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Abstract

Polynomial eigenvalue decomposition (PEVD) is an extension of the eigenvalue de-

composition (EVD) for para-Hermitian polynomial matrices, and it has been shown to

be a powerful tool for broadband extensions of narrowband signal processing problems.

In the context of broadband sensor arrays, the PEVD allows the para-Hermitian matrix

that results from the calculation of a space-time covariance matrix of the convolutively

mixed signals to be diagonalised. Once the matrix is diagonalised, not only can the cor-

relation between different sensor signals be removed but the signal and noise subspaces

can also be identified. This process is referred to as broadband subspace decomposi-

tion, and it plays a very important role in many areas that require signal separation

techniques for multichannel convolutive mixtures, such as speech recognition, radar

clutter suppression, underwater acoustics, etc.

The multiple shift second order sequential best rotation (MS-SBR2) algorithm,

built on the most established SBR2 algorithm, is proposed to compute the PEVD of

para-Hermitian matrices. By annihilating multiple off-diagonal elements per iteration,

the MS-SBR2 algorithm shows a potential advantage over its predecessor (SBR2) in

terms of the computational speed. Furthermore, the MS-SBR2 algorithm permits us to

minimise the order growth of polynomial matrices by shifting rows (or columns) in the

same direction across iterations, which can potentially reduce the computational load

of the algorithm.

The effectiveness of the proposed MS-SBR2 algorithm is demonstrated by various

para-Hermitian matrix examples, including randomly generated matrices with differ-

ent sizes and matrices generated from source models with different dynamic ranges

and relations between the sources’ power spectral densities. A worked example is

presented to demonstrate how the MS-SBR2 algorithm can be used to strongly decor-

relate a set of convolutively mixed signals. Furthermore, the performance metrics and

computational complexity of MS-SBR2 are analysed and compared to other existing

PEVD algorithms by means of numerical examples.

Finally, two potential applications of the MS-SBR2 algorithm, including multichan-

nel spectral factorisation and decoupling of broadband multiple-input multiple-output

(MIMO) systems, are demonstrated in this dissertation.

iii



Acknowledgements

I would like to express my sincere gratitude to my supervisor Prof. John McWhirter for

his continuous support, advice and encouragement throughout my PhD studies. With-

out his gracious guidance, I cannot imagine how difficult it would be for me to reach

the destination. I would also like to thank the Engineering and Physical Sciences Re-

search Council (EPSRC) and the University Defence Research Collaboration (UDRC)

in Signal Processing, Grant number EP/K014307/1, for partially funding my studies.

My special thanks go to Dr. Stephan Weiss for always being there whenever help is

needed, also for providing constructive ideas and proofreading my publications.

iv



Publications

• Z. Wang and J. G. McWhirter, “A New Multichannel Spectral Factorization Al-

gorithm for Parahermitian Polynomial Matrices,” in 10th IMA International Con-

ference on Mathematics in Signal Processing, Birmingham, England, Dec. 2014.

• Z. Wang, J. G. McWhirter, J. Corr and S. Weiss, “Multiple Shift Second Or-

der Sequential Best Rotation Algorithm for Polynomial Matrix EVD,” in 23rd

European Signal Processing Conference (EUSIPCO), Nice, France, Sep. 2015.

• Z. Wang, J. G. McWhirter and S. Weiss, “Multichannel Spectral Factorization

Algorithm Using Polynomial Matrix Eigenvalue Decomposition,” in 49th Asilo-

mar Conference on Signals, Systems and Computers, CA, USA, Nov. 2015.

• Z. Wang, A. Sandmann, J. G. McWhirter and A. Ahrens, “Multiple Shift SBR2

Algorithm for Calculating the SVD of Broadband Optical MIMO Systems,” in

39th IEEE International Conference on Telecommunications and Signal Process-

ing, Vienna, Austria, Jun. 2016.

• Z. Wang, J. G. McWhirter, J. Corr and S. Weiss, “Order-Controlled Multiple

Shift SBR2 Algorithm for Para-Hermitian Polynomial Matrices,” in 9th IEEE

Sensor Array and Multichannel Signal Processing Workshop, Rio de Janeiro,

Brazil, Jul. 2016.

• A. Ahrens, A. Sandmann, S. Lochmann and Z. Wang, “Decomposition of Op-

tical MIMO Systems using Polynomial Matrix Factorization,” in 2nd IET Inter-

national Conference on Intelligent Signal Processing, London, UK, Dec. 2015.

• A. Ahrens, A. Sandmann, Z. Wang and J. G. McWhirter, “Polynomial Matrix

SVD Algorithms for Broadband Optical MIMO Systems,” in 7th International

Conference on Optical Communication Systems, Lisbon, Portugal, Jul. 2016.

• J. G. McWhirter and Z. Wang, “A Novel Insight to the SBR2 Algorithm for

Diagonalising Para-Hermitian Matrices,” in 11th IMA International Conference

on Mathematics in Signal Processing, Birmingham, England, Dec. 2016.

• Z. Wang, A. Sandmann, J. G. McWhirter and A. Ahrens, “Decoupling of Broad-

band Optical MIMO Systems Using the Multiple Shift SBR2 Algorithm,” Inter-

national Journal of Advances in Telecommunications, Electrotechnics, Signals

and Systems (Invited Paper), vol. 6(1), pp. 30-37, 2017.

v



Contents

List of Figures ix

List of Tables xiii

Nomenclature xiv

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Organisation of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Choice of Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background to Polynomial Matrix Decomposition Techniques 10

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Matrix Decomposition Techniques for Narrowband Channels . . . . . 11

2.2.1 Instantaneous Mixing Model . . . . . . . . . . . . . . . . . . 11

2.2.2 Blind Source Separation . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Eigenvalue Decomposition . . . . . . . . . . . . . . . . . . . 15

2.2.4 Singular Value Decomposition . . . . . . . . . . . . . . . . . 18

2.3 Matrix Decomposition Techniques for Broadband Channels . . . . . . 20

2.3.1 Background to Polynomial Matrices . . . . . . . . . . . . . . 20

2.3.2 Convolutive Mixing Model . . . . . . . . . . . . . . . . . . . 22

2.3.3 Polynomial Eigenvalue Decomposition . . . . . . . . . . . . 23

2.3.4 Polynomial Singular Value Decomposition . . . . . . . . . . 24

2.4 Other Polynomial Matrix Decomposition Techniques . . . . . . . . . 25

2.4.1 Smith Form . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.2 Smith-McMillan Form . . . . . . . . . . . . . . . . . . . . . 25

2.4.3 FIR Lossless System Decomposition . . . . . . . . . . . . . 26

2.4.4 Lambert’s Approach for Multichannel Blind Deconvolution . 28

2.4.5 Approximate Polynomial Eigenvalue Decomposition . . . . . 28

2.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Iterative Algorithms for Polynomial Eigenvalue Decomposition 30

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Generality of Iterative PEVD Algorithms . . . . . . . . . . . . . . . 31

3.2.1 PEVD Uniqueness and Ambiguity . . . . . . . . . . . . . . . 31

3.2.2 Anatomy of the PEVD Algorithms . . . . . . . . . . . . . . . 32

vi



Contents

3.3 Second Order Sequential Best Rotation Algorithm . . . . . . . . . . . 35

3.3.1 Outline of the SBR2 Algorithm . . . . . . . . . . . . . . . . 35

3.3.2 Applications of the SBR2 Algorithm . . . . . . . . . . . . . . 37

3.4 A Novel Insight into the SBR2 Algorithm . . . . . . . . . . . . . . . 41

3.4.1 Coding Gain . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.2 Proof of Spectral Majorisation . . . . . . . . . . . . . . . . . 42

3.4.3 Modified SBR2 Algorithm . . . . . . . . . . . . . . . . . . . 44

3.5 Sequential Matrix Diagonalisation Algorithms . . . . . . . . . . . . . 46

3.5.1 The SMD Algorithm . . . . . . . . . . . . . . . . . . . . . . 48

3.5.2 Maximum Element SMD Algorithm . . . . . . . . . . . . . . 50

3.5.3 Multiple Shift Maximum Element SMD Algorithm . . . . . . 50

3.6 Polynomial Order Shortening Methods . . . . . . . . . . . . . . . . . 51

3.6.1 Limitations of the PEVD Algorithms . . . . . . . . . . . . . 51

3.6.2 Truncation Methods for Para-Hermitian Matrices . . . . . . . 53

3.6.3 Truncation Methods for Paraunitary Matrices . . . . . . . . . 54

3.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Multiple Shift SBR2 Algorithm for Polynomial Eigenvalue Decomposition 58

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Outline of the MS-SBR2 Algorithm . . . . . . . . . . . . . . . . . . 59

4.3 Proof of Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Time-Shift Strategies of the MS-SBR2 Algorithm . . . . . . . . . . . 64

4.4.1 The Conventional Time-Shift Method . . . . . . . . . . . . . 64

4.4.2 The Direction-Fixed Time-Shift Method . . . . . . . . . . . . 65

4.5 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5.1 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . 70

4.5.2 Simulation Scenario . . . . . . . . . . . . . . . . . . . . . . 71

4.5.3 Algorithm Convergence . . . . . . . . . . . . . . . . . . . . 72

4.5.4 Polynomial Matrix Order . . . . . . . . . . . . . . . . . . . . 72

4.6 Impact of Source Model Matrix Conditioning . . . . . . . . . . . . . 77

4.6.1 Source Model . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6.2 Simulation Scenario . . . . . . . . . . . . . . . . . . . . . . 79

4.6.3 Algorithm Convergence and Paraunitary Order . . . . . . . . 80

4.6.4 Spectral Ordering . . . . . . . . . . . . . . . . . . . . . . . . 81

4.7 Strong Decorrelation of Convolutively Mixed Signals . . . . . . . . . 83

4.7.1 Simulation Scenario . . . . . . . . . . . . . . . . . . . . . . 83

4.7.2 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . 84

4.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 Comparative Analysis of the PEVD Algorithms 96

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2 Analysis of Computational Complexity . . . . . . . . . . . . . . . . 97

5.2.1 Computational Complexity of the SBR2 Family . . . . . . . . 98

5.2.2 Computational Complexity of the SMD Family . . . . . . . . 99

5.3 Experimental Results and Analysis . . . . . . . . . . . . . . . . . . . 102

5.3.1 Simulation Scenario and Performance Metrics . . . . . . . . . 102

5.3.2 Computational Run-Time Evaluation . . . . . . . . . . . . . 103

vii



Contents

5.3.3 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . 104

5.3.4 Polynomial Order Truncation . . . . . . . . . . . . . . . . . 106

5.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 Multichannel Spectral Factorisation using the Polynomial Eigenvalue De-

composition Method 115

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 One-Dimensional Spectral Factorization . . . . . . . . . . . . . . . . 117

6.3 Multichannel Spectral Factorisation . . . . . . . . . . . . . . . . . . 118

6.3.1 Ambiguity of Multichannel Spectral Factorisation . . . . . . . 119

6.3.2 Outline of the Proposed Algorithm . . . . . . . . . . . . . . . 120

6.3.3 Order Shortening of the Spectral Factor . . . . . . . . . . . . 121

6.4 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.4.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.4.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7 Decoupling of Broadband MIMO Systems using the Polynomial Singular

Value Decomposition by Polynomial Eigenvalue Decomposition Method 129

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.2 The State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.3 Decoupling of MIMO Channel using PSVD . . . . . . . . . . . . . . 132

7.3.1 Accuracy of the Decomposition . . . . . . . . . . . . . . . . 136

7.3.2 Transmission Quality . . . . . . . . . . . . . . . . . . . . . . 137

7.4 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.4.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.4.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8 Conclusions and Future Work 150

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8.2 Suggestions for Future Work . . . . . . . . . . . . . . . . . . . . . . 152

References 155

viii



List of Figures

1.1 Typical setup with multiple sources and multiple sensors. . . . . . . . 3

2.1 Block diagram of a narrowband MIMO system with additive noise . . 12

2.2 A block diagram of the MIMO communication system using the SVD-

based equalisation scheme. . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Block diagram of a broadband MIMO system consisting of a number

of FIR channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 A 3D illustration showing a single iteration of the SBR2 algorithm

when applied to diagonalising a 5×5 para-Hermitian matrix example. 37

3.2 Strong decorrelation for a set of convolutively mixed sensor signals. . 38

3.3 The stem plot of (a) the CSD matrix and (b) the diagonalised CSD

matrix obtained from the modified SBR2. . . . . . . . . . . . . . . . 46

3.4 Convergence of the SBR2 algorithm when applied to the example CSD

matrix in Figure 3.3, showing (a) the behaviour of the coding gain G(i)

and (b) the behaviour of the magnitude of the maximum off-diagonal

element found at the i-th iteration. . . . . . . . . . . . . . . . . . . . 47

4.1 Illustration of the search space for a 6× 6 para-Hermitian matrix ex-

ample in the MS-SBR2 algorithm. . . . . . . . . . . . . . . . . . . . 62

4.2 A 3D illustration of the MS-SBR2 algorithm with the conventional

time-shift method, showing a single iteration of diagonalising a 5×5

example para-Hermitian matrix. . . . . . . . . . . . . . . . . . . . . 66

4.3 A 3D illustration of the MS-SBR2 algorithm with the direction-fixed

time-shift method, showing a single iteration of diagonalising a 5×5

example para-Hermitian matrix. . . . . . . . . . . . . . . . . . . . . 68

4.4 Convergence comparison of different versions of SBR2 for diagonalis-

ing 2000 randomly generated para-Hermitian matrices. . . . . . . . . 73

4.5 Comparison of polynomial orders among different versions of SBR2

without using any truncation methods. . . . . . . . . . . . . . . . . . 74

4.6 Results obtained from different SBR2 algorithms for the lag based trun-

cation method with µPU = 10−4. . . . . . . . . . . . . . . . . . . . . 75

4.7 Results obtained from different SBR2 algorithms for the energy based

truncation method with µPH = 10−4. . . . . . . . . . . . . . . . . . . 76

4.8 Block diagram of a source model consisting of N independent zero

mean unit variance complex Gaussian sources, innovation filters and a

paraunitary convolutive mixing system. . . . . . . . . . . . . . . . . 78

ix



List of Figures

4.9 Remaining off-diagonal energy versus iterations for the SBR2 and MS-

SBR2 algorithms over an ensemble of 200 random realisations, show-

ing both majorisation types with (a) 10 dB dynamic range, and (b) 30

dB dynamic range. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.10 Paraunitary matrix order for the SBR2 and MS-SBR2 algorithms over

an ensemble of 200 random realisations, showing both majorisation

types with (a) 10 dB dynamic range, and (b) 30 dB dynamic range. . . 81

4.11 PSDs of the on-diagonal polynomials for (a) a strictly majorised source

model, and (b) an unmajorised source model, both with 10 dB dynamic

range obtained from MS-SBR2 after 150 iterations, superimposed on

light grey ideal PSDs. . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.12 PSDs of the on-diagonal polynomials for (a) a strictly majorised source

model, and (b) an unmajorised source model, both with 30 dB dynamic

range obtained from MS-SBR2 after 150 iterations, superimposed on

light grey ideal PSDs. . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.13 The stem plot of the estimated space-time covariance matrix of the

convolutively mixed signals with the chosen SNR of 5.08 dB . . . . . 85

4.14 The magnitude of the maximum off-diagonal element found at the i-th

iteration for the SBR2 and MS-SBR2 algorithms. . . . . . . . . . . . 86

4.15 The stem plot of the strongly decorrelated CSD matrix after applying

the MS-SBR2 algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 87

4.16 The stem plot of the generated paraunitary polynomial matrix after

applying the MS-SBR2 algorithm. . . . . . . . . . . . . . . . . . . . 87

4.17 Power spectral densities of (a) the convolutively mixed signals, and

(b) the strongly decorrelated signals generated using the paraunitary

matrix obtained from the MS-SBR2 algorithm. . . . . . . . . . . . . 89

4.18 Total power spectral density of the expected signals, before and after

applying the paraunitary transformation matrix obtained from the MS-

SBR2 algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.19 The polynomial orders of: (a) the paraunitary matrix and (b) the trans-

formed para-Hermitian matrix at the end of each iteration i of the MS-

SBR2 algorithm for the cases when no truncation method is used and

when the lag based truncation method is applied with a chosen set of

values of µPU and µPH. . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.20 The truncated diagonal matrix produced by applying the MS-SBR2 al-

gorithm to the CSD matrix example shown in Figure 4.13, implement-

ing the energy based para-Hermitian truncation method with µPH = 10−4. 93

4.21 The truncated paraunitary matrix produced by applying the MS-SBR2

algorithm to the CSD matrix example shown in Figure 4.13, imple-

menting the lag based paraunitary truncation method with µPU = 10−4. 94

5.1 Time complexity of diffferent PEVD algorithms for diagonalising ran-

domly generated para-Hermitian matrices, showing mean execution

time of a single iteration for varying matrix and lag dimensions. . . . 104

x



List of Figures

5.2 Convergence comparison of the PEVD algorithms showing the reduc-

tion of off-diagonal energy vs. mean execution time over 100 iter-

ations for an ensemble of randomised para-Hermitian matrices with

sizes M = 6, 12, and24. . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3 Comparison of paraunitary order truncation methods when applied to

the different PEVD algorithms. . . . . . . . . . . . . . . . . . . . . . 110

5.4 Average paraunitary matrix reconstruction error vs. iterations for the

different truncation methods and PEVD algorithms. . . . . . . . . . . 111

6.1 The resulting matrices obtained from applying the MS-SBR2 algo-

rithm to Example (6.14), showing (a) the diagonalised matrix with lag

bound fixed truncation and (b) the truncated paraunitary matrix result-

ing from lag based truncation. . . . . . . . . . . . . . . . . . . . . . 123

6.2 Power spectral density for the on-diagonal polynomials of the diago-

nalised matrix obtained from MS-SBR2. . . . . . . . . . . . . . . . . 123

6.3 The resulting spectral factors of Example (6.14), showing (a) the outer

spectral factor and (b) the inner spectral factor. . . . . . . . . . . . . 124

6.4 The diagonalised matrix obtained from applying the MS-SBR2 algo-

rithm to the CSD matrix example in Figure 4.13 and truncated to the

same order as the CSD matrix. . . . . . . . . . . . . . . . . . . . . . 126

6.5 The outer spectral factor of the CSD matrix example in Figure 4.13,

implementing the lag based truncation with µPU = 10−2. . . . . . . . 127

6.6 The outer spectral factor of the CSD matrix example in Figure 4.13,

implementing the row-shift corrected truncation with µ ′PU = 10−2. . . 127

7.1 A block diagram of the proposed MIMO communication system using

the PSVD based equalisation scheme. . . . . . . . . . . . . . . . . . 134

7.2 A block diagram of the layer-specific ZF equalisation for each SISO

channel obtained using the PSVD. . . . . . . . . . . . . . . . . . . . 135

7.3 The equivalent SISO channel model with ISI removed using the layer-

specific ZF equalisation. . . . . . . . . . . . . . . . . . . . . . . . . 135

7.4 The stem plot of the 4×3 broadband MIMO channel matrix, showing

the magnitudes of the channel impulse responses at different time lags. 139

7.5 The stem plot of the 4×4 paraunitary matrix obtained from the PSVD

by MS-SBR2 method, showing the magnitudes of the coefficients. . . 140

7.6 The stem plot of the 3×3 paraunitary matrix obtained from the PSVD

by MS-SBR2 method, showing the magnitudes of the coefficients. . . 140

7.7 The stem plot of the diagonalised 4×3 MIMO channel matrix obtained

from the PSVD by MS-SBR2 method, showing the magnitudes of the

coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.8 Power spectral densities of the on-diagonal polynomials in the 4× 3

MIMO channel matrix, showing (a) before diagonalisation and (b) af-

ter diagonalisation using the PSVD by MS-SBR2. . . . . . . . . . . . 143

7.9 Intensity distribution patterns of an MMF when launching the light

with the radial offsets (a) δ = 0 µm (centric) and (b) δ = 15 µm (ec-

centric), where the dashed circle has a diameter of 50 µm. . . . . . . . 144

xi



List of Figures

7.10 An overview of the testbed for measuring the impulse responses of a

2×2 optical MIMO channel. . . . . . . . . . . . . . . . . . . . . . . 145

7.11 The stem plot of the measured 2× 2 optical MIMO channel matrix,

showing the magnitudes of the channel impulse responses. . . . . . . 146

7.12 The resulting paraunitary matrices obtained from the MS-SBR2 algo-

rithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.13 The stem plot of the diagonalised channel matrix obtained from apply-

ing the PSVD by MS-SBR2 algorithm to the example in Figure 7.11. . 147

7.14 Results of BER obtained from applying the proposed PSVD based

equalisation scheme to a measured 2×2 optical MIMO channel, show-

ing the comparison between different QAM transmission modes with

and without the power allocation scheme. . . . . . . . . . . . . . . . 149

xii



List of Tables

4.1 Performance comparisons between the SBR2 and MS-SBR2 algorithms

when applied to the same CSD matrix example in Figure 4.13, without

implementing any order truncation process. . . . . . . . . . . . . . . 88

4.2 Performance measures of the MS-SBR2 algorithm when applied to the

same CSD matrix example in Figure 4.13, implementing the energy

based para-Hermitian truncation and lag based paraunitary truncation

methods for different values of µPH and µPU. . . . . . . . . . . . . . 92

5.1 Computational complexity of the different PEVD algorithms. . . . . . 101

5.2 Average length of the resulting polynomial matrices obtained from ap-

plying various PEVD algorithms to an ensemble of randomised para-

Hermitian matrices with sizes M = 6, 12, and24 for 100 iterations,

without using any truncation methods. . . . . . . . . . . . . . . . . . 106

5.3 Average order of the truncated para-Hermitian matrix and the corre-

sponding reconstruction error obtained from the PEVD algorithms af-

ter 100 iterations, implementing the energy based truncation method

with different values of µPH. . . . . . . . . . . . . . . . . . . . . . . 108

5.4 Average order of the truncated paraunitary matrix obtained from the

PEVD algorithms after 100 iterations, implementing the lag based and

row-shift corrected truncation methods, respectively. . . . . . . . . . 111

5.5 Average paraunitary matrix reconstruction error obtained from the PEVD

algorithms after 100 iterations, showing (a) implementing the lag based

truncation with µPU and (b) the row-shift corrected truncation with µ ′PU. 112

7.1 Results obtained from applying the SBR2 and MS-SBR2 algorithms

for calculating the PSVD to the polynomial matrix in Figure 7.4, with

the truncation parameters set as µPH = µPU = 10−4 and the stopping

condition as ε = 10−3 in both methods. . . . . . . . . . . . . . . . . 142

7.2 Investigated transmission modes of the 2×2 optical MIMO system. . 148

xiii



Nomenclature

Notation

a, A regular lower or upper case characters denote scalar quantities

v bold lower case characters denote normal vector quantities

A bold upper case characters denote normal matrix quantities

v j j-th element of vector v

a jk element located in the j-th row and k-th column of matrix A

v(z) underscored bold lowercase characters denote polynomial vectors

A(z) underscored bold uppercase characters denote polynomial matrices

IM M×M identity matrix

‖ · ‖F Frobenius norm (the square-root sum of squares of all elements)

‖ · ‖2 L2 norm

| · | modulus

‖ · ‖∞ L∞ norm

E{·} expectation operator

{·}∗ complex conjugate operator

{·}T transpose operator

{·}H Hermitian transpose operator

˜{·} paraconjugate operator

det{A} determinant of matrix A

diag{A(z)} diagonal matrix with diagonal elements given by A(z)

off{A(z)} a matrix with diagonal entries equal to 0 and off-diagonal entries

given by A(z)

rank{A} rank of matrix A

trace{A} trace of matrix A

C,CN ,CM×N set of complex numbers, vectors with N rows and matrices with M

rows and N columns

C
M×N set of M×N polynomial matrices with complex coefficients (with-

out specifying the number of lags)

CM×N×L set of M×N complex polynomial matrices with lag length of L

xiv



Nomenclature

R,RN ,RM×N set of real numbers, vectors with N rows and matrices with M rows

and N columns

Z set of integer numbers

z−1 unit delay operator (indeterminate variable of polynomial quanti-

ties)

Abbreviations

BER Bit Error Rate

BPSK Binary Phase Shift Keying

BSS Blind Source Separation

CCI Co-Channel Interference

CSD Cross Spectral Density

DOA Direction of Arrival

DSP Digital Signal Processing

EVD Eigenvalue Decomposition

FIR Finite Impulse Response

HOS Higher Order Statistics

IBI Inter-Block Interference

ICA Independent Component Analysis

ISI Inter-Symbol Interference

LTI Linear, Time-Invariant

ME-SMD Maximum Element SMD Algorithm

MIMO Multiple Input Multiple Output

MLSE Maximum Likelihood Sequence Estimation

MSF Multichannel Spectral Factorization

MSME-SMD Multiple Shift Maximum Element SMD Algorithm

MS-SBR2 Multiple Shift SBR2 Algorithm

OCMS-SBR2 Order Controlled Multiple Shift SBR2 Algorithm

OFDM Orthogonal Frequency Division Multiplexing

PCA Principal Component Analysis

PCFB Principal Component Filter Bank

PEVD Polynomial Eigenvalue Decomposition

PSD Power Spectral Density

PSVD Polynomial Singular Value Decomposition

QAM Quadrature Amplitude Modulation

SBR2 Second Order Sequential Best Rotation Algorithm

SISO Single Input Single Output

xv



Nomenclature

SMD Sequential Matrix Diagonalisation

SNR Signal-to-Noise Ratio

SOS Second Order Statistics

STVC Spatio Temporal Vector Coding

SVD Singular Value Decomposition

ZF Zero Forcing

xvi



Chapter 1

Introduction

1.1 Motivation

Digital signal processing (DSP) has become a major area of interest since the 1960s

when digital computers first became available [1, 2]. In 1965, Cooley and Tukey [3] in-

vented the fast Fourier transform (FFT), which dramatically boosted the development

of signal processing. The FFT underpins a wide range of applications such as speech

processing, digital medical imaging, and wireless communications. DSP is a discipline

encompassing mathematics, algorithms, and techniques that can be used to manipulate

signals like voice, audio, video, pressure, temperature, etc. These signals usually origi-

nate as digitised sensory data from the real world, such as sound waves, visual images,

seismic vibrations and electromagnetic waves. DSP has a variety of goals ranging from

data compression for transmission and storage to speech recognition, enhancement of

visual images, and data encryption, among others.

The early applications of DSP were predominantly focused on four key areas: radar

and sonar, medical imaging, space exploration, and oil exploration. Since the inven-

tion of personal computers and cellular phones in the 1980s, DSP has rapidly expanded

into many new areas driven by the commercial marketplace, such as digital communi-

cations and sensor array processing [1]. A commonly desired objective in these areas
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is to estimate the source signals (or a particular source) from a set of observed signals,

which are usually masked by noise. This process is often referred to as blind source

separation (BSS), where the term blind signifies the lack of a priori knowledge of the

source signals and the mixing model from the sources to the sensors. BSS can gener-

ally be described by a typical multiple-source and multiple-sensor scenario, as shown

in Figure 1.1. Depending on whether the observed signals are instantaneously mixed

or convolutively mixed, BSS problems can generally be divided into two categories.

In the instantaneous case, the mixing system is modelled by a scalar matrix whose

elements are generally complex numbers, and each sensor signal is simply the sum of

differently weighted source signals plus the noise. Many algorithms have been devel-

oped to address the instantaneous BSS problem, and the majority of these algorithms

requires the same pre-processing step based on second-order statistics (SOS). This pre-

processing step uses a matrix decomposition method such as eigenvalue decomposition

(EVD) or singular value decomposition (SVD) to decorrelate the sensor signals, and

then higher-order statistics (HOS) is used to complete the source separation process.

For further details of this method, see [4].

In the more complicated convolutive mixing model, the source signals are received

at an array of sensors over multiple paths and with different time delays. A typical

example could be speech recordings made in a room in the presence of background

noise. Each element of the mixing matrix is now seen as a finite impulse response

(FIR) filter, and therefore the convolutive mixing matrix takes the form of a polynomial

matrix in terms of the indeterminate variable z−1. In the past, most techniques have

addressed the convolutive BSS problem by transforming the signals into a number

of narrower frequency bands using the discrete Fourier transform (DFT), and each

frequency band is then considered as a narrowband BSS problem. This is commonly

referred to as independent frequency band (IFB) processing [5, 6]. However, the IFB

approach may ignore the important correlations between different bands, and it can

also lead to a lack of coherence of signals. An algorithm, called second order sequential
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best rotation (SBR2), has been developed for calculating the EVD of a para-Hermitian

polynomial matrix [7]. This algorithm is capable of performing strong decorrelation

on a set of convolutively mixed signals. In other words, this algorithm can be used as

the pre-processing method for broadband BSS, thus avoiding the drawbacks imposed

by the IFB approach.

.

.

.

.

.

.

s1[t]

Sources Sensors

s2[t]

sN [t]

x1[t]

x2[t]

xM [t]

Noise

Mixing

System

n1[t] n2[t] nM [t]
···

Figure 1.1 Typical setup with multiple sources and multiple sensors.

Over the last decade, polynomial EVD (PEVD) has been exploited widely in the

areas of broadband signal processing. Just as unitary or orthogonal matrix decompo-

sition techniques such as EVD and SVD are fundamental to most narrowband signal

processing formulations [8], PEVD is providing optimal solutions to many broadband

extensions of narrowband problems, including broadband sensor array processing [9–

13], MIMO communications [14–16], channel coding [17], spectral factorisation [18–

20], filter bank design for subband coding [21], and broadband BSS [22–25]. The

motivation behind this thesis is to further develop PEVD techniques which can be used

to address broadband signal processing problems. In particular, improved versions of

the SBR2 algorithm are developed for computing the PEVD. These algorithms have

been proven to converge and are also numerically robust. Furthermore, potential appli-

cations of the proposed algorithms are demonstrated.
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1.2 Thesis Contributions

The main contributions of this thesis are summarised as follows.

• A novel insight into the SBR2 algorithm for diagonalising para-Hermitian

matrices [26]

In broadband sensor array processing, the SBR2 algorithm [7] has been used to

decorrelate the convolutively mixed signals measured from sensors. It has been

shown that the strongly decorrelated signals obtained using the SBR2 algorithm

also possess the spectral majorisation property [27]; however, this property has

not been proven in the existing literature. We take a fresh look at the SBR2

algorithm in terms of its potential for optimising the subband coding gain, which

leads to the proof of the spectral majorisation property. Further details of this

work are presented in Chapter 3.

• Multiple shift SBR2 algorithm for polynomial eigenvalue decomposition [28,

29]

Aiming to diagonalise a para-Hermitian polynomial matrix in fewer iterations,

an improved version of the SBR2 algorithm, namely multiple shift SBR2 (MS-

SBR2), is proposed for implementing the PEVD. The MS-SBR2 algorithm is

developed based on the original SBR2 algorithm; however, it can achieve faster

convergence than SBR2 in terms of reducing the off-diagonal energy. Specifi-

cally, by using a multiple-shift strategy akin to that of the multiple shift maxi-

mum element sequential matrix diagonalisation (MSME-SMD) algorithm [30],

MS-SBR2 can annihilate multiple off-diagonal elements at each iteration com-

pared to SBR2. Furthermore, two different time-shift methods are introduced in

MS-SBR2, including a conventional shift method similar to that of SBR2 and a

direction-fixed shift method. In particular, using the direction-fixed shift method

keeps all the row (column) shifts in the same direction throughout each iteration,
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which therefore gives us the flexibility to control unnecessary growth in the or-

der of the resulting polynomial matrices. This leads to the order-controlled MS-

SBR2 algorithm, which is advantageous over conventional MS-SBR2 in terms

of reducing polynomial order. The reduced polynomial order reduces the com-

putational load of the algorithm, and therefore produce a computationally fast

algorithm. The MS-SBR2 algorithm comprises the core part of this thesis, and a

detailed account is presented in Chapter 4.

