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Abstract: Introduction of a gain medium in lossy plasmonic metamaterials reduces and 

compensates losses or even amplifies an incident light often with nonlinear optical effect. Here, 

optical gain in a pump-probe experimental setup is effectively calculated in the frequency-domain 

by approximating a gain material as an inhomogeneous medium. Spatially varying local field 

amplitudes of the pump and probe beams are included in the model to reproduce the 

inhomogeneous gain effect, in which population inversion occurs most strongly near the surface 

and decays along the propagation direction. We demonstrate that transmission spectra calculated by 

this method agree well with finite-difference time-domain (FDTD) simulation results. This 

simplified approach of gain modelling offers an easy and reliable way to analyze wave propagation 

in a gain medium without nonlinear time-domain calculation. 
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1. Introduction 

Research on artificially structured materials with exotic optical behavior, called metamaterials, has 

made immense progress for several decades enabling negative refractive index [1, 2], huge artificial 

magnetism [3] and super-resolution imaging [4, 5]. Being composed of subwavelength dimensions, 

metamaterials are usually described as a homogeneous medium with effective optical parameters such 

as effective permittivity and permeability despite the spatially non-uniform artificial nanostructures 

[6]. However, resonances are generally accompanied in their optical responses by extraordinary 

optical parameters such as negative or extremely high refractive index, which results in high optical 

losses. Since the losses hinder realization and practical application of metamaterials, a new 

mechanism to overcome the intrinsic limitations are in demand. Gain materials, including fluorescent 

dye and semiconductors, which absorb incident light and emit light with lower energy, have been 

reported to provide field amplification to compensate the losses [7]. The inclusion of such gain 

materials reduces the optical losses of metamaterials or even enables metamaterials with negative 

losses, in other words, amplification [8-10].  

Gain materials are usually modelled as a four-level system [10-13], or they can be simply described as 

a homogeneous medium with effective gain permittivity [14, 15]. However, since the excitation of 

ground-level electrons to a higher level by the photon absorption occurs locally rather than globally, 

the gain effect is inherently not uniform throughout the whole gain medium. Instead, the attenuation 

of pump beam leads to a spatially non-uniform gain effect which makes the gain stronger near the 

front surface and degraded as the beam propagates. In this paper, we propose a new modelling 

approach of gain medium where an inhomogeneous gain effect is taken into account. Refractive index 

as a function of propagation distance and transfer matrix method (TMM) of electromagnetic fields in 

a multilayer system are combined to offer frequency-domain calculations of the gain in a four-level 

system. Our model consists of two steps. First, the interaction between a gain medium and the pump 

beam generates spatially non-uniform population difference. Then, for the given population difference 

profile, absorption and stimulated emission caused by the propagation of probe are simulated. Electric 



field amplitudes, population inversions and transmission spectra for a finite-thickness slab of an 

artificial gain material will be calculated and compared using (i) standard nonlinear four-level one-

electron system, (ii) homogeneous gain and (iii) inhomogeneous gain approach. This approach will 

enable a simplified but relatively accurate calculation of wave propagation in gain materials. 

 

2. Effective pump-probe experiment in a frequency-domain 

In this paper, we will focus on pump-probe experiments where a high-intensity pump beam with 

narrow bandwidth excites the gain medium first, and then relatively weak and broadband probe beam 

is used to detect the nonlinear effects with a time delay ∆𝑡𝑡delay after the pump beam has been turned 

off. In the visible wavelength range, for example, the pump and the probe beam correspond to 

picosecond laser and white light source with femtosecond scale pulse length respectively, and the 

∆𝑡𝑡delay is on the order of tens of picosecond. To model the gain effect, we consider a four-level one-

electron system (Figure 1(a)) as it successfully describes gain effect in dye materials. Especially, 

Rhodamine 800 (refractive index 𝑛𝑛 = 1.62, total carrier density 𝑁𝑁� = 6 × 1024 m−3) with an area 𝐴𝐴 

is pumped by 4 picosecond pulse laser (∆𝑡𝑡pulselength = 4 × 10−12 s) with an amplitude of 𝐸𝐸0 = 2 ×

107 V/m. 

 

