

ISSN 2414-3146

Received 4 January 2018 Accepted 5 January 2018

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

‡ Additional corresponding author, e-mail: kariukib@cardiff.ac.uk.

Keywords: crystal structure; intramolecular N— $H \cdots S$ interaction.

CCDC reference: 1814851

Structural data: full structural data are available from iucrdata.iucr.org

S-[2-(2,2-Dimethylpropanamido)-3-(trifluoromethyl)phenyl] *N*,*N*-diisopropyldithiocarbamate

Gamal A. El-Hiti,^a* Keith Smith,^b Amany S. Hegazy,^b Mohammed B. Alshammari^c and Benson M. Kariuki^b‡

^aCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, ^bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK, and ^cChemistry Department, College of Sciences and Humanities, Prince Sattam bin Abdulaziz University, PO Box 83, Al-Kharij 11942, Saudi Arabia. *Correspondence e-mail: gelhiti@ksu.edu.sa

In the title compound, $C_{19}H_{27}F_3N_2OS_2$, the dihedral angle between the benzene ring and dithiocarbamate group is 67.00 (9)° and a weak intramolecular N— $H \cdot \cdot S$ interaction generates an S(7) ring. The *tert*-butyl group is disordered over two orientations in a 0.628 (14):0.372 (14) ratio. In the crystal, inversion dimers linked by pairs of weak C— $H \cdot \cdot O$ interactions generate $R_2^2(20)$ loops and the aromatic rings of neighbouring pairs of molecules are involved in very weak $\pi - \pi$ stacking interactions [centroid–centroid separation = 4.0042 (13) Å].

Structure description

Various *N*-(substituted phenyl)pivalamides can be substituted efficiently in reactions with lithium reagents followed by reaction with electrophiles (*e.g.*: Smith *et al.*, 2015; Smith *et al.*, 2012). Recently, the X-ray crystal structure of 4-(pivaloylamino)pyridin-3-yl *N*,*N*-diisopropyldithiocarbamate has been published (El-Hiti *et al.*, 2014). We now describe the synthesis and structure of the title compound (Fig. 1).

An intramolecular N1-H1···S2 contact is observed (Table 1). The crystal packing is shown in Fig. 2 and features inversion dimers linked by weak C-H···O interactions and very weak aromatic π - π stacking interactions [centroid-centroid separation = 4.0042 (13) Å].

Synthesis and crystallization

N-(2-(trifluoromethyl)phenyl)pivalamide and *n*-butylltihium (two equivalents) in anhydrous tetrahydrofuran at 0°C was reacted with tetraisopropylthiuram disulfide (one

The molecular structure, with displacement ellipsoids at the 50% probability level, showing both orientations of the disordered *tert*-butyl group.

equivalent). Crystallization of the crude product using ethyl acetate as solvent gave colourless blocks, m.p. 129–131°C.

The NMR spectrum indicates that the two *iso*-propyl groups are different, possibly due to restricted rotation about the N— C bond (Chatgilialoglu & Asmus, 1990). The NMR assignments are based on predicted chemical shifts and coupling patterns and have not been rigorously confirmed. ¹H NMR (500 MHz, CDCl₃): δ 7.84 (*d*, *J* = 7.8 Hz, 1 H, H-6), 7.74 (*d*, *J* = 7.8 Hz, 1 H, H-4), 7.72 (*br s*, exch., 1 H, NH), 7.48 (*app. t*, *J* =

Figure 2 Crystal packing, viewed down [100]. Hydrogen atoms have been omitted for clarity.

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N1-H1\cdots S2$	0.86	2.65	3.2576 (18)	129
$C14-H14\cdots O1^{i}$	0.98	2.35	3.097 (4)	132

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Table	2	
Experi	mental	details.

