
1914 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 4, APRIL 2018

Robust Virtual Unrolling of Historical
Parchment XMT Images

Chang Liu , Paul L. Rosin , Yu-Kun Lai , and Weiduo Hu

Abstract— We develop a framework to virtually unroll frag-
ile historical parchment scrolls, which cannot be physically
unfolded via a sequence of X-ray tomographic slices, thus
providing easy access to those parchments whose contents have
remained hidden for centuries. The first step is to produce
a topologically correct segmentation, which is challenging as
the parchment layers vary significantly in thickness, contain
substantial interior textures and can often stick together in places.
For this purpose, our method starts with linking the broken
layers in a slice using the topological structure propagated from
its previous processed slice. To ensure topological correctness,
we identify fused regions by detecting junction sections, and
then match them using global optimization efficiently solved by
the blossom algorithm, taking into account the shape energy
of curves separating fused layers. The fused layers are then
separated using as-parallel-as-possible curves connecting junction
section pairs. To flatten the segmented parchment, pixels in
different frames need to be put into alignment. This is achieved
via a dynamic programming-based global optimization, which
minimizes the total matching distances and penalizes stretches.
Eventually, the text of the parchment is revealed by ink pro-
jection. We demonstrate the effectiveness of our approach using
challenging real-world data sets, including the water damaged
fifteenth century Bressingham scroll.

Index Terms— X-ray, parchment, as parallel as possible,
flatten, blossom algorithm, dynamic programming, ink
projection.

I. INTRODUCTION

PARCHMENT has been an important writing medium
for recording valuable information throughout history

because it is thin and stiff, but yet sufficiently flexible to
roll. However, over hundreds of years, parchment can convert
to gelatin, so that the layers of the scrolled parchments
become brittle and get stuck together. Figure 1 demonstrates a
typical parchment scroll, the Bressingham scroll, which is an
account from the manor of Bressingham, dated 1408-9 (NRO,
PHI 468/5) [1]. The records on the scroll include: the income

Manuscript received January 12, 2017; revised November 10, 2017 and
December 11, 2017; accepted December 11, 2017. Date of publication
December 18, 2017; date of current version January 23, 2018. This work was
supported in part by the EPSRC Project EP/G010110/1 and in part by the
China Scholarship Council under Grant 201406020068. The associate editor
coordinating the review of this manuscript and approving it for publication was
Prof. Jan Sijbers. (Corresponding author: Paul L. Rosin.)

C. Liu and W. Hu are with the School of Astronautics, Beihang
University, Beijing 100191, China (e-mail: laodananhang2006@aliyun.com;
weiduo.hu@buaa.edu.cn).

P. L. Rosin and Y.-K. Lai are with the School of Computer Science
and Informatics, Cardiff University, Cardiff CF24 3AA, U.K. (e-mail:
paul.rosin@cs.cf.ac.uk; yukun.lai@cs.cf.ac.uk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2017.2783626

Fig. 1. The Bressingham scroll (1408-9), which cannot be physically fully
unrolled.

of the lord from the manor and his expenditure, profits from
holding the manor court, sales of underwood, and leasing out
the fishing rights. The width of the scroll measures around
270 mm. The total length of the scroll is unknown, as it is
impossible to unroll completely: at approximately 100 mm
from the start of the parchment the scroll has become fused
together. The fusing of the scroll is most likely to have
been caused by exposure to moisture and damp storage.
Any attempt to physically unfold the parchment document
will lead to delamination of the surface of the parchment
causing an unacceptable level of damage. Consequently, image
processing is being applied to explore new means of access-
ing such delicate parchments without physically unrolling
them.

Digital document restoration technology develops new
methods for reconstructing such documents and recovering
information which cannot be accessed physically. This tech-
nology has been an extremely active area of research in recent
years. So far, much attention has been paid to the analysis
of regular photographic images of historical documents and
3D reconstruction and virtual flattening of deformed but
non-scrolled parchment documents. 3D reconstructions of
documents can be grouped into three different classes [2]:
single-image methods, which reconstruct the shape of a doc-
ument based on their geometric and shading information [3],
stereo-image methods, which restore the 3D surfaces of doc-
uments by stereo image pairs [4], and structured-light scan-
ning methods, which calculate the 3D shape of a document
with a structured-light scanner [5]. Based on the restored
3D surface, many surface parameterization methods [6] have
been proposed to find a mapping from document surfaces to
planar domains with minimum distortion, which will enable
the recovery of the original flat shape of distorted documents.
A new level of accessibility has been provided for many

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

https://orcid.org/0000-0002-9747-2869
https://orcid.org/0000-0002-4965-3884
https://orcid.org/0000-0002-2094-5680
https://orcid.org/0000-0002-9747-2869
https://orcid.org/0000-0002-4965-3884
https://orcid.org/0000-0002-2094-5680
https://orcid.org/0000-0002-9747-2869
https://orcid.org/0000-0002-4965-3884
https://orcid.org/0000-0002-2094-5680

LIU et al.: ROBUST VIRTUAL UNROLLING OF HISTORICAL PARCHMENT XMT IMAGES 1915

valuable literary works. However, such methods cannot cope
with parchments which cannot be physically unrolled. Virtual
unrolling is required for such documents, though only very
few results have been reported.

Recovering the information written on a fragile parchment
scroll is a difficult task since the characters are wrapped
inside the parchment, and thus cannot be photographed by
normal cameras. Therefore non-interventive methods have
been developed based on X-ray microtomography (XMT)
scanning [7], [8] and virtual unrolling [1], [9], [10]. For
an XMT-based technique, the separation of fused parchment
layers is the major problem for parchment scroll restora-
tion [11], [12]. Some widely used image segmentation meth-
ods, such as snakes [13] and max-flow-based graph cut [14],
are not effective for this problem because while they can
effectively differentiate between the foreground and the back-
ground, they cannot recognise fused regions and separate them
into individual layers. For a different purpose, Samet et al.
presented a method to reconstruct the missing parts of contour
lines by automatically detecting the terminal points and then
matching and linking the related terminal points by line
segments [15]. The matching was based on Euclidean dis-
tance and the directional information of the terminal points.
Therefore the prerequisite for this method is that the two
related terminal points are close enough, which is not generally
satisfied by the parchment scroll. The related endpoints of a
missing boundary in the fused region may not be close, nor
can the missing boundaries be reconstructed by line segments.
Allegra et al. [16] proposed an approach to semi-automatic
virtual unrolling of the papyrus scroll with X-ray tomography.
Under the assumption of few differences between adjacent
slices, the authors used the skeleton extracted from a single
slice to virtually unfold the whole papyrus scroll. However,
despite the considerable similarity between adjacent slices,
the differences accumulate dramatically over just a small
number of slices. This results in relatively large errors in the
virtual unrolling. Seales et al. [17] presented an algorithm to
virtually unwrap part of the En-Gedi parchment scroll. They
first propagated several chains through the volume by the local
symmetric tensor and a set of inner spring forces, thus tracing
out several surfaces of the scroll over time. Then the obtained
surfaces were textured, flattened, and manually merged to pro-
duce a large reconstructed image for the scroll. The weakness
of this method is that the chain used for propagation needs to
be frequently manually corrected to prevent it from crossing
over itself and the surface boundaries if there exist many large
fused regions in the slices. Baum et al. [18] attempted to reveal
hidden text in rolled papyrus using an interpolation technique.
The authors manually initialised several skeletons across the
whole volume, and the remaining skeletons were produced by
interpolating between their two adjacent initialised skeletons.
The scroll was eventually reconstructed by applying texture to
the flattened mesh comprised of all the skeletons. However,
since the scroll is noticeably distorted along its long axis,
substantial slices needed to be initialised to achieve the good
final unrolling result.

