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Abstract 

With few exceptions, the marked advances in knowledge about the genetic basis of schizophrenia have 
not converged on findings that can be confidently used for precise experimental modeling. Applying 
knowledge of the cellular taxonomy of the brain from single-cell RNA-sequencing, we evaluated whether 
the genomic loci implicated in schizophrenia map onto specific brain cell types. We found that the common 
variant genomic results consistently mapped to pyramidal cells, medium spiny neurons, and certain 
interneurons but far less consistently to embryonic, progenitor, or glial cells. These enrichments were due 
to sets of genes specifically expressed in each of these cell types. We also found that many of the diverse 
gene sets previously associated with schizophrenia (synaptic genes, FMRP interactors, antipsychotic 
targets, etc.) generally implicate the same brain cell types. Our results suggest a parsimonious explanation: 
the common-variant genetic results for schizophrenia point at a limited set of neurons, and the gene sets 
point to the same cells. The genetic risk associated with medium spiny neurons did not overlap with that 
of glutamatergic pyramidal cells and interneurons, suggesting that different cell types have biologically 
distinct roles in schizophrenia.  

Knowledge of the genetic basis of schizophrenia has markedly improved in the past five years 1. We now 
know that much of the genetic basis and heritability of schizophrenia is due to common variation 2,3. 
However, identifying “actionable” genes in sizable studies 4,5 has proven difficult with a few exceptions 6-

8. For example, there is aggregated statistical evidence for diverse gene sets including genes expressed in 
brain or neurons 3,5,9, genes highly intolerant of loss-of-function variation 10, synaptic genes 11, genes 
whose mRNA bind to FRMP 12 , and glial genes 13 (Supplemental Table 1). Several gene sets have been 
implicated by both common and rare variant studies of schizophrenia, and this convergence strongly 
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implicates these gene sets in the pathophysiology of schizophrenia. However, the gene sets in 
Supplemental Table 1 often contain hundreds of functionally distinctive genes that do not immediately 
suggest reductive targets for experimental modeling.  

Connecting the genomic results to cellular studies is crucial since it would allow us to prioritize for cells 
fundamental to the genesis of schizophrenia. Enrichment of schizophrenia genomic findings in genes 
expressed in macroscopic samples of brain tissue has been reported 3,14,15 but these results are 
insufficiently specific to guide subsequent experimentation.  

A more precise approach has recently become feasible. Single-cell RNA-sequencing (scRNAseq) can be 
used to derive empirical taxonomies of brain cell types. We thus rigorously compared genomic results for 
schizophrenia to brain cell types defined by scRNAseq. Our goal was to connect human genomic findings 
to specific brain cell types defined by gene expression profiles: to what specific brain cell types do the 
common variant genetic findings for schizophrenia best “fit”? A schematic of our approach is shown in 
Figure 1.  

We assembled a superset of brain scRNAseq data from Karolinska Institutet (KI; Supplemental Tables 2-
3). Brain regions in the KI superset include neocortex16, hippocampus16, hypothalamus17, striatum, and 
midbrain18 plus samples enriched for oligodendrocytes, dopaminergic neurons, and cortical 
parvalbuminergic interneurons (total of 9,970 cells, Figure 1c). These data were generated using identical 
methods from the same labs with unique molecular identifiers that allow for direct comparison of 
transcription across regions. Quality control and alignment are described elsewhere16. We did not identify 
important batch effects (Supplemental Figure 1). Based on the scRNAseq data and subsequent clustering 
each cell have been assigned to a Level 1 classification (e.g., pyramidal cell, microglia, or astrocyte). Level 
2 classifications are subtypes of a Level 1 grouping (e.g., medium spiny neurons expressing Drd1 or Drd2). 
Clustering was based on patterns of correlations across hundreds of genes and not on single markers. 
After clustering, cell type identities were derived using known expression patterns, histology, and/or 
molecular studies16-18 (Supplemental Table 2). The KI mouse superset identified 24 Level 1 brain cell types 
(Supplemental Figure 2) and 149 Level 2 cell types (all sub-groupings of Level 1), far more than any other 
brain scRNAseq or single nuclei RNA-seq (snRNAseq) dataset presently available (Figure 1a).  

For each scRNAseq and snRNAseq dataset, we estimated the specificity of each gene and cell type. This 
measure represents the proportion of the total expression of a gene found in one cell type compared to 
all cell types (i.e., the mean expression in one cell type divided by the mean expression in all cell types). If 
the expression of a gene is shared between two or more cell types, it will get a lower specificity measure. 
For example, Drd2 is highly expressed in medium spiny neurons (MSNs), adult dopaminergic neurons, and 
hypothalamic interneurons, and its specificity measure in MSNs of 0.17, but this placed Drd2 in the top 
specificity decile for MSNs (Figure 1b). Figure 1c shows cell type specificity for seven genes with known 
expression patterns. Because expression is spread over several cell types, the pan-neuronal marker 
Atp1b1 has lower specificity than Ppp1rb1 (Darpp-32, a MSN marker), Aif1 (Iba1, a microglia marker), or 
Gfap (an astrocyte marker).  

For each cell type, we ranked the expression specificity of each gene into groups (deciles or 40 quantiles). 
The underlying hypothesis is that if schizophrenia is associated with a particular cell type, then more of 
the genome-wide association (GWA) signal should be concentrated in genes with greater cell type 
specificity. For example, we plotted the enrichment of SNP-heritability for schizophrenia and human 
height in the cell-type specificity deciles of for MSNs and found a positive relationship for schizophrenia 
but no relationship with human height (Figures 1d-1e). To ensure rigor, we required that two different 
statistical methods (LDSC9 and MAGMA19) each give strong evidence for connecting schizophrenia GWA 
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results to a cell type. These two methods are based on different assumptions and algorithms. LDSC 
assessed enrichment of the common SNP-heritability of schizophrenia in the most cell type-specific genes. 
MAGMA evaluated whether gene-level genetic association with schizophrenia linearly increased with cell 
type expression specificity. Both methods account in different ways for confounders like gene size and 
linkage disequilibrium. We required that both methods give similar results after correcting for multiple 
comparisons to minimize the chance of a spurious conclusion. As described in the Online Methods, we 
evaluated and excluded multiple potential threats to the validity of these analyses.  

To identify brain cell types associated with schizophrenia, we used the largest available GWA study of 
schizophrenia: CLOZUK identified ~140 genome-wide significant loci in 40,675 cases and 64,643 controls 
20. We first compared the CLOZUK results to GTEx (RNA-seq of macroscopic samples from multiple human 
tissues) 21 using MAGMA and confirmed 3 that smaller schizophrenia GWA P-values were substantially 
enriched in brain and pituitary (Supplemental Figure 3).  

We evaluated the relation of the CLOZUK GWA schizophrenia results to the 24 KI Level 1 brain cell types. 
Both LDSC and MAGMA strongly highlighted only four cell types: hippocampal CA1 pyramidal cells, striatal 
medium spiny neurons, neocortical somatosensory pyramidal cells, and cortical interneurons (Figure 2a, 
Supplemental Figures 4-5). Each exceeded a Bonferroni significance level by several orders of magnitude. 
The results were not pan-neuronal as multiple other types of neurons did not show enrichment. 
Schizophrenia risk was greater in mature cells than in embryonic or progenitor cells. We extended the 
analysis to 149 KI Level 2 cell types (subtypes of Level 1 cells): for hippocampal CA1 pyramidal cells, both 
major subgroups were significant; for striatum, medium spiny neurons expressing Drd2, Drd1 and striatal 
Pvalb-expressing interneurons were consistently significant; and for neocortical somatosensory pyramidal 
cells, cortical layers 2/3, 4, 5, and 6 were significant (Supplemental Figure 6). The cortical Level 1 
interneuron signal appeared to result from four interneuron subcategories all expressing Reln.  

Additional analyses showed that these results were not influenced by the total number of molecules 
detected per cell type or total number of cells per cell type (Supplemental Table 3). We conducted null 
simulations and confirmed that there was no Type 1 error inflation (Supplemental Figure 7). We also 
applied an alternative approach based on differential expression 22, and replicated the association of 
MSNs, pyramidal CA1, and neocortical somatosensory pyramidal cells with schizophrenia using a third 
method (Supplemental Figure 8). These additional analyses suggest the robustness of our results.  

We next evaluated whether these results were specific to schizophrenia or if they resulted from some 
feature common across human traits. Heat maps of KI Level 1 enrichment P-values for GWA results from 
eight studies of human complex traits are depicted in Figure 2b. Seven studies evaluated common variants 
associations for brain-related diseases or traits with ≥20,000 cases and ≥10 genome-wide significant 
associations. Human height was included as a non-brain comparator. The results from the earlier PGC 
GWA study of schizophrenia 3 were similar to those from CLOZUK. Although we observed cell types being 
enriched in other sets, none had the specific signal observed in the two schizophrenia sets. For example, 
for major depressive disorder, we found that GABAergic interneurons, embryonic midbrain neurons, and 
dopaminergic interneurons were the most enriched cell types. For each cell type, we tested whether the 
enrichment observed in other GWA studies was significantly different from that in CLOZUK. We observed 
no significant difference for SCZ2 (a subset of CLOZUK) and years of education but all other studies 
contained significantly different cell type enrichments (Supplemental Figure 9).  