Crystal data	
Chemical formula	$C_{19}H_{27}F_{3}N_{2}OS_{2}$
M _r	420.54
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	296
a, b, c (Å)	10.0633 (3), 11.5253 (4),
	11.8648 (3)
$lpha,eta,\gamma(^\circ)$	103.597 (2), 112.018 (3), 109.899 (3)
$V(\text{\AA}^3)$	1090.81 (6)
Z	2
Radiation type	Cu Ka
$\mu \text{ (mm}^{-1})$	2.53
Crystal size (mm)	$0.36 \times 0.21 \times 0.20$
Data collection	
Data collection	
Diffractometer	Agilent SuperNova, Dual, Cu at zero, Atlas
Absorption correction	Gaussian (<i>CrysAlis PRO</i> ; Agilent, 2014)
T_{\min}, T_{\max}	0.874, 0.917
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	17158, 4349, 3933
Rint	0.022
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.623
Refinement	
$P[E^2 > 2\sigma(E^2)] = P(E^2)$ S	0.049 0.125 1.09
K[r > 20(r)], WK(r), S	0.048, 0.155, 1.08
No. of peremotors	4549
No. of parameters	282
INO. OI restraints	12 II stan and standard in d
H-atom treatment $(-\hat{h}^{-3})$	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} (e {\rm A}^{-5})$	0.70, -0.52

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXS2013 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

7.8 Hz, 1 H, H-5), 4.99, 4.07 [2 *br*, 2 H, 2 C*H*(CH₃)₂], 1.66, 1.41 [2 *br*, 12 H, 2 CH(CH₃)₂], 1.31 [*s*, 9 H, C(CH₃)₃]; ¹³C NMR (125 MHz, CDCl₃): δ 192.4 (C=S), 177.8 (C=O), 140.6 (C-6), 140.5 (C-1), 133.6 (*m*, C-2), 130.4 (*q*, *J* = 30.1 Hz, C-3), 129.2 (*q*, *J* = 5.0 Hz, C-4), 128.1 (C-5), 123.2 (*q*, *J* = 274.0 Hz, CF₃), 56.5, 52.7 [2 CH(CH₃)₂], 39.1 [C(CH₃)₃], 27.4 [C(CH₃)₃], 20.2, 19.6 [2 CH(CH₃)₂]; EI–MS: *m*/*z* (%) = 420 (*M*⁺, 12), 259 (31), 244 (72), 219 (23), 144 (80), 102 (100), 100 (41), 57 (26); HRMS (EI): calculated for C₁₉H₂₇F₃N₂OS₂ (*M*H⁺): 420.1517; found: 420.1512.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The *tert*-butyl group is disordered and was modelled with two components with occupancies of 0.628 (14)/0.372 (14).

Funding information

The project was supported by King Saud University, Deanship of Scientific Research, Research Chairs. We thank the EPSRC for the grant which supplied the MS instrumentation used in this study.

References

Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.

- Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.
- Chatgilialoglu, C. & Asmus, K.-D. (1990). Sulfur-Centered Reactive Intermediates in Chemistry and Biology. Vol. 179, NATO-ASI Series. New York and London: Plenum.
- El-Hiti, G. A., Smith, K., Hegazy, A. S., Baashen, M. & Kariuki, B. M. (2014). Acta Cryst. E70, 01069–01070.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Smith, K., El-Hiti, G. A. & Alshammari, M. B. (2012). J. Org. Chem. 77, 11210–11215.
- Smith, K., El-Hiti, G. A., Hegazy, A. S., Alshammari, M. B. & Masmali, A. M. (2015). ARKIVOC iv, 19–47.

full crystallographic data

IUCrData (2018). **3**, x180029 [https://doi.org/10.1107/S2414314618000299]

S-[2-(2,2-Dimethylpropanamido)-3-(trifluoromethyl)phenyl] *N*,*N*-diisopropyl-dithiocarbamate

Gamal A. El-Hiti, Keith Smith, Amany S. Hegazy, Mohammed B. Alshammari and Benson M. Kariuki

S-[2-(2,2-Dimethylpropanamido)-3-(trifluoromethyl)phenyl] N,N-diisopropyldithiocarbamate