2.1 Local field effect in a gain medium 

For a slab of a single uniform gain medium, the inhomogeneous gain effect originates from two 

factors, the attenuation of pump beam along the propagation direction and the oscillatory field 

intensity due to the interference between the forward and backward waves. The former results in non-

uniform gain feature in a scale longer than the pump wavelength and the latter in the order of a half of 

the pump wavelength. Firstly, to ensure the optical pump generates inhomogeneous population 

inversion without reaching the saturation regime, the pump energy should be comparable to the 

maximum absorbable energy. Here, the maximum absorbable energy is the photon energy required to 



excite all electrons in the lower level (𝑖𝑖 = 0) to the higher level (𝑖𝑖 = 3) during propagation of one 

wavelength: 𝐸𝐸abs = 𝐴𝐴λ𝑎𝑎𝑁𝑁�ℏ𝜔𝜔𝑎𝑎/𝑛𝑛 , where λa  and 𝜔𝜔𝑎𝑎  are the absorption wavelength and the 

absorption angular frequency respectively. The pump beam energy is the incident power multiplied by 

the pulse length: 𝐸𝐸pump = 𝑛𝑛𝑐𝑐0𝜀𝜀0𝐴𝐴𝐸𝐸02∆𝑡𝑡pulselength/2 where ε0 is the vacuum permittivity and c0 

is the light speed in free space. For the parameters chosen for our pump-probe experiment (see above), 

the maximum absorbable energy (𝐸𝐸abs = 0.74 J) is not negligible compared with the pump energy 

(𝐸𝐸pump = 3.44 J). It implies that the pump loses a considerable amount of its energy by exciting the 

lower level electrons to the higher states when it enters the slab and the attenuated pump beam excites 

fewer electrons as it propagates through the slab. In addition, since the electric field at a given point is 

the sum of forward and backward travelling waves, it will show an oscillatory spatial profile rather 

than a modest change in amplitude. Therefore, a slab of gain material should be described as an 

inhomogeneous medium with spatially varying gain parameters as shown in Figure 1(b) instead of a 

uniform effective medium with constant population inversion ∆𝑁𝑁 and gain permittivity 𝜀𝜀𝑔𝑔. 

 

Figure 1. (a) Gain mechanism of a four-level system and (b) schematics of homogeneous gain 

assumption (top) and inhomogeneous gain assumption (bottom). ∆𝑁𝑁 and 𝜀𝜀𝑔𝑔 are the population 

inversion and effective permittivity due to the gain. 

 

 



2.2 Relation between the electric field and effective gain permittivity 

Our four-level system is assumed to have only two optical transitions: absorption (transition 0 ↔ 3) 

and stimulated emission (transition 1 ↔ 2). Three non-radiative decay processes to the right below 

each level are added to describe temporal dynamics of carrier densities. Time evolution of carrier 

densities in four-level systems follows these coupled equations [11]: 
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Here, the subscript a and e indicate absorption and emission respectively. 𝜔𝜔𝑎𝑎  and 𝜔𝜔𝑒𝑒  are the 

resonance angular frequencies, ∆𝜔𝜔𝑎𝑎  and ∆𝜔𝜔𝑒𝑒  are the full bandwidths, 𝑷𝑷𝑎𝑎  and 𝑷𝑷𝑒𝑒  are the 

polarization densities for absorption and emission respectively. 𝑁𝑁𝑖𝑖 is carrier density in the 𝑖𝑖-th level 

(𝑖𝑖 = 0, 1, 2, 3) and the total carrier density 𝑁𝑁�  is given by 𝑁𝑁� = 𝑁𝑁0 + 𝑁𝑁1 + 𝑁𝑁2 + 𝑁𝑁3 . 𝜏𝜏𝑖𝑖𝑖𝑖  is the 

lifetime of carriers for the non-radiative decay transition from 𝑖𝑖 to 𝑗𝑗. Other non-radiative terms such 

as successive decays are assumed to be negligible. 𝑬𝑬𝒍𝒍𝒍𝒍𝒍𝒍 is a local electric field given by [(𝜀𝜀 + 2)/

3]𝑬𝑬 from the Lorentz approximation, not the average electric field [16]. 

