

which utilise retro-transposable elements that specifically transpose to the chromosomal 

termini [22]. 

 

Telomere repeat sequences are synthesised de novo by the specialised reverse transcriptase, 

telomerase, that utilises an RNA template to catalyse the addition of telomere repeats at the 

chromosomal terminus [23]. This counteracts the ongoing loss of terminal sequences that 

occurs due the end-replication problem as cells divide [24], thereby defining one of the key 

functions of telomeres (Figure 1). A further function of telomeres is to protect the natural 

chromosome end from recognition as a DSB and to prevent aberrant DNA repair activities. 

This ‘end-capping’ function is mediated via the specialised chromatin structure of the 

telomere, which is composed of telomere repeat specific binding proteins and associated 

proteins, collectively referred to as the ‘Shelterin complex’ [21]. Abrogation of TRF2 function, 

a key component of the Shelterin complex, leads to an immediate and catastrophic 

chromosomal fusion phenotype, with chromosomes joined telomere-to-telomere [25, 

26](Figure 2A). 

 

Telomerase expression is not consistent across all tissues within the same organism and has 

species-specific expression profiles [27]. In general, longer lived, larger species, such as 

humans, have a tendency towards telomerase repression in the majority of somatic tissues 

and relatively short mean telomere lengths that are typically less than 20 kb. Which contrasts 



with shorter lived, smaller organisms, where telomerase is active and the telomeres are 

longer [28, 29]. Thus in longer lived species, ongoing cell division throughout life, results in 

progressive telomere shortening as a function of age (Figure 1). In vitro cell culture allows 

cells to be passaged to the end to their natural replicative lifespan, at this point telomeres 

can lose their end-capping function. This can lead to various outcomes depending on the 

cellular context and the nature by which end-capping is lost. In normal human fibroblast cells, 

gradual telomere erosion ultimately results in the partial loss of end-capping, whereby cells 

undergo a Tp53-dependent G1/S cell cycle arrest, referred to as replicative senescence. The 

repression of telomerase, together with a telomere-dependent limit to replicative lifespan is 

considered to provide a stringent tumour suppressive mechanism in long-lived species [30-

32]. The corollary of which, is that whilst the telomeres of senescent cells illicit a cell-cycle 

arrest, it does not result in the repair of telomeres. Thus replicative senescence is permanent 

and cells can remain in a metabolically active, but non-dividing, state for many years. The 

phenotype of senescent cells can be distinct from younger cells, potentially becoming more 

catabolic and actively degrading the tissue matrix in which they reside [33] and they can 

acquire the pro-inflammatory senescence associated secretory phenotype that can promote 

tumour progression [34]. The accumulation of senescent cells as a function of age, may 

therefore lead to a loss of tissue homeostasis and frailty, that may underpin the ageing 

processes (discussed elsewhere in this issue, [35]). Thus, telomere erosion may provide a 

tumour suppressive mechanism during the reproductive years, yet the same process may 

underpin the ageing process in long lived species. 

 

Telomere-driven chromosomal instability 

Whilst normal cells undergo replicative senescence in response to short telomeres, cells that 

are compromised in their ability to respond to DNA-damage, for example via mutations within 

components of the Tp53 and RB pathways, can continue to divide and undergo further 

telomere erosion [36]. In this situation telomeres can erode to a length at which they are 

almost completely denuded of telomere repeats and will no longer be capped by the Shelterin 

complex [37]. This complete uncapping results in chromosome-ends that are recognised and 

processed by the cellular DSB repair mechanisms leading to the fusion of telomeres (Figure 

2B and 2C) [36-38]. In human cells the characterisation of the DNA sequences across telomere 

fusion breakpoints, reveals a mean of just 5 TTAGGG repeats at the break point and that 



fusion displays a distinctive mutational profile [37]. This profile includes micro-homology at 

the fusion point and that one, or both, of the participating telomeres is subjected to extensive 

processing, resulting in deletions extending several kilobases into the sub-telomeric DNA [37-

39]; a similar profile was also identified in Arabidopsis mutants lacking telomerase and Ku70 