Crystal data

 $C_{19}H_{27}F_{3}N_{2}OS_{2}$ Z = 2 $M_r = 420.54$ F(000) = 444 $D_{\rm x} = 1.280 {\rm Mg} {\rm m}^{-3}$ Triclinic, P1 a = 10.0633 (3) Å Cu *K* α radiation, $\lambda = 1.54184$ Å b = 11.5253 (4) Å Cell parameters from 12098 reflections $\theta = 4.4 - 74.0^{\circ}$ c = 11.8648 (3) Å $\mu = 2.53 \text{ mm}^{-1}$ $\alpha = 103.597 (2)^{\circ}$ T = 296 K $\beta = 112.018 (3)^{\circ}$ $\gamma = 109.899 (3)^{\circ}$ Block, colourless V = 1090.81 (6) Å³ $0.36 \times 0.21 \times 0.20 \text{ mm}$ Data collection Agilent SuperNova, Dual, Cu at zero, Atlas 4349 independent reflections diffractometer 3933 reflections with $I > 2\sigma(I)$ ω scans $R_{\rm int} = 0.022$ Absorption correction: gaussian $\theta_{\rm max} = 74.0^\circ, \ \theta_{\rm min} = 4.4^\circ$ (CrysAlis PRO; Agilent, 2014) $h = -12 \rightarrow 12$

Refinement

 $T_{\rm min} = 0.874, T_{\rm max} = 0.917$

17158 measured reflections

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.048$ H-atom parameters constrained $wR(F^2) = 0.135$ $w = 1/[\sigma^2(F_o^2) + (0.0682P)^2 + 0.462P]$ *S* = 1.08 where $P = (F_0^2 + 2F_c^2)/3$ 4349 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.70 \text{ e} \text{ Å}^{-3}$ 282 parameters 72 restraints $\Delta \rho_{\rm min} = -0.52 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Experimental. CrysAlisPro, Agilent Technologies, Version 1.171.37.33 (release 27-03-2014 CrysAlis171 .NET) (compiled Mar 27 2014,17:12:48) numerical absorption correction based on gaussian integration over a multifaceted crystal model empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