In equation (1), the terms that contain the polarization densities 𝑷𝑷𝒊𝒊 and local electric field 𝑬𝑬𝑙𝑙𝑙𝑙𝑙𝑙 

correspond to excitation of the ground-level electrons and stimulated emission for 𝑖𝑖 = 𝑎𝑎 and 𝑖𝑖 = 𝑒𝑒 

respectively while the other terms represent non-radiative relaxation processes. Gain materials such as 

dyes or semiconductors which are good candidates to be implemented in metamaterials have long τ21 

compared to τ32 and τ10 [17], so that electrons in the third and first level rapidly decay to the lower 

level, but stay in the second level. The second level is sometimes called as a metastable level for its 



relatively long lifetime [12]. In other words, electrons in the first and the third level relax fast whereas 

they stay in the second level longer compared to the time delay (τ10, τ32 ≪ ∆𝑡𝑡delay ≪ τ21). Therefore, 

a probe beam experiences the gain materials in which the electrons relaxed from the highest level stay 

in the metastable level giving rise to a population inversion. 

To calculate the absorption and gain effect, population difference of two optical transitions 0 ↔ 3 

and 1 ↔ 2 should be known. In the remaining part of this section, we will find a formula of the 

spatial-dependent population difference and then show that effective permittivity for the pump and the 

probe beam can be expressed in terms of electric field. 

For a ground state before the excitation, the initial condition is given by 𝑁𝑁0 = 𝑁𝑁�, 𝑁𝑁𝑖𝑖 = 0 (𝑖𝑖 = 1, 2, 3). 

As a pulse of the pump beam propagates in the gain medium, the carrier densities vary in time and 

then after the pump is turned off and before the probe is turned on, they reach a state which is 

different from the initial state. Since the carrier densities in all level vary slowly due to the scale 

mismatch of the lifetime and time delay between the pump and the probe, we approximate this state as 

a stationary state. In the absence of the probe beam, the carrier density in each level at the stationary 

state can be obtained by applying ∂/ ∂t = 0 to the second and third equations of (1). Then the carrier 

densities for 𝑖𝑖 = 1, 2, 3 at the stationary state follow 

𝑁𝑁1:𝑁𝑁2: 𝑁𝑁3 = 𝜏𝜏10: 𝜏𝜏21: 𝜏𝜏32                            (2) 

Additionally, the time evolution of 𝑁𝑁3 can be also expressed as a simplified form in terms of 

stimulated transition probability Γij [12]. 

𝜕𝜕𝑁𝑁3
𝜕𝜕𝜕𝜕

= Γ03𝑁𝑁0 −
𝑁𝑁3
𝜏𝜏32

                                                                    (3) 

We will now derive the expression for the spatial-dependent Γ03 starting from a formula Γ03 =

𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎𝐼𝐼/ℏ𝜔𝜔𝑎𝑎  [14] where 𝐼𝐼(𝑧𝑧, 𝑡𝑡) = 𝑐𝑐0𝑛𝑛(𝑧𝑧)𝜀𝜀0|𝐸𝐸(𝑧𝑧, 𝑡𝑡)|2/2  is a local intensity and 𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎(𝑧𝑧) =

(𝜆𝜆𝑎𝑎/𝑛𝑛)2𝛾𝛾𝑟𝑟𝑟𝑟𝑟𝑟(𝑧𝑧)/2𝜋𝜋∆𝜔𝜔𝑎𝑎 is the absorption cross section. The Lorentzian term in the absorption cross 

section in Ref. [14] can be neglected by assuming the narrow bandwidth of the pump beam. The 



radiative decay rate 𝛾𝛾𝑟𝑟𝑟𝑟𝑟𝑟 is given by Fermi’s golden rule [18]: 𝛾𝛾𝑟𝑟𝑟𝑟𝑟𝑟(𝑧𝑧) = 𝑒𝑒2𝑑𝑑𝑎𝑎2𝜔𝜔𝑎𝑎3/𝜋𝜋𝜋𝜋ℏ𝑐𝑐3. Here, 𝑑𝑑𝑖𝑖 

is dipole length when the dipole is oriented parallel to the incident polarization. Note that 𝜀𝜀 and 𝑐𝑐 

are the permittivity and the speed of light in the medium, both of which depend on the propagation 

distance 𝑧𝑧. In other words, the absorption cross section and the intensity are both functions of 

