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Abstract

For a finite group G, the proper power graph P∗(G) of G is the graph whose vertices are

non-trivial elements of G and two vertices u and v are adjacent if and only if u 6= v and um = v

or vm = u for some positive integer m. In this paper, we consider the complement of P∗(G),

denoted by P∗(G). We classify all finite groups whose complement of proper power graphs is

complete, bipartite, a path, a cycle, a star, claw-free, triangle-free, disconnected, planar, outer-

planar, toroidal, or projective. Among the other results, we also determine the diameter and

girth of the complement of proper power graphs of finite groups.

Keywords: Complement of power graph, finite groups, diameter, girth, bipartite graph,

planar graph, toroidal graph, projective-planar graph.
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1 Introduction

The investigation of properties of a given algebraic structure can be made by associating it with a

suitable graph, and then by analyzing the graph properties using methods of graph theory. This
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approach have been used in a great amount of literature, for example, see [1], [3], [8]. Moreover,

there are several recent papers dealing with embeddability of graphs associated with algebraic

structures on topological surfaces. For instance, see [2], [12], [21], [22], [23]. Kelarev and Quinn

[15] introduced and studied the directed power graph of a semigroup. The directed power graph

of a semigroup S is a digraph having the vertex set S, and, for u, v ∈ S, there is an arc from u

to v if and only if u 6= v and v = um for some positive integer m. Later, Chakrabarty et al. [13]

defined the undirected power graph P(G) of a group G as an undirected graph whose vertex set is

G, and two vertices u and v are adjacent if and only if u 6= v and um = v or vm = u for some

positive integer m. Recently, several interesting results have been obtained for these graphs. For

instance, see [16], [26]. Mirzargar et al. [18] investigated planarity of the undirected power graph of

finite groups, and Xuanlong Ma and Kaishun Wang [29] classified all finite groups whose undirected

power graphs can be embedded on the torus.

Further, in [19], Moghaddamfar et at. considered the graph P∗(G), which is obtained by

removing the identity element from the undirected power graph P(G) of a given group G. This

graph is called the undirected proper power graph of G. They have studied several properties of

these graphs, including the classification of finite groups whose undirected proper power graphs

are one of strongly regular, bipartite, planar, or Eulerian. Later, in [7], Doostabedi and Farroki

have investigated various kinds of planarity, toroidality, and projective-planarity of these graphs.

An interested reader may refer to the survey [14] for further results and open problems related to

the power graph of groups and semigroups. In this paper, we consider only the undirected graphs,

and, for simplicity, use the term ‘power graph’ to refer to the undirected power graph.

In this paper, we study the properties of complement of the proper power graph of a group.

For a given group G, the complement of the proper power graph of G, denoted by P∗(G), is a graph

whose vertex set is the set of all nontrivial elements of G, and two vertices u and v are adjacent if

and only if u 6= v, and um 6= v and vn 6= u for any positive integers m, n; in other words u and v

are adjacent if and only if u 6= v, u /∈ 〈v〉 and v /∈ 〈u〉.

The rest of the paper is organized as follows. In Section 2, we provide some preliminaries and

notations. In Section 3, we classify all finite groups whose complement of proper power graph

is complete, bipartite, C3-free, K1,3-free, disconnected, or having isolated vertices. Moreover, in

this section, we determine the girth and diameter of the complement of proper power graphs of

finite groups. In Section 4, we classify all finite groups whose complement of proper power graphs

is planar, toroidal, or projective-planar. As a consequence, we classify the finite groups whose
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complement of proper power graphs is a path, a star, a cycle, outer-planar, or having no subgraphs

K1,4 or K2,3.

2 Preliminaries and notations

In this section, we remind some concepts, notation, and results in graph theory and group theory.

We follow the terminology and notation of [11, 27] for graphs and [25] for groups. A graph G is

said to be complete if there is an edge between every pair of its distinct vertices. G is said to be

k-partite if the vertex set of G can be partitioned to k subsets, called parts of G, such that no

two vertices in the same subset of the partition are adjacent. A complete k-partite graph, denoted

by Kn1,n2,...,nk , is a k-partite graph having its parts sizes n1, n2, . . . , nk such that every vertex in

each part is adjacent to all the vertices in the other parts of Kn1,n2,...,nk . For simplicity, we denote

the complete k-partite graph Kn,n,··· ,n by K(k, n). The graph K1,n is called a star. Pn and Cn

respectively denote the path and cycle on n vertices. We denote the degree of a vertex v in G by

degG(v). G is said to be H-free, if it has no induced subgraph isomorphic to H.

G is said to be connected if there exists a path between any two distinct vertices in the graph;

otherwise G is said to be disconnected. The distance between two vertices u and v of a graph,

denoted by d(u, v), is the length of a shortest path between u and v in the graph, if such a path

exists, and ∞ otherwise. The diameter of a connected graph G is the maximum distance between

any two vertices in the graph, and is denoted by diam(G). The number of edges in a path or a

cycle, is called its length. The girth of G is the minimum of the lengths of all cycles in G, and

is denoted by gr(G). If G is acyclic, that is, if G has no cycles, then we write gr(G) = ∞. The

complement G of G is a graph, which has the vertices of G as its vertex set, and two vertices in

G are adjacent if and only if they are not adjacent in G. Given two simple graphs, G1 = (V1, E1)

and G2 = (V2, E2), their union, denoted by G1 ∪G2, is a graph with the vertex set V1 ∪ V2 and the

edge set E1 ∪E2. Their join, denoted by G1 +G2, is a graph having G1 ∪G2 together with all the

edges joining points of V1 to points of V2.

A graph is said to be embeddable on a topological surface if it can be drawn on the surface in

such a way that no two edges cross. The orientable genus or genus of a graph G, denoted by γ(G),

is the smallest non-negative integer n such that G can be embedded on the sphere with n handles.

G is said to be planar or toroidal, respectively, when γ(G) is either 0 or 1. A planar graph G is

said to be outer-planar if it can be drawn in the plane with all its vertices lying on the same face.
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A crosscap is a circle (on a surface) such that all its pairs of opposite points are identified,

and the interior of this circle is removed. The nonorientable genus of G, denoted by γ(G), is the

smallest integer k such that G can be embedded on the sphere with k crosscaps. G is said to be

projective or projective-planar if γ(G) = 1. Clearly, if G′ is a subgraph of G, then γ(G′) ≤ γ(G)

and γ(G′) ≤ γ(G).

Let G be a group. The order of an element x in G is denoted by o(x). For a positive integer

n, ϕ(n) denotes the Euler’s totient function of n. For any integer n ≥ 3, the dihedral group of

order 2n is given by D2n =
〈
a, b|an = b2 = e, ab = ba−1

〉
. For any integer n ≥ 2, the quarternion

group of order 4n is given by Q4n =
〈
a, b|a2n = b4 = 1, b2 = an, ab = ba−1

〉
. For any α ≥ 3 and a

prime p, the modular group of order pα is given by Mpα = 〈a, b|apα−1
= bp = 1, bab−1 = ap

α−2
+ 1〉.

Throughout this paper, p, q denotes distinct prime numbers.

The following results are used in the subsequent sections.

Theorem 2.1. ([27, Theorem 6.6]) A graph G is planar if and only if G contains no subgraphs

homeomorphic to K5 or K3,3.

Theorem 2.2. ([27, Theorems 6.37, 6.38, 11.19, 11.23])

(1) γ(Kn) =
⌈
(n−3)(n−4)

12

⌉
, n ≥ 3

(2) γ(Km,n) =
⌈
(m−2)(n−2)

4

⌉
, n,m ≥ 2

(3) γ(Kn) =
⌈
(n−3)(n−4)

6

⌉
, n ≥ 3, n 6= 7; γ(Kn) = 3 if n = 7.

(4) γ(Km,n) =
⌈
(m−2)(n−2)

2

⌉
, n,m ≥ 2.