 $k = -13 \rightarrow 14$

 $l = -14 \rightarrow 14$

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All hydrogen atoms were placed in calculated positions and refined using a riding model. Methyl C—H bonds were fixed at 0.96 Å, with displacement parameters 1.5 times $U_{eq}(C)$, and were allowed to spin about the C—C bond. The N—H bond was fixed at 0.86 Å and aromatic C—H distances were set to 0.93 Å and their U(iso) set to 1.2 times the U_{eq} for the atoms to which they are bonded.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.5618 (2)	0.1992 (2)	0.6694 (2)	0.0492 (5)	
C2	0.4617 (2)	0.23679 (19)	0.58578 (18)	0.0436 (4)	
C3	0.4637 (2)	0.2317 (2)	0.46719 (19)	0.0458 (4)	
C4	0.5665 (3)	0.1937 (2)	0.4360 (2)	0.0550 (5)	
H4	0.5669	0.1905	0.3570	0.066*	
C5	0.6685 (3)	0.1604 (2)	0.5223 (2)	0.0613 (6)	
H5	0.7390	0.1365	0.5022	0.074*	
C6	0.6659 (3)	0.1627 (2)	0.6372 (2)	0.0584 (5)	
H6	0.7342	0.1396	0.6945	0.070*	
C7	0.5636 (3)	0.1943 (3)	0.7954 (3)	0.0671 (6)	
C8	0.4096 (2)	0.3958 (2)	0.7162 (2)	0.0482 (4)	
C9	0.2774 (3)	0.4292 (3)	0.7235 (2)	0.0596 (6)	
C10	0.3551 (12)	0.5554 (10)	0.8486 (7)	0.121 (3)	0.628 (14)
H10A	0.3875	0.5347	0.9252	0.181*	0.628 (14)
H10B	0.2782	0.5882	0.8444	0.181*	0.628 (14)
H10C	0.4491	0.6239	0.8561	0.181*	0.628 (14)
C11	0.1496 (12)	0.3079 (9)	0.7222 (14)	0.115 (3)	0.628 (14)
H11A	0.2034	0.2724	0.7790	0.172*	0.628 (14)
H11B	0.0788	0.2386	0.6326	0.172*	0.628 (14)
H11C	0.0867	0.3369	0.7542	0.172*	0.628 (14)
C12	0.1958 (10)	0.4518 (9)	0.5999 (6)	0.080 (2)	0.628 (14)
H12A	0.1168	0.4785	0.6048	0.121*	0.628 (14)
H12B	0.1424	0.3692	0.5214	0.121*	0.628 (14)
H12C	0.2765	0.5219	0.5954	0.121*	0.628 (14)
C10A	0.3656 (18)	0.5855 (7)	0.8072 (15)	0.095 (4)	0.372 (14)
H10D	0.3964	0.6315	0.7563	0.143*	0.372 (14)
H10E	0.4612	0.6105	0.8883	0.143*	0.372 (14)
H10F	0.2935	0.6107	0.8285	0.143*	0.372 (14)
C11A	0.2190 (19)	0.3623 (14)	0.8041 (16)	0.093 (3)	0.372 (14)
H11D	0.1357	0.3818	0.8098	0.140*	0.372 (14)
H11E	0.3089	0.3970	0.8924	0.140*	0.372 (14)
H11F	0.1757	0.2660	0.7609	0.140*	0.372 (14)
C12A	0.1355 (17)	0.391 (2)	0.5898 (8)	0.113 (5)	0.372 (14)
H12D	0.0662	0.2941	0.5481	0.169*	0.372 (14)
H12E	0.1759	0.4174	0.5335	0.169*	0.372 (14)
H12F	0.0746	0.4357	0.6030	0.169*	0.372 (14)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C13	0.1484 (2)	0.1780 (2)	0.28142 (18)	0.0441 (4)
C14	0.1219 (3)	0.3324 (2)	0.1703 (2)	0.0508 (5)
H14	0.2404	0.3683	0.2152	0.061*
C15	0.0900 (4)	0.4433 (3)	0.2300 (3)	0.0743 (7)
H15A	-0.0252	0.4126	0.1868	0.111*
H15B	0.1432	0.5219	0.2176	0.111*
H15C	0.1316	0.4660	0.3239	0.111*
C16	0.0630 (4)	0.2946 (3)	0.0227 (3)	0.0744 (7)
H16A	0.0758	0.2179	-0.0136	0.112*
H16B	0.1258	0.3700	0.0111	0.112*
H16C	-0.0499	0.2718	-0.0229	0.112*
C17	-0.1287 (2)	0.1370 (2)	0.1281 (2)	0.0564 (5)
H17	-0.1658	0.1857	0.0767	0.068*
C18	-0.1937 (3)	0.1447 (3)	0.2245 (3)	0.0773 (7)
H18A	-0.1688	0.0922	0.2731	0.116*
H18B	-0.3096	0.1093	0.1754	0.116*
H18C	-0.1438	0.2376	0.2859	0.116*
C19	-0.2022 (3)	-0.0068 (3)	0.0255 (3)	0.0786 (8)
H19A	-0.1534	-0.0057	-0.0302	0.118*
H19B	-0.3176	-0.0423	-0.0287	0.118*
H19C	-0.1821	-0.0630	0.0708	0.118*
N1	0.3565 (2)	0.27758 (18)	0.61456 (16)	0.0489 (4)
H1	0.2532	0.2247	0.5651	0.059*
N2	0.05355 (19)	0.21183 (17)	0.19727 (16)	0.0458 (4)
O1	0.55330 (19)	0.46862 (17)	0.79613 (18)	0.0683 (5)
F1	0.4313 (3)	0.1794 (3)	0.8007 (2)	0.1186 (8)
F2	0.6854 (3)	0.30527 (19)	0.90418 (15)	0.0974 (6)
F3	0.5919 (3)	0.09416 (18)	0.81723 (17)	0.0949 (6)
S1	0.36197 (6)	0.29820 (5)	0.36548 (5)	0.05110 (16)
S2	0.08666 (7)	0.04280 (5)	0.31403 (6)	0.05922 (18)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0437 (10)	0.0475 (10)	0.0471 (10)	0.0224 (8)	0.0137 (8)	0.0191 (8)
C2	0.0377 (9)	0.0446 (10)	0.0429 (9)	0.0205 (8)	0.0156 (7)	0.0158 (8)
C3	0.0396 (9)	0.0498 (10)	0.0429 (9)	0.0220 (8)	0.0163 (8)	0.0175 (8)
C4	0.0504 (11)	0.0603 (12)	0.0523 (11)	0.0289 (10)	0.0254 (9)	0.0168 (9)
C5	0.0500 (11)	0.0609 (13)	0.0695 (14)	0.0345 (10)	0.0259 (11)	0.0162 (11)
C6	0.0469 (11)	0.0541 (12)	0.0616 (13)	0.0289 (10)	0.0135 (10)	0.0201 (10)
C7	0.0670 (15)	0.0782 (16)	0.0636 (14)	0.0414 (13)	0.0255 (12)	0.0422 (13)
C8	0.0490 (11)	0.0556 (11)	0.0501 (10)	0.0288 (9)	0.0276 (9)	0.0268 (9)
C9	0.0616 (13)	0.0820 (16)	0.0579 (12)	0.0466 (12)	0.0374 (11)	0.0327 (12)
C10	0.105 (5)	0.167 (6)	0.072 (4)	0.092 (5)	0.033 (3)	-0.001 (4)
C11	0.101 (5)	0.152 (6)	0.173 (8)	0.079 (5)	0.107 (6)	0.099 (6)
C12	0.085 (4)	0.118 (5)	0.081 (3)	0.080 (4)	0.045 (3)	0.052 (3)
C10A	0.108 (6)	0.100 (6)	0.122 (8)	0.071 (5)	0.080 (7)	0.042 (5)
C11A	0.100 (7)	0.132 (7)	0.119 (7)	0.073 (5)	0.089 (6)	0.077 (6)

