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SUMMARY 

 

Short dysfunctional telomeres can result in chromosome fusions that drive genomic 

rearrangements and ultimately malignant progression. In Chronic Lymphocytic Leukaemia 

(CLL), telomere length (TL) is a powerful predictor of patient survival. The aim of this 

project is to understand the role that telomere dysfunction plays in driving the evolution of 

the CLL genome.  

Telomere fusions were detected in 71% of 276 CLL patients with short telomeres 

(TL<3.81Kb). From 9 CLL patient samples with the highest fusion frequency (>4.20x10-

5/diploid genome), 914 telomere fusions were characterised using Illumina HiSeq paired-

end sequencing. In addition to intra- and inter-chromosomal recombinations, telomere 

fusions with non-telomeric loci were detected, including the ancestral telomere at 

Chr2q13, mitochondrial DNA, and loci associated with copy number aberrations in CLL. 

Telomere fusions also incorporated genes expressed in CLL-B lymphocytes and other 

oncogenes, suggesting that active chromatin is more prone to damage and aberrant repair. 

These events were potentially mediated by A-NHEJ that requires microhomology.  

Translocations involving hTERT, proximal to the 5p telomere, have previously been 

detected in CLL and associated with telomerase upregulation. In this study, 5p telomere 

fusions were identified in 22.6% patient samples and 172 fusion events that involved 5p 

were characterised, which may explain mechanisms of telomerase reactivation in cancer.  

Surprisingly, 67% of the 9 patients presented bimodal TL distributions compared to the 

overall cohort (4% of 276), consistent with intra-tumour heterogeneity, which was 

confirmed for one patient. For this patient with indolent disease, chromosomal 

rearrangements were detected, in addition to a novel mutation in REV3L implicated in 

translesion synthesis that may negatively impact cancer cells fitness and be a potential 

therapeutic target.  

This study shows that telomere dysfunction in CLL initiates genome-wide instability 

providing a source for genetic variability that allows intra-tumour heterogeneity and 

tumour progression. However, therapeutically-exploiting this instability could prove 

beneficial for patient outcome. 
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CHAPTER 1: 

 INTRODUCTION 

1.1 THE TELOMERE SYSTEM 

The telomere was first discovered over 80 years ago by geneticist Hermann Muller when he 

was studying X-ray induced DNA breaks in Drosophila melanogaster. He observed that the 

chromosome ends were never involved in chromosomal rearrangements, leading him to 

hypothesise that the ‘terminal gene’ had a protective function (Muller, 1938). Not long 

after, Barbara McClintock converged on the same conclusion studying chromosomal 

aberrations resulting from ionizing radiation in Zea mays. She observed that when the 

terminal structures of DNA were lost, chromosome ends would fuse (McClintock, 1941). 

Since then, it has been established that telomeres are nucleoprotein complexes at the end 

of linear chromosomes composed of the telomere-repeat DNA sequence (section 1.1.1) 

and the shelterin complex (section 1.1.2). In addition, telomere length (TL) is elongated by 

telomere maintenance mechanisms (section 1.1.5) in stem, germline and cancer cells but 

not in somatic cells (Figure 1.1).  

 

Figure 1.1. The human telomeric system. 

The telomere system is composed of telomeric DNA sequence, the shelterin complex and the 

telomerase enzyme. Reprinted by permission from Macmillan Publishers Ltd: Nature Reviews 

Molecular Cell Biology  (Maciejowsky and De Lange, 2017), copyright (2017) 
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The telomere system is conserved across the five kingdoms of life, particularly amongst 

eukaryotes regardless of minor differences in TL and the sequence repeat, highlighting the 

fundamental role they play in the cell. 

Telomeres are implicated in cellular senescence, dictating the lifespan of the cell (section 

1.1.5.2). Moreover, telomeres play an important role in maintaining genomic integrity by 

protecting chromosome ends from being mistaken for a double-strand break (DSB) 

(sections 1.1.3 and 1.1.4). Otherwise, dysfunctional telomeres can be subjected to 

enzymatic end-degradation, activation of DNA repair mechanisms and telomere fusion 

events that can initiate genomic instability and lead to malignant transformation (section 

1.2). 

1.1.1 The telomeric sequence  

Telomeric DNA is characterised by double stranded short tandem repeats, with a G-rich 

single strand sequence that protrudes in an overhang at the 3′ end and a shorter C-rich 

strand at the 5′ end.  

The human telomeric repeat is composed of TTAGGG and it was first identified in 1988 

(Moyzis et al., 1988). It can extend up to 20Kb and the 3′ overhang contains 50-300 

nucleotides depending on the individual, the age and the tissue samples examined (Baird et 

al., 2006, Griffith et al., 1999). Differences across cell types occur because of a differential 

replication rate and expression of telomerase that will determine telomere erosion (Griffith 

et al., 1999, Baird et al., 2006, Capper et al., 2007, Lin et al., 2010). In human somatic cells 

that do not express telomerase, telomeres shorten 60-120bp per cell division (Harley et al., 

1990, Baird et al., 2003). Furthermore, there are differences in TL across species, for 

example: 0.25Kb of TTGGG in protist Tetrahymena thermophile (Blackburn and Gall, 1978, 

Jacob et al., 2004), 2-9Kb of TTTAGGG in plants (Richards and Ausubel, 1988, Shakirov and 

Shippen, 2004) and 20-150Kb of TTAGGG in inbred laboratory mice (Kipling and Cooke, 

1990, Hemann and Greider, 2000). 

In humans, a degenerate telomere variant repeat (TVR) is also found at the start of the 

telomere (first 1-2Kb) (de Lange et al., 1990, Baird, 1995, Coleman et al., 1999, Baird et al., 

2003). The most common TVRs identified include TCAGGG, TGAGGG and TTGGGG, in 

addition to other less frequent variants identified in human cell lines (Letsolo et al., 2010, 

Lee et al., 2014a). TVRs have altered function from canonical repeats; telomeres lose their 

protecting capping function when they erode up to the TVR distribution and the variant 
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CTAGGG was shown to decrease the binding affinity of the shelterin members TRF1 and 

TRF2 (Capper et al., 2007, Mendez-Bermudez et al., 2009). 

1.1.2 The Shelterin complex 

To maintain its protective function, the telomeric sequence is assisted by the shelterin 

complex. Shelterin, also termed telosome, is a 6-subunit telomere-associated protein 

complex that consist of telomeric repeat-binding factor 1 (TRF1), telomeric repeat-binding 

factor 2 (TRF2), protection of telomeres 1 (POT1), TRF1- and TRF2-interacting nuclear factor 

2 (TIN2), Repressor/Activator Protein 1 (RAP1) and TINT1-PTOP-PIP1 (TPP1) (de Lange, 

2005a). 

POT1 binds to the telomeric 3′ single-stranded G-overhang and to TPP1, which is associated 

to TIN2. TIN2 acts as a bridge and connects TRF1 and TRF2, which bind directly to double-

stranded telomeric DNA recruiting the shelterin complex to telomeres. RAP1 is associated 

with TRF2 (deLange, 2005). Hundreds of shelterin complexes are present at every telomere 

in each cell (de Lange, 2005a) (Figure 1.1). 

1.1.3 Telomere protection: hiding the end and inhibiting DSB response 

Aided by the shelterin complex, the telomeric G-strand 3′ overhang loops back to form a 

protective T-loop structure by invading the dsDNA and pairing with the C-rich strand which 

displaces the G-strand and also creates a small D-loop (Figure 1.2B) (Griffith et al., 1999, 

Greider, 1999). This process helps to sequester the 3′ overhang to stabilise the telomere 

and prevent it from triggering the DNA damage response and recruiting the DNA repair 

machinery (de Lange, 2005a).  

Additionally, the single-stranded telomeric G-rich overhang can also form G-quadruplex 

structures (Figure 1.2C) - secondary structures created by the interaction of four guanine 

bases stabilised by hydrogen bonding and a central cation in square planar arrangements 

that stack on top of each other (Williamson et al., 1989, Biffi et al., 2013). G-quadruplexes 

contribute to telomere protection by sequestering the 3′ overhang (Smith et al., 2011).  

It has also been suggested that telomeres may also become inaccessible to DNA damage 

response (DDR) components by a shelterin-mediated 10-fold compaction of telomeric 

chromatin, for which each shelterin subunit is necessary (Bandaria et al., 2016). 



Chapter 1: Introduction to telomeres and Chronic Lymphocytic Leukaemia 

 

4 
 

 

Figure 1.2. The structure of telomeric DNA. 

Telomeric DNA in a (A) linear conformation, (B) T-loop structure and (C) G-quadruplex structure. 

 

The shelterin members TRF1, TRF2, RAP1 and POT1/TPP1 inhibit the DDR. TRF2 and POT1 

modulate the ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3 

related (ATR) pathways respectively, protecting telomeres from being recognised as DSB 

(Karlseder et al., 2004, Liu et al., 2004, Martinez et al., 2009, Sfeir et al., 2010, Thanasoula 

et al., 2012). By repressing the DDR they block the homologous recombination (HR), 

classical and alternative non-homologous end joining (C/A-NHEJ) DNA repair mechanisms 

at telomeres that could result in telomere fusions (reviewed in section 1.1.4). Therefore, 

telomere deprotection by deletion of either TRF2 or POT1 has been associated with C-

NHEJ-mediated telomere fusions that do not depend on the TL (Yang et al., 2005, Celli and 

de Lange, 2005). However, shelterin does not suppress the DDR at induced-DSBs within the 

internal telomeric repeat array, that are repaired by HR and A-NHEJ, most likely to maintain 

telomere integrity (Doksani and de Lange, 2016).  
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1.1.4 DNA damage response and DNA repair mechanisms at telomeres  

Maintaining genomic stability is crucial for cell survival. DSBs are extremely cytotoxic DNA 

lesions that if left unrepaired can cause cell death. However, faulty repair mechanisms can 

create chromosomal rearrangements that lead to tumorigenesis (Jackson and Bartek, 

2009). 

In the presence of a DSB, the MRE11–RAD50–NBS1 (MRN) complex locates to it and 

recruits the ATM kinase which becomes active and phosphorylates the histone variant 

H2AX. Phosphorylated H2AX recruits other proteins including p53-binding protein 1 

(53BP1) and Rap1-interacting factor 1 (RIF1) to DNA damage foci that amplify the DNA 

damage signal and regulate the repair, mediated by C-NHEJ (Riballo et al., 2004, Escribano-

Diaz et al., 2013). 

DSB can also be resected 5′-3′ by the MRN complex, the CtBP-interacting protein (CtIP) and 

Breast Cancer Type 1 Susceptibility protein (BRCA1), generating a tail of ssDNA that is 

recognised by the single-strand-binding replication protein A (RPA) which recruits ATR (Xie 

et al., 2009, Choi et al., 2010, Badie et al., 2015, Anand et al., 2016). Activated ATR, 

similarly to ATM, triggers the DNA damage signalling and initiates repair (Brown and 

Baltimore, 2003). Resection to reveal microhomology is necessary for homology directed 

repair (HDR) mechanisms including alternative NHEJ (A-NHEJ), single-strand annealing (SSA) 

and homologous recombination (HR). 

C-NHEJ and HR are the major DSB repair mechanisms but recently, A-NHEJ and SSA have 

also been implicated. The distinct mechanisms and the cell cycle effects are explained in 

the following sections and summarised in Figure 1.3. 
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Figure 1.3. Synthesis of DSB and SSB repair mechanisms. 

A double-strand break (DSB) can be repaired by the classical non-homologous end joining (C-NHEJ), 

alternative non-homologous end joining (A-NHEJ), single-strand annealing (SSA) or homologous 

recombination (HR) pathways. The pathway choice will depend on the cell cycle stage, the 

availability of the different molecules involved, the end resection and the usage of (micro) 

homology. Genetic outcomes that can result from each pathway and usage of microhomology (MH) 

or homology (H) are stated. Figure adapted from Chang et al., 2017.  

1.1.4.1 Classical non-homologous end joining (C-NHEJ) 

In G1 cells, DSBs can be repaired by resection-dependent or resection-independent C-NHEJ 

(Biehs et al., 2017). DSBs are sensed by the Ku70-Ku80 heterodimer (Ku) that protect the 

ends from extensive resection and serves as a platform to recruit other proteins (Mimitou 

and Symington, 2010).  Ku forms a complex with DNA-dependent protein kinase catalytic 

subunit (DNA-PKcs) and binds to another Ku-DNA-PKcs complex at the other end of the 

break acting like a bridge and bringing the DNA ends together using little or no sequence 
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homology (Weterings and Chen, 2008).  DSB ligation is catalysed by a complex composed of 

DNA ligase 4 (LIG4) and X-ray repair cross-complementing protein 4 (XRCC4) (Lieber, 2010). 

Depending on the DNA end configuration (blunt, incompatible, resection-dependent 

compatible ends), various NHEJ sub-pathways with different proteins involved have been 

suggested. For example, Artemis can reveal small microhomology (≤4nt) regions after 

resection and cleave the ss-overhangs; and when ends are incompatible, DNA polymerase 

μ (Pol μ) and Pol λ are involved in the DNA synthesis in a template-dependent/independent 

manner (Chang et al., 2016, Chang et al., 2017). Ionizing radiation (IR)-induced DSBs at 

heterochromatin or regions with additional damage, potentially when repair is delayed, 

Polo-like kinase 3 (Plk3) phosphorylates CtIP that binds BRCA1 and promotes resection by 

exonucleases EXO1, EXD2 and MRE11. The process is completed by endonuclease Artemis 

and repaired by resection-dependent C-NHEJ. This pathway could also represent 

microhomology-mediated end joining (MMEJ) and can result in deletions and 

translocations (Barton et al., 2014, Biehs et al., 2017).  

1.1.4.2 Alternative non-homologous end joining  (A-NHEJ) 

A-NHEJ, often taken to be synonymous of MMEJ, has historically been considered an error-

prone repair mechanism together with C-NHEJ. During G2, A-NHEJ is activated when DNA 

damage at the resected end is detected by Poly (ADP-ribose) polymerase 1 (PARP1) (Robert 

et al., 2009). Typically 2-20bp (most common 4-6bp) of microhomology is annealed and 

low-fidelity DNA Pol θ stabilises the ssDNA overhangs, which is then ligated by DNA LIG3 or 

LIG1 (Mateos-Gomez et al., 2015, Ceccaldi et al., 2015, Kent et al., 2015, Chang et al., 

2017). If additional microhomology is required, Pol θ can also add nucleotides to the ends, 

including templated insertions (Wyatt et al., 2016). 

1.1.4.3 Single-strand annealing (SSA)  

Greater homology is required for the annealing of complementary ssDNA tails during repair 

by SSA and HR; thus, further resection is performed by BML and EXO1 during S/G2 phases 

(Tomimatsu et al., 2014, Symington, 2016).Then RPA, which is crucial for ATR activation, 

binds to ssDNA tails to facilitate repair (Zou and Elledge, 2003). For SSA, RAD52 mediates 

alignment of large homologous sequences (>20bp) and the XPF–ERCC1 complex excises the 

remaining DNA overhangs before ligation, leading to large deletions (Bhargava et al., 2016). 
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1.1.4.4 Homologous recombination (HR) 

For the HR pathway, a sister or homologous chromatid is essential for repair.  Over 100bp 

of homology is required and there is no loss of nucleotides (Moynahan and Jasin, 2010). 

Strand invasion and homology search is mediated by RAD51 that binds to the ssDNA tail 

(Sung, 1994, Sung et al., 2003). HR generally performs a precise repair of sister chromatids 

when DSBs are generated during S and G2 phases, when sister chromatids are nearby. 

However, it can result in telomere sister chromatid exchanges, telomere-loop excision and 

alternative lengthening of telomeres (ALT) (section 1.1.5.4) (Cho et al., 2014). 

1.1.4.5 Choice of pathway and implications in cancer  

The DNA repair pathway choice across the genome depends on the extent of end-resection 

from the DSB and is heavily influence by the cell cycle phase. C-NHEJ is active throughout 

the cell cycle, particularly during G1 phase, when 53BP1 and RIF1 block recruitment of 

BRCA1 and inhibit end-resection from the DSB. However, a resection-dependent C-NHEJ 

also operates during G1 (Biehs et al., 2017). During S/G2 phase, cyclin-dependent kinases 

(CDKs) phosphorylate the MRN complex and CtIP stimulating extensive end-resection and, 

in addition with BRCA1, promote DSB repair by A-NHEJ, SSA and HR. Then, the usage of 

(micro) homology will mainly determine the pathway choice (Ceccaldi et al., 2016).  

It has been suggested that C-NHEJ is more commonly used than A-NHEJ due to Ku having a 

higher binding affinity to the DSB than PARP1 and MRN (Wang et al., 2006, Mimitou and 

Symington, 2010, Cheng et al., 2011). In addition, together with 53BP1 and the DNA Pol 

zeta (ζ) processivity subunit REV7, Ku also represses DNA end resection at DSBs obstructing 

the use of the alternative mechanism (Lottersberger et al., 2013, Boersma et al., 2015). DSB 

repair by resection-dependent C-NHEJ can lead to deletions and translocations (Barton et 

al., 2014, Biehs et al., 2017). Furthermore, C-NHEJ has been proposed to mediate the 

ligation of the DNA fragments resulting from chromosome shattering (chromothripsis) 

which leads to a highly rearranged chromosome (chromoanagenesis) that can be found in 

human tumours (Holland and Cleveland, 2012). 

When sister chromatids are not available for HR, repair is mediated by A-NHEJ leading to 

deletions, translocations and chromosomal rearrangements (Zhang and Jasin, 2011, 

Ceccaldi et al., 2016). It has also been demonstrated that when C-NHEJ is not functional or 

both ATR and ATM are activated, A-NHEJ is used (Rai et al., 2010, Sfeir and de Lange, 2012). 

Moreover, when HR is compromised, Pol θ may promote the use of the A-NHEJ mechanism 
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by binding and inhibiting RAD51 (Simsek et al., 2011, Mateos-Gomez et al., 2015). 

Interestingly, Pol θ was upregulated in HR-deficient breast and ovarian cancers (Mateos-

Gomez et al., 2015, Ceccaldi et al., 2015), and was associated with cellular transformation 

and poor prognosis (Lemee et al., 2010, Higgins et al., 2010). Generation of human 

chromosomal translocations arising from genomic DSBs have been mainly attributed to C-

NHEJ (Ghezraoui et al., 2014, Lieber, 2016). However, more studies are revealing the 

implication of A-NHEJ in cancer (Simsek et al., 2011). 

1.1.4.6 DNA repair activity at telomeres 

Since unprotected telomeres are recognised and processed as DSBs, this section aims to 

highlight the specific repair mechanisms reported at telomeres and whether their repair 

differs from non-telomeric DSBs.  

A deficient processing of subtelomeric compared to interstitial DSBs has been observed in 

the EJ-30 human bladder carcinoma cell line after induction of DSBs. Repair at the 

subtelomere was characterised by large resection, increased frequency of deletions and 

chromosomal rearrangements. This was also observed at interstitial sites containing 

telomeric DNA (Zschenker et al., 2009). The different repair choice at telomeric DSBs was 

not a result from deficient C-NHEJ or HR but instead, it was related to excessive processing 

by nucleases including MRE11 at G1-phase. (Miller et al., 2011, Muraki et al., 2015, Alcaraz 

Silva et al., 2017). Despite the mechanism responsible was not clear, Alcaraz Silva and 

colleagues proposed a role for A-NHEJ. 

Fusion of short dysfunctional telomeres can be mediated by both LIG3/LIG1 A-NHEJ and 

LIG4 C-NHEJ pathways. A-NHEJ leads primarily to intra-chromosomal sister chromatid 

fusions but also to inter-chromosomal fusions in low proportion, and is characterised by 

greater resection and usage of microhomology at the fusion junction. At intra- and inter-

chromosomal junctions a mean of 2.9nt and 2.38nt of microhomology respectively was 

observed in HCT116 LIG4-/- colorectal cancer cells. In contrast, C-NHEJ resulted in inter-

chromosomal fusions with non-telomeric loci and with telomeric-repeat regions with 

reduced microhomology usage (Jones et al., 2014, Liddiard et al., 2016). Furthermore, a 

role of LIG1 in A-NHEJ has been inferred in the absence of LIG3 or LIG4 (Arakawa et al., 

2012, Lu et al., 2016, Liddiard et al., 2016). Sequence analysis of telomere fusions in human 

cancer cells revealed extensive resection and microhomology usage at the fusion junction 

consistent with A-NHEJ (Letsolo et al., 2010, Lin et al., 2010). 
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The frequency of fusions increases when the tumour-suppressor gene TP53 is disrupted 

(Artandi et al., 2000, Liddiard et al., 2016), explained by the loss of genomic integrity when 

telomeres become dysfunctional and this cell cycle checkpoint is lost. Furthermore, it could 

also be related to the loss of p53-associated subtelomeric protection, a recently identified 

function (Tutton et al., 2016). In addition to chromosome end-to-end fusions, dysfunctional 

telomeres can fuse with non-telomeric loci, primarily within coding regions. Gene 

disruption most likely has harmful consequences for cell viability but may also provide a 

mechanism for malignant transformation (Liddiard et al., 2016). 

In HCT116 cells expressing dominant negative telomerase (DN-hTERT) to induce a 

telomere-driven crisis, LIG3 was vital to clonal evolution and escape. These results 

suggested that sister-chromatid fusion events that lead to amplification or deletion of 

chromosome arms may provide a selective advantage to initiate tumorigenesis compared 

with LIG4-mediated long-range inter-chromosomal fusions (Jones et al., 2014). For some 

clones, escape from crisis was characterised by amplification of the 5p chromosome arm 

that harbours hTERT, concurrent with reactivation of telomerase (Jones et al., 2014). 

Altogether, telomeric DSBs can be repaired by the NHEJ pathways resulting in intra- and 

inter-chromosomal fusions with different microhomology usage, deletions and insertions. 

This is consistent with the mutational signature observed at the telomere fusion junctions 

in human cancers cells. Thus, C-NHEJ and A-NHEJ-mediated repair of dysfunctional 

telomeres may be responsible for many of the gross chromosomal rearrangements 

detected in human malignancies. 
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1.1.5 Telomere maintenance mechanisms  

1.1.5.1 Telomerase 

Telomerase is the ribonucleoprotein complex that elongates the telomere via reverse 

transcription by adding TTAGGG repeats to the 3′ terminus as it recognises the hydroxyl 

group (OH) (Greider and Blackburn, 1985, Morin, 1989). Telomerase expression is stable in 

germline and stem cells, allowing them to maintain the TL, but low or undetectable in 

somatic cells, which results in telomere shortening (Harley et al., 1990, Baird et al., 2003). 

Moreover, reactivation of telomerase is required for immortalisation and malignant 

progression; by lengthening the telomeres it expands cell replicative the lifespan (Counter 

et al., 1992, Kim et al., 1994). 

The telomerase complex consists of 3 subunits: the catalytic subunit telomerase reverse 

transcriptase (TERT), the telomerase RNA template component (TERC) and accessory 

proteins. The telomerase accessory proteins include dyskerin (DKC), nuclear protein 10 

(NOP10), non-histone protein 2 (NHP2), GAR1 and telomerase Cajal body protein 1 (TCAB1) 

(Egan and Collins, 2010). The human TERT gene is located at the end of chromosome 5p 

(Chr5p15.33; Chr5: 1,253,262-1,295,184; CRGCh37), 1.2Mb from the telomere and is 

approximately 40Kb long. TERT contains four domains: the N-terminal extension (TEN) 

domain with affinity to telomeric ssDNA and TPP1; the telomerase RNA binding (TRB) 

domain that interacts with TERC; the reverse transcriptase (RT) domain responsible for the 

catalytic activity and the C-terminal extension (CTE) domain (Sandin and Rhodes, 2014). 

The telomerase RNA component, TERC, is located at Chr3q26.2 (Chr3: 169,482,308-

169,482,848) and is approximately 500bp long. It is composed of the catalytically essential 

pseudoknot-template core (PK) domain and the CR4/CR5 stem-loop (STE) domain that 

interacts with TERT, and the H/ACA scaRNA domain that binds telomerase accessory 

proteins (Blackburn and Collins, 2011, Zhang et al., 2011a). 

TCAB1 promotes assembly of the telomerase complex in the Cajal body (Stern et al., 2012) 

and, together with TPP1, recruits it to the telomere (Tejera et al., 2010, Nandakumar and 

Cech, 2013). Telomerase aligns its RNA templated sequence (AATCCC) to the telomeric 3′ 

overhang and elongates the G-rich DNA by adding de novo TTAGGG repeats. Then the RNA 

template dissociates from the DNA and translocates along the telomere to repeat the 

process (Figure 1.4). Finally, a primer is synthesised at the complementary strand and DNA 

is replicated completing elongation of telomeres (Greider and Blackburn, 1989, Morin, 

1989, Blackburn and Collins, 2011). 
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Figure 1.4. Telomere length elongation by telomerase. 

The telomerase complex binds to the 3′ overhang and using the RNA template TERTC, the catalytic 

subunit TERT synthesises the DNA. Then, the complex translocates towards the end and the process 

is repeated.  

1.1.5.2 Telomere shortening and senescence: a tumour suppressor mechanism 

30 years after the discovery of telomeres, A. Olovnikov and J. D. Watson noted that the 

somatic mammalian cell was unable to reproduce a complete copy of linear chromosomes. 

This resulted in shorter telomeres every cell division, referred to as marginotomy or the 

end-replication problem (Olovnikov, 1971, Watson, 1972). Thus, telomeres protect the 

non-telomeric chromosomal coding sequence from being eroded when the genome is 

replicated ahead of cell division (Figure 1.5). 
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Figure 1.5. The end-replication problem. 

Helicases unwind the dsDNA at the replication origin. DNA is synthesised in a 5′ to 3′ direction 

resulting in a leading and a lagging strand. The later one is synthesised discontinuously since it 

requires RNA primers to start replication. Then RNA primers are removed resulting in small 

fragments of DNA called Okazaki fragments and a 3′ overhang. DNA is synthesised and ligated, and 

enzymatic resection leads to the formation of the 3′ overhang in the copied strand. 
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DNA polymerase replicates genomic DNA in a 5′ to 3′ direction, which results in a different 

copying system for the leading and the lagging strand characterised by a continuous and 

discontinuous synthesis, respectively. To copy the lagging strand, RNA primers are required 

as the replication fork moves outwards from the origin of replication, resulting in short 

synthesised DNA fragments called Okazaki fragments. The internal RNA primers are then 

replaced by their DNA counterparts and ligated together to create a continuous strand; 

excluding the terminal primer for which there is no available 3′ OH group to add 

nucleotides to (Ohki et al., 2001). The loss of nucleotides at the chromosome end of the 

lagging strand leads to the G-rich ss-overhang at the telomere. However, since the leading 

strand results in blunt DNA ends, the 5′ DNA terminus needs to be further resected to 

maintain the 3′ overhang (Huffman et al., 2000). This occurs by exonucleolitic enzymes 

Apollo1 and EXO1 that digest the 5′ terminus, followed by a CST-associated Pol alpha (α)-

mediated synthesis step (Huffman et al., 2000, Chai et al., 2006, Dai et al., 2010, Wu et al., 

2012) (Figure 1.5).  

Olovnikov likened the continuous shortening of the ´telogene´ after every somatic cell 

division to an inner clock that would allow the cell to divide a specific number of times 

before reaching a critical length that would trigger senescence (Olovnikov, 1971, Olovnikov, 

1973). Olovnikov’s idea explained the intrinsic cell division counting mechanism previously 

observed by Hayflick and Moorhead (Hayflick and Moorhead, 1961, Hayflick, 1965). 