[40].  This characteristic mutational signature, of extensive deletion and micro-homology at 

the fusion points, implicates the more error-prone, alternative form of non-homologous end 

joining (A-NHEJ) as the predominate DNA repair mechanism catalysing the fusion of short 

dysfunctional telomeres. Indeed, it is apparent that if the classical-NHEJ pathway is 

abrogated, for example by the deletion of LIG4, then short telomeres are still capable of 

undergoing fusion, consistent with the utilisation of A-NHEJ in this process [41-44]. The 

removal of specific Shelterin components also reveals the relative roles of C- and A-NHEJ in 

telomere fusion. Following the loss of TRF2 function telomere fusions are mediated by C-NHEJ 

[25, 45]; whereas following the loss of POT1 function, fusion is mediated by A-NHEJ [45]. 

Telomeres are subject to both C- and A-NHEJ mediated repair following the removal of both 

TRF1 and TRF2 [46]; thus, the involvement of each pathway appears to be dependent on how 

telomeres are rendered dysfunctional. The error-prone nature of A-NEHJ is consistent with 

the sub-telomeric deletion events, presumably generated by nucleolytic resection, that 

accompanies telomere fusion. The distribution of fusion points, with respect to the start of 

the telomere repeat arrays, indicates that deletion may be much more extensive, with the 

potential to extend into the coding regions of the chromosome [37, 39]. Thus, the processing 

of short dysfunctional telomeres, via the A-NHEJ pathway, may result in sub-telomeric 

resection that is sufficient to result in the deletion of distal genes (Figure 2D). 

 

Telomere fusion analysis shows that telomeres can be subjected to fusion with other 

shortened telomeres within the cell [37]; leading to the formation of dicentric chromosomes 

and the initiation of cycles of breakage, fusion and anaphase-bridging (BFB) [47], that can 

drive large-scale genome rearrangements, of the kind frequently observed in human cancer 

[7]. Telomere fusion preferentially occurs between newly replicated sister chromatids; in this 

situation, the dicentric chromatid is broken during anaphase, yielding one chromatid with a 

potentially large deletion and one with a large inverted repeat. The daughter cell with the 

inverted repeat now contains duplicated copies of genes within the repeat region, with a gene 

copy number of 3; further cycles of BFB will result in further gene amplifications (Figure 2B). 



These BFB cycles can only be prevented by chromosome healing via the synthesis of a new 

telomere on the broken end via the action of telomerase, or by recombination with a pre-

existing telomere [48-50](Figure 2D). Inter-chromosomal telomere-telomere fusion can occur 

at any stage of the cell cycle. Following replication, these structures can form a double 

anaphase-bridge that, depending on how the centromeres are resolved and the position of 

the subsequent breakage, will result in daughter cells with a non-reciprocal translocation 

(NRT), or a deletion (Figure 2C), additional cycles of BFB will further perpetuate the state of 

genome instability. BFBs initiated by either inter-chromosomal or sister-chromatid telomere 

fusion, will result in the internalisation of telomere repeat sequences to a form new 

interstitial telomere repeat sequences (ITS; Figure 2B and 2C). 

 

The state of wide-spread genome instability induced following telomere dysfunction is 

referred to as ‘crisis’ during which telomere fusions initiate mitotic arrest that leads to 

apoptotic cell death [51]. Cell death progressively increases to a point at which it exceeds cell 

growth and the culture crashes. Rarely cells can escape crisis, but only following the 

reestablishment of a telomere maintenance mechanism, such as the upregulation of 

telomerase activity, that allows the genome to be stabilised and the outgrowth a clonal 

derivative with a highly rearranged genome emerges [43]. There are good data from human 

cancers demonstrating telomere erosion to the lengths observed in cells undergoing crisis in 

culture, as well as telomere fusion and evidence of anaphase-bridging [8, 9, 52-55]. Whilst a 

telomere driven crisis observed in in vitro cell culture experiments represents an extreme 

situation, the observations in cancers indicate that the malignant progression requires a stage 

akin to a telomeric crisis. The BFB cycles that may arise, following telomere fusion, will lead 

to cells containing chromosomes with large deletions, non-reciprocal translocations, 

inversions, duplications and the generation of interstitial telomeric sequences (ITS). 