C12A	0.095 (8)	0.183 (12)	0.078 (6)	0.093 (8)	0.045 (5)	0.038 (7)
C13	0.0421 (9)	0.0462 (10)	0.0400 (9)	0.0224 (8)	0.0174 (8)	0.0148 (8)
C14	0.0446 (10)	0.0562 (11)	0.0546 (11)	0.0258 (9)	0.0217 (9)	0.0297 (9)
C15	0.0895 (19)	0.0542 (13)	0.0849 (18)	0.0357 (13)	0.0461 (16)	0.0308 (13)
C16	0.0861 (18)	0.0880 (18)	0.0624 (14)	0.0449 (16)	0.0399 (14)	0.0415 (14)
C17	0.0386 (10)	0.0569 (12)	0.0615 (12)	0.0209 (9)	0.0148 (9)	0.0256 (10)
C18	0.0533 (13)	0.0873 (19)	0.099 (2)	0.0336 (13)	0.0424 (14)	0.0440 (16)
C19	0.0589 (14)	0.0589 (14)	0.0694 (16)	0.0187 (12)	0.0026 (12)	0.0150 (12)
N1	0.0385 (8)	0.0600 (10)	0.0445 (8)	0.0250 (7)	0.0181 (7)	0.0179 (7)
N2	0.0384 (8)	0.0483 (9)	0.0467 (8)	0.0215 (7)	0.0163 (7)	0.0203 (7)
01	0.0495 (9)	0.0578 (9)	0.0769 (11)	0.0219 (7)	0.0263 (8)	0.0105 (8)
F1	0.1074 (14)	0.208 (2)	0.1278 (16)	0.0988 (16)	0.0815 (13)	0.1291 (18)
F2	0.1329 (16)	0.0901 (12)	0.0533 (8)	0.0560 (12)	0.0331 (10)	0.0231 (8)
F3	0.1371 (16)	0.0857 (11)	0.0758 (10)	0.0685 (11)	0.0409 (10)	0.0520 (9)
S 1	0.0404 (3)	0.0597 (3)	0.0505 (3)	0.0226 (2)	0.0177 (2)	0.0290 (2)
S2	0.0527 (3)	0.0490 (3)	0.0594 (3)	0.0190 (2)	0.0150 (2)	0.0265 (2)