We replicated most findings in independent scRNAseq/snRNAseq mouse brain studies. We found 
significant enrichment for schizophrenia in hippocampal CA1 pyramidal cells, neocortical pyramidal cells, 
cortical interneurons (although not in all data sets), and medium spiny neurons 23-26. We also saw 
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enrichment in pyramidal neurons from CA3 and dentate gyrus granule cells. (Supplemental Figures 10a-
d). Replication of our results in external other datasets again highlight the robustness of our cell type 
association results.  

We identified an important technical issue for scRNAseq/snRNAseq studies of brain. scRNAseq is readily 
done in mouse brain but more difficult in larger and more fragile human brain neurons. Nearly all currently 
available human data have been generated using snRNAseq. The isolated nuclei used in snRNAseq lack 
the cytoplasmic compartment and proximal dendrites, and there are systematic differences between the 
types and amounts of mRNA in nucleus versus cell soma27. To evaluate the impact of this issue, we 
analyzed multiple mouse and human datasets. We confirmed that transcripts destined for export to 
synaptic neuropil 28 were better captured by scRNAseq and specifically depleted in snRNAseq (Figure 3a). 
This is important for the purposes of this study because synaptic neuropil transcripts are enriched for 
genetic associations with schizophrenia (P=1.6x10-4). This places an important caveat on the use of 
snRNAseq to evaluate brain cell type associations with schizophrenia given that snRNAseq from human or 
mouse brain may not comprehensively capture the relevant transcriptome.  

With these caveats in mind, we evaluated human snRNAseq datasets from mid-temporal cortex (Allen 
Institute for Brain Science, unpublished) and DroNc-seq in prefrontal cortex and hippocampus26. Using 
hierarchical clustering on specificity scores, we found that human and mouse cell types clustered together 
(Supplemental Figure 11); Level 1 cell types had greater similarity to the same cell type across species 
than to a different cell type in the same species. We confirmed enrichment of schizophrenia SNP-
heritability in cortical pyramidal neurons (glutamatergic cells) and cortical interneurons (GABAergic cells) 
in two different human datasets (Figure 3b). In the DroNc-seq dataset26, we confirmed enrichment in 
hippocampal pyramidal neurons (glutamatergic cells) along with greater enrichment in Reelin-expressing 
GABAergic interneurons compared to those expressing Pvalb. In both human studies, oligodendrocyte 
precursor cells (OPCs) were significant or close to significance but it is hard to judge if this is related to a 
loss of neuronal-specific signal in snRNAseq (note that OPCs showed stronger signal in OPCs in mouse 
snRNAseq vs scRNAseq; Figure 2 and Supplemental Figure 10d). In a small scRNAseq study 29, human adult 
and fetal cortical neurons were significantly enriched for schizophrenia SNP-heritability. These are likely 
pyramidal cells but the small numbers of cells sequenced precluded further exploration. No significant 
enrichments were found in another snRNAseq study of a single human30, perhaps due to a lack of cellular 
diversity (data not shown). We are unaware of scRNAseq/snRNAseq data from human striatum. The 
specificity of the human cortical signal for schizophrenia was confirmed in relation to the same set of 
brain-specific GWA studies (Figure 2d). In summary, all major findings from the KI dataset were replicated 
in independent mouse or human studies.  

A major question in the field regards interpretation of the large and diverse gene sets that have been 
compellingly related to schizophrenia (Supplemental Table 1). These gene sets are highly significant, 
replicate well, and are often implicated in both common and rare variant studies. However, their 
implications for an experimentalist are unclear: what do these large sets of genes really tell us? These 
gene sets are large, and could be expected to recapitulate the cell type enrichments found above. 
However, all neurons have synapses and NeuN (the protein product of RBFOX3) is a widely used neuronal 
marker, so another possibility is that the RBFOX, PSD95, and FMRP gene sets could simply be pan-
neuronal.  

We thus evaluated whether gene sets previously implicated in schizophrenia were specifically expressed 
in the KI level 1 brain cell types (using Expression Weighted Cell type Enrichment, EWCE)31. The inputs to 
EWCE are a list of genes (e.g., FRMP interacting genes or genes intolerant to loss-of-function variation) 
and the same scRNAseq cell type specificity matrix used in the MAGMA and LDSC analyses above. 



Page 5 of 30 

Association with schizophrenia is not a direct input although these data are incorporated indirectly (why 
a gene set was selected in the first place). However, these effects are subtle. For instance, there is a 
CLOZUK significant GWA hit in only 7.0% of genes that interact with FMRP versus 4.0% that do not interact 
with FMRP (using MAGMA gene-wise P-values), and there is a CLOZUK significant GWA hit in only 4.1% of 
genes with ExAC pLI > 0.9 versus 3.3% with low pLI. We also determined that overlap between gene sets 
was relatively low. For 10 key gene sets (antipsychotic targets, CELF4, FMRP, high or low dN/dS, high pLI, 
NMDAR, PSD, PSD95, and RBFOX), of 45 pairs of correlations (count of intersection/union), only two 
correlations exceeded 0.25 (RBFOX-CELF4 0.31 and RBFOX-high pLI 0.28), and most other correlations 
were near zero.  

First, pharmacologically-defined molecular targets of antipsychotics (the mainstay of treatment for 
schizophrenia) have been associated with schizophrenia32, and we found that antipsychotic medication 
targets were associated with the same cell types as for the schizophrenia GWA results: neocortical S1 
pyramidal cells, MSNs, and hippocampal CA1 pyramidal cells, while cortical interneurons were just above 
the significance threshold (Figure 4a). Expanding these analyses, we found that other gene sets associated 
with schizophrenia were specifically expressed in schizophrenia-relevant cell types (Figures 4b-d). The 
gene sets consistently associated with schizophrenia – intolerant to loss-of-function variation, NMDA 
receptor complex, post-synaptic density, PSD95 complex, RBFOX binding, CELF4 binding, and FMRP 
associated genes – all had more specific expression in neocortical S1 and hippocampal CA1 pyramidal 
cells, MSNs from the dorsal striatum, and cortical interneurons (with the exception of NMDA receptor 
complex genes). Because some of these gene sets are involved in diverse cellular functions, there were, 
as expected, associations with other Level 1 cell types. For example, genes intolerant to loss-of-function 
variation had significantly greater expression in progenitor cells (dopaminergic neuroblasts, neuroblasts, 
and embryonic GABAergic neurons). Notably, none of the gene sets previously associated with 
schizophrenia was pan-neuronal. A prior study33 reported that expert-curated glial gene sets were 
enriched for schizophrenia associations. We confirmed that those gene sets were significantly associated 
with glia (Supplemental Figure 12) but could not replicate the association of these gene sets with 
schizophrenia using MAGMA. Finally, we observed that gene sets previously associated with schizophrenia 
were substantially less associated with schizophrenia after controlling for the pyramidal neurons, MSNs, 
cortical interneurons (Supplemental Figure 13). Only loss of function intolerant, CELF4-binding and Rbfox-
binding gene sets remained significant after controlling for the cell type enrichments. Our findings 
highlight that non-overlapping subsets of risk genes each point at the same cell types. Indeed, gene set 
analysis results can be further subdivided according to cell type-specific expression. Improved methods 
are thus needed for gene set analysis explicitly accounting for cell types – particularly given intensive 
efforts to conduct a census of the cellular complexity of the human body.  

As neurological diseases are generally not genetically correlated with schizophrenia 34, we evaluated the 
associations of Level 1 cell types with gene sets associated with neurological diseases. Genes associated 
with Alzheimer’s disease35,36 and multiple sclerosis37 were associated with microglia. Risk genes for 
leukodystrophy38 were associated with oligodendrocytes (Figure 4e). We analysed genes associated with 
neurological phenotypes from the Human Phenotype Ontology (HPO) and subcellular localization data 
from the Human Protein Atlas (Supplemental Figures 14-19). We found that these mostly targeted cell 
types distinct from those implicated in schizophrenia. For example, the HPO category “neural tube defect” 
was associated with neural progenitor cells (p=0.0002) and “abnormal myelination” was associated with 
oligodendrocytes (p<0.0001). We analysed genes with weak or strong conservation between human and 
mouse (low or high dN/dS scores), and found that highly conserved genes were specific to some types of 
neuron (e.g., serotonergic) while divergent genes were associated to other cell types (e.g., hypothalamic 
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glutamatergic). None of the schizophrenia associated cell types showed unusually weak or strong 
evolutionary pressure on their coding sequences (Figure 4f).  