propagation distance. However, Γ03(𝑧𝑧, 𝑡𝑡) = 𝑒𝑒2𝑑𝑑𝑎𝑎2|𝐸𝐸(𝑧𝑧, 𝑡𝑡)|2/ℏ2∆𝜔𝜔𝑎𝑎 is dependent only on the field 

amplitude, but not on refractive index as 𝑛𝑛(𝑧𝑧) are cancelled out. Therefore, spatially varying 

population difference is explicitly determined by the local field amplitude. Note that the population 

difference is only dependent on the wave propagation direction but uniform with respect to the 

wavefront plane due to plane symmetry. 

We introduce a time-independent variable Γ03,eff to effectively describe the stimulated transition 

probability in the frequency domain using slowly varying envelope approximation. The electric field 

of pump has the Gaussian envelope with an oscillating term of its angular frequency: 𝐸𝐸(𝑧𝑧, 𝑡𝑡) =

𝐸𝐸(𝑧𝑧) sin(−𝜔𝜔𝑐𝑐(𝑡𝑡 − 𝑡𝑡0)) exp(−(𝑡𝑡 − 𝑡𝑡0)2/2∆𝑡𝑡2) where 𝑡𝑡0  is center of the Gaussian envelope and 

∆𝑡𝑡 = ∆𝑡𝑡pulselength/2�log 2. First, ignoring the fast oscillating term sin(−𝜔𝜔𝑐𝑐(𝑡𝑡 − 𝑡𝑡0)), a crude 

approximation will be taking average of the Gaussian envelope in time, which leads to effective 

electric field amplitude as 𝐸𝐸0,eff(z) = 𝐸𝐸0(𝑧𝑧)√2π∆t/∆tdelay . Then, we can obtain Γ03,eff  by 

substituting 𝐸𝐸0,eff(𝑧𝑧) instead of 𝐸𝐸(𝑧𝑧, 𝑡𝑡) into Γ03(𝑧𝑧, 𝑡𝑡) and multiplying additional 1/2 to take into 

account the square term of sin(−𝜔𝜔𝑐𝑐(𝑡𝑡 − 𝑡𝑡0)). To sum up, Γ03,eff = �√π∆t/∆tdelay�
2
𝑒𝑒2𝑑𝑑𝑎𝑎2|𝐸𝐸(𝑧𝑧)|2/

ℏ2∆𝜔𝜔𝑎𝑎 is used instead of Γ30 to remove time dependence. Finally, by incorporating equation (2) 

with (3), we obtained the expression for the population difference of both absorption and emission 

which are defined as ∆𝑁𝑁𝑎𝑎 = 𝑁𝑁3 − 𝑁𝑁0 and ∆𝑁𝑁𝑒𝑒 = 𝑁𝑁2 − 𝑁𝑁1: 

∆𝑁𝑁𝑎𝑎stat = 𝑁𝑁3 − 𝑁𝑁0 =
𝜏𝜏32𝛤𝛤03,eff − 1

1 + (𝜏𝜏32 + 𝜏𝜏21 + 𝜏𝜏10)𝛤𝛤03,eff
𝑁𝑁� ,                                        (4) 

∆𝑁𝑁𝑒𝑒stat = 𝑁𝑁2 − 𝑁𝑁1 =
(𝜏𝜏21 − 𝜏𝜏10)𝛤𝛤03,eff

1 + (𝜏𝜏32 + 𝜏𝜏21 + 𝜏𝜏10)𝛤𝛤03,eff
𝑁𝑁� .                                        (5) 



Meanwhile, the population densities are governed by the following equations of motion for 𝑖𝑖 = 𝑎𝑎 

and 𝑖𝑖 = 𝑒𝑒 [14]. 