Geometric parameters (Å, °)

C1—C2	1.392 (3)	C10A—H10D	0.9600
C1—C6	1.394 (3)	C10A—H10E	0.9600
C1—C7	1.503 (3)	C10A—H10F	0.9600
С2—С3	1.402 (3)	C11A—H11D	0.9600
C2—N1	1.411 (3)	C11A—H11E	0.9600
C3—C4	1.385 (3)	C11A—H11F	0.9600
C3—S1	1.770 (2)	C12A—H12D	0.9600
C4—C5	1.384 (3)	C12A—H12E	0.9600
C4—H4	0.9300	C12A—H12F	0.9600
С5—С6	1.368 (4)	C13—N2	1.335 (2)
С5—Н5	0.9300	C13—S2	1.664 (2)
С6—Н6	0.9300	C13—S1	1.803 (2)
C7—F1	1.310 (3)	C14—N2	1.493 (3)
C7—F2	1.332 (3)	C14—C15	1.504 (4)
C7—F3	1.337 (3)	C14—C16	1.515 (3)
C8—O1	1.211 (3)	C14—H14	0.9800
C8—N1	1.359 (3)	C15—H15A	0.9600
С8—С9	1.532 (3)	C15—H15B	0.9600
C9—C10	1.507 (6)	C15—H15C	0.9600
C9—C12A	1.513 (7)	C16—H16A	0.9600
C9-C11A	1.520 (7)	C16—H16B	0.9600
C9—C12	1.522 (5)	C16—H16C	0.9600
C9—C11	1.536 (6)	C17—N2	1.498 (2)
C9-C10A	1.558 (7)	C17—C18	1.515 (4)
C10—H10A	0.9600	C17—C19	1.522 (4)
C10—H10B	0.9600	C17—H17	0.9800
C10—H10C	0.9600	C18—H18A	0.9600
C11—H11A	0.9600	C18—H18B	0.9600
C11—H11B	0.9600	C18—H18C	0.9600

