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Abstract—As devices proliferate, the ability for us to interact with
them in an intuitive and meaningful way becomes increasingly
challenging. In this paper we take the typical home as an
experimental environment to investigate the challenges and po-
tential solutions arising from ever-increasing device proliferation
and complexity. We describe and evaluate a potential solution
based on conversational interactions between “things” in the
environment where those things can be either machine devices
or human users. Our key innovation is the use of a Controlled
Natural Language (CNL) technology as the underpinning infor-
mation representation language for both machine and human
agents, enabling humans and machines to trivially “read” the
information being exchanged. The core CNL is augmented with
a conversational protocol enabling different speech acts to be
exchanged within the system. This conversational layer enables
key contextual information to be conveyed, as well as providing
a mechanism for translation from the core CNL to other forms,
such as device specific API (Application Programming Interface)
requests, or more easily consumable human representations. Our
goal is to show that a single, uniform language can support
machine-machine, machine-human, human-machine and human-
human interaction in a dynamic environment that is able to
rapidly evolve to accommodate new devices and capabilities as
they are encountered. We also report results from our first formal
evaluation of a Conversational Homes prototype and demonstrate
users with no previous experience of this environment are able
to rapidly and effectively interact with simulated devices in a
number of simple scenarios.

Keywords–IoT; Controlled Natural Language; Conversational
Interaction.

I. INTRODUCTION

From an individual agent’s perspective, the Internet of
Things (IoT) can be seen as an increasingly large and diverse
world of other agents to communicate with. Humans are
agents too in this world, so we can observe four kinds of
communication: (i) human-machine, (ii) machine-human, (iii)
machine-machine, and (iv) human-human. There is a tendency
to consider human-oriented (i, iv) and machine-oriented (ii,
iii) interactions as naturally requiring different kinds of com-
munication language; humans prefer natural languages, while
machines operate most readily on formal languages. In this
paper, however, we consider what the IoT world might look
like where humans and machines largely use a common,
uniform language to communicate. Our design goal is to
support communication activities such as: the discovery of

other agents and their capabilities, querying other agents and
receiving understandable information from them, and obtaining
rationale for an agent’s actions. The proposed approach must
be able to cope with rapid evolution of an IoT environment
that needs to accommodate new devices, capabilities, and agent
types. In Section II, we consider why human users might find
such an environment more appealing when machines com-
municate using an accessible and human-friendly language,
than when machines use a traditional machine-to-machine
formalism. Section III substantiates our proposed approach
using a series of vignettes, while Section IV presents evidence
that human-machine and machine-machine interactions can be
facilitated via a CNL communication mechanism as well as a
full description and analysis of the recent initial Conversational
Homes evaluation study. Section V concludes the paper.

This paper extends ideas first proposed in [1], specifically
by reporting on the first formal evaluation of the conversational
protocol described in that work. Sections I–III in this paper are
largely unchanged from [1], with Section IV being substan-
tially expanded to describe the evaluation setup and results.
Section V is also updated to reflect these latest developments
and our plans for future work.

II. BACKGROUND AND RELATED WORK

A key part of our approach is to consider how humans
“want” to interact with machines in the world. To help us
gain insights into these latent human requirements we look
towards existing trends and events occurring in the world and
use these as inspiration to help us form our hypotheses about
what a conversational environment for human-machine agents
might entail. For example, in this work we consider recent
interest in conversational technologies such as chatbots [2],
conversational computing [3], and conversational agents [4].
The remainder of this section covers this human-motivated
perspective and develops ideas first presented in [5].

A. Social Things
The advent of Twitter as a means of social communication

has enabled a large number of otherwise inanimate objects to
have an easily-accessible online presence. For example, Andy
Stanford-Clark created an account for the Red Funnel ferries
that service the Isle of Wight in the UK. The account [6] relays
real-time information about the ferry arrivals and departures
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allowing a subscriber of the account to see if they are running
on time.

Figure 1: Redjet tweet example.

Another similar example is an unofficial account for Lon-
don’s Tower Bridge [7]. Its creator, Tom Armitage, created a
system that took the published scheduled of bridge opening
and closing times and produced a Twitter account that relayed
that information.

Figure 2: Tower Bridge tweet example.

A key difference between the ferries and the bridge ac-
counts is that the ferries are just relaying information, a
timestamp and a position, whereas the bridge is speaking to us
in the first-person. This small difference immediately begins
to bring a more human nature to the account. But, they are
ultimately simple accounts that relay their state to whomever
is following them, providing an easily consumable feed of
information on an existing platform.

This sort of thing seems to have caught on particularly
with the various space agencies. We no longer appear able to
send a robot to Mars, or land a probe on a comet without
an accompanying Twitter account bringing character to the
events. The Mars Curiosity Rover has had an account [8]
since July 2008 and regularly shares images it has captured.
There’s always a sense of excitement when these inanimate
objects start to have a conversation with one another. The
conversations between the European Space Agency Philae
lander [9] and its Rosetta orbiter [10], as the former began to
lose power and had to shutdown, generated a large emotional
response on social media. The lander, which was launched into
space years before social media existed, chose to use its last
few milliamps of power to send a final goodbye.

The reality, of course, is that the devices did not create
these tweets. Communication with them remains the preserve
of highly specialized engineers, and their personalities are a
creation of their public relations agencies on this planet. There
are however, examples of machine participation on social
media provided by social bots [11]. On occasion, these entities
can masquerade as human agents and alter the dynamics of
social sense-making and social influence.

B. Seamlessness vs Seamfulness
The IoT makes possible a future where our homes and

workplaces are full of connected devices, sharing their data,
making decisions, collaborating to make our lives better [12].
Whilst there are people who celebrate this invisible ubiquity

and utility of computing, the reality is going to be much more
complicated.

Mark Weiser, Chief Scientist at Xerox PARC, coined
the term “ubiquitous computing” in 1988 as recognition of
the changing nature of our interaction with computers [13].
Rather than the overt interaction of a user sitting in front
of a computer, ubiquitous computing envisages technology
receding into the background of our lives.

Discussion of ubiquitous computing often celebrates the
idea of seamless experiences between the various devices
occupying our lives. Mark Weiser advocated for the opposite;
that seamlessness was undesirable and a self-defeating attribute
of such a system. He preferred a vision of “Seamfulness, with
beautiful seams” [14].

The desire to present a single view of a system, with no
joins, is an unrealistic aspiration in the face of the cold realities
of Wi-Fi connectivity, battery life, system reliability and the
status of cloud services. Presenting a user with a completely
monolithic system gives them no opportunity to connect with,
and begin to understand, the constituent parts. That is not to
say all users need this information all of the time, but there is
clearly utility to some users some of the time: when you come
home from work and the house is cold, what went wrong? Did
the thermostat in the living room break and decide it was the
right temperature already? Did the message from the working
thermostat fail to get to the boiler? Is the boiler broken? Did
you forget to cancel the entry in your calendar saying you’d
be late home that day? Without some appreciation of the
moving parts in a system, a user cannot feel any ownership or
empowerment when something goes wrong with it. Or worse
yet, how can they avoid feeling anything other than intimidated
by this monolithic system that responds in a manner akin to,
“I’m Sorry Dave, I’m afraid I can’t do that”.