Finally, we assessed how much of cell type connections to schizophrenia was due to shared gene 
expression between cell types. For instance, the association of cortical interneurons with schizophrenia is 
weaker than for MSNs: are these independent connections to schizophrenia? Alternatively, given that 
both are GABAergic neurons, are both associations being driven by a common set of genes? We tested 
this using resampling without replacement: if the interneuron enrichment is driven solely by overlapping 
genes with MSNs, then an equivalent level of interneuron association should be found if the schizophrenia 
association scores of genes within each MSN specificity decile are randomized (Supplemental Figure 20). 
We performed 10,000 resamplings for each Level 1 cell type while controlling for all four of the 
significantly associated cell types (Figure 4a). We found that MSNs, cortical interneurons, and 
hippocampal CA1 pyramidal neurons were independently associated with schizophrenia. However, the 
association with somatosensory pyramidal neurons was largely due to shared expression with 
hippocampal CA1 pyramidal neurons. We confirmed this using conditional analysis (Supplemental Figure 
21a). We then tested whether each cell type remained significant after conditioning on the three other 
significant cell types together. Strikingly, only MSNs remained significantly associated with schizophrenia 
(Supplemental Figure 21b), indicating that the association of MSNs with schizophrenia is independent 
from that of pyramidal neurons and cortical interneurons. 

To evaluate whether the main sources of enrichment signal in different cell types were from overlapping 
genes, we used a qualitative measure. We plotted the overlap of the top 1,000 genes associated with 
schizophrenia (MAGMA gene-wise P-values) that also fell in the top decile of specificity scores for each of 
the four main cell types (Figure 5b). About half of the schizophrenia-associated genes enriched in 
pyramidal cells and MSNs were shared but those conferring risk-enrichment in interneurons were to a 
larger extent exclusive. We then evaluated enrichment of gene sets previously associated with 
schizophrenia (Rbfox, CELF4 or FMRP binding genes, loss of function intolerant gene, genes involved in 
synapse function, and dendritically transported genes) and genes involved in dopaminergic signalling 
(Online Methods) in the different areas of Figure 5b using a hypergeometric test. The most associated 
Rbfox genes were enriched in CA1 pyramidal cells, genes related to loss of function intolerant genes, and 
dopamine signalling were specifically enriched in medium spiny neurons (Figure 5c). Synaptic genes 
associated with schizophrenia were shared between CA1 and S1 pyramidal cells but largely separate in 
cortical interneurons and MSNs. These findings show that each larger neuronal class express a non-
overlapping set of risk genes even within the same functional set (e.g. synapse).  

Conclusions 

A major issue in schizophrenia genomics is the meaning of the many GWA findings – how do we interpret 
the hundreds of common variant associations? Similarly, many sets of genes have been compellingly 
associated with schizophrenia: what are these diverse functional findings telling us? Thus, we attempted 
to connect human genomic findings for schizophrenia to specific brain cell types defined by their 
scRNAseq expression profiles: to what specific brain cell types do the common variant genetic findings for 
schizophrenia best “fit”? Other studies have addressed this question 3,9,14, but using gene expression based 
on aggregates of millions of cells. As described more fully in the Online Methods (“Rationale”), we used 
scRNAseq data to answer this question. We set a high bar: we required that the connections to cell types 
be identified using two different methods and exceed an appropriately rigorous statistical threshold.  

The results were not pan-neural, pan-neuronal, or in cell types prominent in early development. We found 
clear connections to just four of 24 main brain cell types: MSNs, pyramidal cells in hippocampal CA1, 
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pyramidal cells in somatosensory cortex, and cortical interneurons. Most of the strong results found in 
the mouse data replicated in external mouse data and in the more limited human data sets. Intriguingly, 
many of the diverse gene sets (e.g., antipsychotic drug targets or genes that interact with FMRP or RBFOX 
proteins) robustly associated with schizophrenia connected to the same cell types. Our results suggest 
that these discrete cell types are central to the etiology of schizophrenia, and provide an empirical 
rationale for deeper investigation of these cell types in regard to the basis of schizophrenia. These results 
can be used to guide in vivo studies and in vitro modeling (e.g., patient-derived neurons from induced 
pluripotent stem cells) and provide a basis for analyzing how different risk genes interact to produce the 
symptoms of schizophrenia.  

Our results also suggest that single-nuclei RNAseq of neurons leads to systematic underrepresentation of 
dendritically exported mRNA species. We hypothesize that this is due to destination-specific differences 
in rates of mRNA decay 39. Our data on single-nuclei versus single-cell mRNA capture warrants caution 
when using single-nuclei data sets for the study of neuronal disorders or processes. This fact should be 
taken into consideration in the design or analysis of future large scale sequencing efforts.  

There are several important caveats as described more fully in the Online Methods (“Limitations”, 
including discussion and analyses of gene conservation). Despite our use of multiple statistical methods 
and efforts to identify and resolve any spurious explanations for our findings, our work has to be 
considered in light of inevitable limitations. Although the KI scRNAseq data cover a broad range of brain 
regions thought to be relevant to the neurobiology of schizophrenia, extensive coverage of cortical and 
striatal development is lacking at present (gestation, early postnatal, or adolescence). The currently 
available functional genomic data in human brain are limited but improving rapidly via PsychENCODE 40 
and similar efforts, but precisely how schizophrenia GWAS signals impact cell-specific gene expression is 
not yet a solved problem. Finally, the genetic signals we captured were reflected in the expression levels 
of hundreds of genes. It is certainly possible for a gene to play an important role in schizophrenia and yet 
not be in one of the cell types we implicated. For example, genetic polymorphisms in C4A appear to be 
etiologically involved in schizophrenia 7 but the expression of C4A is highest in astrocytes, vascular 
leptomeningeal cells, and microglia. We were thus careful with our conclusions: we can implicate a cell 
type (e.g., MSNs show positive evidence) but it is premature to exclude cell types for which we do not 
have data, or those with dissimilar function or under selection pressure between mouse and human. 

In sum, our results support a parsimonious hypothesis: the common variant GWA results for schizophrenia 
point to a limited set of brain cells, and that subsets of these genes - the gene sets associated with 
schizophrenia (including antipsychotic medication targets) – each point at the same cell types.  
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Figure 1. Specificity metric calculated from single cell transcriptome sequencing data can be used to test 
for increased burden of schizophrenia SNP-heritability in brain cell types. 

(A) Comparison of Level 2 cell type categories and number of cells with snRNAseq or scRNAseq from adult 
brain tissue (excluding retina). Plum colored circles are mouse studies and blue are human studies. The 
number of different tissues is reflected in size of circle. See Supplemental Table 2 for citations. AIBS=Allen 
Institute for Brain Science. KI=Karolinska Institutet. (B) Histogram of specificity metric (SMSN,KI) for medium 
spiny neurons from the KI superset level 1. Colored regions indicate deciles (the brown region contains 
the genes most specific to MSNs). Specificity value for dopamine receptor D2 (Drd2, SMSN,KI,Drd2=0.17) is 
indicated by the arrow. (C) Schematic highlighting the brain regions sampled in the KI dataset in blue (D) 
Specificity values in the KI level 1 dataset for a range of known cell type markers. (E) Enrichment of 
schizophrenia SNP-heritability in each of the specificity deciles for medium spiny neurons (calculated using 
LDSC). Color of dots corresponds to regions of the specificity matrix in B. Error bars indicate the 95% 
confidence intervals. The light blue dot (marked 'X') represents all SNPs which map onto named transcripts 
which are not MGI annotated genes or which map onto a gene which does not have a 1:1 mouse:human 
homolog. The dark blue dot (marked 'N') represents all SNPs which map onto genes not expressed in 
MSNs. Blue line slows the linear regression slope fitted to the enrichment values. (F) Enrichment of height 
SNP-heritability in each of the specificity deciles for MSNs.  
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Figure 2. Evaluation of enrichment of common variant CLOZUK schizophrenia GWA results in the KI brain 
scRNAseq dataset from mouse.  

(A) KI Level 1 brain cell types. Both LDSC and MAGMA show enrichment for pyramidal neurons 
(somatosensory cortex and hippocampus CA1), striatal medium spiny neurons, and cortical interneurons. 
The black line is the Bonferroni significance threshold (0.05/((24+149)*8). (B) Heat map of association 
pvalues of diverse human GWA with KI Level 1 mouse brain cell types using MAGMA (left panel) and LDSC 
(right panel). Bonferroni significant results are marked with red borders (0.05/((24+149)*8). Total number 
of cases and controls used in the GWAS are shown in the top bar plots, where numbers in red indicate the 
amount of genome-wide significant loci identified. The CLOZUK results do not generalize indiscriminately 
across human diseases/traits. In the more sensitive MAGMA analysis major depressive disorder (MDD) is 
primarily enriched in cortical interneurons and embryonic midbrain neurons, unlike schizophrenia. Similar 
but non-significant trends can be observed using LDSC.  
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Figure 3. Comparison of single-cell and single-nuclei RNAseq, and evaluation of enrichment of common 
variant CLOZUK schizophrenia GWA results in brain single-nuclei RNAseq datasets from adult human.  