Altogether, in human somatic cells that do not express telomerase, telomeres shorten by 

50-100bp per population doubling (Harley et al., 1990, Hodes, 1999, Baird et al., 2003) and 

telomere shortening is considered a principal ageing mechanism that determines the 

lifespan of cells, known as the Hayflick limit. However, this loss can be neutralized with the 

extension of TL as evidenced with the increase of cell longevity following addition of 

telomerase (Bodnar et al., 1998). This is also observed in germline, stem and cancer cells 

that express telomerase.  

When telomeres become critically short or uncapped by shelterin depletion, they become 

unprotected and a DNA-damage response is triggered via ATM/ATR signalling. This 

culminates in the activation of replicative senescence that ceases cell division arresting cells 

in G1/S-transition (Fabrizio d’Adda di Fagagna et al., 2003, Artandi and Attardi, 2005). 

Moreover, a few critically short telomeres are sufficient to trigger the DDR (Hermann, 

2001). This is a tumour suppressor mechanism that protects organisms from the 

propagation of abnormal cells with accumulated DNA damage over time that could 

otherwise result in tumour development (see section 1.2.1). 
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1.1.5.3 Telomere length regulation by modulating telomerase 

The shelterin complex is implicated in regulating TL by modulating the access of telomerase 

(Palm and de Lange, 2008, Greider, 2016). TPP1 recruits TERT to telomeres for telomere 

elongation, consequently TPP1-depletion leads to telomere shortening and decreased TERT 

binding to telomeres (Tejera et al., 2010). TRF1 is a negative regulator of telomerase-

dependent telomere replication; overexpression of TRF1 results in telomere shortening 

while TRF1-depletion promotes telomere lengthening (van Steensel and de Lange, 1997, 

Ancelin et al., 2002, Ho et al., 2016). In addition, TL regulation may be assisted by POT1 

through its binding to telomeric ssDNA (Colgin et al., 2003, Loayza et al., 2004). 

TPP1 has also been implicated in TL regulation. This could be via its interaction with POT1, 

or through a telomerase-interacting TPP1 glutamate (E) and leucine (L)-rich (TEL) patch 

required for the recruitment of telomerase to telomeres and for stimulating telomerase-

mediated addition of multiple telomeric repeats (Nandakumar et al., 2012, Zhong et al., 

2012).  

Indirectly, TIN2 contributes to TL regulation by modifying tankyrase 1, a telomeric 

poly(ADP-ribose) polymerase (PARP), that in turns inhibits the binding of TRF1 to the 

telomere. Inhibition of TIN2 leads to decreased TRF1 binding and results in telomere 

elongation (Smith and de Lange, 2000, Ye and de Lange, 2004). 

Recently, another telomere-associated protein has been proposed to modulate TL: 

telomeric zinc finger-associated protein (TZAP). It is proposed that TZAP competes with 

TRF1 and TRF2 to bind telomeres and therefore preferentially localises to long telomeres, 

that have a low density of shelterin, and trims telomeric repeats, preventing aberrantly 

long telomeres (Li et al., 2017). 

1.1.5.4 Alternative lengthening of telomeres (ALT) 

ALT is a telomerase-independent telomere maintenance mechanism that has been 

observed in a proportion of immortalised cells in culture and 10-15% of human cancers 

(Reddel, 2000, Reddel et al., 2001, Henson et al., 2002) with greater enrichment in 

mesenchymal tumours (Henson et al., 2005, Dilley and Greenberg, 2015). 

ALT is based on homologous recombination (HR)-mediated DNA replication. The templates 

proposed for telomere lengthening in human cells include using a sister-chromatid 

telomere, copying itself through T-loop formation or looping out, or inter-chromosomal 

telomere copying (Figure 1.6) (Dunham et al., 2000, Cho et al., 2014, Pickett and Reddel, 
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2015). The steps required possibly consist of strand invasion creating a Holliday junction 

(HJ), copying the template, resolution of the HJ and synthesis of the complementary strand 

(Pickett and Reddel, 2015). 

 

Figure 1.6. Templates for HR in ALT. 

Homologous recombination with (a) a sister chromatid, the same telomere by (b) looping out or (c) 

t-loop formation, or (d) a distant telomere. Reprinted by permission from Macmillan Publishers Ltd: 

Nature Structural and Molecular Biology (Pickett and Reddel, 2015), copyright (2015). 

Cells utilising ALT are characterised by heterogeneous and very long telomeres, the 

presence of linear or circular (T-circles) extrachromosomal telomeric repeats (ECTR) and 

ALT-associated promyelocytic leukaemia (PML) nuclear bodies (APBs) (Murnane et al., 

1994, Tokutake et al., 1998, Cesare and Griffith, 2004). Telomeric DNA, binding proteins 

and machinery for DNA replication, synthesis and recombination have been observed 

within APBs (Yeager et al., 1999). In addition, ALT cells exhibit high levels of telomere sister 

chromatid exchanges (T-SCEs)  (Londono-Vallejo et al., 2004). 

HR-copying in ALT cells can lead to the amplification of TVRs throughout the telomere, 

disrupting the shelterin binding sites (Lee et al., 2014a). This results in increased DDR which 

may stimulate HR repair pathway increasing ALT activity (Flynn et al., 2015). In addition, the 

spread of TVRs can create de novo binding sites for proteins such as the orphan nuclear 

receptor NR2C/F with affinity to TCAGGG. This can lead to a bridge-interaction between the 

telomeric-genomic NR2C/F binding sites that can drive the insertion of telomeric sequence 

resulting in fragile sites across the genome prone to breakage and translocations. 

Altogether, it is a mechanism for telomere-driven genomic instability in cells that engage 

ALT (Conomos et al., 2012, Marzec et al., 2015). 
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1.1.6 Subtelomeric DNA, gene families, TERRA and telomere-position effect  

Subtelomeric regions constitute the transition between the telomere repeat tract DNA and 

the chromosome-specific genomic sequence and range from 10-300Kb in size. Most human 

subtelomeric regions have been mapped resulting in a subtelomeric reference sequence 

(Riethman et al., 2004, Ambrosini et al., 2007, Stong et al., 2014). Subtelomeres have been 

described as mosaics of multichromosomal blocks since they are made up of various 

repeated elements, although the composition differs between them (Mefford and Trask, 

2002). Subtelomeres contain degenerate telomeric TTAGGG repeats, DNA unique to 

specific chromosome ends and segmental duplications known as subtelomeric repeat 

elements (SREs). SREs are mainly found at the distal region and share similarities between 

the different chromosome ends (Mefford and Trask, 2002, Riethman et al., 2004, Riethman 

et al., 2005). It is proposed that SREs are generated from translocations involving distinct 

chromosomes and sister chromatid exchanges (SCEs) indicating that human subtelomeres 

are hotspots for recombination events (Linardopoulou et al., 2005, Rudd et al., 2007). 

The recombination that occurs at subtelomeres makes them dynamic and variable regions. 

Since the subtelomere harbours some gene families, recombination contributes to 

phenotypic diversity, ultimately helping organisms to adapt to the changing environment 

(Trask et al., 1998, Freitas-Junior et al., 2000). Examples of gene families in humans include 

the olfactory receptors (OR) (Trask et al., 1998, Mefford et al., 2001), the Wiscott-Aldrich 

Syndrome Protein family (WASH) (Linardopoulou et al., 2007), zinc finger-containing genes 

like MZF-1 (Hoffman, 1996) and the immunoglobulin heavy-chain genes at 14q (Cook et al., 

1994). In Plasmodium falciparium, the protozoan parasite that causes malaria in humans, 

the location of virulence gene families at the subtelomere contributes to the diversity of 

antigens and evasion of the host’s immune system (Freitas-Junior et al., 2000). 

Subtelomeric DNA is transcribed into a long non-coding RNA known as TElomeric Repeat-

containing RNA (TERRA) that contains G-rich telomeric repeats (Azzalin et al., 2007). TERRA 

has an essential role in telomere maintenance and cell survival. It can regulate telomerase 

activity by binding the RNA template and assist capping the chromosome ends by allowing 

POT1 to bind ssDNA and displacing RPA. Downregulation of TERRA activates the DDR at 

telomeres, and TERRA may also participate in the formation of heterochromatin at 

telomeres (Azzalin and Lingner, 2015, Cusanelli and Chartrand, 2015, Montero et al., 2016).  



Chapter 1: Introduction to telomeres and Chronic Lymphocytic Leukaemia 

 

18 
 

Other subtelomeric elements are binding sites for CTCF and cohesion that are involved in 

the regulation of TERRA transcription (Deng et al., 2012). These factors are also implicated 

in telomere protection since experimental depletion of CTCF or cohesion resulted in 

telomere-induced DNA damage foci (TIF) formation and destabilised the binding of TRF1 

and TRF2 at the proximal telomeric repeats (Deng et al., 2012, Stong et al., 2014).  

Human subtelomeric regions sharing high homology between different chromosome ends 

have been termed telomeric families (Brown et al., 1990). These include the 16p family 

(16p, 1p, 9p, 12p, 15q, XqYq and the 2q14 interstitial locus) and 21q family (21q, 1q, 2q, 5q, 

6q, 6p, 8p, 10q, 13q, 17q, 19p, 19q, 22q and the 2q13 interstitial locus) (Letsolo et al., 

2010). In contrast, the presence of unique subtelomeric regions at distinct chromosome 

ends has been very valuable for measuring the length of individual telomeres using Single 

Telomere Length Analysis (STELA) (Baird et al., 2003). Altogether, sequencing subtelomeric 

DNA also allowed the development of a telomere fusion PCR assay that targets single 

chromosome ends and subtelomeric families (Capper et al., 2007). To investigate telomere 

fusion events with the PCR fusion assay, oligonucleotides need to be designed at the 

subtelomeric region since critically short and unprotected telomeres can be resected into 

the subtelomeric sequence (Capper et al., 2007). Both techniques are discussed further in 

sections 1.2.3.5 and 1.2.3.6.  

At subtelomeres, a phenomenon known as telomere-position effect (TPE) that was 

originally identified in yeast, has been described in human cells (Baur et al., 2001). It results 

in the epigenetic silencing of genes proximal to telomeres leading to decreased gene 

expression by modifying the heterochromatin status depending on the TL. It is proposed 

that subtelomeres may buffer the TPE transcriptional silencing from genes located proximal 

to the chromosome end (Mefford and Trask, 2002). Recently, research has shown that TL 

could influence the transcription of genes adjacent to the subtelomere through a looping 

mechanism that locates long telomeres into proximity of genes up to 10Mb away; it is 

known as TPE over long distance (TPE-OLD) (Robin et al., 2014). It has been suggested that 

the human telomerase gene hTERT, that is proximal to the 5p telomere, could be regulated 

by a TPE-OLD mechanism. Long telomeres appeared to epigenetically repress hTERT and 

associated with a telomeric loop. In addition, this loop was disengaged and the chromatin 

status changed when telomeres became short (Kim et al., 2016). It is possible that TRF2 and 

TERRA are also required for the maintenance of the telomeric loop (Kim et al., 2016). 

Importantly, this mechanism could have implications in reactivation of telomerase in 

cancer cells with critically short telomeres. 



Chapter 1: Introduction to telomeres and Chronic Lymphocytic Leukaemia 

 

19 
 

1.2 TELOMERES AND TELOMERASE IN CANCER 

1.2.1 Telomere crisis: a source of genomic instability and malignant 

transformation 

For malignant transformation to occur cells need to overcome the mortality stages 1 (M1) 

and 2 (M2) (Wright et al., 1989, Shay et al., 1991). Cells can escape senescence (M1) by 

inactivating cell cycle checkpoints imposed by p53 and retinoblastoma (Rb) tumour 

suppressor proteins. If replicative senescence or apoptosis are not triggered (Campisi, 

2003), cells continue to divide and accumulate more dysfunctional telomeres. Then, DNA 

repair mechanisms (section 1.1.4) inappropriately repair two different unprotected ends 

resulting in dicentric chromosomes which are unstable and break during cell division. This 

process can escalate to cycles of breakage-fusion-bridge (BFB) that result in chromosomal 

rearrangements (Figure 1.7) (McClintock, 1941, Ma et al., 1993). This stage is referred to as 

telomere-driven crisis and occurs very early during tumourigenesis. It can result in cell 

death (M2) caused from high levels of chromosomal instability (CIN) which are deleterious 

for cell viability. However, crisis provides a source of genetic variation (Murnane, 2012, 

Maciejowski and de Lange, 2017) that can generate tumour heterogeneity and upon 

selection, drive clonal evolution and malignant progression. Ultimately, reactivation of 

telomerase (or engaging ALT) stabilises TL and restores the protective function which 

allows cells to escape crisis and become immortal (Wright et al., 1989, Shay et al., 1991). 

Therefore, cells that escape crisis present a rearranged genome that provides them with 

tumorigenic characteristics that lead to cancer progression (Kim, 1994; Meyerson 1997) 

(Figure 1.8).  

Telomere fusions of short telomeres, providing evidence of a telomere-driven crisis, have 

been observed in human cancers including colorectal cancer (Roger et al., 2013), multiple 

myeloma (Hyatt et al., 2017) and chronic lymphocytic leukaemia (CLL) (Lin et al., 2010). 
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Figure 1.7. Breakage-Fusion-Bridge cycle 

Unprotected telomeres can fuse, and when the cell divides each chromatid is pulled to opposite 

poles forming an anaphase bridge. The breakage of the bridge results in a chromatid with a deletion 

and another with an amplification. The chromosome ends can fuse again with a sister chromatid 

after DNA replication or with a non-homologous chromosome and lead to chromosomal 

rearrangements. Figure acquired from Oncohema Key (2016) website (URL: 

https://oncohemakey.com/mechanisms-of-genomic-instability-2/) 

 

Cancer-causing genomic changes that have been observed in human malignancies and may 

occur as a consequence of dysfunctional telomeres and BFB cycles include deletions or loss 

of heterozygosity (LOH), amplifications, translocations and aneuploidy. In addition, kataegis 

(localised hypermutation), chromothripsis (chromosome shattering) and tetraploidisation 

(whole genome reduplication) have recently been discovered (Lo et al., 2002, Sellmann et 

al., 2016, Maciejowski and de Lange, 2017). BFB cycles can be stopped either by 

chromosome healing which consists of the addition of new telomeric repeats by 

telomerase or ALT, or by the acquisition of another chromosome end by translocation 

(Murnane, 2006, Zschenker et al., 2009). 

 

https://oncohemakey.com/mechanisms-of-genomic-instability-2/
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Even before telomeres become critically short, they can become unprotected with the loss-

of-function of members of the shelterin complex and initiate telomere fusions (Denchi and 

de Lange, 2007). Experimental disruption of TRF2 results in telomere fusions with a 

mutational profile typical of C-NHEJ DNA repair mechanism (Smogorzewska et al., 2002, 

Celli and de Lange, 2005) that is distinct from those observed in human cells with critically 

short telomeres (Capper et al., 2007). In addition, POT1 mutations can also lead to 

dysfunctional telomeres that promote chromosomal instability and initiate cancer 

progression, particularly in CLL (Ramsay et al., 2013, Gu et al., 2017). 

 

Figure 1.8. The role of telomeres in ageing and cancer. 

(A) Sources of DNA damage that lead to dysfunctional telomeres or loss of telomere. Extremely 

short or unprotected telomeres elicit the DNA damage response (DDR) that will result in ageing or 

cancer depending on the p53. If the tumour suppressor p53 is intact, cell cycle arrest, replicative 

senescence or apoptosis will be triggered, resulting in tissue degeneration. In contrast, if p53 is 

inactivated, cells enter a telomere-driven crisis characterised by (B) end-to-end fusions and (C) 

anaphase bridges. (C) Polyploid cells are also observed since cells can bypass mitosis and re-enter S 

phase, reduplicating the genome. Cycles of BFB result in increased genomic instability that may lead 

to malignant transformation after telomere healing. (B) Chromosome fusion (CF) and concatenation 

indicated with a white arrow, multitelomeric signals (MTS) indicated with a purple arrow and sister 

chromatid fusions (SC) with a yellow arrow. Reprinted by permission from Macmillan Publishers Ltd: 

Nature Reviews Cancer (Martinez and Blasco, 2011), copyright (2011).  
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1.2.2 Reactivation of telomere maintaining mechanisms in cancer 

To escape crisis, cells need to reactivate telomerase. In human cancers, 85-90% of patients 

express telomerase while the remaining 10-15% engage ALT. This confers cells 

immortalisation with an indefinite replicative capacity (Kim et al., 1994, Reddel et al., 

2001). The hTERT gene locus is located in Chr5p15.33. Point mutations in the TERT 

promotor, other activating mutations, amplifications of this gene or genomic 

rearrangements that locate TERT near an enhancer, have been identified in several types of 

cancer. Overall, this suggests that upregulation of telomerase is required for cancer 

progression (Beroukhim et al., 2010, Huang et al., 2013, Valentijn et al., 2015, Heidenreich 

and Kumar, 2017). Recent research has provided insights into how TERT promotor 

mutations (TPM) contribute to tumorigenesis. Chiba et al., (2017) propose that TPM extend 

cells lifespan delaying replicative senescence by stabilising the shortest telomeres. If DNA 

damage checkpoints are lost, when the amount of critically short telomeres increases, cells 

enter a long period of reduced telomere-driven genomic instability, compared to crisis. 

Finally, telomerase is further upregulated by unknown factors driving cell immortality 

(Chiba et al., 2017). 

TERT promoter mutations, the majority at -146 and -124 positions from the ATG start site, 

may generate de novo binding sites for transcription factors including GA-binding protein 

(GABP), ternary complex factor (TCF) and E twenty-six (ETS)-domain, that activate 

telomerase expression (Horn et al., 2013, Huang et al., 2013, Bell et al., 2015). Human 

cancers with the highest frequency of TERT promoter mutations are glioblastoma (83%), 

melanoma (71%), urothelial carcinomas (66%), hepatocellular carcinomas (47%) and 

medulloblastomas (21%) (Lazzerini-Denchi and Sfeir, 2016). 

Rearrangements involving TERT have been involved in telomerase upregulation in B-cell 

malignancies including CLL (Nagel et al., 2010, Schilling et al., 2013) and neuroblastoma 

(Peifer et al., 2015, Valentijn et al., 2015). Amplifications of the 5p chromosome end that 

included the hTERT locus in addition to overexpression of telomerase were observed after 

escape from a telomere-driven crisis in HCT116DN-hTERT cells in culture (Jones et al., 2014). 

However, it remains to be assessed whether BFB cycles or 5p sister chromatid telomere 

fusions, which can lead to gene amplification, could be another source for telomerase 

reactivation. 

Furthermore, telomerase can be upregulated and promote tumorigenesis through 

cytokines, hormones (Kyo et al., 2008), ETS transcription factors (Dwyer and Liu, 2010, 
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Gladych et al., 2011), inactivation of tumour suppressors, activation of oncogenes (Lin and 

Elledge, 2003), and epigenetic modifications (Zhu et al., 2010, Li et al., 2011) that also 

regulate TERT transcription. 

1.2.3 Telomere length and telomere dysfunction: a powerful prognostic 

marker 

Shorter telomeres were observed in cancer cells compared with their normal tissue 

counterparts (Hastie et al., 1990, de Lange et al., 1990) and a later study of telomere 

fusions provided further support of a role for telomere dysfunction in cancer initiation 

(Ducray et al., 1999). In addition, critically short telomeres have been detected in human 

cancers and associated with poor prognosis and reduced survival. Examples include breast 

cancer, chronic lymphocytic leukaemia, multiple myeloma and myelodysplastic syndrome 

(Simpson et al., 2015, Strefford et al., 2015, Hyatt et al., 2017, Williams et al., 2017). 

Therefore the measurement of TL and telomere dysfunction is a powerful prognostic tool in 

several malignancies. Further information about TL as a prognostic marker in CLL is 

provided in section 1.3.2. Distinct methods to measure TL and telomere dysfunction are 

discussed below. 

1.2.3.1 Terminal Restriction Fragment (TRF) analysis  

Usually described as the “gold standard”, TRF was the first technique used for the 

measurement of TL. This relatively cheap method is based on the digestion of genomic DNA 

using restriction enzymes with cleavage sites throughout the genome except for the 

subtelomeric and telomeric regions. Telomeres are resolved by size using agarose-gel 

electrophoresis and visualisation is performed by in-gel hybridisation or by southern 

blotting with a telomere-specific probe. The TL from all chromosomes are visualised as a 

smear and average TL is assessed by comparing to a DNA ladder (Allshire et al., 1989, 

Hastie et al., 1990, Kimura et al., 2010). 

However, TRF has some disadvantages. Large amounts of high-quality DNA are required 

(>1µg), TRF is not specific to individual telomeres and does not recognise individual short 

telomeres. Degraded DNA can provide inaccurate results, the inclusion of subtelomeric 

DNA overestimates the TL and only the mean TL can be obtained. TL results will vary 

depending on restriction enzymes used in addition to the presence of polymorphisms in 

subtelomeric or telomeric DNA. Still, it may be a more useful technique for long telomeres 

since PCR-based methods have amplicon-size limitations. 
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1.2.3.2 Quantitative Polymerase Chain Reaction (Q-PCR) 

The principle of Q-PCR is based on the detection of fluorescence as PCR amplification 

occurs. Fluorescent probes are added to the PCR reaction and when they bind to the DNA 

amplicon, the fluorescent signal is captured. The intensity of the signal increases in 

proportion to the amount of DNA amplified.  

A low cost high-throughput PCR-based method to measure TL was developed to overcome 

the need for large amounts of DNA (Cawthon, 2002). A pair of primers that target the C- 

and G-rich sequence and have mismatches to prevent dimerization are designed to amplify 

the telomeric sequence. The longer the telomere, the more binding sites are available for 

the fluorescent probes, which results in increased telomere amplification product (T). To 

quantify the TL, a single-copy gene (S) is amplified and the T/S ratio is calculated to allow 

comparative measurement. 

To avoid inaccurate results obtained from different amount of DNA added due to pipetting 

error, the technique was adapted to amplify T and S in the same tube. This was called 

monochrome multiplex quantitative PCR (MMqPCR) (Cawthon, 2009). A later adaptation 

called absolute telomere length (aTLqPCR) incorporated a standard curve of known TL to 

obtain a mean TL (Kb) measurement instead of a T/S ratio (O'Callaghan and Fenech, 2011). 

For either technique, high quality DNA is required; however, in smaller amounts (ng) 

compared with TRF. Some disadvantages include the requirement of a standard to obtain 

an absolute measurement, the TL variability among replicates, the absence of information 

about the TL distributions and lack of recognition of individual telomeres. 

1.2.3.3 Quantitative fluorescence in situ hybridisation (Q-FISH) 

Q-FISH examines the chromosomes within cells in metaphase or in interphase nuclei by 

hybridising with a fluorescent telomeric probe in conjunction with a non-specific DNA stain 

(such as DAPI) that allows visualisation of chromatin (Lansdorp et al., 1996, Krejci and Koch, 

1998). Q-FISH measures TL with a higher resolution but results are obtained in Telomere 

Fluorescent Units (TFUs) which can be problematic to convert into DNA length. 

Individual telomeres can be identified on metaphase chromosomes, which shows the TL 

heterogeneity within the same cell in addition to end-to-end fusions and chromosomes 

lacking telomeres. However, mitotically active cells are required and, as for TRF, a minimal 

TL is essential for the probe to hybridise.  
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1.2.3.4 Flow-FISH 

The combination of flow cytometry with Q-FISH resulted in flow-FISH. This technique 

allowed the high-throughput analysis of TL in distinct peripheral blood subpopulations 

(Rufer et al., 1998).   

1.2.3.5 Single TElomere Length Analysis (STELA)  

STELA is a high-resolution long-range PCR-based assay that allows the measurement of 

individual telomeres at specific chromosome ends (Baird et al., 2003). The method consists 

of a linker that is complementary to the telomeric 3′ ss-overhang that is ligated at the 5′ 

end, introducing a unique sequence that can be targeted with a specific primer. PCR is 

performed with an oligonucleotide that anneals to the linker, and a chromosome specific 

primer targeting the subtelomeric region of the same chromosome arm. STELA can be 

performed at the 2p, 9p, 11q, 12q, 16q, 17p, 18q and XpYp chromosome ends (Britt-

Compton et al., 2006). Only small amounts of high-quality genomic DNA (picogram) are 

required, extremely short telomeres can be detected and the sensitivity of the technique 

allows a very accurate measurement of the TL. The relation with TRF-TL measurements is 

linear although consistently less for STELA (mean 1.3Kb) (Baird et al., 2003). STELA has 

facilitated the detailed study of telomere erosion and the end replication problem (Baird et 

al., 2003). Despite being a very accurate technique it may not be suited for high-throughput 

analysis or for the study of very long telomeres (>20Kb). 

 

Figure 1.9. Representation of STELA PCR. 

The Telorette (Tel2) linker is comprised of a 7bp-sequence at the 3′ end that is complementary to 

the telomeric repeat sequence; as a consequence, the Tel2 anneals to the terminal 3′ G-rich ss-DNA 

telomeric overhang. Tel2 is ligated to the 5′ of the C-rich telomeric strand, through a putative ligase 

activity of Taq polymerase (Baird et al., unpublished data). The 5′ end of the Tel2 linker also contains 

a unique sequence identical to the Teltail primer. The Teltail primer, together with a Telomere-

specific primer, are utilised to amplify the telomere in subsequent PCR cycles. Figure adapted from 

Baird et al., 2003. 
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The precise measurement of TL using STELA (Baird et al., 2003) facilitated the identification 

of a subgroup of patients with shorter telomeres and a poor outcome in several cancer 

types including chronic lymphocytic leukaemia, multiple myeloma, breast cancer, colorectal 

adenomas and other solid tumours (Lin et al., 2010; Lin et al., 2014; Hyatt et al., 2017; 

Simpson et al., 2015; Roger et al., 2013; Letsolo et al., 2017). Patient stratification was 

based on the TL range at which telomere fusions were detected using a PCR-based 

approach (Capper et al., 2007). 

1.2.3.6 Detecting telomere fusions  

End-to-end telomere fusions can be observed by FISH in metaphase chromosomes (Ducray 

et al., 1999) or with a telomere fusion assay (Capper et al., 2007). The telomere fusion PCR 

consists of a combination of chromosome specific primers located about 3Kb upstream 

from the start of the telomere in the same orientation. In the presence of a fusion event, 

primers are in close spatial proximity and the fusion event can be amplified. PCR products 

are separated by size through agarose gel electrophoresis, followed by Southern blotting to 

transfer to a membrane. Hybridisation with chromosome-specific probes reveals which 

telomeres are involved in the fusion events and sequence content can be revealed by 

reamplification and purification of amplicons for Sanger sequencing (Capper et al., 2007). 

 

Figure 1.10. Telomere fusion 

PCR. 

Cartoon representation of 

chromosomes 5 (blue) and 17 

(green) with dysfunctional 

telomeres followed by the 5p-

17p inter-chromosomal fusion 

and breakage. Dotted lines 

indicate how the 5p and 17p-

specific primers amplify the 

fusion event. 