 

In addition to fusion with other telomeres and the initiation of BFB cycles, it is also apparent 

that short dysfunctional telomeres can be subjected to fusion with non-telomeric loci [39, 

42]. Interestingly these fusion events can be detected, captured between sister chromatids, 

from just a single dysfunctional telomere, in the context of an otherwise functional telomere 

component. These often-complex events, appear to involve the ligase 4 dependent classical-

NHEJ pathway and can involve multiple loci across the genome, providing a direct mechanism 



for mutation. If these mutational events result in translocation of a functional telomere, then 

the resulting chromosome will be stable and thus provides a mechanism for direct mutation 

without the initiation of BFB cycles. 

 

Chromosome healing and recombination 

Meiotic recombination rates in humans, are not linear throughout the chromosome; instead 

rates are at their lowest across centromeres and increase consistently to the sub-telomeric 

regions of the chromosomes, leading to a linkage map expansion at the telomeres whereby 

the genetic distance between markers increases relative to the physical distance [56]. These 

regions of the genome are characterised by variable satellite and mini-satellite repeat 

sequences that are often associated with recombination hotspots [57, 58]. These sub-

telomeric repetitive sequences comprise 80% of the 100 kb of DNA adjacent to telomeres 

[59]. They are considered to arise via NHEJ mediated translocations, followed by ectopic 

meiotic recombination and gene conversion between non-homologous chromosome ends. 

This allows for the distribution and homogenisation of sub-telomeric repeat sequences 

shared amongst multiple chromosome ends in the human genome [60]. This sub-telomeric 

recombination activity renders these regions of the genome highly dynamic and variable; a 

property that may have been selected for to generate genetic diversity in the human 

population. A sub-class of the Wiscott-Aldrich Syndrome Protein family (WASH) are the most 

distal protein coding RNA transcripts identified in the human genome, with transcripts 

terminating just 5 kb from the telomere in some individuals [59, 61]. Due to their sub-

telomeric location gene dosage and distribution of the WASH family varies widely both within 

and between species [59]. This gene family appears to be involved the organisation of the 

actin cytoskeleton in response to various extracellular stimuli; why such diversity in this gene 

family is maintained is not clear, but they may contribute to host responses to pathogen 

infection and phenotypic diversity [61]. Other sub-telomeric gene families include a sub-set 

of the large olfactory receptor gene family, which also display a polymorphic distribution in 

the human population [62]. The phenotypic consequences are not entirely clear, but diversity 

in both sequence and copy number of these receptors could alter specificity and sensitivity 

to particular odorants [63].  

 



The mechanisms that provide potentially adaptive genotypic and phenotypic diversity in the 

population, can also result in deleterious genetic rearrangements. Chromosome healing is a 

process that can result in de novo telomere formation at DSBs, this can occur by the action of 

telomerase or the capturing of a pre-existing telomere by recombination [64]. Telomerase 

activity is controlled by Pif1, a helicase that negatively regulates telomerase processivity and 

prevents aberrant telomerase activity at non-telomeric DSBs [65]. Chromosome healing has 

been observed in yeast and Tetrahymena [66], as well in several genetic conditions in humans 

that result from chromosomal terminal deletions ‘healed’ by de novo telomere formation, 

either by the action of telomerase [67, 68], or by acquiring a pre-existing telomere by 

recombination with sub-telomeric sequences or break induced replication [69, 70](Figure 2D). 

Numerous sub-telomeric deletions and translocations have been documented that lead to 

genetic disease, including mental retardation [71], holoprosencephaly [67] and 

facioscapulohumeral muscular dystrophy [72]. Many of these conditions arise from deletion 

and genetic rearrangements, but also changes to the chromosomal location with respect to 

telomeres, that may cause telomere position effects on gene expression [73]. 

 

Therefore, whilst the sub-telomeric telomere regions of human chromosomes are amongst 

the most genetically dynamic regions of the genome, providing potentially useful adaptive 

variation, their dynamic nature can in turn have detrimental mutational effects. 