(A) Each bar represents a comparison between two datasets (X vs Y), with the bootstrapped Z-scores 
representing the extent to which dendritically enriched transcripts 28 have lower specificity for pyramidal 
neurons in dataset Y relative to X. Larger Z-scores indicate greater depletion of dendritically enriched 
transcripts, and red bars indicate a statistically significant depletion. Supplemental Table S2 describes the 
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studies. (B) Human mid-temporal cortex brain cell type enrichment. Cortical pyramidal neurons and 
cortical interneurons show significant enrichment. Oligodendrocyte precursors also show enrichment that 
was not observed in the KI Level 1 data. The black line is the Bonferroni significance threshold (6x8 
comparisons). (C) Human prefrontal cortex and hippocampus brain cell type enrichments from 26. These 
data show enrichment in cortical and hippocampal glutamatergic (i.e., pyramidal and granule) cells. There 
is also an enrichment in cortical interneurons with the highest level in Reln/Vip cells. The black line is the 
Bonferroni significance threshold (15x8 comparisons). (D) Heat map of enrichment of diverse human GWA 
studies with human mid-temporal cortex Level 1 brain cell types using MAGMA and LDSC. The CLOZUK 
results do not generalize across human diseases. MDD again shows significant enrichments in cortical 
interneurons. Common variant genetic associations for Alzheimer’s disease were enriched in microglia. 
Bonferroni significant results are marked with red borders. 
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Figure 4. Cell type enrichment of gene sets associated with schizophrenia, neurological disorders, and the 
evolutionary divergence between human and mouse.  

(A) Antipsychotic medication targets. (B-F) Gene sets previously shown to be enriched for schizophrenia 
SNP-heritability. (B) Genes intolerant to loss-of-function variation. (C) Synaptic gene sets. (D) Gene sets 
mediating DNA or RNA interactions. (E) Gene sets associated with neurological disorders. (F) The top 500 
genes with lowest or highest dN/dS ratios between human and mouse (i.e., non-synonymous to 
synonymous exon changes). The Level 1 cell types associated with schizophrenia (MSNs, pyramidal CA1, 
pyramidal SS, and cortical interneurons) show enrichment in A-D but neurological diseases do not. 
Asterisks denote Benjamini–Hochberg corrected p-value <0.05.   
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Figure 5. CA1 pyramidal neurons, medium spiny neurons, and cortical Interneurons are independently 
associated with schizophrenia and distinct molecular pathways contribute to each cell type.  

(A) Conditional enrichment analysis accounting for correlated gene expression between cell types. The 
left column shows baseline cell type enrichment probabilities values (PcelltypeY,baseline) for schizophrenia 
calculated by fitting a linear model to specificity deciles against MAGMA gene enrichment Z-scores (where 
cell type Y denotes the cell type labelled on the y-axis). The central four columns show the enrichment 
probability of cell type Y after accounting for correlated expression in cell type (PcelltypeY,celltypeX, calculated 
using a resampling method described in the Methods). Values of log(PcelltypeY,celltypeX) approaching zero 
indicate that after accounting for expression of cell type X, there is no enrichment in cell type Y. The red 
box highlights that there is no longer enrichment in somatosensory pyramidal neurons after accounting 
for expression in CA1 pyramidal neurons; however, the converse is not true. The bar plot on the right 
shows the minimum value of PcelltypeY,celltypeX (excluding self-self-comparisons). (B) Overlap of genes in the 
schizophrenia-associated cell types. Venn-diagram of the top 1,000 schizophrenia-associated genes from 
the highest enrichment-deciles in the four Level 1 cell types. (C) P-values for enrichment of genes in Figure 
5b. We note enrichment for Rbfox in CA1 pyramidal cells, Mir137 targets and dopamine signaling in MSNs, 
along with shared synaptic genes between pyramidal cells but separate for GABAergic cells. Areas with 
striped shading indicates region with gene number <10.  
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Online Methods 

Rationale 

The overall goal of this analysis was to attempt to connect human genomic findings to specific brain cell 
types defined by their gene expression profiles: to what specific brain cell types do the common variant 
genetic findings for schizophrenia best “fit”? Multiple studies have approached this issue 3,9,14, but using 
gene expression based on aggregates of millions of cells. We also evaluated whether gene sets previously 
implicated in schizophrenia mapped to similar or different brain cell types. We focused on the KI scRNAseq 
data from mouse (Figure 1 and Supplemental Table 2). We did this because:  

a) These comprise the largest dataset currently available generated using identical procedures. As 
shown in Figure 1, the total cells with scRNAseq (9,970) and Level 2 cell types (149) exceed all 
other studies.  

b) The mouse data include more brain regions than in human. These regions include a better 
sampling of those believed to be important in schizophrenia (e.g., currently no data from human 
striatum or adult dopaminergic neurons).  

c) Due to the use of unique molecular identifiers in the KI data, the scRNAseq data reflect absolute 
counts, and are directly comparable across experiments (particularly for our goal of evaluating 
enrichment).  

d) The mouse data appear to have better signal quality. This could be due to better experimental 
control or the ability to isolate whole cells (excluding distal neurites) of good quality from mouse 
but only nuclei or lower quality cells from adult humans. For example, sampling 1,500-3,000 cells 
in cortical mouse data sets (KI and Tasic et al. 25) allowed identification of 24 and 42 cortical 
neuronal subtypes. In contrast, sequencing over 3,000 human neuronal nuclei 30 or 466 whole 
neurons 29 allowed for the identification of only 16 and 7 subtypes. More types of inhibitory 
interneurons (16-23) have been identified in mouse but only 8 in human despite equal or greater 
sequencing depth but future work may improve the ability to discriminate cell types using single 
nuclei RNA-Seq data.  

e) Use of laboratory mice allow far greater experimental control of impactful perimortem and 
postmortem events. All mice are healthy without systemic illnesses and medication-free. All mice 
can be euthanized in the same way, and time from death to tissue processing is standardized and 
measured in minutes rather than hours. Causes of death in human are highly variable, and 
perimortem events can alter brain gene expression (e.g., systemic disease or prolonged hypoxia). 
Although human brain tissue can be obtained during certain neurosurgical procedures (e.g., 
resection of a seizure focus in refractory epilepsy), the individuals undergoing these procedures 
are atypical and subject to the effects of chronic brain disease and medication.  

f) As shown in Figure 3a, scRNAseq can be done in mouse brain cells but is far harder in human brain 
cells. scRNAseq provides better coverage of brain cell transcriptomes and avoids loss of transcripts 
important for schizophrenia.  

Thus, from a practical perspective, more cell types have been identified in mouse, and the KI data 
comprise over half of currently available brain scRNAseq data. Key findings in the KI dataset were verified 
in other human and mouse datasets. We also applied independent statistical methods predicated on 
different assumptions and algorithms to evaluate the relation of brain cell types to GWA results for 
schizophrenia.  

Limitations 
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Nonetheless, despite our use of multiple statistical methods and efforts to identify and resolve any 
spurious explanations for our findings, our work has to be considered in light of inevitable limitations. 
First, although we used the largest available schizophrenia GWA dataset, we still have an incomplete 
portrait of the genetic architecture of schizophrenia. This is an active area, and more informative results 
are sure to emerge in the next few years. Second, although the KI scRNAseq data cover a broad range of 
brain regions thought to be relevant to the neurobiology of schizophrenia, extensive coverage of cortical 
and striatal development is lacking at present (gestation, early postnatal, or adolescence).  

Third, we focus principally on mouse scRNAseq data. Our reasons for doing so are explained above. A key 
part of our approach is replication of the main findings in human datasets. However, we would be remiss 
not to consider the comparability of mouse and human. Mice are widely used for modeling brain diseases. 
There are relatively high degrees of mouse-human conservation in genes expressed in brain. The most 
extensive study compared RNA-seq data from six organs (cortex, cerebellum, heart, kidney, liver, and 
testis) across ten species (human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, 
platypus and chicken) 41. Using principal components analysis, the largest amount of variation (PCs 1 and 
2) explained differences between organs rather than between species. Gene expression in brain (including 
several key gene expression modules) was more conserved between species than any of the other tissues. 
These observations were broadly replicated using scRNAseq in ventral midbrain 18. Furthermore, 75% of 
genes show similar laminar patterning in mouse and human cortex 42. 

Fourth, whatever the general similarities, there are certainly differences between mouse and human brain 
18, and there are even cortical cells present in human but not mouse (e.g., spindle or von Economo 
neurons). We therefore evaluated mouse-human gene conservation. Using empirical measures of gene 
conservation (Ensembl, URLs), we determined that the mouse genes in the KI Level 1 and Level 2 gene 
expression dataset that we analyzed were 89% identical (median, interquartile range 80-95%) to human 
1:1 homologues. For these genes, the ratio of non-synonymous to synonymous amino acid changes 
(dN/dS) was 0.094 (median, interquartile range 0.045-0.173): mutations in these genes are thus subject 
to strong negative selection (dN/dS = 1 is consistent with neutrality). Pathway analysis of the 400 genes 
with the largest dN/dS values revealed enrichments in genes involved in defense responses, inflammation, 
cytokines, and immunoglobulin production. The 400 genes with extremely low dN/dS ratios were involved 
in neuron differentiation, RNA splicing, and mRNA processing.  