• Multichannel spectral factorisation based on polynomial eigenvalue decom-

position [19, 20]

Spectral factorisation plays a fundamental role in designing a minimum-phase

system that can be used in many areas of signal processing. We propose a novel

method for solving the multichannel spectral factorisation problem. The pro-

posed method uses a PEVD algorithm to diagonalise the power spectral den-

sity matrix, which effectively converts the multichannel spectral factorisation

problem into a number of independent scalar spectral factorisation problems for

which suitable algorithms already exist. This work contributes one of the poten-

tial applications of the proposed MS-SBR2 algorithm, which is demonstrated in

Chapter 6.

• Decoupling of broadband multiple-input multiple-output systems using the

PSVD by PEVD method [31, 32]

A popular strategy for channel equalisation of narrowband multiple-input multiple-

output (MIMO) communication systems is to use SVD to decompose the MIMO

channel into a set of independent single input single output (SISO) channels, pro-

vided that the channel state information is available at both the transmitter and

the receiver. The resulting SISO channels can then be used to enhance the chan-

nel capacity or to increase diversity [33]. When the problem is extended to the

broadband case, the MIMO channel becomes time-dispersive and therefore is

5



1.3 Organisation of the Thesis

represented by a polynomial (or convolutive) mixing matrix, where each of the

entries can be seen as an FIR filter to account for the multipath effect. Thus,

apart from the co-channel interference (CCI) caused by the MIMO components,

there is also inter-symbol interference (ISI) between the transmit symbols. To

address the broadband MIMO channel equalisation problem, PSVD can be used

to remove the CCI by decomposing the frequency-selective MIMO channel into

a number of independent frequency-selective SISO channels [34], and the re-

maining ISI for each SISO channel can be eliminated by further equalisation

techniques, such as zero-forcing (ZF) equalisation or maximum likelihood se-

quence estimations (MLSE). The main contributions of this work include the

demonstration of the proposed PSVD by MS-SBR2 method in terms of solving

the broadband MIMO decoupling problem and performance comparisons with

the existing PSVD by SBR2 method. In addition, we present two examples

demonstrating our proposed method, including a simulated MIMO channel and

a measured 2× 2 optical MIMO channel. Details of this work can be found in

Chapter 7.

1.3 Organisation of the Thesis

The rest of the chapters of this thesis are structured as follows.

Chapter 2 presents a literature review chapter which gives a comprehensive account

of MIMO channel mixing models and their corresponding matrix decomposition

techniques. Depending on characteristics of the channel, the channel can either

be modelled by an instantaneous mixing matrix in the narrowband (frequency-

flat) signal processing or a convolutive mixing matrix in the broadband (frequency-

selective) case. In the narrowband sensor array processing, two common scalar

matrix decomposition techniques, including EVD and SVD, will be introduced,

along with a discussion of relevant applications. Following on that, some ex-
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isting approaches for broadband sensor array processing are briefly reviewed.

In particular, two polynomial matrix decomposition techniques are briefly intro-

duced, including the PEVD and the PSVD methods.

Chapter 3 concentrates on the PEVD techniques. It starts by presenting a general

anatomy of PEVD, including the uniqueness and ambiguity problems of the

PEVD. Existing PEVD algorithms, including SBR2 [7], sequential matrix di-

agonalisation (SMD) [35], maximum element SMD (ME-SMD) [35], and mul-

tiple shift ME-SMD (MSME-SMD) [30], are then discussed. This gives a clear

overview of how far the PEVD techniques have been developed so far. In partic-

ular, a novel insight into the SBR2 algorithm is presented in order to prove that

it possesses the spectral majorisation property. In addition, we introduce some

of the existing polynomial order truncation methods that are used to reduce the

unnecessary order growth of the resulting polynomial matrices obtained from

the PEVD algorithms.

Chapter 4 details the proposed MS-SBR2 algorithm for calculating PEVD of para-

Hermitian matrices. First, the idea of the MS-SBR2 algorithm is discussed.

Then, two different time-shift methods for MS-SBR2 are presented. Computer

simulations are designed to test the effectiveness of the MS-SBR2 algorithm by

means of different para-Hermitian matrix examples, and results are also com-

pared with the original SBR2 algorithm. Last but not least, a simple broadband

MIMO communication channel is modelled to demonstrate the ability and effec-

tiveness of the MS-SBR2 algorithm in terms of decorrelating a set of convolu-

tively mixed signals.

Chapter 5 presents a comparative analysis of all PEVD algorithms discussed in this

thesis, including SBR2, MS-SBR2, SMD, ME-SMD, and MSME-SMD. We first

investigate the computational complexity of the PEVD algorithms, followed by

computer simulations to examine the real computational time of each PEVD al-
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gorithm using a set of para-Hermitian matrices of different sizes. Furthermore,

all algorithms are assessed and compared from the perspective of various per-

formance metrics, including diagonalisation measure, convergence speed, and

polynomial order.

Chapter 6 demonstrates a potential application of the proposed MS-SBR2 algorithm

to multichannel (or matrix) spectral factorisation. Numerical examples are in-

cluded to examine the validity of the proposed spectral factorisation method.

Chapter 7 discusses how the proposed MS-SBR2 algorithm can be used to formu-

late the PSVD and therefore applied to decouple broadband MIMO systems. We

include two worked examples to demonstrate our proposed method. In the first

example, a simulated 3×4 broadband MIMO channel is chosen to compare the

performance between the PSVD by MS-SBR2 method and the PSVD by SBR2

method. In the second example, the proposed PSVD by MS-SBR2 algorithm

is applied to decouple a measured 2× 2 optical MIMO channel, and the bit er-

ror rate (BER) performance is assessed and compared for different transmission

schemes with a fixed spectral efficiency.

Chapter 8 concludes the research presented in this thesis and provides suggestions

for future work.

1.4 Choice of Notation

Throughout this thesis, scalar quantities are represented by regular lower or upper case

characters. Vectors and matrices are denoted with bold lower and upper case characters,

respectively. The entries of a vector v are denoted by v j, where the subscript j denotes

the j-th element in v. Similarly, the entries of a matrix A are indicated by a jk, where the

subscripts j, k represent the j-th row and k-th column of A. IM represents the M×M

identity matrix. Dependency on a discrete variable is denoted by square brackets, while
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dependency on a continuous variable is indicated by round brackets. The use of {·}

under any matrices or vectors denotes polynomial quantities, e.g., A(z) = ∑τ A[τ]z−τ ,

τ ∈ Z represents a polynomial matrix in terms of the indeterminate variable z−1. The

superscript {·}∗ is chosen as the complex conjugate operator of the coefficients of

a polynomial matrix or vector, and the superscripts {·}T and {·}H stand for matrix

transpose and Hermitian conjugate operation, respectively. The notation of ˜{·} upon a

polynomial matrix is used to denote the paraconjugate operation.

9



Chapter 2

Background to Polynomial Matrix

Decomposition Techniques

2.1 Introduction

In the context of sensor array processing, the problem of source separation can be clas-

sified into two categories depending on how the propagation of signals from sources

to sensors have been modelled. For a narrowband sensor array, the propagation is usu-

ally modelled by an instantaneous mixing matrix whose elements are complex scalars.

However, in the case of a broadband sensor array, the propagation of signals cannot be

modelled by a scalar mixing matrix. Instead, a matrix of finite impulse response (FIR)

filters is required to describe the convolutive mixtures.

This chapter provides a literature review of different matrix decomposition tech-

niques for sensor array processing ranging from the narrowband case to the broadband

case. It starts by introducing the simple instantaneous mixing model followed by the

available scalar matrix decomposition techniques which can be used to address nar-

rowband problems such as source separation and design of equalisation for multiple

input multiple output (MIMO) communications. After that, the more complicated con-

volutive combination system is discussed together with a comprehensive account of
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polynomial matrices including the definitions and properties. Furthermore, some ex-

isting polynomial matrix decomposition techniques are briefly discussed, including

polynomial eigenvalue decomposition (PEVD), polynomial singular value decompo-

sition (PSVD), Smith-McMillan decomposition, FIR lossless system decomposition,

Lambert’s FIR matrix eigenroutine, and approximate polynomial eigenvalue decompo-

sition.

2.2 Matrix Decomposition Techniques for Narrowband

Channels

2.2.1 Instantaneous Mixing Model

In an instantaneous mixing model, the transformation from the source signals to the

sensors is assumed to be linear, time-invariant (LTI) and instantaneous, and noise is

considered to be additive and independent at each sensor.

Given a MIMO system with N sources and M sensors in an instantaneous mixing

environment, the transfer function of the channel can be modelled by an M×N scalar

matrix C, also referred to as the instantaneous mixing matrix, in which the elements

cmn for m = 1, · · · , M and n = 1, · · · , N represent the channel between the n-th source

and m-th sensor. Here cmn is considered to be a complex number which represents a

scaling in amplitude caused by the attenuation of propagation and a phase shift that

accounts for the propagation delay [7]. This type of MIMO channel is characterised as

frequency-flat fading, as the coherence bandwidth 1 of the channel is greater than the

transmitted signal bandwidth. This is also the reason it is often called a narrowband

MIMO system.

1Coherence bandwidth is a statistical measurement of the approximate maximum bandwidth or fre-

quency interval over which two frequencies of a signal are likely to experience correlated amplitude

fading, and it can be approximately calculated as the inverse of the multipath time delay spread [33].
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Considering the propagation of N independent source signals s[t] ∈ CN×1, where

t ∈ {0, 1, · · · , T −1}, through an instantaneous mixing system C, the observed sensor

signals x[t] ∈ CM×1 can be expressed as

x[t] = Cs[t]+n[t] , t ∈ {0, 1, · · · , T −1} , (2.1)

where n[t] ∈ CM×1 denotes the additive Gaussian noise observed at the receiver with

variance of σ 2IM. In other words, each of the observed sensor signals xm[t] for m =

1, · · · , M is formulated as a scalar sum of differently weighted source signals plus

sensor noise, i.e.,

xm[t] =
N

∑
n=1

cmn sn[t]+nm[t] . (2.2)

Figure 2.1 shows a block diagram of a narrowband MIMO system with additive noise.

In the context of this thesis, the mixing system C is assumed to be overdetermined with

M ≥ N.
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Figure 2.1 Block diagram of a narrowband MIMO system with additive noise.

2.2.2 Blind Source Separation

Blind source separation (BSS) is a process of retrieving the independent source signals

from a set of noisy mixtures, such as those described in (2.1), without resorting to any
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a priori information about the sources s[t] and the mixing matrix C. It utilises only

the information carried by the observed sensor signals themselves. Due to the lack of

information about the mixing matrix, some additional assumptions on source signals

are necessary, and these assumptions may vary in different approaches. Nonetheless,

one of the most important assumptions in many approaches is that the source signals

are assumed to be statistically independent.2 Yellin and Weinstein [36] proved that if

the sources are statistically independent, then a necessary and sufficient condition for

signal separation is that the outputs are also statistically independent. In other words,

separation is deemed successful if the output signals satisfy the independence criterion.

This process is also known as independent component analysis (ICA), where higher

order statistics (HOS) is often needed to minimize the dependence between the sensor

signals. Note that ICA generalises principal component analysis (PCA) to produce

independent signals rather than simply uncorrelated signals [4]. For further details of

ICA, see [37–40].

BSS has been exploited in a wide variety of applications, such as underwater acous-

tic signals recorded in passive sonar [41], MIMO communications [42], analysis of

astronomical images [43], and interpreting biomedical data from electrocardiogram

(ECG) and electroencephalography (EEG) readings [44–50].

Approaches for Instantaneous Blind Source Separation

For the instantaneous mixing model as depicted in Figure 2.1, the problem of BSS is

concerned with the existence of matrix W such that

y[t] = Wx[t] , (2.3)

where the data vector y[t] denotes the outputs of the separation system and W is an

unknown separation matrix. For the sake of simplicity, we assume that the number

2Statistical independence means that given one of the source signals, nothing can be predicted or

estimated about any other source signals.

13



2.2 Matrix Decomposition Techniques for Narrowband Channels

of sensors is the same as the number of sources. Successful separation of the sources

requires that the components in y[t] are as mutually independent as possible, thereby

providing an estimate of the source signals s[t]. If the effect of the noise is ignored,

the source signals can be identified by requiring WC = I, where the mixing matrix C

can be estimated by methods in [51, 52]. In other words, the separation system is the

inverse of the mixing system.

There exist numerous algorithms for solving the instantaneous BSS problem; the

majority of these algorithms implement a two-stage approach. In the first stage, the

sensor outputs are decorrelated and normalised using a PCA method, such as EVD

or SVD, that exploits second order statistics (SOS) of the sensor signals. This stage

is also known as whitening. Then, the second stage uses HOS to minimise the de-

pendence of the whitened signals to obtain estimates of the source signals [53]. It is

beyond the scope of this thesis to discuss further details of the different algorithms

for instantaneous BSS. However, some of the best known algorithms, which are based

on this two-stage approach, include Joint Approximation Diagonalisation of Eigen-

matrices (JADE) [54], BLInd Signal Separation (BLISS) [55, 56], FastICA [40], and

KernelICA [57]. All these algorithms use the same second order stage but different

methods for higher order stages. In [4], Pope and Bogner provide a detailed review on

instantaneous BSS.

The main objective of this section is to highlight the importance and value of the

two scalar matrix decomposition techniques (EVD and SVD) in relation to the in-

stantaneous mixing model. This also laid the groundwork for the more complicated

convolutive mixing model and the corresponding polynomial matrix decomposition

techniques.
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2.2.3 Eigenvalue Decomposition

The eigenvalue decomposition (EVD) of a Hermitian matrix R ∈ CM×M is defined as

Rqi = diqi , i = 1, · · · , M , (2.4)

where di ∈ R, di ≥ 0 represents the eigenvalues of R, and qi ∈ CM×1 is the corre-

sponding eigenvectors satisfying qH
i q j = δ (i− j) for i, j = 1, · · · , M. In general, the

eigenvectors qi can also have arbitrary phase α , such that

Rqie
jα = diqie

jα . (2.5)

The above equation can also be expressed as the following matrix representation

R = QDQH , (2.6)

where D ∈ RM×M is a diagonal matrix, and it is unique when the eigenvalues di for

i = 1, · · · , M are ordered. Q ∈ CM×M is a unitary matrix whose columns are the or-

thonormal eigenvectors of R, and it satisfies QQH = I. Note that Q is ambiguous as a

result of the arbitrary phase α in (2.5).

The EVD diagonalises the Hermitian matrix R by using a unitary or orthogonal

transformation Q, so the total energy has been preserved such that ‖R‖2
F = ‖D‖2

F,

where the notation ‖ · ‖F represents the Frobenius norm. The EVD exists for every

Hermitian matrix R, and it does not matter if its entries are real or complex. One of the

earliest algorithms for computing the EVD of a Hermitian matrix was the Jacobi algo-

rithm [8] which iteratively reduces the matrix into a diagonal form by using a unitary

(orthogonal) transformation. The implementation of the Jacobi algorithm is simple but

ineffective, as it performs operations across all the off-diagonal elements in R. Most

of the current efficient algorithms preliminarily reduce the real symmetric (or complex

Hermitian) matrix R to a tridiagonal matrix T by using a non-iterative algorithm in
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a finite number of steps and then work with the tridiagonal matrix based on QR (or

QL) iterations, such as using the xSTEQR computational subroutine from the LAPACK

library [58]. Discussions of the specific algorithms are beyond the scope of this thesis;

a detailed review of eigenvalue computation can be found in [59, 60].

The EVD has been extensively used in many areas of DSP. For example, it acts

as an important tool in the Karhunen-Loeve transform for optimal data compaction

[61]. It also plays a fundamental role in PCA for most narrowband BSS problems [4].

In the context of this thesis, we will now demonstrate how the EVD can be used to

decorrelate a set of instantaneously mixed signals, which is considered the first stage

of the two-stage BSS approach [49].

Decorrelation of Instantaneously Mixed Signals

The following assumptions are made when using the EVD to decorrelate instanta-

neously mixed signals:

1. The observed sensor signals x[t] from (2.1) are assumed to be zero mean and

stationary;

2. The mixing matrix C is assumed to be time invariant; and

3. The sensor noise n[t] is assumed to be white Gaussian noise and uncorrelated

between the sensors.

Thus, the covariance matrix of the sensor signals x[t] can be calculated as

Rxx = E{x[t]xH[t]}= E{Cs[t](Cs[t])H}+σ 2IM

= CE{s[t]sH[t]}CH+σ 2IM

= CRssC
H +σ 2IM ,

(2.7)

where E {·} denotes the expectation operator and Rss = E{s[t]sH[t]} is the spatial co-

variance matrix of the source signals [62]. As the source signals s[t] in (2.1) are as-

sumed to be statistically independent, there is no cross-correlation between pairs of
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2.2 Matrix Decomposition Techniques for Narrowband Channels

source signals, i.e., E{sk[t]s
∗
l [t]} = 0, k 6= l, ∀ t. Therefore, Rss is a diagonal matrix.

However, the covariance matrix Rxx will generally not be diagonal, because the ob-

served signals x[t] comprise a linear combination of the source signals and are there-

fore correlated with one another.

To demonstrate the process of decorrelating the sensor signals using the EVD, we

define a matrix

X = [x[0], x[2], · · · , x[T −1] ] , (2.8)

which contains the sensor output samples x[t] ∈ CM×1 for t = 1, · · · , T − 1. The co-

variance matrix of the sensor signals can then be estimated as

R̂xx =
XXH

T
. (2.9)

As R̂xx is Hermitian, it can be diagonalised using the EVD in (2.6) such that

QHR̂xxQ = D , (2.10)

where Q ∈ CM×M denotes a unitary matrix and D ∈ CM×M is the diagonalised covari-

ance matrix whose elements dmm for m = 1, · · · , M are generally ordered to produce a

unique solution.

Follow the diagonalistion of the covariance matrix, the unitary matrix QH is applied

to the data matrix X, resulting in the transformed data matrix

Y = QHX . (2.11)

This process is known as decorrelation (or whitening), which removes the spatial cor-

relation between the sensors. The transformed signals y[t] for t = 1, · · · , T − 1, with

an estimated covariance matrix R̂yy = D, represent the decorrelated signals. Note that

the EVD-based PCA, which only considers the SOS, can only decorrelate the signals

and therefore is not generally sufficient for separation (separation requires a stronger
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2.2 Matrix Decomposition Techniques for Narrowband Channels

condition of independence of the signals). Therefore, HOS are needed to minimise the

dependence between the signals, which can be implemented by the ICA algorithms,

such as JADE [54] and FastICA [63]. Source separation using HOS requires that at

most one of the source signals has a Gaussian distribution [49, 64]. However, a work

by Gerven and Compernolle [65] shows that two source signals can be separated by

decorrelation if the mixing system is minimum phase. Furthermore, if the majority

of the sensor signals have very different power levels, then source separation can be

generally achieved by using the EVD or SVD [7].

2.2.4 Singular Value Decomposition

Compared to the EVD, which only works on Hermitian (or symmetric) matrices, the

SVD applies to all matrices. It plays a fundamental role in matrix computation and

analysis [8]. The SVD of an arbitrary matrix A ∈ CM×N , where M does not have to be

the same as N, is defined as

A = UHΣV , (2.12)

where U ∈ CM×M and V ∈ CN×N are both unitary matrices, such that UUH = UHU =

IM and VVH =VHV= IN. Σ∈RM×N is a diagonal matrix, i.e., Σ= diag{σ11, · · · , σnn},

where n = min{M, N}. The diagonal elements of Σ represent the singular values of the

matrix A and satisfy σ11 ≥ σ22 ≥ ·· · ≥ σnn. Due to the unitary transformation, the

SVD is also norm preserving as with EVD, i.e., ‖A‖2
F = ‖Σ‖2

F.

Narrowband MIMO Channel Equalisation

In a narrowband MIMO system, as depicted in Figure 2.1, the SVD is a popular strategy

for addressing the channel equalisation problem [33, 66]. If the mixing matrix C is

known at both the transmitter and the receiver, the SVD can be used to diagonalise the

channel matrix, i.e., C = UHΣV. The produced unitary matrices VH and U are then
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V
H

U...
...

...
...

s1[t]

s2[t]

sN [t]

x1[t]

x2[t]

xM [t]

C

+

n1[t]

+

+

n2[t] nM [t]

Figure 2.2 A block diagram of the MIMO communication system using the SVD-

based equalisation scheme.

respectively applied at the transmitter and receiver, such that

x[t] = UCVH s[t]+Un[t] . (2.13)

By substituting C = UHΣV into (2.13), we have

x[t] = Σs[t]+n′[t] , (2.14)

where n′[t] = Un[t]. Figure 2.2 shows a block diagram of the MIMO communication

system based on the SVD. As both matrices U and V are unitary, the transmit power

is not increased, nor is the channel noise enhanced. In effect, the SVD transfers the

instantaneous MIMO channel into a number of independent parallel subchannels for

which co-channel interference (CCI) no longer exists.

The unitary matrices UH and V can be obtained from the decomposition of the two

matrices CHC and CCH. By separately pre- and post-multiplying the channel matrix

C with its Hermitian transpose, we obtain the following pair of equations.

CHC = VH ΣH ΣV

CCH = UH ΣΣH U

(2.15)

In fact, CHC and CCH are Hermitian matrices by construction, so the above equations

form two EVDs, where ΣHΣ ∈ CN×N and ΣΣH ∈ CM×M are the diagonal matrices.
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2.3 Matrix Decomposition Techniques for Broadband Channels

The SVD can also be applied to the PCA for whitening a set of instantaneously

mixed signals; however, this is different from the EVD-based PCA in which the data

covariance matrix is diagonalised. Instead, the SVD is directly applied to the sensor

data. For this reason, the SVD-based PCA is less computationally expensive than the

EVD-based PCA. For further details, see [38, 67].

2.3 Matrix Decomposition Techniques for Broadband

Channels

2.3.1 Background to Polynomial Matrices

A polynomial matrix is simply a matrix with polynomial entries; alternatively, it can

be seen as a polynomial with matrix-valued coefficients [68, 69]. Polynomial matrices

are represented in terms of the indeterminate variable z−1, which can also be seen as a

unit delay in the context of this thesis. For an M×N polynomial matrix A(z), it can be

expressed as

A(z) =
T2

∑
τ=T1

A[τ]z−τ =












a11(z) a12(z) · · · a1N(z)

a21(z) a22(z) · · · a2N(z)

...
...

. . .
...

aM1(z) aM2(z) · · · aMN(z)












, (2.16)

where τ ∈ Z and T2 ≥ T1. The order of this polynomial matrix is given by T2−T1,

such that A[T1] 6= 0 and A[T2] 6= 0. The coefficient matrices A[τ], τ ∈ [T1,T2] generally

contains complex scalar entries, and A[τ] is referred to as the coefficient matrix at the

discrete time index τ . In particular, A[0] represents the coefficient matrix at the zero

lag, which is very important for the discussion of the PEVD algorithms throughout this

thesis.
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2.3 Matrix Decomposition Techniques for Broadband Channels

Special Polynomial Matrices and their Properties

Given a polynomial matrix A(z), its paraconjugate Ã(z) can be calculated as

Ã(z) = AH(z−1) , (2.17)

where the paraconjugate operator ˜{·} implies performing the Hermitian conjugate for

the coefficient matrices A[τ], ∀τ , and time-reversing all entries inside.

Analogue to the notion of Hermitian for a scalar matrix, a polynomial matrix

A(z) ∈ C
M×M is para-Hermitian if it is equal to its paraconjugate, i.e.,

A(z) = Ã(z) . (2.18)

Hence, the individual coefficients a jk[τ], for j,k = 1,2, · · · ,M associated with the poly-

nomial matrix A(z) satisfy a jk[τ] = a∗k j[−τ], ∀τ ∈ Z.

A polynomial matrix A(z) is said to be paraunitary if it follows

A(z)Ã(z) = Ã(z)A(z) = I . (2.19)

A more general definition in [69] states that A(z) is a paraunitary matrix if it satisfies

A(z)Ã(z) = c2I, where c2 is a constant coefficient. However, we will only consider the

case when c2 = 1, so the paraunitary definition in (2.19) will be adopted in this thesis.

Finally, the Frobenius norm of the polynomial matrix A(z) ∈ C
M×N is defined as

‖A(z)‖F =

√
√
√
√

T2

∑
τ=T1

M

∑
m=1

N

∑
n=1

|amn[τ]|2

=
√

trace
{
[A(z)Ã(z)]|0

}
,

(2.20)

where [ · ]|0 denotes the zero-lag (z0) coefficient matrix of the polynomial matrix.
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2.3 Matrix Decomposition Techniques for Broadband Channels

2.3.2 Convolutive Mixing Model

The assumption of an instantaneous mixing model as described in 2.2.1 is unrealistic

in many real-world applications, as it fails to accommodate cases where the transmis-

sion channels have multipath effects and delays. The mixing process for real-world

applications, such as in an audio separation system, is more complex. In such systems,

the observed sensor signals are differently weighted and delayed, and each source sig-

nal contributes to the sum with different time delays corresponding to multiple paths

by which an acoustic signal propagates to a microphone. This means that the source

signals are filtered rather than simply scaled as they propagate to the sensors. Such

a filtering process is referred to as convolutive mixing, in which the bandwidth of the

transmitted signals or source signals are greater than the coherence bandwidth of the

channel, and for this reason, systems of this type are often called broadband sensor

array systems.

It is assumed that N independent source signals organised in a vector s[t] ∈ C
N×1

for t ∈ {0, · · · , T −1} propagate through a convolutive channel. The received signals,

denoted x[t] ∈ CM×1, can then be expressed as

x[t] =
L

∑
l=0

C[l]s[t− l]+n[t] , t ∈ {0, · · · , T −1} , (2.21)

where n[t] ∈ CM×1 is an additive Gaussian noise process with variance σ 2IM and

C[l] ∈ C
M×N for l ∈ {0, · · · , L} represent the coefficient matrices of the convolutive

(polynomial) mixing matrix C(z), i.e.,

C(z) =
L

∑
l=0

C[l]z−l . (2.22)

Each of the polynomial entries cmn(z) of C(z), where m = 1, · · · , M and n = 1, · · · , N,

can be seen as an FIR filter between the n-th source and m-th sensor. A block diagram

of this convolutive MIMO system is depicted in Figure 2.3.
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2.3 Matrix Decomposition Techniques for Broadband Channels

A more compact expression can be obtained by taking the z transform of (2.21),

such that

x(z) = C(z)s(z)+n(z) , (2.23)

where x(z) = ∑t x[t]z−t, s(z) = ∑t s[t]z−t, and n(z) = ∑t n[t]z−t denote the algebraic

power series of the sensor signals, the source signals, and the noise, respectively.

+ x1[t]s1[t] c
11
(z)

c
1N

(z)
...

+

n1[t]

nM [t]

...

c
M1

(z)
...

c
MN

(z)sN [t] ++ xM [t]

...
...

Figure 2.3 Block diagram of a broadband MIMO system consisting of a number of

FIR channels.

2.3.3 Polynomial Eigenvalue Decomposition

The conventional EVD algorithm is only suitable for diagonalising the covariance ma-

trix of narrowband signals. When the problem is extended to broadband scenarios, as

shown in Figure 2.3, PEVD techniques need to be taken into account. Assuming that

the convolutively mixed signals x[t] ∈ CM×1 have zero mean, the space-time covari-

ance matrix

R[τ] = E
{

x[t]xH[t− τ]
}
, t and τ ∈ Z (2.24)

represents the correlation between pairs of signals sampled at a time instant τ . The

corresponding cross spectral density (CSD) matrix R(z) is a polynomial matrix and

can be obtained by taking the z-transform of (2.24), i.e.,

R(z) =
T

∑
τ=−T

R[τ]z−τ , (2.25)
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2.3 Matrix Decomposition Techniques for Broadband Channels

where R(z) is para-Hermitian matrix, i.e., R(z) = R̃(z). To decorrelate the convolu-

tively mixed signals, which corresponds to eliminating the cross-correlations between

different sensors over all time delays, PEVD has been proposed [7]. This takes the

form

H(z)R(z)H̃(z)≈ D(z) (2.26)

where H(z) ∈ CM×M is a paraunitary matrix, i.e., H(z)H̃(z) = H̃(z)H(z) = IM , and

D(z) ∈ CM×M is (ideally) a diagonal matrix. Here, the paraunitary matrix H(z) can

be seen as a multichannel all-pass filter, which preserves the energy of the combined

signals [69]. A detailed discussion of the existing PEVD algorithms will be presented

in Chapter 3.

The PEVD techniques have attracted significant interest in digital signal processing

and communications over the past few years. Applications of PEVD have been found

in areas such as decorrelation of the signals received by broadband sensor arrays [7],

estimation of broadband angle of arrival [12, 70], subband coding [21], precoding

and equalisation for MIMO communications [34], multichannel spectral factorisation

[18, 19], and convolutive BSS [23, 24, 71] among others. In this thesis, two potential

applications of the proposed PEVD algorithm will be presented in Chapters 6 and 7.

2.3.4 Polynomial Singular Value Decomposition

The PSVD of the polynomial channel C(z) ∈ C
M×N is given by

C(z) = Ũ(z)Σ(z)V(z) , (2.27)

where U(z)∈CM×M and V(z)∈CN×N are paraunitary matrices, such that U(z)Ũ(z) =

Ũ(z)U(z) = IM and V(z)Ṽ(z) = Ṽ(z)V(z) = IN . Σ ∈ RM×N is a diagonal polynomial

matrix.

In analogy to how the SVD can be used to address the channel equalisation problem

for narrowband MIMO systems, the effectiveness of the PSVD will be demonstrated
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2.4 Other Polynomial Matrix Decomposition Techniques

by a potential application of broadband MIMO channel equalisation in the penultimate

chapter.

2.4 Other Polynomial Matrix Decomposition Techniques

2.4.1 Smith Form

Given a generic M×N polynomial matrix G(z), its Smith form, i.e., simpler forms

such as diagonal, upper, or lower triangular polynomial matrices, can be obtained by

means of elementary row and column operations [69, 72]. Similar to the elementary

operations for scalar matrices [8], there exist three elementary operations for a polyno-

mial matrix, i.e.,

• multiplying a row or column by a non-zero constant;

• interchanging two rows or two columns; and

• adding a polynomial multiple of a row or column to another row or column.

These operations are performed by either pre-multiplying or post-multiplying G(z)

with the corresponding elementary matrices, which are known as unimodular poly-

nomial matrices. A polynomial matrix is unimodular if its determinant is a non-zero

constant; the inverse of a unimodular matrix remains unimodular. Pre-multiplication of

G(z) by an elementary matrix corresponds to a row operation, while post-multiplication

indicates a column operation.

2.4.2 Smith-McMillan Form

The Smith-McMillan form is probably the most well known polynomial matrix diag-

onalisation method. For a broadband MIMO channel matrix C(z) ∈ CM×N , if there

exists a set of elementary polynomial matrices Pi(z) ∈ C
M×M for i = 1, · · · , K1 and
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Q
j
(z) ∈ C

N×N for j = 1, · · · , K2, such that

PK1
(z) · · ·P2(z)P1(z)C(z)Q

1
(z)Q

2
(z) · · ·Q

K2
(z) = Λ(z) , (2.28)

then these two polynomial matrices C(z) and Λ(z) are said to be equivalent. By choos-

ing suitable Pi(z) and Q
j
(z), the polynomial matrix C(z) can be transformed into an

M×N diagonal matrix Λ(z), which is called the Smith-McMillan form of C(z). Thus,

(2.28) can be rewritten as

U(z)C(z)V(z) = Λ(z) , (2.29)

where U(z) = ∏
K1

i=1 Pi(z), and V(z) = ∏
K2

j=1 Q
j
(z). As the product of any two unimod-

ular matrices is also unimodular, U(z) and V(z) are both unimodular matrices. Note

that the matrices U(z) and V(z) do not necessarily possess the paraunitary property,

i.e., U(z)Ũ(z) 6= IM and V(z)Ṽ(z) 6= IN , so this is quite distinct from the polynomial

EVD or SVD techniques proposed in this thesis.