The most relevant work was reported by Samko et al. [11]
and [12], who automatically processed several parchment

Fig. 2. Image segmentation results. (a) Otsu thresholding algorithm [20]
on the small scroll. (b) Shape-prior-based graph cut [12] on the small scroll.
(c) Otsu thresholding algorithm [20] on the Bressingham scroll.
(d) Shape-prior-based graph cut [12] on the Bressingham scroll.

scrolls which have similar local characteristics to the Bress-
ingham scroll. After preprocessing each slice by Coherence-
Enhancing Diffusion (CED) filtering [19], a shape prior using
the parchment layer thickness was incorporated into graph
cut (GC) [14] to robustly segment the parchment layers from
the background. Subsequently, the missing boundaries were
recreated in the fused region from the boundary of the opposite
side of the same layer or the closest preserved boundary. The
shape-prior-based graph cut will thin the parchment layers,
producing much fewer inter-layer connections between two
layers. Nonetheless, the major problems of this graph cut are
that it is difficult to choose the weight parameters for the data,
smoothness and shape terms, and for those parchments with
thin layers containing internal structure, the graph cut is likely
to fragment the layers into many small parts (Fig. 2). Further-
more, only a simple strategy was used to match the endpoints
of missing boundaries, which may lead to false reconstruction
of missing boundaries if the fused region consists of more than
three layers. Thus this method cannot cope with parchments
like the Bressingham scroll.

In this paper, we present a new method to separate parch-
ment layers fused together and to virtually unroll the parch-
ments, revealing the text. We first segment the foreground
parchment regions automatically, which is achieved by apply-
ing our segmentation algorithm to each individual image
frame. Unlike traditional approaches, we explicitly enforce
topological constraints, which means a parchment sheet in
each image frame forms a continuous (rolled) strip. The
skeleton is also extracted from the parchment in each image
frame. To flatten the segmented parchment, skeleton pixels
in different frames need to be put into alignment to form
an interior surface. This is achieved via an efficient dynamic
programming based global optimisation which minimises the
total matching distances and penalises stretches. Eventually,
the text of the parchment is revealed by ink projection.
We perform both qualitative and quantitative analysis and

1916 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 4, APRIL 2018

demonstrate the effectiveness of our approach using challeng-
ing datasets, including the 15th century Bressingham scroll
which is difficult to process using previous methods. This is
an extended version of our conference paper [21], and we have
substantially improved the pipeline with propagation based
layer connection, global optimisation for junction section
matching for fused region separation, dynamic programming
based flattening, and improved ink projection, as well as
additional evaluation with more experiments, both qualitative
and quantitative.

II. PARCHMENT SEGMENTATION

Our processing pipeline starts with parchment images
obtained from X-ray microtomography, and these are first
segmented with the standard Otsu thresholding algorithm [20]
since it is simple and efficient. More sophisticated general
purpose segmentation algorithms were also considered for this
stage, but they are also prone to topological errors. More-
over, we considered following Samko et al. [12], and tried
applying Coherence-Enhancing Diffusion (CED) filtering [19]
to remove noise and fine texture. However, we found this to
be unnecessary for our processing pipeline. In most cases,
Otsu initialisation produces the best or close to best values
for the measures (see Sec. IV for detailed discussion) so
we use this by default in our pipeline. Following the initial
segmentation the foreground is processed by three main steps:
layer connection, refinement of segmentation, and skeleton
connection. The first step connects the broken layers of the
parchment by a strip with the width of the parchment layer.
At the next step, we find the fused regions by detecting
junction sections, and match them using global shape energy
optimisation effectively solved by the blossom algorithm.
We then separate the fused regions into parchment layers by
linking those matched junction sections using as-parallel-as-
possible connecting curves. Sometimes, the parchment layer
is so thin that it is likely to be cut off by our segmentation
method. Thus, after separating fused regions, we extract the
skeletons of the layers and link the skeletons which should
belong to one layer. The extracted skeletons are also useful
for flattening and ink projection.

A. Layer Connection

It is common that some areas of the historic parchments
have become scuffed and delaminated, so that in the X-ray
slice the parts of the layers corresponding to those areas
are missing. A typical example is shown in Fig. 3. In this
section, we will link the broken parchment layers by a strip
with the same width as the parchment layer. Because in
the slice sequence the two adjacent slices are very similar,
the broken layers in the current image can be correctly con-
nected according to the topological structure of the previous
processed slice [22]. Specifically, we first extract the skeleton
of the parchment layer from the previous processed slice
using morphological operations, and then obtain the skeleton
parts which are included in the background of the current
slice. As demonstrated in Fig. 4, the red segment represents a
skeleton part included in the background, which touches the

Fig. 3. The broken layers of the parchment are connected by the skeleton
segments (red segments) of the previous slice.

Fig. 4. The description of two broken layers which should be linked.

layer boundary at two points p1 and p2. Such two points are
potentially linked by the skeleton part with the width of the
parchment layer, if one of the following criteria are satisfied:
i) on the layer boundary no path can be found to connect
p1 and p2, or ii) the ratio of the skeleton part length to the
length of the shortest path between p1 and p2 on the layer
boundary (the blue curve in Fig. 4) is less than a threshold
value (we set as 0.5). The broken layers in Fig. 3 are linked
by the red segments. This approach guarantees the consistency
of the topological structure of the parchment layer, and with
the use of skeleton segments for linking, works well in our
experiments as such layer breaking is usually short.

B. Global Optimisation Based Segmentation Refinement

In this section we aim to separate those fused regions into
several parchment layers to ensure topological correctness.
The main steps of our segmentation refinement include detect-
ing junction sections and fused regions, matching junction
sections, separating fused regions using as-parallel-as-possible
connecting curves, and missing boundary reconstruction based
on skeleton.

1) Junction Section Detection: A junction point is a demar-
cation point between the fusing and separating of two adjacent
layer boundaries. In the vicinity of such a point exists a set
of points with large curvature. All these points constitute a
so-called junction section. Due to the property of large cur-
vature, we can use a purely geometric approach to detect
each point in a junction section. Given a point p0 on the
boundary, we take s pixels {p−s, p−s+1, . . . , p−1} from the
left neighborhood of p0 on the boundary, and then take s pixels
{p1, p2, . . . , ps} from its right neighborhood on the boundary
(we set s = 15). If the intersection angle of vectors p0 ps

and p0 p−s is less than a threshold value (set as 120° in
our algorithm), the point p0 will be considered as a point

LIU et al.: ROBUST VIRTUAL UNROLLING OF HISTORICAL PARCHMENT XMT IMAGES 1917

Fig. 5. Junction section detection. (a) Determining the point of a junction
section. (b) Detected junction sections (indicated by green crosses).

Fig. 6. Detection of fused regions. (a) The binary image of a parchment
slice. (b) the separated binary image. (c) The detected fused region.

of a junction section. Figure 5 demonstrates all the detected
junction sections. We cannot precisely determine which point
is the junction point in a junction section, so the middle point
of the junction section is approximately considered as the
junction point.