C11 H11C	0.0600	C10 H10A	0.0600
	0.9000	C19—HI9A C10_U10P	0.9000
C12—H12A	0.9000	C19—H19B	0.9000
C12—H12B	0.9600	CI9—HI9C	0.9600
C12—H12C	0.9600	NI—HI	0.8600
C2—C1—C6	120.0 (2)	H10D—C10A—H10F	109.5
C2—C1—C7	123.1 (2)	H10E—C10A—H10F	109.5
C6—C1—C7	116.90 (19)	C9—C11A—H11D	109.5
C1—C2—C3	118.57 (18)	C9—C11A—H11E	109.5
C1-C2-N1	122.61 (18)	H11D—C11A—H11E	109.5
$C_3 - C_2 - N_1$	$118\ 80\ (17)$	C9—C11A—H11F	109.5
C4-C3-C2	120.60(19)	H11D—C11A—H11F	109.5
C4-C3-S1	116 70 (16)	H11F—C11A—H11F	109.5
C_{2}^{-} C_{3}^{-} S_{1}^{-}	121.95 (15)	C_{0} C_{12} A H_{12} H_{12}	109.5
$C_2 = C_3 = S_1$	121.95(15) 110.0(2)	$C_{0} C_{12A} H_{12E}$	109.5
$C_{5} = C_{4} = C_{5}$	119.9 (2)	H12D C12A H12E	109.5
$C_3 = C_4 = H_4$	120.0	$\begin{array}{cccc} \text{III2D} & \text{III2D} \\ \text{C0} & \text{C12A} & \text{H12E} \\ \end{array}$	109.5
C_{3} C_{4} C_{4} C_{4}	120.0	C_{9} — C_{12A} — Π_{2F}	109.5
$C_{0} = C_{3} = C_{4}$	120.1 (2)	HI2D—CI2A—HI2F	109.5
C6—C5—H5	120.0	HI2E—CI2A—HI2F	109.5
C4—C5—H5	120.0	N2-C13-S2	126.48 (15)
C5—C6—C1	120.7 (2)	N2—C13—S1	113.18 (14)
С5—С6—Н6	119.6	S2—C13—S1	120.33 (11)
С1—С6—Н6	119.6	N2—C14—C15	111.50 (19)
F1—C7—F2	105.7 (3)	N2—C14—C16	112.07 (19)
F1—C7—F3	107.3 (2)	C15—C14—C16	112.0 (2)
F2—C7—F3	103.7 (2)	N2—C14—H14	107.0
F1—C7—C1	115.9 (2)	C15—C14—H14	107.0
F2—C7—C1	112.5 (2)	C16—C14—H14	107.0
F3—C7—C1	110.9 (2)	C14—C15—H15A	109.5
O1—C8—N1	121.13 (19)	C14—C15—H15B	109.5
O1—C8—C9	122.8 (2)	H15A—C15—H15B	109.5
N1	116.04 (18)	C14—C15—H15C	109.5
C12A—C9—C11A	111.0 (6)	H15A—C15—H15C	109.5
C10-C9-C12	110.6 (5)	H15B—C15—H15C	109.5
C10—C9—C8	109.1 (4)	C14—C16—H16A	109.5
C12A—C9—C8	115.1 (6)	C14—C16—H16B	109.5
C11A—C9—C8	108.0 (5)	H16A—C16—H16B	109.5
C12—C9—C8	107.8 (3)	C14—C16—H16C	109.5
C10-C9-C11	111.3 (4)	H16A—C16—H16C	109.5
C_{12} C_{9} C_{11}	108.8(4)	H16B—C16—H16C	109.5
C8 - C9 - C11	109.1(3)	$N^2 - C^{17} - C^{18}$	112 87 (19)
C12A - C9 - C10A	109.8 (6)	$N_2 - C_{17} - C_{19}$	112.07(19)
$C_{11}A - C_{9} - C_{10}A$	107.0(5)	C18 - C17 - C19	113.3(2)
C_{8} C_{9} C_{10A}	107.0 (5)	$N_2 C_{17} H_{17}$	105.5
C0 - C10 - H10A	100.5	$C_{18} C_{17} - H_{17}$	105.5
$C_{0} = C_{10} = H_{10}$	109.5	$C_{10} - C_{17} - H_{17}$	105.5
	109.5	$C_{17} - C_{17} - \Pi_{17}$	105.5
$\frac{1110A}{0} = 0.00 = 0.000$	109.5	C17 $C19$ $U19D$	109.5
U7-U10-HIUU	109.5	UI/—UI0—ПІбВ	109.3

H10A—C10—H10C	109.5	H18A—C18—H18B	109.5
H10B—C10—H10C	109.5	C17—C18—H18C	109.5
С9—С11—Н11А	109.5	H18A—C18—H18C	109.5
С9—С11—Н11В	109.5	H18B—C18—H18C	109.5
H11A—C11—H11B	109.5	С17—С19—Н19А	109.5
С9—С11—Н11С	109.5	C17—C19—H19B	109.5
H11A—C11—H11C	109.5	H19A—C19—H19B	109.5
H11B—C11—H11C	109.5	С17—С19—Н19С	109.5
C9—C12—H12A	109.5	H19A—C19—H19C	109.5
C9—C12—H12B	109.5	H19B—C19—H19C	109.5
H12A—C12—H12B	109.5	C8—N1—C2	123.57 (17)
С9—С12—Н12С	109.5	C8—N1—H1	118.2
H12A—C12—H12C	109.5	C2—N1—H1	118.2
H12B—C12—H12C	109.5	C13—N2—C14	122.25 (16)
C9—C10A—H10D	109.5	C13—N2—C17	123.01 (17)
С9—С10А—Н10Е	109.5	C14—N2—C17	114.67 (16)
H10D-C10A-H10E	109.5	C3—S1—C13	105.47 (9)
C9—C10A—H10F	109.5		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N1—H1…S2	0.86	2.65	3.2576 (18)	129
C14—H14···O1 ⁱ	0.98	2.35	3.097 (4)	132

Symmetry code: (i) -x+1, -y+1, -z+1.