In broadband MIMO systems, the Smith-McMillan decomposition can be used to

design the transmit and receive filter banks to produce parallel sub-channels, where

the interference between two different channels is removed. However, as the resulting

polynomial filter banks are not paraunitary (or lossless), the noise power is no longer

preserved when using Ũ(z) as the receive filter bank. Also, the noise is no longer addi-

tive white Gaussian, which may bring further challenges for equalisation and decoding

schemes [73]. The Smith-McMillan decomposition is also widely used to determine

the poles and zeros of the transfer matrix of a broadband MIMO system [74, 75].

2.4.3 FIR Lossless System Decomposition

In the signal processing literature, a lossless FIR system which satisfies causality and

stability can be described by a paraunitary matrix with finite degree. Vaidyanathan

[69] has shown that any finite degree paraunitary matrix can be factorised into a set

of paraunitary matrices consisting of delay and rotation matrices. At each step of this
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process, an elementary delay and a Givens rotation matrix [8] are factorised out of

the FIR lossless system HL(z) (of degree L), which results in a lossless (paraunitary)

system whose degree, L, has been reduced by unity [67].

For example, for a 2×2 lossless FIR system HL(z) = ∑L
l=0 H[l]z−l, where H[l] ∈

R2×2 and its determinant det{HL(z)}= cz−L, wherec 6= 0 , the first step of this decom-

position is to find an elementary delay matrix Λ(z) and a Givens rotation matrix QL

such that

HL(z) =






cos(θL) sin(θL)

− sin(θL) cos(θL)






︸ ︷︷ ︸

QL






1 0

0 z−1






︸ ︷︷ ︸

Λ(z)

HL−1(z) , (2.30)

where HL−1(z) denotes a lossless FIR system whose determinant degree has been re-

duced by unity. This results in the degree of the whole system being reduced. Fol-

lowing on this, a lossless degree-one block has been extracted to obtain HL−1(z). This

process is repeated until a degree-zero block is obtained. Thus, HL(z) can be factorised

as

HL(z) = QL Λ(z)QL−1 Λ(z) · · ·Q1 Λ(z)Q0






α 0

0 ±α




 , (2.31)

where α 6= 0 is included to account for the ambiguity in this decomposition [69, 67].

Vaidyanathan [69] has generalised this 2×2 paraunitary matrix to paraunitary ma-

trices of any dimension, provided that they are of fixed degree. The drawback of this

decomposition method is that it only performs a unit delay at each step, which is not

efficient when the paraunitary matrix to be factorised is of a high degree but most of

the coefficient matrices are zero-valued. For example, if the paraunitary matrix is of

degree 10, but contains only two non-zero coefficient matrices (H[0] and H[10]), this

decomposition would require ten steps, which is computationally inefficient. However,

for the PEVD algorithms discussed in Chapters 3 and 4, this would not be a problem.

This FIR lossless decomposition method was adopted by Regalia and Huang [76]

to obtain a two-channel lossless FIR filter for optimal data compaction. In effect, this
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leads to an optimal paraunitary matrix which can be used to compute the PEVD of a

2× 2 matrix. Although they re-formulated the problem using a state space approach

and developed an iteration method which avoids the problems of local minima asso-

ciated with gradient descent techniques, their approach still suffers from the inherent

inefficiency of the unit delay step in the FIR lossless decomposition method and is only

applicable to the 2×2 case.

2.4.4 Lambert’s Approach for Multichannel Blind Deconvolution

In [77, 78], Lambert proposed a solution to address the problem of convolutive BSS.

By generalising some standard linear algebra and control techniques from the complex

number field to the field of rational functions, he developed a method to compute the

EVD of FIR polynomial matrices. The eigenvalue routine adopted in his work is based

on Householder reflections [8]. Specifically, his method transforms the polynomial

mixing matrix to the frequency domain using the discrete Fourier transform (DFT)

and involves the approximate inversion of the FIR filters in the frequency domain. For

this reason, his method is very different from the PEVD algorithms discussed in this

thesis.

2.4.5 Approximate Polynomial Eigenvalue Decomposition

In [79], Tkacenko proposed a solution for computing the approximate polynomial

EVD of para-Hermitian matrices. His method uses Householder reflections to succes-

sively construct first order FIR paraunitary transformations as required for annihilating

the off-diagonal energy. As all off-diagonal energy must be brought onto the coefficient

matrix of order one before it can be transferred onto the diagonal, it does not seem to

converge as the number of iterations increases. This may lead to a poor approximation

in some cases.

Similar to Tkacenko’s approach, an approximate PEVD algorithm developed by

Redif et al. [80] exploits Householder-like paraunitary matrices and the same parame-

28



2.5 Chapter Summary

ter optimisation schemes; however, the essential difference is that Redif’s method has

the freedom to search the entire polynomial matrix for the maximum off-diagonal en-

ergy. In this respect, this is much like the second order sequential best rotation (SBR2)

algorithm [7], which will be reviewed in the next chapter.

2.5 Chapter Summary

This chapter has provided a brief overview of scalar matrix decomposition techniques,

including EVD and SVD, and has discussed some relevant applications of these tech-

niques in the context of narrowband sensor array processing, where the sensor signals

are instantaneously mixed. Following on that, the convolutive mixing model was in-

troduced, where the sensor signals are correlated with one another not only at the

same time instant but also over a range of time delays due to the multipath effect.

Subsequently, some existing techniques for addressing the broadband sensor array pro-

cessing were briefly discussed. In particular, the idea of the polynomial EVD was

introduced in terms of diagonalising the space-time covariance matrix. The next chap-

ter will primarily focus on further discussions of the existing algorithms for calculating

the PEVD.
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Chapter 3

Iterative Algorithms for Polynomial

Eigenvalue Decomposition

3.1 Introduction

The idea of polynomial eigenvalue decomposition (PEVD) was generalised from the

conventional EVD for para-Hermitian matrices, and it was initially developed as the

preliminary (second order) stage of a multi-stage convolutive blind source separation

(BSS) method [22]. However, the PEVD algorithms can also be used alone as a time-

domain approach for decorrelating convolutively mixed signals received from a set of

sensors [7, 27] and for identifying signal and noise subspaces, also known as broad-

band subspace decomposition [12, 17, 81].

This chapter aims to investigate the state-of-the-art algorithmic developments for

PEVD and provides a comprehensive discussion of existing PEVD algorithms from the

following two perspectives: (i) what algorithms are available for computing PEVD and

(ii) how they work differently for diagonalising para-Hermitian matrices. We begin

by answering basic questions concerning under what circumstances a PEVD exists

and whether the solution is unique. Some generalities of the PEVD algorithms are

then introduced. Following on that, the most established PEVD algorithm, known as
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second order sequential best rotation (SBR2) [7], is discussed. In particular, we take a

fresh look at the SBR2 algorithm in terms of its potential for optimising the subband

coding gain. As a result, the spectral majorisation property can be proved.

Apart from the SBR2 algorithm, other existing PEVD algorithms, including the

sequential matrix diagonalisation (SMD), maximum element SMD (ME-SMD), and

multiple shift ME-SMD (MSME-SMD) algorithms, are also briefly discussed. In addi-

tion, polynomial order truncation methods are introduced to shorten the unnecessarily

large order of the resulting polynomial matrices obtained from the PEVD algorithms.

3.2 Generality of Iterative PEVD Algorithms

This section first discusses the uniqueness and ambiguity of a para-Hermitian matrix

EVD problem. Then, some general definitions of existing PEVD algorithms are intro-

duced in order to facilitate a detailed discussion in the following sections.

3.2.1 PEVD Uniqueness and Ambiguity

To clarify the problem, we can rewrite the PEVD expression of the cross spectral den-

sity (CSD) matrix R(z) ∈ C
M×M in (2.26) as

R(z)≈ H̃(z)D(z)H(z) . (3.1)

Icart and Comon claim in [82] that such decomposition at least exists in approximation

with the paraunitary matrix H(z) of sufficiently high order. Assuming the PEVD in

(3.1) holds with equality, we want to find out whether a second decomposition

R(z) = ˜̄H(z)D̄(z)H̄(z) (3.2)

exists.
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To answer the above question, we consider R(z) as the CSD matrix of a set of con-

volutively mixed signals x[t] ∈ C
M×1 in a subband coding application. Vaidyanathan

[27] proved that the optimal subband coders (with maximum coding gain) can be re-

alised if and only if D̄(z) is strongly decorrelated (diagonalised) and spectrally ma-

jorised. In other words, the unique solution D̄(z), which directly corresponds to the

maximum coding gain, exists and therefore it follows that D̄(z) = D(z). Note that the

spectral majorisation property of PEVD can be seen as the extension of ordered EVD

for para-Hermitian matrices, and further details will be discussed in Section 3.4.

However, there is ambiguity with respect to the paraunitary matrix H̄(z) [83, 84].

Let H̄(z) = Γ(z)H(z), where Γ(z) ∈ C
M×M is a diagonal paraunitary matrix satisfying

Γ̃(z)Γ(z) = I; then (3.2) can be rewritten as

R(z) = H̃(z)Γ̃(z)D(z)Γ(z)H(z) . (3.3)

Thus, it follows that Γ̃(z)D(z)Γ(z) = D(z) provided D(z) is precisely diagonal. Here

Γ(z) can be seen as a lossless filter bank which does not affect the norm of D(z), and

its diagonal elements only comprise time-shift and phase adjustment terms, i.e.,

Γ(z) = diag
{

e jα1z−τ1, e jα2z−τ2, · · · , e jαM z−τM
}
. (3.4)

Therefore, even if the diagonal para-Hermitian matrix D(z) is unique, the parauni-

tary matrix H̄(z) is ambiguous. The benefit of the ambiguity has been exploited in the

row-shift corrected truncation method for the paraunitary matrix [83, 85] in order to

further reduce its polynomial order.

3.2.2 Anatomy of the PEVD Algorithms

All the existing PEVD algorithms, including the SBR2 [7, 28] and SMD [30, 35] al-

gorithm classes, operate by applying a sequence of elementary paraunitary matrices

to the input para-Hermitian matrix R(z) in order to produce an approximately diago-
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nal polynomial matrix D(z). This process comprises a number of iterations, and each

iteration aims to annihilate a certain number of the off-diagonal elements in R(z).

Despite the differences between the PEVD algorithms in terms of implementation,

all algorithms generally consist of three common steps at each iteration. For the i-th

iteration, the first step is to search for the remaining off-diagonal elements of the para-

Hermitian matrix R(i−1)(z) obtained from the previous iteration. Note that the search

strategy varies with different algorithms. Then, part of the off-diagonal elements in

R(i−1)(z) are brought onto the zero-lag coefficient matrix in the second step using an

elementary paraunitary shift matrix B(i)(z), which results in the transformed polyno-

mial matrix

R(i)′(z) = B(i)(z)R(i−1)(z)B̃
(i)
(z) , (3.5)

where B(i)(z) is algorithm dependent and is determined by the search strategy of the

specific PEVD algorithm, as detailed in the following sections. The final step is to

transfer the off-diagonal energy which was shifted in step two onto the diagonal of the

zero-lag matrix. This is implemented by means of a unitary rotation matrix Q(i), which

is applied to all lags in the para-Hermitian matrix R(i)′(z), such that

R(i)(z) = Q(i)R(i)′(z)Q(i)H . (3.6)

Note that the construction of the unitary rotation matrix Q(i) is also defined by the

specific PEVD algorithm. By combining the shift and rotation steps in (3.5) and (3.6),

we have

R(i)(z) = Q(i)B(i)(z)R(i−1)(z)B̃
(i)
(z)Q(i)H , (3.7)

and the resulting elementary paraunitary matrix G(i)(z) at the i-th iteration can be ex-

pressed as

G(i)(z) = Q(i)B(i)(z) . (3.8)
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Thus, the i-th iteration of any iterative PEVD algorithm is then accomplished by

R(i)(z) = G(i)(z)R(i−1)(z)G̃
(i)
(z) . (3.9)

Each of the PEVD algorithms stops when either the off-diagonal energy of R(i)(z)

falls below a predefined threshold or a specified number of iterations, I, have been

conducted. Once the algorithm is complete, it returns the approximate polynomial

eigenvalues in the diagonalised para-Hermitian matrix R(I)(z) and the approximate

polynomial eigenvectors in H(I)(z) such that

R(I)(z) = H(I)(z)R(z)H̃
(I)
(z) , (3.10)

where the paraunitary matrix H(I)(z) is simply the product of the unitary rotation ma-

trices Q(i) and the paraunitary shift matrices B(i)(z) for i = 1, · · · , I, i.e.,

H(I)(z) = G(I)(z)G(I−1)(z) · · ·G(1)(z) . (3.11)

Provided I is chosen to be reasonably large, the approximate diagonalised polynomial

matrix R(I)(z) is considered as the solution of PEVD, i.e., R(I)(z)≈D(z). Furthermore,

the paraunitary transformation is norm preserving, such that

∥
∥
∥H(I)(z)R(z)H̃

(I)
(z)
∥
∥
∥

2

F
= ‖R(z)‖2

F , (3.12)

where the notation ‖ · ‖2
F represents the squared Frobenius norm.

Note that the paraunitary shift operation B(i)(z) for all PEVD algorithms will in-

crease both the polynomial order of R(I)(z) and H(I)(z). This is problematic, as the

order growth of the para-Hermitian matrix R(I)(z) will lead to a significant increase

in the computational complexity of the PEVD algorithms as the number of iterations

increases. To tackle this problem, polynomial order truncation methods [7, 86] for
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para-Hermitian matrices have been developed to reduce the complexity of the iterative

PEVD algorithms. Although the growing order of the paraunitary matrix H(I)(z) does

not affect the algorithms’ complexity during iterations, the application cost of the final

generated paraunitary matrix can be high for some applications, including paraunitary

filter bank design for channel coding [17], broadband MIMO decoupling [31, 34], and

broadband angle of arrival estimation [12], etc. Therefore, different methods of trun-

cating the order of the paraunitary matrix have been proposed in [83, 87]. Details of

order truncation techniques will be discussed in Section 3.6.

3.3 Second Order Sequential Best Rotation Algorithm

3.3.1 Outline of the SBR2 Algorithm

The SBR2 algorithm [7] is the first iterative algorithm for computing PEVD. At the

i-th iteration, the algorithm starts by searching for the off-diagonal coefficient with

maximum magnitude in R(i−1)(z). According to the para-Hermitian property in (2.18),

the search space of the maximum off-diagonal element can be restricted either to the

upper triangular region across all the lags in R(i−1)(z) or to the positive (negative) lags

plus the zero-lag, excluding all the on-diagonal elements; the algorithm convergence

remains the same for both methods. Assuming that the maximum off-diagonal element

found at the i-th iteration is represented by r
(i)
jk [τ], its location parameters satisfy

{ j(i), k(i), τ(i)}= arg max
j,k,τ

∥
∥
∥R(i−1)[τ]

∥
∥
∥

∞
, ∀τ , (3.13)

where j(i), k(i), and τ(i) denote the corresponding row, column, and lag indices of

r
(i)
jk [τ]. The notation ‖ · ‖∞ represents L∞ norm. Note that for the results presented in

this thesis, the search space of the maximum off-diagonal element is restricted to the

upper triangular area of R(i−1)(z), i.e., j < k.
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According to the location information, the elementary delay matrix is determined

as

B(i)(z) = diag{1, · · · ,1
︸ ︷︷ ︸

k(i)−1

, z−τ(i), 1, · · · ,1
︸ ︷︷ ︸

M−k(i)

} , (3.14)

and its paraconjugate B̃
(i)
(z) is given by

B̃
(i)
(z) = diag{1, · · · ,1

︸ ︷︷ ︸

k(i)−1

, zτ(i), 1, · · · ,1
︸ ︷︷ ︸

M−k(i)

} . (3.15)

Note that B(i)(z) acts as a row shift operation which shifts the k(i)-th row of R(i−1)(z),

while B̃
(i)
(z) operates on the k(i)-th column of R(i−1)(z). Thus, the maximum off-

diagonal element r
(i)
jk [τ] and its conjugate r

(i)
k j [−τ] can be shifted onto the zero-lag

(τ = 0) coefficient matrix R(i)′[0] by means of the paraunitary transformation in (3.5).

Following on that, a complex Jacobi rotation matrix

Q(i) =

j(i) k(i)









































1 · · · 0 · · · 0 · · · 0

...
. . .

...
...

...

0 · · · c · · · se jφ (i) · · · 0 j(i)

...
...

. . .
...

...

0 · · · −se− jφ (i) · · · c · · · 0 k(i)

...
...

...
. . .

...

0 · · · 0 · · · 0 · · · 1

(3.16)

is used to transfer the maximum off-diagonal element onto the diagonal according

to (3.6). Here, c = cos(θ (i)), s = sin(θ (i)), and the rotation angles θ (i) and φ (i) are

determined by the maximum off-diagonal element identified using (3.13). The above

steps constitute an elementary similarity transformation of the SBR2 algorithm, as
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described in (3.9). For a more intuitive illustration, Figure 3.1 demonstrates a single

iteration of SBR2 when applied to a 5×5 para-Hermitian matrix of order 4.

τ = −4
τ = −3

τ = −2
τ = −1

τ = 0
τ = 1

τ = 2
τ = 3

τ = 4

Step 2

R(i)′(z) = B(i)(z)R(i−1)(z)B̃
(i)
(z)

τ = 0
τ = 1

τ = 2

τ = −1
τ = −2

Step 1

{j(i), k(i), τ (i)} = arg max
j,k,τ

‖R(i−1)[τ ]‖∞

τ = 0

Step 3

R(i)(z) = Q(i)R(i)′(z)Q(i)H

Figure 3.1 A 3D illustration showing a single iteration of the SBR2 algorithm when

applied to diagonalising a 5×5 para-Hermitian matrix example, where Step 1 identi-

fies the location of r
(i)
jk [τ] (marked in green), Step 2 describes the corresponding row

and column shift operations, and Step 3 transfers the pairwise maximum elements onto

the diagonal (only the zero-lag coefficient matrix is shown here for visibility purposes)

[31].

The algorithm continues by repeating the iterative process mentioned above until

the magnitude of the maximum off-diagonal element |r(i)jk [τ]| is found to be smaller

than a given threshold ε , which can be set to a very small value to achieve sufficient

accuracy. Assuming that the algorithm has converged by the I-th iteration, the diago-

nalised para-Hermitian matrix D ∈ C
M×M takes the form

D(z) = diag{d11(z), d22(z), · · · , dMM(z)} , (3.17)

and the resulting paraunitary matrix H ∈ CM×M can be calculated using (3.11). For

further details of the SBR2 algorithm, see [7].

3.3.2 Applications of the SBR2 Algorithm

Strong Decorrelation

In Section 2.3.2, we discussed the convolutive mixing model in the context of broad-

band sensor array processing. As a result of the convolutive mixing, the sensor signals
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x[t]∈CM×1 for t = 0, · · · , T −1, as shown in (2.21), are generally correlated with one

another, not just at the same time instant but also over a range of time delays. Specifi-

cally, the correlation between each pair of sensors at the same time instant is referred

to as the spatial correlation, while the correlation over a chosen range of time delays

represents the temporal correlation. The conventional EVD or SVD can only be used

remove the spatial correlation in the case of a narrowband sensor array. To remove

both spatial and temporal correlations between different sensor signals, strong decor-

relation is required. The idea of strong decorrelation (or total decorrelation) [27] is to

find a matrix of suitably chosen FIR filters H(z) which can be applied to minimise the

cross-correlations between different sensors. Figure 3.2 is a schematic diagram which

illustrates the idea of decorrelating a set of convolutively mixed signals x[t] by means

of a paraunitary filter bank H(z). Assuming that the sensor outputs x[t] have zero mean,

s(z)

n(z)

x(z)
y(z)C(z) H(z)

Figure 3.2 Strong decorrelation for a set of convolutively mixed sensor signals.

the space-time covariance matrix can be defined as Rxx[τ] = E{x[t]xH[t−τ]} for τ ∈Z,

and its z-transform, Rxx(z) •—◦Rxx[τ], yields the CSD matrix

Rxx(z) =
∞

∑
τ=−∞

Rxx[τ]z
−τ . (3.18)

Since the sensors signals x[t] are correlated, Rxx[τ] will not be diagonal ∀τ and hence

Rxx(z) will not be diagonal. In practice, the CSD matrix can be estimated as [7]

R̂xx(z),
W

∑
τ=−W

R̂xx[τ]z
−τ , (3.19)
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where

R̂xx[τ],
1

T

T−1

∑
t=0

x[t]xH[t− τ] (3.20)

and W represents the correlation window parameter, which is often measured experi-

mentally. The following assumptions are made when calculating R̂xx[τ]:

1. R̂xx[τ] = 0 for |τ|>W ,

2. T ≫W and

3. x[t] = 0 for t /∈ [0, 1, · · · , T −1] .

Since the individual elements in R̂xx[τ] are the auto and cross-correlation sequences of

the sensor signals xk[t] and xl[t] for k, l = 1, · · · , M , it follows that

rxkxl
[τ] = r∗xlxk

[−τ], |τ| ≤W and τ ∈ Z . (3.21)

Thus, the polynomial matrix R̂xx(z) is para-Hermitian by construction. Therefore, the

SBR2 algorithm [7] can be used to generate the required paraunitary matrix H(z) such

that

H(z)R̂xx(z)H̃(z) = D̂(z) , (3.22)

where D̂(z) is approximately diagonal. The strong decorrelation of the sensor signals

x(z) is then implemented by the transformation

y(z) = H(z)x(z) , (3.23)

where y(z) denotes the transformed signals. To a good approximation, the CSD matrix

of y(z) can be estimated by

R̂yy(z) = H(z)R̂xx(z)H̃(z) = D̂(z) , (3.24)
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which is an approximately diagonal matrix. This means that the correlations between

different sensor signals are eliminated. In this thesis, an improved version of SBR2,

called MS-SBR2, is proposed and its effectiveness in strong decorrelation of a set of

sensor signals is demonstrated by a numerical example in Section 4.7.

Spectral Majorisation

The decorrelated signals y[t] ∈ CM×1 produced by the SBR2 algorithm also satisfy

the spectral majorisation property [27], which states that the power spectral densities

(PSDs) of the on-diagonal elements dmm(e
jΩ) = dmm(z)|z=e jΩ for m = 1, · · · , M in the

diagonalised CSD matrix D(z) satisfy

d11(e
jΩ)≥ d22(e

jΩ)≥ ·· · ≥ dmm(e
jΩ), ∀Ω ∈ [−π , π) . (3.25)

This means that the expected powers in ym[t] for m= 1, · · · , M are arranged in descend-

ing order at every frequency. This is analogous to an ordered EVD in the narrowband

case. It is important to note that the combined power of the received signals is invariant

under a paraunitary transformation [69], i.e.,

trace
{

Ryy(e
jΩ)
}

= trace
{

H(e jΩ)Rxx(e
jΩ)H̃(e jΩ)

}

= trace
{

Rxx(e
jΩ)
}

, (3.26)

and using a paraunitary transformation can only redistribute the spectral power be-

tween channels.

The spectral majorisation property provides a very useful tool in applications that

are based on the broadband subspace decomposition, such as broadband beamforming

and BSS. As spectrally majorised signals tend to have most of the related signal energy

focused in as few channels as possible [7, 88], the signal and noise subspaces can

be easily identified. This feature will be demonstrated by a numerical example in

Section 4.7, where the proposed multiple shift SBR2 algorithm is used to decorrelate

a set of convolutively mixed signals.
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3.4 A Novel Insight into the SBR2 Algorithm

In this section, we take a fresh look at the SBR2 algorithm in terms of its potential for

optimising the subband coding gain. We demonstrate how every iteration of the SBR2

algorithm must lead to an increase in the subband coding gain until it comes arbitrarily

close to its maximum possible value. This leads to the much desired proof that the

SBR2 algorithm does indeed converge towards a spectrally majorised solution. A new

quantity γ associated with the coding gain optimisation is introduced, and its mono-

tonic behaviour brings new insight to the convergence of the SBR2 algorithm. Based

on this novel insight, a modified SBR2 algorithm is explicitly designed to maximise

the coding gain.

3.4.1 Coding Gain

The subband coder is a generalisation of the transform coder and has been used in the

area of data compression [27]. It aims to maximise the coding gain, i.e., to minimise

the mean square reconstruction error due to subband quantisation. The necessary and

sufficient conditions for maximising the coding gain are [27, 89]:

1. strong decorrelation – this means that the CSD matrix R(z) has been diago-

nalised, or equivalently that the subband signals y[t] = ∑T
τ=0 H[τ]x[t − τ] are

totally uncorrelated, i.e., E{yk[t]y
∗
l [t− τ]}= 0, k 6= l, ∀ t andτ .

2. spectral majorisation – the PSDs of the on-diagonal elements in D(z) satisfy the

spectral majorisation property, as described in (3.25).

Given a CSD matrix R(z) = ∑τ R[τ]z−τ of the sensor signals x[t] ∈ CM×1, the

coding gain, whose maximisation requires diagonalisation and spectral majorisation, is

measured as the ratio of the arithmetic and geometric means of the channel variances.

At the i-th iteration, the variance of the m-th channel is given by r
(i)
mm[0], where m =
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1, · · · , M, so the coding gain is defined as [35]

G(i) =

1
M

M

∑
m=1

r
(i)
mm[0]

(
M

∏
m=1

r
(i)
mm[0]

) 1
M

. (3.27)

Note that the trace

trace
{

R(i)[0]
}

=
M

∑
m=1

r
(i)
mm[0] = trace{R[0]}= trace{D[0]} (3.28)

is invariant under paraunitary transformations, so maximising the coding gain is equiv-

alent to minimising the product of variances in the denominator of (3.27).

3.4.2 Proof of Spectral Majorisation

The SBR2 algorithm has been adopted successfully in the design of the paraunitary (or-

thonormal) filter banks for subband coding [17, 21]. In effect, it has demonstrated the

capability of a principal component filter bank (PCFB) by achieving the optimal cod-

ing gain. However, there is no proof in the existing literature that the SBR2 algorithm

will always produce the necessary spectral majorisation. In the rest of this section a

proof of this important property will be derived.

Theorem (Spectral Majorisation of the SBR2 Algorithm): If strong decorrelation is

achieved using the SBR2 algorithm, the resulting PSDs of the on-diagonal elements in

the diagonalised para-Hermitian matrix must also be spectrally majorised.

Proof: To prove this theorem, let us define two polynomial matrices R′(z) and

R′′(z), which respectively represent the resulting polynomial matrices after the ele-

mentary delay operation and the Jacobi rotation in SBR2, and introduce the parameter

γ ,
M

∏
m=1

rmm[0] , (3.29)
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where rmm[0] for m = 1, · · · , M represent the diagonal element of R[0]. Following

the elementary delay step, the SBR2 algorithm employs a Jacobi rotation as shown in

(3.16) to transfer the energy of the off-diagonal element r′jk[0] = r jk[τ] and its conjugate

r′k j[0] = rk j[−τ] onto the diagonal by choosing the rotation parameters such that






c se jφ

− se− jφ c











r′j j[0] r′jk[0]

r′k j[0] r′kk[0]











c −se jφ

se− jφ c




=






r′′j j[0] 0

0 r′′kk[0]




 , (3.30)

where c and s denote the cosθ and sinθ , respectively. As a Jacobi rotation only affects

rows j and k, columns j and k, only the 2×2 sub-matrices of the elementary rotation

step, as described in (3.6), are presented. Note that the rest of the diagonal elements in

R′[0] will not change under the Jacobi rotation. Since the transformations are unitary,

it follows that

det












r′j j[0] r′jk[0]

r′k j[0] r′kk[0]












= det












r′′j j[0] 0

0 r′′kk[0]












. (3.31)

Thus,

r′′j j[0]r
′′
kk[0] = r′j j[0]r

′
kk[0]−|r′jk[0]|2 = r j j[0]rkk[0]−|r jk[τ]|2 , (3.32)

where we have taken account the fact that r′j j[0] = r j j[0], r′kk[0] = rkk[0], and r′jk[0] =

r jk[τ]. Since r jk[τ] 6= 0, it follows that

r′′j j[0]r
′′
kk[0]< r j j[0]rkk[0] . (3.33)

Also, since only the j-th and k-th diagonal elements are altered during the iteration, we

have

γ ′′ ,
M

∏
m=1

r′′mm[0]< γ . (3.34)

Clearly the denominator in (3.27), which is directly related to γ(i), is monotonically re-

duced at each iteration in SBR2, i.e., γ(i) < γ(i−1), until no further reduction is possible
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(|r jk[τ]|< ε). It follows that the coding gain G(i) increases monotonically to attain its

maximum value G(I).

It was clearly demonstrated by Vaidyanathan [27] that the optimum coding gain

(which requires a PCFB) can be achieved if and only if strong decorrelation and spec-

tral majorisation have been obtained. Thus it follows that the SBR2 algorithm, which

was explicitly designed to achieve strong decorrelation, must not only achieve that

objective, but also produce spectral majorisation. �

3.4.3 Modified SBR2 Algorithm

Instead of finding the maximum element |r(i)jk [τ]| at the i-th iteration, it is now possible

to consider the coding gain G(i) as a convergence indicator for the SBR2 algorithm.

This gives us a useful new insight whereby the SBR2 algorithm converges uniformly

due to the monotonic behaviour of γ(i), in contrast with the original convergence factor

|r(i)jk [τ]|whose value does not reduce monotonically. An alternative approach, therefore,

is to monitor the gradient of the coding gain, which is defined as ρ(i) = G(i)−G(i−1).

As the value of ρ(i) is not guaranteed to reduce monotonically, the average value ρ̂

over a suitably chosen range W ∈ Z can be used to assess the convergence behaviour,

i.e.,

ρ̂ =
1

W

i

∑
n=i−W+1

ρ(n) , i≥W . (3.35)

Then the iterative process stops when the value of ρ̂ is sufficiently small. The modified

SBR2 algorithm is summarised in Algorithm 1.
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Algorithm 1 Modified SBR2 Algorithm for Optimum Coding Gain

Input: para-Hermitian matrix R(z) ∈ C
M×M, maximum number of iterations I,

convergence parameter ε ′, and trim parameter µ
Output: diagonalised para-Hermitian matrix D(z) and paraunitary matrix H(z)

1: Initialisation: iter ← 0, H(z)← IM , ρ̂ ← 1+ ε ′ and assign a

value to W

2: while iter < I and ρ̂ > ε ′ do

3: locate the maximum off-diagonal element r jk[τ ];
4: g← |r jk[τ ]|;
5: if iter = 0 and g = 0 then

6: break;

7: else

8: % Time-shift the maximum off-diagonal element

9: R′(z) ← B(k,τ)(z)R(z)B̃
(k,τ)

(z); H′(z) ← B(k,τ)(z)H(z);
10: % Perform the Jacobi rotation step

11: compute rotation parameters θ and φ ;

12: R(z) ← Q( j,k)(θ ,φ)R′(z)Q( j,k)H(θ ,φ); H(z) ← Q( j,k)(θ ,φ)H′(z);
13: iter← iter+1;

14: % Trim polynomial matrix order

15: R(z) ← TrimPH(R(z),µ); H(z) ← TrimPU(H(z),µ)
using [86, 87]

16: compute G(iter) and ρ (iter) according to (3.27);

17: if iter ≥W then

18: ρ̂← 1
W ∑iter

n=iter−W+1 ρ (n);

19: end if

20: end if

21: end while

Numerical Example

To demonstrate the modified SBR2 algorithm in terms of the coding gain optimisation,

one of the test examples used in the original SBR2 paper [7] is chosen, where a set of

convolutively mixed signals x[t] ∈ R3×1 is generated from a 2×3 convolutive MIMO

channel model with a 3× 2 polynomial mixing matrix A(z) whose entries comprise

5-th order finite impulse response (FIR) filters. Gaussian random noise was also added

to each sensor output, resulting in a signal-to-noise ratio (SNR) of 5.3 dB.