2) Fused Region Detection: A fused region is formed by
some parchment layers merged together. As long as the fused
regions are detected, the stuck layers can be immediately
recovered by separating the fused regions. In fact, the junction
sections are caused by fused regions, so a fused region must
contain the middle point of at least one junction section. Given
a binary image of a parchment slice (Fig. 6(a)), we connect
the two endpoints of each junction section by a line, and then
cut off along this line the region where the junction section is
located. Now the binary image has been separated into some
small regions, as shown in Fig. 6(b). Consequently, the fused
regions are the unions of those small regions which contain
the middle points of junction sections (Fig. 6(c)).

3) As-Parallel-as-Possible Curve Generation: After detect-
ing all fused regions, we will separate the fused regions by
linking two junction sections with a curve which is as parallel
as possible to the closest preserved boundaries to the two

Fig. 7. c and the curve connecting po and pe are approximated by an n-sided
polygonal curve.

junction sections. Such curves naturally separate fused regions.
We first describe an algorithm to generate such curves and will
later explain how matching junction sections are identified.

Assume that c is an arbitrary curve and po, pe are two
arbitrary points in the plane, whose coordinates are (xo, yo)
and (xe, ye), as shown in Fig. 7. Note that we do not require
the direction or the distance between the endpoints of c and
those of the new curve to be identical. Our aim is to link
po and pe by a curve which is as parallel as possible to
curve c. This distinguishes our goal from the related work
in the CAD/CAM literature on offset curves [23]. Not only
can the latter only generate truly parallel curves (and hence
cannot in general pass through two given points), but moreover
they usually operate on parametric curves.

First of all we approximate the curve c by an n-sided
polygonal curve. The direction vector of each segment of the
polygonal curve is represented as (ai , bi), i = 1, 2, . . . , n.
Suppose that the curve connecting po and pe can be approxi-
mated by an n-sided polygonal curve too, and the direction
vector of each of its segments is denoted as (ui , vi),
i=1, 2, …, n, as illustrated in Fig. 7. Therefore, the fact
that the curve which links po and pe is the most parallel
to curve c is equivalent to the fact that the polygonal curve
which links po and pe is the most parallel to the polygonal
curve which approximates curve c. Consequently, we obtain
the cost function:

min
n∑

i=1

(ui − ai)
2 + (vi − bi)

2

s.t.
n∑

i=1

ui = xe − xo,

n∑

i=1

vi = ye − yo. (1)

Equation 1 can be rewritten in the matrix form

min XT X + 2PT X + PT P

s.t. AX = M (2)

where, X = [u1 v1 u2 v2 · · · un vn]T , P = [−a1 −b1 −a2 −
b2 · · · −an −bn]T , M =

[
xe − xo

ye − yo

]
, and A =

[
1 0 1 0 · · ·
0 1 0 1 · · ·

]
.

Using Lagrange multipliers, we get
[

X
β

]
=

[
2I −AT

A 0

]−1 [−2P
M

]
(3)

where β is the vector consisting of two Lagrange multipliers
and I is the identity matrix. By means of block matrix
inversion [24], the coefficient matrix can be further represented

1918 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 4, APRIL 2018

Fig. 8. The red curve connects the two green points, while being as parallel
as possible to the black curve.

Fig. 9. The form of the shape energy in the interlayer connections between
several fused layers.

as
[

2I −AT

A 0

]−1

=
[

0.5I − 0.5AT (AAT)−1A AT (AAT)−1

−(AAT)−1A 2(AAT)−1

]
.

(4)

Noting AAT = n

[
1 0
0 1

]
, we eventually obtain

X =
(

−I + 1

n
AT A

)
P + 1

n
AT M. (5)

Figure 8 shows a result of our as-parallel-as-possible curve
generation method. Here the black curve is an arbitrary curve,
the two green points are two arbitrary points, and the red curve
connects the two green points and is as parallel as possible to
the black curve.

4) Shape Energy Calculation: To evaluate the quality of
connecting curves, we introduce a shape energy in this section.
The shape energy of a point in a parchment layer reflects the
closeness of the point to the estimated layer boundary. The
closer the point is to the layer boundary, the lower the shape
energy of the point is. Given an estimate of the parchment
thickness m, we define shape energy by means of a Gaussian
function. On the condition that there are interlayer connections
between some layers, the shape energy on the transverse
direction t of the connected part of those layers should have
the form demonstrated in Fig. 9.

Thus, given dx the perpendicular distance of each pixel x
in a layer to its closest boundary, the energy function has the
following form

E(x) = exp

{
−

(
dx − 2k−1

2 m
)2

2σ 2

}
, (6)

where k is the parchment layer counter, k = 1, 2, 3 . . ., chosen
to satisfy the following constraint

(k − 1)m < dx < km, (7)

σ is the parameter which we estimate as σ = m/3, so that
almost 99.7% of the energy of Gaussian function will lie
within the layer. It can be easily seen from Eq. 6 that 0 <
E(x) ≤ 1. A result of shape energy calculation is shown
in Fig. 10. It is evident that the shape energy reaches its peak
in the middle of layer, and diminishes progressively from the

Fig. 10. The shape energy computed only within the segmentation mask.

Fig. 11. Two junction sections on different boundaries but in the same fused
region have the same closest preserved boundary.

middle of the layer towards the boundary. It works not only
for a single layer but also for cases when multiple layers are
fused together.

5) Junction Section Matching and Fused Region Separation:
We now describe our method for recreating the missing bound-
aries. Our strategy is to first identify all the junction sections
that can be potentially matched, without violating topological
constraints. We then work out the matching cost. Then we
treat junction section matching as a global optimisation that
maximises the total matching weights. The matched junction
sections are then used to separate fused regions.

Provided there are r̂ junction sections in the image, we ini-
tialise an r̂ × r̂ cost matrix W with each element as negative
infinite and update connectable junction section pairs with
a cost reflecting the quality of connecting curves. We find
the closest preserved boundaries for each junction section as
follows. As depicted in Fig. 11, given a junction section Ri ,
whose two endpoints are li and ri , a line which passes through
li and ri meets the left closest boundary at mi and the right
closest boundary at ni , then these two closest boundaries on
two sides of Ri are the closest preserved boundaries of Ri .
Topologically, two junction sections may be matched only if
they are located on different boundaries but on the same fused
region, as illustrated in Fig. 6. If two junction sections in
different boundaries and in the same fused region have the
same closest preserved boundary, we will check whether their
middle points may be linked to reconstruct missing boundaries.

Providing that there exist two junction sections R j and Ri ,
i > j , which are on different boundaries but in the same
fused region, and have the same closest preserved boundary
(Fig. 11), the two intersection points mi and m j respectively
corresponding to Ri and R j separate the boundary L into two
parts, which are represented by the solid line and dashed line
respectively in Fig. 11. We only take into account the part
which completely lies between the two lines mili and m jl j ,
that is, the solid part in Fig. 11.

LIU et al.: ROBUST VIRTUAL UNROLLING OF HISTORICAL PARCHMENT XMT IMAGES 1919

First of all, we use the solid line part to generate a curve Q
which connects the middle points of Ri and R j using an
as-parallel-as-possible curve (section II-B.3), and then check
whether Q intersects the existing boundaries at any places
other than Ri and R j . If not, there is a possibility that the
region between Ri and R j is an interlayer connection, so we
calculate the energy between Ri and R j along curve Q by the
following form.