In conclusion, for most brain cell types, use of KI mouse scRNAseq data was defensible and reasonable 
(particularly given verification in human transcriptomic data). The major caution is with respect to cells 
with prominent immune function (e.g., microglia). (See also the section on mouse-human gene mapping 
below.)  

We can implicate a particular cell type (i.e., present consistent positive evidence) but it is premature to 
exclude cell types for which we do not have data, or those with dissimilar function or under selection 
pressure between mouse and human.  

Single-cell transcriptome data 

Supplemental Table 2 shows the scRNAseq or snRNAseq data from mouse or human brain. These include 
published and unpublished data (using the same protocols as in peer-reviewed papers). To the best of our 
knowledge, these comprise all or nearly all of the available adult brain single nuclei or scRNAseq data.  

We focused on a superset of brain scRNAseq data from KI generated using identical methods from the 
same labs with the use of unique molecular identifiers that allow for direct comparison of transcription 
data across regions (see above for full rationale). The KI mouse superset of 9,970 cells and 149 Level 2 cell 
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types is more extensive than any other single nuclei or scRNAseq dataset now available, and includes most 
brain regions thought to be salient to schizophrenia. The papers contain full method details. Briefly, the 
KI scRNAseq data were generated using the same methods (Fluidigm C1 with Illumina 50 bp single end 
sequencing) with the use of unique molecular identifiers to enable absolute molecular counts. In the first 
paper describing the method it was estimated that an average of 1.2 million mapped reads per cells was 
sequenced (28). Level 1 and 2 clustering was done using the BACKSPIN algorithm 16. All cells lacking 
annotations were excluded. For non-neuronal populations, except cells from oligodendrocyte lineage and 
VLMCs, we only included cells from Zeisel et al 2015 in the KI data set. The level 2 CA1 pyramidal cell 
contain a small number of cells from CA2 and Subiculum resulting from dissection inaccuracies, these are 
represented as separate level 2 classes. The resulting data have been shown to be insensitive to linear 
variation in total reads per cell. If a gene was detected in one dataset and not in another, it was considered 
to have zero reads in all cells where it had not been detected.  

To confirm that no batch effects exist across KI regional subdatasets that may influence the merged 
results, we plotted three cell types using tSNE which were expected to show little real regional variation: 
endothelial cells, vascular smooth muscle cells and microglia (Supplemental Figure 2). The tSNE plots were 
generated in R using the Rtsne and Scater packages using 500 of the most variable features. Only the 
embryonic midbrain cells clustered separately, as was expected due to the difference between the 
embryonic and adult brain.  

We include unpublished data generated by the Hjerling-Leffler and Linnarsson labs at KI using the same 
methods as in Zeisel et al. 16. Cells were isolated from dorsolateral striatum from p21-p30 transgenic mice, 
the same age span as in Zeisel et al. 16. Coverage of rare interneuron populations was enhanced by FACS 
sorting cells from either 5HT3a-EGFP or a Lhx6cre::TdTomato line. The cortical parvalbuminergic cells and 
striatal neurons were captured and prepared for sequencing as described in Zeisel et al. 16.  

The largest human dataset is an unpublished data set from the Allen Institute for Brain Science which 
consisted of 4401 cells from middle temporal gyrus of 3 post-mortem brains from healthy, adult subjects. 
Nuclei were dissociated from cortical tissue and FACS isolated based on NeuN staining, resulting in 
approximately 90% NeuN+ and 10% NeuN- nuclei. Single nucleus cDNA libraries were generated using 
SMARTerV4 and Nextera XT and sequenced to a depth of approximately 2 million reads per sample. Reads 
were aligned with Bowtie and gene expression quantified with RSEM plus intronic reads and normalized 
to counts per million. Clustering was performed with iterative PCA and tSNE with cluster robustness 
assessed with 100 bootstrap replicates. Level 1 clusters were characterized based on expression of known 
marker genes and included two broad classes of neurons – GABAergic interneurons and glutamatergic 
projection neurons – and 4 non-neuronal types: astrocytes, oligodendrocyte precursors, mature 
oligodendrocytes, and microglia.  

Technical issues 

The process of procuring cells for scRNAseq entails dissecting the tissue and preparing a single-cell 
suspension. This entails severing cellular processes such as dendrites and axons. It is probably safe to 
assume that different cell types are differentially sensitive to this drastic process. Accordingly, in early 
studies certain cell types, although present in the data sets, was clearly underrepresented –most likely 
due to lower rates of survival. Although the cell procurement methods have improved the field, in general, 
do not rely on scRNASeq data to make statements on relative abundance between cell types. Such 
statements should ultimately be done in tissue samples and this is one of the major reasons that 
multiplexed in situ hybridization techniques is a fast-growing field.  
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When sampling tissue for scRNASeq there are two general approaches used to increase the chances to 
sample underrepresented or low abundant cell types at enough high numbers: 1) if one has prior 
knowledge of what cell type is underrepresented these can be enriched using FACS isolation of genetically 
labeled cells, 2) to massively increase the sampling rate of cells (usually also entails decreasing the 
sequencing depth of each cell). ScRNAseq is a fast-moving field and future datasets will help fine-tune our 
knowledge on cell types but with the data sets used in this study we have captured a majority of cellular 
complexity. Even with in situ techniques emerging, the question “are we missing any cell types” cannot 
be answered in an absolute fashion –we can only estimate what are the minimum size of populations we 
can detect. For well characterized brain areas like cortex and hippocampus we can make these estimates 
more accurately but with structures that has high cellular complexity and is not so well characterized (i.e. 
hypothalamus) the risk is considerably higher that we are missing some populations. 

We are not aware of how these kind of effects affects snRNAseq data but presumably the problem should 
be much less pronounced since as a first step nuclei are isolated by killing all cells simultaneously. The 
main scRNAseq data sets used in this paper (KI data set) have relied mainly on enrichment of low 
abundant/low surviving cells via FACS isolation in some of the sub-sets (e.g. cortex, hippocampus and 
striatum). This is also the case for the Tasic data set. The other main data sets used (AIBS and DroNc-seq) 
are snRNAseq data sets.  

Mouse-to-human gene mapping 

Because most of the scRNAseq data were from mouse brain and the schizophrenia genomic results are 
from human, it was necessary to map 1:1 homologs between M. musculus and H. sapiens. To accomplish 
this, used a best-practice approach in consultation with a senior mouse geneticist (UNC Prof Fernando 
Pardo-Manuel de Villena de L’Epine, personal communication). We used the expert curated human-
mouse homolog list (Mouse Genome Informatics, Jackson Laboratory, URLs, version of 11/22/2016). Only 
genes with a high-confidence, 1:1 mapping were retained. A large fraction of non-matches are reasonable 
given evolutionary differences between human and mouse (e.g., the distinctiveness of olfactory or 
volmeronasal receptor genes given the greater importance of smell in mouse). Nonetheless, we evaluated 
the quality and coherence of the mapping.  

 The mouse brain cell expression levels for the KI Level 1 cell types were similar for mouse genes 
with and without a 1:1 human homologue. This is inconsistent with a strong bias due to the 
success/failure of identifying a human homologue.  

 A high fraction (93%) of the KI genes detected in mouse brain samples that mapped to a human 
gene were expressed in human brain (CommonMind DLPFC RNA-seq) or 27 samples with RNA-
seq from the Sullivan lab (unpublished, DLPFC from 9 schizophrenia cases and 9 controls plus 9 
fetal frontal cortex samples). The ones that did not (7%) were expressed at considerably lower 
levels in mouse brain or in cell types not prevalent in cortex.  

 Of genes with evidence of expression in human brain (via frontal cortex RNA-seq as noted above), 
human homologues of KI mouse genes accounted for 93.2% of intellectual disability genes, 93.7% 
of developmental delay genes, 93.8% of genes with a CHD8 binding site, 94.4% of post-synaptic 
genes, 95.0% of proteins involved in the ciliary proteome, 95.1% of genes intolerant to loss-of-
function variation (ExAC pLI > 0.9), 95.6% of pre-synaptic genes, and 96.4% of FMRP interactors.  

We evaluated the mapping carefully and the results above suggest the coherence of the mouse-human 
mapping. All key findings from the KI mouse scRNAseq data were evaluated in other mouse and human 
brain scRNAseq datasets.  

Calculation of cell type expression proportion 
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A key metric used for our cell type analyses is the proportion of expression for a given gene. This metric 
is calculated separately for each single cell dataset (although only one specificity measure is used for the 
merged KI superset). This is a measure of cell type specificity scaled so that a value of 1 implies that the 
gene is completely specific to a cell type and a value of 0 implies the gene is not expressed in that cell 
type. We denote this specificity metric as 𝑠𝑔,𝑐 for gene g and cell type c. Values of 𝑠𝑔,𝑐 were calculated for 

the brain scRNAseq datasets in Supplemental Table 2.  