As a consequence, γ(Kn) > 1 for n ≥ 8, γ(Kn) > 1 for n ≥ 7, γ(Km,n) > 1 if either m ≥ 4, n ≥ 5

or m ≥ 3, n ≥ 7, and γ(Km,n) > 1 if either m ≥ 3, n ≥ 5 or m = n = 4.

Theorem 2.3. (i) ([17, p.129]) The number of non-cyclic subgroup of order pα in any non-cyclic

group of order pm is of the form 1 + kp whenever 1 < α < m and p > 2.

(ii) ([25, Proposition 1.3]) If G is a p-group of order pn, and it has a unique subgroup of order

pm, 1 < m ≤ n, then G is cyclic or m = 1 and p = 2, G ∼= Q2α.

(iii) ([5, Theorem IV, p.129]) If G is a p-group of order pn, then the number of subgroups of order

ps, 1 ≤ s ≤ n is congruent to 1 (mod p).
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3 Some results on the complement of proper power graphs of

groups

Theorem 3.1. Let G be a finite group. Then P∗(G) is complete if and only if G ∼= Zm2 , m ≥ 1.

Proof. Assume that P∗(G) is complete. Then every element of G is of order 2. For, if G contains

an element x of order p (6= 2), then there exist a non-trivial element y in 〈x〉. Then x is not

adjacent to y in P∗(G), which is a contradiction to the hypothesis. Therefore, G is a 2-group with

exponent 2. Since any group with exponent 2 must be abelian, so G ∼= Zm2 , m ≥ 1. Conversely, if

G ∼= Zm2 , m ≥ 1, then every element of G is of order 2, so it follows that P∗(G) is complete.

Theorem 3.2. Let G be a finite group. Then P∗(G) is K1,3-free if and only if G is isomorphic to

one of the following:

(i) Zpn, Z6, S3, Zn2 , Q8, where n ≥ 1;

(ii) 3-group with exponent 3;

(iii) non-nilpotent group of order 2n.3 or 2.3m, where n,m > 1 with all non-trivial elements are of

order 2 or 3.

Proof. Let |G| has k distinct prime divisors.

Case 1. If k ≥ 3, then G contains at least one subgroup of order p ≥ 5, let it be H. Since H is a

subgroup of prime order, so the non-trivial elements in H are not adjacent to each other in P∗(G).

The elements in G of order q (q 6= p), are not a power of any of the elements of H, and vise versa.

So P∗(G) contains K1,3 as an induced subgraph.

Case 2. If k = 2, then |G| = pnqm where n,m ≥ 1. If at least one of p or q ≥ 5, then P∗(G)

contains K1,3 as an induced subgraph, as by the argument used in Case 1. So we now assume that

both p, q < 5; without loss of generality, we can take p = 2, q = 3.

If m = n = 1, then G ∼= Z6 or S3. It is easy to see that P∗(Z6) ∼= K1,2 ∪K2, which is K1,3-free.

P∗(S3) is shown in Figure 1, which is K1,3-free.

Now we assume that either n or m > 1. Suppose G contains an element x whose order is not a

prime, then o(x) = 2l (l > 1), 3s (s > 1) or 2l3s (0 < l ≤ n, 0 < s ≤ m).

Subcase 2a. If o(x) = 2l, l > 1, then any three non-trivial elements of 〈x〉 are power of each other.

These three elements together with the element of order 3 forms K1,3 as an induced subgraph of

P∗(G).
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Figure 1: P∗(S3).

Subcase 2b. If o(x) = 3s, s > 1, then as in Subcase 2a, we can show that P∗(G) contains K1,3 as

an induced subgraph.

Subcase 2c. If o(x) = 2l3s, where 0 < l ≤ n, 0 < s ≤ m, then 〈x〉 contains an element of order 6,

let it be y. Let X1 and X2 be subsets of 〈y〉, where X1 contains two elements of order 6, and two

elements of order 3; and X2 contains one element of order 2, and two elements of order 6. Since

either n or m > 1, so G contains a subgroup of order ps, where p = 2 or 3 and s > 1, let it be H.

Suppose that H is cyclic. Then G contains an element of order ps, where p = 2 or 3 and s > 1. By

Subcases 2a and 2b, P∗(G) contains K1,3 as a subgraph. If H is non-cyclic, then H contains more

than two cyclic subgroups of order p. Hence G contains an element of order p, which is not in 〈y〉,

let it be z. Then the elements in X1 and z induces K1,3 as a subgraph of P∗(G). Thus, it remains

to consider the case when all the non-trivial elements of G are of order either 2 or 3. If we assume

that G is such a group, then by [6], G must be non-nilpotent of order either 2n.3 or 2.3m, n,m > 1.

Moreover, the degree of each vertex in P∗(G) is either |G| − 2 or |G| − 3, and so P∗(G) is K1,3-free.

Case 3. If k = 1, then |G| = pn, n ≥ 1.

Subcase 3a. If G is cyclic, then obviously

P∗(Zpn) ∼= Kpn−1, (3.1)

which is K1,3-free.

Subcase 3b. Assume that G is non-cyclic.

Subcase 3b(i). Let p = 2. If n = 2, then G ∼= Z2 × Z2, and so P∗(G) ∼= K3, which is K1,3-free.

Now we assume that n > 2. If G ∼= Zn2 , then by Theorem 3.1, P∗(G) ∼= K2n−1, which is K1,3-free.

If G ∼= Q8, then P∗(G) is as shown in Figure 2, which is K1,3-free. If G ∼= Q2n , n ≥ 4, then G

contains a cyclic subgroup of order 8, let it be H. Here H contains a unique subgroup of order
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Figure 2: P∗(Q8).

4. But G contains at least two cyclic subgroup of order 4, so as by the argument used in Case 1,

P∗(G) contains K1,3 as an induced subgraph.

Next, we assume that G � Zn2 and Q2n . Then G contains an element of order 22, let it be x

and so 〈x〉 contains a unique element of order 2. By Theorem 2.3 (ii) and (iii), G contains at least

three elements of order 2. Therefore, an element of order 2, which is not in 〈x〉 together with the

non-trivial elements in 〈x〉 forms K1,3 as an induced subgraph of P∗(G).

Subcase 3b(ii). Let p 6= 2. Then by Theorem 2.3(i), G has a subgroup H ∼= Zp × Zp. Then

H contains p + 1 subgroups of order p. Also any two of these subgroups have trivial intersection.

Hence each non-trivial element in any of these cyclic subgroups is not a power of any non-trivial

element in another cyclic subgroups of H. Hence,

P∗(Zp × Zp) ∼= K(p+ 1, p− 1). (3.2)

If p ≥ 5, then by (3.2), P∗(G) contains K1,3 as an induced subgraph. Now assume that p = 3.

If n = 2, then by (3.2), P∗(G) ∼= K(4, 2). Therefore P∗(G) is K1,3-free. Suppose that n > 2. If

G contains at least one element of order 32, let it be x. Then 〈x〉 contains a unique subgroup of

order 3. By Theorem 2.3(ii) and(iii), G contains at least four subgroups of order 3. Then as in the

argument used in Case 1, the element y /∈ 〈x〉 of order 3 together with the non-trivial elements in

〈x〉 forms K1,3 as an induced subgraph of P∗(G). If all the elements in G are of order 3, that is, G

is a 3-group with exponent 3. Then degree of each vertex of P∗(G) is 3n − 3, so P∗(G) is K1,3-free.

The proof follows by combining together all the above cases.

Theorem 3.3. Let G be a finite group. Then the following are equivalent:

(1) P∗(G) is isomorphic to either Zpn or Zpqm, n,m ≥ 1;
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(2) P∗(G) is C3-free;

(3) P∗(G) is bipartite.

Proof. First we prove that (1)⇔ (2):

Let |G| has k distinct prime divisors. Now we divide the proof into the following cases.

Case 1. If k = 1, then |G| = pn. Suppose G is cyclic, then by (3.1), P∗(G) is totally disconnected.