 

Stochastic telomeric deletion 

Superimposed on gradual end-replication losses as a function of cell division, are mechanisms 

that generate large telomeric deletion events. Observed initially in Trypanosoma brucei [74], 

human cancer cell lines, then later in yeast models [75, 76] and C.elegans [77], these deletion 

events are also detected in normal human somatic cells and tissues [78, 79] as well as in the 

human male germline [80]. These events lead to a single chromosome end with a telomere 

almost completely denuded of telomere repeats [79], or the complete loss of the telomere 

and the generation of sub-telomeric double stranded DNA break (DMB unpublished 

observations; Figure 1). These apparently stochastic telomere deletion events, can result in 

short dysfunctional telomeres, in otherwise normal cells, that can then be subjected to DNA 

repair activity and fusion [37]. The mechanisms by which large-scale telomeric deletion occurs 

are not clear, however they may be related to difficulties in replication in these regions. 



Telomere repeat sequences can form stable higher-order structures such as G-quadruplexes 

[81] and T-loops [21], these are likely to be difficult to replicate and require specialised 

helicase activities such as WRN and RTEL1 to unwind these structures prior to replication [82, 

83]. The resolution of stalled replication forks within telomeres may result in a telomeric 

deletion event and fusion; consistent with this, telomeres have been identified as potential 

fragile sites arising as a consequence of replication stress [84]. The deleted telomeres may 

then be subjected to further DNA repair activity, leading to the same mutational mechanisms 

described above (Figure 2), including BFB cycles, sub-telomeric deletion and de novo 

telomere formation. Thus stochastic telomere deletion provides a telomere-driven 

mutational mechanism that can bypass the various DNA damage response apparatus in 

normal cells, even in the presence of telomerase. 

 

Can telomere-driven mutation facilitate genomic evolution? 

We have generated an increasingly detailed understanding of the mechanisms underlying 

telomere dysfunction and the role that this plays in driving mutation both within the cancer 

genome and genetic disease in humans. Can we apply this knowledge to understand how 

telomere biology may facilitate the evolution of the genome within and between species? 

 

Sub-telomeric sequences – rapid evolution 

The repetitive and variable nature of sub-telomeric sequences appears to be consistent 

across the majority of eukaryote species, however the specific sequences involved are less 

conserved. Comparisons of the karyotypes of the great ape species show distinct additional 

G-bands at the terminal regions of approximately half of the telomeres in chimpanzee 

karyotypes and nearly all the telomeres in the gorilla karyotypes, but are absent in the human 

and orangutan karyotypes [85]. The use of a sub-telomeric cloning and sequencing strategy 

in chimpanzees identified sub-telomeric sequences that showed no similarity with human 

sequences characterised using the same approaches [86], but instead identified a 32bp A-T 

rich repetitive sequence (5ʹ-GATATTTCCATGTTTATACAGATAGCGGTGTA-3ʹ)[87]. Southern 

hybridisation and PCR analysis showed that this sequence was also present, but at higher 

levels, in the gorilla genome, but was absent from the human and orangutan genomes. These 

repetitive arrays may therefore account for the additional G-bands at the end of the 

chimpanzee and gorilla karyotypes. A recent ‘Blast’ search using this sequence against the 



completed genomes of the great apes, shows the both the chimpanzee and gorilla have 

abundant copies of this repeat sequence, but it is entirely absent from the genome databases 

of the human and orangutan genomes (DMB unpublished observation). Based on our current 

understanding of the great ape phylogeny, it is apparent that over a relativity short period of 

evolutionary time, this 32bp repeat sequence has been generated and propagated in the 

ancestral genome to chimpanzee, gorillas and humans, but has been entirely eradicated from 

the human genome. Thus the location of the start the telomere repeat arrays in the great ape 

species are likely to be unique to each species. Consistent with this, sequence analysis of the 

telomere-adjacent DNA of a single chromosome end in the great apes, revealed that the more 

ancestral telomere-adjacent sequence was observed in orangutans, which had been 

truncated in chimpanzee and replaced by the 32bp repeat sequences and in human by a new 

telomere repeat array, potentially via a telomerase mediated chromosome healing event 

[88]. 