Each dataset contains scRNAseq results from w cells associated with k cell types. Each of the k cell types 
is associated with a numerical index from the set {1, . . , 𝑘}. The cell type annotations for cell i are stored 
using a numerical index in L, such that 𝑙1005=5 indicates that the 1005th cell is of the 5th cell type. We 
denote 𝑁𝑐 as the number of cells from the cell-type indexed by c. The expression proportion for gene g 
and cell type c (where 𝑟𝑔,𝑖 is the expression of gene g in cell i) is given by:  

 𝑠𝑔,𝑐 =  
∑ 𝐹(𝑔,𝑖,𝑐)𝑤

𝑖=1 𝑁𝑐⁄

 ∑ (∑ 𝐹(𝑔,𝑖,𝑟)𝑤
𝑖=1 𝑁𝑟⁄ )𝑘

𝑟=1
  𝐹(𝑔, 𝑖, 𝑐) = {

𝑟𝑔,𝑖, 𝑙𝑖 = 𝑐

0, 𝑙𝑖 ≠ 𝑐
 

This metric for cell specificity is closely related to other measures 43. For instance, the maximum value of 

s per gene yields similar results to  such that smax > 0.5 is equivalent to  > 0.94.  

The size of a cell is generally correlated with the amount of mRNA detected upon isolation. This is reflected 
in the “Total Average Molecules” column of Supplemental Table 3 which is representative of the real 
amount of mRNA detected in the cells. The values used in the KI data set are from Unique Molecular 
Identifiers (UMIs; each individual mRNA molecule is uniquely barcoded upon detection and an absolute 
number thus can be calculated even after PCR amplification). In order to not ignore meaningful 
biologically differences we did not scale the expression levels between cell types.  However, we tested 
the effect of scaling gene expression to 10’000 molecules for each cell type before calculating the 
specificity index and observed the same Bonferroni significant cell types in the same order, indicating that 
our approach is robust to differences in the total number of molecules detected per cell type. Perhaps we 
should point out that MSNs are, as the name implies, medium-sized cells and were found to be 
significantly enriched in every test in spite of being the third smallest neuronal cell type based on mRNA 
counts. 

Thresholding of low expressed transcripts 

Because 𝑠𝑔,𝑐 is independent of the overall expression level of a gene, it is desirable to exclude genes with 

very low or sporadic gene expression levels, as a small number of reads in one cell can falsely make that 
gene appear to be a highly specific cell marker. Direct thresholding of low expressed genes is not ideal for 
performing this as thresholds need to be set individually for each dataset, and some individual cells can 
show exceptionally and anomalously high expression of the sporadically expressed gene. We reasoned 
that all the genes we want to include in the study should be differentially expressed in at least one Level 
2 cell type included in the study. We thus excluded sporadically expressed genes via ANOVA with the Level 
2 cell type annotations as groups, and excluding all genes with P > 0.00001. Gene filtering was performed 
separately for each single cell dataset; importantly though, the KI dataset was filtered as a merged 
superset. A consequence of this (and of differences in sample preparation and sequencing) is that 
different genes are used for example in the analysis of the KI superset than were used for the Habib et al 
(Mouse Hippocampus Div-Seq) dataset. For datasets where level 2 cell type annotations were not 
available (e.g. the Allan Brain Institute Human Cortex dataset) we used the same approach but with level 
1 cell type annotations instead. 

LD Score Regression (LDSC) and partitioning SNP-heritability 
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To partition SNP-heritability using LDSC (URLs) 9, it is necessary to pass LDSC annotation files (one per 
chromosome) with a row per SNP and a column for each sub-annotation (1=a SNP is part of that sub-
annotation). To map SNPs to genes, we used dbSNP SNPContigLocusId file (build 147 and hg19/NCBI Build 
37 coordinates). All SNPs not annotated in this file were given a value of 0 in all sub-annotations. Template 
annotation files obtained from the LDSC Github repository were used as the basis for all cell type and gene 
set annotations (“cell_type_group.1*”). Only SNPs present in the template files were used. If an 
annotation had no SNPs, then 50 random SNPs from the same chromosome were selected as part of the 
annotation (if no SNPs are selected then the software fails to calculate SNP-heritability).  

Annotation files were created for each cell type for which we applied partitioned LDSC. Twelve sub-
annotations were created for each cell type. The first represented all SNPs which map onto named regions 
which are not MGI annotated genes or which map onto a gene which does not have a 1:1 mouse:human 
homolog. The second contained all SNPs which map onto genes not expressed in a cell type. The other 10 
sub-annotations are associated with genes with increasing levels of expression specificity for that cell 
type. To assign these, the deciles of 𝑠𝑔,𝑐 were calculated over all values of g (separately for each value of 

c) to give ten equal length sets of genes. These are then mapped to SNPs as described above. To partition 
SNP-heritability amongst the gene sets (not the cell types), a single set of annotation files was created 
with each of the gene sets used as a sub-annotation column.  

LDSC was then run using associated data files from phase 3 of the 1000 Genomes Project 44. We computed 
LD scores for cell type annotations using a 1 cM window (--ld-wind-cm 1). As recommended (LDSC Github 
Wiki, URLs), we restricted the analysis to using Hapmap3 SNPs, and, as in the original report 9, excluded 
the major histocompatibility region due to its high gene density and exceptional LD. The LDSC 
“munge_sumstats.py” script was used to prepare the summary statistics files. The SNP-heritability is then 
partitioned to each sub-annotation. We used LD weights calculated for HapMap3 SNPs, excluding the 
MHC region, for the regression weights available from the Github page (files in the ‘weights_hm3_no_hla’ 
folder).  

For the LD score files used as independent variables in LD Score regression we used the full baseline model 
9 and the annotations described above. We used the ‘--overlap-annot’ argument and the minor allele 
frequency files (‘1000G_Phase3_frq’ folder via the ‘--frqfile-chr’ argument).  

Partitioned LDSC computes the proportion of SNP-heritability associated with each annotation column 
while taking into account all other annotations. Based on the proportion of total SNPs in an annotation, 
LDSC calculates an enrichment score and an associated enrichment P-value (one-tailed as we were only 
interested in annotations showing enrichments of SNP-heritability). All figures showing partitioned LDSC 
results show P-values associated with the enrichment of the most specific decile for each cell type.  

Cell type identification using MAGMA  

We used MAGMA (v1.04) 19, a leading program for gene set analysis 45, to evaluate the association of gene-
level schizophrenia association statistics with cell-type specific expression under the hypothesis that, in 
relevant cell types, genes with greater cell type specificity should be more associated with schizophrenia. 
Gene level association statistics were obtained using MAGMA (window size 10 kb upstream and 1.5 kb 
downstream of each gene – see below for discussion window size) using an approach based on Brown’s 
method 46 (model: snpwise-unweighted). This approach allows to combine P-values in the specified 
windows surrounding each gene into a gene-level pvalue while accounting for LD (computed using the 
European panel of 1000 Genomes Project Phase 3 44). 
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The tissue specific expression metric for each gene in each cell type was obtained by dividing the gene 
expression level in a particular cell type by the sum of the expression of the gene in all cell types (see 𝑠𝑔,𝑐, 

defined above). The distributions of 𝑠𝑔,𝑐 were complex (point mass at zero expression, substantial right-

skewing). For each cell type, we transformed S into 41 bins (0=not expressed, 1=below 2.5th percentile, 
2=2.5-5th percentile, …, 40=above 97.5th percentile), so that each cell type would be comparable.  

MAGMA was then used to test for a positive association (one-sided test) between the binned fractions in 
each cell type and the gene-level associations (option --gene-covar onesided). For a given mouse or human 
brain cell type, this tested whether increasing tissue specificity of gene expression is associated with 
increasing common-variant genetic findings for schizophrenia using information from all genes. By 
default, the linear regression performed by MAGMA is conditioned on the following covariates: gene size, 
log(gene size), gene density (representing the relative level of LD between SNPs in that gene) and log(gene 
density). The model also takes into account gene-gene correlations. For the conditional analysis, we used 
the condition modifier of the —gene-covar parameter to condition on each of the significant cell types 

In regard to choice of window size/bin boundaries, MAGMA by default combines P-values of SNPs located 
within gene boundaries (±0 kb). We decided to extend the default window size as a large fraction of trait-
associated SNPs are located just outside genes in regions likely to regulate gene expression 3,47. One of the 
authors of MAGMA (Christiaan de Leeuw) advised us to expand the window size by a limited amount in 
order to keep the ability to distinguish the genetic contribution of genes located in close proximity. 
Therefore, we set expanded gene boundaries to 10 kb upstream–1.5 kb downstream. We evaluated the 
effect of different choices of bin size including 35 kb upstream–10 kb downstream (as often used by the 
PGC 48), 150 kb upstream–10 kb downstream, and 150 kb upstream–150 kb downstream (GTEx 21 
Supplemental Figure 9 from). The results were not substantially altered by window size as the ranking of 
cell types (KI level 1) were very similar for these different window sizes; if anything ours was a slightly 
conservative choice.  