H =
[

1 − 1

g

g∑

s=1

E(xs)

]
+ λ

min(mili , m j l j)

max(mili , m jl j)
, (8)

where xs denotes the pixel of Q, g is the number of pixels
in Q, and E is the shape energy calculated by Eq. 6. In Eq. 8,
1
g

∑g
s=1 E(xs) measures the mean shape energy of Q, thus

the larger value of the first term means that the curve Q is
closer to the missing boundary; the second term

min(mi li ,m j l j)
max(mi li ,m j l j)

reflects the similarity of the distances from Ri and R j to their
closest preserved boundary. The more similar the distances
from Ri and R j to their closest preserved boundary, the larger
this term. λ is a parameter which specifies the significance
between these two terms. Both terms have the same scale,
and we choose in all experiments to give them equal weight
and set λ = 1. If H > W(i, j), we will set W(i, j) = H .

After we apply the above method to all possible pairs of
junction sections, the fused region can be separated along
the parallel curve linking the middle points of two matched
junction sections. We match the junction sections by a global
graph matching algorithm. Let G = (V , E) be an undirected
weighted graph, where V denotes the set of nodes, which
consist of all of the junction sections; ei j ∈ E represents
the edge linking two junction sections Ri and R j with the
weight w(ei j) = W(i, j); negative infinite W(i, j) means
Ri and R j are disjoint. The required matching is a subset
of edges E ′ ⊆ E such that each node in V has at most
one incident edge in E ′ and the sum of the weights of the
edges in E ′ is maximised. This can be solved efficiently using
Edmonds’ blossom algorithm [25], [26], which is based on the
following linear programming formulation, where x represents
the incidence vector of matching [27]:

max
r̂∑

i, j=1

w(ei j)x(ei j)

s.t. 0 ≤ x(eij) ≤ 1
r̂∑

i=1

x(ei j) ≤ 1, 1 ≤ j ≤ r̂

r̂∑

i, j=1

x(ei j) ≤ (|B|−1)/2, ei j ∈ E(B), ∀B ∈ νodd (9)

where νodd is the set of all odd-size subsets of V .
Edmonds [28] proved that with the third constraint, the basic
solutions to the resulting linear programming are integral.
We use the implementation in [25] to obtain the matching E ′.
The fused region is then separated along the parallel curve
linking the middle points of two matching junction sections
Ru and Rv whose edge has the maximum weight among

Fig. 12. The result of our segmentation for a parchment slice. (a) A fused
region in the original image. (b) The segmentation of the fused region.

Fig. 13. Skeleton connection. (a) The segmented parchment slice. It can be
seen that a layer is mistakenly broken. (b) The skeleton image of the broken
layer. (c) The linked skeleton provided by our algorithm.

all the edges in E ′. Subsequently we eliminate the uth row,
vth column, uth column and vth row of matrix W, then
update the already existing fused regions and let the algorithm
begin all over again. The algorithm will terminate when the
maximum element of W is negative infinite, which means that
there are no junction sections to be matched, or there is a single
boundary in the image. Figure 12 illustrates a segmentation
result of our algorithm.

6) Skeleton Connection: After finishing segmentation,
we need to extract the skeleton of the parchment layer for
virtual unrolling. However, sometimes some parts of the
parchment layer are too thin to provide sufficient single pixel
edges, and then our segmentation algorithm will eliminate
such very thin parts to guarantee the junction section detection
and missing boundary reconstruction. The skeletons of these
broken layers will mislead the virtual unrolling method to
generate a wrong result. Thus before virtual unrolling, we need
to link the skeletons of the layers which are mistakenly broken.
The linkage method proposed in [22] is adopted to connect
such broken skeletons, since this method can effectively ensure
the correctness of the topological structure of the skeleton.
Figure 13 illustrates the effect of our skeleton connection.

III. VIRTUAL UNROLLING OF PARCHMENTS

Although Samko et al.’s [12] approach can achieve
virtual unrolling, the method is based on generating tetrahedral
meshes and nonlinear multidimensional scaling (MDS). As a
result, it is extremely slow, and takes 6.4 hours for the small
scroll in Fig. 2ab, and 4.5 weeks for the Bressingham dataset.
Thus in this section, we introduce an efficient high quality
virtual unrolling method based on the extracted skeletons,

1920 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 4, APRIL 2018

which is 300-1, 000 times faster. We first extract a pixel
sequence from the skeleton of each slice. Then we formulate
the alignment problem of skeletons of adjacent slices as an
optimal matching problem, which can be efficiently solved
using dynamic programming. Based on the matching, we map
each skeleton to a row of pixels in the reconstructed image
after virtual unrolling such that the alignment is followed and
the overall scaling is minimised. Finally, the pixels in the
reconstructed image are recovered by ink projection.

A. Skeleton Sequence Extraction

We start from the skeleton images extracted in the previous
step. Based on 8-way connectivity, the skeleton in each slice
can be connected to form a graph with skeleton pixels as
nodes and edges connecting adjacent pixels. Such graphs
however usually contain branches, which make alignment
difficult. Since we know in advance that the skeleton of each
slice should contain a single sequence of pixels, we find the
longest path in each graph. The longest path problem for a
general graph is expensive. Since our graphs are typically
graphs with extra small branches, we use a simple heuristic
to efficiently find an approximate solution (which takes about
40 seconds per image for the Bressingham scroll). Given a
skeleton, starting from an arbitrary pixel p̃0, we then find the
furthest point on the skeleton to it, giving p̃1, and the furthest
to p̃1, denoted as p̃2, etc. until convergence. The longest
path is obtained as the path connecting the last two points
in this process. The resulting sequence of pixels for the i -th
skeleton Si is denoted by {p(i)

k }, where k = 1, 2, . . . , ni , and ni

is the number of points on the i -th skeleton. Such a method
is effective in finding a path that represents each skeleton.
However, depending on the iterative process, the sequence may
be in reverse orders (clockwise or counterclockwise). Treating
virtual unrolling as a matching process, it is essential to choose
the order in a consistent way. To achieve this, we work out
the total turning angle γi for the i -th skeleton as:

γi =
ni −1∑

k=2

γ (p(i)
k − p(i)

k−1, p(i)
k+1 − p(i)

k),

where γ (v1, v2) is the angle between two vectors v1 and v2
with the minimum absolute value, and γ (v1, v2) is positive if it
turns counterclockwisely from v1 to v2 and negative otherwise.
If the total turning angle γi < 0, we simply reverse the order of
pixels for Si . For simplicity, we hereafter refer to the adjusted
skeleton point sequences as {p(i)

k }. Using total turning angles
makes the approach robust to local fluctuations of orientation.
To cope with jaggedness caused by skeleton discretisation as
well as inaccuracies in extraction, we apply boxcar smoothing
to the skeleton as a polyline, followed by resampling the
smoothed polyline with even spacing. The resampled points
are denoted as P̃(i) = {p̃(i)

k }.

B. Parchment Slice Alignment

Although in principle it is possible to consider alignment
of all the slices simultaneously, for large datasets this can be
prohibitively expensive. We thus first consider alignment of

Fig. 14. Illustration of matching between adjacent skeleton sequences. Each
point is matched to one or two points on the other curve, with the exception
of near end points.