This is the justification for beautiful seams: they help you
understand the edges of a device’s sphere of interaction, but
should not be so big as to trip you up. For example, such
issues exist with the various IP connected light bulbs that
are available today. When a user needs to remember what
application to launch on their phone depending on what room
they are walking into and what manufacturer’s bulbs happen
to be in there, the seams have gotten too big and too visible.

Designer Tom Coates has written on these topics [15]. He
suggests the idea of having a chat-room for the home:

“Much like a conference might have a chat-room so might
a home. And it might be a space that you could duck into as
you pleased to see what was going on. By turning the responses
into human language you could make the actions of the objects
less inscrutable and difficult to understand. . . ”

This relates back to the world of Twitter accounts for
Things, but with a key evolution. Rather than one-sided
conversations presenting raw data in a more consumable form,
or Wizard-of-Oz style man-behind-the-curtain accounts, a chat-
room is a space where the conversation can flow both ways;
both between the owner and their devices, and also between
the devices themselves.

C. Getting Things Communicating
For devices to be able to communicate they need to share

a common language. Simply being able to send a piece of data
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across the network is not sufficient. As with spoken language,
the context of an interaction is important too.

This model of interaction applies to both the data a device
produces, as well as the commands it can consume. There
are a number of technologies available for producing such a
shared model. For example: HyperCat [16], a consortium of
companies funded by the UK Government’s innovation agency
in 2014. It provides a central catalog of resources that are
described using RDF-like triple statements. Each resource is
identified by a URI allowing for ease of reference. URIs are
a key component in building the World Wide Web and are
well understood, but they are a technology used primarily by
computers. They do not provide a human-accessible view of
the model.

Furthermore, to enable a dynamic conversation, any such
model needs to be adaptable to the devices that are partici-
pating, especially when one of those participants is a human
being.

D. Talking to Computers
The most natural form of communication for most humans

is that of their own spoken language, not some JSON or
XML encoded format that was created with the devices as
the primary recipient. Technical specialists can be trained
to understand and use technical machine languages, but this
overhead is not acceptable to more casual everyday users who
may wish to interact with the devices in their home. In addition
to this, we are living in an age where talking to computers is
becoming less the preserve of science fiction: Apple’s Siri, OK
Google, Microsoft Cortana all exist as ways to interact with the
devices in your pocket. Amazon Echo exists as a device for the
home that allows basic interaction through voice commands.
This means that there is now a plausible expectation that an
everyday person could interact with complex devices in their
home in a natural conversational manner.

Natural Language Processing (NLP) is one of the key
challenges in Computer Science [17]. In terms of speech
understanding, correctly identifying the words being spoken
is relatively a well-solved problem, but understanding what
those words mean, what intent they try to convey, is still a
hard thing to do.

To answer the question “Which bat is your favorite?”
without any context is hard to do. Are we talking to a
sportsperson with their proud collection of cricket bats? Is
it the zookeeper with their colony of winged mammals? Or
perhaps a comic book fan is being asked to choose between
incarnations of their favorite super hero.

Context is also vital when you want to hold a conversation.
Natural language (NL) is riddled with ambiguity. Our brains
are constantly filling in gaps, making theories and assumptions
over what the other person is saying. For humans and machines
to communicate effectively in any such conversational home
setting, it is important that contextual information can be
communicated in a simple, but effective, manner. This must
be achieved in a manner that is accessible to both the human
and machine agents in this environment.

E. Broader considerations
The focus of our research and the evaluation described

later in this paper are exploring whether the use of a CNL

technology can ease and/or speed the development of conver-
sational systems, such as for an IoT enabled home. With this
in mind we have not specifically attempted to build a system
which has a rich or complex grammar or dialogue system, nor
have we tried to create extensive, rich models or ontologies of
the domain. There is no dialogue management required in our
solution for this evaluation, and the required ontologies can be
incredibly simple for the basic initial evalution activities.

Instead we have shown an approach where simple models
can be quickly created by less technical users, to become the
basis for systems such as the one evaluated in this paper. Our
contribution to the literature is in showing an approach where
the complexity and development time of the underlying models
can be substantially reduced, ideally to a rate where real-
time extensions can be made as new devices and capabilities
are released. Such capabilities will be essential in any multi-
organisation complex environment such as the IoT devices that
could be used in a home environment.

We do acknowledge a rich body of research in the domain
of multi-model interfaces [18] [19], dialogue systems and
dialogue management [20] [21] [22] which would relate to
the subsequent development of a complete system (regardless
of whether it was underpinned by a CNL technology), but
have not attempted to position our work against these for this
particular evaluation.

There is also extensive literature on ontology engineering
and the use of such systems in the context of dialogue [23]
[24] [25] but again these are acknowledged but not specifically
relevant to this simple evaluation against rapidly development
CNL ontologies in a languaged aimed at less technical users.

III. CONTROLLED NATURAL LANGUAGE

To avoid a lot of the hard challenges of NLP, a CNL can
be used. A CNL is a subset of a NL that uses a restricted
set of grammar rules and a restricted vocabulary [26]. It is
constructed to be readable by a native speaker and represents
information in a structured and unambiguous form. This also
enables it to be read and properly interpreted by a machine
agent via a trivial parsing mechanism without any need for
complex processing or resolution of ambiguity. CNLs range
in strength from weaker examples such as simple style guides,
to the strongest forms that are full formal languages with
well-defined semantics. In our work, to identify a unifying
language for both human and machine communication, we are
focused on languages at the strong end of the scale, but we
additionally wish to retain the requirement for maximal human
consumability.

Ambiguity is a key issue for machine agents: whilst human
readers can tolerate a degree of uncertainty and are often able
to resolve ambiguity for themselves, it can be very difficult
for a computer to do the same. CNLs typically specify that
words be unambiguous and often specify the meaning that is
allowed for all or a subset of the vocabulary. Another source
of ambiguity is the phrase or sentence structure. A simple
example is concerned with noun clusters. In English, one noun
is commonly used to modify another noun. A noun phrase with
several nouns is usually ambiguous as to how the nouns should
be grouped. To avoid potential ambiguity, many CNLs do not
allow the use of more than three nouns in a noun phrase.

There are two different philosophies in designing a CNL.
As mentioned previously a weaker CNL can be treated as a
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simplified form of NL with a stronger CNL as an English
version of a formal language [27]. In the case of a simplified
form of NL, it can allow certain degrees of ambiguity in
order to increase human accessibility. It relies on standard NLP
techniques, lexical-semantic resources and a domain model to
optimize its interpretation.

The alternative is to treat a CNL as an entirely deterministic
language, where each word has a single meaning and no
ambiguity can exist. Whilst computationally very efficient, it
can be hard for a human user unfamiliar with the particular
lexicon and grammar to write it effectively. This is because it
competes with the user’s own intuition of the language. The
closer a CNL is to corresponding NL, the more natural and
easy it is to use by humans, but it becomes less predictable and
its computational complexity increases. The converse is also
true. The more deterministic the CNL is, the more predictable
it is, but the more difficult it is for humans to use.