Now, we assume that G is non-cyclic. If p > 2, then by Theorem 2.3(i), G contains a subgroup

isomorphic to Zp×Zp. Then by (3.2), P∗(G) contains C3 as a subgraph. Now, let p = 2. If G � Qn,

then by Theorem 2.3(ii) and (iii), G contains at least 3 elements of order 2, and so P∗(G) contains

C3 as a subgraph. If G ∼= Qn, then G contains at least three cyclic subgroups of order 4, and so

P∗(G) contains C3 as a subgraph.

Case 2. If k = 2, then |G| = pnqm. Suppose G is cyclic, then the elements of order pn, qm and

prqs, where 0 < r < n, 0 < s < m are not powers of one another. So they form C3 as a subgraph

of P∗(G). Suppose that either n < 2 or m < 2. Without loss of generality, we assume that n = 1.

Then every element of order p is adjacent to the elements of order qs, 0 < s ≤ m; the elements of

order pqs , 0 < s ≤ m, are adjacent to the elements of order qt, t > s. So P∗(G) does not contains

C3 as a subgraph. Suppose G is a non-cyclic abelian, then G contains a subgroup isomorphic to

either Zp × Zp or Zq × Zq, and so by (3.2), P∗(G) contains C3 as a subgraph. Suppose that G is

non-abelian. If n = m = 1 and q > p, then G ∼= Zq o Zp and it contains q Sylow p-subgroups, and

a unique Sylow q-subgroup. So

P∗(Zq o Zp) ∼= K(q, p− 1) +Kq−1, (3.3)

which contains C3 as a subgraph. If either n > 1 or m > 1, then G contains a subgroups of order

pn and qm, let them be H and K respectively. If either H or K is non-cyclic, then by Case 1,

P∗(G) contains C3. If H and K are cyclic, then G contains elements of order pr, 0 < r ≤ n and

qs, 0 < s ≤ m. Let z be an element in G, which is not in H and K. If the order of z is pr, where

r ≤ n, then z together with an element of order pn and the element of order q forms C3 in P∗(G).

Similarly, if the order of z is qs, where s ≤ m, then P∗(G) contains C3. If order of z is prqs, then G

contains an element of order pq. This element together with an element of order pn and qm forms

C3 in P∗(G).

Case 3. If k ≥ 3, then G contains at least three elements of distinct prime orders, and so they

forms C3 in P∗(G).
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Next, we show that (1) ⇒ (3): If G ∼= Zpn , then by (3.2), P∗(G) is bipartite. If G ∼= Zpqm ,

m ≥ 1, then P∗(G) is bipartite with bipartition X and Y , where X contains the elements of order

qs, 0 < s ≤ m, and Y contains the elements of order p and the elements of order pqs, 0 < s ≤ m.

Proof of (3) ⇒ (2) is obvious.

Combining all the above cases, we get the result.

Theorem 3.4. Let G be a finite group. Then P∗(G) is disconnected if and only if G ∼= Zn or Q2α.

In this case, the number of components of P∗(Zn) is n − 1, if n = pα; ϕ(n) + 1, otherwise. The

number of components of P∗(Q2α) is 2.

Proof. First we assume that G ∼= Zn. Then all the elements of G are powers of the generators

of G. So the generators of G are isolated vertices in P∗(G). If n = pα, then by (3.1), number of

components of P∗(G) is n− 1. Assume that n = pn1
1 p

n2
2 . . . pnkk , where pi’s are distinct primes and

ni ≥ 1 for all i and k > 1. Let x and y be non-generators of G such that they are non-adjacent in

P∗(G). Then 〈x〉 ⊆ 〈y〉 or 〈y〉 ⊆ 〈x〉. Without loss of generality, we assume that 〈y〉 ⊆ 〈x〉. Since x

is a non-generators of G, so pnii - o(x) for some i. Hence x adjacent to the element of order pnii in

P∗(G), say z. Then y is also adjacent to z, so x− z − y is a x− y path in P∗(G). Thus, P∗(G) has

ϕ(n) + 1 components.

If G ∼= Q2α , then G contains one cyclic subgroup of order 2α−1, say H and the remaining

elements are of order 4. Since the element of order 2, say x is a power of all the elements of G. So

this element is an isolated vertex in P∗(G). Hence all the elements in G of order 4, which is not

in H are adjacent to all the non-trivial elements of H, except x. So the number of components of

P∗(G) is 2.

Now we assume that G � Zn and Q2α . We have to show that P∗(G) is connected. Let

|G| = pn1
1 p

n2
2 · · · p

nk
k , where pi’s are distinct primes. We need to consider the following two cases.

Case 1. Let k ≥ 2. For each i = 1, 2, . . . , k, Let Xi = {x ∈ G | o(x) = pmii , 0 < mi ≤ ni}. Then

each element x ∈ Xi is adjacent to all the elements in Xj , i 6= j. So the subgraph induced by the

elements of

k⋃
i=1

Xi is connected. Now let x ∈ G with x /∈
k⋃
i=1

Xi. Since G is non-cyclic, so pnii - o(x)

for some i. Let H be Sylow pi-subgroup of G.

Subcase 1a. If H is cyclic, then G contains an element of order pnii , say z. Then z is not a power

of x. So z ∈
⋃k
i=1Xi, and is adjacent to x in P∗(G).

Subcase 1b. Let H be non-cyclic. If H is non-quarternion, then by Theorem 2.3 (ii) and (iii), G

contains more than two cyclic subgroups of order p. So x is adjacent to the elements of order p,
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which are not in 〈x〉. If H is quarternion, then H contains more than two cyclic subgroup of order

4, so x is adjacent to the elements of order 4, which are not in 〈x〉. In both the cases there exist

z ∈
k⋃
i=1

Xi, which adjacent to x in P∗(G).

Case 2. Let k = 1. Since G is non-cyclic and non-quaternion, so by Theorem 2.3(ii) and (iii), G

contains more than two cyclic subgroups of order p1, let them be Hi := 〈zi〉, i = 1, 2, . . . , r, for

some r ≥ 3. Then each non-trivial element in Hi is not a power of any non-trivial element in Hj ,

i 6= j. Hence the subgraph induced by an elements in

k⋃
i=1

Hi is connected. Now, let x ∈ G, with

x /∈
k⋃
i=1

Hi. Then 〈x〉 contains exactly one zi, so any zj , j 6= i is not a power of x; since o(x) > o(zj),

so x is also not a power of zj . Thus x is adjacent to zj ∈
k⋃
i=1

Hi.

From the above arguments, it follows that P∗(G) is connected. This completes the proof.

From the proof of the previous theorem, we deduce the following result. Note that this result

follows directly from [19, Lemma 8]. Here we obtain this as a consequence of the previous theorem.

Corollary 3.1. Let G be a finite group. Then P∗(G) contains isolated vertices if and only if G ∼= Zn

or Q2m. Moreover, the number of isolated vertices in P∗(Zn) is n− 1, if n = pα; ϕ(n), otherwise.

The number of isolated vertices in P∗(Q2m) is 1.

Theorem 3.5. Let G be a finite group. Then diam(P∗(G)) is ∞, if G ∼= Zn or Qn; 1, if

G ∼= Zm2 , m ≥ 1; 2, otherwise.

Proof. The possibilities of G with diam(P∗(G)) is either∞ or 1 follows from Theorems 3.4 and 3.1,

respectively. Now we assume that G � Zn, Qn or Zm2 ,m ≥ 1. Let G has k distinct prime factors.

Case 1. Let k = 1. Since G � Zn and Q2α , so by parts (ii), (iii) of Theorem 4.1, G contains at

least three subgroups of prime order, let them be 〈xi〉 , i = 1, 2, . . . , r, where r ≥ 3. Now, let x be

a non-trivial element in G. Then 〈x〉 contains exactly one 〈xi〉, for some i. It follows that, every

xj (j 6= i) is not a power of x, and vice versa, so x is adjacent to all xj (j 6= i). Now let u, v be

non-trivial elements in G. Then 〈u〉 and 〈v〉 contains a subgroup of prime order, let them be 〈xr〉

and 〈xs〉, respectively. If 〈xr〉 6= 〈xs〉, then u and v are not a powers of each other. So u and v are

adjacent in P∗(G). If 〈xr〉 = 〈xs〉, then there exist xl (l 6= i), which is adjacent to both u and v in

P∗(G). So u− xl − v is a u− v path in P∗(G).