𝜕𝜕2𝑷𝑷𝒊𝒊
𝜕𝜕𝑡𝑡2

+ ∆𝜔𝜔𝑖𝑖
𝜕𝜕𝑷𝑷𝒊𝒊
𝜕𝜕𝜕𝜕

+ 𝜔𝜔𝑖𝑖
2𝑷𝑷𝒊𝒊 = −𝜎𝜎𝑖𝑖∆𝑁𝑁𝑖𝑖𝑬𝑬𝒍𝒍𝒍𝒍𝒍𝒍                                                  (6) 

The coupling constant 𝜎𝜎𝑖𝑖 of 𝑷𝑷𝒊𝒊 to the local electric field is provided by 𝜎𝜎𝑖𝑖 = 2𝜔𝜔𝑖𝑖𝑒𝑒2𝑑𝑑𝑖𝑖2/ℏ [11]. The 

coupling constant and the population difference determine the strength of the coupling between the 

induced polarization density and the local electric field and thereby effective gain permittivity. Given 

that pump beam usually has a picosecond scale pulse length for a narrow bandwidth and the relatively 

broadband probe is in tens of femtoseconds scale for visible range, both pump and probe beams can 

be considered as continuous waves for their relatively long pulse lengths compared to the wavelength. 

Therefore, we can simplify the partial differential equations to get effective permittivity using the 

time-harmonic assumption. 

𝑫𝑫𝑖𝑖 = 𝜀𝜀0𝑬𝑬 + 𝑷𝑷𝒊𝒊 = 𝜀𝜀0𝜀𝜀𝑬𝑬 

𝜀𝜀 = 𝜀𝜀𝑟𝑟 + 𝜀𝜀𝑔𝑔 = 𝜀𝜀𝑟𝑟 +
1
𝜀𝜀0

𝜎𝜎𝑖𝑖∆𝑁𝑁𝑖𝑖
𝜔𝜔2 + 𝑖𝑖𝑖𝑖∆𝜔𝜔𝑖𝑖 − 𝜔𝜔𝑖𝑖

2                                                 (7) 

The total relative permittivity 𝜀𝜀 is a sum of relative permittivity 𝜀𝜀𝑟𝑟 of the gain material itself and 

effective gain permittivity 𝜀𝜀𝑔𝑔 with Lorentzian line shape. 

To calculate the changes of the population difference and permittivity in the gain medium, let us 

consider the propagation of the pump beam which corresponds to absorption process by exciting 

electrons in the lowest level to the higher levels. Strictly speaking, the excitation of electrons by the 

pump is a transient process, which requires nonlinear time-domain simulation. In other words, the 

effective gain permittivity is a function of both time and propagation distance. To remove the time 

dependence, we used population difference for absorption by averaging the population difference of 

the initial state (∆𝑁𝑁𝑎𝑎 = −𝑁𝑁�) and that of the stationary state (𝑁𝑁𝑎𝑎stat). Then, we can effectively describe 

the interaction between the pump and the gain slab as a wave propagation in an inhomogeneous 

medium with the following effective gain permittivity. 



𝜀𝜀𝑔𝑔
pump =

1
𝜀𝜀0
𝜎𝜎𝑎𝑎(−𝑁𝑁� + ∆𝑁𝑁𝑎𝑎stat)/2
𝜔𝜔2 + 𝑖𝑖𝑖𝑖∆𝜔𝜔𝑎𝑎 − 𝜔𝜔𝑎𝑎2

                                                       (8) 

Here, the negative sign of the population difference indicates a loss. Note that the contribution of 

optical transition 2 ↔ 1 can be disregarded here as the pump beam does not overlap with emission 

wavelength. On the other hand, the propagation of probe beam is a more complicated process which 

involves both absorption and stimulated emission. The probe beam usually has broad wavelength 

range centered at the emission wavelength. In other words, the probe contains waves with absorption 

wavelength as well as those with emission wavelength. The wave with absorption wavelength works 

as if it is another pump during the propagation of the gain medium. It excites the electrons in 𝑖𝑖 = 0 

level to 𝑖𝑖 = 3 level and decays. In contrast, the wave with emission wavelength induces radiative 

emission of electrons in 𝑖𝑖 = 2 level to 𝑖𝑖 = 1 level. Therefore, the probe beam experiences a 

medium with two Lorentzian permittivities, one is positive (loss from absorption) and the other is 

negative (gain from stimulated emission).  