Fig. 15. Illustration of edge lengths used for setting τ .

two adjacent slices, which is computationally manageable, and
then align them globally. Doing so also allows parallelisation
of matching for speedup. Assuming we are matching P̃(i)

with P̃(i+1) we aim to find a matching that minimises total
matching costs. As illustrated in Fig. 14, since we are matching
two sequences of points, it is reasonable to further require
such matching to be in sequence. Every point p̃(i)

k should be
matched to at least one and at most two points in P̃(i+1).
Since sample points are equally spaced, ideally points should
be in one-to-one correspondence. In reality, to cope with local
stretching and shrinking, e.g. due to skeleton inaccuracies,
we allow one to two matching. This is more than adequate,
as that allows a skeleton to expand or shrink by a factor of 2
between adjacent slices, which is unlikely to happen. The same
rule applies to matching points in P̃(i) for points in P̃(i+1).
There is one exception to this general rule, which happens at
the ends of the sequences where a small number of sample
points (ñi set to 5% of ni in our experiments) can be ignored
in matching. This is useful to cope with cases where the
reconstructed image naturally has a non-rectangular shape. The
matching of two sequences can be represented using an edge
set E where each element (k, t) ∈ E means p̃(i)

k is matched
to p̃(i+1)

t . Given (k, t) ∈ E , the next matched pair can only
be (k + 1, t), (k, t + 1) or (k + 1, t + 1). Cases 1 and 2 have
only one matching point advanced, whereas case 3 has both
matching points advanced. For simplicity, we split E into two
subsets, E1 and E2 to refer to both situations. We define the
matching energy as the sum of total edge lengths, although
we use a different weight to penalise edges in E1 as they are
related to non-isometric scaling.

E(E) = τ
∑

(k1,t1)∈E1

‖p̃(i)
k1

− p̃(i+1)
t1 ‖ +

∑

(k2,t2)∈E2

‖p̃(i)
k2

− p̃(i+1)
t2 ‖.

(10)

In an ideal scenario where two sequences are well aligned
(see Fig. 15), when all the edges are in E2, assume the total
energy is E0. If we instead take both the red and blue edges,
making every edge in E1, the total energy will be τ (1+√

2)E0.
To penalise E1 cases, we need to ensure τ (1 + √

2)E0 > E0,
i.e. τ > 1

1+√
2

≈ 0.414. In practice, we do not penalise this too
much to make sure E1 edges still happen to improve alignment.
τ = 0.45 works well and is used in all our experiments.

LIU et al.: ROBUST VIRTUAL UNROLLING OF HISTORICAL PARCHMENT XMT IMAGES 1921

Global optimisation of E(E) can be efficiently achieved
using dynamic programming. To create a nested optimal
substructure, we denote by E∗

k,t,c the optimal solution to the

subproblem of matching two subsequences p̃(i)
1 , p̃(i)

2 , . . . , p̃(i)
k ,

and p̃(i+1)
1 , p̃(i+1)

2 , . . . , p̃(i+1)
t , with the last edge being of

case c (c = 1, 2, 3 as defined above). This is initialised as:

E∗
1,t,c = 0(1 ≤ t ≤ ñi+1), E∗

k,1,c = 0(1 ≤ k ≤ ñi), ∀c (11)

to allow extensions at endpoints. The remaining E∗
k,t,c can be

worked out using the following

E∗
k,t,1 = min(E∗

k−1,t,2, E∗
k−1,t,3) + τ‖p̃(i)

k − p̃(i+1)
t ‖,

E∗
k,t,2 = min(E∗

k,t−1,1, E∗
k−1,t,3) + τ‖p̃(i)

k − p̃(i+1)
t ‖,

E∗
k,t,3 = min(E∗

k−1,t−1,1, E∗
k−1,t−1,2, E∗

k−1,t−1,3)

+ τ‖p̃(i)
k − p̃(i+1)

t ‖. (12)

Based on the case c of the last edge, the previous edge can
be deduced. If the last edge is of case 3, the previous edge
can be of any case; otherwise, the previous edge cannot be
of the same case to ensure one point will not be matched to
more than two points. The optimal solution is the minimum
of E∗

ni ,t,c for ni+1 − ñi+1 + 1 ≤ t ≤ ni+1,∀c and E∗
k,ni+1,c

for ni − ñi + 1 ≤ k ≤ ni ,∀c, to allow flexible extension at
endpoints. Given the minimum E∗, the optimal matching can
be obtained by tracing backwards based on optimal values. The
time complexity of the globally optimal matching algorithm
is O(ni ni+1) which is very efficient.

The above scheme is related to the dynamic time
warping (DTW) approach that is commonly applied to find a
mapping from one signal to another [29]. However, the stan-
dard DTW scheme does not incorporate our preference
for one-to-one mapping, restriction beyond one-to-two map-
pings, or cope with missing data at the ends of the sequences.

C. Image Formulation and Ink Projection

Once all the pairwise matchings between adjacent slices are
performed, we can map them to 2D image space where the
i -th skeleton is mapped to the i -th row in the image. We start
with the first skeleton S1 and first assume that no distortion is
involved, so the k-th point p̃(1)

k is mapped to the k-th column
of the first row. Since in the majority of cases the points have
one-to-one correspondence, we can work out the mapping of
successive skeletons one by one, by aligning those pixels with
known correspondence at the same column and interpolating
the mapping in between. More specifically, assuming for the
i -th skeleton, point p̃(i)

k is mapped to column x (i)
k . When

considering the (i +1)-th skeleton, there are three possibilities:
1) point p̃(i+1)

t is mapped to a specific point p̃(i)
k , we set

x (i+1)
t = x (i)

k . 2) p̃(i+1)
t is not mapped to any point in P̃

(i)
, and

it is between two points p̃(i+1)
t1 and p̃(i+1)

t2 which are mapped
to p̃(i)

k1
and p̃(i)

k2
, respectively. We use linear interpolation to

work out the 2D image location as

x (i+1)
t = x (i)

k1
(t2 − t) + x (i)

k2
(t − t1)

t2 − t1
. (13)

3) If p̃(i+1)
t is not mapped to any point in P̃

(i)
and only one side

in the sequence has a (nearest) point p̃(i+1)
t1 mapped to p̃(i)

k1
.

This happens when the point being considered is towards one
end of the skeleton. We use the mapping of p̃(i+1)

t1 as reference
and assume isometric mapping:

x (i+1)
t = x (i)

k1
+ (t − t1). (14)

This process determines a mapping from the 2D image
space to the 3D volume space. For each pixel, assuming the
3D location is p̂ with a normal direction n̂, we start from p̂ and
move along n̂ by a maximum of d̂ pixels, using a subvoxel step
size to avoid aliasing effect. 0.25 is used in our experiments;
smaller step size gives almost the same results, with slightly
longer running time. We take the maximum intensity of all
the sample points, obtained using trilinear interpolation from
voxels at neighbouring integer grid positions. The distance d̂
ideally can be chosen as m

2 where m is the layer thickness.
However, the skeleton may not lie exactly in the centre
of each parchment layer and the parchment thickness may
vary. To cope with this, we use a larger d̂: for single-sided
parchment, it is safe to set d̂ = m without mixing writing on
two layers. We also use the segmentation mask that separates
layers and stop sampling along the normal direction if the
sampling process enters the background.

Since the first skeleton S1 is not distortion free, we further
apply a global column-wise rescaling such that overall distor-
tion across all the slices are minimised. For each pair of pixels
in the k-th and (k+1)-th columns, we work out the distance for
the corresponding points in the 3D space (using interpolation
when needed). The average of such distances provides the
column-wise scaling s̄i , i.e. after mapping x̃k+1 − x̃k = s̄i .
The column is no longer in the integer position, so we apply
bilinear interpolation to obtain the intensity values.

The pixels of the obtained image are brighter if there is
ink. To make the image look more natural, we invert the pixel
intensities so that ink appears dark, and further apply intensity
scaling to enhance contrast.