Case 2. Let k ≥ 2. Let |G| = pn1
1 p

n2
2 . . . pnkk , where pi’s are distinct primes and ni ≥ 1 for all i. Let

x and y be not adjacent vertices in P∗(G). Then 〈x〉 ⊆ 〈y〉 or 〈y〉 ⊆ 〈x〉. Without loss of generality,
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we assume that 〈y〉 ⊆ 〈x〉. Since G is non-cyclic, so pnii - o(x) for some i. Then by Subcases 1a and

1b in proof of Theorem 3.4, x is adjacent to the element of order pnii or pi, let that element be z.

Then y is also adjacent to z, so x− z − y is x− y path in P∗(G)

Theorem 3.6. If G is a finite group, then gr(P∗(G)) is ∞, if G ∼= Zpn or Z2p; 4, if G ∼= Zpqm,

where qm 6= 2; 3, otherwise.

Proof. If G � Zpn , and Zpqm , n,m ≥ 1, then by Theorem 3.3, G contains C3 as a subgraph. If

G ∼= Zpn , then by (3.1), P∗(Zpn) is acyclic. Now let G ∼= Zpqm . If m ≥ 1, then by Theorem 3.3,

P∗(Zpqm) is bipartite; If m > 1, then G contains C4 as a subgraph of P∗(G); If m = 1, then the

non-trivial elements of G are of orders one of p, q, pq. The elements of order pq are generators of G,

and hence they are isolated vertices in P∗(G). Also the elements of order p and q are not a power

of one another. Therefore,

P∗(Zpq) ∼= Kp−1,q−1 ∪K(p−1)(q−1), (3.4)

which is acyclic, when p = 2, and it contains C4, when p > 2. The proof follows from these

facts.

4 Embedding of the complement of proper power graphs of groups

on topological surfaces

The main results we prove in this section are the following:

Theorem 4.1. Let G be a finite group and p be prime. Then

(1) P∗(G) is planar if and only if G is one of Zpα , Z12, Z2p, Z3p, Z2 × Z2, Q8, S3;

(2) P∗(G) is toroidal if and only if G is one of Z18, Z20, Z28, Z3×Z3, Z2×Z2×Z2, Z4×Z2, D8;

(3) P∗(G) is projective if and only if G is one of Z20, Z4 × Z2, D8.

As a consequence of this result, we deduce the following:

Corollary 4.1. Let G be a finite group. Then

(1) P∗(G) is neither a path nor a star;

(2) P∗(G) is Cn if and only if n = 3 and G ∼= Z2 × Z2.
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(3) P∗(G) does not contain K1,4 as a subgraph if and only if G is either Zpn, Z6 or Z2 × Z2;

(4) The following are equivalent:

(a) G is one of Zpn ,Z2 × Z2 or Z2p;

(b) P∗(G) is outerplanar;

(c) P∗(G) does not contain K2,3 as a subgraph.

First, we begin with the following result.

Proposition 4.1. If G is a finite group whose order has more than two distinct prime divisors,

then γ(P∗(G)) > 1 and γ(P∗(G)) > 1.

Proof. Let |G| = pn1
1 p

n2
2 · · · p

nk
k , where pi’s are distinct primes, ni ≥ 1 and k ≥ 3. We divide the

proof in to the following cases:

Case 1. If k = 3, then without loss of generality, we assume that p1 < p2 < p3. Let us consider

the following subcases.

Subcase 1a. If p1 > 2, then G contains at least two elements of order p1, at least four elements of

order p2, and at least six elements of order p3. Then the elements of order pα1
1 (0 < α1 ≤ n1) and

pα2
2 (0 < α2 ≤ n2) are adjacent to the elements of order pα3

3 (0 < α3 ≤ n3) in P∗(G). Hence P∗(G)

contains K5,6 as a subgraph, and so γ(P∗(G)) > 1 and γ(P∗(G)) > 1.

Subcase 1b. Let p1 = 2. If p2 > 3, then G contains at least four elements of order p2, and at

least six elements of order p3. Then the elements of order 2 and p2 are adjacent to the elements of

order p3. Thus P∗(G) contains K5,4 as a subgraph, and so γ(P∗(G)) > 1 and γ(P∗(G)) > 1.

If p2 = 3, and either n2 ≥ 2 or n3 ≥ 2, then P∗(G) contains K3,7 as a subgraph, so γ(P∗(G)) > 1

and γ(P∗(G)) > 1. Now, we assume that n2 = n3 = 1. Suppose for some i (i = 1, 2, 3), the Sylow

pi-subgroup is not unique. If i = 1, then G contains at least three elements of order 2. Then the

elements of order 2 and 3 are adjacent to the elements of order p3. Hence P∗(G) contains K5,4 as

a subgraph. If i = 2 or 3, then G contains at least 8 elements of order pi, so P∗(G) contains K3,7

as a subgroup. Suppose for each i, Sylow pi- subgroup of G is unique, then G ∼= P × Z3.p3, where

P is the Sylow 2-subgroup of order 2n1 . If n1 = 1, then G ∼= Z6.p3. In this case, P∗(G) contains

K5,4 as a subgraph. If n1 ≥ 1, then P∗(G) contains K3,7 as a subgraph. In both the cases, we have

γ(P∗(G)) > 1 and γ(P∗(G)) > 1.

Case 2. Let k ≥ 4. Let pi, pj , pr > 2, for some i, j, r. Then the elements of order pi and pj are
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adjacent to the elements of order pr in P∗(G). Thus P∗(G) contains K3,7 as a subgraph, and so

γ(P∗(G)) > 1 and γ(P∗(G)) > 1.

Proof follows by combining the above cases together.

Proposition 4.1 reveals that, to prove the main result, it is enough to deal with the groups

whose order has at most two distinct prime divisors. For this purpose, first we consider the finite

cyclic groups, then we deal with the finite non-cyclic groups.

Proposition 4.2. Let G be a finite cyclic group and p be a prime. Then

(1) P∗(G) is planar if and only if G is one of Zpα , Z12, Z2p, Z3p;

(2) P∗(G) is toroidal if and only if G is one of Z18, Z20, Z28;

(3) P∗(G) is projective if and only if G ∼= Z20.

Proof. Let |G| has k distinct prime divisors. Now we divide the proof into the following cases.

Case 1. If k = 1, then by (3.1), P∗(G) is planar.

Case 2. Let k = 2. Let H and K be subgroups of Zpnqm of order pn and qm, respectively, where

n,m ≥ 1. The order of each non-trivial element in H is relatively prime to the non-trivial elements

in K. So no element in H is not a power of any element in K and vice versa. Therefore, P∗(G)

contains Kpn−1,qm−1 as a subgraph. If n,m ≥ 2, then P∗(G) contains K3,7 as a subgraph, so

γ(P∗(G)) > 1 and γ(P∗(G)) > 1. Now, we assume that either n = 1 or m = 1. Without loss of

generality, we assume that m = 1. Then |G| = pnq, n ≥ 1. We need to consider the following

subcases:

Subcase 2a. If n = 1, then G ∼= Zpq. By (3.4), γ(P∗(G)) > 1 and γ(P∗(G)) > 1 if p, q ≥ 5;

otherwise, P∗(G) is planar.

Subcase 2b. Let n ≥ 2.

Subcase 2b(i). Let p = 2. If n > 2, then G contains four elements of order 8, which are not a

power of any elements of orders q, 2q, 4q and vice versa. Hence P∗(G) contains K4,5 as a subgraph.

Therefore, γ(P∗(G)) > 1 and γ(P∗(G)) > 1.