 

The assay was originally performed with primers that amplified the 17p and XpYp 

telomeres (Capper et al., 2007). Soon after, primers targeting the 21q (Lin et al., 2010) and 

16p families of telomeres were added (Letsolo et al., 2010). 
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Recently, a specialised paired-end Next Generation Sequencing (NGS) of telomere fusion 

amplicons was developed for the high-throughput sequence analysis of telomere fusions in 

colorectal cell lines with induced DSBs (Liddiard et al., 2016).  
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1.3 TELOMERE LENGTH IN CHRONIC LYMPHOCYTIC LEUKAEMIA 

1.3.1 Chronic lymphocytic leukaemia 

Chronic Lymphocytic Leukaemia is the most common form of adult leukaemia in Western 

countries, representing about one third of leukaemia cases, with an incidence rate of about 

1/20000 individuals per year. Males are more susceptible than females and about 94% of 

cases are over 50 years old at diagnosis, with a median age of 70  (WHO, 2014, Howlader N, 

2017). However, rare cases of CLL have been identified in children and teenagers which 

most likely relates to an inherited predisposition (Spier et al., 1985, Demir et al., 2014). 

CLL results in a progressive accumulation of mature clonal CD19+ CD5+ B cells in bone 

marrow, blood and lymphoid tissues. The clinical course of the disease is highly 

heterogeneous. A significant proportion of patients (about 50%) remains asymptomatic 

and do not require treatment while others have an aggressive disease and progress quickly. 

The prognosis of CLL can range from months to several decades and has been a major 

clinical challenge (WHO, 2014, Guarini et al., 2003). An indolent condition with low CLL-like 

cells called monoclonal B cell lymphocytosis (MBL) is a precursor to CLL. However, only 1-

2% of MBL cases per year progress to CLL requiring treatment (Strati and Shanafelt, 2015). 

Moreover, a small proportion of cases with CLL (about 10%) can progress into Ritcher’s 

syndrome, a more aggressive non-Hodgkin lymphoma (Jain and O'Brien, 2012). 

1.3.1.1 Symptoms, diagnosis and staging 

CLL symptoms include swollen spleen, enlarged lymph nodes, tiredness, weight loss and 

night sweats. Given the abnormalities in their immune system, patients can be subjected to 

frequent opportunistic infections (Oscier et al., 2012). CLL diagnostic tests include the 

absolute lymphocyte count (ALC) that requires at least 5000 B cells/μL, 

immunophenotyping and/or a peripheral blood film. On occasion a lymph node biopsy may 

be required.  

There are two different staging systems: Binet system (European) and Rai system 

(American) (Binet et al., 1977, Rai et al., 1975). They categorise patients in early (Binet A, 

Rai 0), intermediate (Binet B, Rai I and II) or advanced (Binet stage C, Rai III and IV) disease 

based on the criteria stated in Table 1.1.   
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Table 1.1. Binet and Rai classification systems. 

Disease 

stage 
Binet system Rai system 

Early 

• Haemoglobin ≥ 10 g/dL 

• Platelets ≥ 100,000/mm3 

• Enlarged lymph sites < 3 

• Lymphocytosis: lymphocytes in blood > 

15000/mcL, and > 40% lymphocytes in the 

bone marrow 

Intermediate 

• Haemoglobin ≥ 10 g/dL 

• Platelets ≥ 100,000/mm3 

• Enlarged lymph sites ≥ 3 

• Lymphocytosis  

• Enlarged lymph sites 

• Splenomegaly or hepatomegaly or both 

Advanced 

• Haemoglobin < 10 g/dL,  

• Platelets < 100,000/mm3  

• Any number of enlarged lymph 

sites 

• Lymphocytosis  

• Anaemia (haemoglobin level < 11.0 g/dL or 

haematocrit < 33%)  

• Thrombocytopenia (platelets < 100,000/ 

mm3) 

*Binet classification system is based on enlargement of lymphoid sites (cervical, spleen, liver, axillary 

and inguinal lymph nodes). Rai classification system is based on the accumulation of lymphocytes at 

different sites: lymphocytosis (in the blood), lymphadenopathy (enlarged lymph nodes), 

splenomegaly (enlarged spleen) and hepatomegaly (enlarged liver). 

1.3.1.2 Prognostic markers 

Prognostic markers are biological characteristics that can predict patients’ response to 

therapy or the course of the disease. For CLL, prognostic markers include the 

immunoglobulin heavy-chain variable region gene (IGHV) mutational status for which 

unmutated IGHV (>98% homology to germline) is associated with a more aggressive 

disease (Hamblin et al., 1999). In addition, expression of CD38 antigen (>30% CD38+ CLL) 

and zeta-associated protein 70 ZAP-70 (>20% ZAP-70+ CLL cells) associate with worse 

prognosis characterised by shorter overall survival (Durig et al., 2003, Malavasi et al., 2011). 

Other prognostic markers are chromosomal aberrations including trisomy, amplification 

and deletion (reviewed in section 1.4.1), particularly 11q (ATM) and 17p (TP53) deletion 

which provide additional information about poor response to genotoxic treatments 

(Amaya-Chanaga and Rassenti, 2016, Ghamlouch et al., 2017). Recently, TL has emerged as 

promising independent prognostic marker in CLL that is also predictive of response to 

treatment (reviewed in section 1.3.2).  
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1.3.2 Telomere length is a prognostic marker in CLL: 20 years of knowledge  

The first evidence that TL and telomerase activity could be prognostic tools in CLL was 

reported from a cohort of 58 CLL patient samples using TRF almost 20 years ago. Short TL 

(<6Kb) inversely correlated with high telomerase activity and was associated with poor 

survival (Bechter et al., 1998). Five years later, an association of shorter TL with unmutated 

IGHV gene status, identifying a subgroup with the worst prognosis, was established from a 

cohort of 61 CLL patient samples using TRF (Hultdin et al., 2003). Longer TL was observed in 

post-germinal centre CLL cells (mutated CLL) consistent with telomerase reactivation at the 

germinal centre in normal B cells (Weng et al., 1997, Hu et al., 1997, Norrback et al., 2001). 

In addition, Walsh et al., observed that the TL of patient CLL-B cells was shorter than 

normal B cells of healthy individuals, indicating that CLL cells undergo extensive 

proliferation during disease progression (Walsh et al., 2007). Although telomerase is 

reactivated, its expression may not be sufficient to maintain TL at all telomeres.  

Measuring TL using Q-PCR and TRF in cohorts of 310 and 201 CLL patients revealed that TL 

was a prognostic marker and, in combination with the IGHV gene status, refined prediction 

for overall survival (OS), progression-free survival (PFS) and time to first treatment (TTFT) 

(Grabowski et al., 2005, Ricca et al., 2007). In subsequent studies, Rossi et al., established a 

cut-off threshold for short TL at 5Kb using TRF. Their group further confirmed that TL was a 

robust and independent predictor of survival in a cohort of 401 CLL patients and that TL 

improved the accuracy of prognosis when combined with other markers (Binet stage, IGHV 

gene status and cytogenetics). Furthermore, short TL predicted progression to diffuse large 

B-cell lymphoma (DLBCL), a more aggressive type of leukaemia known as Richter syndrome 

(Rossi et al., 2009). 

It was 10 years after the first association of short TL with unfavourable clinical outcome 

that short telomeres were also linked to high-risk genomic aberrations including 11q and 

17p deletion, and complex karyotype (Roos et al., 2008). Roos and colleagues proposed 

that their results were in agreement with the “mortality stages 1 and 2 (M1 and M2) 

model” (Wright et al., 1989, Shay et al., 1991). The model states that for human cells to 

become immortalised they need to overcome senescence (M1) by inactivation of cell cycle 

checkpoints. This results in a telomere-driven crisis that initiates genomic instability and 

leads to apoptosis (M2). However, cancer cells escape crisis by reactivating telomerase that 

stabilises TL. Thus, immortalised cells are characterised by inactivation of cell-cycle 
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checkpoints, short but stable TL, genomic rearrangements and telomerase upregulation, as 

observed in the subgroup of CLL patients with a more aggressive disease. 

The development of high-resolution single-molecule approaches to determine TL 

distributions (STELA) (Baird et al., 2003) and to detect telomere fusions (Capper et al., 

2007, Letsolo et al., 2010) has allowed our group to study telomere dysfunction in CLL 

patients. Telomere fusions are detected in CLL B-cells with the shortest telomeres 

(TL<3.81Kb) and this correlates with LOH and large scale genomic rearrangements usually 

observed at chromosome ends (Lin et al., 2010). In addition, the mean TL (TL<2.26Kb) at 

which fusion can be detected (fusogenic range) is highly prognostic, particularly in early-

stage CLL patients, as it identifies those patients with shorter overall survival (OS) (Lin et al., 

2014). Sanger sequencing of telomere fusion events amplified from CLL patient samples has 

revealed subtelomeric deletion, low number of TTAGGG-repeats and microhomology usage 

at the fusion junction (Lin et al., 2010). Altogether, our group has provided evidence of 

telomere dysfunction and fusion of critically short telomeres during progression of CLL that 

is consistent with a telomere-driven crisis and which may be critical in driving genomic 

instability and progression of this disease (Lin et al., 2010, Lin et al., 2014).  

Short TL has been associated with CLL driver mutations in TP53, NOTCH1 and SF3B1, CLL 

high-risk genetic aberrations and more complex chromosomal alterations including copy 

neutral LOH, also known as uniparental disomy (UPD) (Mansouri et al., 2013, Sellmann et 

al., 2016). In particular, CLL patients with disrupted TP53 present critically eroded TL, 

telomere end-to-end fusions, telomerase overexpression and increased chromosomal 

instability that can contribute to resistance to therapy (Guieze et al., 2016). 

Predicted patient survival based on the mean TL calculated using STELA (Baird et al., 2003) 

identified that 10 years after diagnosis; patients with long telomeres (above the fusogenic 

range 2.21Kb) have a 91% survival rate while those with short telomeres have a 13% 

survival rate (Lin et al., 2014). As telomere length profiles are stable over time in most 

cases, TL can predict CLL outcome in newly-diagnosed patients (Mansouri et al., 2013, Lin 

et al., 2014). Additionally, TL has been proved a robust prognostic marker in a cohort of 384 

CLL patients from the UK LRF CLL4 clinical trial (Strefford et al., 2015) and 276 from the 

ARCTIC and ADMIRE clinical trials (Norris et al., manuscript in preparation). Therefore, 

measuring TL should be implemented in clinical practice. TL is an accurate prognostic 

marker that can help identify the subgroups of high-risk CLL patients that require earlier 
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treatment or that will respond poorly to standard therapies and thus require alternative 

treatment modalities (Pepper et al., 2014). 

In addition to critically short TL, telomeres can also lose their end-capping function through 

defective shelterin components (Poncet et al., 2008, Martinez and Blasco, 2011). Faulty 

telosome proteins have been observed in CLL including TIN2, TPP1 and POT1 (Augereau et 

al., 2011, Ramsay et al., 2013, Ishdorj et al., 2017). POT1 is mutated in about 9% of CLL 

patients (Ramsay et al., 2013). Most POT1 mutations identified in CLL B-cell clones occur 

within the telomeric DNA-binding domain, but a small proportion of mutations are located 

in the TPP1-interacting domain (Ramsay et al., 2013). Telomere fusions arising from 

dysfunctional POT1 are characterised by longer telomeres, contrasting with telomere 

dysfunction observed from critically short telomeres (Ramsay et al., 2013, Lin et al., 2010). 

In addition, germline mutations in POT1, TPP1 and TRF2 have been identified in familial CLL 

(Speedy et al., 2016). A genetic predisposition to long TL caused by germline 

polymorphisms in telomere maintenance genes has been related to increased risk of 

developing CLL (Ojha et al., 2016, Machiela et al., 2016). The authors suggest that long 

telomeres may provide additional time for cells to accumulate mutations that could result 

in malignant transformation and telomere uncapping before reaching senescence.  

Altogether it is clear that TL is a prognostic marker in CLL. Short TL is associated with 

telomere fusions, genome instability, a worse prognosis and potential for Richter 

transformation. To further assess the impact of telomere dysfunction and fusion on the CLL 

genome, a high-throughput characterisation of telomere fusion amplicons detected from 

patient CLL-B cells is required.   
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1.4 THE CLL CANCER GENOME  

The rapid advancement in sequencing technology and computational tools has facilitated 

the study of patients’ cancer genome, producing large quantities of data. Huge efforts have 

been made to translate this information into patient care, moving towards precision 

medicine. The study of the CLL cancer genome has incorporated genetics, epigenetics, 

transcriptomics, functional studies, epidemiological and clinical information to improve the 

knowledge of this complex and variable disease. The ultimate goal has been to improve 

patient stratification, monitor tumour heterogeneity, study drug resistance mechanisms 

and develop specialised therapeutic approaches.  

1.4.1 CLL driver mutations and cytogenetic aberrations  

Contributing to the International Cancer Genome Consortium (ICGC) (http://icgc.org), the 

CLL-ICGC project (2009-2014: http://www.cllgenome.es) has characterised the cancer 

genome of 500 CLL patients. The study revealed a complex landscape of >2000 somatic 

mutations per patient. The most frequently mutates genes in CLL include NOTCH1, TP53, 

POT1, SF3B1, MYD88, ATM, BRAF, BIRC3, CHD2, ZNF292, ARID1A, ZMYM3 and PTPN11. In 

addition, a long list of less frequent mutations that impact the pathogenesis of this 

leukaemia has been observed. Genes mutated in three or fewer patients include the 

transcription factor IKZF3, the oncogenes KRAS and NRAS with activating mutations, and 

the cell cycle regulators CDKN1B and CDKN2A with truncating mutations (Wang, 2011, 

Puente et al., 2011, Quesada et al., 2012, Martinez-Trillos et al., 2013). CLL driver 

mutations were also identified in non-coding DNA. Mutations have been detected in the 

3′UTR region of NOTCH1 proto-oncogene which creates aberrant splicing and increases 

expression of this gene. In addition, mutations have been detected in the enhancer region 

of the B cell differentiation transcription factor PAX5 that downregulates its expression 

(Puente et al., 2015). The identification of driver mutations in non-coding DNA including 

promoters, enhancers and UTR regions highlights the importance of performing whole 

genome sequencing (WGS) instead of whole exome sequencing (WES) to reveal all driver 

mutations.  

Pathways that are utilised in normal B cell function are commonly mutated in CLL. These 

include NOTCH signalling (lymphocyte activation); WNT signalling (regulation of 

proliferation); inflammatory pathways, B cell receptor (BCR) signalling and differentiation, 

and NF-κB pathway (development and function); RNA and ribosomal processing; chromatin 

http://icgc.org/
http://www.cllgenome.es/
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modification; DNA damage response, cell cycle control and apoptosis (Figure 1.11) (Puente 

et al., 2015, Kipps et al., 2017, Ghamlouch et al., 2017). 

 

Figure 1.11. Mutated pathways in CLL. 

Genes that have somatic mutation in CLL are highlighted in blue boxes. The main altered pathways 

in CLL include NOTCH signalling, inflammatory pathways, BCR signalling and differentiation, WNT 

signalling, DNA damage and cell cycle control, chromatin modification, RNA and ribosomal 

processing. Reprinted by permission from Macmillan Publishers Ltd: Nature Reviews Disease Primers 

(Kipps et al., 2017), copyright (2017).  

Genomic aberrations can be driver if they have an impact on malignant progression by 

providing a selective advantage or passenger if they are random events with no impact on 

the disease (Stratton et al., 2009, Garraway and Lander, 2013). Mutations can be inherited 

(germline mutations) or acquired through lifetime (somatic mutations) (Futreal et al., 2004, 

Alexandrov et al., 2015, Ju et al., 2017). Specific patterns or mutational signatures have 

helped reveal the mutational processes causing somatic DNA damage. These include cell 

division and ageing, abnormal DNA editing and repair mechanisms, UV radiation, chemical 

carcinogens such as tobacco and fungal toxins, amongst other (Alexandrov et al., 2013a).  
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In collaboration with Alexandrov and colleagues, the analysis of somatic mutations in CLL 

identified 3 distinct mutational signatures that correspond to ageing, APOBEC-induced 

cytosine deamination (C>T) (AID) and somatic hypermutation at the germinal centre 

(Alexandrov et al., 2013a). Somatic hypermutation status of the IGHV gene has generally 

been used as the main prognostic factor in CLL, with patients with unmutated IGHV 

displaying a worse prognosis than patients with mutated IGHV. Recently, WGS of 46 CLL 

patients has revealed a mutational signature for each subtype: mutated IGHV associated 

with anomalous AID activity and non-coding mutations while unmutated IGHV related to 

mutations in coding DNA and an ageing signature (Burns et al., 2017).  

A variety of chromosomal abnormalities associated with different prognostic outcomes is 

found in CLL. The most common include: deletion 13q14 (50% of patients), trisomy 12 

(20%), 2p gain (5-28%), 11q22-23 deletion (6-20%) and 17p13 deletion (5-10%). Other less 

frequent Copy Number Variations (CNV) include 8q24.21 amplification (5%), 8p deletion 

(5%), 15q15.1 deletion (4%), deletion of 2q37, 3p21 and 10q24 (2% each). Genomic 

aberrations including key genes disrupted, pathways associated and the impact on 

patient’s prognosis is listed in Table 1.2 and recently reviewed in Ghamlouch et al., 2017. 

Table 1.2. Recurrent copy number changes in CLL. 

Abnormalities 

 

Frequency 

(%) 

Associated genes Cellular processes affected by 

the alteration 

Prognostic 

significance 

del(13q14)  

 

 

50 MIR15A/MIR16-1, 

DLEU2, RB1, DLEU7 

Regulation of BCL2 

expression, 

cell cycle control, NF-κB 

signalling 

Good 

trisomy 12  20 Unknown Unknown Good/ 

intermediate 

del(11q22-23)  6–20 ATM, BIRC3 DNA repair, NF-κB signalling Poor 

del(17p13)  5–10 TP53 Loss of tumour suppressor Poor 

del(6q21)  5–7 ZNF292 Transcriptional regulation Unknown 

Gain 2p  5–28 XPO1, REL, BCL11A, 

MYCN 

RNA processing, NF-κB 

signalling, Proliferation 

Poor 

amp(8q24.21)  5 MYC Proliferation, apoptosis Poor 

del(8p)  5 TRAIL-R Apoptosis Poor 

del(15q15.1)  4 MGA Transcriptional regulation None 

del(2q37)  2 SP140/SP110 Transcriptional regulation None 

del(3p21)  2 SMARCC1/SETD2 RNA splicing and DNA repair Poor 

del(10q24)  2 NF-κB2 NF-κB signalling Unknown 

Table adapted by permission from John Wiley and Sons: British Journal of Haematology (Ghamlouch 

et al., 2017), copyright (2017). 
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Recurrent translocations have been observed in CLL patients, including chromosome 13q 

with distinct partners resulting in the common 13q14 deletion present in about 50% of CLL 

patients (Gardiner et al., 1997, Struski et al., 2007, Hruba et al., 2012). Furthermore, 

complex genomic instability including chromothripsis has been identified in several CLL 

patients (Stephens et al., 2011, Pei et al., 2012, Bassaganyas et al., 2013, Salaverria et al., 

2015). In another study, chromothripsis in CLL was associated with shorter telomeres and it 

was proposed to arise from cycles of telomere BFB (Ernst et al., 2016). 

In addition, approximately 30 Single Nucleotide Polymorphisms (SNPs) identified from 

genome-wide association studies (GWAS) have been associated with CLL risk, suggesting a 

potential involvement in CLL pathogenesis. Most SNPs have been implicated in apoptosis, 

DNA damage and chromosomal stability, B-cell development and immunity. Susceptible 

loci related to telomeres and telomerase include BCL2L11 at the ancestral telomere in 

2q13, TERT in 5p15.33 and POT1 at 7q31.33 (Cerhan and Slager, 2015, Berndt et al., 2016, 

Kandaswamy et al., 2016, Law et al., 2017). 

1.4.2 Tumour heterogeneity 

CLL presents intra- and inter-patient tumour heterogeneity, with a variety of genomic 

aberrations contained in distinct clones (Crossen et al., 1993, Landau et al., 2013, Landau et 

al., 2014). Chromosomal instability and somatic mutagenesis are a source of genetic 

variability that together with selective pressure, contribute to tumour evolution. Some 

events may arise early during disease progression and are therefore present in all cells 

(clonal), while other abnormalities arise during disease progression and are only present in 

a proportion of cells (subclonal). Distinct CLL subclones can be found in equilibrium within 

the patient; however, therapy and lymph node microenvironment can change the tumour 

composition and select for resistant subclones, resulting in patient relapse (Puente and 

Lopez-Otin, 2013, Ojha et al., 2015, Del Giudice et al., 2016).  

The prognostic impact of CLL driver mutations and cytogenetic aberrations can vary 

depending on whether the mutation is a clonal or subclonal event (Nadeu et al., 2016, Yi et 

al., 2017). In addition, it has been identified that distinct subclones with mutated and 

unmutated IGHV can coexist within the same patient. It also raises questions about the cell 

of origin and suggests that a B-cell progenitor, before undergoing somatic hypermutation, 

could be the leukaemia-initiating cell (Kriangkum et al., 2015, Stamatopoulos et al., 2017). 

Therefore, assessing and characterising tumour heterogeneity is essential for both an 

accurate prognosis and treatment.  
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1.4.3 Other ‘Omics’ studies 

Complementary omics studies have revealed alterations in the epigenome and 

transcriptome of CLL patients.  

Epigenetic alterations modify gene expression without altering the DNA sequence, of which 

DNA methylation is the most common (Rodriguez-Paredes and Esteller, 2011, Dawson and 

Kouzarides, 2012, Feinberg et al., 2016). Mutations in chromatin remodelling protein 

coding genes have been identified at low frequency in CLL (Puente et al., 2015). 

Epigenomics revealed DNA hypomethylation in components important for B cell 

differentiation or activity and discovered 3 epigenetic signatures that describe distinct CLL 

subgroups: naïve or memory B-cell-like CLL for pre-germinal or post-germinal centre B-

cells, respectively and an intermediate state. The classification system based on the 3 

epigenetic signatures identifies the cell of origin and has proven to predict prognosis more 

accurately than IGHV status (Kulis et al., 2012, Queiros et al., 2015).  

Transcriptomic alterations have been identified in protein-coding genes, non-coding RNAs, 

and pseudogenes. A different transcriptomic pattern has been observed for CLL cells 

compared to normal B cells including upregulation of genes involved in metabolic 

pathways, B-cell receptor and JAK-STAT signalling, and downregulation of genes associated 

to the spliceosome, ribosome and proteasome. Furthermore, two distinct CLL groups have 

been identified based on transcriptomal complexity, with the MAPK/ERK signalling pathway 

the most differentially expressed. B-cell receptor stimulation in the lymph node 

microenvironment has been suggested as the origin of one subgroup (Ferreira et al., 2014). 

1.4.4 Therapeutics and precision medicine 

For those patients that require treatment, there are different options available. Compared 

with normal cells, cancer cells have a rapid proliferation rate and have defects in DNA 

repair mechanisms. Thus, chemotherapeutic drugs aim to damage the DNA to increase the 

genetic instability in the cell through the accumulation of DSBs that would induce cell death 

via apoptosis, based on a threshold hypothesis (Fu et al., 2012). Chemotherapeutic drugs 

include alkylating agents like Chlorambucil and Cyclophosphamide, and purine analogues 

like Fludarabine, Cladribine and Pentostatin (Pettitt, 2003). Other treatment options target 

elements of the B cell receptor signalling cascade, blocking proliferation and survival. These 

include the Bruton tyrosine kinase (BTK) inhibitor, Ibrutinib (Byrd et al., 2015), or the PI3Kδ 

inhibitor Idelalisib (Brown et al., 2014).  
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Advancements in cancer immunotherapy have provided a better understanding of the 

tumour interaction with the immune system. A therapeutic approach includes using 

monoclonal antibodies that target the CD20 (Rituximab) and CD52 (Alemtuzumab) antigens 

on the B cells surface, flagging the cells for destruction. In addition, somatic mutations have 

the potential to generate neoantigens, cancer-specific peptides which can be used for 

vaccine development to stimulate the immune system to kill tumour cells (Rajasagi et al., 

2014, Liu and Mardis, 2017). A promising therapeutic strategy is genetically engineered 

autologous T cells, known as chimeric antigen receptor (CAR) T cells, that are infiltrated 

into the patient to kill CD19 cells (Freeman and Gribben, 2016, Turtle et al., 2017).  

The primary therapeutic option in CLL, known as the gold standard, is chemo-

immunotherapy combining Fluradabine, Chlorabucil and Rituximab (FCR) that improves 

patient survival compared with single agent therapy or FC (Robak et al., 2010). Additional 

radiotherapy to the spleen may be done for a small proportion of cases. Bone marrow 

transplant or haematopoietic stem cell transplantation (HSCT) is rare given the high-risk of 

the procedure, the age of diagnosis and the unclear benefit compared with chemotherapy 

(Gribben, 2009). 

Altogether, this highlights the importance of understanding the CLL genome in this new era 

of precision medicine. Its study has allowed a better patient stratification, a comprehensive 

understanding of the disease and the identification of new therapeutic targets, which in 

combination with functional analysis and animal studies translates into benefit for patients.    
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1.5 HYPOTHESIS AND AIMS OF THE PROJECT 

The principal aim of this Ph.D. thesis was to investigate the impact of telomere dysfunction 

and fusion on the cancer genome of patients with Chronic Lymphocytic Leukaemia (CLL). 

With particular focus on the 5p telomere, the aim was to determine whether telomere 

dysfunction at this chromosome end, harbouring the hTERT locus, could initiate genomic 

instability that might result in reactivation of telomerase in cancer. The specific aims were 

as follows: 

• To adapt STELA and the TVR assay to measure the 5p telomere length and the TVR 

content and compare it with the well-characterised 17p and XpYp telomeres in 57 

CLL patient samples.  

• To develop the telomere fusion assay at the 5p chromosome end to examine 

whether the 5p telomere is dysfunctional and fusogenic in CLL. 

• To detect telomere fusions in a cohort of 276 CLL patient samples with short 

telomeres (TL<3.81Kb) and to investigate whether the frequency of fusions 

provides further prognostic information in this subgroup.  

• To characterise telomere fusion amplicons, particularly those involving 5p, from 

CLL patients with the highest frequency of fusions using high-throughput paired-

end Illumina sequencing.  

• To investigate the impact of telomere dysfunction on the CLL cancer genome by 

studying which areas of the genome become incorporated into telomere fusions 

and whether there is an association with CLL or other oncogenic pathways. 

• To determine the existence of intra-tumour heterogeneity in a CLL patient sample 

with a bimodal telomere length distribution. Additionally, to examine the patient’s 

whole genome to investigate the cause of the increased fusion frequency and the 

patient’s indolent disease.  
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CHAPTER 2: 

 MATERIALS AND METHODS 

2.1 MATERIALS 

2.1.1 Chemicals and reagents 

Chemicals and reagents used in this project were obtained from different sources: Fisher, 

Invitrogen, Applied Biosystems, Thermo Scientific, New England Biolabs, Amersham 

biosciences/GE healthcare, Roche, Sigma-Aldrich and PerkinElmer, Bio-Rad, Abcam and 

Millipore. 

2.1.2 Laboratory materials and equipment 

Plastic and glass laboratory equipment used was obtained from different sources which 

include Becton Dickinson, Eppendorf, Gilson, Starstedt and Thermo Scientific.  

Specialised equipment for use in experiments was obtained from different sources: 

autoMACS Pro Separator (Miltenyi), ARIA III FACS sorter flow cytometer (Becton 

Dickenson), Centrifuges (MSE), QuantiFluor fluorometer (Promega), PCR thermocycler (Bio-

RAD and Thermo Scientific), Electrophoresis System (Amersham), UV-Transilluminator 

(EPS), Heating Systems (Jencons, Grant Instruments), Hybridisation ovens (Thermo 

Scientific), Typhoon FLA 9500 biomolecular imager (GE Healthcare). 