Random permutations of MAGMA 

For the analysis in Supplemental Figure 7, we randomly permuted gene labels of gene-level association 
statistics of MAGMA and looked for cell type association with schizophrenia using 1,000 permutations. 
We observed a mean of 24.8 significant results across cell types at P<0.05 indicating that MAGMA is 
conservative using our approach (50 significant results expected by chance).  

Schizophrenia association using alternative cell type specificity method 

We tested another recent approach to associate cell types with traits using differentially expressed genes 
22. We computed a normalization factor for each single cell using the scran R package49 using the 50% of 
the genes with mean expression higher than the median. The normalization factors were computed after 
clustering cells using the scran quickcluster function to account for cell type heterogeneity. We then 
performed 24 differential expression analysis using BPSC50 testing each cell type against the 23 other cell 
types with the normalization factors as covariate. For each cell type, we then selected the 10% most 
upregulated genes and created bed files with the coordinate of these genes extended by 100kb upstream 
and 100kb downstream. SNPs of the baseline model from Finucane et al. located in the top 10% of the 
genes were used to create a cell type specific annotation that was added to the “baseline” model. We 
then used LDSC51 to test for association between the cell type specific annotations and schizophrenia using 
a one-sided P-value based on the coefficient Z-score from the output of LDSC. 

Enrichment analyses of gene sets and antipsychotic drug targets 
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Expression Weighted Cell type Enrichment (EWCE, URLs) 31 was used to test for cell types which show 
enriched expression of genes associated with particular schizophrenia-associated gene sets. These 
analyses used the same specificity (S) values for the KI Level 1 data that were used for the MAGMA and 
LDSC analyses. EWCE was run with 10,000 bootstrap samples. Enrichment P-values were corrected for 
multiple testing using the Bonferroni method calculated over all cell types and gene lists tested. EWCE 
returns a Z-score assessing standard deviations from the mean. Values < 0 (depletion of expression) were 
recoded to zero.  

Evaluation of genomic biases 

The algorithms used by LDSC and MAGMA both account for the non-independence introduced by linkage 
disequilibrium (LD), or the tendency for genomic findings to “cluster” due to strong intercorrelations. LD 
block size (discrete regions of high correlations between nearby genetic markers) average 15-20 kb in 
samples of European ancestry, but there are nearly 100 genomic regions with high LD extending over 1 
mb (the extended MHC region on human chromosome 6 is the largest and has very high LD over 8 mb). 
Gene size is an additional consideration for MAGMA (accounting for gene size is a component of the 
algorithm), particularly as brain-expressed genes are considerably larger than genes not expressed in brain 
(mean of 80.7 kb vs 31.2 kb). The algorithms used by LDSC and MAGMA have been well-tested, and are 
widely used. However, it is conceivable that certain edge cases could defeat algorithms that work well for 
the vast majority of scenarios. An example might be if a large fraction of the genes that influence a brain 
cell type were located in a region of very high LD. First, brain-expressed genes were slightly more likely to 
be in a large LD block (≥99th percentile in size across the genome), 12.4% vs 10.2%. In discussion with the 
developers of LDSC and MAGMA, this should not yield an insuperable bias. Second, by counting the 
numbers of genes and brain-expressed genes per mb, we found that brain-expressed genes in the human 
genome were reasonably evenly scattered across the genome (R2 0.85), and only 10 of 2,534 1-mb 
intervals were outliers. Most of these were gene clusters with fewer than expected brain-expressed genes 
(e.g., a late cornified envelope gene cluster on chr1:152-153 mb, an olfactory gene cluster on chr1:248-
249 mb, and a keratin gene cluster on chr17:39-40 mb). Third, in a similar manner, we evaluated the 
locations of the human 1:1 mapped genes influential to the KI Level 1 classifications and found these to 
be relatively evenly scattered in the genome. Thus, these potential genomic biases did not appear to 
present difficulties for our key analyses (that used two independent methods in any event).  

Schizophrenia common variant association results 

The schizophrenia GWA results were from the CLOZUK and PGC studies 3,20. CLOZUK is the largest currently 
obtainable GWA for schizophrenia (40,675 cases and 64,643 controls), and the authors identified ~150 
genome-wide significant loci. It includes the schizophrenia samples from earlier PGC papers. For selected 
analyses, we also included the PGC schizophrenia results from the Nature 2014 report (URLs). This paper 
included 36,989 cases and 113,075 controls, and identified 108 loci associated with schizophrenia. Results 
from the published PGC and CLOZUK studies were qualitatively similar with the CLOZUK data generally 
showing increased significance owing to its larger sample size.  

Comparison GWA results for other traits 

We included comparisons for a selected set of brain related traits as well as height as a negative control. 
As power to identify cell types is directly proportional to the sample size of the GWA study, we only 
included traits with at least 20’000 samples that discovered at least 20 genome-wide significant loci. The 
GWA results were from the following sources: schizophrenia 3 from the PGC; Alzheimer’s disease35; 
educational attainment52; IQ53; MDD from the PGC (unpublished); Parkinson’s disease54 and height 55. 
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Test of cell-type association differences between traits 

We tested whether the beta coefficient in MAGMA were significantly different between two traits for 
each cell type using the approach described in Paternoster et al, 199856. We first compute a Z-score for 

each cell type: 𝑍 =
𝛽1−𝛽2

√𝑆𝐸𝛽1
2+𝑆𝐸𝛽2

2
 . Where β1 and β2 are the SNP-heritability enrichments for trait 1 and 2 

(or beta coefficients in MAGMA) and SE are the standard errors. A two-sided p-value is then computed 
based on the Z-score using the R pnorm function.  

Gene sets associated with schizophrenia  

The gene set results for schizophrenia are summarized in Supplemental Table 1. For CELF4 binding genes 
57, we used genes with iCLIP occupancy > 0.2 from Table S4. For FMRP binding genes, we used genes from 
Table S2A 12. Genes intolerant to loss-of-function variation were from the Exome Aggregation Consortium 
(pLI > 0.9) 10. Genes containing predicted miR-137 target sites were from microrna.org. NMDA receptor 
complex genes came from Genes-to-Cognition database entry L00000007 58. The human post−synaptic 
density gene set was from Table S2 59. The PSD95 complex came from Table S1 using all genes marked 
with a cross in the ‘PSD-95 Core Complex’ column 60. For RBFOX binding, we took all genes with RBFOX2 
count > 4 or summed RBFOX1 and RBFOX3 > 12 from Table S1 61. For antipsychotic drug targets, we used 
a gene list provided by Drs Gerome Breen and Héléna Gaspar as reported in the biorXiv preprint 32. The 
oligodendrocyte and astrocyte gene lists came from Supplemental Table 4 13. All EWCE P-values were 
corrected with the Benjamini–Hochberg method. 

Gene sets for neurological disorders & human phenotype ontology & dN/dS 

For multiple sclerosis, we used results from the largest available GWAS (the Multiple Sclerosis Genomic 
Map); we used the genes listed in the Supplemental table37. For Alzheimer’s disease, we used the top 
results from the AlzGene database36 (URLs) as well as genome-wide significant genes 35. For genes 
associated with leukodystrophy (HP:0002415,) we used the Human Phenotype Ontology38 (URLs). For 
amyotrophic lateral sclerosis we used the top results from the ALSGene database (URLs). For epilepsy, 
migraine, and stroke we used the EBI GWAS catalog. For the Human Phenotype Ontology (HPO) gene sets, 
the ‘ALL_SOURCES_ALL_FREQUENCIES_phenotype_to_genes.txt’ file was downloaded from build 133. To 
obtain the genes with the top 500 highest/lowest dN/dS between humans and mice we obtained the dN 
and dS values through BioMart. 

Gene sets associated with subcellular localization 

Subcellular localization data were downloaded from the Human Protein Atlas website (HPA, v17) 62. Only 
gene lists with >100 genes were used. Lysosomal genes were downloaded from the Human Lysosome 
Gene Database63. Mitochondrial genes were obtained from Human MitoCarta2.064. Axonal (Adult) and 
Axonal (E17) were obtained from a study which used axon-TRAP-RiboTags to capture the mRNAs from 
retinal ganglion cell axons projecting to the superior colliculus65 (Supplemental Table 1). Presynaptic genes 
come from Supplemental Table 1 66. Synaptic vesicle genes came from Supplemental Table 167.  

Depletion of dendritically enriched transcripts in nuclei datasets 

Dendritically enriched transcripts were obtained from 28 (Supplemental Table 10). This list was produced 
from pyramidal cells from rat hippocampus and human 1:1 homologs were obtained. We refer to this set 
of genes as Ldendritic. To enable direct comparisons between datasets, all datasets were reduced to contain 
a common set of six KI Level 1 cell types: pyramidal neurons, interneurons, astrocytes, interneurons, 
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microglia, and oligodendrocyte precursors. For the KI dataset, we used S1 Pyramidal neurons. The 
specificity metric (denoted as 𝑠𝑔,𝑐) was recalculated for each dataset using this reduced set of cell types. 