If n = 2, then in G, the elements of order 2, 4 are not a power of elements of order q and vice

versa. Also the element of order 2 is a power of the elements of order 2q; the elements of order 2q

and 4 are not a power of each other. It follows that if q = 3, then P∗(G) is planar, and a plane

embedding of P∗(G) is shown in Figure 3.
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Figure 3: A plane embedding of P∗(Z12).
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Figure 4: A toroidal embedding of P∗(Z20).

.

If q = 5, then γ(P∗(G)) = 1, γ(P∗(G)) = 1, and a toroidal and a projective embeddings of P∗(G)

are shown in Figures 4 and 5, respectively. If q = 7, then P∗(G) contains K3,6 as a subgraph, so

γ(P∗(G)) > 1, γ(P∗(G)) = 1 and a toroidal embedding of P∗(G) is shown in Figure 6. If q > 7,

then P∗(G) contains K3,7 as a subgraph, so γ(P∗(G)) > 1 and γ(P∗(G)) > 1.

Subcase 2b(ii). Let p = 3. If n > 2, then G contains eighteen elements of order 27, which are

not a power of any elements of orders q, 3q, 9q, and vice versa. Hence P∗(G) contains K4,5 as

a subgraph. Therefore, γ(P∗(G)) > 1 and γ(P∗(G)) > 1. If n = 2, then in G, the elements of

order 3, 9 are not a power of elements of order q, and vice versa. Also the element of order 3 is a

power of the elements of order 3q; the elements of order 3q and 9 are not a power of each other. It

follows that if q = 2, then P∗(G) contains K3,6 as a subgraph, so γ(P∗(G)) > 1; but γ(P∗(G)) = 1,

and a toroidal embedding of P∗(G) is shown in Figure 7. If q ≥ 5, then P∗(G) contains K5,4 as a

subgraph, so γ(P∗(G)) > 1 and γ(P∗(G)) > 1.
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Figure 5: A projective embedding of P∗(Z20).

.

Subcase 2b(iii): If p ≥ 5, then the elements in G of order q and pq are not a power of the elements

of order p2, and vise versa. Note that G contains at least one element of orders q, at least four

elements of order pq, and at least twenty elements of order p2. It follows that P∗(G) contains K3,7

as a subgraph, so γ(P∗(G)) > 1 and γ(P∗(G)) > 1.

Case 3. Let k ≥ 3. Then by Proposition 4.1, γ(P∗(G)) > 1 and γ(P∗(G)) > 1.

Combining all the above cases together, the proof follows.

Proposition 4.3. Let G be a finite non-cyclic group of order pα, where p is a prime and α ≥ 2.

Then

(1) P∗(G) is planar if and only if G is either Z2 × Z2 or Q8;

(2) P∗(G) is toroidal if and only if G is one of Z3 × Z3, Z2 × Z2 × Z2, Z8 × Z2 or D8;

(3) P∗(G) is projective if and only if G is one of Z4 × Z2 or D8.

Proof. We divide the proof into several cases.

Case 1. Let α = 2. Then G ∼= Zp×Zp. If p ≥ 5, then by (3.2), P∗(G) contains two copies of K3,3,

and so γ(P∗(G)) > 1 and γ(P∗(G)) > 1. If p = 3, then by (3.2), P∗(G) ∼= K2,2,2,2. Here P∗(G)

contains K4,4 as a subgraph, so γ(P∗(G)) > 1; but γ(P∗(G)) = 1. A toroidal embedding of P∗(G)

is shown in Figure 8. If p = 2, then

P∗(G) ∼= C3, (4.1)
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Figure 6: A toroidal embedding of P∗(Z28).

b

b

b

b b

b b

b

b

b

b

b

b

b

b

9

8

10

9

2 4 9

8

10

942

3

14

16

15

12

6
b

b

bb

b

b

bb

b

1

5

7

11

13

17

Figure 7: A toroidal embedding of P∗(Z18).

which is planar.

Case 2. Let α = 3.

Subcase 2a. Assume that p ≥ 3. Then up to isomorphism the only non-cyclic groups of order p3

are Zp × Zp × Zp, Zp2 × Zp, (Zp × Zp)o Zp and Mp3 .

Subcase 2a(i). If G ∼= Zp × Zp × Zp, then G contains p2 + 1 subgroups of order p. This implies

that Kp2+1 is subgraph of P∗(G). Therefore, γ(P∗(G)) > 1 and γ(P∗(G)) > 1.

Subcase 2a(ii). If P∗(G) ∼= Zp2 ×Zp, then G contains p+ 1 subgroups of order p, let them be Hi,

i = 1, 2, . . . , p + 1. Also G contains p cyclic subgroups of order p2, let them be Ni, i = 1, 2, . . . , p.

Moreover, all these subgroups contains the unique subgroups of order p, without loss of generality,

let it be H1. Then P∗(G) contains Kp(p−1),p(p2−1) as a subgraph with the bipartition X and Y , where

X contains all the elements of order p in Hi, i = 2, 3, . . . , p + 1; Y contains all the non-identity

elements in Ni, i = 1, 2, . . . , p. This implies that P∗(G) contains K4,5, and so γ(P∗(G)) > 1,
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Figure 8: A toroidal embedding of P∗(Z3 × Z3).

.

γ(P∗(G)) > 1.

Subcase 2a(iii). If G ∼= (Zp × Zp) o Zp, then G contains p2 subgroups of order p. Then the

subgraph of P∗(G) induced by the set having one element of order p from each of these subgroups

forms Kp2 , so γ(P∗(G)) > 1 and γ(P∗(G)) > 1.

Subcase 2a(iv). If G ∼= Mp3 , then the subgroup lattice of Mp3 is isomorphic to the subgroup

lattice of Zp2 × Zp, so by the above argument, we have γ(P∗(G)) > 1 and γ(P∗(G)) > 1.

Subcase 2b. If p = 2, then upto isomorphism the only non-cyclic subgroup of order 8 are

Z2 × Z2 × Z2, Z4 × Z2, D8 and Q8.

Subcase 2b(i). If G ∼= Z2 × Z2 × Z2, then the order of each element of G is 2. It follows that

P∗(G) ∼= K7, so γ(P∗(G)) > 1 and γ(P∗(G)) = 1.

Subcase 2b(ii). If G ∼= Z4×Z2, then G contains the elements (1, 0), (3, 0), (1, 1), (3, 1) of order 4,

and the elements (2, 0), (0, 1), (2, 1) of order 2. Here (2, 0) is a power of each of (1, 0), (3, 0), (1, 1), (3, 1);

(3, 0) is a power of (1, 0); (3, 1) is a power of (1, 1). Also no two remaining elements of G are

power of one another. Hence P∗(G) contains K3,3 with bipartition X := {(1, 0), (3, 0), (2, 1)} and

Y := {(1, 1), (3, 1), (0, 1)}, so P∗(G) is non-planar. Also γ(P∗(G)) = 1, γ(P∗(G)) = 1; a toroidal

and a projective embedding of P∗(G) is shown in Figure 9 and 10, respectively.

Subcase 2b(iii). If G ∼= D8, then b, ab, a2b, a3b, a2 are the elements of order 2, and a, a3 are the

elements of order 4; these are the only elements of D8. Here 〈a〉 =
〈
a3
〉

and it contains a2, so a, a2,

a3 are not adjacent to each other. Also any two remaining elements of G are not a power of one

another. Thus a2, b, ab, a2b, a3b forms K5 as a subgraph of P∗(G), so P∗(G) non-planar. Further,

γ(P∗(G)) = 1, γ(P∗(G)) = 1; a toroidal and projective embedding of P∗(G) is shown in Figure 11
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Figure 10: A projective embedding of P∗(Z4 × Z2).

and 12.

Subcase 2b(iv). If G ∼= Q8, then by Figure 2, P∗(G) is planar.

Case 3. Let α ≥ 4.