2.1.3 Oligonucleotides 

Primers were designed based on the GRCh37/hg19 human reference with the help of the 

online browser Primer3 (Rozen and Skaletsky, 2000) (http://primer3.ut.ee/) and according 

to the following criteria: 24bp long (20-24bp), Tm of 60°C (59-64°C) and a 55 % GC content 

(45-70%). For enhanced primer annealing the sequence finished on A/T+C/G at the 3′ end. 

Once the list of potential primers was obtained, the oligonucleotide sequences were 

aligned with the human genome using BLAST alignment tools (Altschul et al., 1990) from 

Ensembl (http://grch37.ensembl.org/Homo_sapiens/Tools/Blast) and NCBI 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) to exclude those with unspecific binding. In 

addition, in silico-PCR (USCS) determined the specificity of the primers 

http://primer3.ut.ee/
http://grch37.ensembl.org/Homo_sapiens/Tools/Blast
http://blast.ncbi.nlm.nih.gov/Blast.cgi
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(https://genome.ucsc.edu/cgi-bin/hgPcr). The primers were synthesised by Eurofins 

Genomics. Primers that were used during this project are listed in Supplementary Table 1. 

2.1.4 CLL patient samples 

Peripheral blood samples from 36 CLL patients undergoing treatment at the University 

Hospital of Wales (UHW) were obtained by Professor Chris Fegan. Patient peripheral blood 

mononuclear cells (PBMC) from 39 CLL treatment naïve patients were obtained from the 

UK LRF CLL4 trial (Oscier et al., 2010) and 204 previously untreated CLL patients from both 

the ARCTIC and ADMIRE trials (Howard et al., 2017, Munir et al., 2017) were obtained from 

the UK CLL Trials Biobank, University of Liverpool. Ethical approval and informed consent 

was obtained in all cases according with the ethical approval established for this study 

(Table 2.1).   

Table 2.1. Ethical approval for each CLL cohort. 

COHORT ETHICAL APPROVAL 

UHW South East Wales Local Research Ethics Committee (LREC# 02/4806) 

LRF CLL4 

UK Leukaemia Research Fund (LRF) CLL4 trial 

UK Multicentre Research Ethics Committee (MREC). International Standard 

Randomised Controlled Trial (NCT 58585610). 

ARCTIC 

Attenuated dose Rituximab with ChemoTherapy In Chronic lymphocytic leukaemia 

(ARCTIC) trial.  

National Research Ethics Service Leeds (East) Research Ethics Committee (REC) 

(reference 09/H1306/54). International Standard Randomized Controlled Trial 

(ISRCTN16544962). 

ADMIRE 

Does the ADdition of Mitoxantrone Improve Response to FCR chemotherapy in 

patients with CLL? (ADMIRE) trial.  

Leeds West Research Ethics Committee and the Medicines and Healthcare products 

Regulatory Agency. International Standard Randomized Controlled Trial 

(ISRCTN42165735). 

 

  

https://genome.ucsc.edu/cgi-bin/hgPcr
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2.2 METHODS 

Health and safety training, including COSHH assessments, were completed at the Cancer 

and Genetics Building. The Cardiff University Radiological Protection Course was 

undertaken and the use of P33 radioisotope was documented using the IsoStock® software. 

2.2.1 Isolation of PBMCs 

CLL blood samples from the UHW were collected in tubes containing 7.2mg K2-

Ethylenediaminetetraacetic acid (K2-EDTA). Lymphocytes were isolated from whole blood 

by density gradient centrifugation using Ficoll-Histopaque-1077 (Sigma Aldrich). The blood 

was carefully layered onto the Histopaque-1077 to a ratio 1:1 and centrifuged at 840xg 

without the centrifuge break for 20min at room temperature. Following centrifugation, the 

opaque interface which contained the PMBC was carefully aspirated using a Pasteur 

pipette. The cells were washed by adding 10mL PBS followed by a further centrifugation 

step at 470xg for 10min with the brake on. The supernatant was discarded and the cell 

pellet was resuspended with 1-3mL (depending on the size of the cell pellet) of 1x Red 

Blood Cell (RBC) Lysis Buffer (10x, BioLegend) to lyse remaining red blood cells and 

incubated 10min in the dark at room temperature. Cells were washed with 10mL of PBS 

followed by a further centrifugation step at 470xg for 5min with the brake on. Cells were 

resuspended with PBS and counted using the Vi-Cell XR (Beckman Coulter) outlined in 

section 2.2.3. 

2.2.2 Cell culture 

Human Embryonic Kidney (HEK) 293 cells were cultured in 75cm2 flasks containing 

Dulbecco's Modified Eagle Medium (DMEM, Life Technologies) in a 37°C, 5% CO2 incubator. 

DMEM was supplemented with 10% v/v Fetal Calf Serum (FCS, Thermo Fisher Scientific), 

2mM L-glutamine (Sigma), 100Units/mL Penicillin (Sigma) and 0.1mg/mL Streptomycin 

(Sigma). 

HEK293 cells were passaged when cell density reached 80-95% confluency, usually after 

72h. The media was removed and cells were washed with 1x phosphate-buffered saline 

(PBS). Then, to detach the adherent cell line from the flask, 2mL of 1x trypsin (Thermo 

Fisher Scientific), a proteolytic enzyme, was added to the cells and incubated at 37°C for 

5min. To inactivate trypsin, cells were washed with 10mL of DMEM and a sample was taken 

for cell count (section 2.2.3). Cells were harvested and centrifuged at 470xg for 5min. Cell 
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pellets were resuspended to a concentration of 1x106 cells/mL and split between new 

flasks with 20mL of fresh supplemented DMEM media pre-warmed at 37°C. 

2.2.3 Cell count and viability 

Cells were diluted 1:10 in PBS in a cell counting cup (Beckman Coulter) and loaded into a Vi-

Cell XR (Beckman Coulter). Cell counts and viability were assessed by trypan blue exclusion. 

2.2.4 Cryopreservation of cells and thawing procedure 

Cells (1-10x105) were pelleted by centrifugation before resuspending in 1mL of 

cryopreservation media containing 50% of appropriate media (cell type-dependent), 25% 

DMEM, 15% FCS and 10% dimethyl sulfoxide (DMSO). Cells were stored in cryovials and 

placed in a cryofreezing container at -80°C for 24h. To ensure the samples froze at a 

controlled rate (1°C/min), the container was filled with isopropyl alcohol. Afterwards, cells 

were transferred to liquid nitrogen for long-term storage. 

Once cells were removed from liquid nitrogen they were rapidly thawed in a water bath at 

37°C and transferred to a new tube where 9mL of the appropriate media was added 

dropwise. Cells were centrifuged at 470xg for 5min, the supernatant was removed and cells 

were resuspended in the appropriate growth media. 

2.2.5 Cell enrichment using magnetic microbeads 

Isolation of CD19+ CLL-B lymphocytes from a patient PBMC sample was performed through 

positive selection with anti-human CD19 microbeads (Miltenyi) using the autoMACS Pro 

Separator. PBMC were washed in PBS and centrifuged for 5min at 470xg. The supernatant 

was discarded and the cell pellet was resuspended with 20μL/107 cells of CD19 microbeads  

and 80μL/107 cells of cold (4°C) magnetic-activated cell sorting (MACS) buffer (1x PBS, BSA 

500mg/mL, EDTA 20mM, Miltenyi Biotech). Following 15min incubation at 4°C under 

rotation using a MACSmix (Miltenyi), cells were washed in 2mL/107 cells of cold MACS 

buffer and centrifuged for 5min at 470xg. The supernatant was discarded and cells were 

resuspended in 500μL cold MACS buffer ready for magnetic enrichment of CD19+ CLL-B 

lymphocytes using the autoMACS Pro Separator. 

To analyse the purity of the sample, two aliquots containing 1x105 cells were washed with 

1mL of PBS and centrifuged at 470xg for 5min. The supernatant was discarded and 2µL of 

human CD19-APC antibody (Mouse IgG1, clone HIB19, Biolegend) was added to an aliquot 
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(stained fraction) that was incubated at 4°C in the dark for 15min. After a final wash with 

PBS, the cells were centrifuged and the subsequent cell pellet was resuspended in 100µL of 

PBS. CD19+ stained and unstained samples were analysed using Accuri C6 flow cytometer 

and integrated software (BD Biosciences) assisted by Dr Lauren Elston. 

2.2.6 Cell sorting by flow cytometry 

Isolation of CD19+ CLL-B lymphocytes and CD3+ T lymphocytes from a CLL patient sample 

for WGS was achieved using the ARIA III FACS sorter flow cytometer (BD). PBMC cell pellets 

were resuspended in 300µL of PBS and were incubated with 5µL of the monoclonal 

antibodies anti-human CD19-APC (Mouse IgG1, clone HIB19, Biolegend) and anti-human 

CD3-FITC (Mouse IgG1, clone UCHT1, Biolegend) at 4°C for 15min in the dark. Following 

washing and resuspending the cells in fluorescence-activated cell sorting (FACS) buffer (PBS 

with 1% Fetal Bovine Serum (FBS)) to a concentration of 2x107 cells/mL in a 15mL falcon 

tube, cells were sorted using the ARIA III FACS sorter (BD) into 15mL falcon tube containing 

2ml cold FBS. Purity of the samples was analysed before and after sorting and data analysis 

was performed using FlowJo (Tree star) by Dr Catherine Naseriyan and Professor Chris 

Pepper. 

2.2.7 DNA extraction: Phenol/Chloroform/Isoamyl Alcohol 

Genomic DNA from UHW and LRF CLL4 trial CLL patient samples containing > 80% B cells  or 

from ARCTIC and ADMIRE trials CLL patient samples was extracted from pellets of 3x106 

cells by standard RNase A, Proteinase K, phenol/chloroform extraction (Sambrook, 1989).  

Cells were lysed for 15h at 45°C with 300μl lysis buffer (10mM Tris‐HCl pH8, 100mM NaCl, 

0.5% Sodium Dodecyl Sulphate (SDS) and 5mM EDTA pH8,), 30μg RNase A (10mg/mL; 

Sigma) and 60μg proteinase K (20mg/mL; Sigma). Following cell lysis, 300μL of 

phenol/chloroform/isoamyl alcohol (25:24:1, pH8, Sigma) was added to the cell lysate and 

rotated for 30min at room temperature using a tube rotator. To separate the phases, the 

mix was centrifuged for 5min at 16,000xg. The aqueous phase and interphase were 

transferred into a new 1.5 mL tube containing 300μL phenol/chloroform/isoamyl alcohol 

and the mix was rotated for a further 20min. Following centrifugation at 16,000xg for 5min, 

the aqueous phase containing the DNA was transferred to a fresh 1.5mL tube. To 

precipitate the DNA, 30μL (1/10 volume) of sodium acetate (3M, pH5.3, Sigma) and 900μL 

of 100% ice-cold ethanol (-20°C) were added to the mix. This was incubated at ‐20°C for 

15h for optimal precipitation of the DNA.  
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Following centrifugation (5min 16,000xg), the DNA pellet was washed with 70% ice-cold 

ethanol. Once all the residual ethanol was completely evaporated by air drying, the DNA 

was resuspended in Tris‐HCl buffer (10mM, pH8). 

2.2.8 DNA quantification 

DNA concentration was quantified using the Fluorescent DNA Quantitation Kit (BioRad) in 

triplicate for each sample. 1xTEN assay buffer (10x stock; 100mM Tris, 10mM EDTA, 2M 

NaCl, pH7.4) solution was prepared with double-distilled ddH2O. Then, Hoechst 33258 DNA 

intercalator fluorescent dye (1mg/mL stock) was added to a final concentration of 

0.1µg/mL. To calibrate the fluorometer, 2mL of 1xTEN solution containing Hoechst was 

read (blank).  For the 500ng standard, 10µL of calf thymus DNA (100µg/mL) was added to a 

clean cuvette with 2 mL 1xTEN solution containing Hoechst. Sample DNA was thawed at 

37°C to ensure a homogeneous solution and 1µL of DNA with 2 mL 1xTEN solution 

containing Hoechst was measured. If concentration was close to the standard range, DNA 

was further diluted with Tris-HCl (10mM, pH8) and measured again. The mean of the reads 

for each sample was calculated.  
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2.2.9 Polymerase Chain Reaction (PCR) 

The Polymerase Chain Reaction (PCR) technique was used to amplify specific DNA 

fragments. Depending on the application an optimised protocol was used as described in 

the following sections. 

2.2.9.1 Conventional PCR 

For a conventional PCR, typically 50ng of DNA per µL were used for each reaction and the 

reagents were added as listed in Table 2.2. The composition of the Taq buffer (10x) used 

consisted of 75mM Tris-HCl (pH8.8), 20mM (NH4)SO4 and 0.01% Tween-20 unless otherwise 

stated. The concentration of the Taq polymerase was 500U/100μL. 

                      Table 2.2. Conventional PCR reaction mix 

Component [stock] 1x reaction (µL) [1x reaction] 

ddMilliQ H2O 14.05  

Taq buffer (10x) 2.5 1x 

MgCl2 (25mM) 2 2mM 

dNTPs (100mM) 0.3 1.2mM 

forward primer (10μM) 2.5 1μM 

reverse primer (10μM) 2.5 1μM 

Genomic DNA (50ng/μL) 1 50ng 

Taq polymerase (500U/100μL) 0.25 1.25U 

TOTAL 25µL  

 

The reactions were cycled using a Tetrad thermal cycler (Bio-Rad) under the conditions 

stated in Table 2.3. On occasion, for optimisation of the primer annealing temperature, a 

gradient (52‐68°C) was used. 

   Table 2.3. Conventional PCR cycling conditions 

Denaturation Annealing Elongation Short-term storage 

94°C (20s) 52‐68°C (30s) 68°C (1 min/Kb) 10°C 

32 cycles ∞ 
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2.2.9.2 STELA PCR 

STELA PCR was used to amplify individual telomeres from specific chromosome ends as 

depicted in Figure 1.9. DNA extractions were diluted to a final concentration of 250pg/µL 

(1.25ng/µL DNA for 5p STELA*) in a volume of 40µL of Tris-HCl (10mM, ph7.5) containing 

250pM of Telorette2 (Tel2) linker. 1µL of the DNA/Tel2 mixture was added to a 10µL 

reaction as listed in Table 2.4.   

                  Table 2.4. STELA PCR reaction mix 

Component [stock] 1x reaction (µL) [1x reaction] 

ddMilliQ H2O 4.98  

Taq buffer 10x 1 1x 

MgCl2 (25mM) 0.8 2mM 

dNTPs (100mM) 0.12 1.2mM 

Telomere specific primer (5μM) 1 0.5μM 

Teltail primer (5μM) 1 0.5μM 

DNA/Tel2 mix 1 250pg*/250pM 

Taq/PWO (10:1U)  0.1 0.5/0.05U 

TOTAL 10  

*Or 1.25ng for 5p STELA 

 

For each sample, 6 PCR replica reactions were set up all samples received the same master 

mix (Supplementary Figure 1). Reactions were cycled using a Tetrad thermal cycler (Bio-

Rad) as indicated in Table 2.5. 

              Table 2.5. STELA PCR cycling conditions 

Denaturation Annealing Elongation Short-term storage 

94°C (20s) 59‐65°C (30s) 68°C (8min) 10°C 

22 cycles ∞ 

 

Annealing temperature varied depending on the telomere-specific primer used (59°C for 5p 

and 17p, 65°C for XpYp STELA). The number of PCR cycles was decreased compared with a 

conventional PCR to limit the amount of amplicon produced. This limited the size of the 

resulting band, improving resolution during telomere length (TL) quantification (section 

2.2.12). 
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For each experiment, a positive control for STELA PCR was included. The PCR product of a 

previous sample known to work would be loaded in the gel together with the new PCR 

products for agarose gel electrophoresis (section 2.2.10.1) followed by Southern blotting 

(section 2.2.11).  

2.2.9.3 TVR PCR 

TVR PCR was used to measure the content of specific telomere variant repeats (TVRs). For 

each sample, a total of three reactions per chromosome end was set up, one for each 

combination of telomere-specific primer and TVR primers (TAG-TelW for TTAGGG, TAG-

TelX for TGAGGG or TAG-TelY for TCAGGG) according to Table 2.6. It results in the 

amplification of several fragments of distinct size that followed by gel electrophoresis 

(section 2.2.10.1) and Southern blotting (section 2.2.11) indicate the position of the 

canonical repeat and the specific TVRs targeted.  

                    Table 2.6. TVR PCR reaction mix 

Component [stock] 1x reaction (µL) [1x reaction] 

ddMilliQ H2O 1.58  

Taq buffer 10x 1 1x 

MgCl2 (25mM) 1.2 3mM 

dNTPs (100mM) 0.12 1.2mM 

Telomere specific primer (5μM) 2 1μM 

TVR primer (5μM) 2 1μM 

DNA (50ng/μL) 2 100ng 

Taq polymerase (10U) 0.1 0.5/0.05U 

TOTAL 10  

 

The reactions were cycled using a Tetrad thermal cycler (Bio-Rad) under the conditions 

annotated in Table 2.7.  

          Table 2.7. TVR PCR cycling conditions 

Denaturation Annealing Elongation Short-term storage 

96°C (20s) 67°C (30s) 70°C (3min) 10°C 

19 cycles ∞ 

 

Representation of TVR PCR is depicted in Figure 3.6A. 
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2.2.9.4 Telomere fusion PCR 

The telomere fusion PCR contains 5 primers that detect 24 distinct chromosome ends: 3 

chromosome specific (5p, 17p and XpYp) and 2 that target subtelomeric families (16p and 

21q). The assay was used to amplify telomere fusion amplicons as illustrated in Figure 1.10.  

10 PCR reactions were set up for each sample as stated in Table 2.8 and protocol depicted 

in Supplementary Figure 2. 

                   Table 2.8. 5p8:17p6:XpYpM:16p1:21q1 fusion PCR reaction mix 

Component [stock] 1x reaction (µL) [1x reaction] 

ddMilliQ H2O 3.48  

Taq buffer 10x 1 1x 

MgCl2 (25mM) 0.8 2mM 

dNTPs (100mM) 0.12 1.2mM 

5p8 (10μM) 0.5 0.5μM 

17p6 (10μM) 0.5 0.5μM 

XpYpM (10μM) 0.5 0.5μM 

16p1 (10μM) 0.5 0.5μM 

21q1 (10μM) 0.5 0.5μM 

DNA (50ng/µL) 2 100ng 

Taq/PWO (10:1U)  0.1 0.5/0.05U 

TOTAL 10  

 

Reactions were cycled using a Tetrad thermal cycler (Bio-Rad) under the conditions listed in 

Table 2.9. 

     Table 2.9. Fusion PCR cycling conditions 

Denaturation Annealing Elongation Short-term storage 

94°C (20s) 62°C (30s) 68°C (8min) 10°C 

25 cycles ∞ 
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2.2.9.5 Fusion reamplification PCR 

To reamplify a fusion event for subsequent sequence characterisation, the PCR reactions 

were diluted 1:20 in double-distilled water. A 30µl PCR reaction was set up containing 3µL 

of diluted fusion PCR, the combination of forward and reverse primers needed to reamplify 

the fusion event, together with the reagents stated in Table 2.10. Primers were selected 

based on the chromosome ends involved in the fusion event. 

 

                            Table 2.10. Fusion reamplification PCR reaction mix 

Component [stock] 1x reaction (µL) [1x reaction] 

ddMilliQ H2O 17.92  

Taq buffer 10x 3 1x 

MgCl2 (25mM) 2.4 2mM 

dNTPs (100mM) 0.36 1.2mM 

Forward primer (10μM) 1.5 0.5mM 

Reverse primer (10μM) 1.5 0.5mM 

DNA (1:20) 3  

Taq/PWO (10:1U)  0.3 0.5/0.05U 

TOTAL 30  

 

The reactions were cycled using a Tetrad thermal cycler (Bio-Rad) under the same 

conditions as for the fusion PCR (Table 2.9). 
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2.2.10 Gel electrophoresis  

2.2.10.1 Gel electrophoresis for STELA, TVR and fusion PCR products  

The STELA, TVR and fusion PCR amplicons were resolved by a low density 0.5% agarose 

Tris‐acetate‐EDTA gel electrophoresis causing the negatively charged, long DNA fragments 

to migrate towards a positive electrode and therefore allow separation by size. The agarose 

(Roche) was dissolved in boiling Tris‐acetate‐EDTA (40mM Tris base, 20mM acetic acid, 

1mM EDTA) and was cooled down to 50°C. Then, 20µL Ethidium Bromide (EtBr) 

(0.625mg/mL) was added to intercalate with the DNA and allow its visualisation under the 

UV light.  

PCR products contained 1x Ficoll based loading dye (5% bromophenol blue, 5% xylene, 15% 

Ficoll) to make the sample more dense and allow it to sink on the well, as well as to 

determine the location of the smaller molecules that would run quicker in the gel. For 

STELA and TVR, the samples were loaded in individual pre-set wells and were subsequently 

resolved on a 40cm long gel at 120V for 16h. For a suitable resolution in the fusion analysis 

a 20cm long gel was sufficient. Therefore the 40cm long gel was used and a second row of 

pre-set wells was set up for space optimisation. DNA fragments were resolved by 

electrophoresis at either 50V for 16h or 200V for 3h. For enhanced resolution, the gel was 

submerged in 1xTAE and incubated at 4°C by circulating it through a cooling system.  

2.2.10.2 Standard PCR products 

PCR products were resolved on 0.7-1% agarose (Geneflow) Tris‐acetate‐EDTA gel 

electrophoresis on a smaller 10-20cm gel at 100V for 2h. The density of the agarose gel 

would vary depending on the expected size of the DNA fragment; a higher concentration 

would be used for smaller fragments. 

2.2.10.3 Visualisation of PCR products 

DNA bands stained with the fluorescent dye EtBr were visualised using a UV-

transilluminator (EPS). The UV-light (wavelength of 210-285nm) excites the EtBr that emits 

orange light at 605nm. For STELA, TVR and the fusion assay, EtBr was used to visualise the 

DNA ladders on the gel to therefore cut the appropriate length in preparation for Southern 

blotting (section 2.2.11). 
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2.2.11 Southern blotting 

Southern blotting is a technique that allows detecting specific DNA sequences. The steps 

required include: transfer of the DNA fragments from an agarose gel to a nylon membrane, 

radiolabelling with a specific DNA probe and visualisation.   

2.2.11.1 DNA transfer from an agarose gel to a nylon membrane 

 The STELA, TVR and fusion gels were washed twice (6min/wash) in depurination buffer 

(0.25M HCl) that removed purine bases breaking the DNA in smaller fragments to facilitate 

the transfer. The gel was subsequently rinsed and washed for 15min in denaturation buffer 

(1.5M NaCl, 0.5M NaOH) that denatured the double-stranded DNA to enable hybridisation.  

A positively charged nylon membrane (Hybond-XL, GE Healthcare) was placed on top of the 

agarose gel followed by a stack of paper towels and applied weight. The negatively-charged 

single-stranded DNA fragments were transferred by alkaline Southern blotting during 4h 

using the same denaturation buffer that passed through the gel and filtered to the paper 

towels.  

2.2.11.2 Synthesis of the radiolabelled DNA probe 

25ng of probe DNA in a total volume of 45µL TE buffer (10mM Tris-HCl and 1mM EDTA) 

was heated to 96°C for 5min to denature the DNA. The mixture was incubated on ice for 

5min, the probe was added to Rediprime Labelling system (GE Healthcare), together with 

4µL of [33P]dCTP (3000Ci/mmol), and was incubated in a water bath at 37°C for 1h. The 

radiolabelled probe was generated by incorporating α-33P-dCTP into the synthesised DNA. 

Afterwards, 1µL of radiolabelled DNA ladder (1kb and 2.5kb) was added together with 50µL 

of ddMilliQ water to stop the reaction. Radiolabelled probes were stored in the fridge at 

4°C up to 2 weeks. 

STELA and TVR products were detected using a probe specific for the telomere repeat 

sequence. Telomere-specific probes were generated by PCR using pairs of telomere-

adjacent primers specific for each of the chromosomes ends involved in the fusion assay.  

2.2.11.3 Hybridisation 

The hybond membranes (GE Healthcare) were incubated in 15mL church buffer (0.5M 

Sodium phosphate dibasic (Na2HPO4), 7% SDS, 1% Bovine Serum Albumin (BSA), 1mM 
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EDTA) at 60°C in the hybridisation oven for 30min to reduce background hybridisation 

signal.  

The radiolabelled probe was denatured by heating at 95°C for 5min. Hybridisation was 

initiated by injecting 25µL of denatured radiolabelled probe into the hybridisation bottle 

(Thermo Scientific) which was rotated for 15h overnight at 60°C. These conditions were 

used for high stringency hybridisation to avoid unspecific binding of the probe. 

2.2.11.4 Removing unbound probe 

To remove excess unbound probe or bound non-specifically to the membrane, blots were 

washed three times with a wash buffer (0.1x sodium chloride sodium citrate (SSC), 0.1% 

SDS) and incubated at 60°C for 30min for a longer wash which was subsequently repeated. 

Stringent washes at high temperature and low salt concentration allowed the stability of 

perfectly matched hybrids only.  STELA or TVR blots were transferred onto filter paper and 

dried at 60°C for 25min. For fusion blots, excess water was removed by placing the 

membranes onto paper towels. Then, the blots were subsequently wrapped in cling film 

ready for exposure. 

2.2.11.5 Visualisation of radiolabelled blots 

The radiolabelled southern blots were left for 15h exposure in a cassette with a molecular 

dynamic phosphorimager screen (Amersham) on top. The screen was scanned and the 

hybridised fragments were detected by phosphorimaging with a Typhoon FLA 9500 

biomolecular imager (GE Healthcare) and visualised using Molecular dynamics ImageQuant 

TL (GE Healthcare). 

The radiolabelled probe was stripped from fusion blots with 500mL of boiling 0.1% SDS for 

1h that was repeated three times prior to hybridising with the next probe. 

Sequential hybridisations in the order 5p – 17p – XpYp – 16p – 21q were undertaken with 

each of the telomere-specific probes. Each probe was stripped using boiling 0.2% SDS.   
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2.2.12 Gel analysis and statistics 

For STELA blots, the molecular weights of the resolved telomeres were determined using 

the TotalLab TL120 imaging software (Nonlinear Dynamics) based on comparison with the 

ladder run on the gel detected with the ladder probe. The measurements were exported 

onto Microsoft Excel where the mean and standard deviations for each sample were 

calculated once the distance between the binding site of the telomere adjacent primer to 

the start of the telomere was subtracted. Statistical analysis from the data obtained from 

STELA and TVR was performed using GraphPad Prism 5. 

2.2.13 Sanger Sequencing 

2.2.13.1 DNA extraction from agarose gel 

For DNA Sanger sequencing of a specific genomic location or a telomere fusion amplicon, 

PCR products were electrophoresed on an agarose gel (detailed in section 2.2.10) and the 

DNA band was excised using a scalpel. The DNA was extracted from the excised agarose 

band using the High Pure PCR product purification kit (Roche).  

The DNA was eluted in 35µL of elution buffer (10mM Tris-HCl, pH8.5) and was stored at -

20°C for subsequent use. 