Figure 3.3(a) plots the coefficients of the CSD matrix R(z) of the mixed signals

x[t]. The modified SBR2 algorithm is then applied to this matrix, and it stops when the
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average gradient ρ̂ reaches the predefined lower bound value, i.e., ρ̂ ≤ ε ′ = 10−5. Here

the parameter W is set equal to 10. The algorithm converged in 110 iterations to a point

where the average gradient ρ̂ = 0.96×10−5. The diagonalised CSD matrix is plotted

in Figure 3.3(b), where its polynomial order has been truncated to the same length as

the input CSD matrix. As the product of the subband variances γ(i) is monotonically

reduced as the iterations continue, the coding gain G(i) is monotonically increasing,

as shown in Figure 3.4(a). As opposed to the original SBR2 algorithm, Figure 3.4(b)

shows the behaviour of the convergence factor g = |r(i)jk [τ]|, for which it converged at

g = 0.0224. It is obvious that the conventional convergence parameter g used in the

SBR2 algorithm does not possess monotonic behaviour in comparison with the coding

gain in the modified SBR2 algorithm. The monotonic behaviour of the coding gain

provides a more reliable test of convergence for the algorithm.
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Figure 3.3 The stem plot of (a) the CSD matrix and (b) the diagonalised CSD matrix

obtained from the modified SBR2.

3.5 Sequential Matrix Diagonalisation Algorithms

Recently, the sequential matrix diagonalisation (SMD) algorithm [35] and its deriva-

tive versions, including maximum element SMD (ME-SMD) [35] and multiple shift

maximum element SMD (MSME-SMD) [30, 90, 91] algorithms, have been developed

to calculate the PEVD of para-Hermitian matrices. These variants are different only in
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Figure 3.4 Convergence of the SBR2 algorithm when applied to the example CSD

matrix in Figure 3.3, showing (a) the behaviour of the coding gain G(i) and (b) the

behaviour of the magnitude of the maximum off-diagonal element found at the i-th

iteration.

the search strategies that are used to transfer off-diagonal energy onto the zero-lag co-

efficient matrix. Unlike the SBR2 algorithm, the SMD family requires an initialisation

step to diagonalise the zero-lag coefficient matrix R[0] ∈ CM×M before all iterations.

This is implemented by computing a full EVD to R[0], i.e.,

S(0)[0] = Q(0)R[0]Q(0)H , (3.36)

and then applying the modal matrix Q(0), which is a unitary matrix, to all lags of the

para-Hermitian matrix R(z), such that

S(0)(z) = Q(0)R(z)Q(0)H . (3.37)

Following on that, each iteration of the SMD algorithms can be summarised into three

common steps operating on S(i−1)(z) for i = 1, · · · , I :

• step 1: searching the maximum column norm (or the maximum off-diagonal

element) in S(i−1)(z);
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3.5 Sequential Matrix Diagonalisation Algorithms

• step 2: shifting column(s) and row(s) onto the zero-lag coefficient matrix using

a paraunitary shift matrix B(i)(z), such that

S(i)′(z) = B(i)(z)S(i−1)(z)B̃
(i)
(z) , (3.38)

where S(i)′(z) denotes the intermediate matrix after the paraunitary shift opera-

tion; and

• step 3: calculating a full EVD of the zero-lag coefficient matrix S(i)′[0] and ap-

plying the corresponding modal matrix to all lags of S(i)′(z),

S(i)(z) = Q(i)S(i)′(z)Q(i)H(z) . (3.39)

The search step described above is algorithm dependent and will be discussed sepa-

rately for each version of the SMD algorithm in the following sub-sections. Note that

the unitary matrix Q(i) is different from the elementary rotation matrix in the SBR2 al-

gorithm, as it transfers all of the off-diagonal energy onto the diagonal at the zero-lag

plane instead of just the energy of a single element onto the diagonal like SBR2. For

this reason, the SMD family is much more complex than the SBR2 algorithm at each

iteration.

3.5.1 The SMD Algorithm

For the i-th iteration, the original SMD algorithm [35] starts by searching the column

that contains the maximum off-diagonal energy, which is identified by the parameter

set

{k(i), τ(i) }= arg max
k,τ

∥
∥
∥ŝ

(i−1)
k [τ]

∥
∥
∥

2
, ∀τ , (3.40)
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where the notation ‖ · ‖2 denotes the L2 norm, and the vector ŝ
(i−1)
k [τ] contains all

elements in the k(i−1)-th column of S(i−1)[τ] except for the diagonal element, i.e.,

∥
∥
∥ŝ

(i−1)
k [τ]

∥
∥
∥

2
=

√
√
√
√

M

∑
j=1, j 6=k

∣
∣
∣s
(i−1)
jk [τ]

∣
∣
∣

2

. (3.41)

Based on the location information {k(i), τ(i)}, the paraunitary shift matrix B(i)(z)

can be expressed as

B(i)(z) = diag{1, · · · ,1
︸ ︷︷ ︸

k(i)−1

, z−τ(i), 1, · · · ,1
︸ ︷︷ ︸

M−k(i)

} , (3.42)

and then the SMD algorithm shifts the corresponding row and column pair onto the

zero-lag plane by means of the paraunitary shift operation, as described in (3.38).

In the final step, rather than just using a single Jacobi rotation as in the SBR2

algorithm, the SMD algorithm computes a full EVD for the zero-lag matrix S(i)′[0]

using the unitary matrix Q(i). Like the initialisation step, the unitary matrix Q(i) has to

be applied to the entire para-Hermitian matrix S(i)′(z) according to (3.39).

Similar to the SBR2 algorithm, the SMD algorithm stops when either a set number

of iterations, I, have been conducted or the found column norm is less than a predefined

threshold. Once the algorithm stops, it returns the approximate polynomial eigenval-

ues in the diagonalised para-Hermitian matrix S(I)(z) and the approximate polynomial

eigenvectors in the paraunitary matrix H(I)(z). The generated paraunitary matrix is

simply the product of the unitary energy transfer matrices Q(i) and paraunitary delay

matrices B(i)(z) from each of the I iterations,

H(I)(z) = G(I)(z) · · ·G(2)(z)G(1)(z) , (3.43)
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where the elementary paraunitary matrix G(i)(z) can be expressed as

G(i)(z) = Q(i)B(i)(z) , i = 1, · · · , I . (3.44)

3.5.2 Maximum Element SMD Algorithm

The ME-SMD algorithm [35] is introduced for the purpose of reducing the search cost

in the SMD algorithm as described in Section 3.5.1. The only difference between them

is that the ME-SMD algorithm replaces the L2 norm in (3.40) with the L∞, i.e.,

{k(i), τ(i) }= arg max
k,τ

∥
∥
∥ŝ

(i−1)
k [τ]

∥
∥
∥

∞
, ∀τ , (3.45)

which is essentially the same as the search process in the SBR2 algorithm.

3.5.3 Multiple Shift Maximum Element SMD Algorithm

Instead of finding a single maximum off-diagonal element at each iteration, as in ME-

SMD, the MSME-SMD algorithm [30] takes a more aggressive step by introducing

a “multiple-shift” strategy which aims to search more off-diagonal elements and shift

them to the zero-lag plane. This makes the MSME-SMD algorithm converge faster

than both SBR2 and SMD in terms of reducing the off-diagonal energy.

For any M×M para-Hermitian matrix, MSME-SMD can find and shift a total of

M− 1 maximum elements onto the zero-lag plane at every iteration by using a set

of reduced search spaces. The location of each maximum element is constrained by

the same condition as shown in (3.45), which is the same as that used in both SBR2

and ME-SMD. However, the maximum element search at the i-th iteration is carried

out M− 1 times in total in order to maximise the off-diagonal energy brought to the

zero-lag plane. After the M− 1 maximum elements have been found, they are then
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transferred onto the zero-lag plane using the paraunitary shift matrix

B̂
(i)
(z) = B(1,i)(z)B(2,i)(z) · · ·B(M−1,i)(z) , (3.46)

whereby each elementary shift matrix B(p,i)(z) for p = 1, · · · , M−1 takes the form of

B(p,i)(z) = diag{1, · · · ,1
︸ ︷︷ ︸

k(p,i)−1

, z−τ(p,i)
, 1, · · · ,1
︸ ︷︷ ︸

M−k(p,i)

} , (3.47)

and it is determined by the specific location parameter set for that shift. Note that

k(p,i) ∈ {1, · · · , M} denotes the column index of the maximum off-diagonal element

found at the p-th shift step of the i-th iteration, and k(p,i), ∀ p are different from each

other according to the principle of the reduced search space method in MSME-SMD

(see [30] for details). The diagonalisation step in MSME-SMD involves applying a

full EVD to the zero-lag plane and subsequently the modal matrix to all lags in S(i)′(z)

according to (3.39), which is the same as for other members in the SMD family.

Although the MSME-SMD has the advantage over other PEVD algorithms in terms

of the convergence speed, it comes at the expense of higher computational complexity,

especially when the input para-Hermitian matrix is large. A detailed comparison of the

PEVD algorithms will be presented by means of numerical examples in Chapter 5.

3.6 Polynomial Order Shortening Methods

3.6.1 Limitations of the PEVD Algorithms

To recap from (3.10), at the end of the i-th iteration of the PEVD algorithms [7, 28, 30,

29, 35], the decomposition takes the form of

R(i)(z) = H(i)(z)R(z)H̃
(i)
(z) , (3.48)
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where R(z) ∈ C
M×M denotes the input para-Hermitian matrix to the algorithm, R(i)(z)

is the transformed para-Hermitian matrix after i iterations, and H(i)(z) ∈ C
M×M is the

resulting paraunitary transformation matrix. Note that R(i)(z) will be approximately

diagonal, provided a sufficient number of iterations have been performed. The poly-

nomial orders of R(i)(z) and H(i)(z) can increase due to the application of the parauni-

tary shift in (3.5). For example, in the SBR2 algorithm, each pairwise shift matrices

B(i)(z) and B̃
(i)
(z) create new coefficient matrices at both ends of the matrix R(i−1)(z)

to accommodate the shifted coefficients, which results in an increased order of R(i)′(z)

compared to R(i−1)(z) from the previous iteration. These new coefficient matrices con-

sist entirely of zeros except for those coefficients positioned in either the k-th row or

k-th column of the matrix. A similar problem is encountered with the paraunitary ma-

trix, but its order only grows from either end of the coefficient matrices of H(i−1)(z)

depending on how the paraunitary shift operates. The continuous growth of the poly-

nomial order in the para-Hermitian matrix is problematic, as it can lead to a significant

increase in the computational complexity of the PEVD algorithm as iterations go on.

In other words, this can result in a computationally slow algorithm. Once the algo-

rithm converges, the order of the diagonal matrix D(z) becomes unnecessarily large,

and most of the elements in its outer coefficient matrices are zeros, with the remain-

der accounting for only a small proportion of the Frobenius norm of the input matrix

R(z). A worked example will be presented in Chapter 4 to highlight this limitation.

In addition, the final paraunitary matrix with large polynomial order can cause costly

implementation for some applications, such as paraunitary filter bank based subband

coding [21], precoding and equalisation design for broadband MIMO systems [34],

convolutive blind source separation [23], spectral factorisation [20], etc.

In general, many of the outer coefficient matrices of R(i)(z) can be truncated af-

ter each iteration without seriously compromising the accuracy of the decomposition.

By doing this, not only can the PEVD algorithm provide fast convergence but also

provides a large reduction of the computational load for the steps of searching for the
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dominant off-diagonal element (or the dominant column norm in the SMD algorithm)

and the paraunitary rotation. Similarly, truncating the paraunitary matrix can also be

conducted after each iteration. We will now review some of the existing polynomial

order shortening methods.

3.6.2 Truncation Methods for Para-Hermitian Matrices

This section introduces two existing order shortening methods which can be used to

truncate the para-Hermitian matrices obtained from the PEVD algorithms to ensure

that the polynomial orders do not grow unnecessarily large. Through the order shorten-

ing process, both the computational load and the execution time of the algorithm can

be significantly reduced.

Energy Based Truncation

For a para-Hermitian matrix R(z) •—◦R[τ] for τ =−T/2, · · · , T/2, the energy based

truncation method [7, 86] is to find the smallest value for the lag parameter Tlim > 0

such that

2∑
T/2
τ=Tlim

‖R[τ]‖2
F

‖R(z)‖2
F

≤ µ , (3.49)

where µ defines the proportion of energy (squared Frobenius norm) of R(z) which is

allowed to be removed due to the truncation. Once a value for Tlim has been found, the

truncated para-Hermitian matrix Rtr(z) can be calculated as

Rtr(z) =
Tlim−1

∑
τ=−Tlim+1

R[τ]z−τ . (3.50)

Note that due to the para-Hermitian property of R(z), the same number of coefficient

matrices must be truncated from both ends of the matrix to ensure that the matrix

remains para-Hermitian.
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Lag Bound Fixed Truncation

The energy based truncation method would not be a suitable choice for some cases

where a fixed bound on the order of the diagonalised para-Hermitian matrix is needed,

as the choice of the truncation parameter µ in (3.49) simply cannot guarantee a specific

order in advance. To truncate a para-Hermitian matrix R(z) using the lag bound fixed

method [67], a suitable lag parameter L > 0 has to be chosen to ensure that any outer

coefficient matrices R[τ] for |τ| > L/2 are removed from R(z), which results in the

truncated para-Hermitian matrix given by

Rtr(z) =
L/2

∑
τ=−L/2

R[τ]z−τ . (3.51)

It is generally not appropriate to apply this truncation method as part of an iterative

routine within the PEVD algorithm, as it is difficult to determine the choice of L in

advance. Therefore, this truncation technique is normally used just once after con-

vergence to obtain the prescribed order of the diagonal matrix. Again, it should be

noticed that the parameter L must be an even number to ensure that the truncated ma-

trix remains para-Hermitian.

For the simulation results presented in Chapter 4 and Chapter 5, the energy based

truncation method will be used. As for the results used to illustrate the potential appli-

cation of spectral factorisation in Chapter 6, where the PEVD algorithm can be used

to convert the multichannel spectral factorisation problem into a set of independent

single-channel problems, the lag bound fixed truncation is adopted.

3.6.3 Truncation Methods for Paraunitary Matrices

To reduce the cost of applying the final paraunitary matrix H(z) to polynomial subspace-

based applications as mentioned above, we briefly review two existing approaches

which will be used in this thesis.
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Lag Based Truncation

The first approach for truncating paraunitary matrices [87] follows the idea of the en-

ergy based truncation method for para-Hermitian matrices proposed in [7, 86]. How-

ever, instead of symmetrically omitting the outer coefficient matrices as for R(z), the

lag based truncation method [87] sequentially removes the leading and trailing coeffi-

cient matrices from H(z). In other words, the trimming removes coefficient matrices

from the front end or back end of H(z), whichever has the smallest Frobenius norm,

until the proportion of removed energy reaches a predefined proportion of the total en-

ergy in H(z). For a paraunitary matrix H(z) ∈ CM×M×L with coefficient matrices H[τ]

for τ = 0, · · · , L−1, the proportion of removed energy is expressed as

κlag = 1− ∑τ ‖ flag(H[τ])‖2
F

‖H(z)‖2
F

= 1− 1

M
∑
τ

‖ flag(H[τ])‖2
F , (3.52)

where the trim function flag(H[τ]) means removing the leading L1 and trailing L2 co-

efficient matrices from H(z), and it is given by

flag(H[τ]) =







H[τ +L1] , 0≤ τ < L−L1−L2

0 , otherwise

. (3.53)

Thus, the truncated paraunitary matrix is expressed as

Htr(z) =
L−L2−1

∑
τ=L1

H[τ]z−τ . (3.54)

Here, the lag based truncation was designed to maximise the number of lags removed,

L1 + L2, whilst keeping the proportion of removed energy below an upper bound µ ,

hence it leads to the constrained optimisation problem:

maximise (L1 +L2)

subject to κlag ≤ µ .
(3.55)
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Row-Shift Corrected Truncation

The row-shift corrected truncation method [83] is capable of reducing the order of pa-

raunitary matrices by exploiting the paraunitary ambiguity as described in (3.3). This

ambiguity permits H(z) to be replaced by H̄(z), where H̄(z) = Γ(z)H(z) and for the

truncation purpose Γ(z) only contains time-shift terms, i.e.,

Γ(z) = diag
{

z−τ1, z−τ2, · · · , z−τM
}
. (3.56)

Here the diagonal elements z−τm for m = 1, · · · , M can shift the m-th row of H(z) by

τm samples, and these row shifts can be used to align the coefficients in each row so

that the overall paraunitary matrix can be truncated further.

Let hm(z), m = 1, · · · , M represent the constituent row vectors of H(z); thus, its

paraconjugate is given by

H̃(z) =
[

h̃1(z), h̃2(z), · · · , h̃M(z)
]
, (3.57)

where hi(z)h̃ j(z)= δ (i− j) due to the paraunitary property. For the row-shift corrected

truncation method, each row vector hm(z) is now truncated individually based on

fshift(hm[τ]) =







hm[τ +L1,m] , 0≤ τ < Tm

0 , otherwise

, (3.58)

where Tm = L−L1,m−L2,m denotes the length of the truncated vector. L1,m and L2,m

are the length of the leading and trailing coefficient vectors being removed from hm(z)

of lag length L. Since hm(z), ∀m = 1, · · · , M has unit energy, it appears sensible to

truncate the same proportion of energy from each vector. Therefore, the proportion of

energy removed from hm(z) is given by

κshift,m = 1−∑
τ

‖ fshift(hm[τ])‖2
F . (3.59)
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Hence, the optimum truncation based on row-shift correction is given by the following

constrained problem:

maximise min
m

(L1,m +L2,m)

subject to κshift,m ≤ µ ′

M
∀m = 1, · · · , M ,

(3.60)

where µ ′ defines the upper bound of the proportion of energy removed from H(z).

Once each row vector has been truncated, the row shifts τm = L1,m, m = 1, · · · , M can

be identified and applied to align the truncation via Γ(z) in (3.56).

The order of the truncated paraunitary matrix Htr(z) will be equal to the order of the

truncated row vector whose length is the maximum, i.e., maxm Tm, which is determined

by minm(L1,m+L2,m) in (3.60). In effect, the process of truncating each individual row

vector in H(z) is equivalent to the lag based truncation method [87]. These two trunca-

tion method for paraunitary matrices will be applied to different PEVD algorithms to

examine their performances, and results will be presented in Chapter 5.

3.7 Chapter Summary

In this chapter, we have briefly reviewed the state-of-the-art algorithms for calculat-

ing the PEVD of para-Hermitian matrices. These algorithms are categorised into two

families, i.e., the SBR2 family and the SMD family. In particular, a first proof of the

spectral majorisation property in SBR2 has been presented based on the idea of max-

imising the coding gain. The monotonically increasing behaviour of the coding gain

has been exploited to obtain a more reliable test of convergence for the SBR2 algo-

rithm. Furthermore, different polynomial order truncation methods are introduced to

address the order growth problem in the polynomial matrices produced by the PEVD

algorithms.
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Chapter 4

Multiple Shift SBR2 Algorithm for

Polynomial Eigenvalue Decomposition

4.1 Introduction

As mentioned in Chapter 3, the sequential matrix diagonalisation (SMD) family, in-

cluding the original SMD [35], maximum element SMD (ME-SMD) [35], and multiple

shift ME-SMD (MSME-SMD) [30] algorithms, are designed to achieve better diago-

nalisation than the SBR2 algorithm at the expense of higher computational complexity.

Therefore, the aim of this chapter is to see whether some of the ideas in MSME-SMD

can be harnessed to create a version of SBR2 that converges more rapidly while still

enjoying the low complexity benefit of SBR2.

In this chapter, we propose an improved version of the SBR2 algorithm for calcu-

lating the eigenvalue decomposition (EVD) of para-Hermitian matrices. The improved

algorithm is entitled multiple shift SBR2 (MS-SBR2) and is developed based on the

original SBR2 algorithm. It is capable of performing the diagonalisation faster than

the conventional SBR2 algorithm by means of transferring more off-diagonal energy

onto the diagonal at each iteration; this is extremely important in some real-time ap-

plications as mentioned previously. Furthermore, the MS-SBR2 algorithm seems to
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be more accurate in term of reconstructing the para-Hermitian matrix from the inverse

decomposition R̂(z) = H̃(z)D(z)H(z) in our studied numerical examples. The conver-

gence of the MS-SBR2 algorithm has been proven akin to that of the SBR2 algorithm.

We have also investigated two different time-shift strategies which arise in the MS-

SBR2 algorithm, including the conventional (k-constrained) and direction-fixed time-

shifts. For the computer simulations, we will first demonstrate how the proposed MS-

SBR2 algorithm performs for each of the time-shift methods using numerical examples,

and results will be compared to that of the original SBR2 algorithm based on several

performance metrics. Furthermore, we will investigate how different source models

can impact the proposed MS-SBR2 algorithm based on defining a dynamic range of the

underlying sources, and different relations between the source signals’ power spectral

densities. Last but not least, an applied example will be presented to show how the

MS-SBR2 algorithm can be used to strongly decorrelate a set of convolutively mixed

sensor signals and how it performs compared to the original SBR2 algorithm.

4.2 Outline of the MS-SBR2 Algorithm

The MS-SBR2 algorithm was developed based on the SBR2 algorithm, but with an

additional off-diagonal energy transferred onto the diagonal by means of a “multiple

shift” in every iteration step, which is akin to the MSME-SMD algorithm. By shifting

multiple elements, the MS-SBR2 algorithm can achieve the diagonalisation with fewer

iterations than SBR2.

Given a para-Hermitian matrix R(z)∈CM×M, at each iteration the MS-SBR2 algo-

rithm can bring at most ⌊M/2⌋ off-diagonal elements onto the zero-lag plane, which

then can be annihilated by a sequence of Jacobi rotations. The reason ⌊M/2⌋ elements

at most can be transferred at each iteration is that each Jacobi rotation affects both

rows j and k and columns j and k. In other words, the search space of the next max-

imum off-diagonal element has to exclude these two rows and two columns in order
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to avoid affecting previous maxima. Note that for the matrix dimension parameter

M ≤ 3, the MS-SBR2 algorithm simply reduces to the SBR2 algorithm. Details about

the search strategy will be discussed in the following section. There are two main

stages involved at each iteration in MS-SBR2. The first stage aims to bring as many as

⌊M/2⌋ off-diagonal elements to the zero-lag plane by using the established time-shift

method, and the second stage is to apply a sequence of Jacobi rotations to the zero-lag

matrix R(i)′[0] in order to eliminate those elements brought to the plane at the first

stage. Based on the formulation described in (3.8) the elementary paraunitary matrix

in MS-SBR2, therefore, can be defined as

Ĝ
(i)
(z) = Q(L(i),i)Q(L(i)−1,i) · · ·Q(1,i)B(L(i),i)(z)B(L(i)−1,i)(z) · · ·B(1,i)(z)

= Q̂(i) B̂
(i)
(z) ,

(4.1)

where Q̂(i) = ∏L(i)

l=1 Q(l,i), B̂
(i)
(z) = ∏L(i)

l=1 B(l,i)(z), and L(i) ≤ ⌊M/2⌋ denotes the total

number of off-diagonal elements shifted to the zero-lag coefficient matrix at the i-th

iteration. Accordingly, the resulting para-Hermitian matrix at this iteration can be

computed by performing the paraunitary similarity transformations as

R(i)′(z) = B̂
(i)
(z)R(i−1)(z) ˜̂B(i)(z) (4.2)

and

R(i)(z) = Q̂(i)R(i)′(z)Q̂(i)H . (4.3)

Similar to SBR2, the MS-SBR2 algorithm converges when the stopping condition

suffices, i.e., the magnitude of the maximum off-diagonal element |r(1,i)jk [τ]|, found at

the i-th iteration with a full search space, is smaller than the pre-defined threshold ε .

Assuming the algorithm stops at the I-th iteration, the generated paraunitary matrix can

be calculated as

H(I)(z) = Ĝ
(I)
(z)Ĝ

(I−1)
(z) · · ·Ĝ(1)

(z) . (4.4)
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The MS-SBR2 algorithm is summarised in Algorithm 2.

Algorithm 2 The MS-SBR2 Algorithm

Input: para-Hermitian matrix R(z) ∈ C
M×M, maximum number of iterations I, con-

vergence parameter ε , and truncation parameter µ
Output: diagonalised matrix D(z) and the paraunitary matrix H(z)

1: Initialisation: iter← 0, g← 1+ε , H(0)(z)← IM , and R(0)(z)←R(z)
2: while iter < I and g > ε do

3: % Locate and time-shift multiple off-diagonal elements

4: Initialisation: the total number of off-diagonal elements shifted at

the i-th iteration, L(i)← 0

5: while g > ε and the search space exists do

6: locate the maximum off-diagonal element r
(i)
jk [τ ] in the current

search space;

7: g← |r(i)jk [τ ]|;
8: if g > ε then

9: R(i)′(z) ← B(i)(z)R(i−1)(z)B̃
(i)
(z); H(i)′(z) ← B(i)(z)H(i−1)(z)

according to (3.5)

10: L(i)← L(i)+1;

11: end if

12: update the search space for remaining off-diagonal elements;

13: end while

14: % Perform a sequence of Jacobi rotations

15: for l = 1 : L(i) do

16: R(i)(z) ← Q(l,i)R(i)′(z)Q(l,i)H; H(i)(z) ← Q(l,i)H(i)′(z) according

to (4.3)

17: end for

18: iter← iter+1;

19: % Trim polynomial matrix order

20: R(i)(z) ← TrimPH(R(i)(z),µ); H(i)(z) ← TrimPU(H(i)(z),µ)
21: end while

The search strategy for MS-SBR2 differs from the one employed in SBR2, and it is

based on a set of reduced search spaces. As each Jacobi rotation operation will act on

both the columns and rows j and k of the maximum off-diagonal element r
(i)′
jk [0] at the

zero-lag plane, the search space for the next off-diagonal element will have to exclude

those two columns and two rows to avoid affecting the previous off-diagonal element.

Assuming the input para-Hermitian matrix has dimension 6×6, the first off-diagonal

element at the i-th iteration can be located according to (3.13). Once the first element

a and its complex conjugate a∗ have been shifted to the zero-lag matrix as shown in
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Figure 4.1(a), the grey areas shown in Figure 4.1(b) will be eliminated from the search

space of the next off-diagonal element, which leads the white parts of the upper triangu-

lar area to be the search space of the second element. By continuing from Figure 4.1(b),

if the second element b was found at row 3 and column 6, its complex conjugate b∗

will be at row 6 and column 3 according to the para-Hermitian property. After bringing

them to the zero-lag matrix as shown in Figure 4.1(c), the search space for the third

element c∗ will be the remaining position row 1 and column 5 shown in Figure 4.1(d).

This search strategy applies to a general M×M para-Hermitian matrix. Generally

speaking, there are at most ⌊M/2⌋ off-diagonal elements which can be located at each

iteration. Therefore, in the case of M ≤ 3, the MS-SBR2 algorithm is identical to the

SBR2 algorithm. In other words, if there is only one off-diagonal element shifted to

the zero-lag coefficient matrix at each iteration, i.e., L(i) = 1, then MS-SBR2 reduces

to SBR2.

a

a∗

(a)

a

a∗

(b)

a

a∗

b

b∗

(c)

a

a∗

b

b∗

c∗

c

(d)

Figure 4.1 Illustration of the search space for a 6×6 para-Hermitian matrix example

in the MS-SBR2 algorithm showing (a) the location of the first maximum off-diagonal

element a and its conjugate a∗, (b) the reduced search space (marked in white tiles), (c)

the location of the second pairwise off-diagonal elements b and b∗, and (d) the location

of the last pairwise off-diagonal element c and c∗.

4.3 Proof of Convergence

Theorem 1 (Convergence of the MS-SBR2 Algorithm): With a sufficiently large num-

ber of iterations I, the MS-SBR2 algorithm can approximately diagonalise the para-
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4.3 Proof of Convergence

Hermitian matrix R(z) ∈ C
M×M and reduce the energy of the off-diagonal elements to

an arbitrarily low threshold ψ > 0.

Proof: The proof of Theorem 1 is very similar to that of the original SBR2 algo-

rithm [7]. To prove Theorem 1, we first define the following quantities:

N1{R(i)(z)},
M

∑
m=1

|r(i)mm[0]|2 , (4.5)

N2{R(i)(z)}, ‖R(i)[0]‖2
F , (4.6)

N3{R(i)(z)}, N2{R(i)(z)}−N1{R(i)(z)} , (4.7)

N4{R(i)(z)}, ‖R(i)(z)‖2
F = ∑

τ

‖R(i)[τ]‖2
F . (4.8)

The equations above denote, respectively, the squares of: the trace norm at the zero-

lag (τ = 0) of the transformed polynomial matrix R(i)(z); the Frobenius norm at τ = 0;

the off-diagonal F-norm at τ = 0; and the Frobenius norm of R(i)(z). Note that N1{·}

is invariant under the paraunitary delay operations, as in (4.2), i.e.,

N1{R(i)′(z)}= N1{B̂
(i)
(z)R(i−1)(z) ˜̂B(i)(z)}= N1{R(i−1)(z)} . (4.9)

Further, N2{·} is invariant under the Jacobi rotations in (4.3), i.e.,

N2{R(i)(z)}= N2{Q̂(i)R(i)′(z)Q̂(i)H}= N2{R(i)′(z)}. (4.10)

Due to the multiple-shift effect in MS-SBR2, the off-diagonal elements r
(l,i)
jk

[τ] for

l = 1, · · · , L(i) found at the i-th iteration will all be brought onto the zero-lag matrix.

Thus, the norm of these elements is given by

γ(i) =
L(i)

∑
l=1

|r(l,i)jk [τ]|2 . (4.11)

By performing the paraunitary delay step in (4.2) and the rotation step in (4.3), the

total energy transferred onto the diagonal of the zero-lag matrix R(i)[0] will be 2γ(i),
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such that

N3{R(i)′(z)} ≥ 2γ(i), (4.12)

and

N1{R(i)(z)}= N1{R(i)′(z)}+2γ(i) = N1{R(i−1)(z)}+2γ(i) . (4.13)

Since γ(i) > 0, N1{R(i)(z)} increases monotonically with each iteration. Also, due to

N1{R(i)(z)} ≤N4{R(i)(z)} ∀ i , (4.14)

and the overall energy, N4{R(i)(z)}, is invariant over iterations. There must exist a

supremum S for N1{R(i)(z)}, such that

S = sup
i

N1{R(i)(z)}. (4.15)

It follows that for any ψ > 0 there must be an iteration number I for which S−

N1{R(I)(z)} < ψ , so the increase 2γ(I+i), i > 0, at any subsequent stages must sat-

isfy

2γ(I+i) ≤ S−N1{R(I)(z)}< ψ. (4.16)

Hence, for any ψ > 0, there must be an iteration I at which γ(I) is bounded by ψ . �

4.4 Time-Shift Strategies of the MS-SBR2 Algorithm

This section introduces two different ways of operating the paraunitary shift step in the

MS-SBR2 algorithm.

4.4.1 The Conventional Time-Shift Method

At each elementary delay stage of MS-SBR2, the conventional time-shift method [28]

operates by shifting the k(l,i)-th row of R(l,i)(z) in either the positive (τ(l,i) > 0) or
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negative (τ(l,i) < 0) lag direction therefore shifting the k(l,i)-th column to the opposite

direction. This idea of the conventional time-shift method is summarised in Algo-

rithm 3. For a more intuitive explanation, a 3D illustration of the MS-SBR2 algorithm

with the conventional time-shift method is given in Figure 4.2, where a 5× 5 para-

Hermitian matrix example is used to demonstrate the procedure of a single iteration of

the conventional MS-SBR2 algorithm.

Algorithm 3 Conventional Time-Shift Method for MS-SBR2

Input: para-Hermitian matrix R(i−1)(z), paraunitary matrix H(i−1)(z), and loca-

tion indices {k(l,i), τ (l,i)}
Output: shifted para-Hermitian matrix R(i)′(z) and paraunitary matrix H(i)′(z)

1: Initialisation: R(1,i)(z)← R(i−1)(z), H(1,i)(z)←H(i−1)(z)

2: for l = 1 : L(i) do

3: if τ (l,i) > 0 then

4: shift the k(l,i)-th row of R(l,i)(z) and H(l,i)(z) by |τ (l,i)|
lags towards the positive lag direction;

5: shift the k(l,i)-th column of R(l,i)(z) by |τ (l,i)| lags towards

the negative lag direction;

6: else if τ (l,i) < 0 then

7: shift the k(l,i)-th row of R(l,i)(z) and H(l,i)(z) by |τ (l,i)|
lags towards the negative lag direction;

8: shift the k(l,i)-th column of R(l,i)(z) by |τ (l,i)| lags towards

the positive lag direction;

9: else

10: R(l,i)(z)← R(l,i)(z), H(l,i)(z)←H(l,i)(z)
11: end if

12: end for

13: R(i)′(z)← R(L(i),i)(z), H(i)′(z)←H(L(i),i)(z)

In some cases, the directions of row (column) shifts at different delay stages within

one iteration might be different, which will result in some non-zero elements being

shifted further away from the zero-lag plane and causing unnecessary order growth of

the polynomial matrices.