In summary, in the operational setting described in this
paper a CNL is designed to support both human usage and
machine processing. It provides:

1) A user-friendly language in a form of English, instead
of, for example, a standard formal query language
(such as SPARQL or SQL). Enabling the user to con-
struct queries to information systems in an intuitive
way.

2) A precise language that enables clear, unambiguous
representation of extracted information to serve as a
semantic representation of the free text data that is
amenable to creating rule-based inferences.

3) A common form of expression used to build, extend
and refine domain models by adding or modifying
entities, relations, or event types, and specifying map-
ping relations between data models and terminology
or language variants.

4) An intuitive means of configuring system processing,
such as specifying entity types, rules, and lexical
patterns.

A good balance between the naturalness and predictability
of the CNL is fundamentally important, especially to the
human users as the strength and formality of the language
increases.

A. An Introduction to ITA Controlled English

In previous research, we have proposed a specific CNL
that is a variant of “Controlled English” known as ITA Con-
trolled English, or just “CE” in shorthand [28]. This has been
researched and developed under the International Technology
Alliance (ITA) in Network and Information Science [29]. CE
is consistent with First Order Predicate Logic and provides
an unambiguous representation of information for machine
processing. It aspires to provide a human-friendly represen-
tation format that is directly targeted at non-technical domain-
specialist users (such as military planners, intelligence analysts
or business managers) to enable a richer set of reasoning
capabilities [30], [31].

We assert that CE can be used as a standard language for
representation of many aspects of the information representa-
tion and reasoning space [32]. In addition to more traditional
areas such as knowledge or domain model representation and

corresponding information, CE also encompasses the represen-
tation of logical inference rules, rationale (reasoning steps),
assumptions, statements of truth (and certainty) and has been
used in other areas such as provenance [33] and argumentation
[34].

In the remainder of this section we give a number of
examples of the CE language. These are shown as embedded
sentences in this style. All of these sentences are valid CE
and therefore directly machine processable as well as being
human readable.

The domain model used within CE is created through the
definition of concepts, relationships and properties. These defi-
nitions are themselves written as CE conceptualise statements:

conceptualise a ˜ device ˜ D.
conceptualise an

˜ environment variable ˜ E.

These statements establish the concepts within the CE
domain model enabling subsequent instances to be created
using the same CE language:

there is an environment variable named
'temperature'.

A slightly more advanced example would be:

conceptualise a
˜ controlling thing ˜ C that
is a device and
˜ can control ˜

the environment variable E.

This defines “controlling thing” as a sub-concept of “de-
vice” and that it can have a “can control” relationship with an
“environment variable”. This therefore allows statements such
as:

there is a controlling thing named
'thermostat' that

can control the environment variable
'temperature'.

In the latter conceptualise statement, “can control” is an
example of a CE verb singular relationship. Functional noun
relationships can also be asserted:

conceptualise a ˜ device ˜ D that
has the value E as ˜ enabled ˜.

These two types of relationship construct allow a concept
and its properties to be richly defined in CE whilst maintaining
a strict subset of grammar. The use of verb singular and
functional noun forms of properties provides a simple, but
effective, mechanism to enable the conceptual model designer
to use a language that is more natural and appealing to the
human agents in the system.

The “is a” relationship used within conceptualise sentences
defines inheritance of concepts, with multiple inheritance from
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any number of parents being a key requirement. It also allows
any instance to be asserted as any number of concurrent
concepts; an essential tool when attempting to capture and
convey different contexts for the same information.

Whilst the examples given above are deliberately sim-
plistic the same simple language constructs can be used to
develop rich models and associated knowledge bases. The
CE language has been successfully used in a wide range of
example applications [35]. CE has been shown working with
a reasonable number of concepts, relationships, queries and
rules and has been used to model and interact with complex
real-world environments with a high level of coverage and
practical expressivity being achieved.

In our previous research into the application of the CE
language we have observed that by gradually building up an
operational model of a given environment, it is possible to
iteratively define rich and complex semantic models in an
“almost-NL” form that appeals to non-specialist domain users.
For example, if the concept “device” was extended to include
location information, the following query could be used to
identify all devices of a particular type within a particular
location:

for which D is it true that
(the device D

is located in the room V) and
(the device D can measure

the environment variable
'temperature') and

(the value V = 'kitchen').

Note that we do not expect casual users to write CE queries
of this complexity; the later conversational interaction section
will show how users can do this in a more natural form.

The model can be extended with rules that can be used to
automatically infer new facts within the domain. Whenever
such facts are inferred the CE language is able to capture
rationale for why a particular fact is held to be true:

the room 'kitchen'
is able to measure

the environment variable
'temperature' and

is able to control
the environment variable
'temperature'

because
the thermometer 't1'

is located in the room 'kitchen' and
can measure

the environment variable
'temperature' and

the radiator valve 'v1'
is located in the room 'kitchen' and
can control

the environment variable
'temperature'.

From these basic examples you can see how the CE lan-
guage can be used to model the basic concepts and properties
within a given domain (such as an operating environment for
IoT devices). Through assertion of corresponding instance data

and the use of queries and rules it is possible to define the
specific details of any given environment. It should also be
clear to the reader that whilst human-readable the core CE
language is quite technical and does not yet meet the aspiration
of a language that would appeal to everyday casual users. The
language itself can be improved, and as reported in earlier
research there is the ability to build incrementally usable layers
of language on top of the CE core language [36]. However, in
addition to all of these potential advances in the core language
there is also a key innovation that has been recently developed,
which is to build a rich conversational protocol on top of
the CE language [37]. This provides a mechanism whereby
casual users can engage in conversation with a CE knowledge
base using their own NL in a manner similar to human-human
conversation.

B. Conversational Interaction
To enable a conversational form of CE, earlier research [38]

has identified a requirement for a number of core interaction
types based on speech-act theory:

1) A confirm interaction allows a NL message, typ-
ically from a human user, to be provided, which
is then refined through interaction to an acceptable
CE representation. This is useful for a human user
who is perhaps not fully trained on the CE grammar.
Through multiple such interactions, their experience
builds and such interactions become shorter.

2) An ask/tell interaction allows a query to be made of
the domain model and a well-formulated CE response
given.

3) A gist/expand interaction enables the CE agent to
provide a summary form (“gist”) of a piece of CE,
possibly adapted to a more digestible NL form. Such
a gist can be expanded to give the underlying CE
representation.

4) A why interaction allows an agent in receipt of CE
statements to obtain rationale for the information
provided.

This “conversational layer” is built within the core CE
environment and is defined using the CE language. Within the
CE model, these interactions are modeled as sub-types of the
card concept.

conceptualise a ˜ card ˜ C that
is an entity and
has the timestamp T as ˜ timestamp ˜ and
has the value V as ˜ content ˜ and
˜ is to ˜ the agent A and
˜ is from ˜ the agent B and
˜ is in reply to ˜ the card C.

The concept of an agent is introduced to represent the
different parties in a conversation. This model provides a
framework for such agents to interact by CE statements. By
developing a conversational protocol using the CE language
it enables the same language to be used for the domain
in question (e.g., IoT devices in the home), as well as the
act of communication. This means that agents with different
operational domains can still communicate using a standard
conversational model, so even if they cannot decode the items
being discussed they are at least able to participate in the
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conversation. This idea is central to the proposed approach
for conversationally enabled human and machine agents in an
IoT context described in this paper.