 

The virulence genes of Plasmodium falciparum, Trypanosoma brucei and cruzi and 

Pneumocystis carinii are found in the sub-telomeric regions [89, 90], frequent ectopic 

recombination in these regions is considered to increase variability and diversity. Moreover 

as the telomeres in T. brucei are subjected to large sporadic deletion events [74], it has been 

considered that if these deletion events occur in telomeres that are already short, then the 

resulting DSBs may occur within the sub-telomeric genes. The resulting repair via break 

induced replication, may result in conversion between virulence genes creating an antigenic 

switch [91].  

 

Sub-telomeric variation has been exploited in many other species to facilitate genetic 

diversity and adaptation; this includes the genes involved in sugar metabolism in yeast species 

[92], as well as the avirulence genes of the rice blast fungus [93]. 

 

The occurrence of variable repeat sequence families is a generalised property of sub-

telomeric regions across a broad range of species [94-98]. It appears that these regions of the 

genome have a propensity to accumulate repetitive DNA, with ectopic recombination being 

invoked as the key driver of this variation. However, it is also apparent that telomeric deletion, 

both within the telomere repeat array, but also extending into the sub-telomeric regions, 



followed by DNA repair activity to create translocations, gene conservations or to seed new 

telomeres, contributes further to this diversity. Importantly also, these mechanisms lead to 

rapid changes over short periods of evolutionary time, in the organisation and sequence 

composition of chromosome ends, resulting in species specific structures and positioning of 

telomere repeat arrays. 

 

Interstitial telomeres  

Most vertebrate species studied have chromosomes in which there are non-telomeric loci 

that contain interstitial telomere repeats. Using in situ hybridisation Meyne et al undertook a 

comprehensive analysis of telomere repeat distributions across a wide range of species [99]. 

They could detect ITS in 55 of 100 species analysed, with 44 of these containing 3 or more ITS, 

and some contained chromosomes with extensive telomere repeat hybridisation patterns 

across specific chromosomes, for the example, the Y chromosomes in Bennett's wallaby and 

African elephant [99]. The remaining 45 species displayed a telomere only hybridisation 

signal, however in situ hybridisation is limited in resolution and it is difficult to detect blocks 

of telomere repeats less than 1 kb and thus the full extent of ITS will be underestimated; this 

will become more apparent with the completion of the whole genome sequences from a 

broader range of species. Many subsequent studies have extended our knowledge of the 

distribution of ITS across a broad range of species including fish, amphibians and reptiles [100-

102]. The chromosomal distribution of ITS provide markers to document the evolutionary 

history of the genome in which they reside. In some situations ITS are clearly derived from 

telomere fusion events, an example of which is the human chromosome 2 which is derived 

from a telomere fusion between two ancestral chromosomes, creating a dicentric 

chromosome that was stabilised following the inactivation one of the two centromeres 

(Figure 2E)[103]. The sequence of the fusion event that gave rise to human chromosome 2, is 

indistinguishable to the types of fusion observed in experimental systems, or directly in 

human cancers and is consistent with a NHEJ mediated fusion [39, 103]. 

 

An even more dramatic example of telomere fusion mediated events creating ITS, is observed 

in Muntjac deer chromosomes. Muntjac exhibit considerable variation in chromosomal 

complement, at the extremes of the distribution is the Indian muntjac whose genome is 

comprised of 6-7 chromosomes, whereas the genome of the closely related Chinese muntjac 



contains 46 chromosomes, which is more typical of mammalian genomes [104]. Despite this 

large karyotypic difference, both genomes are of a similar size and the species can hybridise 

[105]; other Muntjac species display intermediate chromosome numbers. Cytogenetic 

analysis of the Indian muntjacs revealed multiple ITS adjacent to blocks of centromeric 

heterochromatin [106]. Long-rang mapping and sequencing across these ITS sites reveals 

pattern of telomere fusion between telocentric chromosomes, in the same head-to-tail 

orientation [107]. It is proposed that the ancestral genome contained 70 chromosomes and 

29 fusion events were required to reduce the genome to the complement of chromosomes 

observed in the extant population [107], over very a short period of evolutionary time [108]. 