4.4.2 The Direction-Fixed Time-Shift Method

To avoid the unnecessary polynomial order growth imposed by the conventional time-

shift method, this section presents a new method of controlling the order growth of
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Figure 4.2 A 3D illustration of the MS-SBR2 algorithm with the conventional time-

shift method for diagonalising a 5×5 example para-Hermitian matrix, showing a single

iteration of (a) the first maximum off-diagonal element a∗ (marked in green colour)

found at the location of {1,2,2}; (b) time-shifting row 2 (marked in red colour) to-

wards the positive-lag direction by 2 lags; (c) time-shifting column 2 (marked in blue

colour) towards the negative-lag direction by 2 lags and the second off-diagonal ele-

ment b found at the location of {3,5,−2}; (d) time-shifting row 5 towards negative-lag

direction by 2 lags; (e) time-shifting column 5 towards the positive-lag direction by 2

lags; and (f) performing a sequence of Jacobi rotations to transfer the off-diagonal ele-

ments (τ = 0) onto the diagonal. Note that the generated paraunitary rotation matrix is

also applied to the remaining lags.

polynomial matrices in the MS-SBR2 algorithm. In effect, the proposed method in-

troduces a new elementary delay strategy which keeps all the row (column) shifts in

the same direction throughout each iteration, thereby giving us the flexibility to con-

trol the polynomial order growth by selecting shifts that ensure non-zero coefficients

are kept closer to the zero-lag plane. By restricting the direction of all row (column)

shifts throughout iterations, there will be no interference between the subsequent delay

stages. All the zero-filled outer lags of polynomial matrices can be precisely tracked

and removed without compromising the diagonalisation performance and accuracy of
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the algorithm. Thus, the whole scheme is named order-controlled MS-SBR2 (OCMS-

SBR2) algorithm.

For the results presented in this thesis, the direction of all the row shifts is confined

towards the positive time lag, while the direction of all the column shifts is towards

the negative time lag. A summary of the direction-fixed delay strategy is shown in

Algorithm 4. Accordingly, a 3D illustration of the OCMS-SBR2 algorithm is given in

Figure 4.3.

Algorithm 4 Direction-Fixed Time-Shift Method for MS-SBR2

Input: para-Hermitian matrix R(i−1)(z), paraunitary matrix H(i−1)(z), and loca-

tion indices { j(l,i), k(l,i), τ (l,i)}
Output: shifted para-Hermitian matrix R(i)′(z) and paraunitary matrix H(i)′(z)

1: Initialisation: R(1,i)(z)← R(i−1)(z), H(1,i)(z)←H(i−1)(z)

2: for l = 1 : L(i) do

3: if τ (l,i) > 0 then

4: shift the k(l,i)-th row of R(l,i)(z) and H(l,i)(z) by |τ (l,i)|
lags towards the positive lag direction;

5: shift the k(l,i)-th column of R(l,i)(z) by |τ (l,i)| lags towards

the negative lag direction;

6: else if τ (l,i) < 0 then

7: shift the j(l,i)-th row of R(l,i)(z) and H(l,i)(z) by |τ (l,i)|
lags towards the positive lag direction;

8: shift the j(l,i)-th column of R(l,i)(z) by |τ (l,i)| lags towards

the negative lag direction;

9: else

10: R(l,i)(z)← R(l,i)(z), H(l,i)(z)←H(l,i)(z)
11: end if

12: end for

13: R(i)′(z)← R(L(i),i)(z), H(i)′(z)←H(L(i),i)(z)

Assuming no order truncation scheme is involved when using the OCMS-SBR2

algorithm for computing the PEVD, the order growth on R(i)(z) and H(i)(z) are now

bounded by the maximum modulus of the delay |τ(lmax,i)| at the i-th iteration, where

lmax = arg max
l
|τ(l,i)|, ∀ l = 1 · · ·L(i) , (4.17)

and |τ(l,i)| denotes the modulus of the delay needed to bring the maximum element

onto the zero-lag at the l-th time-shift step within the i-th iteration. With zero-filled
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Figure 4.3 A 3D illustration of the MS-SBR2 algorithm with the direction-fixed time-

shift method for diagonalising a 5×5 example para-Hermitian matrix, showing a single

iteration of (a) the first maximum off-diagonal element a∗ (marked in green colour)

found at the location of {1,2,2}; (b) time-shifting row 2 (marked in red colour) to-

wards the positive-lag direction by 2 lags; (c) time-shifting column 2 (marked in blue

colour) towards the negative-lag direction by 2 lags and the second off-diagonal ele-

ment b found at the location of {3,5,−2}; (d) time-shifting row 3 towards the positive-

lag direction by 2 lags; (e) time-shifting column 3 towards the negative-lag direction

by 2 lags; and (f) performing a sequence of Jacobi rotations to transfer the off-diagonal

elements (τ = 0) onto the diagonal. Note that the generated paraunitary rotation matrix

is also applied to the remaining lags.

outer matrices being removed, the final polynomial orders can be estimated as

O
(I)
PH = O

(0)
PH+2

I

∑
i=1

|τ(lmax,i)| ,

O
(I)
PU =

I

∑
i=1

|τ(lmax,i)| ,
(4.18)

where O
(I)
PH denotes the order of the transformed para-Hermitian matrix R(I)(z) at the

I-th iteration, with its initial order given by O
(0)
PH, and O

(I)
PU denotes the order of the

corresponding paraunitary matrix H(I)(z). Bear in mind that the benefit of using the

direction-fixed delay strategy can only be reflected when L(i) ≥ 2,∃ i = 1, 2, · · · , I,

meaning that in order to make the most out of the direction-fixed shift strategy in
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the OCMS-SBR2 algorithm, there must exist at least one iteration at which two or

more shifts occur. For example, given a para-Hermitian matrix R(z) with the matrix

dimension M = 6, the best-case scenario is that there are ⌊M/2⌋ = 3 off-diagonal

elements which can be shifted and annihilated at each iteration.

Due to the common nature of how the PEVD algorithms operate, the transformed

para-Hermitian matrix R(i)(z) at the i-th iteration usually has highly sparse outer co-

efficient matrices which generally account for a small proportion of the total energy

of the input para-Hermitian matrix R(z). To truncate the negligibly small amount of

energy and also to reduce the computational complexity, the para-Hermitian [86] and

paraunitary [87] truncation approaches are respectively applied to R(i)(z) and H(i)(z)

with pre-defined truncation parameters µPH and µPU, whose values indicate the propor-

tion of the total energy of R(z) and H(z) to be truncated. Further details about how

the OCMS-SBR2 algorithm performs after introducing the truncation schemes will be

presented in the following sections.

4.5 Numerical Examples

To demonstrate the performance of these two different time-shift strategies as men-

tioned in Algorithms 3 and 4, numerical examples are designed to evaluate the cor-

responding versions of MS-SBR2, including the conventional MS-SBR2 and OCMS-

SBR2 algorithms in terms of the chosen performance metrics, which will now be dis-

cussed. Simulation results are also benchmarked against the original SBR2 algorithm.
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4.5.1 Performance Metrics

Diagonalisation Measure

To monitor the convergence of the PEVD algorithms, one of the important measures is

the normalised off-diagonal energy η(i) at the i-th iteration,

η(i) =
∑τ ∑M

m 6=n |r
(i)
mn[τ]|2

∑τ ‖R[τ]‖2
F

, m, n = 1, 2, · · · , M , (4.19)

where the numerator denotes the off-diagonal energy of the transformed para-Hermitian

matrix R(i)(z) at the i-th iteration and the denominator denotes the energy of the input

para-Hermitian matrix R(z). Compared to the convergence metric g (magnitude of the

maximum off-diagonal element) for the SBR2 algorithm as discussed in Chapter 3,

this η(i) metric is more commonly used across all different PEVD algorithms as it can

effectively reflect how much off-diagonal energy remains in R(i)(z) after each iteration.

For this reason, this performance metric will also be adopted for the results presented

in the following chapters.

Para-Hermitian Matrix Reconstruction Error

To assess the accuracy of the decomposition performed by the PEVD algorithms, espe-

cially when the truncation methods in Section 3.6.2 are employed, the para-Hermitian

matrix reconstruction error can be used as the performance metric, which is defined as

ξPH =
‖R(z)− R̂(z)‖2

F

‖R(z)‖2
F

, (4.20)

where R(z) is the input para-Hermitian matrix and R̂(z) denotes the reconstructed ma-

trix obtained from the inverse transformation R̂(z) = H̃(z)D(z)H(z).
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Paraunitary Matrix Reconstruction Error

The paraunitary property, i.e. H(z)H̃(z)= IM, is lost after applying the order truncation

as mentioned in Section 3.6.3. Considering H(z) as a filter bank, the loss manifests

itself as reconstruction error [69], and the difference to a paraunitary system can be

defined as

Φ(z) = IM−Htr(z)H̃tr(z) , (4.21)

where Htr(z) denotes the truncated paraunitary matrix. Thus, the loss of the paraunitar-

ity can be calculated as

ξPU =
1

M
‖Φ(z)‖2

F =
1

M
∑
τ

‖Φ[τ]‖2
F , (4.22)

where M is the matrix dimension parameter, and the coefficient 1
M

is used for normal-

isation purposes based on the fact that the squared Frobenius norm of any paraunitary

matrices H(z) ∈ C
M×M is equal to M.

4.5.2 Simulation Scenario

To assess the proposed MS-SBR2 algorithms based on the performance metrics men-

tioned above, the diagonalisation is conducted using Monte Carlo simulations over an

ensemble of 2000 random para-Hermitian matrices R(z) of order 4. Each instance of

R(z) is generated as R(z) = A(z)Ã(z), where A(z) ∈ C
6×6 is a random polynomial

matrix of order 2 with independent and identically distributed (i.i.d.) zero mean unit

variance complex Gaussian entries. Each algorithm is set to run for 100 iterations, with

the performance metrics recorded after every iteration. The experiments are carried out

for two different cases: (i) no truncation method is used during iterations and (ii) the

energy based truncation method [86] is applied to the transformed para-Hermitian ma-

trix at each iteration, whilst the lag based truncation method [87] is applied to the
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corresponding paraunitary transformation matrix, both with the truncation parameters

µPH = µPU = 10−4.

4.5.3 Algorithm Convergence

The diagonalisation performance versus iterations is shown in Figure 4.4(a) for the

different versions of SBR2. Clearly, using the multiple-shift operation, both versions of

MS-SBR2 converge significantly faster than the original SBR2 algorithm. However, it

should be noted that both MS-SBR2 and OCMS-SBR2 require M/2= 3 times as many

Jacobi rotations as SBR2 needs at each iteration, as shown in Figure 4.4(b), which

makes the computational loads higher than that of SBR2. Figure 4.4(c) presents the

normalised remaining off-diagonal energy as a function of the time taken to calculate

the decomposition 1. Compared to SBR2, the MS-SBR2 algorithms take more time to

execute 100 iterations. However, for a specific level of diagonalisation, the MS-SBR2

algorithms appear to run much faster than SBR2. Furthermore, using the direction

fixed shift method, the OCMS-SBR2 algorithm requires less execution time than does

the conventional MS-SBR2, which uses the k-constrained shift method as mentioned

in Section 4.4. Note that to make a fair comparison, the execution time is measured

without using any truncation methods. Overall, we can see that the two different time-

shift strategies used in MS-SBR2 have no impact on the diagonalisation performance,

and the OCMS-SBR2 algorithm outperforms the conventional MS-SBR2 algorithm in

terms of the computation time.

4.5.4 Polynomial Matrix Order

Case 1: No Truncation

Without using any truncation methods, the average polynomial orders of H(i)(z) and

R(i)(z) versus iterations, obtained from different versions of SBR2, are illustrated in

1Computations undertaken on a PC with Intel(R) Core(TM) i7-3770T CPU @ 2.50GHz and 16 GB

RAM.
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Figure 4.4 Convergence comparison of different versions of SBR2 for diagonalising

2000 randomly generated para-Hermitian matrices, showing (a) the ensemble average

of normalized off-diagonal energy η(i) versus iterations, (b) number of Jacobi rotations,

and (c) mean execution time E{t} over 100 iterations.

Figures 4.5(a) and 4.5(b), respectively. Due to the multiple-shift operation, both ver-

sions of MS-SBR2 generate the transformed para-Hermitian and paraunitary matrices

with much larger order than does SBR2. By using the direction-fixed shift method, the

OCMS-SBR2 algorithm can remove all the zero-filled outer coefficient matrices gener-

ated at each iteration, which effectively controls the unnecessary growth in polynomial

order. In this example, the polynomial order obtained from OCMS-SBR2 has been

reduced by half compared to MS-SBR2.
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Figure 4.5 Comparison of polynomial orders among different versions of SBR2 with-

out using any truncation methods, showing (a) the average order of H(i)(z) versus

iterations, and (b) the average order of R(i)(z) versus iterations.

Case 2: With Truncation Methods

To see the order reductions after applying the truncation methods and the resulting

reconstruction errors ξ
(i)
PU and ξ

(i)
PH at the i-th iteration, we make the algorithms retain

the untrimmed matrices R(i)(z) and H(i)(z) through all iterations whilst generating the

truncated copy R
(i)
tr (z) with a chosen truncation parameter µPH = 10−4 and H

(i)
tr (z)

with µPU = 10−4. At every iteration, the average order of H
(i)
tr (z) is recorded and

depicted in Figure 4.6(a), together with the average reconstruction error E{ξ (i)
PU} shown

in Figure 4.6(b). Initially, the error curves start very low but they quickly increase as

the truncation methods begin to remove a portion of the energy. Although the same

paraunitary error metrics are found between the two versions of MS-SBR2, the OCMS-

SBR2 algorithm presents slightly better results than the MS-SBR2 algorithm in terms

of the order reduction.

Similarly, the order of the truncated para-Hermitian matrix R
(i)
tr (z) and the average

para-Hermitian matrix reconstruction errors E{ξ (i)
PH} are presented in Figures 4.7(a)

and (b), respectively. When the truncation method is applied to the different versions
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Figure 4.6 Results obtained from different SBR2 algorithms for the lag based trunca-

tion method with µPU = 10−4, showing (a) the average order after truncation of H(i)(z)

versus iterations, and (b) the average reconstruction error E{ξ (i)
PU} versus iterations.

of SBR2 with the same truncation value, the OCMS-SBR2 algorithm shows a marginal

advantage over the conventional MS-SBR2 algorithm in terms of the order reduction.

By comparing it with the untrimmed case, as shown in Figure 4.5(b), this suggests that

most of the outer coefficient matrices of R(i)(z) obtained from MS-SBR2 are essen-

tially filled up with zeros. As the zero-filled outer matrices have already been removed

at each iteration in OCMS-SBR2, the truncation process can only remove the non-zero

coefficients. For this reason, the advantage of OCMS-SBR2 becomes less obvious.

Furthermore, the reconstructed para-Hermitian matrix R̂
(i)
(z) = H̃

(i)
tr (z)R

(i)
tr (z)H

(i)
tr (z)

from OCMS-SBR2, appears to be a bit more accurate than that from MS-SBR2 ac-

cording to the error results illustrated in Figure 4.7(b). Initially, the reconstruction

error ξ
(i)
PH of SBR2 is larger than those of both versions of MS-SBR2, however, as the

iterations continue, this error metric of SBR2 is gradually decreasing and overtaken by

both MS-SBR2 and OCMS-SBR2.

Overall, with a relatively small proportion of energy being removed, both orders

of H(i)(z) and R(i)(z) have been drastically reduced for all different SBR2 algorithms
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compared to the case in which no truncation method is used. In particular, the OCMS-

SBR2 algorithm shows a slight performance advantage over MS-SBR2 when the trun-

cation methods [86, 87] are used. Note that for the results presented in this section,

the truncation methods are not implemented as part of an iterative routine in the SBR2

algorithms, and therefore the computational loads have not been affected. To investi-

gate how the truncation methods can be used to reduce the computational load of the

proposed MS-SBR2 algorithm, a more realistic application in strong decorrelation will

be discussed in Section 4.7.
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Figure 4.7 Results obtained from different SBR2 algorithms for the energy based trun-

cation method with µPH = 10−4, showing (a) the average order after truncation of

R(i)(z) versus iterations, and (b) the average reconstruction error E{ξ (i)
PH} versus itera-

tions.

In conclusion, not only can the OCMS-SBR2 algorithm produce the para-Hermitian

and paraunitary matrices with lower polynomial order than using the conventional shift

method in MS-SBR2, but also it is slightly advantageous in terms of the algorithm’s

accuracy, as suggested by the reconstruction error metrics of the studied examples.

Furthermore, as shown in Figure 4.4(c), the OCMS-SBR2 algorithm is computation-

ally faster than both SBR2 and MS-SBR2 due to zero-filled outer coefficient matrices
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4.6 Impact of Source Model Matrix Conditioning

being removed at each iteration. Note that the diagonalisation performance is not af-

fected when using the two different time-shift methods in MS-SBR2. Therefore, with

the demonstrated advantages of the OCMS-SBR2 algorithm, all experimental results

which involve the MS-SBR2 algorithm in the remainder of this thesis will be generated

based on the order controlled MS-SBR2 algorithm, i.e., OCMS-SBR2.

4.6 Impact of Source Model Matrix Conditioning

In the previous section, we examined the proposed MS-SBR2 algorithm based on var-

ious performance metrics by means of randomly generated para-Hermitian matrix ex-

amples. Each of those para-Hermitian matrices R(z) ∈ C
M×M is derived from a ran-

domly generated polynomial matrix A(z) ∈ C
M×N as R(z) = A(z)Ã(z), where all the

entries of A(z) satisfy the same Gaussian distribution. In practical experiments, the

relative performance of the PEVD algorithms depends quite significantly on the type

of para-Hermitian matrix that is to be factorised. In [35], a source model was pro-

posed to generate the para-Hermitian matrix for testing the PEVD algorithms, where

the ground truth PEVD with finite order paraunitary factors and equality in (3.1) is

guaranteed. This source model idea was later generalised by Corr et al. in [92] to

further investigate how to control the conditioning of para-Hermitian matrices to be

diagonalised by the PEVD algorithms. This includes defining the dynamic range of

the underlying sources, which is related the eigenvalue spread or condition number of

a para-Hermitian matrix generalised from the area of Hermitian matrices. In addition

to that, different relations between the sources’ power spectral densities (PSDs) are

defined, including

• spectrally majorised PSDs, as demonstrated in (3.25);

• not spectrally majorised PSDs, i.e., with overlapping PSDs.

In this section, the source matrix conditioning method from [92] is adopted to

investigate how different source models can affect the proposed MS-SBR2 algorithm.
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4.6 Impact of Source Model Matrix Conditioning

We begin by briefly introducing the source model, followed by the relevant simulation

results.

4.6.1 Source Model

The source model is illustrated by the block diagram shown in Figure 4.8. A total of

N mutually uncorrelated source signals sn[t], n = 1, · · · , N are generated by emitting

uncorrelated, zero mean unit variance complex Gaussian signals un[t] through N in-

novation filters f
n
(z) of order L. The individual PSDs of the source signals sn[t] are

therefore given by rs,n(e
jΩ) = f

n
(e jΩ) f̃

n
(e jΩ) where f

n
(e jΩ) represents the Fourier

transform of the n-th innovation filter [35, 93]. By carefully controlling the maximum

radius of zeros and the filter gain, the dynamic PSD range of the source signals can be

obtained as well as different relations of the PSDs of the sources [92]. The convolu-

tively mixed sources xn[t], n = 1, · · · , N are then formed by transmitting sn[t] through

a random paraunitary matrix A(z) ∈ C
N×N of order K, which can be generated as

[35, 69]

A(z) = A0

K

∏
k=1

Ak(z) = A0

K

∏
k=1

(I−akaH
k +akaH

k z−1) , (4.23)

where A0 ∈ CN×N denotes a unitary matrix, and ak ∈ CN,k = 1, · · · , K are random

vectors with unit norm, which are used to construct a random first order paraunitary

matrix Ak(z).

u1[t]

...

uN [t]

u2[t]

f
1
(z)

f
2
(z)

f
N
(z)

s1[t]

s2[t]

sN [t]

...

A(z)

x1[t]

...

xN [t]

x2[t]

Figure 4.8 Block diagram of a source model consisting of N independent zero mean

unit variance complex Gaussian sources un[t], n = 1, · · · , N, innovation filters with

transfer functions f
n
(z), and a paraunitary convolutive mixing system A(z).
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The cross spectral density (CSD) matrix of the output signals xn[t], n = 1, · · · , N is

therefore expressed as

R(z) = ∑
τ

R[τ]z−τ = ∑
τ

E{x[t]xH[t− τ]}z−τ

= A(z)Rs(z)Ã(z) = A(z)F(z)F̃(z)Ã(z) ,

(4.24)

where Rs(z) denotes the PSD matrix of sn[t], which is determined by the diagonal

matrix F(z)F̃(z) = diag{ f
1
(z) f̃

1
(z), · · · , f

N
(z) f̃

N
(z)}.

Clearly, if Rs(z) or F(z) is spectrally majorised, the PEVD R(z) = H̃(z)D(z)H(z)

in (3.1) exists with equality, and it satisfies H̃(z)=A(z) and D(z)=F(z)F̃(z). However,

if Rs(z) is not spectrally majorised, the PEVD of R(z) often requires the order of the

factors of H(z) and D(z) to be higher than in the spectrally majorised case in order to

achieve both strong decorrelation (or diagonalisation) and spectral majorisation. We

will now demonstrate how different source model matrices can affect the performance

of the MS-SBR2 algorithm by means of numerical examples.

4.6.2 Simulation Scenario

To generate the CSD matrices, the average dynamic PSD range of the source model

is chosen to be either 10 dB or 30 dB, together with different relations of the sources’

PSDs. This leads to four specific cases: (i) spectrally majorised sources with 10 dB dy-

namic range, (ii) not spectrally majorised sources with 10 dB dynamic range, (iii) spec-

trally majorised sources with 30 dB dynamic range, and (iv) not spectrally majorised

sources with 30 dB dynamic range. In each case, results are averaged over an en-

semble of 200 random realisations. For each realisation, the source model is created

based on N = 5 independent sources and the same number of sensors. The order of

the innovation filters and the paraunitary mixing matrices are set to be L = 20 and

K = 20, respectively. Thus, each randomly generated CSD matrix R(z) is 5×5 with

order 2(L+K) = 80.
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4.6 Impact of Source Model Matrix Conditioning

4.6.3 Algorithm Convergence and Paraunitary Order

The chosen PEVD algorithms, including SBR2 and MS-SBR2, are applied to each

CSD matrix for a total of 500 iterations. The lag based truncation method, as described

in Section 3.6.3, is applied to the resulting paraunitary matrices obtained from both

algorithms after each iteration, with µPU = 10−4.

Figures 4.9(a) and (b) show how the different SBR2 algorithms converge for the

CSD matrix examples obtained from different source models with dynamic ranges of

10 dB and 30 dB, respectively. For both dynamic ranges, the spectrally unmajorised

sources initially converge faster than the the majorised sources for all algorithms. How-

ever, as the iterations continue, the unmajorised sources are gradually overtaken by the

majorised sources in terms of the convergence speed, and after 500 iterations, there

is an obvious difference between the two source models, where the majorised sources

present better performance in terms of reducing the off-diagonal energy. Furthermore,

the results shown in Figure 4.9(b) with higher dynamic range are worse than those

in Figure 4.9(a) with lower dynamic range. Undoubtedly, the MS-SBR2 algorithm

outperforms SBR2 in terms of the diagonalisation measure, as multiple off-diagonal

elements are annihilated at each iteration.
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Figure 4.9 Remaining off-diagonal energy versus iterations for the SBR2 and MS-

SBR2 algorithms over 200 random realisations, showing both majorisation types with

(a) 10 dB dynamic range, and (b) 30 dB dynamic range.
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Apart from the convergence comparison for different source models, another im-

portant performance metric is the order of the resulting paraunitary matrices obtained

from different algorithms. Figure 4.10(a) presents the average remaining off-diagonal

energy versus the paraunitary matrix order for both algorithms, obtained from the ma-

jorised and unmajorised source models with 10 dB dynamic range, demonstrating that

the SBR2 and MS-SBR2 algorithms perform similarly in terms of the growth rate of

the paraunitary order. However, when the dynamic range is increased to 30 dB, the pa-

raunitary order from the MS-SBR2 algorithm increases faster than from SBR2 for the

majorised sources, as shown in Figure 4.10(b). This reflects that the multiple shifts of

the MS-SBR2 algorithm cause the paraunitary order to grow faster in the case of higher

dynamic range. Nonetheless, for both dynamic ranges, Figure 4.10 shows that the un-

majorised sources tend to have larger paraunitary order than the majorised sources for

both the SBR2 and MS-SBR2 algorithms.
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Figure 4.10 Paraunitary matrix order for the SBR2 and MS-SBR2 algorithms over an

ensemble of 200 random realisations, showing both majorisation types with (a) 10 dB

dynamic range, and (b) 30 dB dynamic range.

4.6.4 Spectral Ordering

As the simulations from the above section are based on an ensemble average of 200

realisations, the resulting PSDs obtained from applying the PEVD algorithms to differ-

ent source model matrices are not presented. In this section, a single source model is
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4.6 Impact of Source Model Matrix Conditioning

chosen from each of the four specific cases as the scenario to investigate the PSDs, and

the MS-SBR2 algorithm is applied to each source model matrix for 150 iterations. In

the case of the 10 dB dynamic range, Figures 4.11(a) and (b) illustrate the on-diagonal

PSDs of D(z) for the majorised and unmajorised source models, respectively. Note

that the ground truth (or ideal) PSDs are shown in light grey shading. For the ma-

jorised source model, the MS-SBR2 algorithm has converged to a spectrally majorised

solution, which closely matches the underlying ground truth PSDs. However, for the

unmajorised source, the results are approximately spectrally majorised by re-ordering

the spectral components of F(z) using a paraunitary matrix, which is likely to increase

the order of the polynomial factors in PEVD.
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Figure 4.11 PSDs of the on-diagonal polynomials of D(z) for (a) a strictly majorised

source model, and (b) an unmajorised source model, both with 10 dB dynamic range

obtained from MS-SBR2 after 150 iterations, superimposed on light grey ideal PSDs.

Figures 4.12(a) and (b) respectively show the PSDs for the majorised and unma-

jorised sources, both with 30 dB dynamic range. With the larger dynamic range, the

MS-SBR2 algorithm is not able to produce spectrally majorised results within 150 it-

erations. As can be seen in Figures 4.12(a) and (b), some cross-talk occurs in lower

power channels for both majorised and unmajorised source models. Compared to the

majorised source model, the MS-SBR2 algorithm appears to produce better spectral

ordering results for the unmajorised source model.
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Figure 4.12 PSDs of the on-diagonal polynomials of D(z) for (a) a strictly majorised

source model, and (b) an unmajorised source model, both with 30 dB dynamic range

obtained from MS-SBR2 after 150 iterations, superimposed on light grey ideal PSDs.

4.7 Strong Decorrelation of Convolutively Mixed Sig-

nals

This section provides a numerical example to demonstrate how the proposed MS-SBR2

algorithm can be used as a technique for enforcing strong decorrelation upon a set of

convolutively mixed signals and as a tool for identifying the signal and noise sub-

spaces. This example also allows the comparison of the performance of the MS-SBR2

algorithm to that of its predecessor, SBR2 [7].

4.7.1 Simulation Scenario

To set up the experiment, a (4×5) convolutive MIMO system, with the channel mixing

matrix C(z) ∈ R
5×4, is designed to emulate the propagation of four signals onto five

sensors. Each of the polynomial entries c jk(z), for j = 1, · · · , 5 and k = 1, · · · , 4 was

chosen to be a fifth order finite impulse response (FIR) filter with the coefficients c jk[τ],

for τ = 0, · · · , 5 drawn randomly from a uniform distribution within the range [−1, 1].

Four independent binary phase shift keying (BPSK) source signals s[t] ∈ R4×1 are

then generated and emitted through the convolutive mixing channel according to (2.21).

Each source signal has a length of 1000 independent and identically distributed (i.i.d.)

83



4.7 Strong Decorrelation of Convolutively Mixed Signals

sequences for which each sample was assigned the value ±1 with probability 1/2.

With the source signals chosen to have unit variance, the CSD matrix of the source

signals satisfies Rss(z) = IN . As a result of the mixing process in (2.23), the sensor

outputs x[t] ∈ R5×1 will generally be correlated with one another over a range of time

delays. Thus, the expected CSD matrix of the signals x[t] is represented by

Rxx(z) = C(z)Rss(z)C̃(z)+σ 2IM

= C(z)C̃(z)+σ 2IM ,

(4.25)

where σ 2 denotes the variance of the noise and for this experiment σ is set equal to

1.5. Thus, the signal-to-noise ratio (SNR) at the receiver can be estimated by

SNR = 10log10

(

trace
{(

C(z)C̃(z)
)
|τ=0

}

M σ 2

)

, (4.26)

where the notation (·)|τ=0 denotes the zero-lag coefficient matrix of the polynomial

matrix inside the bracket, and the number of sensors, M, is equal to five. Hence, the

value of the SNR is calculated as 5.08 dB for this specific realisation.

4.7.2 Results and Analysis

The estimated space-time covariance matrix R̂xx[τ] can be calculated in accordance

with (3.20) where the correlation window parameter W was set to 10. As the mixing

matrix C(z) has order of 5, R̂xx[τ] will be approximately zero for all lags |τ| > 5 and

any deviation in these lags will be due to sample estimation errors. For this reason, the

choice of W = 10 is more than sufficient. A graphical representation of the estimated

CSD matrix R̂xx(z) is plotted in Figure 4.13.

Both the SBR2 and MS-SBR2 algorithms are then applied to diagonalise this ma-

trix with the same stopping condition

g≤ ε = δ

√

1

M

M

∑
m=1

|rmm[0]|2 , (4.27)
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Figure 4.13 The stem plot of the estimated space-time covariance matrix

R̂xx[τ] ◦—• R̂xx(z) of the convolutively mixed signals x[t] with the chosen SNR of

5.08 dB.

where g = |r(i)jk [τ]| denotes the magnitude of the maximum off-diagonal element found

at the i-th iteration and rmm[0] for m = 1, · · · , M represent the diagonal elements of the

zero-lag coefficient matrix R̂xx[0]. In this experiment, δ is set to 10−2, which results

in ε = 0.0962.

Case 1: No Truncation

We have considered two different situations of the simulation depending on whether the

truncation methods are used or not. For the simple case of no truncation, the SBR2 al-

gorithm took 288 iterations to converge to a point where g= |r(288)
jk [τ]|= 0.0955, while

the MS-SBR2 algorithm only took 147 iterations to reach a similar convergence level.

Figure 4.14 shows the behaviour of |r(i)jk [τ]| versus iterations for these two different

PEVD algorithms. The polynomial matrices D(z) and H(z) obtained by applying the

diagonalisation to Rxx(z) using MS-SBR2 are plotted in Figure 4.15 and Figure 4.16,

respectively. Upon inspection of the plots, the polynomial orders of these matrices are
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unnecessarily large, with most of the coefficients positioned in the outer lags amount-

ing to a small proportion of the squared Frobenius norm of the diagonal matrix D(z).
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Figure 4.14 The magnitude of the maximum off-diagonal element |r(i)jk [τ]| found at the

i-th iteration for the SBR2 and MS-SBR2 algorithms.

The performance metrics are recorded in Table 4.1, which shows the complete com-

parisons between the proposed MS-SBR2 algorithm and the original SBR2 algorithm.