2.2.13.2 Sequencing reaction 

A 10µL PCR reaction was set up containing purified DNA, sequencing primer and BygDye 

Terminator Cycle sequencing mix (v3.1) (Applied Biosystems) according to Table 2.11.  

  Table 2.11. Sequencing PCR reaction mix 

Component [stock] 1x reaction (µL) [1x reaction] 

Purified DNA 4.4  

Primer (1μM) 1.6 0.16µM 

BigDye reagent  4 1X 

TOTAL 10  

 

The reactions were cycled Tetrad thermal cycler (Bio-Rad) under the following conditions:    
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              Table 2.12. Sequencing PCR cycling conditions 

Denaturation Annealing Elongation Short-term storage 

96°C (10s) 50°C (5s) 60°C (4min) 10°C 

25 cycles ∞ 

 

Following sequencing, 10µL ddMilliQ H2O was added to the product and the reactions were 

purified using Dye Ex 2.0 spin kit (Qiagen) to remove unincorporated dye terminators by 

gel-filtration. The cleaned product was sequenced by the Central Biotechnology Service 

(CBS), Cardiff University. 

2.2.13.3 Analysis of sequences 

The sequenced DNA was viewed using Sequence Scanner v1.0 and analysed using Basic 

Local Alignment Search Tool (BLAST) software on the Ensembl and NCBI websites.  

2.2.14 Paired-end Next Generation Sequencing 

2.2.14.1 Pre-sequencing PCR clean-up 

Before sequencing, PCR reaction products were purified of PCR reagents (primers, 

nucleotides, enzymes and salts) by magnetic separation using Agencourt AMPure XP 

purification kit (Beckman Coulter) along with the DynaMag-2 magnet (Life technologies).  

For each sample, 200 fusion PCR reactions were prepared and 4 random PCR reactions 

were taken for quality control validation by southern blotting before the remaining 

reactions were pooled for purification. Following fusion PCR validation, the reactions from 

each sample were pooled and a 5µL pre-cleared aliquot was taken. The remaining product 

was split equally in 1.5mL tubes and gently mixed with AMPure XP reagent at room 

temperature (1.8mL AMPure XP/1mL PCR product). Following a 5min incubation period at 

room temperature the PCR products were bound to the paramagnetic beads. Since the 

paramagnetic beads were coated with carboxyl molecules, in the presence of polyethylene 

glycol (PEG) and salt, the beads reversibly bound the negatively charged DNA (>100bp). The 

tubes were transferred to the magnet and incubated for 2min to allow the separation of 

the beads and PCR products from contaminants (PCR reagents). The supernatant was 

subsequently discarded.   
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The beads and PCR products were washed twice with 70% ethanol to remove 

contaminants. The ethanol was discarded and the beads were left to air-dry for 20min to 

remove the residual ethanol. Tubes were removed from the magnet and the PCR products 

were eluted from the beads with nuclease-free water (volume (V); Velution = ¼ x Voriginal).  

Tubes were returned to the magnet for 2min to allow the beads to separate from the 

solution containing the eluted DNA sample. The post-clean PCR products were pooled and 

a 5µL aliquot was taken. 

To verify the functionality of the purification of the PCR reactions the pre- and post-

purification aliquots were run on a 0.5% agarose gel, southern blotted and hybridised with 

the fusion radiolabelled probes. 

2.2.14.2 Illumina HiSeq4000 PE100 paired-end NGS 

To sequence telomere fusion amplicons, paired-end sequencing was chosen. As the 

distance between each paired-read is known, it allows the detection of gene fusions, 

chromosomal aberrations and novel transcripts, or in this case, telomere fusions (Figure 

2.1).  In addition, it allows sequencing repetitive regions with a high mapping quality.  

Illumina HiSeq4000 100PE paired-end NGS of the telomere fusion amplicons from 1 CLL 

patient sample was performed by Oxford Genomic Centre (UK) and the remaining 8 CLL 

patient samples by BGI Tech (Hong Kong). 

 

Figure 2.1. Paired-end sequencing and alignment. 

Taken from Illumina, Inc. (www.illumina.com). Paired-end NGS, sequences both ends of a DNA 

fragment resulting in improved alignment of the reads, particularly in repetitive regions of the 

genome and facilitates the detection of telomere fusions. 

  

http://www.illumina.com/
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2.2.14.3 Data processing and quality controls (QC) with bioinformatics tools 

The bioinformatics approach used was based on a novel pipeline developed by Dr Kevin 

Ashelford (Liddiard et al., 2016). Dr Kez Cleal performed the data handling, QC and 

mapping strategies. The downstream analysis including manual curation and investigation 

of telomere fusions were performed by myself.  

Raw sequencing data, containing the DNA sequence and the quality scores, were 

downloaded from the server in the text-based format FASTQ files. Read quality was 

measured from the FASTQ files using the FastQC (v0.11.2) quality control software package 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Mapping success and insert 

size-range were also calculated from the data. The read yield, amount of DNA sequenced 

per sample, were in the range (10-15Mb) of data.  

Reads were trimmed to remove sequence tags and primers using Trimmomatic (version 

0.30) (Bolger et al., 2014) and data for each sample was processed for observation of two 

different types of telomere fusion events: intra- and inter-chromosomal. The mapping 

approaches taken for each case are explained. 

For analysis of intra-chromosomal or sister chromatid telomere fusion events, discordant 

read-pairs mapping to a single subtelomere (5p, 17p or XpYp) were filtered on orientation 

and only discordant paired-reads both in forward (F) orientation representing head-to-head 

fusions and not genomic input were selected for analysis.  

For the inter-chromosomal analysis, reads were mapped to the unmasked human genome 

build 37 (hg19) reference sequence containing appended subtelomeric sequences (Stong et 

al., 2014) and the 5p, 17p, XpYp, 16p family and 21q family subtlelomeric sequences (based 

on HCT116 human cell line reference).  From the list of discordant read-pairs, those with an 

unmapped read/mate or a read/mate in the reverse strand were excluded.  

Genome alignment using the Burrows-Wheeler Aligner (BWA) (Li and Durbin, 2009) 

software produced Sequence Alignment Map (SAM) files that were then converted into the 

compressed binary version (BAM files), together with their index (BAI files). BAM files 

where then sorted, merged and filtered according to the intra- and inter-chromosomal 

analysis using SAMtools (Li et al., 2009). Spreadsheets containing the results obtained from 

the intra- and inter-chromosomal analysis and files for visualisation of the data were 

generated for manual curation and downstream analysis. 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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The customised scripts used for the mapping and analysis (available at GitHub 

https://github.com/nestornotabilis/GenomeResearch_2016_scripts) consisted of a Bash 

wrapper script that embedded Perl scripts. To process some of the scripts, an associated 

Java code was needed https://github.com/nestomotabilis/WGP-Toolkit.  

2.2.14.4 Manual curation and downstream analysis 

To exclude ambiguous or poor quality mappings, discordant read-pairs were filtered on 

MAPQ>0. The read coverage on its own was not a good indicator of authenticity due to the 

proportion of these rare and unique telomere fusion events. Therefore, each of the 

telomere fusions identified from the read-pair mapping was further validated manually. 

Information considered included the mapping quality score for paired-reads, the 

orientation of the reads and the proportion of softclipping that may identify a sequence 

aligning elsewhere in the genome. The events were visualised using the tool Integrative 

Genome Viewer (IGV) (Robinson et al., 2011) and reconstructed and interrogated using 

BLAST against the human genome and the subtelomeric sequences. Telomere fusions were 

classified into distinct type of events, microhomology at the fusion junction was examined 

and subtelomeric deletion was measured at sister chromatid fusion events. In addition, the 

signature of telomere fusions for each CLL patient was investigated and genomic loci 

incorporated into fusions were studied in detail. 

A summary of the workflow for the analysis of the telomere fusion amplicons is depicted in 

Figure 2.2. More detailed information about the manual curation and downstream analysis 

can be found in results chapter 4. 

https://github.com/nestornotabilis/GenomeResearch_2016_scripts
https://github.com/nestomotabilis/WGP-Toolkit
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Figure 2.2. Workflow for the NGS analysis of telomere fusion amplicons. 

Pipeline for the detection of telomere fusion events using bioinformatics tools, followed by manual curation and downstream analysis for each CLL patient sample. 

Sequencing data of telomere fusion amplicons from 9 CLL patient samples were obtained from BGI Tech after they performed HiSeq4000 PE NGS. Data handling and QC 

were performed following intra- and inter-chromosomal mapping strategies. Finally, manual curation and downstream analysis were performed. Stong reference is the 

human subtelomeric sequence mapped by Stong et al., 2014.  

 



Chapter 2: Materials and Methods  

60 
 

2.2.15 Whole Genome Sequencing 

2.2.15.1 Illumina HiSeq2000  

CLL patient genomic DNA samples derived from tumour CD19+ B cells (30µg) and control-

matched CD3+ T cells (2µg) were sent to BGI Tech Solutions (Hong Kong) for Illumina 

HiSeq2000 PE whole genome sequencing (WGS) with 60x and 30x coverage, respectively. 

Library preparation including fragmentation and adapter ligation, DNA amplification 

resulting in cluster generation and sequencing by synthesis, were performed at BGI tech.  

DNA mapping, QC and variant calling were performed by Dr Kez Cleal. Manual curation and 

downstream analysis were performed by myself. 

2.2.15.2 Data processing and quality controls (QC) with bioinformatics tools  

Once the raw data (FASTQ files) were obtained from the Illumina pipeline, primers, tags 

and low quality reads were removed using Trimmomatic (version 0.30 (Bolger et al., 2014)). 

Clean data was aligned to the human genome build 37 (hg19) reference sequence using the 

BWA software (Li and Durbin, 2009). The SAM file obtained was then converted to BAM file 

and its index BAI files using SAMtools (Li et al., 2009). 

Quality checks of reads were performed before and after alignment to the reference 

genome.  

2.2.15.3 Variant calling: SNVs and copy numbers  

Variant discovery analysis from the tumour sample compared to the normal, was 

performed using MuTect (Cibulskis et al., 2013) and Somatic Snipper (Larson et al., 2012) 

for calling single nucleotide variants (SNVs) and cn.MOPS (Klambauer et al., 2012) for 

discovering copy number variations (CNVs). 

2.2.15.4 Manual curation and downstream analysis 

Selected variants identified were manually validated by visualisation in IGV and Sanger 

Sequencing. Downstream analysis included investigating clonality within the sample, the 

IGHV gene mutational status, the impact of mutations and the presence of other forms of 

genomic instability such as translocations, uniparental disomy, kataegis and chromothripsis 

within the tumour sample. More information can be found in results chapter 5. 
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CHAPTER 3: 

 CHARACTERISATION OF THE 5P TELOMERE: MEASUREMENT OF THE 

TELOMERE LENGTH AND INVESTIGATION OF TELOMERE 

DYSFUNCTION AND FUSION. 

3.1 ABSTRACT 

The catalytic subunit of telomerase (hTERT) is one of the most distal genes on 5p. 

Translocations involving this locus have previously been detected in CLL and may impact on 

telomerase activity and disease progression. In this study it was examined whether 

dysfunction at the 5p telomere could lead to chromosomal instability that affects 

telomerase expression.  

In this chapter, high-resolution single-molecule approaches were adapted to precisely 

measure telomere length (TL) and to detect unique fusion events at the 5p telomere. Data 

were consistent with the 5p telomere displaying similar TL profiles to other unique 

telomeres, including 17p and XpYp. Rare telomere fusions involving 5p were identified in 

22.6% (40/177) of CLL patient samples with fusions, which may provide insights into the 

mechanism of hTERT translocation in cancer. Particularly interesting are sister chromatid 

fusions that could lead to hTERT amplification and inter-chromosomal fusions with 17p, 

that could result in loss of the tumour suppressor gene TP53. 

To further investigate telomere-driven chromosomal rearrangements in CLL, 276 samples 

from patients with short telomeres (TL<3.81 Kb) were screened. Telomere fusions were 

detected in 198 samples (71.7%). Different frequencies of fusions were observed amongst 

CLL patients with short telomeres; however, it did not correlate with TL. The fusion 

frequency failed to provide further prognostic information, although 15 months shorter 

progression free survival (PFS) and shorter overall survival (OS) was observed among CLL 

patients with the highest frequency of fusions than patients with no fusions detected. 

Moreover, 15 samples with the highest fusion frequency (>4.20x10-5 per diploid genome) 

were identified and 9 were selected for high-resolution NGS characterisation of telomere 

fusions in the CLL genome, featured in Chapter 4. 
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3.2 INTRODUCTION 

 Extensive telomere erosion or unprotected telomeres result in the loss of telomere 

function and the induction of senescence (Harley et al., 1990, Bodnar et al., 1998).  If cell 

cycle checkpoints are not intact, cells can continue to divide and enter a telomere-driven 

crisis characterised by telomere fusions and the initiation of breakage-fusion-bridge (BFB) 

cycles that can result in large-scale genomic rearrangements (McClintock, 1941, Ma et al., 

1993). The stabilisation of telomere length (TL) is required for cells to escape crisis and gain 

replicative immortality, this is considered to be an essential step for malignant progression 

(Kim et al., 1994, Meyerson et al., 1997). Telomerase is reactivated in 85% of human 

malignancies (Kim et al., 1994, Meyerson et al., 1997). The TElomerase Reverse 

Transcriptase (hTERT) is the catalytic subunit of the telomerase holoenzyme that mediates 

the addition of hexameric repeats to extend telomeres and increase the lifespan of the cell 

(Greider and Blackburn, 1985, Morin, 1989). In humans, hTERT is located proximal to the 5p 

telomere (Chr5p13.33). In cancer, upregulation of telomerase can be caused by hTERT 

promoter point mutations that create new binding sites for transcription factors, 

translocations of the gene near an enhancer or amplifications of the hTERT locus (Bell et al., 

2015, Horn et al., 2013, Huang et al., 2013, Valentijn et al., 2015). Rearrangements of this 

locus have been observed in neuroblastoma and associated with more aggressive disease 

(Valentijn et al., 2015, Peifer et al., 2015). In B-cell malignancies including CLL, 

rearrangements including hTERT have been involved in telomerase upregulation (Nagel, 

2010; Schilling et al., 2013). Genomic rearrangements of the 5p chromosome were 

observed in 3/8 CLL patients consistent with a chromothripsis-like pattern, including gains 

of the hTERT locus (Salaverria et al., 2015). In addition, amplification of 5p, including the 

hTERT locus, coincident with telomerase upregulation was observed in cells after an escape 

from a telomere-driven crisis in culture in HCT116 cells transfected with a dominant-

negative hTERT (DN-hTERT) construct (Jones et al., 2014).  

Telomere fusions have been detected in patient CLL-B cells with short telomeres 

(TL<3.81Kb) which correlated with loss of heterozygosity (LOH) and increased genomic 

instability (Lin et al., 2010). Moreover, CLL patients within the mean TL range at which 

fusions are detected (TL<2.26Kb), present a more aggressive disease with shorter survival 

(Lin et al., 2014).  
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As sister chromatid fusion events have the power of gene amplification and given the 

proximity of hTERT to the 5p telomere, in this study it is hypothesised that 5p-5p intra-

chromosomal telomere fusions have the potential to initiate amplification at the hTERT 

locus and that this may be important in the progression of CLL.  

3.3 AIMS OF THE PROJECT 

The purpose of this chapter was to assess whether the 5p telomere is dysfunctional and 

can undergo fusion in CLL patients, particularly sister chromatid fusions that can lead to 

gene amplification. This was achieved by adapting STELA and the single-molecule telomere 

fusion assay to characterise the 5p telomere.  

The aims of this chapter were as follows: 

• To adapt STELA and the TVR assay to measure the 5p telomere length and the content 

of telomere variant repeats (TVRs). 

• To compare the 5p telomere length with the well-characterised 17p and XpYp 

telomeres in order to evaluate whether the 5p telomere exhibits differential dynamics 

that may drive dysfunction and fusion at this telomere.  

• To adapt the single-molecule telomere fusion assay to include the 5p telomere 

• To investigate whether the 5p telomere undergoes dysfunction and fusion in a cohort 

of 276 CLL patients with short telomeres (TL<3.81Kb). 

• To identify CLL patients with the highest frequency of telomere fusions.  

• To assess whether the frequency of fusions could further stratify CLL patients into 

prognostic subgroups.  

• To investigate changes in 5p TL and LOH during a telomere-driven crisis in culture.  
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3.4 RESULTS 

3.4.1 5p STELA measures the telomere length of the 5p chromosome arm in 

human cell lines and CLL patients 

A pair of primers was designed with the 367bp adjacent to the start of the human 

chromosome 5p telomere repeat array (Supplementary Table 2) and they were tested in 

gradient PCR using Human Embryonic Kidney (HEK) 293 human cell lines. 5p specificity was 

confirmed with subsequent Sanger sequencing of the amplicons (Figure 3.1).  

 

Figure 3.1. Development of 5p STELA. 

(A) Adaptation of Baird et al., 2003 showing the localisation of STELA oligonucleotide primers and 

linkers at the 5p chromosome end.  (B) Amplicons generated with a gradient PCR with the 5p4 and 

5p5 primers for s1: HEK293 cells, s2: CLL patient sample, -: ddH20 (negative control). For further 

experiments Tm 59°C was selected for 5p STELA.  (C) Sequence of the product obtained with the 5p4 

and 5p5 primers (335bp) used as a 5pA telomere adjacent specific probe in Southern blots 

highlighted in the dashed box. 5p primers indicated with bold and underlined. Start of the telomere 

indicated with red. 

To validate the specificity of the 5p STELA and confirm reproducibility, the 5p TL was 

determined in two clonal populations from the HCT1080 and MRC5 cell lines for which 

XpYp TL profiles were previously characterised. A single homogeneous XpYp TL distribution 

was observed for HCT1080 clone 5, since all cells derive from the same clone they present 
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similar TL. In contrast, a bimodal distribution was observed from the MRC5 clone 13 

population indicative of two XpYp alleles of discrete and different lengths (Figure 3.2A).     

If the 5p telomere presented distinct allelic TLs or 5p STELA amplified telomeres of 

different chromosome ends, more than one TL distributions would be observed. However, 

a single 5p TL distribution was observed for both HT1080 and MRC5 clonal populations, 

indicating that 5p STELA was specific for the 5p chromosome end only and not other 

chromosome ends (Figure 3.2A).   

 

Figure 3.2. Validation of the specificity and optimisation of 5p STELA. 

 (A) Comparison of 5p and XpYp STELA for the cell lines HEK293, HT1080 clone 5 and MRC5 clone 13. 

The two different alleles of MRC5-cl13 marked by red arrows. (B) 5p and XpYp STELA for 3 different 

CLL patient samples. STELA products were generated using 250pg DNA per reaction with the 

following primers: 5p5 and XpYpE2, and detected with the telomere probe. Each single band 

represents a telomere. 

The accurate assessment of 5p TL in cell lines and CLL patient samples was hampered by 

the lower numbers of amplicons compared to XpYp STELA using the same template DNA 

(250pg) (Figure 3.2).  To increase the number of amplifiable molecules detected with 5p 

STELA, the DNA template input was adjusted by titration until comparable numbers of 

amplified molecules to the XpYp and 17p STELA was achieved, allowing proper statistical 

comparisons of TL in patient samples. For 5p STELA, 5 times more DNA than for 17p and 

XpYp STELA was required (Figure 3.3). 
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To provide an addition confirmation of the assay specificity and to detect short 5p 

telomeres that may not hybridise with the telomere-repeat probe, a probe (5pA) that 

hybridises to the 5p telomere-adjacent DNA sequence was designed using the 5p4 and 5p5 

primers (Figure 3.1C). 

A comparison of 5p STELA on CLL patient samples detected with both the 5pA probe 

(Figure 3.3A) and the telomere probe (Figure 3.3B) enabled the detection of three different 

types of telomeres depending on the pattern of hybridisation.  Type I included most of the 

telomeres, which were detected with both the telomere and the 5pA probes. Type II 

comprised very short telomeres (TL<1Kb) detected with the telomere adjacent probe but 

not hybridised with the telomere probe because of the lack of TTAGGG-repeats. Lastly, 

type III consisted of telomeres (TL>1Kb) detected with the telomere probe but not the 5pA 

DNA adjacent probe indicating they might not contain enough telomere-adjacent DNA 

sequence to hybridise.  
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Figure 3.3. 5p STELA on 12 CLL patient samples. 

STELA products were detected respectively with (A) the 5pA telomere adjacent probe and (B) the 

telomere probe. Some examples of the three different types of telomeres hybridisation pattern are 

shown with the circles (presence) and arrows (absence) of different colours. Type I: most of the 

telomeres, detected with both probes (blue). Type II: Very short telomeres (TL<1Kb) detected with 

the telomere adjacent probe but not the telomere probe (red). Type III: telomeres (TL>1Kb) 

detected with the telomere probe but not the 5pA probe (purple). Telomere mean and standard 

deviation (SD) are shown underneath. STELA products were generated using 1250pg DNA per 

reaction with the 5p5 primer.   
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3.4.2 Comparison of the telomere lengths at 5p, 17p and XpYp in CLL 

patients  

To examine how the 5p TL profiles compared to other unique human telomeres, the TL in 

57 CLL patients was measured using STELA at the 5p, 17p and XpYp telomeres.   

The STELA reactions from 5p, 17p and XpYp from the same template DNA stock were 

analysed on the same gels (Figure 3.4). The TL for each individual telomere was measured 

and the distance from each primer to the start of the telomere was subtracted to obtain 

the real TL (5p=0.367Kb, 17p=0.311Kb and XpYp=0.408Kb). The mean TL, standard 

deviation (SD) and standard error (SE) at each chromosome end was calculated for 57 CLL 

patients (Table 3.1, Figure 3.4 and Supplementary Table 3). 

Table 3.1 Descriptive analysis at the 5p, 17p and XpYp telomeres for 57 CLL patients. 

Telomere 5p 17p XpYp 

Mean TL (Kb) 3.180 2.917 2.511 

SD (Kb) 1.164 1.075 0.977 

SE (Kb) 0.154 0.142 0.129 

 

Regression analysis was used to predict the relation of the TL among the distinct telomeres. 

Results from the comparison of the mean TL revealed a significantly positive correlation 

(p<0.0001) as follows 5p-17p: r2=0.6453, 5p-XpYp: r2= 0.7220 and 17p-XpYp: r2= 0.7366. 

These results indicated a positive association of the TL measured for the individual 

telomeres for each same patient (Figure 3.5A-C).  

Telomere length analysis of 57 CLL patients samples revealed that the 5p telomere was 

significantly longer when compared to XpYp (p<0.05). Similarly, the 17p telomere was 

significantly longer than XpYp (p<0.05). The 5p and 17p mean TL were greater than XpYp by 

0.699Kb and 0.406Kb, respectively. However, there were no significant differences 

between 5p and 17p (Figure 3.5D).  
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Figure 3.4. Comparison of the telomere lengths at 5p, 17p and XpYp. 

Southern blot of four gels showing STELA at telomeres 5p 17p and XpYp for 8 of the 57 CLL samples. 

The mean and standard deviation are shown underneath.  STELA products were generated using the 

following telomere-specific primers: 5p5, 17pseqrev1, XpYpE2, and detected with the telomere 

probe. 
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Figure 3.5. Comparison of the telomere length at 5p, 17p and XpYp for 57 CLL patients. 

Correlation of the TL between the different chromosome ends (A) 5p-17p telomeres (r2=0.6453), (B) 

5p-XpYp telomeres (r2=0.7220) and (C) 17p-XpYp telomeres (r2=0.7366) with p<0.0001. (D) Scatter 

plot of mean TL at the 5p, 17p and XpYp chromosome ends. Samples did not follow Gaussian 

distribution (Shapiro-Wilk normality tests). Statistical analysis was performed with Friedman test 

p<0.0001 (non-parametric alternative to repeated measures ANOVA test) and Dunn’s Multiple 

Comparison post-hoc test p<0.05. Standard error bars indicated in red. 
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3.4.3 The 5p telomere contains more variant repeats than the XpYp telomere  

Telomere variant repeats (TVRs) such as TTGGGG, TGAGGG and TCAGGG (the most 

common ones) are located in the proximal regions of human telomeres interspersed with 

the canonical TTAGGG and can be found in variable amounts (Allshire et al., 1989, Baird, 

1995).  

TVRs are non-functional telomeric repeats and may confound the real TL based on 

canonical TTAGGG repeats. To examine the nature of these differences on the 5p TL 

compared with XpYp, the variable amounts of the variant repeats TGAGGG and TCAGGG 

contained in the proximal regions of the 5p and XpYp telomeres were measured for 10 CLL 

patient samples using TVR-PCR (Baird, 1995). The mean TL was compared before and after 

correcting for the amount of TVRs. The most distal TVR position was subtracted from the 

mean TL (before subtracting the distance to the primer).  

According to previous results, the 5p mean telomere was significantly longer (1.06Kb) than 

XpYp (p=0.0019) but significant differences disappeared (0.33Kb) after correcting the TL for 

the amount of TVR (p=0.2685) (Figure 3.6 and Supplementary Table 4 ).  

The 17p telomere was excluded from this study, as the presence of a constant non-specific 

PCR-artefact band prevented the measurement of the TVR. In addition, there were no 

differences between 5p and 17p TL, therefore this study focused on comparing the 5p to 

the XpYp. 
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Figure 3.6. Comparison of the Telomere Variant Repeat at 5p and XpYp. 

(A) The generation of a telomere map is achieved with the combination of the telomere-specific 

primers 5p5 and XpYpE2, together with the TAG-TelW, TAG-TelX, TAG-TelY, that amplify the 

telomere TTAGGG (white square), TVR TGAGGG (grey square) and TVR TCAGGG (hatched square), 

respectively. The products are resolved in a gel and the Southern blot is hybridised with a telomere 

probe. The telomere map can then be constructed. Unknown TVR are represented with a chequered 

square. Adaptation from Baird, 1995. (B) Examples of telomere maps by TVR-PCR from five of the 10 

CLL samples analysed. The distribution of T (TTAGGG), G (TGAGGG), C (TCAGGG) and unknown can 

be read from the Southern blot of the gel at telomeres 5p and XpYp. Red arrows indicate the most 

distal position of the TVR detected for each individual at 5p compared to XpYp. (C) Comparison of 

the TL before and (D) after correcting by TVR. Shapiro-Wilk statistical normality tests (p>0.05) 

indicated a Gaussian distribution. Paired Student’s T-test for n=10 and p<0.05, the p-values before 

and after correcting are 0.0019 and 0.2685, respectively.  Standard error bars indicated in red. 
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3.4.4 5p telomere fusions are detected with the 5p8:17p6:XpYpM:16p1:21q1 

telomere fusion assay in human cell lines and CLL patients 

3.4.4.1 Development of the telomere fusion assay at the 5p chromosome end  

To examine whether the 5p telomere was dysfunctional and fusogenic, the telomere fusion 

assay was adapted to include the 5p telomere. Selection of primers within 6kb of the 5p 

telomere was based on restricted specificity of 5p subtelomeric sequence (Figure 3.7, 

Figure 3.8 and Supplementary Table 5).  

A CpG island was observed within the 5p subtelomeric DNA as shown in Figure 3.9 using 

the ENDEMO GC content calculator tool (http://www.endmemo.com/bio/gc.php). The CpG 

island was a region of ~922bp with 78.31% GC content. It can be difficult to amplify GC-rich 

sequence because of the formation of secondary structures that resist denaturation and 

impede primer annealing. Therefore primer combinations were located at either side 

avoiding and including the CpG island.  