C. Agent and ce-store interaction

In our ongoing experiments using the CE language we are
able to define models, build knowledge bases, build machine
agents and enable conversational interaction between them
using some key components, which we will refer to here as ce-
store. The Java-based implementation of the full ce-store [39]
is publically available from github and an additional javascript-
based version [40] is also available, specifically engineered to
enable operation at the edge of the network, i.e., in a mobile
browser environment.

For example, the domain model shown earlier in this paper
is created through CE, (including the concepts, relationships
and instances) and held within an instance of the ce-store, also
referred to as a CE knowledge base. This store can either be
maintained at a central point in the architecture, or distributed
across systems through a federated set of separate ce-store
instances. A centralized store provides a more straightforward
system to maintain and ensures a single, shared model. Dis-
tributing the store allows for more localized processing to be
done by the agents without having to interact with the system
as a whole. Distributing the store also enables different agents
to have different models, and for models to be rapidly extended
“in the field” for only those agents that require those changes.

The choice of agent architecture influences how the store
should be structured. When considering the types of conversa-
tion a chat-room for the home may need to support, there are
two possible approaches.

1) The human user interacts with a single agent in the
role of a concierge for the home. This concierge agent
uses the CE knowledge base to maintain a complete
situational awareness of the devices in the home and
is able to communicate with them directly (see Figure
3). Interactions between concierge and devices do not
use CE; only the concierge has a CE knowledge base.

2) The human user interacts with each device, or set
of devices, individually. There may still be an agent
in a concierge style role, but conversations can be
directed at individual devices of interest as required
(see Figure 4). Here, the concierge and all devices
can communicate using CE and all have their own
CE knowledge bases.

Figure 3: The human user interacts (via CE) only with the
concierge.

Whilst the former would be sufficient to enable purely
human-machine interaction, one of the goals of this work is to
enable the human to passively observe the interaction of the
devices in the home in order to help the human gain awareness
of how the system is behaving. This will better enable the
human user to see normal behavior over time and therefore
prepare them for understanding anomalous situations when
they arise.

Figure 4: The human user can interact (via CE) directly with
all devices and with devices via the concierge.

As such, the latter approach is more suited for these
purposes, perhaps with a concierge agent who is additionally
maintaining the overall situation awareness from a machine-
processing perspective.

D. Modelling the Conversation
In our proposed Conversational Homes setting there are

a number of styles of interaction a human may wish to have
with the devices in their home. This section considers four such
styles and how they can be handled within a CE environment.

1) Direct question/answer exchanges: This is where a user
makes a direct query as to the current state of the environment
or one of the devices therein. For example: “What is the
temperature in the kitchen?”

Through the existing conversational protocol and embed-
ded simple contextual NL processing a machine agent is able
to break down such a statement to recognize its intent. By
parsing each word in turn and finding matching terms within
the ce-store it can establish:

• it is a question regarding a current state (“What is
. . . ”)

• it is regarding the temperature environment variable
instance

• it is regarding the kitchen room instance

At this point, the machine agent has sufficient information
to query the ce-store to identify what devices in the model
are in the right location and capable of measuring the required
variable. If such a device exists, it can be queried for the value
and reported back to the user. Otherwise, a suitable message
can be returned to indicate the question cannot be answered,
ideally conveying some indication of why not.

If the question is ambiguous, for example by omitting
a location, the agent can prompt the user for the missing
information. The concept of ambiguity for this kind of question
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is also captured in CE, for example by stating that for such
an environment variable a location must be specified, perhaps
even with a default location that can be assumed. With this
knowledge available in CE the agent is able to determine
that extra information is still required and can request this
from the user as part of the conversation. The agent maintains
information regarding the state of the conversation such that
prompts can be made without requiring the user to repeat
their entire question with the additional information included.
By using the conversational protocol on top of the core CE
language the human user and the device are able to converse
in NL, for example:

User: What is the temperature?
Agent: Where? I can tell you about the kitchen, the hall

and the master bedroom.
User: The kitchen.
Agent: The temperature in the kitchen is 22C

Other simple question types can be handled in this way,
such as “where is. . . ”.

2) Questions that require a rationale as response: This is
where a user requires an explanation for a current state of the
system “Why is the kitchen cold?”

As with a direct question, an agent can parse the question
to identify:

• it is a question asking for a rationale (“Why is . . . ”)
• it has a subject of kitchen
• it has a state of cold that, through the CE model,

is understood to be an expression of the temperature
environment variable.

To be able to provide a response, the model supports
the ability to identify what can affect the given environment
variable. With that information it can examine the current state
of the system to see what can account for the described state.
For example, “the window is open” or “the thermostat is set
to 16C”.

3) An explicit request to change a particular state: This is
where a user, or a machine agent, makes an explicit request
for a device to take an action “Turn up the thermostat in the
kitchen”

To identify this type of statement, the model maintains a
set of actions that can be taken and to what devices they can be
applied. By incrementally matching the words of the statement
against the list of known actions, a match, if it exists, can be
identified. Further parsing of the statement can identify a target
for the action.

conceptualise an ˜ action ˜ A that
˜ is reversed by ˜ the action B and
˜ can affect ˜ the controlling thing M.

if (the action A
is reversed by the action B)

then (the action B
is reversed by the action A).

The CE above demonstrates the ability to define a rule.
These are logic constructs with premises and conclusions that
get evaluated by the ce-store against each new fact added.

Where a match in the premises is found, new facts are
generated using the conclusions (with corresponding rationale).
In this simple case it allows two-way relationships to be
established without having to explicitly define the relationship
in both directions.

there is an action named 'turn on'.
there is an action named 'turn off'.
the action 'turn on'

is reversed by the action 'turn off'.

When a device receives an action, the trigger concept can
be used to chain further sequences of actions that should occur.
For example, when applied to a thermostat, the action “turn
up” should trigger the action “turn on” to be applied to the
boiler.

there is a trigger named ' tr1' that
has 'turn up' as action and
has 'boiler' as target device and
has 'turn on' as target action.

the thermostat 'ts1'
will respond to the trigger 'tr1'.

There is a natural point of contact here, with the popular
’If This Then That’ framework (IFTTT) [41], specifically in
that the use of conversational interactions could provide a nice
way to implement IFTTT functionality. In future work we may
consider the extent CE could be applied in IFTTT scenarios,
and used to support a user-friendly form of programming for
real-world objects, devices and situations.

4) An implicit desire to change a state: The styles consid-
ered so far have been explicit in their intent. There is another
form whereby a statement is made that states a fact, but also
implies a desire for an action to be taken.

This relies on Grice’s Maxim of Relevance [42]. In the
context of a conversation with the devices in a house, a
statement such as “I am cold” should be taken as a desire
for it to be warmer. The underlying information that can allow
this Gricean inference to be implemented by machine agents
using a simple algorithm is shown below:

there is a physical state
named 'cold' that

is an expression of
the environment variable

'temperature' and
has 'warmer' as desired state.

there is a desired state
named 'warmer' that

has 'temperature' as target and
has 'increase' as effect.