Using the same stopping condition mentioned in (4.27), MS-SBR2 can generate the

diagonal matrix D(z) with the remaining off-diagonal energy ‖off{D(z)}‖2
F = 1.8433,

which is less than that of SBR2; it also yields the matrices D(z) and H(z) with lower

order. As to the error metrics defined in (4.22) and (4.20), both the paraunitary re-

construction error ξPU and the para-Hermitian reconstruction error ξPH are very small

(around 10−30). In fact, these deviations are due to round-off errors caused by the ma-

chine precision. In theory, they should be equal to 0 as no truncation method is used.

Although the cost per iteration in MS-SBR2 is higher than that of SBR2, the total ex-

ecution time taken for MS-SBR2 to calculate the decomposition is less than that of

SBR2.
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Figure 4.15 The stem plot of the strongly decorrelated CSD matrix D(z) after apply-

ing the MS-SBR2 algorithm to the CSD matrix R(z) shown in Figure 4.13, with no

polynomial order truncation involved.

lag index τ
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Figure 4.16 The stem plot of the generated paraunitary polynomial matrix H(z) after

applying the MS-SBR2 algorithm to the CSD matrix R(z) shown in Figure 4.13, with

no polynomial order truncation involved.
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Table 4.1 Performance comparisons between the SBR2 and MS-SBR2 algorithms

when applied to the same CSD matrix example in Figure 4.13, without implementing

any order truncation process.

Measures SBR2 MS-SBR2

converged value g 0.0955 0.0960

number of iterations 288 147

‖D(z)‖2
F 792.5783 792.5783

‖off{D(z)}‖2
F 2.0865 1.8433

order of H(z) 3086 2184

order of D(z) 6192 4388

ξPU 1.4959×10−30 1.7045×10−30

ξPH 1.9674×10−30 2.5679×10−30

computational time (sec.)1 0.7729 0.5516

1 Computations undertaken on a PC with Intel(R) Core(TM) i7-3770T CPU @ 2.50GHz

and 16 GB RAM.

Figure 4.17(a) shows the PSD of the mixed signals x(z). Following the strong

decorrelation using the paraunitary matrix H(z) obtained from the MS-SBR2 algo-

rithm, the PSD of the decorrelated signals y(z) is plotted in Figure 4.17(b). Clearly, the

decorrelated signals are spectrally majorised as the PSDs satisfy d1(e
jΩ)≥ d2(e

jΩ)≥

·· · ≥ d5(e
jΩ) at every frequency. More importantly, the spectrally majorised signals

tend to have most of the related signal energy focused in the smallest number of signal

channels [7]. Therefore the noise subspace can be identified as the the signal with the

lowest spectra, i.e., y5[t].

It has been proven that the total input signal power, for all frequencies, is invariant

under a paraunitary transformation [69]. This can be seen in Figure 4.18, where the

total PSD of all signals is plotted before and after applying the paraunitary transfor-

mation matrix H(z) obtained from the MS-SBR2 algorithm. Note that a paraunitary

transformation can redistribute the power across channels, but it cannot amplify or

attenuate the total power.
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Figure 4.17 Power spectral densities of (a) the convolutively mixed signals x[t], and

(b) the strongly decorrelated signals y[t] generated using the paraunitary matrix H(z)
obtained from the MS-SBR2 algorithm.

Case 2: With Truncation Methods

The above example demonstrates the ability of the MS-SBR2 algorithm to calculate

the PEVD of the estimated CSD matrix R̂xx(z) and consequently strongly decorrelate

the received signals x[t]. However, this example also illustrates the unnecessarily large
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Figure 4.18 Total power spectral density of the expected signals, before and after ap-

plying the paraunitary transformation matrix H(z) obtained from the MS-SBR2 algo-

rithm.

orders of the diagonalised matrix D(z) and paraunitary matrix H(z) obtained from the

MS-SBR2 algorithm. The order growth in the para-Hermitian matrix is problematic as

it will lead to a significant increase in the computational complexity of the algorithm.

Also, it would be very costly to apply the final paraunitary matrix of large order to

subspace-based applications, as mentioned in Section 3.6.1.

To demonstrate how the truncation methods can be used to address these limita-

tions, the proposed MS-SBR2 algorithm was again applied to this example. However,

this time, the truncation methods are implemented at the end of each iteration of the

algorithm. Specifically, the energy based truncation method [86] is employed to gen-

erate the truncated para-Hermitian matrix R
(i)
tr (z) at the i-th iteration, whilst the lag

based truncation method [87] is used to obtain the truncated paraunitary matrix H
(i)
tr (z).

This experiment was carried out for four different choices of the para-Hermitian trunca-

tion parameter µPH and the paraunitary truncation parameter µPU : (i) µPH = µPU = 0,

(ii) µPH = µPU = 10−8, (iii) µPH = µPU = 10−6, and (iv) µPH = µPU = 10−4. Note that

µPH can also be set differently from µPU. In each case, the same stopping condition
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4.7 Strong Decorrelation of Convolutively Mixed Signals

defined in (4.27) was adopted. The results observed for the four cases are presented in

Table 4.2.

By using the truncation methods, the orders of the diagonalised matrix Dtr(z) and

the corresponding paraunitary matrix Htr(z), obtained from the MS-SBR2 algorithm,

are drastically reduced. Even removing the outer coefficient matrices with norm equal

to zero (to computational precision) by setting µPH = 0 significantly reduces the order

of the diagonalised matrix from 4388 (see Table 4.1) to 2438 without compromising

the accuracy of the decomposition, i.e. the para-Hermitian reconstruction error ξPH

remains unaffected. Similarly, by setting µPU = 0, the paraunitary matrix has been

truncated without losing the paraunitarity, and its order has been reduced from 2184 to

1372. Furthermore, if both µPH and µPU are set larger than zero, then the polynomial

orders can be further reduced. However, the transformation performed is no longer

norm preserving and will therefore result in some errors. The error measures ξPU and

ξPH will increase as the truncation parameters go up.

Another advantage of truncating the polynomial matrices is that the computational

load and memory storage requirements of the algorithm are reduced, which reduces

the time required for the algorithm to converge. This is clearly demonstrated by the

measures of the computational time shown in Table 4.2. With suitable choices of µPH

and µPU, the speed of the algorithm can be optimised whilst maintaining the error met-

rics ξPU and ξPH at a relatively low level. In practise, it is difficult to know in advance

what values to choose for the truncation parameters µPH and µPU, and proper choices

of these parameters will entirely depend on the requirements of the decomposition for

the specified application. If computational time and memory are not considered as the

most important factors when applying the MS-SBR2 algorithm, it is better to assign

very small values to the truncation parameters, for example µPH = µPU = 10−8, as

this not only brings down the polynomial order, but also minimises the error of the

decomposition.
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Table 4.2 Performance measures of the MS-SBR2 algorithm when applied to the same

CSD matrix example in Figure 4.13, implementing the energy based para-Hermitian

truncation and lag based paraunitary truncation methods for different values of µPH

and µPU.

Measures
Truncation parameter µPH = µPU =

0 10−8 10−6 10−4

converged value g 0.0960 0.0959 0.0925 0.0957

number of iterations 147 147 151 121

‖Dtr(z)‖2
F 792.5783 792.5777 792.5102 787.8571

‖off{Dtr(z)}‖2
F 1.8433 1.8440 1.7734 0.3288

order of Htr(z) 1372 105 99 44

order of Dtr(z) 2438 132 134 30

ξPU 1.7045×10−30 1.7636×10−6 1.5986×10−4 0.0071

ξPH 2.5679×10−30 7.5229×10−10 1.7834×10−6 0.0031

computational time (sec.)1 0.6166 0.1422 0.1338 0.0851

1 Computations undertaken on a PC with Intel(R) Core(TM) i7-3770T CPU @ 2.50GHz and 16 GB

RAM.

Figure 4.19(a) and (b) respectively illustrate how the orders of the paraunitary ma-

trix H(i)(z) and the transformed para-Hermitian matrix R(i)(z) increase as iterations

continue in the MS-SBR2 algorithm, for each of the five truncation cases recorded in

Tables 4.1 and 4.2. It can be seen clearly from the figure that the polynomial orders

are continuously increasing when no truncation method is used, which leads to a very

large order for both matrices. Furthermore, by comparing the individual plots for each

truncation value, it is clear that the order can be significantly reduced whilst still main-

taining an accurate level of decomposition. For the case of µPH = µPU = 10−4, the

MS-SBR2 algorithm outputs the resulting paraunitary matrix Htr(z) and the diagonal

matrix Dtr(z), and these matrices have the lowest orders among all the truncation cases.

The stem plots of Dtr(z) and Htr(z) are shown in Figures 4.20 and 4.21, respectively.
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Figure 4.19 The polynomial orders of: (a) the paraunitary matrix H(i)(z) and (b) the

transformed para-Hermitian matrix R(i)(z) at the end of each iteration i of the MS-

SBR2 algorithm for the cases when no truncation method is used and when the lag

based truncation method is applied with a chosen set of values of µPU and µPH.
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Figure 4.20 The truncated diagonal matrix Dtr(z) produced by applying the MS-SBR2

algorithm to the CSD matrix example R̂xx(z) shown in Figure 4.13, implementing the

energy based para-Hermitian truncation method with µPH = 10−4.
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Figure 4.21 The truncated paraunitary matrix Htr(z) produced by applying the MS-

SBR2 algorithm to the CSD matrix example R̂xx(z) shown in Figure 4.13, implement-

ing the lag based paraunitary truncation method with µPU = 10−4.

4.8 Chapter Summary

We have proposed the MS-SBR2 algorithm for calculating the PEVD of para-Hermitian

matrices. Compared to the original SBR2 algorithm, MS-SBR2 can achieve the same

level of diagonalisation with fewer iterations by annihilating multiple off-diagonal el-

ements at each iteration. Also, it has been found that MS-SBR2 outperforms SBR2

in terms of the convergence speed in the studied examples. Furthermore, by using the

direction-fixed shift approach, the OCMS-SBR2 algorithm has the advantage of con-

trolling the unnecessary growth in the polynomial order and so the requirements of

computational load and memory storage have been reduced, which therefore increases

the computational speed of the algorithm.

Furthermore, we have investigated how differently conditioned para-Hermitian ma-

trices, generated using the source model as discussed in Section 4.6, can affect the

performance of the SBR2 and MS-SBR2 algorithms. Two types of conditioning, in-

cluding the dynamic range and relations between the PSDs of the sources, have been
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4.8 Chapter Summary

used to control the properties of para-Hermitian matrices. Simulations results suggest

that for a lower dynamic range, the PEVD algorithms tend to converge faster in terms

of reducing the off-diagonal energy. In particular, the majorised source model can pro-

duce a better diagonalisation measure than the unmajorised version, whilst maintaining

a lower paraunitary order.

Finally, the proposed MS-SBR2 algorithm has been demonstrated in the applica-

tion of strong decorrelation for broadband signals. In the studied example, the MS-

SBR2 algorithm provides better performance than that of the SBR2 algorithm in terms

of the diagonalisation measure, the order of the resulting matrices, and the computa-

tional speed if no truncation method is used. Furthermore, we have demonstrated how

the truncation methods can be used to reduce the order of the polynomial matrices

H(i)(z) and R(i)(z) obtained from the MS-SBR2 algorithm. Simulation results have

suggested that suitable choices of the truncation parameters can be made to signifi-

cantly reduce the order of the polynomial matrices whilst still maintaining the decom-

position at an accurate level.
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Chapter 5

Comparative Analysis of the PEVD

Algorithms

5.1 Introduction

This chapter will focus on analysing different PEVD algorithms from two main per-

spectives, i.e., computational complexity and algorithm performance. First, we will

analyse the computational complexity of all PEVD algorithms discussed in Chapters 3

and 4. Computer simulations have been set up to examine how the proposed MS-SBR2

algorithm behaves in terms of the computational time when diagonalising an ensem-

ble of randomised para-Hermitian matrices with different sizes. Results have been

compared with those from other PEVD algorithms, including SBR2, SMD, ME-SMD,

and MSME-SMD. Following on that, we will assess the different PEVD algorithms

from the perspective of various performance metrics, including diagonalisation mea-

sure, convergence speed, and polynomial order. Some of these factors have already

been examined and compared for the SBR2 family in Chapter 4, but not for the SMD

family. Accordingly, this section will provide more thorough analysis of these factors.
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5.2 Analysis of Computational Complexity

To indicate the computational complexity of the different PEVD algorithms, the “big-

oh” notation O(·), introduced by Bachmann in 1894 [94], was chosen to represent

the number of multiply-accumulate (MAC) operations needed to reach the dominant

order in the size parameters M and L 1. For example, if an algorithm takes O(M2L)

time, it means that the algorithm performs fewer than KM2L MAC operations for some

constant K as M and L → ∞. Note that in the context of polynomial matrices, the

number of MAC operations is not just determined by the matrix dimension M but also

by the number of lags L of the input para-Hermitian matrix R(z) ∈ CM×M×L. It is

also important to note that the value of L increases as iterations continue [7, 35] and

the extent of the growth varies according to the input para-Hermitian matrix R(z) and

aspects of the algorithm itself.

As described in Section 3.2.2, each iteration in an iterative PEVD algorithm com-

prises three main steps: (i) search for the dominant off-diagonal energy, (ii) time-shift

the corresponding row and column onto the zero-lag plane using a paraunitary shift

matrix, and (iii) annihilate the off-diagonal elements at zero-lag using a unitary ro-

tation matrix and apply it to all other lags. As the implementation of the time-shift

step mainly involves pre-allocation of matrices, few arithmetic operations are involved.

However, it should be noted that the growth in polynomial order of R(z) caused by the

time-shift at each iteration will lead to an increase in the computational load of the key

operations that account for a large proportion of an algorithm’s running time. These op-

erations include norm calculation, comparisons for finding the maximum off-diagonal

element (or the column norm in the case of SMD), and the diagonalisation step, which

is also different between the SBR2 and SMD algorithm families. The computational

load with respect to these operations will now be discussed.

1An O(n) operation represents n-MAC operations that involve n multiplications and n additions.
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5.2.1 Computational Complexity of the SBR2 Family

The SBR2 Algorithm

For the SBR2 algorithm, since the maximum off-diagonal element can be simply found

by the L∞ norm as shown in (3.13), the vector norm does not need to be calculated. The

search for the maximum off-diagonal element usually requires an inspection of all the

off-diagonal elements in R(z). However, because of the para-Hermitian property, the

maximum search can be restricted to the lower or upper triangular area across all lags

of R(z). Thus, the search step has order of (M2L−ML)/2 ≈ M2L time complexity

assuming that one comparison for the maximum search is about as expensive as one

MAC operation. Furthermore, the diagonalisation step involves O(M) operations for

transferring the energy of the pairwise off-diagonal elements onto the diagonal at the

zero-lag, which is equivalent to the cost of a single Jacobi rotation in the classical (or

cyclic) Jacobi method for EVD [8], plus O(M3(L− 1)) ≈ O(M3L) MAC operations

for applying the rotation matrix to all other lags. This results in a total diagonalisation

complexity of O(M3L). Therefore, the total computational complexity for a single

iteration in SBR2 is dominated by the diagonalisation operation with the highest time

complexity of O(M3L), as shown in Table 5.1.

The MS-SBR2 Algorithm

The MS-SBR2 algorithm uses the same method to find the maxima as the SBR2 algo-

rithm but with continuously reduced search spaces such that previously shifted maxima

are not affected by later shifts [28]. This means that the cost of norm calculation is also

O(0). However, MS-SBR2 performs a maximum of ⌊M/2⌋ column shifts at each iter-

ation instead of only one column (or row) shift. Thus, the worst case search operation

in each iteration is undertaken over a total of

(M2−M)L/2
︸ ︷︷ ︸

1st search

+(M2−M− (4M−6))L/2
︸ ︷︷ ︸

2nd search

+ · · · +(M2−M− ·· ·)L/2
︸ ︷︷ ︸

⌊M/2⌋th search

(5.1)
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elements. Again, for the purpose of asymptotic analysis, only the highest order op-

eration is considered here, which means the time complexity of the search step in

MS-SBR2 is increased by a factor of ⌊M/2⌋ compared to that of SBR2. Without

loss of generality, we use a coefficient α1 to represent the additional cost that arises

in the “multiple shift” effect, so the overall search has O(α1M2L) complexity, where

1≤ α1 ≤ ⌊M/2⌋. Similarly, the diagonalisation step is O(α1M3L) with consideration

of a total of α1 independent Jacobi rotations. Therefore, by taking the dominant oper-

ations the overall complexity for a single iteration in MS-SBR2 is O(α1M3L).

5.2.2 Computational Complexity of the SMD Family

The SMD Algorithm

Unlike the SBR2 family, the SMD algorithm [35] aims to find the maximum L2 norm

‖ŝ(i−1)
k [τ]‖2 ,∀τ and k = 1, · · ·M in (3.40) at each iteration, so a total of ML column

norms of the para-Hermitian matrix have to be calculated. This implies that the max-

imum column norm is found by a search over O(ML). Each L2 norm involves a sum

of squares of elements and a square root operation, but for the purpose of comparison,

the square root operation can usually be omitted. Thus, with a total of M elements in

each column, the norm calculation is O(M2L).

For the diagonalisation step in SMD, a full EVD is applied to the zero-lag of S(i)′(z),

followed by the multiplications of the generated modal matrix with the remaining lags

S(i)′[τ], τ 6= 0 at each iteration, as mentioned in Section 3.5.1. Here the EVD is calcu-

lated using the MATLAB eig function, which calls LAPACK driver routines DSYEV for

the case of real symmetric matrices, and ZHEEV for Hermitian matrices (for inputs of

type double) [58]. These LAPACK routines firstly reduce the zero-lag matrix S(i)′[0]

to tridiagonal form by Householder transformations which involve about 4
3
M3 MAC

operations [95, 96], and then find the EVD of the tridiagonal matrix, followed by the

back-transformation to get the modal matrix of S(i)′[0], which needs 2M3 MAC opera-
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tions. The cost of solving the tridiagonal EVD varies according to the method used and

the numerical values in the matrix. However, most existing software such as LAPACK

takes K1M3 operations in the worst case, where K1 is a modest number usually varying

from 4 to 12 [96]. Therefore, the number of MAC operations for the diagonalisation

step is summed up as

4

3
M3 +K1M3 +2M3 +M3(L−1) = (

7

3
+K1)M

3 +M3L

= K2M3 +M3L ,

(5.2)

where K2 =
7
3
+K1 is a modest number related to K1. This indicates that the total cost

for a single iteration in SMD is dominated by the diagonalisation step with K2M3 +

M3L MAC operations. Clearly, for a significantly large value of L, the complexity

is not dominated by the EVD calculation but rather by the application of the modal

matrix to the rest of the lags, which is determined by the term M3L. Therefore, the

diagonalisation step in SMD has O(β1M3L) time complexity in which β1 =
K2

L
+1 = 1

for L → ∞.

The ME-SMD Algorithm

The ME-SMD algorithm [35] replaces the L2 norm as in the case of SMD with L∞ to

identify the maximum off-diagonal element at each iteration. By doing this, it avoids

any norm calculation, but an enlarged maximum search over a set of O(M2L) elements

is required. Although ME-SMD also calculates a full EVD of S(i)′[0] at every iteration,

the energy transferred onto the diagonal by ME-SMD is always smaller or equal to that

eliminated by the original SMD algorithm [97]. Similar to SMD, the diagonalisation

in ME-SMD requires O(β2M3L) MAC operations. Note that a different coefficient β2

is used here in order to distinguish the complexity from that of the SMD algorithm,

although they might be the same in most cases. Overall, the ME-SMD algorithm has

a very similar behaviour as the original SMD algorithm in terms of complexity, which

is dominated by the EVD calculation and modal matrix multiplications.
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The MSME-SMD Algorithm

At the beginning of each iteration the MSME-SMD algorithm [30] is similar to ME-

SMD in terms of scanning the maximum off-diagonal element based on L∞ norm, and

therefore it does not need any norm computation. However, the MSME-SMD algo-

rithm does not just shift one column to the zero-lag at each iteration; instead, a total of

M− 1 column shifts will be performed in order to maximise the energy transfer. For

this reason, the cost of energy comparisons for MSME-SMD involves a total of M−1

times searching over a set of M2L elements, which results in O(M3L). Again, M− 1

has been simplified to M here for the purpose of asymptotic analysis. The diagonalisa-

tion complexity of MSME-SMD is maintained the same as the other two versions of

SMD, but it should be noted that the value of L varies with algorithms and grows with

each iteration [97]. Similarly, a modest number β3 is used to emphasise the difference

of the complexity analysis.

Note that the computational complexity of all PEVD algorithms discussed here

does not include the computation of the paraunitary matrix H(z) and any order trunca-

tion process. The overall computational complexity of the different PEVD algorithms

is summarised in Table 5.1.

Table 5.1 Computational complexity of the different PEVD algorithms.

Algorithm

Computational complexity of

norm calculation comparisons diagonalisation single iteration

SBR2 O(0) O(M2L) O(M3L) O(M3L)

MS-SBR2 O(0) O(α1M2L) O(α1M3L) O(α1M3L)

SMD O(M2L) O(ML) O(β1M3L) O(β1M3L)

ME-SMD O(0) O(M2L) O(β2M3L) O(β2M3L)

MSME-SMD O(0) O(M3L) O(β3M3L) O(β3M3L)
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5.3 Experimental Results and Analysis

This section will focus on assessing different PEVD algorithms in terms of complex-

ity, convergence behaviour, and polynomial order growth. In addition, two different

paraunitary matrix truncation approaches discussed in Section 3.6.3 are also compared

among the PEVD algorithms by means of a set of numerical simulations.

5.3.1 Simulation Scenario and Performance Metrics

As the computational cost O(·) of each PEVD algorithm depends on the matrix dimen-

sion M and the lag dimension L of the input para-Hermitian matrix R(z), we choose

different values of M and L for the test matrix R(z) in order to see how the dimension

parameters impact the efficiency of the PEVD algorithms. Specifically, an ensemble

of 1000 random para-Hermitian matrices R(z) ∈CM×M with lag dimension 2L−1 are

considered for M = 3, 6, · · · , 30 and L = 50, 100, · · · , 500. Each instance of R(z) is

uniquely generated by R(z) = A(z)Ã(z), where A(z) ∈ CM×M×L is a random poly-

nomial matrix whose entries are chosen to be independent and identically distributed

zero mean and unit variance complex Gaussian values, i.e. a jk[τ] ∼ N(0, 1) ,∀τ and

j, k = 1, 2, · · · , M.

In this experiment, mean execution time E{t} of a single iteration over an ensem-

ble of 1000 realisations is used to examine the computational cost of each algorithm,

and the simulation was implemented in MATLAB R2016a with the following desk-

top computer specifications: Linux Mint 17.1 with Intel(R) Core(TM) i7-2600 CPU

@ 3.40GHz × 4 cores and 16 GB RAM. Apart from execution time, normalised off-

diagonal energy η(i), as described in (4.19), is also recorded after i iterations in order

to measure the level of diagonalisation by these algorithms. For the detailed definition

of η(i), refer to Section 4.5.1.
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5.3.2 Computational Run-Time Evaluation

The asymptotic analysis based on O(·) gives an idea of how rapidly the running time of

the PEVD algorithm grows as the dimension of R(z) increases. It also concisely cap-

tures the important differences in the asymptotic growth rates of different algorithms.

The real-time complexity of the SBR2 algorithm is illustrated in Figure 5.1(a): with

a fixed matrix dimension M, the mean execution time E{t} grows linearly with the in-

crease of the lag dimension L. Similarly, with L unchanged, the SBR2 algorithm takes

cubic time, which is consistent with the complexity analysis of O(M3L). Figure 5.1(b)

shows the real-time performance of the MS-SBR2 algorithm versus different sizes of

the input para-Hermitian matrix. It can be seen clearly that MS-SBR2 is significantly

slower for large size matrices compared to SBR2, but it is important to note that more

off-diagonal energy is eliminated at each iteration when applying MS-SBR2.

Although the ME-SMD algorithm (based on the maximum element search) as

shown in Figure 5.1(d) is designed to be less costly than the SMD algorithm (based

on the maximum column norm search) as in Figure 5.1(c), they both present very sim-

ilar asymptotic behaviour of execution time for different matrix sizes. This is because

both algorithms operate the same EVD routine at the diagonalisation step and that step

dominates the computational cost at each iteration. Figure 5.1(e) shows the real-time

performance of the MSME-SMD algorithm. The steep polynomial increase with the

matrix dimension M and the linear growth with the number of lags L clearly reflect the

complexity analysis of O(M3L). Compared to the other algorithms, the MSME-SMD

algorithm requires the most execution time to complete a single iteration, especially

for large matrices. This is because MSME-SMD has a total of (M−1) shifts at each

iteration, which can make the polynomial order significantly large therefore dramati-

cally increasing the computational load for the subsequent operations, including a full

EVD to diagonalise the zero-lag matrix and the multiplications of the modal matrix to

the other lags.
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Figure 5.1 Time complexity of different PEVD algorithms for diagonalising ran-

domly generated para-Hermitian matrices, showing mean execution time E{t} of a

single iteration for varying matrix dimensions M = 3, 6, · · · , 30 and lag dimensions

L = 50, 100, · · · , 500 over an ensemble of 1000 realisations.

5.3.3 Convergence Analysis

While the previous section has shown how different matrix sizes can impact the com-

putational complexity of the PEVD algorithms, this section will now analyse the con-

vergence behaviour of these algorithms in terms of the computational time over 100

iterations. The para-Hermitian matrix examples used here are the same as those in

Section 5.3.2, but with the matrix dimension M restricted to 6, 12, and 24 and lag

length L = 5 only. Thus, three sets of experimental results will be presented here in

accordance with the choice of test matrices.

Figure 5.2 illustrates the average remaining off-diagonal energy versus mean exe-

cution time when applying the PEVD algorithms to an ensemble of randomised para-

Hermitian matrices over 100 iterations, and Table 5.2 shows the average final length of

the transformed para-Hermitian matrix R(100)(z) and the paraunitary matrix H(100)(z)
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for when M = 6, 12, and24, respectively. Note that no truncation method is used when

conducting this experiment. With the same amount of off-diagonal energy reduction,

it can be clearly seen that the MS-SBR2 algorithm converges faster than all the other

PEVD algorithms for all three cases, and the SBR2 algorithm shows a marginal fall

back but still outperforms the SMD algorithm family. Despite the highest computa-

tional complexity and fastest growth in L, the MSME-SMD algorithm outperforms the

other two versions of SMD in both convergence speed and diagonalisation measure

aspects. Although the ME-SMD algorithm is designed with a lower complexity search

strategy, it does not seem to be advantageous over the conventional SMD algorithm in

terms of the convergence speed, as most of the cost is dominated by the application of

the EVD step in (3.39).
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Figure 5.2 Convergence comparison of the PEVD algorithms showing the reduction

of off-diagonal energy vs. mean execution time over 100 iterations for an ensemble of

randomised para-Hermitian matrices with sizes M = 6, 12, and24.

Overall, if only considering the algorithm efficiency, MS-SBR2 appears to be the

best choice among these algorithms. Otherwise, MSME-SMD provides the best diago-

nalisation and decent convergence speed at the cost of high computational load. Upon
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inspection of the average final length for both R(100)(z) and H(100)(z), it can be seen

that the polynomial orders can become extremely large, especially for the MSME-

SMD algorithm. Since no truncation method is used, the paraunitary matrix H(i)(z)

always has half the amount of order growth as the para-Hermitian matrix R(i)(z).

Table 5.2 Average length of the resulting polynomial matrices obtained from applying

various PEVD algorithms to an ensemble of randomised para-Hermitian matrices with

sizes M = 6, 12, and24 for 100 iterations, without using any truncation methods.

Algorithm
Average length of R(100)(z) Average length of H(100)(z)

M = 6 M = 12 M = 24 M = 6 M = 12 M = 24

SBR2 809 541 406 401 267 200

MS-SBR2 2166 2697 3421 1080 1345 1707

SMD 1092 777 585 543 385 289

ME-SMD 1538 1456 1250 766 725 622

MSME-SMD 13603 39311 112536 6798 19652 56265

5.3.4 Polynomial Order Truncation

As discussed in Section 3.6, the order of the para-Hermitian and paraunitary matrices

can grow unnecessarily large with increasing iterations when performing the PEVD.

This can cause significant increasing of the computational complexity of the algorithm,

which can subsequently slow down the computational speed. In addition, the cost of

applying the finally extracted paraunitary matrix to broadband subspace based appli-

cations can be very expensive. As illustrated in Table 5.2, without order truncation

involved, the final length of R(100)(z) is much larger than the length of the input matrix

R(z) (of order 8).

This section will focus on examining how the order truncation methods perform

on various PEVD algorithms. The para-Hermitian matrix examples used here are the

same as those in Section 5.3.1, but with dimension parameters restricted to only M = 6

and L = 5. As to the simulation, the energy based truncation method, as mentioned

in Section 3.6.2, is used to shorten the para-Hermitian matrix, whilst two different
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paraunitary order truncation methods, including the lag based truncation [87] and row-

shift corrected truncation [83], are employed and compared for all PEVD algorithms.

It has been demonstrated in [83, 85] that the row-shift corrected truncation for pa-

raunitary matrices has the potential benefit of achieving more aggressive order reduc-

tion than that of the lag-based method [87], whilst keeping the paraunitary reconstruc-

tion error at a similar level. The test para-Hermitian matrices R(z) used in those papers

are generated from the source model outlined in [35], where the ground truth PEVD

comprises arbitrary paraunitary matrix factors and a spectrally majorised diagonal ma-

trix. However, in this section, these two different paraunitary truncation methods are

assessed and compared by means of the randomly generated para-Hermitian matrices,

i.e., R(z) = A(z)Ã(z), as mentioned in Section 5.3.1.

Truncated Para-Hermitian Order and Reconstruction Error

The truncation of the transformed para-Hermitian matrix R(i)(z) at the i-th iteration of

the PEVD was implemented for three specific values of µPH: (i) µPH = 10−5, (ii) µPH =

10−4, and (iii) µPH = 10−3. In each case, each of the PEVD algorithms is applied to an

ensemble of 1000 randomly generated para-Hermitian matrices for 100 iterations, and

at the i-th iteration the truncation method is applied to the untrimmed para-Hermitian

matrix R(i)(z), resulting in the truncated version represented by R
(i)
tr (z). This procedure

is very similar to the simulation scenario described in Section 4.5.4. This means that

there will be approximately the same amount of energy being removed from the input

matrix R(z) for every truncation step, i.e., ‖R(i+1)
tr ‖2

F ≈ ‖R
(i)
tr ‖2

F, i = 1, · · · , 99. In other

words, the order truncation is not carried out as part of the iterative process in the

PEVD algorithms.

The final average order of R
(100)
tr (z) for the three cases is shown in Table 5.3(a).

Accordingly, the para-Hermitian matrix reconstruction error ξ
(100)
PH can be calculated

using (4.20), and the ensemble average results are presented in Table 5.3(b). The re-

sults presented here show the great benefit of truncating the para-Hermitian matrix.
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Compared to the untrimmed results presented in Table 5.2, the order of the trans-

formed para-Hermitian matrix has been dramatically reduced with little compromise

to the accuracy of the decomposition. For example, in the case of µPH = 10−5, the

MSME-SMD algorithm has the largest order reduction, from 13603 to 128, amount-

ing to 1−128/13603≈ 99.1%. The MS-SBR2 algorithm has the second largest order

reduction, amounting to 1− 84/2166 ≈ 96.1%. When µPH is increased, more outer

coefficient matrices in R(100)(z) will be truncated, which leads to an increase of the

reconstruction error ξ
(100)
PH . It is interesting to see that the MSME-SMD algorithm has

the most significant order reduction when µPH increased to 10−3. This means that the

coefficients in R(100)(z) are distributed more sparsely due to the multiple-shift opera-

tion in comparison with other algorithms.

Table 5.3 Average order of the truncated para-Hermitian matrix and the corresponding

reconstruction error obtained from the PEVD algorithms after 100 iterations, imple-

menting the energy based truncation method with different values of µPH.