IV. EXPERIMENTS

We demonstrate the performance of our segmentation
method to real parchments, which vary in size and complexity.
X-ray images of the parchments were acquired through tomo-
graphic development in the School of Medicine and Dentistry
at QMUL [7]. Our algorithm is tested on a desktop PC with a
2.9GHz processor. The method presented by Samko et al. [11]
and [12] is adopted as a reference method, because this work
is the most relevant to parchment segmentation and virtual
reconstruction. The technique reported by Baum et al. [18] is
the most recent and effective algorithm for virtually revealing
text from rolled scrolls that we found, and was thus used
as a further reference method for comparison. In addition,
we also include the graph cut [14], snake method [13], and
Otsu thresholding algorithm [20] as reference methods since
these methods are widely cited in the literature and are often
used as baseline methods for comparison.

The first experiment is conducted to test our segmentation
method with three parchment scrolls from [11], [12]: the small

1922 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 4, APRIL 2018

Fig. 16. The results of our segmentation method applied to three dif-
ferent parchments. (a)(e)(i) the foregrounds extracted by Otsu thresholding,
(b)(f)(j) the segmented parchments by our method, (c)(g)(k) close-up views
of some areas, (d)(h)(l) skeleton images.

scroll, medium scroll, and large scroll. These scrolls exhibit
increasing complexity, and were used by Samko et al. for
testing their algorithm development. The first two scrolls are
straightforward, being relatively small without tight connec-
tions or delamination, and their layers are relatively thick, even
and almost complete. The large scroll is also without delamina-
tion, but contains more touching layers. However, these are not
physically fused, and therefore not as tight or compressed as
those in the Bressingham scroll. The sizes of the three parch-
ments are 708 frames with resolution 430 × 430, 700 frames
with resolution 530 × 530, and 423 frames with resolution
1702 × 1732 respectively. The largest fused region in those
parchments consists of three layers, and each layer is about
14 pixels wide (m = 14 in Eq. 6). Figure 16 illustrates the
stages of our segmentation method on the three parchments.
It can be seen that all the fused regions are correctly sep-
arated into several layers. Because the segmentation results
for all the slices are quite similar, the example in Fig. 16
represents the performance of our algorithm for the whole
data set. It is noteworthy that our segmentation results look
similar to Samko et al.’s results in [11] and [12] showing
that our method can deal with the parchments which Samko
et al.’s method can process. Baum et al.’s method is applied
to each scroll with two slices manually initialised by the
initialisation strategy in [18]. Figure 17 demonstrates the seg-
mentation results of Baum et al.’s method. It can be seen that
Baum et al’s method can provide a correct estimation of the
skeleton of the parchment layer, which is highlighted by the
red lines. The segmentation results of other reference methods
can be found in [12].

To provide quantitative evaluation of all the segmentation
algorithms, we manually segment twelve images from each
set to obtain ground truth segmentations. These are compared

Fig. 17. The skeletons of (a) small scroll, (b) medium scroll, and (c) large
scroll estimated by Baum et al’s method, which are highlighted by the red
lines and superimposed on the foreground of the parchments.

Fig. 18. Segmentation for Bressingham scroll. (a) original image,
(b) segmented image, (c) close-ups of some areas, (d) skeleton.

using multiple benchmark criteria: Rand Index (RI), which
is a measure of similarity of two data clusterings, Variance of
Information (VI) [30], which describes the distance of two data
clusterings, and three commonly used statistics: Precision (P),
Recall (R) and F-measure (F) [31]. Precision, recall and the
F-measure are applied directly to the segmentations and pro-
vide an indication of the per-pixel classification accuracies of
parchment and air (background) segmentation. Low precision
indicates that air is misclassified as parchment, while low
recall indicates that parchment is misclassified as air. Since
topological correctness is critical for the subsequent recon-
struction process we also perform a connected component
labelling on the segmented images (on both foreground and
background), and compare the labellings obtained by the
segmentation algorithms against the ground truth segmentation
to emphasise errors in connectivity. The Rand Index and
Variance of Information are appropriate measures to use since
they are invariant to permutations of the labels.

The averages of the five measures for all algorithms in
this test are listed in Table I, which shows that Baum et al’s
method obtains the best segmentation accuracy for the small
scroll and medium scroll. This is because these two scrolls
perfectly meet the prerequisite of Baum et al’s method that the
consecutive slices show greatly similar spirals. Nonetheless,
our segmentation method results in close-to-the-best values for
the five measures of these two scrolls. In contrast, for the large
scroll, which is more damaged than the other two scrolls and

LIU et al.: ROBUST VIRTUAL UNROLLING OF HISTORICAL PARCHMENT XMT IMAGES 1923

TABLE I

QUANTITATIVE COMPARISON OF DIFFERENT SEGMENTATION ALGORITHMS FOR THE THREE SCROLLS. THE BEST MEASURES ARE SHOWN IN BOLD

Fig. 19. Our method compared with Samko et al.’s method. (a) The
segmentation of Samko et al.’s method, with the region containing faulty
segmentation highlighted. (b) The segmentation of our method.

Fig. 20. Our method compared with Baum et al.’s method. (a) The skeleton
(the red line) from Baum et al.’s method, which is not completely contained
in the parchment layer. (b) The skeleton from our method. Note that Baum
et al.’s method needs substantial effort to manually initialise 35 key frames.

Fig. 21. The results of (a) Otsu thresholding, (b) graph cut, (c) snakes.

more tightly wound, our method achieves the most satisfactory
segmentation.

The next experiment deals with the Bressingham scroll,
which is much more challenging than the three scrolls used
above. Because of mistreatment, there are several areas of the

Fig. 22. Our method compared with Liu et al.’s method [21]. (a) The
segmentation of Liu et al.’s method, with the region containing faulty
segmentation highlighted. (b) The segmentation of our proposed method.

TABLE II

QUANTITATIVE COMPARISON OF DIFFERENT SEGMENTATION

ALGORITHMS FOR THE BRESSINGHAM SCROLL. THE BEST
MEASURES ARE SHOWN IN BOLD

skin which have become scuffed and delaminated. In addition,
many layers have become physically fused. The part of the
parchment we are processing consists of 3070 frames, with
1256 × 816 pixels in each frame. The largest fused region
is comprised of more than six layers. In addition, not only
are the layers uneven, but also they are split into many
parts. The average thickness of the layers is only about six
pixels. Furthermore, there exist artifacts in some frames. All
of these pose a serious challenge to the segmentation for this
parchment. Because the layers are so thin, we resize the image
to double the original width and height before processing.
We set m = 11 in Eq. 6 for this data. Figure 18 demonstrates
an example of the segmentation of a slice of the Bressingham
scroll by our method. This figure indicates that our method
can correctly divide the fused regions into several layers and
then obtain the complete skeleton. The comparison of our
method and Samko et al.’s method is illustrated in Fig. 19.
It is clear in Fig. 19 that our method can correctly match
the junction sections and separate the fused regions, while
keeping the parchment complete; by contrast, not only does
Samko et al.’s method break the layer which should be

1924 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 4, APRIL 2018

TABLE III

QUANTITATIVE EVALUATION FOR DIFFERENT SEGMENTATION INITIALISATION ALGORITHMS. NOTE: UNLIKE OTHER MEASURES,
FOR VI, SMALLER IS BETTER. THE BEST MEASURES ARE SHOWN IN BOLD

Fig. 23. The virtual unrolling of the Bressingham scroll using our proposed method.