𝜀𝜀𝑔𝑔
probe =

1
𝜀𝜀0

𝜎𝜎𝑎𝑎∆𝑁𝑁𝑎𝑎stat

𝜔𝜔2 + 𝑖𝑖𝑖𝑖∆𝜔𝜔𝑎𝑎 − 𝜔𝜔𝑎𝑎2
+

1
𝜀𝜀0

𝜎𝜎𝑒𝑒∆𝑁𝑁𝑒𝑒stat

𝜔𝜔2 + 𝑖𝑖𝑖𝑖∆𝜔𝜔𝑒𝑒 − 𝜔𝜔𝑒𝑒2
                                   (9) 

Here, the spatially non-uniform parameters in effective gain permittivity of both pump and probe are 

population difference 𝑁𝑁𝑎𝑎stat and 𝑁𝑁𝑒𝑒stat, which can be easily obtained by the local field amplitude as 

stated earlier. All the other parameters are constant. Therefore, we can get effective permittivity if the 

field amplitude is known. Importantly, the change of the carrier densities caused by the probe can be 

neglected as the intensity of the probe beam is several orders of magnitude smaller than that of the 

pump beam. 

So far, a frequency-domain approach has been introduced for an effective modelling of the gain 

medium in a pump-probe experiment with narrowband laser pump and broadband probe beams. 

Based on stationary state assumption, time-harmonic assumption and slowly varying envelope 

approximation, we proposed an approach to calculate effective gain permittivity in frequency-domain. 



In the next section, we will discuss how to describe the propagation of the pump and probe beams 

through the spatially varying effective medium. 

 

2.3 Transfer matrix method for an inhomogeneous medium 

 

Figure 2. Wave propagation in a medium of spatially varying optical parameters. 

 

To calculate the electromagnetic fields in the inhomogeneous medium, we employ the transfer matrix 

method for a dielectric multilayer film [19, 20]. Wave propagation in a medium with spatially varying 

permittivity can be readily calculated by taking a limit of thickness to zero in the dielectric multilayer 

problem. Suppose a dielectric multilayer slab is placed between two semi-infinite media labelled as 

𝑖𝑖 = 1 and 𝑖𝑖 = 𝑀𝑀. We assume that the dielectric media are non-magnetic (µ = 1). The slab is 

composed of 𝑀𝑀− 2 layers (𝑖𝑖 = 2, 3, … ,𝑀𝑀 − 1), where 𝑖𝑖-th layer has refractive index 𝑛𝑛𝑖𝑖, impedance 

𝑍𝑍𝑖𝑖 and thickness 𝑑𝑑𝑧𝑧𝑖𝑖, and the total gain slab has thickness 𝐿𝐿 = ∑ 𝑑𝑑𝑧𝑧𝑖𝑖𝑀𝑀−1
𝑖𝑖=2 . Then the electric and 

magnetic fields at the layer 𝑖𝑖 − 1 and the layer 𝑖𝑖 are related by transfer matrix 𝑇𝑇𝑖𝑖 according to 

continuity equation [20]: 

�𝐸𝐸𝑖𝑖−1𝐻𝐻𝑖𝑖−1
� = 𝑇𝑇𝑖𝑖 �

𝐸𝐸𝑖𝑖
𝐻𝐻𝑖𝑖
� = �

cos𝑛𝑛𝑖𝑖𝑘𝑘0𝑑𝑑𝑧𝑧𝑖𝑖 −𝑗𝑗𝑍𝑍𝑖𝑖 sin 𝑛𝑛𝑖𝑖𝑘𝑘0𝑑𝑑𝑧𝑧𝑖𝑖
−𝑗𝑗𝑍𝑍𝑖𝑖−1 sin𝑛𝑛𝑖𝑖𝑘𝑘0𝑑𝑑𝑧𝑧𝑖𝑖 cos𝑛𝑛𝑖𝑖𝑘𝑘0𝑑𝑑𝑧𝑧𝑖𝑖