Comparisons were then made between datasets (denoted in the graph with the format ‘X vs Y’). We 
denote the mean pyramidal neuron specificity scores for dendritically enriched genes in dataset X as 
𝑆𝐷=𝑋,𝐿𝑑𝑒𝑛𝑑𝑟𝑖𝑡𝑖𝑐,𝑃𝑦𝑟𝑎𝑚𝑖𝑑𝑎𝑙
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. We then get the difference in pyramidal specificity of for list 𝐿 between two 

datasets as 𝐷𝑋,𝑌,L = 𝑆𝐷=𝑋,𝐿,𝑃𝑦𝑟𝑎𝑚𝑖𝑑𝑎𝑙
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ −  𝑆𝐷=𝑌,𝐿,𝑃𝑦𝑟𝑎𝑚𝑖𝑑𝑎𝑙

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . We then calculate values of 𝐷𝑋,𝑌,L for 20,000 

random gene lists, having the same length as the dendritically enriched gene list, with the genes randomly 
selected from the background gene set. We denote the nth random gene list as 𝑅𝑛. The mean and standard 
deviation of the bootstrapped 𝐷𝑋,𝑌,L values are denoted 𝜇𝐷𝑋,𝑌,𝑅

 and 𝜎𝐷𝑋,𝑌,𝑅
 respectively. The depletion Z-

score is then calculated as: 𝑍𝑋,𝑌,Ldendritic =
𝐷𝑋,𝑌,𝐿𝑑𝑒𝑛𝑑𝑟𝑖𝑡𝑖𝑐

−𝜇𝐷𝑋,𝑌,𝑅

𝜎𝐷𝑋,𝑌,𝑅
 

. A large positive Z-score thus indicates 

that dendritically enriched transcripts are specifically depleted from pyramidal neurons from dataset Y 
relative to dataset X.  

Conditional cell type enrichments 

Gene association Z-scores for schizophrenia were calculated in MAGMA as described above. To enable 
randomization of the Z-scores and recalculation of the associations to be done programmatically, these 
were then loaded into R and associations with disease were calculated within this environment without 
external calls to MAGMA. All genes within the extended MHC region (chr6 25-34 mb) were removed due 
to its confounding effects. We controlled for gene size and gene density by regressing out the effect of 
NSNPS and NDENSITY parameters (and the log of each) on the Z-score. To ensure a meaningful number of 
genes were randomized within each group, associations were calculated over deciles rather than the 
smaller percentile bins used earlier with MAGMA. Probabilities of association are calculated using the 
lmFit and ebayes functions from the limma package to enable rapid computation. We denote the set of 
cells studied as 𝐶such that 𝑐𝑖represents the ith celltype. The original Z-scores are denoted 𝑍 such that 𝑧𝑖  is 
the Z-score of the ith gene while the randomized Z-scores are denoted 𝑅. The set of genes in the ith 
specificity decile of the controlled cell type, 𝑐𝑥 and the jth specificity decile of target cell type, 𝑐𝑦 are 

denoted 𝑆𝑖,𝑗
𝑥,𝑦

 and thus ⋃ 𝑆𝑖,𝑘
𝑥,𝑦

𝑘∈𝐶 contains all genes in the ith specificity decile of cell type, 𝑐𝑥.  

The basis of the approach (Supplemental Figure 23) is to randomise the Z-scores with respect to the 
specificity deciles of the target cell type, 𝑐𝑦 but not with respect to the specificity deciles of the controlled 

cell type, 𝑐𝑥. Thus for each of the deciles indexed by i we randomly resampled without replacement the 

Z-scores such that {𝑅𝑔}
𝑔∈⋃ 𝑆𝑖,𝑘

𝑥,𝑦
𝑘∈𝐶

= {𝑍𝑔}
𝑔∈⋃ 𝑆𝑖,𝑘

𝑥,𝑦
𝑘∈𝐶

 and yet 𝑅𝑔 ≠ 𝑍𝑔. In practical terms, this would mean 

that if we controlled for MSN’s and targeted cortical interneurons, the mean Z-score in the 10th MSN decile 
would remain the same but would be different in cortical interneurons; the question being tested is the 
degree to which this equates to total randomisation in terms of the schizophrenia association found in 
cortical interneurons. 

The baseline association values shown in Figure 4a leftmost column (described as PcelltypeY,baseline) were 
calculated using 𝑍. The values of PcelltypeY,celltypeX (probability of cell type y being associated with 
schizophrenia controlling for cell type x) are calculated using intermediate probabilities: 10,000 
association p-values are calculated for resampled values of 𝑅. We selected the 500th lowest of these p-
values (equivalent to the value which the baseline association probability would need to exceed to be 

declared independently associated with a probability of 95%) and denote this 𝑝𝑥,𝑦
𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝

. The value of 

PcelltypeY,celltypeX is then calculated as exp(log(PcelltypeY,celltypeX)-log(𝑝𝑥,𝑦
𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝

)). If the value of PcelltypeY,celltypeX 

exceeds 1 (indicating that the randomised samples were actually more significantly associated than was 
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found to be the case) then it is set to 1. We were also able to evaluate whether the probability of 
schizophrenia association in cell type y is greater than would be expected based solely on the expression 
in cell type x by asking whether the actual association p-value was lower than 95% of the bootstrapped p-
values. As expected, all self-self comparisons were found to be non-significant by this metric (i.e. after 
accounting for expression in CA1 pyramidal neurons, CA1 pyramidal neurons are no longer significant). In 
Figure 4a, a red box was placed around the CA1 Pyramidal vs Somatosensory Pyramidal square because 
this was the only comparison involving the four significantly associated cell types in which controlling for 
expression of a different cell type abolished the enrichment. 

Venn diagram enrichments 

The Venn diagram shown in Figure 5 was generated using by selecting the top 1000 genes most associated 
with schizophrenia based on the MAGMA gene specific Z-scores. All genes within the extended MHC 
region (chr6 25-34mb) were dropped from the analysis. We controlled for gene size and gene density by 
regressing out the effect of NSNPS and NDENSITY parameters (and the log of each) on the Z-score. We 
then took the intersection of the top 1000 genes with the top decile for each of the four significantly 
associated level 1 cell types and generated the Venn diagram using the R VennDiagram package. The 
dopamine gene set include all genes associated with any of the following GO terms: GO:0090494 
("dopamine uptake"), GO:0090493 (“catecholamine uptake”), GO:0051584 (“regulation of dopamine 
uptake involved in synaptic transmission”), GO:0032225 (“regulation of synaptic transmission, 
dopaminergic”), GO:0001963 (“synaptic transmission, dopaminergic”) and GO:0015872 (“dopamine 
transport”). The synaptic gene list comprised a combination of three published gene lists: the human post-
synaptic density (referenced above); presynaptic active vesicle docking sites68 and synaptic vesicle 
genes67. For the presynaptic gene list, the data came from Supplemental table S1, the geneInfo numbers 
were converted from genInfo accessions to Refseq IDs using Entrez Batch then from Rat RefSeq to HGNC 
symbols keeping only 1:1 homologs. The synaptic vesicle gene list came from Supplemental table S1, and 
were converted from Rat RefSeq to HGNC symbols using only 1:1 homologs. Enrichment probabilities 
were calculated using a hypergeometric test against a background set of all MGI genes with 1:1 homologs 
in human (as described above). 

URLS 

Expression Weighted Cell type Enrichment (EWCE), https://github.com/NathanSkene/EWCE  
Linnarsson lab data, http://linnarssonlab.org/data  
Mouse Genome Informatics, Jackson Laboratory, http://www.informatics.jax.org/homology.shtml  
LDSC, https://github.com/bulik/ldsc and https://github.com/bulik/ldsc/wiki  
PGC results, https://www.med.unc.edu/pgc/results-and-downloads   
AlzGene database, http://www.alzgene.org/TopResult.asp  
AlsGene database, http://www.alsgene.org/TopResult.asp  
GREAT, http://great.stanford.edu/public/html  
Hjerling-Leffler lab website, http://www.hjerling-leffler-lab.org/data/scz_singlecell  
Human Phenotype Ontology, http://compbio.charite.de/hpoweb  

 

Data availability 

The RNAseq data used in this report can be obtained from the Hjerling-Leffler lab website (URLs), and 
includes the KI single-cell RNAseq superset, processed versions of the human and mouse snRNAseq 
DroNc-seq data, and the Allan Brain Institute human snRNAseq data.  

https://github.com/NathanSkene/EWCE
http://linnarssonlab.org/data
http://www.informatics.jax.org/homology.shtml
https://github.com/bulik/ldsc
https://github.com/bulik/ldsc/wiki
https://www.med.unc.edu/pgc/results-and-downloads
http://www.alzgene.org/TopResult.asp
http://www.alsgene.org/TopResult.asp
http://great.stanford.edu/public/html
http://www.hjerling-leffler-lab.org/data/scz_singlecell/
http://compbio.charite.de/hpoweb
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