Each of the 5p pair of primers was tested in a conventional gradient PCR reaction 

(annealing temperature 58-68°C) for the HEK293 cell line, a CLL patient sample and a 

negative control (ddH20). Only the primer combinations A, E, F and G that excluded the CpG 

island at 5p were able to generate amplicons. (Figure 3.8D).  

The optimal Tm, indicated with the amplification of a PCR product of expected size and the 

lack of non-specific PCR amplicons, was selected for each primer combination (Figure 3.8D 

and Supplementary Table 6).  

Following amplification and purification of the PCR products from the agarose gel, DNA was 

Sanger sequenced and aligned to the human genome to verify the specificity of the 

primers. The resulting sequence was specific to the 5p subtelomere. 

 

http://www.endmemo.com/bio/gc.php
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Figure 3.7. Chromosome 5p sequence and localisation of the primers. 

Sequence of the 5p subtelomeric region and primers designed in this study. The CpG island is 

highlighted by a green box. 5p4 for 5p STELA and 5p4+5p5 for the telomere-adjacent probe 5pA. 

5p7, 5p8, 5p9 for the 5p:17p6:XpYpM:16p1:21q1 fusion assay and 5p6 in combination with the 5p 

fusion primers for the 5p-specific probes. TVRs can be observed at the start of the telomere in red. 
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Figure 3.8. Primer design at the 5p chromosome end. 

(A) Chromosome 5. The 5p telomere is highlighted by a black box and the location of the hTERT gene 

locus is indicated by a red arrow. (B) A representation of the 5p subtelomeric region with the 

location of primers and (C) distance to the start of the telomere. GC-rich DNA sequence is 

highlighted by a green box and highlights primer combinations at each side. (D) Agarose gels 

following gradient PCR (Annealing temperature 58-68°C) with different primer combinations (A: 

5p5+5p4 (0.34Kb), B: 5p7+5p4 (1.89Kb), C: 5p8+5p4 (3.37Kb), D: 5p9+5p4 (5.90Kb) E: 5p6+5p7 

(0.64Kb), F: 5p8+5p6 (2.12Kb) and G: 5p9+5p6 (4.64Kb)). A was used as the 5p telomere-adjacent 

DNA probe for 5p STELA. F and G as 5p fusion probes in the fusion assay. The most appropriate Tm 

for each primer combination is highlighted by a blue box. 1: HEK293 cell line, 2: CLL patient sample 

and 3: negative control (ddH20). Green box indicates primer combinations that span the CpG island. 

 

 

Figure 3.9. GC distribution at the 5p subtelomere. 

ENDMEMO GC was used for creation of data on GC 

content in Human Feb. 2009 (GRCh37/hg19) 5p 

subtelomeric DNA sequence (0-6Kb). The GC island 

(922bp) had a 78.31% average GC content. The blue 

line indicates the average GC content (%). Telomere 

sequence (TTAGGG) was not included in the figure 

(GC content ~50%). 
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3.4.4.2 Optimisation: testing different telomere fusion primer combinations  

The single-molecule telomere fusion assay originally developed in our laboratory, consists 

of four primers, two of which target unique telomeres (17p and XpYp) and two that target 

several distinct telomeres (16p family: 16p, 1p, 9p, 12p, 15q, XqYq and 2q14 interstitial 

telomeric locus, and 21q family: 21q, 1q, 2q, 5q, 6q, 6p, 8p, 10q, 13q, 17q, 19p, 19q, 22q 

and the 2q13 interstitial telomeric locus), amplifying a total of 23 telomeres (Capper et al., 

2007, Letsolo et al., 2010). 

To investigate whether the 5p telomere is fusogenic, which could result in genomic 

instability in this chromosome arm where hTERT is located, the telomere fusion assay was 

adapted to include the 5p telomere. To maximise the number of detectable fusions a 

systematic analysis of fusion amplicons generated using different 5p telomere-specific 

primers in combination with our group’s fusion assay was conducted. 

Each of the 5p primers was tested independently in the fusion PCR assay, on their own and 

in combination with 17p6, XpYpM, 16p1 and 21q1 primers with DNA extracted from the 

human HEK293 cell line and a CLL patient sample. The hybridisation pattern with the 

different probes revealed the specificity of the 5p primers. With the 5p primer alone, only 

products with the 5p probe and not the other probes were detected.  In contrast, with the 

17p6:XpYpM:16p1:21q1, PCR amplicons were hybridised with the other probes, but not 

with the 5p probe (Figure 3.10 and Figure 3.11).  

Southern hybridisation with the 5p9G probe revealed a substantial amount of PCR 

artefacts, non-fusion amplicons resulting from the inclusion of the 5p9 primer (Figure 

3.10).  By performing in-silico PCR with the different primers involved (5p9, 17p6, XpYp, 

16p1 and 21q1), the non-specific PCR background signal was resolved to be an off-target 

event created by the 5p9 primer in combination with the 21q1 primer (Table 3.2). 

Compared to 5p9, 5p8 resulted in efficient amplification of fusion molecules with only a 

single characteristic constitutive background band (non-fusion amplicons) of 1.4kb (Figure 

3.11 and Figure 3.12A). Therefore, the 5p8 primer that was located 3.4Kb away from the 

start of the telomere, was selected and included in the fusion assay. 
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Figure 3.10. Testing the 5p9 primer into the fusion assay. 

Telomere fusion assay with 5p9, 17p6:XpYpM:16p1:21q1 and 5p9:17p6:XpYpM:16p1:21q1 using the 

HEK293 cell line and a CLL patient sample at Tm 62°C. Southern blots were hybridised with (A) 5p9G, 

(B) 17p6, (C) XpYpOG, (D) 16p1, (E) 21q1 and (F) Telomere probes. PCR non-specific products 

produced with the 5p9 and 21q1 primers highlighted with a red box. 
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Figure 3.11. Testing the 5p8 primer into the fusion assay. 

Telomere fusion assay with 5p8, 17p6:XpYpM:16p1:21q1 and 5p8:17p6:XpYpM:16p1:21q1 using the 

HEK293 cell line at Tm 62°C and 65°C. Southern blots were hybridised with (A) the 5p8F, (B) 17p6, 

(C) XpYpOG, (D) 16p1, (E) 21q1 and (F) Telomere radiolabelled probes. PCR non-specific products 

produced with the 5p8 primer highlighted with a red box. 
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Table 3.2. In-silico PCR results using the 5p9 and 21q1 primers. 

Primers Location Product size (Kb) 

5p9 + 21q1 

chr1:249226143+249236498  10.356 

chr2:243155772-243164493  8.722 

chr5:180895308+180904773  9.466 

chr8:158924-167369  8.446 

hr10:135510156+135521468  11.313 

chr19:249134-255942 6.809 

chr19:59104902+59115960  11.059 

chr21:48105249+48116107  10.859 

 

The PCR annealing temperature was increased from 62°C to 65°C to reduce non-specific 

products resulting from unspecific binding of the primer. However, the 1.4Kb band could 

not be eliminated and the number and intensity of the telomere fusion amplicons 

decreased at 65°C (Figure 3.11 and Figure 3.12B).  

Altogether, a Tm of 62°C annealing temperature using the 5p8 primer was selected for 

subsequent experiments. 

 

 

Figure 3.12. Highlights from the optimisation of the 5p8:17p6:XpYpM:16p1:21q1 fusion assay. 

Comparison of amplicons detected after performing the telomere fusion assay (A) with the 5p9 and 

the 5p8 primer. Southern blots were hybridised with the 5p9G and 5p8F, respectively. (B) 

Comparison of results obtained using the 5p8 primer at Tm 62°C and 65°C. Southern blot was 

hybridised with the XpYp probe. PCR non-specific products highlighted with a red box. 
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3.4.4.3 The 5p8 PCR artefact is generated by non-specific binding of the 5p8 

primer  

Characterisation of the 5p8 constitutive background band (1.4Kb) was completed by 

reamplification of the band using the 5p8 primer. The DNA was subsequently purified from 

the agarose gel and Sanger sequenced. As shown in Figure 3.13, the 1.4Kb PCR product was 

generated by 7bp at the 3′ end of the 24bp-5p8 primer bound 1.377Kb upstream from the 

24bp-binding site.  

 

Figure 3.13. Characterisation of the 5p8 PCR artefact. 

(A) The Southern blot was hybridised with the 5p8F probe following the 

5p8:17p6:XpYpM:16p1:21q1 telomere fusion assay on a CLL patient sample. (B) An agarose gel 

depicting the reamplification of the PCR artefact using only the 5p8 primer. The 5p8 PCR artefact is 

highlighted by a red box and the negative control is indicated by a blue box. (C) Nucleotide sequence 

product and primers used to reveal the cause of the artefact. Size 1.377Kb (~1.4Kb). 
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3.4.4.4 The inclusion of the 5p telomere in the fusion assay increases the 

detection of telomere fusion amplicons  

The fusion amplification efficiency was compared using the new 

5p8:17p6:XpYpM:16p1:21q1 combination with the former 17p6:XpYpM:16p1:21q1 method 

(without 5p8) using DNA derived from HEK293 cell line. The frequency of fusions (relative 

number of fusions per diploid genome) was calculated after detection of fusion events with 

each different radiolabelled probe.  

It is important to note that the frequency of fusions is a useful value that will be used 

throughout this project but only as a relative representation as this underestimates the 

frequency of fusions genome-wide.  

𝑭𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚 𝒐𝒇 𝒇𝒖𝒔𝒊𝒐𝒏𝒔 =
# 𝐹𝑢𝑠𝑖𝑜𝑛 𝑒𝑣𝑒𝑛𝑡

# 𝐷𝑖𝑝𝑙𝑜𝑖𝑑 𝑔𝑒𝑛𝑜𝑚𝑒
 

# 𝐷𝑖𝑝𝑙𝑜𝑖𝑑 𝑔𝑒𝑛𝑜𝑚𝑒 =
1 𝑑𝑖𝑝𝑙𝑜𝑖𝑑 𝑔𝑒𝑛𝑜𝑚𝑒

6𝑝𝑔 𝐷𝑁𝐴
𝑥

103𝑝𝑔 𝐷𝑁𝐴

1𝑛𝑔 𝐷𝑁𝐴
𝑥

100𝑛𝑔𝐷𝑁𝐴

1 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛
𝑥 #𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠 

 

Example: Three 5p fusion events detected in 12 PCR reactions containing 100ng each of 

gDNA derived from HEK293 cell line is a frequency of  1.5𝑥10−5 fusion events per diploid 

genome. 

𝑭𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚 𝒐𝒇 𝟓𝒑 𝒇𝒖𝒔𝒊𝒐𝒏𝒔 =
# 𝐹𝑢𝑠𝑖𝑜𝑛 𝑒𝑣𝑒𝑛𝑡

# 𝐷𝑖𝑝𝑙𝑜𝑖𝑑 𝑔𝑒𝑛𝑜𝑚𝑒
=  

3

2𝑥105
= 1.5𝑥10−5 

# 𝐷𝑖𝑝𝑙𝑜𝑖𝑑 𝑔𝑒𝑛𝑜𝑚𝑒 =
1 𝑑𝑖𝑝𝑙𝑜𝑖𝑑 𝑔𝑒𝑛𝑜𝑚𝑒

6𝑝𝑔 𝐷𝑁𝐴
𝑥

103𝑝𝑔 𝐷𝑁𝐴

1𝑛𝑔 𝐷𝑁𝐴
𝑥

100𝑛𝑔𝐷𝑁𝐴

1 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛
𝑥 12 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠 = 2𝑥105  

 

Using the 5p8:17p6:XpYpM:16p1:21q1 fusion assay compared with the 

17p6:XpYpM:16p1:21q1 (excluded 5p8)  resulted in an increase of fusions frequency from 

3.9x10-4 to 5.7x10-4 (Figure 3.14 and Table 3.3). Therefore, the 5p8:17p6:XpYpM:16p1:21q1 

fusion PCR assay was selected to detect the maximum number of fusion events present for 

each sample. 

The consecutive detection of the fusion products with different radiolabelled probes 

identified a 5p-17p inter-chromosomal fusion event and 2 possible 5p sister chromatid 

fusions in HEK293 cell line. Neither of them contained substantial telomere repeats as they 

were not hybridised by the telomere probe (Figure 3.14A). 



Chapter 3: Characterisation of the 5p telomere 

 

82 
 

 

Figure 3.14. Comparison of the distinct telomere fusion assays for HEK293 cell line at 62°C. 

(A) Fusion products generated by the 17p6:XpYpM:16p1:21q1 (4 primers) and 

5p8:17p6:XpYpM:16p1:21q1 (5 primers) telomere fusion assays were detected consecutively with 

the 5p8F, 17p6, XpYpOG, 16p1, 21q1 and telomere probe. Estimated frequency of fusion is listed 

underneath each image. Highlighted in the red circle an example of a 5p-17p inter-chromosomal 

fusion event. Two possible 5p-5p sister chromatid fusions, since they only hybridise with the 5p 
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probe, highlighted in a blue circle. The absence of the fusion events containing 5p when hybridising 

with the telomere probe are highlighted by red arrows. (B) Comparison of the frequency of fusion 

detected between the 17p6:XpYpM:16p1:21q1 (4 primers) and the 5p8:17p6:XpYpM:16p1:21q1 (5 primers) 

fusion assays. 

 

Table 3.3. Frequency of fusions detected with the distinct telomere fusion assays. 

Telomere fusion assay 5p8F 17p6 XpYpOG 16p1 21q1 Telomere 

17p6:XpYpM:16p1:21q1 0.00x10+0 1.20x10-4 8.50x10-5 1.50x10-5 7.00x10-5 1.00x10-4 

5p8:17p6:XpYpM:16p1:21q1 1.50x10-5 1.85x10-4 9.5x10-5 6.50x10-5 1.05x10-4 1.05x10-4 

 

3.4.5 Characterisation of the 5p telomere in a HCT116DN-hTERT clone 

progressing through a telomere-driven crisis. 

To study telomere erosion and progression through a telomere-driven crisis in vitro, our 

group transfected wild type (WT) HCT116 cell line with a DN-hTERT construct to inhibit 

telomerase expression. Telomere fusions were detected during crisis, and escape was 

associated with amplification of the 5p chromosome arm including the hTERT locus and 

upregulation of telomerase (Jones et al., 2014). Two examples for which this was observed 

included HCT116DN-hTERT WT clone 11 and LIG3-/-mL3+nuc. LIG3 clone 15 (Figure 3.15) (Jones et 

al., 2014).  

To investigate whether telomere erosion, dysfunction and fusion at the 5p telomere was 

associated with the amplification of 5p and reactivation of telomerase, 5p STELA and the 

5p8:17p6:XpYpM:16p1:21q1 fusion assay were used in HCT116DN-hTERT WT clone 11 and 

LIG3-/-mL3+nuc. LIG3 clone 15. 
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Figure 3.15. HCT116DN-hTERT cell lines. 

Growth curve for HCT116DN-hTERT (A) WT clone 11 and (B) LIG3-/-mL3+nuc. LIG3 clone 15. Red box 

highlights telomere-driven crisis. Darker time points indicate samples selected for STELA and fusion 

analysis. (C) Array CGH on samples taken before and after crisis showing amplification of the 5p 

chromosome end where hTERT is located after escape of telomere-driven crisis for HCT116DN-hTERT 

WT clone 11 and (D) LIG3-/-mL3+nuc. LIG3 clone 15. Adapted from Jones et al., 2014. 
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3.4.5.1 Characterisation of the 5p telomere dynamics using STELA  

STELA at the 5p and XpYp telomeres revealed the gradual shortening of the TL as cells 

approached telomere-driven crisis. This was followed by a gradual elongation of the TL 

after escape of crisis that was especially observed using LIG3-/-mL3+nuc. LIG3 clone 15 (Figure 

3.16 and Supplementary Table 7).  

 For WT clone 11, the 5p telomere eroded 1.27Kb during 56 days and elongated 0.15Kb 

during 25 days (one time point available after crisis) (Figure 3.16A). Erosion could not be 

calculated for LIG3-/-mL3+nuc. LIG3 clone 15 as the first time point available was already in crisis 

but the 5p telomere elongated 1.92Kb during 199 days after escape of crisis (Figure 3.16B). 

Similar trend was observed on the XpYp telomere for both populations (Figure 3.16CD).  

Moreover, the TL profile appeared very homogeneous for WT clone 11. In contrast, a very 

heterogeneous TL distribution could be observed after crisis in LIG3-/-mL3+nuc. LIG3 clone 15.  

Particularly after day 153 were two or more distinct TL clusters could be observed (Figure 

3.16).  

The comparison of the 5p to the XpYp mean TL at different time points for WT clone 11 

(Figure 3.17A) and LIG3-/-mL3+nuc. LIG3 clone 15 (Figure 3.17B) revealed that the 5p telomere 

was significantly longer than the XpYp telomere (Mann Whitney non-parametric T-test 

p<0.05). The 5p telomere was 0.934Kb greater than the XpYp telomere (mean differences 

for the 10 time points). A significant direct correlation was also observed (r2=0.7047, 

p=0.0024, n=10). These results were accordant with the comparison of the 5p with the 

XpYp TL in CLL patient samples before TVR correction (sections 3.4.2 and 3.4.3). 
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Figure 3.16. Characterisation of the 5p telomere using STELA. 

(A, B) 5p and (C, D) XpYp STELA on (A, C) HCT116DN-hTERT WT clone 11 and (B, D) LIG3-/-mL3+nuc. LIG3 

clone 15. Mean TL, SD, passage and population doubling (PD) are indicated underneath. Time points 

during crisis are highlighted by a red box. Southern blots were hybridised with the telomere probe.  
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Figure 3.17. Comparison of the 5p to the XpYp telomere. 

Graphic representation of STELA at the 5p compared to the XpYp telomere for (A) HCT116DN-hTERT WT 

clone 11 and (B) LIG3-/-mL3+nuc. LIG3 clone 15. Statistical analysis was performed with Mann Whitney 

non-parametric T-test p<0.0001 (***), p<0.01 (**), and p<0.05 (*). 
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To assess whether an amplification or deletion of the 5p telomere occurred, the ratio of 

molecules amplified for 5p was compared to XpYp.  Figure 3.18 illustrates the 5p/XpYp 

ratio calculated for WT clone 11 (A) and LIG3-/-mL3+nuc. LIG3 clone 15 (B) at each time point and 

subsequently normalised to the first time point (prior to crisis). WT clone 11 revealed a 

consistent normalised 5p/XpYp ratio for all days in culture except for day 91 (2.94) where a 

reduction of XpYp telomeres amplified was observed (Figure 3.18A).  There were no 

significant differences for any of the groups except for XpYp day 10 compared to 91 (two-

way ANOVA, p<0.05). In contrast, for LIG3-/-mL3+nuc. LIG3 clone 15, a reduction in the amount 

of 5p telomeres after crisis (day 153-224) was observed as indicated by normalised ratios 

0.58, 0.22, 0.52 (Figure 3.18B). However, in general there were no significant differences 

(two-way ANOVA, p>0.05). Altogether there were no clear differences in telomere 

dynamics in terms of length change or LOH at 5p compared to XpYp in these cells transiting 

crisis. 

 

Figure 3.18. Comparison of the 5p to the XpYp molecules amplified using STELA. 

5p/XpYp ratio and normalised to first time point ratio for (A) HCT116DN-hTERT WT clone 11 and (B) 

LIG3-/-mL3+nuc. LIG3 clone 15 indicated underneath.  

Telomere instability at the 5p telomere of HCT116DN-hTERT WT clone 11 and LIG3-/-mL3+nuc. LIG3 

clone 15 was measured at different time points before and after crisis using the optimised 

5p8:17p6:XpYpM:16p1:21q1 fusion assay.  Hybridisation with the distinct telomere specific 

probes revealed potential 5p-5p sister chromatid fusion events as well as possible 5p inter-

chromosomal fusions for WT clone 11 and LIG3-/-mL3+nuc. LIG3 clone 15. However, these events 

were rare compared with the other telomeres included in the fusion assay. Overall, a 

higher frequency of fusions was observed during crisis than before or after crisis (Figure 

3.19).  
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Figure 3.19. 5p8:17p6:XpYpM:16p1:21q1 fusions on HCT116 DN-hTERT cell lines. 

Telomere fusion analysis with the 5p8:17p6:XpYpM:16p1:21q1 combination for HCT116 WT clone 11 

and LIG3-/-mL3+nuc. LIG3 clone 15. Southern blots were hybridised with the 5p8F, 17p6, XpYpOG, 16p1, 

21q1 and telomere probes. Days in culture are indicated at the top. Time points during crisis are 

indicated by a red box. 5p fusion events are highlighted by a blue circle.   
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3.4.6 Telomere dysfunction and fusion in CLL, including the 5p telomere 

Genomic instability at the 5p chromosome arm, including hTERT, has been observed in 

some CLL patients and associated with increased telomerase expression (Nagel et al., 2010, 

Schilling et al., 2013, Salaverria et al., 2015). Furthermore, fusion events can be identified in 

patient CLL-B cells with short telomeres (TL<3.81Kb) and that TL range can identify a 

subgroup of patients with a more aggressive disease (Lin et al., 2010, Lin et al., 2014).  

To identify CLL patients with the highest frequency of telomere fusions and investigate rare 

telomere fusion events, patients with short telomeres were selected. This would also allow 

determining whether the 5p telomere is dysfunctional and fuses in CLL, which has the 

potential to drive the instability observed at 5p. 

The first datasets collected were samples from CLL patients undergoing consultation at the 

University Hospital of Wales (UHW) of varying TL: 26 patient samples presented TL <3.81Kb 

and 7 presented TL between 3.81-5.59Kb. 

Dr Kevin Norris analysed XpYp TL using a high-throughput version of STELA (HT-STELA) 

(Norris et al., manuscript in preparation) on a cohort of 209 and 276 CLL patient samples 

from the LRF CLL4, and the ARCTIC and ADMIRE clinical trials, respectively. This facilitated 

the selection of patient samples with short telomeres (TL<3.81Kb) used for the following 

datasets.  

A total of 276 CLL patient samples, the majority with short TL, were identified and screened 

with the 5p8:17p6:XpYpM:16p1:21q1 telomere fusion assay to study telomere dysfunction 

and fusion in CLL, particularly involving the 5p telomere (Table 3.4). 

Table 3.4. CLL patient samples selected to study telomere dysfunction and fusion 

SOURCE TL (0-3.81Kb] TL (3.81-5.59Kb] TOTAL 

UHW 26 7 33 

LRF CLL4 39 - 39 

ARCTIC and ADMIRE 204 - 204 

TOTAL 269 7 276 
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3.4.6.1 CLL patient samples exhibit different frequencies of telomere fusions, 

including the 5p telomere  

For high-throughput fusion analysis of 276 CLL patient samples with the 

5p8:17p6:XpYpM:16p1:21q1 fusion assay, Southern blots were hybridised with the 5p8F 

probe followed by the 17p6+XpYpOG and 16p+21q probes in pairs. Sequence alignment of 

the probes to be paired indicated that there was no complementarity between them.  

Frequency of fusions (number of fusions per diploid genome) was calculated per each 

patient sample as stated in section 3.4.4.4. For 10 fusion PCR reactions using 100ng gDNA 

per reaction, the total number of telomere fusion events detected equivalent to its 

frequency of fusions is indicated in Supplementary Table 8. 

CLL patient samples with varied frequencies of telomere fusions were identified. Figure 

3.20A shows an overview of the number of telomere fusions detected from a panel of 7 CLL 

patient samples with different TLs. The frequency of telomere fusions detected for each 

patient sample in the cohort was calculated and summarised in Supplementary Table 8 and 

Figure 3.20BC.   

From the total cohort, telomere fusions were detected in 71.74% (198/276) of the samples. 

These were arbitrarily classified in 51.81% (143/276) with a low frequency (6.00x10-6-

1.80x10-5), 14.49% (40/276) with a medium frequency (2.40-3.06x10-5) and 5.43% (15/276) 

with a high frequency of fusions (>4.20x10-5) (Figure 3.20BC).  

A similar trend was observed for each independent cohort; however, more telomere 

fusions were detected from the UHW samples compared with the LRF CLL4 and the ARCTIC 

and ADMIRE samples (Figure 3.20C). There is the possibility that better fusion reactions are 

obtained from fresh samples and the fusions frequency relate to the quality of the sample 

since UHW were prepared from fresh samples in contrast with LRF CLL4 and the ARCTIC 

and ADMIRE samples that were cryopreserved.  
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Figure 3.20. CLL patient samples exhibit different frequencies of telomere fusions. 

(A) Panel of 8 CLL patient samples with different frequencies of fusions. Southern blots were 

hybridised with the 5p8F, 17p6+XpYp and 16p1+21q1 probes. Telomere fusion events are 

highlighted in red circles. To calculate the frequency of fusions dashed circles are not counted since 

they indicate events previously identified with different probes (potential inter-chromosomal 

fusions). (B) Frequency of telomere fusion in a panel of 276 CLL patient samples (10rxs, 100ng 

gDNA/rxs). (C) Distribution depending on cohort of origin of the sample: ALL (n=276), UHW (n=33), 

LRF CLL4 (n=39) and ARCTIC and ADMIRE (n=204).  
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3.4.6.2 The 5p telomere undergoes fusion in CLL  

From the total cohort of 276 CLL patient samples, the first 33 samples (15 from the UHW 

and 18 from the LRF CLL4 clinical trial) were screened with the radiolabelled probes 

combined as follows: 5p+17p, XpYp+16p and 21q. However, the remaining 243 patient 

samples were screened using the 5p probe on its own, followed by the combined 17p+XpYp 

probes, and the 16p+21q probes. The second approach allowed the identification of 

potential novel 5p telomere fusion events (Figure 3.20A). In addition, the frequency of 5p 

to 17p+XpYp and 16p+21q potential telomere fusion events on the 72.84% (177/243) of 

patient samples for which fusions were detected was compared.  

Potential 5p fusion events were identified in 22.60% (40/177) of the CLL samples for which 

telomere fusions were detected (Supplementary Table 9). Figure 3.21A illustrates an 

example of a 5p-XpYp fusion event in a CLL patient sample. This was similar to the 

proportion of CLL patient samples for which 17p+XpYp fusions were detected 28.25% 

(50/177), but not to the 16p+21q families (91.54%; 162/177) that was more than 3 times 

higher compared to the individual telomere probes (Figure 3.21B). However, once the 

frequencies are adjusted for the number of chromosomes detected by the probes, 5p 

telomere fusions are not rare compared to fusions involving the 17p and XpYp telomeres 

and the 16p and 21q families. 

 

Figure 3.21. Detection of 5p fusions in CLL patient samples. 

(A) Example of a 5p-XpYp telomere fusion event in a CLL patient sample. Southern blots were 

hybridised with the 5p8F, 17p6 and XpYp, respectively. Blue circles highlight the fusion event and 

the red circle indicates the absence of the event. (B) Proportion of CLL patient samples for which 5p, 

17p+XpYp and/or 16p+21q telomere fusions were detected. 
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3.4.6.3 The frequency of fusions may provide prognostic information in CLL 

patients with short telomeres 

Regression analysis was used to predict the relationship among the frequency of fusions 

and the XpYp TL for the 276 CLL patient samples from the UHW, LRF CLL4 and the ARCTIC 

and ADMIRE clinical trials. There was no linear association between shorter TL with an 

increase of frequency of fusions (r2<0.001; p=0.876). Similar results were observed from 

the ARCTIC and ADMIRE data on its own (n=204; r2<0.0004; P =0.784) (Figure 3.22A).  