Subcase 3a. Let p = 2. If α = 4, then up to isomorphism there are four non-cyclic abelian groups

of order 24, and nine non-abelian groups of order 24. In the following, first we deal with these

non-cyclic abelian groups:

If G ∼= Z4 × Z4, then G contains six cyclic subgroups, say Hi, i = 1, 2, . . . , 6 of order 4. Hence

P∗(G) contains K6,6 as a subgraph with the bipartition X, Y , where X contains all the elements

of order four in H1, H2 and H3; Y contains all the elements of order four in H4, H5 and H6. Thus

γ(P∗(G)) > 1 and γ(P∗(G)) > 1.
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Figure 12: A projective embedding of P∗(D8).

If G ∼= Z8×Z2, then G contains two cyclic subgroups of order 8, let them be H1, H2; two cyclic

subgroups of order 4, let them be N1, N2 ; three elements of order 2, let them be xi, i = 1, 2, 3.

Here H1, H2 contains a cyclic subgroup of order 4, and an element of order 2 in common, without

loss of generality, let them be N1 and x1 respectively. So the elements of order 4 in N2 is not a

power of any non-trivial elements in H1, H2. Also x2, x3 are not elements of H1, H2, so they are

not a power of any non-trivial elements in H1, H2 and vice versa. Hence P∗(G) contains K7,4 as a

subgraph, and so γ(P∗(G)) > 1 and γ(P∗(G)) > 1.

If G ∼= Z4 × Z2 × Z2, then G contains a subgroup isomorphic to Z2 × Z2 × Z2. So G contains

seven elements of order 2; (2, 0, 0) is one among these elements, and is a power of each of the

elements (1, 0, 0), (1, 1, 0), (1, 0, 1), (1, 1, 1) of order 4. But the remaining six elements of order 2

are not power of these four elements of order 4. Hence P∗(G) contains K5,6 as a subgraph with
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bipartition X and Y , where X = {(1, 0, 0), (1, 1, 0), (1, 0, 1), (1, 1, 1), (2, 0, 0)} and Y contains the

remaining six elements of order 2. Thus γ(P∗(G)) > 1 and γ(P∗(G)) > 1.

If G ∼= Z2×Z2×Z2×Z2, then all the non-trivial elements of G are of order 2 and so P∗(G) ∼= K11.

Therefore, γ(P∗(G)) > 1 and γ(P∗(G)) > 1.

Next, we investigate the nine non-abelian groups of order 24.

If G ∼= (Z4×Z2)oZ2, then G contains four cyclic subgroups of order 4, let them be H1, H2, H3,

H4. Among these H1, H2 contains a unique element of order 2 in common, and H3, H4 contains

a unique elements of order 2 in common. But G contains exactly seven elements of order 2. So

the remaining five elements in G of order 2 are not a power of any non-trivial elements in Hi,

i = 1, 2, 3, 4. Hence P∗(G) contains K5,8 as a subgraph, and so γ(P∗(G)) > 1 and γ(P∗(G)) > 1.

If G ∼= Z4oZ4, then G contains six cyclic subgroups of order 4. Let them be Hi, i = 1, 2, . . . , 6.

It follows that P∗(G) contains K6,4 with bipartition X and Y , where X contains all the elements

of order four in H1, H2, H3; Y contains all the elements of order four in H4, H5. Therefore

γ(P∗(G)) > 1 and γ(P∗(G)) > 1.

If G ∼= Z8o5Z2, then G contains two cyclic subgroups of order 8, let them be H1, H2, these two

cyclic subgroups contains a unique element of order 2 in common. But G contains three elements

of order 2, so the remaining two elements of order 2 are not a power of non-trivial elements of H1,

H2. It follows that P∗(G) contains K6,4 as a subgraph and so γ(P∗(G)) > 1 and γ(P∗(G)) > 1.

IfG ∼= D16, thenG contains nine elements of order 2, soG containsK9 as a subgraph. Therefore,

γ(P∗(G)) > 1 and γ(P∗(G)) > 1.

If G ∼= Z8 o3 Z2, then G contains three subgroups of order 4, let them be H1, H2, H3. These

subgroups contains a unique element of order 2 in common. But G contains five elements of order

2. So the remaining four elements of order 2 are not a power of any non-trivial elements in Hi,

i = 1, 2, 3. It follows that G contains K6,4 as a subgraph and so γ(P∗(G)) > 1 and γ(P∗(G)) > 1.

If G ∼= Q16, then G contains five cyclic subgroup of order 4, let them be Hi, i = 1, . . . , 5. Then

P∗(G) contains K6,4 as a subgraph with bipartition X and Y , where X contains elements of order 4

in H1, H2, H3, and Y contains elements of order 4 in H4, H5. So γ(P∗(G)) > 1 and γ(P∗(G)) > 1.

If G ∼= D8×Z2, then G contains eleven elements of order 2. Hence they forms K11 as a subgraph

of P∗(G) . It follows that γ(P∗(G)) > 1 and γ(P∗(G)) > 1.

If G ∼= Q8 × Z2, then G contains six cyclic subgroups of order 4, let them be Hi, i = 1, . . . , 6.

Hence P∗(G) contains K6,6 as a subgraph with bipartition X and Y , where X contains elements of

order 4 in H1, H2 and H3, Y contains elements of order four in H4, H5 and H6. Thus, γ(P∗(G)) > 1
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and γ(P∗(G)) > 1.

If G ∼= Q8oZ2, then G contains seven elements of order 2 and four cyclic subgroups of order 4.

Each of these cyclic subgroups contains exactly one element of order 2 in common, let it be x. Then

P∗(G) contains K3,8 as a subgraph with bipartition X and Y , where X contains all the elements

of order 2 in G except x, and Y contains all the elements of order 4 in G. So γ(P∗(G)) > 1 and

γ(P∗(G)) > 1.

Assume that α ≥ 5. Then G must contain a non-cyclic subgroup of order 2α−1. For suppose

all the subgroup of order 2α−1 are cyclic, let H, K be two subgroups among these. Since H

is a subgroup of prime index, so H is normal in G. It follows that HK is a subgroup of G. If

|H∩K| < 2α−2, then |HK| > |G|, which is not possible. So |H∩K| must be 2α−2. It follows that H

and K contains a common subgroup of order 2α−2. Hence G has a unique subgroup of order 2α−2.

Then by Theorem 2.3(ii), G must be cyclic, which is a contradiction to our hypothesis. Let this

subgroup of G of order 2α−1 be H. Then by previous argument, γ(P∗(H)) > 1 and γ(P∗(H)) > 1,

and so γ(P∗(G)) > 1 and γ(P∗(G)) > 1.

Subcase 3b. Let p ≥ 3. Then by Theorem 2.3(i), G contains a non-cyclic subgroup H of order

pα−1. So by Case 2, γ(P∗(H)) > 1 and γ(P∗(H)) > 1, and so γ(P∗(G)) > 1 and γ(P∗(G)) > 1.

Proof follows by combining all the cases together.

Next, we consider the groups whose order has exactly two distinct prime factors. First, we

prove the following lemma, which is used later in the proof of Proposition 4.4. We consider the

graph Ku,u′

3,3,3 obtained from the complete tripartite graph K3,3,3 by adding two new vertices u and

u′ and six edges uvi, u
′vi, i = 1, 2, 3, where each of the vertices v1, v2, v3 comes from a different

part of K3,3,3, i.e. vertices v1, v2, v3 induce a triangle in K3,3,3. Notice that the tripartite graph

K3,3,3 can also be considered as the complement of three vertex-disjoint triangles, which is denoted

by 3K3 in [10]. We need to determine whether Ku,u′

3,3,3 is toroidal or not.

Lemma 4.1. Graph Ku,u′

3,3,3 is non-toroidal.