(a) Average order of R
(100)
tr (z)

Algorithm µPH = 10−5 µPH = 10−4 µPH = 10−3

SBR2 59 51 42

MS-SBR2 84 70 52

SMD 73 59 36

ME-SMD 116 94 70

MSME-SMD 128 87 21

(b) Average para-Hermitian matrix reconstruction error E{ξ (100)
PH }

Algorithm µPH = 10−5 µPH = 10−4 µPH = 10−3

SBR2 1.084×10−8 9.904×10−7 8.771×10−5

MS-SBR2 1.512×10−8 1.190×10−6 7.961×10−5

SMD 1.808×10−8 1.537×10−6 1.104×10−4

ME-SMD 1.462×10−8 1.057×10−6 7.588×10−5

MSME-SMD 5.032×10−8 5.243×10−6 1.486×10−4
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Truncated Paraunitary Order and Diagonalisation Measure

To compare these two paraunitary truncation approaches, the lag based paraunitary

truncation parameter µPU is chosen from three different values, and set to be the same

as the row-shift truncation parameter µ ′PU, i.e., µPU = µ ′PU = 10−5, 10−4, and10−3.

Figure 5.3 shows the average paraunitary order and diagonalisation measures for the

different PEVD algorithms and truncation methods over 100 iterations. Here, results

are recorded after each iteration. As shown in Figures 5.3 (a), (c), and (e), the parau-

nitary order truncated using row-shift corrected methods is lower than that using the

lag-based method for all PEVD algorithms. Especially for MSME-SMD, the benefit

of using the row-shift truncation is much more obvious than others as iterations con-

tinue. In addition, the SBR2 family appears to have slightly better order reduction than

both the SMD and ME-SMD algorithms. This is because there tend to be fewer outer

lags which need to be corrected by the row-shift truncation in the SMD and ME-SMD

algorithms for the studied examples. Figures 5.3 (b), (d), and (f) illustrate that for the

same level of diagonalisation, SMD with the row-shift truncation produces the lowest

paraunitary order for this specific example.

Table 5.4 presents the average order of the truncated paraunitary matrix H
(100)
tr (z)

obtained from the two different truncation methods with three specific settings of the

truncation parameters. It can be seen clearly that the truncated paraunitary order from

the row-shift method is always smaller than that from the lag based truncation method

for all PEVD algorithms.

Paraunitary Matrix Reconstruction Error

In addition to the order truncation measure, the paraunitary matrix reconstruction er-

rors for the different truncation methods and PEVD algorithms are also recorded. With

the same truncation parameter value (µPU = µ ′PU) for both truncation methods, each

PEVD algorithm presents very similar reconstruction errors, as shown in Figure 5.4.

The reconstruction error ξ
(i)
PU starts at a very low value but quickly increases as the
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Figure 5.3 Comparison of paraunitary order truncation methods when applied to the

different PEVD algorithms, showing (a), (c), and (e) average truncated paraunitary or-

der vs. iterations, and (b), (d), and (f) diagonalisation measure vs. average truncated

paraunitary order, over 1000 realisations when µPU = µ ′PU = 10−3, 10−4, and10−5, re-

spectively.

truncation algorithms begin to remove the outer lags that contain the specified propor-

tion of energy of the paraunitary matrix by µPU or µ ′PU. In addition, the growth rate of

ξ
(i)
PU dramatically slows after a certain number of iterations.
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Table 5.4 Average order of the truncated paraunitary matrix obtained from the PEVD

algorithms after 100 iterations, implementing the lag based and row-shift corrected

truncation methods, respectively.

Algorithm

Average order of H
(100)
tr for lag

based truncation µPU =

Average order of H
(100)
tr for

row-shift truncation µ ′PU =

10−5 10−4 10−3 10−5 10−4 10−3

SBR2 43 37 31 35 30 24

MS-SBR2 71 60 48 63 52 41

SMD 63 53 42 58 48 37

ME-SMD 105 88 70 99 82 64

MSME-SMD 118 98 78 102 82 62
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Figure 5.4 Average paraunitary matrix reconstruction error E{ξ (i)
PU} vs. iterations for

the different truncation methods and PEVD algorithms, showing (a), (b), and (c) for

different values of the truncation parameter.
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The final average errors E{ξ (100)
PU } after 100 iterations for different truncation meth-

ods and PEVD algorithms are recorded in Table 5.5. Clearly, with the same truncation

parameter settings µPU = µ ′PU, the row-shift corrected method has lower error for all

PEVD algorithms except for the single case of ME-SMD with µPU = µ ′PU = 10−5, in

which the lag based truncation shows a slightly better error result than the row-shift

method.

Table 5.5 Average paraunitary matrix reconstruction error obtained from the PEVD

algorithms after 100 iterations, showing (a) implementing the lag based truncation

with µPU and (b) the row-shift corrected truncation with µ ′PU.

(a) Lag based truncation

Algorithm
Average paraunitary matrix reconstruction error E{ξ (100)

PU } for

µPU = 10−5 µPU = 10−4 µPU = 10−3

SBR2 1.576×10−5 1.608×10−4 1.595×10−3

MS-SBR2 1.718×10−5 1.703×10−4 1.637×10−3

SMD 1.679×10−5 1.649×10−4 1.576×10−3

ME-SMD 1.698×10−5 1.657×10−4 1.580×10−3

MSME-SMD 1.699×10−5 1.665×10−4 1.615×10−3

(b) Row-shift corrected truncation

Algorithm
Average paraunitary matrix reconstruction error E{ξ (100)

PU } for

µ ′PU = 10−5 µ ′PU = 10−4 µ ′PU = 10−3

SBR2 1.545×10−5 1.543×10−4 1.513×10−3

MS-SBR2 1.666×10−5 1.625×10−4 1.528×10−3

SMD 1.643×10−5 1.606×10−4 1.515×10−3

ME-SMD 1.710×10−5 1.655×10−4 1.560×10−3

MSME-SMD 1.613×10−5 1.551×10−4 1.392×10−3

5.4 Chapter Summary

In this chapter, the complexities of the different PEVD algorithms, including the SBR2

and SMD families, have been analysed and compared in detail. With the simple Jacobi
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rotation, the SBR2 algorithm has the lowest complexity among all the PEVD algo-

rithms; however, it can only transfer a small amount of off-diagonal energy onto the

diagonal at each iteration. For the SMD family, as a full EVD is applied to the zero-

lag matrix at each iteration, there is usually more off-diagonal energy transferred onto

the diagonal compared to the SBR2 algorithm, but using a full EVD also significantly

increases the complexity of the SMD family, especially for matrices with large sizes.

When the more complex multiple-shift strategy is introduced, the MS-SBR2 algorithm

can transfer more energy at each iteration, which makes the algorithm converge faster

than SBR2 in terms of reducing the off-diagonal energy. Although the complexity of

MS-SBR2 has been increased, the MS-SBR2 algorithm is the fastest in terms of com-

putational time, as shown by the studied examples. Furthermore, the MSME-SMD

algorithm can achieve the best diagonalisation measure; however, this comes at the

cost of the highest complexity and extremely large polynomial order. Although the

maximum element based ME-SMD algorithm is designed to have lower complexity

than the column norm based SMD algorithm, it does not seem to be advantageous in

terms of the computational speed. On the contrary, the SMD algorithm is computa-

tionally faster and can usually bring more off-diagonal energy onto the zero-lag plane

according to the experimental results.

As the order of polynomial matrices will generally increase after each iteration of

the PEVD, and the extent of the order growth is determined by both the algorithm and

the input para-Hermitian matrix R(z), it is very difficult to analyse the exact complex-

ities for each of the PEVD algorithms after running a number of iterations. It is also

important to note that the truncation methods have not been taken into account when

analysing the computational complexity. Nonetheless, the main complexity of the trun-

cation methods lies in the calculation of norms, and the amount of norm calculations

is determined by the specified upper bound proportion of the squared Frobenius norm

of the polynomial matrix, i.e., the truncation parameter µ .
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Simulations have demonstrated that the order of the polynomial matrices obtained

from the PEVD algorithms can be drastically reduced using the truncation approaches

whilst still maintaining a decent level of accuracy. The two different paraunitary trun-

cation methods mentioned in Section 3.6.3 have also been compared across all PEVD

algorithms by means of numerical examples. Experimental results have shown that the

row-shift corrected truncation method outperforms the lag based method in terms of

reducing the paraunitary order, and more interestingly, the paraunitary reconstruction

error is even found to be slightly lower for the row-shift truncation method in most of

the studied cases.
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Chapter 6

Multichannel Spectral Factorisation

using the Polynomial Eigenvalue

Decomposition Method

6.1 Introduction

This chapter presents one potential application of polynomial eigenvalue decomposi-

tion (PEVD) to the multichannel spectral factorisation problem. Spectral factorisation

arises in the analysis and design of linear systems, such as finding a causal system (or

minimum-phase system) with a given spectral density function, which has attracted

significant interest in digital signal processing and communications in recent years.

Applications of spectral factorisation have been found in many areas, such as design-

ing quadrature-mirror filter banks [98], optimum transmit-and-receive filter matrices

for precoding and equalisation of multiple input multiple output (MIMO) communi-

cations [99], minimum-phase finite impulse response (FIR) precoders for multicasting

MIMO frequency-selective channels [100], and quadrature amplitude modulation filter

bank based multi-carrier (QAM-FBMC) systems [101].

115



6.1 Introduction

There exist a number of algorithms for calculating spectral factorisation, such as a

Newton-Raphson based method proposed by Wilson for the scalar case [102] and the

polynomial matrix case [103], and the spectral factorisation algorithm developed by

Janashia et al. [104]. A paper written by Kučera [105] illustrated some major paramet-

ric methods for calculating the spectral factorisation, including Toeplitz matrix decom-

position and Newton-Raphson iterations. Furthermore, a survey of spectral factorisa-

tion methods was presented by Sayed and Kailath [106] that briefly reviewed different

methods including the Bauer method, the Schur algorithm, the Levinson-Durbin algo-

rithm, and techniques based on the Riccati equation, the Kalman filter, and so on. Most

of these algorithms, with the exception of those of Wilson and Janashia, do not extend

to the multichannel situation. Wilson’s algorithm seems to provide a viable approach

to the multichannel spectral factorisation problem in terms of stability and reliability

but is reputed to run into problems when the number of channels grows too large.

In this chapter, we introduce a novel approach to compute the multichannel spectral

factorisation. The proposed method employs a PEVD algorithm to break down the

multichannel spectral factorisation problem into a set of independent single channel

spectral factorisation problems for which suitable algorithms already exist. In effect,

it transforms the multichannel spectral factorisation problem into one which is much

easier to solve. The proposed method can be used to calculate the approximate spectral

factor of any para-Hermitian polynomial matrix. Numerical examples are presented to

demonstrate its ability to find the valid spectral factor and to demonstrate the level

of accuracy which can be achieved. Furthermore, the fundamental indeterminacy of

spectral factorisation has been exploited in order to minimise the order of the resulting

spectral factor.

The rest of this chapter is structured as follows. We start by introducing the concept

of one-dimensional spectral factorisation in Section 6.2, followed by the multichannel

spectral factorisation and our proposed method in Section 6.3. Numerical examples

are presented in Section 6.4 and conclusions are drawn in Section 6.5.
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6.2 One-Dimensional Spectral Factorization

6.2 One-Dimensional Spectral Factorization

The one-dimensional spectral factorisation problem can be stated briefly as follows.

Given a data sequence g[n], derive an associated causal sequence h[n] such that

g[n] = h[n]⊗h∗[−n] , (6.1)

or equivalently in z-transform

G(z) = H(z)H∗(1/z) = G+(z)G−(z) . (6.2)

Both g[n] and h[n] represent discrete digital sequences. Note that the sequence g[n]

constitutes the autocorrelation of h[n], and only when g[n] is a symmetric sequence

which satisfies g[n] = g∗[−n] can it be factored as in (6.1). Equation (6.2) can be seen

as the product of an outer spectral factor G+(z) and an inner spectral factor G−(z)

[104]. Finding the spectral factor of g[n] corresponds to evaluating all the roots of G(z)

expressed as a proper polynomial in terms of z. For example, considering an FIR filter

of length L with its z-transform given by

G(z) =
L−1

∑
n=0

g[n]z−n = g[0]+g[1]z−1+ · · · +g[L−1]z−(L−1), (6.3)

we can rewrite this function by multiplying both sides with zL−1, such that

G(z) =
g[0]zL−1+g[1]zL−2+ · · · +g[L−1]

zL−1
. (6.4)

This then constitutes a proper polynomial as required, and hence the zeros of this

polynomial are the roots of the numerator in (6.4).

In general, there is an infinite number of sequences that share the same autocorrela-

tion as in (6.1). This leaves us with a large ambiguity. One way to resolve this ambigu-

ity is to insist on a causal function, which is also known as the minimum-phase solution.
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Since there is only one possible minimum-phase function with a given autocorrelation,

the minimum-phase solution determines the uniqueness of one-dimensional spectral

factorisation. Therefore, to find the minimum-phase solution, corresponding to a sta-

ble filter, only the roots inside the unit circle, |z| < 1, and half of those roots on the

unit circle, |z| = 1, can be chosen [107]. Then the problem remains to find h[n] from

the selected roots, which can be easily solved using, for example, Wilson’s algorithm

[102].

6.3 Multichannel Spectral Factorisation

One-dimensional spectral factorisation is only suitable for single input and single out-

put (SISO) systems. When it comes to MIMO systems, multichannel spectral factorisa-

tion (or matrix spectral factorisation) is needed. The original approach for solving mul-

tichannel spectral factorisation was proposed in [108] by Wiener. Since then, tens of

different algorithms have appeared in the literature (see the survey papers [105, 106]).

All existing method have the same necessary and sufficient conditions for the exis-

tence of spectral factorisation, which states that if a para-Hermitian polynomial matrix

R(z) ∈ C
M×M is positive definite on the unit circle, that is, R(z)> 0, ∀|z| = 1, and if

det{R(e jθ )} for z = e jθ satisfies the Paley-Wiener condition [104, 108–110]

∫ π

−π
ln det{R(e jθ )}dθ < ∞ , (6.5)

then R(z) has a spectral factorisation such that

R(z) = R+(z)R−(z) = R+(z)R̃
+
(z) , (6.6)

where R+(z) and R−(z) are respectively defined as an outer and inner spectral factor

[104], and R−(z) is the paraconjugate of R+(z), i.e., R−(z) = R̃
+
(z).
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6.3.1 Ambiguity of Multichannel Spectral Factorisation

The spectral factor R+(z) (or R−(z)) in (6.6) is not unique due to the fundamental in-

determinacy in spectral factorisation whereby if R+(z) is a valid outer spectral factor

of R(z), so also is R̄
+
(z) = R+(z)U(z) where U(z) represents any paraunitary polyno-

mial matrix which preserves the essential properties associated with an outer spectral

factor. It follows that

R(z) = R̄
+
(z)R̄

−
(z) = R+(z)U(z)Ũ(z)R−(z) = R+(z)R−(z) . (6.7)

This includes simple examples such as U(z) = zT I, U(z) = S where S is a simple

unitary matrix, or the case in which U(z) takes the form of a diagonal matrix with each

entry given by a power of z which need not be the same for all entries.

Similar to the scalar spectral factorisation, the unique solution of matrix spectral

factorisation is also a key problem which has been frequently studied. Some of the

latest papers, including [99], [104], and [111], suggest that the outer spectral factor

R+(z) in (6.6) is unique up to a constant unitary factor C, such that

R+
c (z) = R+(z)C , (6.8)

and the unique spectral factor R+
c (z) is positive definite at the origin, i.e., R+

c (0) > 0.

Furthermore, it admits the following conditions:

1. det{R+
c (z)} 6= 0, ∀|z|< 1;

2. the coefficient matrix R+
c [0] is lower triangular with unit diagonal entries.

However, the spectral factor found by our proposed method does not guarantee

the unique structure as mentioned above because of the polynomial order growth in

the PEVD algorithms. In addition, there is another ambiguity in the paraunitary ma-

trix H(z) obtained from the PEVD algorithms, as discussed in Section 3.2.1, so the

resulting spectral factor may vary across different PEVD algorithms. Having said that,
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6.3 Multichannel Spectral Factorisation

when the outer and inner spectral factors are multiplied together, the reconstructed

para-Hermitian matrix R̂(z) = R+(z)R−(z) is nonetheless accurate. This proves that

our proposed method is valid and feasible in terms of solving the multichannel spectral

factorisation. Details of the proposed multichannel spectral factorisation method will

now be discussed.

6.3.2 Outline of the Proposed Algorithm

Given a para-Hermitian matrix R(z) ∈ C
M×M, the proposed multichannel spectral

factorisation method starts by diagonalising R(z) using a PEVD algorithm. After a

sufficient number of iterations, the PEVD algorithm generates the diagonal matrix

D(z) and the corresponding paraunitary matrix H(z). Each of the diagonal entries

di(z), i = 1, · · · , M can then be factored as the product of its outer and inner spectral

factors, such that

D(z) = diag{d1(z), d2(z), · · · , dM(z)}

= diag
{

d+
1 (z), · · · , d+

M(z)
}

diag
{

d−1 (z), · · · , d−M(z)
}

= D+(z)D−(z) ,

(6.9)

where d+
i (z) and d−i (z) for i = 1, · · · , M are the outer and inner spectral factors of

di(z), respectively.

Each polynomial element di(z) within D(z) defines a single-channel spectral fac-

torisation problem. In effect, the PEVD transformation breaks the multichannel spec-

tral factorisation problem down into a set of distinct single-channel spectral factori-

sation problems. In this thesis, the single-channel spectral factorisation of di(z) is

calculated using the Newton-Raphson method, as adopted for the spf(·) function in

the MATLAB PolyX toolbox [112].

The spectral factors of the diagonal matrix D(z) in (6.9) are then used to construct

the spectral factor of the input para-Hermitian matrix R(z). By applying the inverse
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6.3 Multichannel Spectral Factorisation

decomposition to the PEVD equation in (2.26), we have

R(z)≈ H̃(z)D(z)H(z) , (6.10)

and on substituting (6.9) into (6.10), this equation can be rewritten as

R(z) = R+(z)R−(z)≈ H̃(z)D+(z)D−(z)H(z) . (6.11)

Note that the paraunitary matrix H(z) satisfies det{H(z)} = az−∆, |a| = 1 [69], and

the transformation required to generate R+(z) does not affect the outer spectral factor

property of D+(z), such that

det{R+(z)}= det{H̃(z)D+(z)}= az−∆ det{D+(z)}

= az−∆
M

∏
i=1

d+
i (z) 6= 0, ∀|z|< 1 .

(6.12)

Thus,

det{D+(z)} 6= 0, ∀|z|< 1 , (6.13)

which means R(z) has to be full rank when applying the PEVD. Therefore, the result-

ing outer spectral factor R+(z) can be estimated as H̃(z)D+(z), and the inner spectral

factor R−(z) can be estimated as D−(z)H(z), which is the paraconjugate of H̃(z)D+(z).

6.3.3 Order Shortening of the Spectral Factor

As the polynomial orders of H(z) and D(z) can grow unnecessarily large after the iter-

ative paraunitary transformations using PEVD, the computed spectral factors in (6.11)

can accumulate time delays which are unnecessarily large. Spectral factors with large

polynomial orders are problematic, as they can be very costly to implement in minimum-

phase filter based applications as mentioned previously.
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To keep the order of the spectral factors as low as possible, the truncation methods

mentioned in Section 3.6 are employed to shorten the orders of H(z) and D(z). For

the results presented in the next section, the order truncation will only be implemented

once after the MS-SBR2 algorithm converges. In particular, lag bound fixed truncation

[67] for the diagonal matrix D(z) is used, whilst both paraunitary matrix truncation

methods, including the lag based truncation [87] and the row-shift corrected truncation

[83], are used to truncate the resulting paraunitary matrix H(z). The performance

of each paraunitary truncation method will be examined based on the order and the

accuracy of the resulting spectral factor.

6.4 Numerical Examples

This section focuses on demonstrating the concept and feasibility of the MS-SBR2

algorithm based spectral factorisation method by means of two worked examples.

6.4.1 Example 1

A simple 2×2 para-Hermitian matrix used by Janashia et al. [104] was chosen as the

first test example, where the matrix is given by

R1(z) =






2z−1 +6+2z 7z−1 +22+11z

11z−1 +22+7z 38z−1 +84+38z




 . (6.14)

With the stopping condition, mentioned in (4.27), set as 10−4×
√

1
2 ∑2

m=1 |rmm[0]|2 ≈

0.006, the MS-SBR2 algorithm takes 153 iterations to diagonalise this matrix, and the

resulting diagonal matrix D1(z) after truncation is given by

D1(z)≈






40z−1 +90+40z 0

0 −0.01z−1 +0.03−0.01z




 . (6.15)
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Note that the lag bound fixed truncation method in Section 3.6.2 was employed to trun-

cate any small coefficients in the diagonalised para-Hermitian matrix, and the order of

D1(z) has been shortened to the same length as the input para-Hermitian matrix R1(z)

(order of 2). Figure 6.1(a) and (b) respectively show the stem plot of the diagonal ma-

trix D1(z) and the truncated paraunitary matrix H1(z) to which the lag based truncation

was applied with µPU = 10−4. Figure 6.2 illustrates the power spectral density of the

on-diagonal polynomials in D1(z). Upon inspection of these plots, the para-Hermitian

matrix R1(z) has been fully diagonalised whilst D1(z) has achieved spectral majori-

sation. Also, R1(z) is almost generically rank deficient but not quite. Accordingly
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Figure 6.1 The resulting matrices obtained from applying the MS-SBR2 algorithm to

Example (6.14), showing (a) the diagonalised matrix with lag bound fixed truncation

and (b) the truncated paraunitary matrix resulting from lag based truncation.
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Figure 6.2 Power spectral density for the on-diagonal polynomials in D1(z) obtained

from MS-SBR2.

the outer spectral factor D+
1 (z) can be obtained by independently applying the one-
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dimensional spectral factorisation to each of the two diagonal entries in D1(z), which

is expressed as

D+
1 (z) = diag

{
d+

1 (z), d+
2 (z)

}
≈






8.096+4.942z 0

0 0.165−0.056z




 . (6.16)

Note that the spectral factors d+
1 (z) and d+

2 (z) obtained from the spf(·) function are

the minimum-phase solutions, and these results are all quoted to the standard accuracy

provided by the MATLAB PolyX toolbox [112]. By forming the product H̃1(z)D
+
1 (z),

the final outer spectral factor R+
1 (z) is shown in Figure 6.3(a), alongside its paraconju-

gate, i.e., the inner spectral factor R−1 (z) in Figure 6.3(b).
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Figure 6.3 The resulting spectral factors of Example (6.14), showing (a) the outer

spectral factor and (b) the inner spectral factor.

As can be seen from the stem plot, the order of the spectral factor was increased

due to the paraunitary transformation in the MS-SBR2 algorithm. This does not seem

to follow the standard rule that if R(z) has order of 2T , its spectral factor R+
1 (z) (or

R−1 (z)) should theoretically have order of T . However, most of the coefficients in

the resulting spectral factors are very small values which are effectively zero. The

dominant coefficients in R+(z) are only seen in two lags, which are given by

· · ·+






1.9806 0.0032

7.8366 0.0097




 z4 +






1.3753 -0.0020

4.7509 -0.0059




z5 + · · · (6.17)
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Compared to the spectral factorisation result from Janashia’s paper [104], the result

obtained using the PEVD based method looks quite different. To assess the relative er-

ror of our method, we examine the energy difference between the input para-Hermitian

matrix R(z) and the reconstructed matrix R̂(z) = R+(z)R−(z), which is defined as

υ =
‖R(z)− R̂(z)‖2

F

‖R(z)‖2
F

=
‖R(z)−R+(z)R−(z)‖2

F

‖R(z)‖2
F

. (6.18)

In this example, the error is calculated as υ1 ≈ 1.1498× 10−8. When the parau-

nitary matrix is truncated using the row-shift method, the order of H1(z) is further

reduced to 5, while the error is increased to υ1 ≈ 2.0919×10−5. Therefore, truncating

the very small coefficients in D1(z) and H1(z) was found to have very little impact on

the accuracy of the reconstructed para-Hermitian matrix (almost identical to R̂1(z)).

6.4.2 Example 2

The algorithm has been tested further by means of another, more realistic example. In

fact, this example is the same as the one which we used to conduct the strong decor-

relation simulation in Section 4.7, where the para-Hermitian matrix R2(z) ∈ C
5×5 of

order 20 was obtained from a convolutive mixing model with four sources and five

sensors, and its stem plot is shown in Figure 4.13. The MS-SBR2 algorithm, when

applied to this matrix, took 1507 iterations to converge to a point where the maximum

off-diagonal element in D2(z) is less than 10−4×
√

1
2 ∑5

m=1 |rmm[0]|2 ≈ 9.6186×10−4.

The resulting order of the matrices D2(z) and H2(z) are 132,876 and 66,428, respec-

tively.

The matrix D2(z) was then truncated to the same order as R2(z) using the lag bound

fixed truncation method, and its stem plot is shown in Figure 6.4. As to the truncation

of H2(z), the lag based truncation was applied using µPU = 10−2, and the truncated

matrix H2(z) is of order 345. However, when the row-shift corrected truncation was
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used with the same truncation value µ ′PU = 10−2, the matrix H′2(z) only has order of

41.
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Figure 6.4 The diagonalised matrix D2(z) obtained from applying the MS-SBR2 algo-

rithm to the CSD matrix example in Figure 4.13 and truncated to the same order as the

CSD matrix.

Accordingly, each of the diagonal elements in D2(z) can now be considered as a

scalar spectral factorisation problem and addressed by Wilson’s method. The outer

spectral factor R+
2 (z) generated by forming the product H̃2(z)D

+
2 (z) is shown in Fig-

ure 6.5. Similarly, the outer spectral factor R′+2 (z), with the row-shift truncation for

H2(z), is plotted in Figure 6.6. Clearly, by using the row-shift truncation, the order of

the spectral factor R′+2 (z) is much less than that of R+
2 (z).

By analogy to the previous example, the accuracy of these two spectral factors for

each of the paraunitary matrix truncation cases is examined according to (6.18), and

the relative errors are given by υ2 ≈ 2.7630× 10−3 for the lag based truncation case

and υ ′2 ≈ 6.5403×10−3 for the row-shift truncation case, respectively. Clearly, with-

out losing too much accuracy, a significant order reduction was seen in the resulting

spectral factor obtained using the row-shift truncation. In general, these errors can be

reduced by assigning smaller values to the truncation parameters µPU and µ ′PU, but
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Figure 6.5 The outer spectral factor of the CSD matrix example in Figure 4.13, imple-

menting the lag based truncation with µPU = 10−2.
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Figure 6.6 The outer spectral factor of the CSD matrix example in Figure 4.13, imple-

menting the row-shift corrected truncation with µ ′PU = 10−2.

the order of the spectral factor will be increased as less energy is truncated. It is dif-

ficult to know in advance what value to choose for the truncation parameter in order

to obtain the spectral factor with a specified order. It would not be sensible to apply
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the lag bound fixed truncation to the spectral factor, either, as the spectral factor is not

necessarily symmetric. Empirically, however, we can try a set of different truncation

parameters to determine whether there exists one case for which the accuracy and the

order of the spectral factor could be balanced.

6.5 Chapter Summary

In conclusion, the proposed spectral factorisation method based on the iterative PEVD

algorithm provides an alternative way of solving multichannel spectral factorisation

problems, and it is seen to offer a significant advantage in that the multichannel spectral

factorisation problem is reduced to a number of independent single-channel problems

for which suitable algorithms already exist. Although the definition of the unique

spectral factor provided in some of the literature does not apply to our situation due to

the fact that the polynomial order increases with increasing number of iterations, the

validity of the spectral factor found by our method has been proven by means of worked

examples. In addition, the order of the spectral factor can be kept as low as possible by

exploiting the ambiguity of matrix spectral factorisation, which can potentially help to

reduce the cost in filter bank based applications.
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Chapter 7

Decoupling of Broadband MIMO

Systems using the Polynomial Singular

Value Decomposition by Polynomial

Eigenvalue Decomposition Method

7.1 Introduction

This chapter demonstrates a potential application of polynomial singular value decom-

position (PSVD) to design the precoding and equalisation for broadband multiple input

multiple output (MIMO) communications. The PSVD, which can be seen as an exten-

sion of the singular value decomposition (SVD) for polynomial matrices, plays a very

important role in broadband MIMO systems. One of its applications lies in the de-

coupling of a convolutive MIMO channel into a set of independent single input single

output (SISO) channels, where standard equalisation techniques, such as zero-forcing

equalisation, can then be applied to each SISO channel to obtain an estimate of one of

the source signals.
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The main contributions of this chapter are the exploitation of the proposed PSVD

by MS-SBR2 method in terms of solving the broadband MIMO decoupling problem,

comparisons against the PSVD by SBR2 method, and discussions of the accuracy of

the PSVD method. Two worked examples are presented to demonstrate our proposed

method, including a simulated MIMO channel and a measured 2× 2 optical MIMO

channel. In particular, a 2×2 optical MIMO channel comprising a 1.4 km multi-mode

fibre (MMF) and optical couplers at both ends is designed to examine the bit error

rate (BER) performance of an optical MIMO system in which the channel impulse

responses are measured for the operating wavelength of 1576 nm [16]. Furthermore,

different transmission and power allocation (PA) schemes are investigated to further

optimise the BER performance.

7.2 The State of the Art

Explosive developments in MIMO technology have been witnessed in wireless com-

munication systems over the last decade. Compared to SISO systems, MIMO systems

are capable of achieving higher data rates and transmission reliabilities by using the

techniques of spatial multiplexing and transmit diversity. Aiming to increase the fi-

bre capacity, the concept of MIMO in optical transmission systems has also attracted

intensive research interests [113, 114].

Due to the multipath effect in broadband MIMO systems, the channel is charac-

terized by frequency-selective fading, so apart from the co-channel interference (CCI)

caused by the MIMO components, there also exists inter-symbol interference (ISI) be-

tween the transmit symbols. Provided the approximate channel length is known to

the transmitter, a standard approach of combating the ISI is to use multi-carrier mod-

ulation techniques, such as orthogonal frequency division multiplexing (OFDM) with

cyclic prefix, which can divide the spectrum into a number of narrowband channels.

In other words, the frequency-selective or broadband MIMO channel is turned into a
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set of parallel frequency-flat or narrowband MIMO channels where the ISI no longer

exists, and each narrowband channel can be independently addressed using existing

narrowband optimal techniques. This type of MIMO-OFDM system was well imple-

mented by combining spatio-temporal vector coding (STVC) [66, 115] with the SVD

based equalisation technique [61]. A second alternative is based on the optimal filter

bank transceiver techniques [116], which involve block processing and guard intervals

to eliminate inter-block interference (IBI). These two traditional techniques are in com-

mon in the sense of eliminating the polynomial nature of the channel corresponding

to the IBI due to the time-dispersive nature of the channel, and essentially they are all

designed to convert the broadband problem into narrowband problems.

With the development of the PSVD techniques over the last decade, a PSVD based

precoding and equalisation method [14, 16, 34, 117] has been employed in broadband

MIMO systems. The advantage of the PSVD based method over other existing ap-

proaches lies in the natural ability of broadband decomposition algorithms which pre-

serve and exploit the coherence of signals. This method generally consists of two steps.

The first step is to use the PSVD to decouple the frequency-selective MIMO channel

into a number of independent frequency-selective SISO channels so that the CCI can be

removed. The second step involves removing the remaining ISI for each SISO channel,

where it can be solved by standard equalisation techniques, such as zero-forcing (ZF)

equalisation, maximum-likelihood sequence estimation, or decision-feedback equali-

sation. The following sections present the idea of this method and demonstrate how

the proposed MS-SBR2 algorithm performs in terms of formulating the PSVD.

131



7.3 Decoupling of MIMO Channel using PSVD

7.3 Decoupling of MIMO Channel using PSVD

Given a frequency selective MIMO link with nT inputs and nR outputs, the convolutive

mixing channel can be modelled as a polynomial matrix

C(z) =
T

∑
τ=0

C[τ]z−τ =









c11(z) · · · c1nT
(z)

...
. . .