At the time this project was undertaken, clinical data for 165/204 CLL patient samples from 

the ARCTIC and ADMIRE clinical trials was available (Howard et al., 2017, Munir et al., 

2017). The next step was to investigate whether there was an association between cell 

proliferation and the frequency of fusions. Since the Lymphocyte Doubling Time (LDT) was 

not available, the Absolute Lymphocyte Count (ALC) was used; however, no significant 

correlation was observed (r2=0.0016; p=0.609) (Figure 3.22B).  

 

Figure 3.22. Telomere length, frequency of fusions and ALC. 

(A) Association between the TL and the number of fusion events. (B) Association between the 

absolute lymphocyte count (ALC) and the number of fusion events. 

A common CLL prognostic marker is the immunoglobulin heavy locus variable region (IGHV) 

gene mutational status since it identifies patients with worse (unmutated) and better 

(mutated) prognosis (Hamblin et al., 1999, Damle et al., 1999). The TL is a powerful 

indicator of patient survival in CLL (Lin et al., 2010, Lin et al., 2014) and was predictive of 

response to treatment in CLL patients from the ARCTIC and ADMIRE clinical trials (n=276), 

particularly in the subgroup with mutated IGHV (Norris et al., manuscript in preparation).  
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To investigate the prognostic resolution of the frequency of fusions in the subset of CLL 

patients with short TL (TL<3.81Kb) from the ARCTIC and ADMIRE (n=165), progression-free 

survival (PFS) and overall survival (OS) was compared with that obtained from the IGHV 

status (n=150).  

PFS and OS from CLL patients with short telomeres with unmutated IGHV gene did not 

differ from those with mutated IGHV (n=150) [Hazard ratio (HR)=0.817, 95% confidence 

interval (CI)=0.483-1.383, p=0.5665] and (HR=1.299, CI=0.584-2.886, p=0.5213), 

respectively (Figure 3.23AB).  

Patient’s PFS and OS was assessed based on the presence and absence of fusions 

(HR=0.7363, CI=0.648-1.846, p=0.7363 and HR=1.726, CI=0.785-3.798, p=0.1748, 

respectively) (Figure 3.23CD). PFS and OS were re-examined based on the frequency of 

fusions categories: none, low-medium and high. Striking differences were observed 

between the three groups: the median PFS was 35.92 months for CLL patients with a high 

frequency of fusions; in contrast with 53.91 months for patients with med-low frequency 

and 51.68 months those with none (Figure 3.23EF).  

PFS and OS based on the highest frequency of fusions or the absence of telomere fusions 

was further compared (n=53). Clear differences were observed between both subgroups 

and despite p-values improved, remained not significant (HR=1.390, CI=0.506-3.822, 

p=0.5231) for PFS and (HR=3.925, CI=0.797-19.33, p=0.0927) for OS. 

Altogether, within a subgroup of CLL patients with short telomeres (TL<3.81Kb), patients 

with unmutated IGHV did not have significantly shorter PFS than patients with mutated 

IGHV (51.68 vs. 58.85 months). In contrast, patients with a high frequency of telomere 

fusions presented notably shorter PFS than patients with no fusions (35.92 vs. 51.68 

months) despite significance was not achieved given the low number of patients (Figure 

3.23). 
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Figure 3.23. Frequency of telomere fusions as a prognostic marker in patients with short 

telomeres. 

(A-F) Kaplan Meier curves of survival and the results obtained after Log-rank (Mantel-Cox) statistic 

categorising prognostic discrimination depending on (AB) IGHV gene status, (CD) presence or 

absence of fusions, and (EF) arbitrary categories of frequency of fusions for (ACE) PFS and (BDF) OS. 
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Clinical data from the ARCTIC and ADMIRE clinical trials were also available for CD38 cell 

marker expression (+,-), the IGVH gene status (mutated, unmutated), 11q23 and 17p 

cytogenetics (intact, deletion). To further investigate the impact of each independent CLL 

biomarker into telomere dysfunction and fusion, the proportion of CLL patients for which 

telomere fusions were detected, was compared for each prognostic marker. However, 

similar proportions of patients were observed within each category (Figure 3.24A).  

To investigate the impact of the CLL drivers NOTCH1, SF3B1, ATM, BIRC3 and TP53 on 

telomere dysfunction and fusion, mutated (M) or unmutated (UM) gene status was 

compared to the proportion of patients within the LRF CLL4 clinical trial for which telomere 

fusions were detected. Surprisingly, when the CLL drivers were mutated (except for BIRC3), 

a higher proportion of patients with telomere fusions was detected. It remains possible 

that the lack of statistical significance is associated with the low number of patients in that 

cohort (Figure 3.24B). 

 

 

Figure 3.24. Frequency of fusions and other biomarkers. 

(A) Biomarker status: CD38 expression, IGHV gene status, 11q23 deletion, 17p deletion. Chi-square 

test: CD38 (p=0.3167), VH (p=0.0704), 11q23 (p=0.1313) and 17p (p=0.9185).  (B) CLL drivers: 

NOTCH1, SF3B1, ATM, BIRC3 and TP53.  Fisher’s exact test (for small cell sizes <5): NOTCH1 

(p=1.0000), SF3B1 (p=0.7036), ATM (p=1.0000), BIRC3 (p=0.3871) and TP53 (p=0.5034).  
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3.5 DISCUSSION 

3.5.1 The 5p telomere length distributions are similar to the XpYp and 17p 

telomeres 

The importance of STELA as a prognostic tool has previously been shown in a cohort of CLL 

patient samples measuring TL at the 17p and XpYp telomeres and demonstrating an 

association of shorter telomeres with decreased survival (Lin et al., 2010, Lin et al., 2014, 

Strefford et al., 2015). In this chapter, 5p STELA has been successfully developed and 

validated to characterise the 5p telomere, providing a tool to specifically study this 

telomere that is proximal to the hTERT locus.   

The measurement of the TL profiles in 57 CLL patient samples showed that 5p telomere 

was significantly longer than XpYp, but not to 17p (Figure 3.5). However, differences 

disappeared after TL measurement was corrected for the TVRs in 12 CLL patient samples 

(Figure 3.6). This data suggests that the differences in TL relate, at least in part, to the 

discrepant numbers of TVRs at the different chromosome ends, thereby explaining why the 

5p telomere appears longer by standard STELA techniques. This study examined TCAGGG 

and TGAGGG, which together with TTGGGG, have been the most common TVRs identified 

in human telomeres (Allshire et al., 1989, Baird, 1995, Lee et al., 2014a, Baird et al., 2003). 

However, a note of caution is due since in addition to the small sample size (n=12), the 

variety of at least 7 other variant telomeric repeat sequences (including GTAGGG, ATAGGG, 

CTAGGG, TTCGGG, TTTGGG, TAAGGG and TTAAGGG) have been identified in human 

telomeres in recent studies (human-derived cell lines: mortal, telomerase positive and ALT) 

(Letsolo et al., 2010, Lee et al., 2014a).  Variants are found on the proximal regions and 

tend to vary on the TTA-sequence and be conserved in the GGG-sequence. 

Together with the linear correlation of the distinct mean TL shown in Figure 3.5, an 

explanation for these results may be that distinct telomeres could have the same amount 

of canonical TTAGGG repeats but differences in length may arise from a variation in the 

number of TVR. In addition, these results are consistent with previous observations on the 

TVR composition of XpYp, 12q, 16p, 16q and 17p showing that each telomere has a unique 

distribution of TVRs (Baird, 1995, Baird et al., 2003, Coleman et al., 1999, Letsolo et al., 

2010).  

The mechanism responsible for the generation of distinct TVRs remains unclear. According 

to Lee et al., 2014 the most reasonable explanation for telomerase positive cells might be a 
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de novo synthesis of variant repeats misincorporatied by telomerase. However, this 

explanation may not support our hypothesis as it would require telomerase presenting a 

different error rate for distinct telomeres. On the other hand, it has also been proposed 

that intra-allelic differences may occur from errors arising during replication including 

repeat deletion, duplication or mutation (Letsolo et al., 2010). 

The high variability of TVRs found at the proximal regions of human telomeres could 

indicate that these TVRs are not functional. In addition, some studies suggest that some 

TVRs could alter the formation of telomeric higher-order structures as well as decrease the 

binding affinity of the shelterin complex (Mendez-Bermudez et al., 2009, Broccoli et al., 

1997a, Broccoli et al., 1997b). Moreover, TVRs impact on accurate measurement of the 

pure TTAGGG repeat length, which used as a prognostic tool, can help to accurately identify 

patients at risk of disease progression (Lin et al., 2010).  

Overall, these results suggest a telomere-specific TVR pattern with same amount of 

canonical repeats. Further research should be undertaken to investigate whether the 5p 

telomere presents a higher proportion of TVRs. One possible way to assess this question 

would be to reamplify each STELA reaction for 5p and XpYp by NGS constructing a total 

characterisation of both alleles for all CLL patients.  However, it may not extrapolate to all 

cases and it remains to be assessed in a bigger cohort group in CLL patient samples with 

longer telomeres. Particularly since it has been proposed that when telomerase is 

reactivated after cells escape a telomere-driven crisis, short telomeres become stabilised 

while longer telomeres carry on shortening (Ducray et al., 1999). 

In the literature there are contrasting views about chromosome specific TL. Some suggest 

that TL is proportional to the size of the chromosome arm while others propose that 

specific telomeres are shorter than others (Martens et al., 1998, Deng et al., 2004, Britt-

Compton et al., 2006, Wise et al., 2009). In addition, substantial allelic variation has been 

reported by our group and others. There is evidence of bimodal distributions resulting from 

inheritance of maternal and paternal alleles by STELA and observations of distinct TL 

between chromosome homologs by Q-FISH analysis, which are suggested to be maintained 

throughout development (Baird et al., 2003, Londono-Vallejo et al., 2004, Graakjaer et al., 

2003). Evidence of different allelic distributions for 5p have also been reported by Q-FISH in 

HOSE cells (Deng et al., 2004).   

Moreover, CLL patients demonstrated variable TL profiles; some homogeneous, some 

heterogeneous and some bimodal. These results can be explained by the presence of a 
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dominant clonal B-cell growth resulting in homogeneous TL profiles, whereas 

heterogeneous or bimodal distributions likely result from the expansion of more than one 

major CLL-B cell clone. These results are consistent with previous observations in CLL 

patient samples (Lin et al., 2010, Lin et al., 2014).  

3.5.2 The Fusion assay at the 5p chromosome end 

To investigate dysfunction and fusion at the 5p telomere, a section of this chapter involved 

the adaptation of our group’s telomere fusion assay (Capper et al., 2007) to include the 5p 

telomere. 

Similar to STELA, the primer design was the most critical step that would determine the 

specificity of the assay.  In contrast to STELA, for the fusion assay the primers needed to be 

located several Kb away from the start of the telomere to be able to detect fusion 

amplicons that exhibit significant resection from the telomere (Figure 3.7). Our group has 

previously shown by Sanger sequencing of telomere amplicons, the presence of resection 

into the telomere, revealing fusion events lacking of TTAGGG repeats (Capper et al., 2007).  

The introduction of the 5p chromosome end into our group’s fusion assay increased the 

number of fusion amplicons detected in the samples and allowed to detect 5p specific 

fusion events. The fusion frequency was similar at 5p compared to other ends, with the 

exception of HEK293 cell line that had a lower 5p frequency but a longer telomere. In 

addition, 5p fusion events may be under-represented. The CpG island within the 5p 

subtelomeric region (Figure 3.7) could have challenged the amplification of fusion events 

containing the GC-rich sequence (McDowell 1994). The lack of PCR product with the primer 

combination located at either side of the CpG island (Figure 3.8) further supported the idea 

that GC-rich sequence is refractory to long range PCR since it can form secondary structures 

that resist denaturation and impede primer annealing (McDowell et al., 1998). Sequencing 

5p fusion events will uncover whether fusions containing the CpG island can be detected. 
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3.5.4 The 5p telomere dynamics on HCT116DN-hTERT before, during and after 

crisis are similar to the XpYp telomere. 

Jones and colleagues showed that Ligase 3 (dependent A-NHEJ) is required to escape from 

telomere driven crisis, a critical event in the progression to malignancy. They also showed 

that large scale genomic rearrangements, which occasionally included the amplification of 

hTERT locus, were characteristic of clonal populations that escaped from crisis (Jones et al., 

2014). Two examples were HCT116 WT clone 11 and LIG3-/-mL3+nuc. LIG3 clone 15 (as shown in 

Figure 3.15) for which the 5p telomere was investigated in this study.   

The comparison of the 5p to the XpYp TL revealed that the 5p telomere was significantly 

longer than XpYp, with a significantly linear correlation (r2=0.7047). These results were 

consistent with what was shown for patient CLL-B cells before correcting for TVRs (Figure 

3.5). As shown in Figure 3.16, both cell lines presented very short XpYp telomeres during 

crisis, and it is likely that the shorter telomeres are lost from STELA because they have been 

subjected to fusion, explaining the decreased number of telomeres detected. In these 

cases, using 5p STELA may be a more robust assay that would allow to study TL erosion 

during culture in cell lines with extremely short XpYp telomeres, or measure TL in patient 

samples. 

Previous research has detected critically short 5p telomeres before crisis and showed 

evidence of 5p fusions with 19p and 20q, detected by Q-FISH and SKY in HOSE cells (Deng 

et al., 2004). In addition, another study using FISH identified a 5p-18q fusion/duplication 

event involving the hTERT locus in all metaphases for HA1 cell line, suggesting some 

selective advantage. However, whether this event contributed to the reactivation of 

telomerase remains unknown (der-Sarkissian et al., 2004). To study whether there was 

evidence of instability at the 5p telomere, the telomere fusion assay was performed for 

HCT116DN-hTERT WT clone 11 and LIG3-/-mL3+nuc. LIG3 clone 15. According to previous research, 

fusions appear when very short telomeres are detected (Capper et al., 2007). Potential 5p 

fusions were detected for both clones indicative of instability at this telomere prior to 

amplification of the 5p chromosome arm and reactivation of telomerase. Four very long (9-

12.5Kb) 5p telomere fusion events (intra- and inter-chromosomal) were detected for 

HCT116 WT clone 11 in the last time point during crisis (day 66) (Figure 3.19). Previous 

research has shown that telomere sister chromatid fusion can cause gene amplification and 

deletion that drive carcinogenesis (O'Hagan et al., 2002, Murnane, 2012). A plausible 

hypothesis agreeable with this would be 5p-5p intra-chromosomal fusions and BFB cycles 
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may provoke amplification of its chromosome arm which contains the hTERT locus, 

reactivating telomerase and driving malignant progression. This association has not been 

confirmed from this dataset but results indicate that there is instability at distinct 

telomeres, including 5p, during crisis.  

There was no evidence for duplication or LOH at the 5p telomere after crisis and the 5p 

telomere displayed similar dynamics to those observed at XpYp.  The LIG3-/-mL3+nuc. LIG3 clone 

15 presented with a very heterogeneous TL profile after day 153 (Figure 3.16). This may 

indicate the presence of distinct subclonal populations with different TL arising after a 

telomere-driven crisis. In addition, it remains possible that telomerase was not amplified in 

all subclones. Intra-tumour heterogeneity is a frequent source of relapse in cancer, 

particularly in CLL (Nowell, 1976, Landau et al., 2014, Jacoby et al., 2015), and telomere-

driven crisis may provide a source for genomic recombination and selective pressure.   

3.5.5 Telomere dysfunction and fusion in CLL, including the 5p telomere.   

A cohort of 276 CLL patient samples with short telomeres, selected to be within the 

fusogenic range, was screened using the new optimised 5p8:17p6:XpYpM:16p1:21q 

telomere fusion assay. Telomere fusions were not detected in 29% of these patients, whilst 

different frequencies of telomere fusion events were detected in the remaining 71% 

(Figure 3.20).  According to previous studies (Lin et al., 2010, Lin et al., 2014), these data 

demonstrate that there is significant telomere erosion in CLL that leads to telomere 

dysfunction and fusion during the progression of this disease.  

One intriguing finding is that CLL patient samples with short telomeres exhibit different 

frequencies of fusions (Figure 3.20). There are several possible explanations for this result. 

It could be product of the limitation of the technique: not all telomeres are included; fusion 

junctions need to be within the location of the fusion primers and complex telomere fusion 

events may not be detected. There is also the possibility that fusions occurred earlier in the 

progression of the disease and are absent from the expanded surviving clones. Moreover, 

variation amongst patients could arise from faulty TP53 or ATM, telomere capping proteins 

such as TRF2, POT1 or TPP1, or DNA repair machinery (Artandi et al., 2000, Chan and 

Blackburn, 2003, Denchi and de Lange, 2007, Arnoult and Karlseder, 2015, Guieze et al., 

2016). In future investigations it might be possible to assess these questions. To further 

confirm the presence or absence of fusions, Q-FISH could be used in addition to the fusion 

assay. Subsequently, sequencing known specific mutations on a panel of CLL patient 
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samples that presented different frequencies of telomere fusion events, would be able to 

clarify the mechanism by which some cells with short telomeres are more susceptible to 

telomere fusion than others. 

The 5p8:17p6:XpYpM:16p1:21q1 fusion assay has also allowed the identification of CLL 

patient samples that exhibit the highest frequency of fusions. These samples were used to 

provide a detailed characterisation of telomere fusion in CLL using Next Generation 

sequencing, as detailed in the following chapter.  

Another important finding is that fusions involving the 5p chromosome arm have been 

detected in patient CLL-B cells for the first time, indicating that this telomere can undergo 

recombination events that may contribute to genomic instability in CLL. The proportion of 

patients for which 5p fusions were detected was comparable to that obtained with the 17p 

and XpYp probes (Figure 3.21). Telomere-driven gene translocation and amplification can 

result in oncogene activation (O'Hagan et al., 2002). Potential intra-allelic (sister chromatid) 

fusions involving 5p may provide insights into the mechanism of amplification or 

reactivation of the hTERT locus, particularly in CLL patients (Nagel et al., 2010). In addition, 

detection of inter-chromosomal fusion events such as 5p-17p may be relevant to cancer 

progression since the 17p arm harbours the TP53 tumour suppressor gene (Deng et al., 

2008). Further studies need to be undertaken to assess whether there is a direct 

association between 5p fusions with hTERT translocations.  

Taken together, the addition of the 5p telomere was an improvement of our group’s fusion 

assay as it detected an increased number of telomere fusion events and it has allowed the 

detection of potential 5p telomere fusion events in HEK293, HCT116 and patient CLL-B 

cells. Further research will be undertaken in the following chapter to characterise these 5p 

fusions events.  

3.5.6 Telomere fusion frequency and prognosis in CLL patients with short 

telomeres 

Short dysfunctional telomeres can fuse to other telomeres or dsDNA breaks causing 

genomic rearrangements that may drive cancer progression. Research in our group has 

shown that the upper TL threshold at which fusions occur (3.81Kb) particularly the 

fusogenic mean TL (2.26Kb) is highly prognostic in CLL patients (Lin et al., 2010, Lin et al., 

2014, Strefford et al., 2015). Therefore, this project aimed to investigate whether the 
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frequency of telomere fusions could further define prognosis of patients with short 

telomeres, and whether there was any association with other CLL biomarkers.  

An association between the TL and the frequency of fusions was not found, suggesting 

there was no correlation between shorter TL and higher the frequency of fusions (Figure 

3.22A). These results may indicate that when it comes to TL, below the threshold at which 

telomeres become dysfunctional they might be equally likely to undergo fusion.  

To investigate whether patients with a higher proliferation rate of CLL-B cells have 

increased frequency of fusions the absolute lymphocyte count (ALC) was compared, as the 

lymphocyte doubling time (LDT) was not available, but no association was found (Figure 

3.22B). Analysis of the CLL patients from the ARCTIC and ADMIRE cohorts has shown that 

TL is predictive of response to the treatment (Norris et al., manuscript in preparation). To 

find out whether prognosis of CLL patient samples with short telomeres could be further 

stratified based on the presence of telomere fusion event, survival was studied based on 

different parameters. Progression-free survival (PFS) and overall survival (OS) was assessed 

in the ARCTIC and ADMIRE clinical trial depending on the IGHV locus (n=150) and the 

frequency of fusions (n=165). Prognosis based on the IGHV gene status, formerly used to 

identify patients likely to have poor survival, failed to stratify patients with short telomeres 

(Figure 3.23AB). Neither the presence or absence of telomere fusion, nor the fusion 

frequency (categories: high, medium-low and none), was able to stratify patients for PFS 

and OS. Whilst this was not statistically significant, it is important to note that a subgroup 

with the highest frequency of fusions (>4.20E-05) presented 15 month shorter PFS and 

shorter OS than the subgroup with absence of fusion events (Figure 3.23EF). The trend 

observed proposes that in addition to the TL, it remains possible that the frequency of 

fusions may further stratify patients’ prognosis for PFS and OS. Further research with an 

increased cohort size and a more sensitive technique should be undertaken.  

Biomarkers including CD38 expression, IGHV gene mutation status and genomic 

aberrations such as 11q (ATM) and 17p (TP53) deletions, are valuable prognostic markers in 

CLL (Krober 2002). From the ARCTIC and ADMIRE CLL cohort, no correlations were found 

between the prognostic markers and the presence or absence of fusions, or the frequency 

(Figure 3.24A). These were unexpected results, particularly for the poor prognostic markers 

11q (ATM) and 17p (TP53) deletion, for which inactivation of the ATM or TP53 genes is 

associated with telomere dysfunction and fusions (Pettitt et al., 2001, Oscier et al., 2010, 

Guieze et al., 2016). This inconsistency may be due to a deficient capture of all telomere 
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instability present in the samples. Alternatively, fusions might have occurred earlier in the 

progression of the disease and are absent from the expanded surviving clones.  

From the CLL patients enrolled in the LRF CLL4 clinical trial (Strefford et al., 2015), 39 with 

short telomeres were studied. It is interesting to note that the only 2 patients that 

presented TP53 mutations from the 29 screened belong to the group that presented 

telomere fusion events. No significant associations were found between the presence of 

mutations in CLL drivers (NOTCH1, SF3B1, ATM, BIRC3 and TP53) and the presence of 

fusions detected for each patient (Figure 3.24B). One possible explanation may be a limited 

dataset as most patients within the cohort were not screened for specific mutations.  

These findings provide important insights into telomere erosion and dysfunction and the 

impact on patient survival in a subgroup presenting short telomeres. Despite the fusion 

frequency failed to significantly stratify patients with short TL, shorter survival was 

observed amongst patients with a high frequency of fusion compared with patients without 

or with lower frequencies of fusions. It remains to be further clarified in bigger cohorts, 

using a more sensitive technique, whether the frequency of fusions carries significant 

prognostic information and its association with other biomarkers.  
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3.5.7 Summary 

The novelty of this study has been the successful adaptation of 5p STELA, TVR-PCR and the 

telomere fusion assay at 5p, that has allowed the characterisation of the 5p telomere 

(proximal to the hTERT locus) in different cell lines as well as in patient CLL-B cells.  

The first section of this chapter consisted of the development of 5p STELA which can be 

used to investigate telomere erosion and importantly as a prognostic tool. Moreover, 

results showed that the 5p telomere was significantly longer than the XpYp but not the 

17p. However, TVR analysis suggested that distinct telomeres may have the same amount 

of canonical TTAGGG repeats but differences in length may arise from the variation of 

TVRs.  

The successful adaptation of the 5p8:17p6:XpYpM:16p1:21q1 telomere fusion assay has 

enabled, for the first time, the identification of novel 5p fusions in patient CLL-B cells. 

Potential fusion events involving 5p have also been detected in different cell lines, 

particularly HCT116 cells prior to escaping a telomere-driven crisis by amplification and 

reactivation of telomerase. These results demonstrate that there is telomere dysfunction 

and fusion at the 5p telomere. Further research is required to investigate whether it is a 

possible mechanism of translocation or amplification of the hTERT locus. 

The analysis of the clinical data failed to identify any significant association between the 

fusion frequency and patient survival. However, a poorer prognosis was observed among a 

subgroup of CLL patients with short TL and the highest frequency of telomere fusions. 

Further research should be undertaken, using a more sensitive technique and with an 

increased cohort size, to investigate whether, on top of the TL, the frequency of fusions 

may be useful for a more accurate disease prognosis. 

The newly adapted fusion assay has enabled the identification of CLL patient samples with 

the highest frequency of fusions which has permitted the continuation of the Ph.D. project 

allowing the high-throughput characterisation of telomere fusion events, including 5p, 

using a specialised NGS approach that will be discussed in the following chapter.  
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CHAPTER 4: 

 INVESTIGATING THE IMPACT OF TELOMERE DYSFUNCTION ON THE 

CHRONIC LYMPHOCYTIC LEUKAEMIA GENOME 

4.1 ABSTRACT 

Short dysfunctional telomeres are capable of fusion with one another or non-telomeric 

DSBs. The resulting cycles of telomere breakage-fusion-bridge can result in genomic 

rearrangements including amplification, deletion, translocations, chromothripsis and 

tetraploidisation. High levels of genomic instability are detrimental for cell viability; 

however, under certain conditions it may provide a selective advantage to the cell that can 

drive clonal evolution and malignant progression.  

Telomeres, within the length ranges at which telomere fusions are detected, provide a 

prognostic marker for CLL. In chapter 3, telomere fusions were detected in 71.7% of 276 

CLL patient samples with short telomeres (TL<3.81 Kb). The aim of chapter 4 was to 

understand the role that telomere dysfunction plays in driving the evolution of the CLL 

cancer genome. A large-scale analysis was undertaken on single-molecule amplified 

telomere fusion events (n=914), obtained from 9 CLL patient samples that exhibited the 

highest fusion frequencies (>4.20x10-5 per diploid genome). The sequence of the fusion 

events was characterised using high-throughput paired-end sequencing. 

This study examined head-to-head intra- and inter-chromosomal telomere fusions and 

identified non-telomeric genomic loci that fuse with dysfunctional telomeres. These loci 

included the ancestral telomere at Chr2q13, mitochondrial DNA and protein coding genes 

expressed in CLL-B lymphocytes and other oncogenes. Distinct microhomology usage at the 

fusion junctions was revealed, potentially implicating C-NHEJ, A-NHEJ and SSA or other DNA 

repair mechanisms mediating specific types of telomere fusion events. In addition, 5p sister 

chromatid fusion events were detected, which could lead to chromosomal instability that 

may impact on telomerase expression. Together, these data provide information on the 

role that telomere dysfunction and fusion plays in shaping the CLL genome and driving 

tumour heterogeneity. 
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4.2 INTRODUCTION 

Telomeres play an important role in maintaining a stable genome. Dysfunctional telomeres 

are recognised as DSBs that activate the DNA damage response (DDR) and lead to cellular 

senescence or apoptosis. When cell cycle checkpoints are deficient, cells may enter a 

telomere-driven crisis state, where the inappropriate repair of telomeres can initiate cycles 

of chromosomal BFB (McClintock, 1941, Counter et al., 1992, Ma et al., 1993). 

During crisis, cells accumulate genomic instability. Telomere fusions can result in 

chromosome gains and losses (aneuploidy), and large-scale genomic rearrangements like 

nonreciprocal translocations (Riboni et al., 1997, Artandi et al., 2000). Persistent chromatin 

bridges might escalate to cytokinesis failure and result in tetraploidy, whole-genome 

duplication (Pampalona et al., 2012). The fusion of sister chromatids can result in deletions 

and gene amplification, a source of oncogene activation (Murnane, 2006). More recently 

discovered, telomere dysfunction and cycles of breakage-fusion-bridge (BFB) can also lead 

to chromothripsis and kataegis in several cancer cells (Maciejowski et al., 2015, Ernst et al., 

2016). Genomic instability can be deleterious for the cell and result in cell death. However, 

it can provide some survival advantage resulting in the escape of a malignant clone from 

crisis and possibly drive malignant transformation (Artandi et al., 2000, Davoli and de 

Lange, 2012, Davoli et al., 2010).  