Once the intention of the statement has been identified,
the store can be queried to find any actions that satisfy the
requirement. These actions can then be offered as possible
responses to the statement, or possibly automatically enacted.

Through these four simple dialogue examples we have
demonstrated that through the use of a CE knowledge base
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and a set of machine agents using the conversational protocol a
human user could carry out basic interactions with the devices
in their home (human-machine). We have also shown how
those devices convey key information back to the user, or ask
follow on questions to elicit additional information (machine-
human). These same interactions using the same CE language
can be used to enable direct communications between machine
agents regardless of human involvement (machine-machine).
Whilst we have not explicitly demonstrated human-human
communication it is clear that this can easily be supported
within a system such as this, for example, by enabling different
human users within the home to use the same chat environment
to converse with each other directly and then easily direct their
questions or actions to machine agents when needed.

It is the use of this common human-readable CE language
that enables the passive observation of system state and agent
communications at any time without development of special
tooling to convert from machine specific representation formats
to something that human users can directly read. The CE
language enables machine or human users to change or extend
the conceptual models the system is operating on, as well as
allowing them to define new knowledge, queries or rules.

Whilst it would be possible to demonstrate the same
capabilities using more traditional Semantic Web languages
they would be aimed at machine processability rather than
human consumability and would therefore require additional
components to be developed to allow conversational interaction
and the inclusion of the human users in the conversation.

IV. EVALUATION

As set out in the introduction, our hypothesis is that
CNL can enable machine-machine, machine-human, human-
machine and human-human interaction in a dynamic environ-
ment. The previous section has given illustrative examples of
how we envisage the approach working in a range of use cases.

A. Earlier work
Through a series of experiments, we are building an

evidence base to show the feasibility and effectiveness of
the approach, in two respects: (i) that humans without any
significant degree of training are able to engage in dialogues
using a combination of NL and CNL; and (ii) that the approach
supports environments that can rapidly evolve to accommodate
new devices and capabilities as they are encountered.

In earlier work we have sought evidence for (i), specif-
ically: we have to date run a series of trials in controlled
conditions, focusing on the proposition that users with little
or no training in the use of CE can productively interact
with CE-enabled agents. We reported the results of the first
of these studies in [38]. Twenty participants (undergraduate
students) were assigned a task of describing scenes depicted
in photographs using NL, and given feedback in the form
of CE statements generated via NLP by a software agent.
The agent had been constructed rapidly to perform simple
bag-of-words NLP with a lexicon provided by having four
independent people provide scene descriptions in advance of
the study. The results were promising; from 137 NL inputs
submitted by the 20 subjects, with a median of one sentence
for each input, a median of two CE elements was obtained
by NLP for each input. In other words, with no prior training
in the use of CE or prior knowledge of the domain model

constructed for the scenes, users were able to communicate
two usable CE elements (typically an identified instance and
a relationship) per single-sentence NL input.

The ability of the CE agent to extract meaningful elements
from the user’s input and confirm these in CE form was
constrained by the rapid construction of the background do-
main knowledge base. In effect, the agent’s limited knowledge
about the world led to results that were characterized by
high precision, but relatively low recall, since the agent was
engineered only to be “interested” in a narrow range of things.
In this respect, however, we see these results as applicable to
our Conversational Homes scenarios, where the concerns of
home-based devices and the affordances users expect them to
provide will be similarly narrow. Further studies are planned in
settings more closely aligned with the examples in the previous
section, and the remaining sections of this paper talk in more
detail about the first specific Conversational Homes evaluation
in this series.

In our second trial, 39 participants (undergraduate students)
assigned to three groups conducted a crowdsourcing task using
a conversational agent deployed on mobile devices, entering
observations via NL and confirming machine-generated CE
that was then added to a collective knowledge base in real
time [43]. Usability of the conversational agent was oper-
ationalised as task performance [44]: the number of user-
inputted NL messages that were both machine interpretable
(i.e., could be mapped to CE) and confirmed by the user.
Overall, despite close to no training, 74% of the participants
inputted NL that was machine interpretable and addressed
the assigned crowdsourcing task. Participants reported positive
satisfaction based on scores from the System Usability Scale
(SUS) [45], with means in the high 60s being consistent with
good usability.

In terms of our requirement (ii), that the approach sup-
ports environments that can rapidly evolve to accommodate
new devices and capabilities as they are encountered, we
have constructed and demonstrated experimental prototypes for
sensing asset selection for users’ tasks, as described in [46].
Again, while these prototypes are not exactly aligned with the
scenario of home automation (instead being more concerned
with sensing systems such as autonomous aerial vehicles and
ground systems) these experiments have shown that the CE-
based approach supports the rapid addition of new knowledge.
This includes not only of types of asset, but also of asset
capabilities (that can be used to match assets to tasks). In many
ways, the home setting is simpler than, say, an emergency
response or search-and-rescue scenario, so we believe that the
positive outcomes of these experiments are translatable into
the domestic context.

An arguable difference between the home versus emer-
gency response or search-and-rescue settings is the degree of
training that a user can reasonably be expected to have obtained
in the use of the available devices. In the home setting, this
must always be minimal. In the other setting, however, minimal
training is still desirable, since users should not necessarily be
experts in the operation of sensing systems [47]. In any case,
we argue that this usability point is addressed under (i) above.
Also, in many cases, the addition of knowledge about new
devices and their capabilities will typically be provided by the
originators of the devices rather than end-users, though our
approach does not preclude a “power” user from providing
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additional knowledge to their local environment.

B. User Evaluation

Based on the results summarised above that provided
evidence that untrained users can quickly learn to interact
with complex systems using our CNL and conversational
technology, our most recent work aims to validate the Con-
versational Homes concept by means of a study with 12
participants. The primary goal of this research is to determine
whether it is possible to build such an environment using
a CNL basis as described earlier in this paper and, if so,
whether the time and effort taken to do so is an improvement
over traditional programming approaches. During the build
phase factors such as time and complexity were not explicitly
measured, although it should be noted that the entire model and
fact-base for the evaluation were able to be successfully built
entirely in the Controlled English language using the ce-store
runtime environment without the need for any additional code
or modifications to that environment. The entire end-to-end
development time of the application was 2 days for 1 person,
the majority being spent on developing the custom JavaScript
code to render the live schematic view and the conversation.
Within this 2 days development time only a couple of hours
were spent on model and fact-base development, using just a
plain text editor to write the CE languagestatements.

Since we are not trying to measure the comparative cost
and benefit of the development time of environments such as
these, the evaluation itself is therefore aimed at the untrained
participants using the resulting environment. For this, we
followed the same model as for our second trial summarised
above, operationalising usabilty as task performance [43],
specifically: whether participants can use the Conversational
Homes chat interface to successfully interact with the envi-
ronment to achieve simple goals or get simple information
from the system as to the state of different components.
The study was designed as a series of 5 simple tasks that
were given to the participants in a group setting with each
participant interacting with a separate local environment. The
total available time for the study was 20 minutes, with each
task taking 2-3 minutes. The tasks were communicated to the
group via a shared projected screen with simple instructions;
the instructions for each task (see subsections below) were
shown to all users, with the text remaining on the screen for
the duration shown. No additional information or guidance was
given and the participants were free to use the conversational
interface and/or the schematic to interact with the system
as needed. Each task attempted to serve a different purpose,
with the tasks, descriptions and planned purposes listed in the
subsections below:

1) Task 1 – Simple query:

• Instructions: “Find out which lights are switched on...”