� �𝐸𝐸𝑖𝑖𝐻𝐻𝑖𝑖
�                        (10) 

for 𝑖𝑖 = 1, 2, … ,𝑀𝑀 with 𝑑𝑑𝑧𝑧𝑀𝑀 = 0 and the initial condition �𝐸𝐸𝑀𝑀𝐻𝐻𝑀𝑀
� = � 1

1/𝑍𝑍𝑖𝑖
�𝐸𝐸𝑀𝑀. Taking a limit of 

𝑑𝑑𝑧𝑧𝑖𝑖 → 0 for 𝑖𝑖 = 2, 3, … ,𝑀𝑀 − 1 gives the first order differential equation with zero diagonal terms. It 



is solvable for a constant or simple form of refractive index. However, since the refractive index of 

each layer is dependent on the electric field amplitude as described in the previous section, wave 

propagation in the inhomogeneous gain medium requires a TMM calculation with an infinitesimal 

thickness. If �𝐸𝐸𝑖𝑖𝐻𝐻𝑖𝑖
� is known, 𝑛𝑛𝑖𝑖 can be calculated by the equation (8) and equation (9) for pump and 

probe beams respectively. Then �𝐸𝐸𝑖𝑖−1𝐻𝐻𝑖𝑖−1
� can be obtained from the equation (10). Consequently, the 

electromagnetic fields in the layer 𝑖𝑖 is given by 

�𝐸𝐸𝑖𝑖𝐻𝐻𝑖𝑖
� = �� 𝑇𝑇𝑙𝑙

𝑀𝑀

𝑙𝑙=𝑖𝑖+1

� �𝐸𝐸𝑀𝑀𝐻𝐻𝑀𝑀
� .                                                           (11) 

Combined with equation (8) and (9), the equation (11) fully determines the electromagnetic fields at 

every dielectric layer. Furthermore, we can get transmission and reflection spectra by 𝐸𝐸𝑀𝑀+/𝐸𝐸1+ and 

𝐸𝐸1−/𝐸𝐸1+ respectively. 

 

2.4 Numerical simulations and comparison 

We performed a numerical pump-probe experiment with a gain slab using (i) nonlinear calculation in 

time-domain, (ii) homogeneous gain and (iii) inhomogeneous gain approach. Rhodamine 800 of 

thickness 6.8 µm, which corresponds to ten times of the pump wavelength, is used and modelled as 

500 layers with an equal thickness. Since the overall thickness is comparable to the wavelength, the 

slab acts as a Fabry-Perot resonator with oscillatory transmission spectrum. Therefore, the thickness is 

determined to have a unity transmission at the emission wavelength to exclude the effect from 

multiple reflections. We also assume the gain material to have zero imaginary part of the refractive 

index in the absence of pump to distinguish gain effect from the attenuation from inherent losses. 

The simulation parameters are chosen as follows [11] : √εr = 1.62, λa = 680 nm, 𝜆𝜆𝑒𝑒 = 710 nm,

∆ωa =   ∆ω𝑒𝑒 = 1 × 1014 s−1, τ32 = 𝜏𝜏10 = 1 × 10−13 s, 𝜏𝜏30 = 𝜏𝜏21 = 5 × 10−10 s, 𝑑𝑑𝑎𝑎 = 0.1 nm,

𝑑𝑑𝑒𝑒 = 0.09 nm and 𝑁𝑁� = 6 × 1024 m−3. The incident pump amplitude is set as 2 × 107 V/m. For 



time-domain calculations, we used Lumerical FDTD solution [21] with an additional plugin. In the 

FDTD simulation, the pulse lengths of pump and probe beams are set to 4 × 10−12 s and 1.2 ×

10−14 s respectively with 2.5 × 10−11 s delay between the pump and probe. 

 

 

Figure 3. (a)-(c) Pump amplitude and (d)-(f) population inversion 𝑁𝑁2 − 𝑁𝑁1 normalized by the total 

carrier density, calculated by homogeneous gain approach (left column), inhomogeneous gain 

approach (middle column) and FDTD (right column), respectively.  

 

Electric fields calculated by the homogeneous gain analysis, inhomogeneous gain approach and the 

FDTD are shown in Figure 3 (a)-(c) respectively. In the homogeneous assumption, the field amplitude 

of pump exhibits standing wave-like amplitude originated from the interference of waves propagating 

forward (transmitting) and backward (reflecting) direction as shown in Figure 3(a). Instead of the 

oscillatory amplitude, incident field amplitude is used to calculate population inversion, which leads 

to constant population inversion which is overestimated throughout the slab (Figure 3(d)). On the 

contrary, local field effect included in inhomogeneous gain analysis gives rise to distinct 



characteristics. The pump attenuates as well as oscillates during the propagation as shown in Figure 

3(b). Affected by the local field amplitude, the population inversion also decays with oscillations 

during the propagation which agrees well with the FDTD calculation results (Figure 3(f)). 