Proof. We use an approach similar to the proofs of Lemma 4.4 and Proposition 4.6 in [9]. First,

we show that the graph K3,3,3 = 3K3 has a unique embedding on the torus, which is a triangu-

lation of the torus. This is shown computationally by using an exhaustive search method in [10]

(see also some corrected computational results for [10] at http://www.combinatorialmath.ca/

G&G/TorusMaps.html). Then, we are going to show that it is not possible to extend this unique

embedding of K3,3,3 to an embedding of Ku,u′

3,3,3 on the torus.

http://www.combinatorialmath.ca/G&G/TorusMaps.html
http://www.combinatorialmath.ca/G&G/TorusMaps.html
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From the Euler’s formula for the torus, we have n − m + f = 0, where n,m, and f are,

respectively, the numbers of vertices, edges, and faces of a 2-cell embedding on the torus (e.g., see

[10]). Since K3,3,3 has n = 9 vertices and m = 27 edges, an embedding of K3,3,3 on the torus must

have 18 faces, i.e. f = 18. Since each edge of an embedding appears either exactly once on the

boundaries of two separate faces or two times on the boundary of the same face, and each face of

an embedding is bounded by at least three edges, we have 3f ≤ 2m. The equality 3f = 2m is

possible only when each face is a triangle, which is the case of K3,3,3 on the torus. Therefore, an

embedding of K3,3,3 on the torus must be a triangulation.

On the other hand, there are exactly two different embeddings of K3,3 on the torus (e.g., see

Figure 8 in [10]), which are to be extended to an embedding of K3,3,3 by adding into the 2-cell faces

three new vertices adjacent to all six vertices of the original K3,3. One of these embeddings of K3,3

contains faces with only four vertices on their boundary: clearly, it is not possible to triangulate

such a 4-vertex face by adding a new vertex adjacent to all six vertices of K3,3. However, the other

embedding of K3,3 on the torus has each of its three faces containing all six vertices of K3,3 on

the face boundary. Adding a new vertex into each 6-vertex face and making it adjacent to all the

vertices on the face boundary provides a triangulation of the torus by K3,3,3. By this construction

and symmetries of the embedding of K3,3 with the hexagonal faces, the embedding of K3,3,3 on the

torus is unique.

1

Figure 13: The unique embedding of K3,3,3 on the torus.

Now, each face of the toroidal embedding of K3,3,3 contains exactly three vertices, one from

each part of K3,3,3, no two faces have the same three vertices on the face boundary, and there are
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no vertices repeated on any face boundary (see Figure 13). Each of the vertices u or u′ of Ku,u′

3,3,3

separately can be added with its three incident edges into any of the 18 faces of this embedding of

K3,3,3 without edge crossings. However, u and u′ must be adjacent to the same three vertices on

the boundary of a triangular face. There are no two different faces with the same three vertices

on the boundary, and there are no faces with vertices repeated on the boundary. Therefore, after

adding one of u or u′ into a face of the embedding of K3,3,3 and connecting it with edges to all

three vertices on the face boundary, there is no face containing the same three vertices to add the

other vertex without edge crossings. Thus, it is not possible to extend this unique embedding of

K3,3,3 to an embedding of Ku,u′

3,3,3 on the torus, and Ku,u′

3,3,3 is non-toroidal.

Proposition 4.4. If G is a non-cyclic group of order pnqm, where p, q are distinct primes and

n,m ≥ 1. Then

(1) P∗(G) is planar if and only if G ∼= S3;

(2) γ(P∗(G)) > 1 and γ(P∗(G)) > 1, if G � S3.

Proof. In the proof of Proposition 4.2, we have noticed that, to prove this result, it is enough to

consider the finite non-cyclic group G of order pnq, n ≥ 1.

Case 1. Let n = 1. Without loss of generality, we assume that p < q, then G ∼= Zq o Zp. If

(p, q) = (2, 3), then G ∼= S3. By Figure 1, P∗(S3) is planar. If (p, q) 6= (2, 3), then by (3.3), P∗(G)

contains K5,4 as a subgraph, so γ(P∗(G)) > 1 and γ(P∗(G)) > 1.

Case 2. Let n = 2.

Subcase 2a. If G is abelian, then G ∼= Zp × Zpq.

First we assume that p = 2. If q = 3, the structure of P∗(G) is shown in Figure 14. Since

this graph is isomorphic to the graph Ku,u′

3,3,3 described in Lemma 4.1, it follows that P∗(G) is non-

toroidal. Further, in Figure 14, we notice that K3,6 is a subgraph of P∗(G) and so γ(P∗(G)) > 1. If

q = 5, then G contains three cyclic subgroups of order 10. This implies that P∗(G) contains K4,8,

and so γ(P∗(G)) > 1 and γ(P∗(G)) > 1. If q ≥ 7, then G contains at least two cyclic subgroups of

order q. It follows that P∗(G) contains K6,6 as a subgraph, and so γ(P∗(G)) > 1 and γ(P∗(G)) > 1.

Next, we assume that p = 3. Then G contains Z3×Z3 as a subgraph. So G contains four cyclic

subgroups of order 3, let them be H1, H2, H3, H4. Let for each i = 1, 2, 3, 4, hi, h
′
i be the elements

of Hi of order 3. Also G contains an element of order q, say x. Then P∗(G) contains K5,4 as a

subgraph with bipartition X := {h1, h2, h′1, h′2, x} and Y := {h3, h4, h′3, h′4}.
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Figure 14: The structure of P∗(Z2 × Z6).

If p ≥ 5, then G contains Zp × Zp as a subgraph, so by (3.2), γ(P∗(G)) > 1 and γ(P∗(G)) > 1.

Subcase 2b. Let G be non-abelian.

Subcase 2b(i). Let p = 2.

If q = 3, then G ∼= Z3oZ4, D12 or A4. If G ∼= Z3oZ4, then G contains three cyclic subgroups,

say H1, H2, H3 of order 4; unique cyclic subgroup K of order 6, and unique element of order 2. It

follows that P∗(G) contains K5,4 as a subgraph, so γ(P∗(G)) > 1 and γ(P∗(G)) > 1. If G ∼= D12,

then G contains seven elements of order 2. These elements together with the element of order 3

forms K8 as a subgraph of P∗(G), so γ(P∗(G)) > 1 and γ(P∗(G)) > 1. If G ∼= A4, then G contains

eight elements of order 3, and three elements of order 2. It follows that P∗(G) contains K3,8 as a

subgraph, so γ(P∗(G)) > 1 and γ(P∗(G)) > 1.

If q = 5, then G ∼= Z5oZ4, Z5o(Z2×Z2) or D20. If G ∼= Z5oZ4, then G contains five elements

of order 2, and four elements of order 5. This implies that P∗(G) contains K5,4 as a subgraph, so

γ(P∗(G)) > 1 and γ(P∗(G)) > 1. If G ∼= Z5 o (Z2 × Z2), then G contains four cyclic subgroups of

order 4, and a unique subgroup of order 5. Therefore, P∗(G) contains K4,8, so γ(P∗(G)) > 1 and

γ(P∗(G)) > 1. If G ∼= D20, then G contains eleven elements of order 2, and so P∗(G) contains K11

as a subgraph. Hence γ(P∗(G)) > 1 and γ(P∗(G)) > 1.

If q = 7, then G ∼= Z7 o Z4 or D28. If G ∼= Z7 o Z4, then G contains seven cyclic subgroups

of order 4, and six elements of order 7. It follows that P∗(G) contains K5,4 as a subgraph. Thus

γ(P∗(G)) > 1 and γ(P∗(G)) > 1. If G ∼= D28, then G contains fourteen elements of order 2 and so

P∗(G) contains K5,4 as a subgraph. Therefore, γ(P∗(G)) > 1 and γ(P∗(G)) > 1.

If q > 7, then G contains at least two subgroups of order 4 and q, let them beH1, H2 respectively.
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Also each non-trivial element of H1 is adjacent to all the non-trivial elements of H2. It follows that

P∗(G) contains K3,8 as a subgraph, so γ(P∗(G)) > 1 and γ(P∗(G)) > 1.

Subcase 2b(ii). Let p = 3.

(i) If q = 2, then G ∼= S3 × Z3, D18 or Z3 × Z3 o Z2.

If G ∼= S3×Z3, then G contains a subgroup of order 9, let it be H, and three elements of order

2. These three elements of order 2 are adjacent to all the non-trivial elements of H. This implies

that P∗(G) contains K3,8 as a subgraph, and so γ(P∗(G)) > 1 and γ(P∗(G)) > 1.