...

cnR1(z) · · · cnRnT
(z)









, (7.1)

where τ, T ∈ Z, and C[τ] ∈ CnR×nT denotes the polynomial coefficient matrix at time

lag τ . cνµ(z) for ν = 1, · · · , nR and µ = 1, · · · , nT are the polynomial matrix entries

which represent the channel impulse responses between the µ-th input and the ν-th

output, i.e.

cνµ(z) =
T

∑
τ=0

cνµ [τ]z
−τ , (7.2)

where cνµ [τ] denotes a non-zero element of the symbol rate sampled channel impulse

response at the τ-th lag. In this case, there are T +1 time lags in total for each SISO

channel.

Assuming the transmitted signals are denoted as s′(z) ∈ C
nT×1, they are then emit-

ted through the convolutive mixing channel C(z), which results in the received signals

x′(z) ∈ C
nR×1 represented by

x′(z) = C(z)s′(z)+n(z) , (7.3)

where n(z)∈CnR×1 denotes a multivariate additive Gaussian noise process with covari-

ance of σ 2InR
. Note that for this application, the signals s′(z) represents the filtered

source signals which are different from the source signals s(z) shown in the convolutive

model in (2.23).

If the channel matrix in (7.1) is known, PSVD can be used to convert the MIMO

channel equalisation problem into a set of independent SISO problems. In other words,
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the CCI can be removed by performing PSVD on the channel matrix C(z) [81], i.e.,

C(z) = Ũ(z)Σ(z)V(z) = Ũ(z)






Γ(z)

0




V(z) , (7.4)

where we assume that there are at least as many sensors as sources, i.e., nR ≥ nT. Γ(z)

is a diagonal matrix with n = nT diagonal elements, i.e.,

Γ(z) = diag
{

γ
11
(z), γ

22
(z), · · · , γ

nn
(z)
}

. (7.5)

Both Ũ(z) ∈ C
nR×nR and V(z) ∈ C

nT×nT are paraunitary matrices, which satisfy

Ũ(z)U(z) = U(z)Ũ(z) = InR

Ṽ(z)V(z) = V(z)Ṽ(z) = InT
.

(7.6)

For this reason, Ũ(z) and V(z) can be seen as the multichannel all-pass filters which

preserve the total power of the signals at every frequency [69].

There are different ways of calculating the PSVD in (7.4), such as using the PQRD

to formulate the PSVD [84], the PSVD based on generalised Kogbetliantz transforma-

tions [118], and the PSVD by PEVD method [81], which is analogous to how the EVD

can be used to generate the SVD of a matrix. In terms of the PSVD by PEVD method,

the SBR2 algorithm [7] has been adopted in all existing literatures [10, 14, 16, 34, 117].

In this thesis, we use the proposed MS-SBR2 algorithm to formulate the PSVD in order

to see how it performs in comparison to the PSVD by SBR2 algorithm.

To formulate the PSVD using the PEVD, both the paraunitary matrices U(z) and

Ṽ(z) need to be found. This is implemented by calculating the PEVD of two para-

Hermitian matrices C(z)C̃(z) and C̃(z)C(z), which take the form of

[
C(z)C̃(z)

]

nR×nR
= Ũ(z)Σ(z)Σ̃(z)U(z) , (7.7)
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and

[
C̃(z)C(z)

]

nT×nT
= Ṽ(z)Σ̃(z)Σ(z)V(z) . (7.8)

After obtaining the paraunitary matrices U(z) and Ṽ(z), the source signals s(z) ∈

C
nT×1, which are generally drawn from a finite constellation such as binary phase

shift keying (BPSK) or quadrature amplitude modulation (QAM), are passed through

a transmit filter bank represented by the paraunitary matrix Ṽ(z). Therefore, the trans-

mitted signals in (7.3) can be expressed as

s′(z) = Ṽ(z)s(z) , (7.9)

and the received signals x′(z) in (7.3) are then filtered by the paraunitary matrix U(z)

at the receiver, i.e., x(z) = U(z)x′(z) . By combining the pre- and post-processing, the

filtered received signals can be expressed as

x(z) = U(z)C(z)Ṽ(z)s(z)+U(z)n(z)

= Σ(z)s(z)+n′(z) ,
(7.10)

where n′(z) = U(z)n(z). Furthermore, as both the transmit filter bank Ṽ(z) and the

receive filter bank U(z) are paraunitary, the transmit signal power is not increased,

nor is the channel noise enhanced throughout this process. A block diagram of the

proposed communication system is depicted in Figure 7.1.

s(z)
Ṽ(z)

s
′(z)

C(z)

n(z)

x
′(z)

U(z)
x(z)

Equaliser
ŝ(z)

Figure 7.1 A block diagram of the proposed MIMO communication system using the

PSVD based equalisation scheme.

Unlike the conventional SVD based method, each diagonal element (also called

layer) σ ℓ(z) in Σ(z) represents a frequency-selective SISO channel and hence, ISI oc-
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curs. In order to remove the ISI, the layer-specific ZF equalisation scheme [16] is

employed with its block diagram as depicted in Figure 7.2. The ZF equaliser f
ℓ
(z) =

sℓ[t]
σℓ(z)

n′

ℓ
[t]

xℓ[t]
f
ℓ
(z)

ŝℓ[t]

Figure 7.2 A block diagram of the layer-specific ZF equalisation for each SISO chan-

nel obtained using the PSVD.

∑t fℓ[t]z
−t of the ℓ-th layer is chosen as an FIR filter which aims to neutralise the fre-

quency response imposed by the SISO channel transfer function σ ℓ(z) = ∑t σℓ[t]z
−t,

such that

σℓ[t]⊗ fℓ[t] = hℓ[t]

= [0, · · · , 0, 1, 0, · · · , 0 ], ℓ= 1, · · · , L ,

(7.11)

where L = min{nT, nR}. Note that there is no restriction imposed on the position of

the coefficient ‘1’ in hℓ[t]. Thus, the equivalent ISI free channel model can be depicted

in Figure 7.3, and the equalised signal is given by

ŝℓ[t] = sℓ[t]+n′ℓ[t]⊗ fℓ[t], ℓ= 1, · · · , L , (7.12)

Note that the power of the noise n′ℓ[t] is now weighted by the ZF equaliser.

sℓ[t]

n′

ℓ
[t]

ŝℓ[t]

f
ℓ
(z)

Figure 7.3 The equivalent SISO channel model with ISI removed using the layer-

specific ZF equalisation.
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7.3.1 Accuracy of the Decomposition

There are several factors which can affect the accuracy of the decomposition. Firstly,

because the decomposition is performed upon the two para-Hermitian matrices C(z)C̃(z)

and C̃(z)C(z) as shown in (7.7) and (7.8), the resulting diagonal matrix Σ(z) might be

less accurate than that found by applying the decomposition directly to the channel

matrix C(z), such as the PSVD using generalised Kogbetliantz transformations [118].

However, the investigation of this method is beyond the scope of this thesis.

Secondly, in the sense of broadband MIMO decoupling, a strictly diagonalised

channel matrix is required. However, the proposed PSVD method can only generate

an approximately diagonal matrix subject to the pre-specified stop condition of the

algorithm, so there will be errors when assuming all the off-diagonal elements of Σ(z)

are equal to zero.

Furthermore, because the order of the polynomial matrices within the algorithm

increases as the iterations increase, the equalisation for each SISO channel becomes

very difficult when the resulting order of Σ(z) is too large. Therefore, polynomial order

truncation is very necessary in order to keep the polynomial order as low as possible

and reduce the computational cost of the algorithm. However, truncating polynomial

matrices can also cause a very small proportion of the total Frobenius norm of the

polynomial matrix to be removed, which affects the accuracy of the decomposition. To

assess how well the proposed PSVD method performs, the error metric of the PSVD

is defined as

E =

∥
∥C(z)− Ĉ(z)

∥
∥

2

F

‖C(z)‖2
F

=

∥
∥C(z)− Ũ(z)Σ̂(z)V(z)

∥
∥

2

F

‖C(z)‖2
F

, (7.13)

where Ĉ(z) denotes the reconstructed matrix obtained from calculating the inverse

PSVD. Σ̂(z) is equal to Σ(z), but with all the off-diagonal elements set to zero. Note

that the polynomial coefficients of Ĉ(z) must be properly aligned with the coefficients

of C(z) when calculating this error metric. As the polynomial matrix Ĉ(z) is usually
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not para-Hermitian, it is more difficult to obtain an accurate value of E compared to the

way of calculating the para-Hermitian reconstruction error mentioned in Section 4.20.

7.3.2 Transmission Quality

The quality of the data transmission is in general assessed using the signal-to-noise

(SNR) ratio at the detector’s input, which can be defined as [16]

ρ =
(half vertical eye opening)2

noise power
=

U2
A

PR
, (7.14)

where UA and PR correspond to one quadrature component in M-ary QAM. Let ρ(ℓ)

represent the SNR of the ℓ-th layer of a MIMO system; the bit error probability for the

constellation size of Mℓ can then be expressed as [119]

P
(ℓ)
BER =

2

log2(Mℓ)

(

1− 1√
Mℓ

)

erfc





√

ρ(ℓ)

2



 . (7.15)

Considering all the transformed SISO channels (or layers) obtained from the PSVD

with ZF equalisation, the average BER is calculated as

PBER =
1

∑L
ℓ=1 log2(Mℓ)

L

∑
ℓ=1

log2(Mℓ)P
(ℓ)
BER , (7.16)

For QAM constellations, the average symbol power per layer is given by [120, 121]

Ps,ℓ =
2

3
U2

s,ℓ(Mℓ−1) , (7.17)

where Us,ℓ denotes the half amplitude of the transmitted symbol, and because the ISI

is removed by the ZF equaliser, Us,ℓ is equal to the half vertical eye opening of the

received symbol, i.e., Us,ℓ =UA,ℓ. Assuming that total transmit power Ps is uniformly

allocated to all MIMO layers, the transmit power of each SISO channel is given by

Ps,ℓ = Ps/L. Hence, by rearranging equation (7.17), the half amplitude of the transmit-
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ted symbol per layer is given by

Us,ℓ =

√

3Ps

2L(Mℓ−1)
. (7.18)

As the noise is affected by the ZF equaliser as demonstrated in Figure 7.3, the noise

power PR will be weighted by the equaliser coefficients such that

PR,ℓ = θℓPR with θℓ = ∑
∀t
| fℓ[t]| . (7.19)

Thus, using (7.18) and (7.19), the SNR ρ(ℓ) can be calculated as

ρ(ℓ) =
U2

A,ℓ

PR,ℓ
=

U2
s,ℓ

θℓPR
=

3Ps

2L(Mℓ−1)θℓPR
=

3

θℓL(Mℓ−1)

Es

N0
(7.20)

with Ps/PR = 2Es/N0, where Es and N0 denote the average symbol energy and the

power spectral density of white Gaussian noise.

7.4 Numerical Examples

Two different channel matrix examples are used to demonstrate the proposed MS-

SBR2 algorithm for calculating the PSVD. The first example was generated based

on a 3×4 MIMO propagation channel, and the second one was obtained by measuring

a 2×2 optical MIMO channel impulse response, as mentioned earlier.

7.4.1 Example 1

For this example, the channel matrix C1(z) ∈ C
4×3 was generated to model the prop-

agation of three source signals onto four sensors. Each of the polynomial entries in

C1(z) was chosen to be a fourth order FIR filter, where both the real and imaginary

parts of the polynomial coefficients cmn[τ], ∀τ, m = 1, · · · , 4 and n = 1, · · · , 3 are
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drawn randomly from a uniform distribution in the range [−1,1]. Figure 7.4 shows the

magnitudes of all the coefficients in this polynomial matrix.
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Figure 7.4 The stem plot of the 4×3 broadband MIMO channel matrix C1(z), showing

the magnitudes of the channel impulse responses at different time lags.

To compute the PSVD of C1(z), the MS-SBR2 algorithm was respectively applied

to the polynomial matrices C1(z)C̃1(z) and C̃1(z)C1(z) in turn to obtain the parauni-

tary matrices U1(z) and Ṽ1(z). The stopping condition for each implementation of the

MS-SBR2 algorithm was set as ε = 10−3, and the two truncation functions mentioned

in Sections 3.6.2 and 3.6.3 were employed as part of the iterative routine in MS-SBR2

with µPH = µPU = 10−4, which allowed at most, this proportion of the squared Frobe-

nius norm of the matrix to be lost after each iteration. Using the truncation functions

prevents the order of the polynomial matrices from growing unnecessarily large and

therefore reduces the computational time of the algorithm. The MS-SBR2 algorithm

stopped when the magnitude of each off-diagonal coefficient of the resulting diago-

nalised matrices Σ(z)Σ̃(z) and Σ̃(z)Σ(z) was found to be smaller than 10−3, which

resulted in a total of 478 iterations over both applications of the MS-SBR2 algorithm.

The resulting paraunitary matrices U1(z) and V1(z) are illustrated in Figures 7.5 and
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7.6, respectively. Accordingly, the approximately diagonalised matrix Σ1(z) can then

be obtained according to (7.4), which is shown in Figure 7.7. with order of 71.
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Figure 7.5 The stem plot of the paraunitary matrix U1(z) obtained from the PSVD by

MS-SBR2 method, showing the magnitudes of the coefficients.
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Figure 7.6 The stem plot of the paraunitary matrix V1(z) obtained from the PSVD by

MS-SBR2 method, showing the magnitudes of the coefficients.
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Figure 7.7 The stem plot of the diagonalised MIMO channel matrix Σ1(z) obtained

from the PSVD by MS-SBR2 method, showing the magnitudes of the coefficients.

The magnitude of the maximum off-diagonal element, found in the approximately

diagonalised matrix Σ1(z), was given by |σ jk[τ]|max = 0.1939, and the off-diagonal

energy ‖off{Σ1(z)}‖2
F was calculated as 1.2248, accounting for 3.03% of the total

squared Frobenius norm of the matrix. Certainly, this can be reduced by setting a

tighter convergence bound, but the order of the polynomial matrices will accordingly

increase. Due to the truncation process, some small coefficients were removed, which

resulted in the squared Frobenius norm of Σ1(z) decreasing from 40.6462 to 40.4716.

Furthermore, the relative error E1 was calculated as 0.0377 using (7.13), which shows

that the proposed PSVD method has achieved a good level of accuracy. All the perfor-

mance measures obtained from applying the PSVD by MS-SBR2 method to C1(z) are

shown in Table 7.1.

To compare our proposed method with the PSVD by SBR2 method, we chose

the same truncation and stopping parameters for each implementation of the SBR2

algorithm as when calculating the PSVD of C1(z). The results obtained from the PSVD

by SBR2 method are also presented in Table 7.1. Upon comparison of these results,
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it can be seen that the PSVD by MS-SBR2 method took less computational time than

did using the SBR2 algorithm, whilst achieving a better diagonalisation measure. In

addition, the relative error of the decomposition obtained using the MS-SBR2 method

is slightly less than that found by the SBR2 algorithm based PSVD. Note that as the

channel matrix C1(z) is 4×3, the advantage of using the MS-SBR2 algorithm lies in

the multiple shift effect when calculating the PEVD of
[
C1(z)C̃1(z)

]

4×4
. As to the

polynomial matrix
[
C̃1(z)C1(z)

]

3×3
, the MS-SBR2 algorithm is simply equivalent to

SBR2. It is self-evident that for a large MIMO channel matrix, the PSVD by MS-

SBR2 method can potentially provide better performance than SBR2 in terms of the

computational speed and the diagonalisation measure.

Table 7.1 Results obtained from applying the SBR2 and MS-SBR2 algorithms for

calculating the PSVD to the polynomial matrix C1(z) in Figure 7.4, with the truncation

parameters set as µPH = µPU = 10−4 and the stopping condition as ε = 10−3 in both

methods.

Measures
PSVD by

SBR2 MS-SBR2

number of iterations 561 478

|σ jk[τ ]|max 0.2271 0.1939

‖C1(z)‖2
F 40.6462 40.6462

‖Σ1(z)‖2
F 40.3253 40.4716

‖off{Σ1(z)}‖2
F 1.3948 1.2248

order of Σ1(z) 64 71

order of U1(z) 27 34

order of V1(z) 33 33

relative error E1 0.0428 0.0377

computational time (sec.)1 1.98 1.74

1 Computations undertaken on a PC with Intel(R) Core(TM) i7-3770T

CPU @ 2.50GHz and 16 GB RAM.

Spectral Ordering

Akin to an ordered SVD with the singular values in descending order, the power spec-

tral densities of the on-diagonal polynomials in the diagonalised matrix Σ(z), obtained
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from the PSVD, satisfy the spectral majorisation property [27], such that

σ11(e
jΩ)≥ σ 22(e

jΩ)≥ ·· · ≥ σ MM(e jΩ) , ∀Ω ∈ [−π , π) . (7.21)

where σ mm(e
jΩ) = σ mm(z)|z=e jΩ for m = 1, · · · , M . This property follows directly

from the proof of the spectral majorisation for SBR2, as described in Section 3.4.2.

For this example, Figures 7.8(a) and (b) illustrate the power spectra of the channel

matrix C1(z) and the ordered power spectra in the diagonalised matrix Σ1(z), respec-

tively. This intuitively indicates that the broadband MIMO channel has been decoupled

into a set of independent SISO channels, with no CCI.
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Figure 7.8 Power spectral densities of the on-diagonal polynomials in the 4×3 MIMO

channel matrix, showing (a) before diagonalisation and (b) after diagonalisation using

the PSVD by MS-SBR2.

7.4.2 Example 2

In this example, we consider a more realistic scenario, where a measured 2×2 optical

MIMO channel is set up to demonstrate the proposed method, and the BER perfor-
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mance of the system is examined based on different modulation and power allocation

schemes.

Optical MIMO Channel Set-Up

In fibre optic communications, one way to implement a MIMO transmission is to carry

the data streams using different optical modes through an MMF [114, 122]. For the ex-

citation of different modes, certain single mode fibre (SMF) to MMF alignments with

varying radial offsets δ are used in this experiment. The spatial diversity of the optical

MIMO channel is visualised by showing the measured spatial intensity distributions

when exciting the two optical MIMO inputs of the 2×2 system separately. The mea-

sured patterns depicted in Figure 7.9 show that spatially diverse channels are generated.

However, an ideal separation of the two channels is hard to achieve as mode mixing

usually occurs in the mode multiplexing and demultiplexing process which is imple-

mented by fusion couplers, and during the transmission through the fibre. In optical

MIMO systems, it should be noticed that the group delays in an MMF optical channel

belong to a fixed set of values in contrast to wireless channels, which can change from

one realisation to another [123].

(a) (b)

Figure 7.9 Intensity distribution patterns of an MMF when launching the light with the

radial offsets (a) δ = 0 µm (centric) and (b) δ = 15 µm (eccentric), where the dashed

circle has a diameter of 50 µm.

An overview of the testbed used for measuring the impulse responses of a 2× 2

optical MIMO channel is shown in Figure 7.10. Here the optical channel is made up
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of a 1.4 km MMF, fusion couplers, and differently aligned SMFs, and the impulse

responses are measured at an operating wavelength of 1576 nm using the signal de-

convolution method proposed by Sandmann and Ahrens in [16]. As the aim of this

chapter is to demonstrate the ability of the PSVD by MS-SBR2 method to transform

a broadband MIMO channel matrix into a set of SISO channels, the details of how to

obtain the optical channel impulse responses is not the focus of this thesis.

Light Launching Unit (Splicer) 1.4 km MMF Channel Sampling Oscilloscope with 40 GHz Photo Detector

Picosecond Laser Unit Laser-Head ( ≈ 1326 nm or 1576 nm)Fusion Couplers

Figure 7.10 An overview of the testbed for measuring the impulse responses of a 2×2

optical MIMO channel [124, 32].

Decoupling of the MIMO Channel

The measured impulse responses are then sampled at a symbol rate of 620 MHz and

used to constitute the channel matrix C2(z) as plotted in Figure 7.11. The PSVD by

MS-SBR2 algorithm is then applied to the two para-Hermitian matrices C2(z)C̃2(z)

and C̃2(z)C2(z) to obtain the paraunitary matrices U2(z) and V2(z). Note that each

implementation of the MS-SBR2 algorithm stops when the magnitude of the maximum

off-diagonal coefficient found in the matrix is less than ε = 10−4, and the truncation

with µPH = 10−4 is only applied once after the algorithm converges.

It took 24 iterations in total to perform the two PEVDs using MS-SBR2, and the re-

sulting paraunitary matrices U2(z) and V2(z) are plotted in Figures 7.12(a) and 7.12(b),
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Figure 7.11 The stem plot of the measured 2×2 optical MIMO channel matrix C2(z),
showing the magnitudes of the channel impulse responses.

respectively. Accordingly, the approximately diagonalised matrix Σ2(z), obtained from

applying the two paraunitary matrices according to (7.4), is shown in Figure 7.13. Fur-

thermore, the magnitude of the maximum off-diagonal coefficient in Σ2(z) was found

to be 5.1359× 10−4, which indicates a decent diagonalisation measure. Finally, the

relative error of this decomposition is calculated as E2 = 4.7018×10−5 according to

(7.13). As the size of the channel matrix C2(z) is only 2×2, the PSVD by MS-SBR2

algorithm performs the same as using SBR2. Nonetheless, the main goal of this exam-

ple is to test our proposed method in a more realistic scenario and assess the optical

MIMO system in terms of the transmission quality, as discussed in Section 7.3.2.
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Figure 7.12 The resulting paraunitary matrices obtained from the MS-SBR2 algorithm,

showing (a) the magnitudes of the coefficients in U2(z) and (b) the magnitudes of the

coefficients in V2(z).
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Figure 7.13 The stem plot of the diagonalised channel matrix Σ2(z) obtained from

applying the PSVD by MS-SBR2 algorithm to the example in Figure 7.11.

Applying the PSVD to the channel matrix C2(z) results in two independent SISO

channels with time-dispersive characteristics and hence ISI occurs on each SISO chan-

nel (or layer) as shown in the diagonalised matrix Σ2(z). The ISI is removed by apply-

ing the ZF equalisation as described in Section 7.3. The equaliser modifies the noise

power as shown in (7.19), which affects the layer-specific SNR ρ(ℓ) and hence the final

average BER performance PBER. In this example, the length of the equalisation filter

is chosen to be 20. However, it should be noticed that a complete elimination of ISI is

in general not possible because of the finite filter length. The noise weighting factors

for each layer are then computed as θ1 = 37.22 and θ2 = 4243.46 according to (7.19).

Clearly, the noise power at both layers has been enhanced, and in particular, the noise

power of the higher channel (ℓ = 2) is weighted much more than that of the lower

channel (ℓ= 1). If the same QAM constellations are adopted for both layers, the SNR

found at the second layer, ρ(2), would be much less than that found at ρ(1).

The BER performance is studied by means of a chosen set of transmission modes

with a fixed spectral efficiency of 8 bit/s/Hz, and the QAM constellation arrangements

are depicted in Table 7.2. Note that the overall BER of the decoupled MIMO system is

dominated by the layer with the largest BER. One way to optimise the overall BER per-

formance is to equalise the SNR, ρ(ℓ) ,∀ℓ , across all layers using the power allocation

(PA) scheme proposed in [16].
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Table 7.2 Investigated transmission modes of the 2×2 optical MIMO system.

Throughput layer 1 layer 2

8 bit/s/Hz 256 0

8 bit/s/Hz 64 4

8 bit/s/Hz 16 16

The BER results, calculated for a chosen range of SNRs (Es/N0), are depicted in

Figure 7.14. Note that no PA is needed for the (256,0) QAM transmission mode. As

seen from the graph, the (256,0) QAM transmission scheme shows the best BER per-

formance among all chosen schemes. Furthermore, when activating both layers, the

benefit of using the PA method is clearly visible. As suggested by the results presented

in [117], it is expected that for the achievable spectral efficiency, the PSVD based

MIMO systems can offer the same BER performance as systems based on the equali-

sation method using STVC with SVD. The main advantage of using the PSVD based

equalisation over the STVC based MIMO systems is that no block-wise transmission

is needed.

7.5 Chapter Summary

In this chapter, we demonstrated a potential application of the proposed PSVD by MS-

SBR2 algorithm. The algorithm can be used to transfer a broadband MIMO channel

into a set of independent SISO channels, where the conventional equalisation methods,

such as ZF equalisation, can then be applied to each SISO channel in order to estimate

one of the source signals. Two worked examples are presented to show the ability of

the proposed method. The first example is designed to compare the MS-SBR2 with

the SBR2 algorithm when used to calculate the PSVD of a 4×3 polynomial channel

matrix. Simulation results show that the proposed PSVD by MS-SBR2 algorithm is

advantageous in terms of the convergence speed and the decomposition accuracy.
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Figure 7.14 Results of BER obtained from applying the proposed PSVD based equal-

isation scheme to a measured 2× 2 optical MIMO channel, showing the comparison

between different QAM transmission modes with and without the power allocation

scheme.

Furthermore, we tested the proposed algorithm using a measured 2×2 broadband

optical MIMO channel matrix, and the BER performance was examined based on the

chosen transmission schemes with a fixed spectral efficiency. Results have shown that

the overall BER can be further reduced if the power allocation method is used. The

activation of all transmission layers does not necessarily lead to the best BER perfor-

mance. On the contrary, the (256,0) QAM transmission scheme appears to have the

best performance in the studied example.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

The first contribution of this thesis lies in the proof of the spectral majorisation prop-

erty for the SBR2 algorithm. As the spectrally majorised signals tend to have most of

the signal power compacted into the least number of signal channels [7, 35], this prop-

erty plays a very important role in applications that require techniques of broadband

subspace decomposition to identify the signal subspace, such as broadband BSS and

beamforming. Subsequently, a modified SBR2 algorithm was designed to optimise the

subband coding gain. Based on the monotonically increasing behaviour of the coding

gain (as shown in Figure 3.4), this modified SBR2 algorithm provides a more reli-

able convergence test compared to the original SBR2 algorithm, whose convergence

parameter is the maximum off-diagonal element |r(i)jk [τ]|, which in general does not

monotonically decrease as the iteration index i goes up.

Furthermore, an improved version of the SBR2 algorithm, called MS-SBR2, has

been proposed to compute the PEVD of para-Hermitian matrices. The MS-SBR2 al-

gorithm, which has been proven to converge, utilises a multiple-shift strategy that can

transfer more off-diagonal elements onto the diagonal at each iteration than SBR2

can. Therefore, it can diagonalise a para-Hermitian matrix in fewer iterations. Subse-
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quently, two different time-shift methods have been introduced for MS-SBR2. With the

direct-fixed shift method, the off-diagonal elements can be kept closer to the zero-lag

plane compared to using the conventional shift method, and all zero-filled outer co-

efficient matrices can be easily tracked and therefore removed without compromising

the accuracy of the decomposition. Removing the zero-filled outer coefficient matri-

ces brings the benefit of reducing the computational load of the MS-SBR2 algorithm,

which makes the algorithm run more rapidly. This is illustrated by the numerical exam-

ples in Chapter 4. Due to the common limitation that the order of polynomial matrices

will increase as the iterations increase in the PEVD algorithms, truncation methods

have been used to reduce the order of the resulting polynomial matrices. Simulation

results have shown that the order of polynomial matrices can be dramatically reduced

while removing only a small proportion of the total energy of the matrices and still

maintaining a decent level of accuracy. Truncating polynomial matrices is very helpful

to some applications such as designing FIR paraunitary filter banks for subband cod-

ing and decoupling broadband MIMO systems, as the costs of these applications are

directly proportional to the order of the resulting polynomial matrices.

The MS-SBR2 algorithm has been fully tested using various para-Hermitian matrix

examples that are generated by differently conditioned source models. The algorithm

has also been applied to decorrelate convolutively mixed signals. Results have shown

that MS-SBR2 outperforms SBR2 in terms of the diagonalisation measure, the result-

ing polynomial order, and the computational speed, as detailed in Chapter 4. Note

that the MS-SBR2 algorithm reduces to the SBR2 algorithm if the size of the input

para-Hermitian matrix is less than 4× 4 or if there exists only one paraunitary shift

operation at each iteration.

Then, the MS-SBR2 algorithm is compared to other existing PEVD algorithms

in terms of computational complexity and various performance metrics, as presented

in Chapter 5. The results show that the fastest of these algorithms is the MS-SBR2
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algorithm when considering the same level of diagonalisation, and the MSME-SMD

algorithm performs the best in terms of reducing the off-diagonal energy.

Last but not least, two potential applications presented in Chapters 6 and 7 demon-

strate the effectiveness of the MS-SBR2 algorithm. The first application demonstrates

how the MS-SBR2 algorithm can be used to address the multichannel spectral factori-

sation problem, and the second application demonstrates the MS-SBR2 algorithm to

formulate the PSVD, and therefore decoupling broadband MIMO channels.

8.2 Suggestions for Future Work

Suggestions for future work can be summarised in three categories.

Algorithms

By using the multiple-shift strategy, the MS-SBR2 algorithm has been demonstrated

to be advantageous over the conventional SBR2 algorithm in terms of the conver-

gence speed and diagonalisation measure. It would be interesting to see if the idea

of the multiple-shift method can also be implemented with other polynomial matrix

decomposition algorithms such as the PSVD algorithm based on the generalised Kog-

betliantz transformations [118] and the polynomial QR decomposition (PQRD) algo-

rithm [84]. How would this affect the convergence of the algorithm? Furthermore,

we have highlighted the importance of the spectral majorisation property in applica-

tions that are based on broadband subspace decomposition; however, spectral majorisa-

tion also creates high paraunitary order when diagonalising the para-Hermitian matrix

where ground truth PSDs of sources are not spectrally majorised, as demonstrated in

Chapter 4. It would be interesting to see if the non-majorised decomposition can be

used in a particular application. The following changes can be made to generate the

non-majorised solution for the SBR2 and SMD algorithms.
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• In SBR2, Givens rotations with a different ordering may not only lead to a per-

mutation but can perhaps also balance powers between channels.

• In SMD, the EVD could be replaced by a geometric mean decomposition (GMD)

[125], which creates a diagonal matrix of equal positive semidefinite and real-

valued entries by means of unitary operations.

In addition, the SVD has been generalised to decompose tensors [126], and a num-

ber of application areas utilise such expansions. We need to understand the differences

and similarities between PEVD and tensor decomposition in order to set our approach

apart and encourage its use among the research community that utilises and applies

tensor decompositions.

Implementations

Based on the continuously growing interest in polynomial matrix decomposition tech-

niques, a MATLAB polynomial EVD toolbox has been developed [127]. This toolbox

only includes the two main PEVD algorithms, i.e., SBR2 and SMD. It might be helpful

to the community to also archive the improved versions of these algorithms, including

MS-SBR2 and MSME-SMD. Furthermore, it is now time to examine the robustness

of these algorithms when implemented via field-programmable gate array (FPGA) ar-

chitecture or graphical processing unit (GPU). Some recent papers [128–130] have

investigated these issues but there is still room for performance improvement. Surely,

it is worthwhile to conduct further research on hardware implementation.

Applications

For the application of the PEVD to spectral factorisation, discussed in Chapter 6, we

have demonstrated that the spectral factor found by our proposed method is valid, but

not unique. Is a unique minimum order solution possible via PEVD?

The results discussed in Chapter 7 could potentially be made more accurate by

directly decomposing the channel matrix using a more straightforward PSVD algo-
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rithm such as that based on generalised Kogbetliantz transformations [118], instead of

formulating the PSVD via PEVD. It would be interesting to see a performance com-

parison between these two different PSVD approaches. In addition, the PQRD can

also be used to transform the broadband MIMO channel equalisation problem into a

set of SISO channel equalisation problems using back substitution, which removes the

co-channel interference (CCI). Each of the SISO channel equalisation problems can

then be solved using a maximum likelihood sequence estimation (MLSE) based on

the Viterbi algorithm [15, 67]. Note that unlike the PSVD-based equalisation scheme,

the PQRD only needs prior channel knowledge at the receiver. Further work can be

done to compare these two schemes, and different equalisation methods could also be

applied to this problem to see whether the BER results could be potentially improved.
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