complete, but it creates two false connections. The main
reason for these false connections is that the boundary linking
approach of Samko et al.’s method is based on the prerequisite
that few interlayer connections are left after the graph cut with
shape prior. However that precondition is not satisfied in the
case of the Bressingham scroll since if we choose the para-
meters such that most of interlayer connections are removed,
the layers will be divided into many small parts. Hence we
have to make a trade-off between removing interlayer connec-
tions and keeping the layers complete. As a result, some of the
junction points are relatively far away from each other, which
has a detrimental influence on the postprocessing of Samko
et al.’s method. In comparison, our shape-based cost function
Eq. 8 and matching using the blossom algorithm guarantee
the robustness of our segmentation method to the positions
of the junction sections. Therefore, it can be concluded from
Fig. 19 that our algorithm is effective to deal with the com-
plicated parchment which Samko et al.’s method cannot cope
with. In order to compare our method against Baum et al’s
method, 35 slices are manually initialised for Baum et al.’s
method following the initialisation strategy in [18], which is
a time-consuming task because the layer of this parchment is
considerably long, complicated, and non-spiral. The skeleton
of a cross section of the parchment obtained respectively by
our method and Baum et al.’s method is exhibited by the
red curve in Fig. 20. It can be observed that the skeleton
estimated by Baum et al.’s method is not completely contained
in the parchment layer. However, to improve the result of
Baum et al.’s method will inevitably cost much longer time
on additional manual initialisation. Therefore Baum et al.’s
method becomes less practical as the parchment complexity
increases. Figure 21 shows the segmentation results by Otsu
thresholding, graph cut, and snakes. As observed, all these
reference methods fail to separate the fused regions into
several layers.

We also compare our proposed global optimisation based
segmentation refinement with [21]. Liu et al. [21] are able
to produce correct segmentation for most frames, but fail to

Fig. 24. An unseen section of the Bressingham scroll (that cannot be unrolled)
which is visualised after virtual unrolling.

produce topologically correct segmentation for a small number
of slices in the Bressingham dataset. An example is shown
in Fig. 22, where the method [21] has layers stuck in the
highlighted region (left) whereas our proposed global optimi-
sation produces topologically correct segmentation (right). Our
method is able to produce topologically correct segmentation
for the entire scan with 3, 070 slices.

We manually segmented 14 slices of the Bressingham
scroll for a quantitative evaluation of all the algorithms in
this experiment, and the average values for each of the five
measures are listed in Table II. All methods have relatively
similar P, R, F values, but there are dramatic differences in
RI and VI, as these measures are sensitive to topological errors.
In terms of RI, VI, P, and F scores, our segmentation results

LIU et al.: ROBUST VIRTUAL UNROLLING OF HISTORICAL PARCHMENT XMT IMAGES 1925

Fig. 25. A visible part of the Bressingham scroll (a) and its recovered image (after warping and histogram matching) from the XMT scan using the following
methods: (b) Otsu+Our Method (c) Otsu+CED+Our Method (d) GC+Our Method (e) GC+Shape+Our Method (f) Baum (g) Samko (h) Snakes. Missing
values due to holes in the reconstruction are coloured red. Note that Baum et al.’s method needs substantial effort to manually initialise 35 key frames.

TABLE IV

CORRELATION VALUES BETWEEN A PHOTOGRAPH AND

RECONSTRUCTIONS FROM DIFFERENT SEGMENTATION
ALGORITHMS FOR PART OF THE

BRESSINGHAM SCROLL

outperform those obtained by the reference methods, which
shows that the Bressingham scroll segmented by our method
is the most similar to the ground truth.

Table III provides a quantitative comparison of the alter-
native approaches we have considered for initialising our
segmentation algorithm. As can be seen, in most cases the Otsu
initialisation without Coherence-Enhancing Diffusion (CED)
filtering was most effective and was therefore selected as the
default initialisation for our pipeline.

In order to verify the correctness of our segmentation and
ink projection methods, we extracted the skeleton line from
each segmentation result, and then use them to flatten the
parchment scroll by the surface modelling and ink projection
method to recover the text written on the parchment. Our
virtual flattening and ink projection method is much more
efficient than the method proposed in [12]. For the small
scroll (Fig. 2a&b), [12] takes 6.4 hours, whereas our method
only takes 22.8 seconds, which is over 1, 000 times faster.
For the large Bressingham dataset with 3, 070 slices, our
method takes 2.56 hours, whereas [12] takes 4.5 weeks.
The flattened result of the Bressingham scroll after contrast
enhancement is illustrated in Fig. 23. A representative part
is illustrated in Fig. 24 which exhibits the recovery of an
unseen section of the Bressingham scroll. Fig. 25a shows a
photograph of a visible portion of the Bressingham scroll
along with corresponding reconstructions obtained by applying
several algorithms to the X-ray data. To facilitate quantitative
comparison the reconstructions have been warped to align with
the photograph (where possible) and their histograms have
been matched to the photograph. Missing values in the recon-
structions are coloured red, and it can be seen that segmen-
tations from both Samko et al. [12] and snakes [13] produce
poor reconstructions, making alignment with the photograph
impractical. The method of Baum et al. [18] also results in
many large holes. Table IV provides the Pearson correlation
values between the reconstructions and the photograph of the
visible section. The scores are generally low since there are

inevitable differences in appearance between a photograph
and a reconstruction based on X-ray density values. We note
that although the versions of our proposed method achieve a
slighter better score than that of Baum et al. [18] the difference
is small despite the latter’s holes. This is because the holes,
while perceptually significant, cover less than 5% of the image,
and so do not substantially reduce Baum et al.’s correlation
value. Moreover, the holes fortuitously mostly occur in areas
which do not contain text.

There are many blocks of text with clear visible letters
on the virtually unrolled parchment, despite the parch-
ment having many layers broken and stuck together. Thus
Figs. 23–25 are strong evidence that our method correctly
segments the parchment scroll for virtual unrolling.

V. CONCLUSION

We have presented a novel method to virtually restore infor-
mation from those parchments that cannot be manually read by
processing their X-ray images. Our method segments images
in five steps. First, we connect the layers of the parchment
which are broken. Second, the junction sections are detected
from the boundaries of the parchment. Then, the detected
junction sections are matched by the blossom algorithm.
Subsequently the fused regions are separated into several
layers by means of the missing boundary reconstruction and
parallel curve connection, and finally skeletons are connected.
To virtually unroll parchments, the extracted skeletons are
aligned using dynamic programming based global optimisation
and parchment images are reconstructed using ink projection.
Our method is tested on four different real scrolls: a small test
scroll, a medium scroll, a large scroll, and the Bressingham
scroll. The experimental results indicate that not only can our
method process the parchments which have been processed
previously, but it is capable of dealing with a more challenging
historical parchment – the Bressingham scroll – and can make
the physically unopenable scroll readable.

REFERENCES

[1] D. Mills, A. Curtis, G. Davis, P. L. Rosin, and Y.-K. Lai, “Apocalypto:
Revealing the Bressingham roll,” J. Paper Conservation, vol. 15, no. 3,
pp. 14–19, 2014.

[2] K. Pal, M. Terras, and T. Weyrich, “3D reconstruction for damaged doc-
uments: Imaging of the great parchment book,” in Proc. Int. Workshop
Hist. Document Imag. Process., 2013, pp. 14–21.

[3] T. Wada, H. Ukida, and T. Matsuyama, “Shape from shading with
interreflections under a proximal light source: Distortion-free copying
of an unfolded book,” Int. J. Comput. Vis., vol. 24, no. 2, pp. 125–135,
1997.

1926 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 4, APRIL 2018

[4] H. I. Koo, J. Kim, and N. I. Cho, “Composition of a dewarped and
enhanced document image from two view images,” IEEE Trans. Image
Process., vol. 18, no. 7, pp. 1551–1562, Jul. 2009.