• Duration: 3 minutes

• Purpose: To establish whether the participants were
able to use the conversational interface to determine
the state of the lights. The live schematic view could
also be used for this purpose since it shows the
states of all lights, however we were expecting to see
evidence of the participants asking this question via
conversation.

• Success: The participant asks a question where the
answer contains the state of all lights that are switched
on.

2) Task 2 – Simple state change:

• Instructions: “Shut the front door”

• Duration: 2 minutes

• Purpose: State changes for items within the Conversa-
tional Homes can only be achieved via conversational
interaction. To prevent the participants simply typing
in the exact guidance text we deliberately did not
specify the word “shut” in our model (e.g., as a
synonym for “close”). This meant that participants
must at least experiment with trivial restatements of
the guidance in order to discover the correct term used
to model the “close” action.

• Success: A statement from the participant that results
in the “Front Door” state becoming “Closed”.

3) Task 3 – Group state change:

• Instructions: “Turn on all the lights in the bedroom”

• Duration: 2 minutes

• Purpose: Achieve a state change for a group of de-
vices. We deliberately designed this task so that the
users could type the exact guidance text into the
system in order to achieve the desired result. This was
to contrast with Task 2 where we deliberately left out
the obvious form in order to force the user to seek
alternatives.

• Success: One or more statements from the participant
that results in all of the lights in the bedroom state
becoming “On”.

4) Task 4 – Multiple state changes:

• Instructions: “It’s bedtime... Get the house in the right
state for bed (It’s a hot night)”

• Duration: 3 minutes

• Purpose: The description for this task is deliberately
ambiguous and more descriptive. This was intentional
and designed to see whether the participants could
successfully translate a generic and high-level desired
state into specific actionable requests. We anticipated
that this would be interpreted as switching off lights
and opening the bedroom window.

• Success: Statements that result in (at least) the turning
off of the bedroom lights and the opening or closing
of the bedroom window. The suggestion that “It’s a
hot night” was intended to elicit an opening of the
window, however we realise that cultural differences
could yield different responses, for example closing
the window to ensure that air conditioning works ef-
ficiently. Even the turning off the bedroom lights may
not meet every participants definition of the “...right
state for bed...” but we needed to see some evidence
of state change towards the target goal and therefore
chose these two conditions as valid indicators of task
completion.
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5) Task 5 – Open ended:
• Instructions: “Freestyle: Talk to the house using

phrases you’d actually want to use in real life. We have
temperature sensors and door cameras plus we can add
any other devices of capabilities into the system. They
won’t work but will be a great source of ideas :)”

• Duration: 5 mins
• Purpose: The purpose of this task was simply to elicit

a wider range of interactions from the participants
to inform the design of future evaluation studies and
enable them to express themselves in ways that would
be desirable to them in such a system.

The system was instrumented to record all conversational
interactions (human and system generated) as well as all state
changes that occurred. These interactions and state changes
were subsequently analysed post-study for all users and are
the basis for the results section (Section IV-E) later in this
paper.

Note that the Conversational Homes environment is entirely
simulated for this study: there is no linkage to actual sensors or
devices in the physical world. It should be noted however that
integrating this simulated environment into physical devices is
extremely easy, assuming that the devices have APIs and are
able to be queried and have their states changed programmat-
ically. From an implementation perspective it is simply a case
of recording the relevant information to locate and interact with
each device (e.g., IP address, port and any required credentials)
within the CE language. Having done so it is then trivial to
write (in CE) a trigger that will be called each time a state
change instance is generated by the system. The state change
instance contains all details required to modify the device
and the target state so the trigger in question can simply call
some very generic code or invoke a generic web service that
will simply invoke the target device API with the required
credentials and parameters to make the desired change occur.

C. Participants
The participants for this study were drawn from a sample of

convenience: they were all members of the IBM UK Emerging
Technology team excluding authors of this paper and those
familiar with the underlying research context and technologies
being developed. The study was run once over a 30 minute
period with the participants volunteering to participate in
the study over their lunch break. There were a total of 12
participants, each of whom brought their own device (laptop
or tablet) to enable them to participate in the study. All
participants were “untrained users” with no prior experience of
the technologies used in the study and had not previously seen
or heard about the Conversational Homes user interface. Each
participant was asked to login to the browser-based system and
provide a unique userid (name) to be identified by. To ensure
no capture of personal information, each of the usernames was
substituted for a single letter in the range A-L post-study. In
this paper users are thus referred to in this style (i.e., “User
A”) with this indicating a single anonymised human participant
within the study. The entire cohort were located in a single
large room with a projected screen displaying the guidance
for each task. Participants were allowed to talk to each other if
needed but we observed that generally the participants worked
alone and with relatively little chatter or verbal discussion
between them.

D. Design and Hypothesis
For this evalution, our hypothesis was that the Conversa-

tional Homes agent would have good usability, operationalised
as performance of the five simulated household tasks.This
builds upon our earlier general hypothesis that CNL can en-
able machine-machine, machine-human, human-machine and
human-human interaction in a dynamic environment such
as this, and accounts for the development of the specific
conversational home agent and user interface.

The CE resources for this evaluation are publically avail-
able online [48] as is the custom browser-based user interface
that was developed specifically for this evaluation [49]. Figure
5 shows this user interface and each participant within the
study interacted solely via this environment. Each participant
was operating entirely alone, with each conversational home
being a separate instance purely for the use of that single
participant and no ability for messages from one participant
to access the contents or state of any other participants
environment.

The user interface is broken into two fundamental compo-
nents: The left-hand schematic view, and the right-hand chat
interface.

The left-hand schematic view is a “live” representation of
the conversational home that is built around a single level
apartment unit. It is described as live since the state of all the
sensors and actuators are rendered dynamically. This means
that as lights are switched on or off, or as doors/windows
are opened/closed, the visual state of the conversational home
schematic is updated accordingly. These state changes happen
regardless of the source of the change, i.e., if someone used
some other interface to change the state then the schematic
would update even if the change had not originated in the
right-hand conversation pane.

The right-hand chat interface is built to mimic common-
place messaging applications that all users will already be
familiar with on iOS and Android platforms. Messages from
the human user are displayed in right-aligned green boxes
and messages from the conversational home are displayed
left-aligned in white boxes. There are no restrictions on the
format, style or content of the messages that the human user
can type, although the ability for the system to correctly
interpret the messages from the human users is affected by
brevity, precision and whether the text is “on-topic” for the
conversational home environment.

There are a number of sensors, actuators and spaces that
comprise the conversational homes environment and each of
these are shown in the schematic in Figure 5. From bottom-left
to top-right, the rooms and their contents are:

• Building Hallway
◦ Front Door

• Front Room
◦ Front-to-Hallway Door
◦ Front Left Window
◦ Front Right Window
◦ Front Room Temp Sensor
◦ Front Room Window Camera
◦ Front Room Door Camera
◦ Back Overhead (light)
◦ Front Overhead (light)
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Figure 5: Conversational Homes User Interface.