 

 

Figure 4. (a)-(c) Refractive index at emission wavelength where 𝑛𝑛 and 𝑘𝑘 are real and imaginary 

part, and (d)-(f) probe amplitude, calculated by homogeneous gain approach (left column), by 

inhomogeneous gain approach while neglecting (middle column) and including (right column) the 

absorption of probe beam, respectively.  

 

Due to the modulated population inversion, real and imaginary part of the refractive index (𝑛𝑛 + 𝑖𝑖𝑖𝑖) at 

emission wavelength varies in space for the inhomogeneous gain model and FDTD whereas the 

refractive index is constant for the homogeneous gain model (Figure 4(a) to 4(c)). Since the amplitude 

of the incident probe is much smaller than that of the pump, we simulated two cases where the 

absorption of probe, which corresponds to the first term in the right-hand side of equation (9), is 



neglected (middle column) and included (right column). In both cases, the imaginary part of the 

refractive index increases implying the diminished gain effect during the propagation. When the 

absorption is not included, the imaginary part of the refractive index is negative over the entire slab 

meaning that the probe beam will experience only the gain effect. Accordingly, the electric field 

amplifies gradually despite the negative gradient. On the other hand, if the absorption is included, the 

imaginary part of the refractive index becomes positive after some point and the electric field starts to 

decay. It means that even at the emission wavelength, absorption occurs and even exceeds the 

stimulated emission after several wavelengths. 

 

 

Figure 5. Transmission spectra calculated by homogeneous gain approach (green), inhomogeneous 

gain approach by neglecting the probe absorption (red), inhomogeneous gain approach by considering 

the probe absorption (blue) and FDTD (black), respectively. The thickness of slab is (a) 6.8 µm, (b) 

1.97 µm and (c) 1.1 µm. 

 

To check the functionality of our inhomogeneous gain approach, the transmission spectra of the probe 

beam are calculated with the homogeneous gain analysis, inhomogeneous gain approach and the 

FDTD for three different slab thickness: 6.8 µm , 1.97 µm  and 1.1 µm  (Figure 5). These 

thicknesses are chosen to give unity transmission without gain, but the scheme is not limited to this 

condition and applicable for an arbitrary thickness. Transmission spectra obtained from homogeneous 

gain approach is indicated by green lines with an oscillating feature due to the multiple reflections. 



Here, the gain effect is overestimated especially when the slab is several orders thicker than the pump 

wavelength. Although the inhomogeneous gain approach with neglected probe absorption shows 

reduced gain (red), which is similar to FDTD calculation (black), it fails to explain low transmission 

near the absorption wavelength originating from the excitation of electrons by the probe beam. 

However, if the probe absorption is included (blue), the calculated transmission contains both the gain 

at emission wavelength and the loss at absorption wavelength. A notable feature here is that the 

inhomogeneous gain calculated in frequency-domain perfectly reproduces transmission spectra 

simulated by nonlinear time-domain calculation. A numerical pump-probe experiment which has been 

regarded to be available at only time-domain can be performed in the frequency-domain either for this 

simple slab geometry. 

 

3. Conclusion 

In conclusion, optical gain in a pump-probe experiment is calculated on the basis of an 

inhomogeneous gain approach and compared with a finite-difference time-domain (FDTD) analysis 

and the usual approach assuming a spatially homogeneous gain distribution. By considering 

absorption of the incident photons’ energy, we include the local field distribution into the effective 

gain approach, allowing us to relax the constant field assumption. Successful reproduction of 

oscillatory and decaying shape of the pump and probe beam is presented. We also demonstrate that 

the inhomogeneous gain approach can be readily used to calculate transmission spectra of a probe 

beam for a slab with a finite thickness, which shows excellent agreement with the FDTD results. The 

current study can generally be applied to complex three-dimensional gain geometries, but for 

comparison with the transmission matrix method is here restricted to one-dimensional slabs. We 

anticipate that the simplified analysis for gain materials can also be performed for loss-compensated 

metamaterials for real applications, providing speedy and accurate modelling of gain materials such as 

dye or semiconductor. 
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