[5] M. S. Brown, M. Sun, R. Yang, L. Yun, and W. B. Seales, “Restoring
2D content from distorted documents,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 29, no. 11, pp. 1904–1916, Nov. 2007.

[6] K. Pal, C. Schüller, D. Panozzo, O. Sorkine-Hornung, and T. Weyrich,
“Content-aware surface parameterization for interactive restoration
of historical documents,” Comput. Graph. Forum, vol. 33, no. 2,
pp. 401–409, 2014.

[7] G. R. Davis and J. C. Elliott, “High definition X-ray microtomography
using a conventional impact X-ray source ,” J. Phys. IV France, vol. 104,
pp. 131–134, Mar. 2003.

[8] V. Mocella, E. Brun, C. Ferrero, and D. Delattre, “Revealing letters in
rolled Herculaneum papyri by X-ray phase-contrast imaging,” Nature
Commun., vol. 6, Jan. 2015, Art. no. 5895.

[9] D. Mills, G. R. Davis, Y.-K. Lai, and P. L. Rosin, “Apocalypto: Revealing
lost text with XMT,” Proc. SPIE, vol. 9212, Sep. 2014.

[10] F. Albertin et al., “X-ray spectrometry and imaging for ancient admin-
istrative handwritten documents,” X-Ray Spectrometry, vol. 44, no. 3,
pp. 93–98, 2015.

[11] O. Samko, Y.-K. Lai, D. Marshall, and P. L. Rosin, “Segmentation of
parchment scrolls for virtual unrolling,” in Proc. Brit. Mach. Vis. Conf.,
2011, pp. 1–11.

[12] O. Samko, Y.-K. Lai, D. Marshall, and P. L. Rosin, “Virtual unrolling
and information recovery from scanned scrolled historical documents,”
Pattern Recognit., vol. 47, no. 1, pp. 248–259, 2014.

[13] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour
models,” Int. J. Comput. Vis., vol. 1, no. 4, pp. 321–331, 1988.

[14] Y. Y. Boykov and M.-P. Jolly, “Interactive graph cuts for optimal
boundary & region segmentation of objects in N-D images,” in Proc.
Int. Conf. Comput. Vis., vol. 1. Jul. 2001, pp. 105–112.

[15] R. Samet, I. A. A. Askerbeyli, and C. Varol, “An implementation
of automatic contour line extraction from scanned digital topographic
maps,” Appl. Comput. Math, vol. 9, no. 1, pp. 116–127, 2010.

[16] D. Allegra et al., “Virtual unrolling using X-ray computed tomography,”
in Proc. Eur. Signal Process. Conf., Aug./Sep. 2015, pp. 2864–2868.

[17] W. B. Seales, C. S. Parker, M. Segal, E. Tov, P. Shor, and Y. Porath,
“From damage to discovery via virtual unwrapping: Reading the scroll
from En-Gedi,” Sci. Adv., vol. 2, no. 9, p. e1601247, 2016.

[18] D. Baum et al., “Revealing hidden text in rolled and folded papyri,”
Appl. Phys. A, Solids Surf., vol. 123, p. 171, Mar. 2017.

[19] J. Weickert, “Coherence-enhancing diffusion filtering,” Int. J. Comput.
Vis., vol. 31, nos. 2–3, pp. 111–127, 1999.

[20] N. Otsu, “A threshold selection method from gray-level histograms,”
IEEE Trans. Syst., Man, Cybern., vol. SMC-9, no. 1, pp. 62–66,
Jan. 1979.

[21] C. Liu, P. L. Rosin, Y.-K. Lai, and W. Hu, “Robust segmentation of
historical parchment XMT images for virtual unrolling,” in Proc. Digit.
Heritage, Sep./Oct. 2015, pp. 11–18.

[22] C. Liu, P. L. Rosin, Y.-K. Lai, G. R. Davis, D. Mills, and C. Norton,
“Recovering historical film footage by processing microtomographic
images,” in Proc. Int. Conf. Digit. Heritage, 2016, pp. 219–231.

[23] G. Elber, I.-K. Lee, and M.-S. Kim, “Comparing offset curve approxi-
mation methods,” IEEE Comput. Graph. Appl., vol. 17, no. 3, pp. 62–71,
May 1997.

[24] D. S. Bernstein, Matrix Mathematics: Theory, Facts, and Formulas,
2nd ed. Princeton, NJ, USA: Princeton Univ. Press, 2009, ch. 2, p. 108.

[25] Z. Galil, “Efficient algorithms for finding maximum matching in graphs,”
ACM Comput. Surv., vol. 18, no. 1, pp. 23–38, 1986.

[26] V. Kolmogorov, “Blossom V: A new implementation of a minimum cost
perfect matching algorithm,” Math. Program. Comput., vol. 1, no. 1,
pp. 43–67, 2009.

[27] R. Duan and S. Pettie, “Linear-time approximation for maximum weight
matching,” J. ACM, vol. 61, no. 1, 2014, Art. no. 1.

[28] J. Edmonds, “Maximum matching and a polyhedron with 0, l-vertices,”
J. Res. Nat. Bur. Standard B, Math. Math. Phys., vol. 69B, nos. 1–2,
pp. 125–130, 1965.

[29] S. Salvador and P. Chan, “Toward accurate dynamic time warping in
linear time and space,” Intell. Data Anal., vol. 11, no. 5, pp. 561–580,
2007.

[30] M. Meilǎ, “Comparing clusterings: An axiomatic view,” in Proc. Int.
Conf. Mach. Learn., 2005, pp. 577–584.

[31] D. R. Martin, C. C. Fowlkes, and J. Malik, “Learning to detect natural
image boundaries using local brightness, color, and texture cues,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 5, pp. 530–549,
May 2004.

Chang Liu was born in Bejing, China, 1987.
He received the bachelor’s degree in guidance,
navigation, and control from the Nanjing University
of Aeronautics and Astronautics, and the Ph.D.
degree in guidance, navigation, and control from
Beihang University, in 2009 and 2016, respectively.
He holds a post-doctoral position in aeronautical
and astronautical science and technology at Beihang
University. His research interest is guidance and
navigation of spacecraft based on computer vision.

Paul L. Rosin was with Brunel University, the Joint
Research Centre, Italy, and the Curtin University
of Technology, Australia. He is currently a Pro-
fessor with the School of Computer Science and
Informatics, Cardiff University. His research inter-
ests include the representation, segmentation, and
grouping of curves, knowledge-based vision sys-
tems, early image representations, low level image
processing, machine vision approaches to remote
sensing, methods for evaluation of approximations,
algorithms, medical and biological image analysis,

mesh processing, and the analysis of shape in art and architecture.

Yu-Kun Lai received the bachelor’s and Ph.D.
degrees in computer science from Tsinghua Univer-
sity, China, in 2003 and 2008, respectively. He is
currently a Senior Lecturer with the School of
Computer Science and Informatics, Cardiff Univer-
sity. His research interests include computer graph-
ics, geometry processing, computer-aided geometric
design, computer vision, and image processing. He is
on the Editorial Boards of The Visual Computer.

Weiduo Hu was born in Heihe, China, 1965.
He received the bachelor’s, master’s, and Ph.D.
degrees from Beihang University, in 1986, 1989,
and 1993, respectively, the Ph.D. degree from the
University of Michigan in 2002. He was an Engineer
with the Beijing Institute of Control Engineering.
He is currently a Professor with Beihang University,
China. His major research interests are navigation,
control and dynamics, especially for spacecraft.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