◦ Side lamp (light)

• Hallway
◦ Hallway Overhead (light)

• Bathroom
◦ Bathroom-to-Hallway Door
◦ Bathroom Window
◦ Bathroom Overhead (light)

• Cupboard
◦ Cupboard-to-Bedroom Door

• Bedroom
◦ Bedroom-to-Hallway Door
◦ Bedroom Window
◦ Bedroom Temp Sensor
◦ Bedroom Door Camera
◦ Bedroom Window Camera
◦ Bedroom Overhead (light)
◦ Bedroom Lap (light)

In Figure 5 The different states can be seen visually. For
example: The Bathroom-to-Hallway Door is closed whereas
the other Hallway doors are open, the Bathroom light is off
whereas the Bedroom lights are on, and one of the Front room
windows is open whereas the other windows are closed.

E. Results
The study was carried out on 19th August 2017 from

approximately 12:30 to 12:50 British Summer Time. There
were 12 participants, drawn from the IBM UK Emerging
Technology team who sent a total of 367 messages across the
5 simulated household tasks.

The full set of results and corresponding guidance for
each of the 5 tasks can be found online in the Open Science
Framework [50]. The headline results were that our set of
untrained users were able to quickly learn how to interact
with the Conversational Homes system in order to find the
state of various sensors and to interact with the environment
to affect the correct state changes for the tasks. Of the 4 tasks
undertaken with measurable success criteria: all users were
able to successfully complete 3 out of 4 of the tasks and
the fourth (more complex) task was successfully completed
by 10 out of 12 of the users. On average each user was able
to complete the 3 simple tasks in around 30 seconds, with the
fourth (more complex) task taking around 1 minute 30 seconds
on average to complete. The primary result, therefore was that
the Conversational Homes agent had good usability in user
performance of the simulated household tasks, consistent with
our earlier experimental work reported previously.

Figure 6 shows the individual participants cumulative asser-
tion counts during the study, with each of the time periods for
the 5 tasks shown. We observe a steady upwards progressions
for each user, even when taking into account only the valid
assertions made during the study, i.e. those assertions deemed
to have been correctly interpreted by the system. These results
suggest that the proposed conversational approach mediated
by the CNL technology can be effectively used with little or
no training: a sizeable majority of users were able to make
successful use of the interface and query or assert information
in a relatively short period. They were largely able to complete
their tasks in a short time period even when multiple attempts
were required due to interpretation of their NL input was not
initially successful.
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Figure 6: Individual Participants Cumulative Assertions over
time.

TABLE I: Overall user statistics

User Msgs sent Msgs rcvd State changes Duration Msg freq
A 19 91 39 13:11 42 secs
B 27 80 35 13:18 30 secs
C 34 74 49 16:51 30 secs
D 35 139 72 11:35 20 secs
E 19 91 41 11:59 38 secs
F 28 115 58 12:39 20 secs
G 22 50 8 15:01 41 secs
H 36 44 28 14:13 24 secs
I 51 128 72 18:20 22 secs
J 28 125 85 14:29 31 secs
K 24 131 31 11:04 28 secs
L 45 169 67 14:18 19 secs

Table I shows the overall user statistics for the study,
showing the overall number of messages sent, received and
the frequency of message sends for each user. The number of
state changes are also shown; these are created each time a
light is switched on or off, or a door/window is opened or
closed. It is interesting to note that the message frequency is
relatively low (in the range 20-41 seconds), suggesting that the
participants were carefully considering their inputs rather than
simply firing many messages in to the interface.

Table II shows the average number of NL messages and
average time taken to complete each of the tasks. Note that
Task 5 is not shown since it was a freestyle task with no
completion criteria. The number of messages is low and the
time to completion is fast for each of the tasks with the
exception of task 4. Task 4 required multiple separate messages
in order to complete and was deliberately ambiguous in order
to better test the participants and this can be seen in the
resulting time-to-completion statistics.

These results show that the Conversational Homes chat
interface could be plausibly useful to untrained novice users

TABLE II: Task level statistics

Task Msgs to complete Time to complete Completion
Task 1 1.3 00:33 12
Task 2 1.9 00:35 12
Task 3 1.3 00:26 12
Task 4 4.2 01:31 10

even with the relatively immature level of NL processing
currently available within our CNL-based solution. Even with
a relatively high level of failed interpretations the participants
were generally able to achieve the stated task goals in a short
period of time and with relatively few messages. We believe
that this is an encouraging result and justifies the pursuit
of further evidence in the future to determine whether other
factors like the richness of the model contribute to observable
outcomes such as the ability to complete tasks or the number
of misinterpretations of the NL messages.

As in our earlier usability study, subjective usability assess-
ment was performed by asking the participants to complete the
SUS [45] questionnaire. Participants reported positive satisfac-
tion with a mean of 69 indicating a good degree of perceived
usability across the group, consistent with the previous results
in [43] and providing converging evidence for the usability of
the conversational agent.

F. Observations and Discussion
In order to process the results we manually reviewed each

of the sent messages to determine whether the system had
correctly interpreted the text, and in cases of misinterpretation
what category of misinterpretation it was.

1) Text interpretation analysis: Each of the text messages
has been analysed and classified as “successfully interpreted”
or not, however there are a number of common reasons for
incorrect interpretation as well as some potential improvements
to even the successfully interpreted messages.

In all of the cases of misinterpretation, or interpretation
improvements, there are simple remedial actions that can be
taken in the CE model and fact-base to catch each of these
cases and handle them correctly. This is often through the
addition of synonyms or through extension of the model to
support additional capabilities not envisaged in the original
modelling exercise (e.g., the addition of new device types, or
new actions for existing device types). In all of these cases
the effort required to extend the model is small, and the level
of technical skill is low. The tooling (such as ce-store) that
has been developed for studies in environments such as these
mean that the changes can be deployed extremely quickly,
potentially in real-time as issues are identified and resolved.
However this entire approach is based on the assumption that
all possible phrases and terminology could be identified in
advance and therefore designed into the model and fact-base.
This leads to a system with a high degree of accuracy and
a low false-positive rate but one that is very brittle and must
be focused on a particular domain to achieve that accuracy.
Better hybrid approaches may be possible, for example using
Machine Learning techniques to classify messages into a form
that can be handled by the underlying CE models. This would
be a small change but may enable a much wider set of phrases
to be correctly handled with the existing system and without
needing to continually update the CE model as new language is
encountered. This approach could also help to handle evolving
terminology and slang as it is adopted by the user community.

The remaining sub-sections deal with each of the types of
misinterpretation encountered during this study.

2) Successful interpretations with room for improvement:
These messages are classified as correctly interpreted since
they do give enough information to provide the answer re-
quested, or perform the action requested. However, from a
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human interpretation perspective they would be perceived to
be “not quite right”, usually due to some violation of a Gricean
maxim [42] such as quantity:

• Too much information
e.g., “Which lights are on?”
Currently lists the states of all lights, including those
that are off. This should really only list lights in the
state specified.

• Ignoring unknown qualifiers
e.g., “Turn all the lights off downstairs”
The action was performed globally, e.g., turning off all
the lights, and the unknown qualifier (e.g., downstairs)
was quietly ignored. A more human-like reaction
would be to either question the unknown qualifier or
at least confirm that it was ignored.