If G ∼= D18 or Z3 × Z3 o Z2, then in either case P∗(G) contains nine elements of order 2. This

implies that P∗(G) contains K9 as a subgraph, and so γ(P∗(G)) > 1 and γ(P∗(G)) > 1.

(ii) If q 6= 2, then G contains a subgroup of each of order 9 and q, let them be H1, H2,

respectively. Also every non-trivial element of H1 are adjacent to all the non-trivial elements of

H2. It follows that P∗(G) contains K8,4 as a subgraph and so γ(P∗(G)) > 1 and γ(P∗(G)) > 1.

Subcase 2b(iii). Let p ≥ 5.

Then G contains a subgroup of order p2, let it be H. If H is non-cyclic, then by (3.2),

γ(P∗(H)) > 1 and γ(P∗(H)) > 1, so γ(P∗(G)) > 1 and γ(P∗(G)) > 1. Suppose H is cyclic,

then every element of H of order p2 are not a power of any element which not in H and vice versa.

Thus P∗(G) contains K3,7 as a subgraph, and so γ(P∗(G)) > 1 and γ(P∗(G)) > 1.

Case 3. Let n ≥ 3.

Subcase 3a. If G is abelian, then G contains a subgroup isomorphic to Zpq×Zp×Zp or Zpq×Zp2 .

If G contains a subgroup isomorphic to Zpq ×Zp ×Zp, then G contains p2 + 1 cyclic subgroups

of order p, let them be Hi, i = 1, 2, . . . , p2 + 1. Also G contains a cyclic subgroup of order pq, let

it be K. Clearly K contains a unique subgroup of order p, so without loss of generality, let it be

H1. Then Hi (i 6= 1) are not subgroups of K. So each non-trivial element of K is adjacent to

all the non-trivial elements in Hi (i 6= 1). It follows that P∗(G) contains K3,7 as a subgraph, so

γ(P∗(G)) > 1 and γ(P∗(G)) > 1.

If G contains a subgroup isomorphic to Zpq × Zp2 , then G contains p + 1 cyclic subgroups of

order p, let them be Hi, i = 1, 2, . . . , p + 1, and two cyclic subgroups of order p2, let them be N1,

N2. These two subgroups contains a unique subgroup of order p in common, so without loss of

generality, let it be H1. Then each non-trivial element of N1, N2 are adjacent to all the non-trivial

elements in Hi (i 6= 1). Also G contains a subgroup of order pq. It follows that P∗(G) contains K3,7

as a subgraph with bipartition X and Y , where X contains elements of order p2 in N1 and N2; Y

contains elements of order p in Hi (i 6= 1), the elements of order q, and pq in G. So γ(P∗(G)) > 1
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and γ(P∗(G)) > 1.

Subcase 3b. Let G be non-abelian.

Subcase 3b(i). Let p = 2.

(i) If q = 3 and n = 3, then G contains a subgroup of order 8, let it be H. But the only groups

of order 8 are Z2 × Z2 × Z2, Z4 × Z2, D8, Q8 and Z8.

If H ∼= Z2 ×Z2 ×Z2, then H contains seven elements of order 2. These elements together with

the element of order 3 forms K8 as a subgraph of P∗(G), so γ(P∗(G)) > 1 and γ(P∗(G)) > 1.

If H ∼= Z4 × Z2, then H contains two cyclic subgroups of order 4, let them be H1, H2, and

three elements of order 2, let them be x1, x2, x3. Here H1, H2 contains an element of order 2 in

common, so without loss of generality, let it be x1. Then x2, x3 are adjacent to all the non-trivial

elements of H1 and H2. Hence P∗(G) contains K5,4 as a subgraph with the bipartition X, Y , where

X contains all the non-trivial elements in H1 and H2; Y contains x2, x3, and the elements of order

3 in G. Therefore, γ(P∗(G)) > 1 and γ(P∗(G)) > 1.

If H ∼= D8, then H contains five elements of order 2, let them be xi, i = 1, 2, . . . , 5. Also H

contains a cyclic subgroup of order 4, let it be H1, which contains only one element of order 2, let

it be x1. So xi, i 6= 1 is adjacent to all the non-trivial elements in H1. Hence P∗(G) contains K5,4

as a subgraph with the bipartition X, Y , where X contains all the non-trivial elements in H1, and

the elements of order 3 in G; Y contains only xi, i 6= 1. Therefore, γ(P∗(G)) > 1 and γ(P∗(G)) > 1.

If H ∼= Q8, then G ∼= Q8 × Z3 or Z3 o Q8. If G ∼= Q8 × Z3, then G contains three cyclic

subgroups of order 12, let them be H1, H2, H3. H contains three cyclic subgroup of order 4, let

them be H1, H2 and H3. Then P∗(G) contains K5,4 as a subgraph with the bipartition X, Y ,

where X contains all the elements of order twelve in H1, H2; Y contains all the elements of order

twelve in H3. therefore, γ(P∗(G)) > 1 and γ(P∗(G)) > 1. If G ∼= Z3 oQ8, then G contains seven

elements of order 4, let them be Hi, i = 1, 2, . . . , 7. So P∗(G) contains K5,4 as a subgraph with the

bipartition X, Y , where X contains all the elements of order four in H1, H2, H3; Y contains all the

elements of order four in H4, H5. So, γ(P∗(G)) > 1 and γ(P∗(G)) > 1. Moreover, these subgroups

contains an element of order 2 in common, let it be x. Then P∗(G) contains K5,4 as a subgraph

with the bipartition X, Y , where X contains all non-trivial elements in H1, H2; Y contains all the

elements of order 3 in G, and elements of order 4 in H3. So γ(P∗(G)) > 1 and γ(P∗(G)) > 1.

If H ∼= Z8, then the elements not in H are adjacent to all the non-trivial elements in H of order

8. Hence P∗(G) contains K7,3 as a subgraph. Therefore, γ(P∗(G)) > 1 and γ(P∗(G)) > 1.

If n > 3, then G contains a subgroup H of order 2n. If H is cyclic, then the element not in
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H are adjacent to the elements in H of order 2n, n > 3. It follows that P∗(G) contains K7,3 as a

subgraph. Therefore, γ(P∗(G)) > 1 and γ(P∗(G)) > 1. If H is non-cyclic, then by Proposition 4.3,

γ(P∗(H)) > 1 and γ(P∗(H)) > 1, so γ(P∗(G)) > 1 and γ(P∗(G)) > 1.

(ii) If q ≥ 5, then P∗(G) contains subgroups of order 2n−1 and q, let them be H1 and H2

respectively. Then each element in H1 is not a power of any element in H2, and vice versa. This

implies that P∗(G) contains K7,3 as a subgraph and so γ(P∗(G)) > 1 and γ(P∗(G)) > 1.

Subcase 3b(ii). If p ≥ 3, then G contains a subgroup of order pn, let it be H. If H is non-cyclic,

then by Theorem 4.3, γ(P∗(H)) > 1 and γ(P∗(H)) > 1, so γ(P∗(G)) > 1 and γ(P∗(G)) > 1. If H

is cyclic, then the elements not in H are adjacent to all the elements in H of order pn. It follows

that P∗(G) contains K7,3 as a subgraph and so γ(P∗(G)) > 1 and γ(P∗(G)) > 1.

Proof of Theorem 4.1 follows by combining all the propositions proved so far in this section.

Proof of Corollary 4.1. Note that, if P∗(G) is one of star, path, Cn, outerplanar, and not containing

K1,4 or K2,3, then P∗(G) must be planar. So to classify the finite groups whose complement of

proper power graphs is one of these, it is enough to consider the finite group whose complement of

proper power graph is planar. It is easy to check each of such possibilities among the list of groups

given in Theorem 4.1(1), and their corresponding complement of proper power graph structure

given in (3.1), (3.4), (3.2), (4.1) and Figures 3, 2, 1. This completes the proof.
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