The mechanisms underlying such a large-scale series of telomere fusions are not clear, but 

the dramatic scale of the events that led to this genome might be consistent with a single 

catastrophic chromosomal fusion event, that is reminiscent of the end-to-end fusion of 

chromosomes observed following the loss of TRF2 function [25] (Figure 2A). These types of 

large-scale genomic rearrangements, have been long associated with chromosomal 

speciation [109]. The subsequent fixation of these events in the population may be driven by 

a combination of; immediate selective advantage because of change in gene expression 

associated with a specific chromosomal rearrangement; meiotic drive, creating an imbalance 

in chromosomal segregation; suppression of recombination to counter act the detrimental 

effects of heterozygosity [110, 111]. 

 

ITS sequences are frequently identified in centromeric regions of metacentric and sub-

metacentric chromosomes, for example in several lizard and snake species [102]. These are 

likely consistent with a Robertsonian fusion of telocentric chromosomes, resulting the 

internalisation of telomere sequences adjacent to the centromere, as documented in Brazilan 

geckos [112]. Centromere adjacent ITS sequences observed on acrocentric chromosomes are 

often large [102] and this might arise because of repeat expansion in these regions. 

Pericentromeric regions can be transcriptionally active creating non-coding RNA species that 

contribute to the chromatin structure of these regions. Reverse transcription of these non-

coding RNAs to DNA (RNA-derived DNA, rdDNA) can lead to repeat expansions [113]. The 

heterogametic sex chromosomes in some species contain extensive ITS sequences [99] and 

these can be extreme, for example as observed in the W chromosome of Sand lizards, where 

they appear to constitute the bulk of the chromosome [114]. Whilst the mechanism of these 



repeat expansions is not clear, it is tempting to speculate that a that an rdDNA mediated 

repeat expansion, associated centromeric function, could be tolerated in gene poor 

degenerate chromosomes. 

 

Other ITS loci are consistent with simple insertions of telomere sequences, these have the 

appearance of a chromosomal healing event that was not complete and thus at this telomere 

sequences may have been captured, or generated de novo via telomerase activity, prior to 

the repair of the locus [115]. 

 

ITS represent a signature of the molecular events underlying genomic evolution, their 

continued presence in the genome may therefore be selectively neutral; however there is 

evidence to indicate that ITS may contribute to chromosomal function and thus their 

maintenance may be adaptive. Specific subsets of ITS provide binding sites for the shelterin 

components RAP1 and TRF2, but this distribution might be controlled by the relative 

expression levels of TRF2 [116]. The binding of these proteins at ITS may regulate the 

expression of proximal genes [116]. Moreover, evidence has been presented that indicates 

that the interaction of TRF2 and A-type lamins with ITS, may result in the formation of 

interstitial T-loop structures [117], thereby potential linking biological ageing and telomeres, 

with chromosomal architecture and gene expression profiles. 

 

Summary 

Telomeric and sub-telomeric regions of eukaryotic chromosomes, display extraordinary levels 

of variation both within and between species. The biology of telomeres, their dysfunction and 

repair, provides mechanisms by which rapid large-scale changes in genomes can occur over 

short periods of evolutionary time and has the potential to facilitate chromosomal speciation. 
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Figure Legends 

 

Figure 1.   

Illustrating telomere dynamics; gradual telomere erosion as a consequence of end-replication 

losses, stochastic telomere deletion and sub-telomeric DSB formation.  Centromeres are 

depicted by a blue filled oval and telomeres by black and white filled rectangles.  Sub-

telomeric sequences, or genes, are illustrated by the coloured squares with capital letters. 

 

Figure 2.  

Illustrating telomeric DNA-damage processing.  A, Catastrophic telomere fusion because of 

dysfunction within the Shelterin complex. B, Sister chromatid telomere fusion and the 

initiation of cycles of fusion, anaphase-bridging and breakage gradual telomere erosion. C, 

Inter-chromosomal fusion. D, Telomeric resection, creating sub-telomeric deletion that can 

to fusion, or the chromosomal healing and the acquisition of a new telomere. E, Robertsonian 

chromosomal fusion, creating a dicentric chromosome that is stabilised following the 

inactivation of one of the two centromeres. Active centromeres are depicted by a blue filled 

oval, inactive centromeres by an unfilled oval and telomeres by black and white filled 

rectangles.  Sub-telomeric sequences, or genes, are illustrated by the coloured squares with 

capital letters. Interstitial telomere sequences (ITS) are highlighted 
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