• Ignoring current state
e.g., “Turn on bedroom lights”
The action was correctly interpreted and carried out
regardless of the current state of the lights. A more
human response would be to feedback that the lights
were already on rather than saying they were switched
on in cases where they were already on.

• Common sense defaults
e.g., “Close the bedroom door”
This would result in the Bedroom-to-Hallway door
being closed and the Cupboard-to-Bedroom door be-
ing closed. This is arguably the incorrect behavior as
the user probably meant the “main” bedroom door
(Bedroom-to-Hallway door) rather than all bedroom
doors.

3) Misinterpretations: In many cases the messages sent
by the human users were not able to be interpreted at all.
The reasons for these misinterpretations fall into a number of
categories described below:

• Spelling mistakes
e.g., “turn on th elights”
Using our CNL and defined vocabulary based ap-
proach it is simply impossible to handle all possible
misspellings and typos. As mentioned previously, this
is an area where the use of additional lexical analytics
or machine learning capabilities could be useful to
augment the basic CNL solution to better handle issues
such as typos.

• Unmapped synonyms
e.g., “shut”
We deliberately left out “shut” as a synonym for
“close” to see whether participants would attempt ob-
vious alternatives. Other less obvious synonyms were
simply missed due to the speed of implementation and
lack of testing.

• Split phrases
e.g., ‘‘Turn all the lights on”
Since “Turn on” is the trigger phrase this common
practice of splitting the phrase “turn on” with the
subject (“all the lights”), i.e., “Turn something on”,
causes the trigger phrase to be ignored. This is easily
addressed through a simple additional lexical exten-
sion to the natural language processing capability
within ce-store to handle split phrases such as these.

• Ignoring key filter words
e.g., “Only list the lights that are on”
Since all lights are listed regardless of state this means
the message was not interpreted correctly as the intent
was clearly to filter using “only” to list those of a
specified state.

• Ignoring key action words
e.g., “How many lights are on”
This should return a number rather than a list of all
lights and their individual states.
e.g., “What is x?” or “Where is x?”
This should return a description (or location) of the
item in question.

• Conditionals
e.g., “if something then do something”
Some users indicated these kinds of rules, which
were often interpreted by performing the action and
ignoring the conditional.

• Out of scope
e.g., “Turn on all the cameras”, or “lock the doors”,
or “What is the temperature in the bedroom”, or “Turn
up the temperature”
A number of sensors were modeled and shown on the
schematic but unavailable for interaction. Some users
wrote messages to attempt to interact with these items.

• Off topic
e.g., “Import velociraptors”, or “activate discoball”
Messages relating to things that were not defined in the
model. These mainly came in Task 5, which was the
open-ended “Freestyle” task designed to elicit open-
ended and off topic messages.

• Complex sentences
e.g., “Which rooms are the lights switched on in?”
The response should give a list of rooms, not a list of
lights.

G. Limitations
In Section III we describe the extent of our research into

CNL technology and the full conversational protocol that can
be supported based on our earlier work to model speech
act theory. Evaluation of this full protocol is not possible
within this initial study and the conversations that are possible
between human users and machine agents are limit to simple
single-turn “tell” and “ask/tell” interactions with responses
coming back to the human user in gist forms. By single-turn
we mean that there is no possibility for reference back to
previous statements within the current study. This rules out
styles of interaction such as anaphoric reference (e.g., “Are
the lights in the bedroom on?”, followed by “Ok, turn them
on please” where “them” is an anaphoric reference to “the
lights in the bedroom” from the previous dialogue phrase).
Again, the research basis for this work does explicitly support
multi-turn dialogue and features such as anaphoric reference
but these were not enabled for this study.

Another key design decision was that within this particular
study the human users are never exposed to the raw CNL of
the underlying system. Specifically, in Section III-B we discuss
two possible modes of interaction between the human users
and the system components: “Concierge only” interactions, and
“Direct communication to any device” interactions (including
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an optional concierge agent if needed). We also note that the
latter is the most powerful of the two interaction patterns
and that in the latter cases all devices and human users
would be able to interact via CNL. For this initial study we
have implemented the “concierge only” mode as the is the
initial exercise in a planned series of experiments intended
to further develop the capabilities of the system and the
devices within the simulated environment. Communication
between the human users and the system is always via a
single concierge agent, and in cases where state changes are
needed (e.g., switching on a light) the human user “tells” the
concierge in NL the desired state change, the concierge agent
attempts to interpret the NL into CNL and passes the CNL
into the ce-store to reflect the state change requested by the
user. Within our conversational protocol it is possible for the
concierge to show the CNL to the human user to seek their
confirmation (in the form of a “confirm” card) and only pass
confirmed CNL into ce-store, but for this study we felt that this
confirm stage was not needed due to the simplicity of the tasks
being undertaken. In the results analysis we do identify cases
(especially “Ignoring unknown qualifiers“) where a confirm
step back to the human user would help in some cases to
prevent unexpected outcomes.

Finally, we note that of the 4 interaction styles listed in
Section III-D we only support two in this study. Support for
the other two (rationale and implicit desire to change state)
are more subtle and advanced cases and may be considered
for future studies. The two supported interaction styles are
“Direct question/answer exchange” and “An explicit request
to change a particular state”.

V. CONCLUSION AND FUTURE WORK

In this paper we have explored the use of conversations
between humans and machines, motivated by a desire for
“beautiful seams”. We assert that this approach could enable
better understanding of complex system such as a set of IoT
devices in a home. In this paper, we have shown how semantic
representations can be used in a human-friendly format through
the use of a CNL technology known as ITA CE. Through
the use of a conversational protocol built on top of the core
CE language we show how human and machine agents are
able to communicate using this single language. Examples of
the CE language are provided throughout the paper showing
how different concepts can be constructed and the subsequent
data for the knowledge base can be provided in the same CE
language. Through a set of four typical types of interaction
we show how human users can interact with the devices in
such an environment, and we note that whilst we have focused
these four examples on a human-machine interaction, the exact
same approach applies to machine-machine as well. Some
additional discussion around what machine-human and human-
human forms would look like is mentioned. Building on the
initial success with the study reported in Section IV future
work may include designing and conducting more advanced
experiments in the conversational home setting, specifically to
address some of the limitations described in Section IV-G and
advance our experimental capability to better reflect the full
potential identified in the CNL and conversational research
work.

Our work also continues into the wider investigation into
the potential for human-machine conversational capabilities,

specifically with the JavaScript-based CENode component
[40], which is designed specifically for CNL processing at
the very edge of the network (directly in the end users
mobile phone or tablet browser environment). Some of this
latest work is informally reported for IoT interactions [51]
and integration with the popular Alexa platform [52]. In our
desire to investigate the potential for integration of machine
learning capabilities into the core CNL approach we also
plan to investigate easy to use online services such as IBM
Watson Conversation [53] as a potential front-end and dialogue
orchestration component, which would process all incoming
NL from the human users and convert into a simplified form
before presenting to our CNL implementation. If successful
this could provide a significant improvement in handling a
wider set of synonyms, spelling mistakes and other forms of
evolving language without needing to predefine them in the
CNL environment.
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