The TL range at which telomeres become dysfunctional has been used as a prognostic tool 

in several malignancies, including CLL, breast cancer, Multiple Myeloma and 

Myelodysplasia (Lin et al., 2010, Lin et al., 2014, Simpson et al., 2015, Hyatt et al., 2017, 

Williams et al., 2017). Several recurrent chromosomal alterations are associated with CLL 

patient prognosis, including trisomy 12, a gain of the entire chromosome, and the loss of 

genetic information with deletion of 11q22-23, 13q14 and 17p (Dohner et al., 1997, Dohner 

et al., 2000, Tsimberidou et al., 2009). Additional alterations comprise of 2p or 8q gain, 6q 

or 8p loss, and other less frequent aberrations (Salaverria et al., 2015). The presence of 

short dysfunctional telomeres and telomere fusion in CLL B-cells is associated with large-

scale genomic rearrangements (Lin et al., 2010). Moreover, this is detected in early-stage 

patients prior to clinical progression. Taken together, these data are consistent with the 

view that CLL B-cell cells can undergo a telomere-driven crisis during malignant 

progression, that this occurs early and can confer both a poorer prognosis and response to 

treatment (Lin et al., 2014). A variety of CLL driver point mutations have been identified, 

including TP53 and POT1 that are involved in telomere dysfunction (Wang, 2011, Puente et 
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al., 2011, Quesada et al., 2012). Mutated TP53 is associated with an increased frequency of 

telomere fusions (Davoli et al., 2010, Hayashi et al., 2015, Liddiard et al., 2016), and POT1 is 

a member of the shelterin complex responsible for protecting telomeres by sequestering 

the 3′-overhang (Denchi and de Lange, 2007). POT1 mutations leave telomeres unprotected 

which can be recognised as DSBs and lead to telomere fusions in CLL (Ramsay et al., 2013).  

Chromothripsis and kataegis have also been identified amongst CLL patients (Stephens et 

al., 2011, Edelmann et al., 2012, Salaverria et al., 2015, Ernst et al., 2016). Chromothripsis is 

a novel form of genomic instability that was first described in a patient with an aggressive 

form of CLL (Stephens et al., 2011). It is characterised by extensive chromosome 

fragmentation and reorganisation localised to specific regions, with copy number changes 

that can lead to loss of tumour suppressors or oncogene amplifications, and is found in 

several cancers (Forment et al., 2012). Chromothripsis is associated with worse prognosis in 

CLL patients (Edelmann et al., 2012) and it was detected in 21% (7/33) of cases with shorter 

telomeres from a cohort of CLL patient samples with comparable parameters (Ernst et al., 

2016).  Chromothripsis of the 5p chromosome, including gains of the hTERT locus, has also 

been observed from 3/8 CLL patients with a chromothripsis-like pattern (Salaverria et al., 

2015).  

Sanger sequencing of telomere fusion events has identified complex fusions including 

Xp/Yp-Xq/Yq events with the potential of creating ring chromosomes, in addition to 

telomeric fusions with genomic loci and the interstitial telomeric 2q13-14 locus (Letsolo et 

al., 2010). The application of a high-resolution Next Generation Sequencing (NGS) has 

facilitated the high-throughput characterisation of telomere fusions (Liddiard et al., 2016). 

Results from NGS have revealed that telomeres predominantly fuse with coding genomic 

sequence and has elucidated the role of C-NHEJ (LIG4) and A-NHEJ (LIG1/3) in mediating 

inter- and intra-chromosomal fusions, respectively, in addition to the mutational profile of 

each (Liddiard et al., 2016). 

Telomere dysfunction and fusion is associated with genomic instability and has been 

implicated in the progression of CLL (Lin et al., 2010, Lin et al., 2014). A large-scale 

characterisation of telomere fusions in CLL is required to further elucidate the impact of 

telomeres in the genome of patient CLL-B cells to reveal its effect on the pathogenesis of 

this disease.  
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4.3 AIMS OF THE PROJECT 

The purpose of this chapter was to provide a detailed characterisation of telomere fusion in 

CLL. This was undertaken using specialised high-throughput NGS of single-molecule 

amplified telomere fusion events, in 9 CLL patient samples identified in chapter 3 that 

exhibited the highest frequency of fusions.  

The aims of this chapter were as follows: 

• To test whether the 5p8:17p6:XpYpM:16p1:21q1 fusion assay is scalable for NGS 

and able to identify and characterise authentic fusion events.  

• To characterise 5p fusions in CLL patient samples, as hTERT is proximal to the 5p 

telomere. 

• To identify distinct types of telomere fusions including head-to-head fusions, intra-

chromosomal and inter-chromosomal events.  

• To compare deletion at sister chromatids in intra-chromosomal fusion events.  

• To explore the distinct Telomere Variant Repeats (TVRs) found at telomeres. 

• To study the degree of microhomology at the fusion junctions to elucidate the DNA 

repair mechanisms involved. 

• To interrogate which areas of the genome (if any in CLL) become incorporated into 

telomere fusions and what are the features of the surrounding DNA. 

• To investigate whether there are multiple telomere fusion events disrupting the 

same genomic locus (genomic hotspots). 

• To assess whether there are any key genes relevant to CLL or other oncogenic 

pathways disrupted by fusion events. 
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4.4 RESULTS 

4.4.1 Specialised paired-end NGS of telomere fusion amplicons 

4.4.1.1 9 CLL patient samples with the highest frequency of fusions selected for 

specialised paired-end Illumina HiSeq4000 PE100  

In chapter 3, 276 CLL patient samples with short telomeres were screened using the 

telomere fusion assay. 9 CLL samples with the highest fusion frequency (>4.20E-05 fusions 

per diploid genome) were selected for a specialised paired-end NGS of telomere fusion 

amplicons.  

To select the optimal CLL-B cell genomic DNA concentration, the 

5p8:17p6:XpYpM:16p1:21q1 fusion assay was conducted using 4 different DNA 

concentrations: 25, 50, 100 and 150ng (Figure 4.1A). 200 reactions using 100ng of DNA per 

reaction was selected in order to achieve the maximum number of genuine fusion events 

without increasing the likelihood of non-specific amplification or compromising the Illumina 

sequencing efficiency with the addition of excessive amounts of genomic input DNA.  

For each sample, 200-300 telomere-fusion PCR reactions were performed depending on 

DNA availability, which represented 600-900 fusion molecules per sample. The reactions 

from each sample were pooled and purified using the Agencourt AMPure XP beads 

(Beckman Coulter). Following verification of the PCR reaction before and after purification 

(Figure 4.1B), samples were sent for paired-end Illumina HiSeq4000 PE100 amplicon 

sequencing at the Oxford Genomic Centre (DB17) and at BGI Hong Kong (DB59-66).  
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Figure 4.1. Preparation of 9 CLL patient samples for specialised NGS of telomere fusions. 

(A) 5p8:17p6:XpYpM:16p1:21q1 fusion assay using 4 different DNA concentrations: 25, 50, 100 and 

150ng of gDNA from patient DB17 CLL-B cells. Telomere fusions were detected using the XpYp 

probe. (B) Fusion PCR product of 200-300 reactions with a concentration of 100ng of gDNA/reaction. 

Before (1) and after (2) purification (10x more concentrated) of the PCR reactions using AMPure XP 

purification in preparation for Illumina paired–end sequencing of the fusion amplicons. Bands were 

detected with XpYp and 21q probes simultaneously.  

Telomere length distribution, determined using STELA at the 5p, 17p and XpYp, revealed 

bimodal TL distributions (two distinct clusters of telomeres) in 67% (6/9) of CLL patient 

samples with the highest frequency of fusions (Figure 4.2). This frequency contrasts with 

the 4% (11/276) of bimodal CLL patient samples from the ARCTIC and ADMIRE cohorts 

(XpYp TL range: 0.80-7.49kb) as observed by Dr Norris using XpYp STELA (Norris et al., 

manuscript in preparation).  

It is unlikely that the bimodal TL distribution was a reflection of mixed cell populations 

rather than CLL-B cells since the UHW patient sample DB17 had been purified and 

contained nearly 100% CD19+ CLL-B cells. The remaining bimodal patient samples were 

from the ARCTIC and ADMIRE cohorts, therefore the CD19+ purity was not available. 

However, 4/5 samples displayed an absolute lymphocyte count (ALC) similar to, or above, 

the average 103x106 lymphocytes from the 276 CLL patient samples from the ARCTIC and 

ADMIRE cohorts: 163 (DB62), 19.6 (DB63), 243 (DB64), 79 (DB65) and 99 (DB66) x106 

lymphocytes. Therefore, the vast majority of the cells analysed in this analysis were CLL B-

cells and thus the bimodal distribution were a reflection of these cells and not normal cells 

present in these samples. 
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Figure 4.2. Bimodality identified in the CLL patient samples for NGS. 

5p, 17p and XpYp STELA for the 9 CLL patient samples with the highest frequency of fusions selected 

for paired-end NGS of telomere fusion amplicons. Southern blot showing STELA for three different 

telomeres hybridised with the telomere probe. Mean TL, standard deviation (SD) and standard error 

(SE) indicated underneath. Bimodal distribution separated arbitrarily with a dotted red line and 

mean TL of lower distribution (Kb) indicated underneath. Clear bimodal distribution at 6/9 CLL 

patient samples: DB17, 60, 62, 63, 64 and 66. Heterogeneity or potential bimodality of DB59. NGS ID 

and corresponding CLL patient ID are as follows: DB17 (A279722), DB59 (A374068), DB60 (260), 

DB61 (X732750), DB62 (180), DB63 (158), DB64 (210), DB65 (141) and DB66 (191). 
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4.4.1.2 Mapping pipeline: intra- and inter-chromosomal analysis 

Post-NGS, data for each sample was processed for mapping of intra- and inter-

chromosomal telomere fusion events. Workflow for the analysis of telomere fusion 

amplicons is illustrated in Figure 2.2. 

Sequence reads were trimmed to remove sequence tags and primers. Then, for the analysis 

of inter-chromosomal telomere fusion events, reads were mapped to the unmasked human 

hg19 reference sequence (modified according to the human subtelomeric sequence Stong 

et al., 2014) and the 5p, 17p, XpYp, 16p and 21q subtelomeric sequences. Discordant read-

pairs mapping to each chromosome end were selected for analysis of inter-chromosomal 

fusion events (Figure 4.3).  

For intra-chromosomal fusion event analysis, read-pairs mapping to the 5p, 17 and XpYp 

telomeres only were filtered on orientation () and only paired-reads both in forward 

(F) orientation indicative of sister chromatid head-to-head fusions were selected for 

analysis. The pipeline was developed by Dr Ashelford and the mapping and filtering of read-

pairs was performed by Dr Cleal. 

BAM and BED files were generated for visualisation of data spread along subtelomeric 

sequence in the IGV browser and read-pair coordinates were listed in txt files. Read-pairs 

with mapping quality (MQ) ≥0 were selected to exclude ambiguous or poor-quality 

mappings. Alignments obtained from the intra- and inter-chromosomal fusion analysis 

were further validated using BLAST (Altschul et al., 1990) to human reference hg19 GRCh37 

to certify unique and accurate mapping based on sequence identity and Expect (E) value 

significance (section 4.3.1.4 and 4.3.1.5). The identity is the proportion of the sequence 

searched that matches the other sequence in the database. The E-value describes the 

number of matches expected by chance doing a BLAST search in a particular size database. 

Events were classified according to Table 4.1.   
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Figure 4.3. Characterisation of a telomere-genomic inter-chromosomal fusion event.  

Cartoon representation of an inter-chromosomal telomere fusion with genomic locus sequenced by 

Illumina HiSeq4000 paired-end sequencing. Concordant read-pairs are those that map to the 

reference sequence with the expected size coverage and orientation while discordant read-pairs do 

not. Softclipped reads are partially discordant and carry information about the fusion junction. 

Example of a telomere-genomic 17p-Chr1p12-21q fusion event in crisis-stage MRC5HPVE6E7 cells. 

Fusion PCR primer orientation indicated on the chromatids. Figure reproduced from Liddiard et al., 

2016. 

4.4.1.3 Classification of events identified 

All events recorded from the intra- and inter-chromosomal analysis were visualised on IGV 

and BLAST-alignment was performed to validate genuine telomere fusion events and 

exclude PCR or sequencing artefacts (4.4.1.4 and 4.4.1.5). Telomere fusions were further 

classified according to Table 4.1 depending on the locations involved in the fusion event. A 

head-to-head telomere fusion was called telomere-telomere (00). When DNA sequence 

adjacent to the telomeric repeat was fused to telomeric repeat, allowing the identification 

of one of the chromosome end involved only, it was labelled subtelomere-telomere (0). 

The fusion of two subtelomeric sequences from the same or distinct chromosome arms 

was an intra-chromosomal (1) or inter-chromosomal (2T) event, respectively. Other types 

of inter-chromosomal fusion events involved the fusion of a telomere (including 

subtelomeric sequence or not) with the ancestral telomere at 2q13 (2A), genomic loci (2G) 

or mitochondrial DNA (2M). Complex events (2C) involved more than one of the previous 

groups. Telomere fusions between the 16p-16p and 21q-21q families could be either intra- 

or inter-chromosomal (1o2T) as most of the time it was not possible to determine which 

member of the family was involved. Excluded events were either unreliable (U) or present 

in other samples (“). 
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Table 4.1. Classification of type of event. 

 Type Type of event Example 

IN
C

LU
D

ED
 

00 Telomere-Telomere (head-to-head) TTAGGG-CCCTAA 

0 Subtelomere-Telomere 
5p-CCCTAA 

5p-TTAGGG 

1 Intra-chromosomal fusion event (sister chromatid) 5p-5p 

2 Inter-chromosomal fusion event  

2T 
Inter: two distinct Telomeres 

*Including a potential ring chromosome formation 

5p-Xp; 

Xp-Xq 

2A Inter: telomere fusion with Ancestral telomere 2q13 5p-2q13 

2G Inter: telomere fusion with Genomic loci 5p-Chr5p14.1 

2C Inter: Complex telomere fusion event 
5p-Chr13q14.2-

Chr13q31.1-Tel 

2M Inter: telomere fusion with Mitochondrial DNA) 5p-ChrM 

1o2T Intra or Inter: fusion of the 16p or 21q family of telomeres 
16p-16p;  

21q-21q 

EX
C

LU
D

ED
 

U 

Unreliable. Not confident reporting it: 

BLAST-alignment scores did not pass the threshold or primer fusion sequence was 

mapped (potential PCR artefact or background band) 

“ Same event across all 9 CLL patient samples 

4.4.1.4 Validating intra-chromosomal fusion events 

To further validate the read-pairs filtered from the intra-chromosomal mapping, all paired-

reads and their coordinates were recorded in a txt file for manual curation and sequence 

verification for each CLL patient sample. Read-pairs were grouped into unique and distinct 

events based on location and fusion junction of the mapped and softclipped sequences. 

Each read-pair was visualised on IGV and aligned to the human genome (Ensembl BLAST) 

and 5p, 17p and XpYp subtelomeric sequences (Stong et al., 2014). This allowed sequence 

verification and validation to certify the mapping corresponded to a unique and accurate 

location. A representative read-pair allowing maximum coverage for each event was 

further validated and scores resulting from BLAST-alignment (location, orientation, length, 

identity and E-value significance) together with the number of supporting reads were 

recorded.  

From all 9 CLL patient samples, the intra-chromosomal analysis was performed 

independently for 5p, 17p and XpYp. It was not possible to study 16p or 21q sister 
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chromatid fusions since it was not possible to assess which member of the family of 

telomeres was involved. A total of n=55, n=64 and n=69 validated events for 5p, 17p and 

XpYp, respectively, were obtained for all patients that were subsequently combined and 

classified into the type of event according to Table 4.1 (the summary of events is shown in 

Figure 4.4 and Supplementary Table 10). 

The intra-chromosomal analysis was used to detect sister chromatid fusion events (type 1). 

However, the vast majority of events filtered were potential ‘false’ positives. These 

consisted of subtelomere-telomere (type 0), most likely due to mapping the TTAGGG-

sequence to the sister chromatid in same orientation (), and low-frequency telomere-

telomere fusion events TTAGGG-CCCTAA (type 00). Telomeric inter-chromosomal fusion 

events (type 2T) were ‘false’ positives identified and were explained by the mapper’s 

incorrect subtelomeric alignment, corrected after BLAST (Figure 4.4). It remains unknown 

whether fusion events type 00 and 0 are intra- or inter-chromosomal since it was not 

possible to confirm the chromosome end involved.  

Examples of each type of event (00, 0, 1 and 2T) for the 5p, 17p and XpYp from all 9 CLL 

patient samples are shown in Figure 4.5, Figure 4.6 and Figure 4.7, respectively. 

 

Figure 4.4. Summary of intra-chromosomal fusion analysis. 

Summary of the type of telomere fusion event detected with the intra-chromosomal analysis for the 

5p, 17p and XpYp telomeres. Statistical analysis with Two-way ANOVA and Bonferroni post-test. 

Telomere p=1, Type of event p<0.0001. There were no significant differences between 5p, 17p and 

XpYp for any type of event. Total 5p n=58, 17p n=64, XpYp n=69 events. 
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Figure 4.5. Example of the four types of events obtained from the 5p intra-chromosomal fusion analysis. 

Paired-reads for (A) type 00 (purple): Telomere-Telomere fusion events from DB59, (B) type 0 (yellow): 5p-Telomere from DB63, (C) type 1 (green): 5p-5p sister chromatid 

from DB62 and (D) type 2T (orange): inter-chromosomal 5p-21q from DB62. ~100bp of each paired-read represented. Distance from the start of the 5p8 primer (used in 

the fusion assay) to the closest location mapped. Mapped and softclipped sequence are shown in uppercase and lowercase, respectively. Microhomology at junctions 

underlined.  
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Figure 4.6. Example of the four types of events obtained from the 17p intra-chromosomal fusion analysis. 

Paired-reads for (A) type 00 (purple): Telomere-Telomere fusion events from DB63, (B) type 0 (yellow): 17p-Telomere from DB59, (C) type 1 (green): 17p-17p sister 

chromatid from DB17 and (D) type 2T (orange): inter-chromosomal 17p-Xp from DB62. ~100bp of each paired-read represented. Distance from the start of the 17p6 primer 

(used in the fusion assay) to the closest location mapped. Mapped and softclipped sequence are noted in uppercase and lowercase, respectively. Microhomology at 

junction underlined.  



 
 
 

Chapter 4: Investigating the impact of telomere dysfunction on the CLL genome 

120 
 

 
Figure 4.7. Example of the four types of events obtained from the XpYp intra-chromosomal fusion analysis. 

Paired-reads for (A) type 00 (purple): Telomere-Telomere fusion events from DB59, (B) type 0 (yellow): Xp-Telomere from DB63, (C) type 1 (green): Xp-Xp sister chromatid 

from DB59 and (D) type 2T (orange): inter-chromosomal Xp-21q from DB59. ~100bp of each paired-read represented. Distance from the start of the XpYpM primer (used in 

the fusion assay) to the closest location mapped. Mapped and softclipped sequence are shown in uppercase and lowercase, respectively. Microhomology at junctions 

underlined. 
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4.4.1.5 Validating inter-chromosomal fusion events 

To further validate the inter-chromosomal events obtained for each patient sample, a list 

of coordinates recorded from the mapping pipeline containing ≥3 supporting read-pairs per 

event, and MQ ≥0 was visualised in IGV. Mapped and softclipped sequence of each read-

pair was verified and validated after BLAST-alignment to the human genome and the 5p, 

17p, XpYp, 16p and 21q telomeric sequences (Stong et al., 2014). Events were classified 

according to Table 4.1. An example of a telomeric inter-chromosomal fusion event (2T) is 

shown in Figure 4.8. 

Following the inclusion of the 5p telomere into the fusion assay in chapter 3, an additional 

56 events with <3 supporting reads involving the 5p telomere were included. Of these, 4 

were subtelomere-telomere (0), 1 was intra-chromosomal (1), 11 were telomeric inter-

chromosomal (2T), 39 were 5p with genomic loci (2G, MQ=60) and 1 was a 5p-ChrM (2M, 

MQ=29). 

Validation was based on stringent BLAST-alignment scores (identity and E-value 

significance) to ensure the read locations were unique. Proximity to potential locations of 

non-specific primer binding was verified after (low-stringency) BLAST of the fusion primers 

and noting potential binding locations.  

From the 9 CLL patient samples a total of 728 fusion events were manually validated and 

verified. 46.29% were telomeric inter-chromosomal fusion events (2T), 30.91% were 

subtelomere-TTAGGG fusion events (0) and 10.30% were telomeric fusions with genomic 

loci (2G). Of the remaining 12.50% of events detected, 6.73% were telomeric intra- or inter-

chromosomal fusion events (1o2T: 16p-16p or 21q-21q), 2.61% were sister chromatid 

fusion events (1), 1.51% were telomere-2q13 (2A), 0.69% were complex events (2C), 0.55% 

were telomere-mitochondrial (2M) and 0.41% were TTAGGG-CCCTAA (0) fusion events 

(Figure 4.9). Detailed summary of events detected for each CLL patient sample was shown 

in Supplementary Table 11. 
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Figure 4.8. Telomeric inter-chromosomal fusion event. 

(A) Paired-reads mapped for 21q and 15q (16pfam) telomeres together with breakpoints visualised in IGV. (B) Location of the reads for the telomere fusion event shown in 

Ensembl. Pseudogene identified WASH3P (ENSG00000185596) as indicated by Ensembl/Havana. (C) Sequence of the fusion event from DB17. The 21qfam telomeric 

sequence (unique to 1q or 21q in this case) represented in black, the 15q telomere in purple and microhomology at the junction is underlined. 
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Figure 4.9. Summary of inter-chromosomal fusion analysis. 

The proportion of type of telomere fusion event identified from the inter-chromosomal fusion 

analysis of 9 CLL patients. 

From the inter-chromosomal analysis, a small proportion of sister chromatid fusion events 

were detected as a consequence of the mapper counting the 5p telomere, chr5 and 

5p_Stong as distinct chromosomes. Surprisingly, the inter-chromosomal analysis identified 

an additional class of sister chromatid fusion events (n=5) that appeared to arise as a 

consequence of the insertion of subtelomeric DNA from the same telomere in reverse 

orientation.  Such events have previously described in cell culture models (Capper et al., 

2007, Letsolo et al., 2010) and may by arise from additional processing of the short 

telomeres prior ligation during BFB cycles (Figure 4.10). 

Inversions were not identified among the sister chromatid fusion events detected with the 

intra-chromosomal analysis. It was not possible to assess for events with unmapped fusion 

junction (unclipped reads).   

 

 

Figure 4.10. Sister chromatid fusion event detected from the inter-chromosomal analysis. 

5p-5p intra-chromosomal fusion event potentially originated after a 5p-telomere fusion event 

(DB66). Microhomology at the fusion junction is highlighted in black and underlined. Different 

colours used to distinguish the distinct sections of the fusion event. 



Chapter 4: Investigating the impact of telomere dysfunction on the CLL genome 

 

124 
 

4.4.2 Signature of intra- and inter-chromosomal telomere fusion events in a 

panel of 9 CLL patient samples  

Distinct types of telomere fusions were identified from the 9 CLL patient samples, but it 

remained to be assessed whether there was a distinct pattern of telomere fusions across 

the genome for each CLL patient sample. Data obtained from the intra- and inter-

chromosomal analysis was compiled (Supplementary Table 12) and Circos plots displaying 

the linkages (Krzywinski et al., 2009) were created from all validated and verified mapped 

reads as a composite (Figure 4.11).  

 

Figure 4.11. Characterisation of all telomere fusion events detected in 9 CLL patient samples. 

Circos plot showing the validated results obtained from the inter- and intra-chromosomal telomere 

fusion analysis from 9 CLL patient samples. Circos plot with each chromosome and its telomeres (1p 

telomere, Chr1, 1q telomere) around the circle orientated clockwise. Colour code: telomere-

telomere inter-chromosomal (black), telomere-telomere intra-chromosomal for 5p, 17p and XpYp 

(blue), inter- or intra-chromosomal for 16p and 21q families (light blue), and inter-chromosomal 

telomere-genomic (green), telomere-2q13 (orange) and telomere-ChrM (pink). 
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Independent plots were created for each CLL patient sample (Figure 4.12 and Figure 4.13). 

Distinct signatures of telomere fusions were observed for the individual CLL patient 

samples. Some patients displayed simple patterns, characterised with intra- and/or inter-

chromosomal head-to-head telomere fusions only (DB63 and DB60). Another patient 

mainly presented abundant genomic linkages, including the ancestral telomere at 2q13 and 

mitochondrial DNA (DB65). Finally, there were patients that exhibited complex signatures 

with a combination of most (DB17, DB59, DB61, DB62 and DB64) or all types of telomere 

fusion events (DB66). 

 

Figure 4.12. Characterisation of telomere fusions detected from CLL patient sample DB17. 

Circos plot showing the validated results obtained from the inter- and intra-chromosomal telomere 

fusion analysis from CLL patient sample DB17. Circos plot with each chromosome and its telomeres 

(1p telomere, Chr1, 1q telomere) around the circle orientated clockwise. Colour coded as described 

in Figure 4.11. 
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Figure 4.13. Characterisation of telomere fusions for 8 CLL patient samples. 

Circos plot showing the validated results obtained from the inter- and intra-chromosomal telomere fusion analysis from 8 CLL patient samples (DB59-66). Circos plot with 

each chromosome and its telomeres (1p telomere, Chr1, 1q telomere) around the circle orientated clockwise. Colour coded as described in Figure 4.11.  
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Given the inclusion of the 5p telomere into the telomere-fusion assay it was reassuring to 

identify events involving this telomere. From 914 validated telomere fusion events 

detected from the panel of 9 CLL patient samples (Table 4.2), 19% (172 fusion events 

detected) involved the 5p telomere. These were distributed across the common classes of 

telomere fusion event that had been identified (Figure 4.14). 

Table 4.2. Validated telomere fusion events identified from a panel of 9 CLL patient samples. 

Fusion event 00 0 1 1o2T 2T 2A 2G 2C 2M 

N=914 16 360 49 49 343 11 75 7 4 

(%) 1.75 39.39 5.36 5.36 37.53 1.20 8.21 0.77 0.44 

 

  

Figure 4.14. Proportion of 5p telomere fusion events. 

Type of telomere fusion events detected with the 5p telomere (light blue chequered) and other 

telomeres: 17p, XpYp, 16p or 21q (dark blue). From a total of 914 events, 172 contained the 5p 

telomere (Event type: 00=4/16, 0=56/360, 1=9/49, 1o2T=0/49, 2T=57/286, 2A=0/11, 2G=44/75, 

2C=1/7 and 2M=1/4). Proportion of 5p telomere fusion events were indicated above each bar. 

Complex inter-chromosomal telomere fusion events (2C) were also detected (Figure 4.15). 

These were composed of distinct loci, involving more than one of the different types of 

telomere fusions that may have resulted from cycles of BFB.  



Chapter 4: Investigating the impact of telomere dysfunction on the CLL genome 

 

128 
 

 

 

Figure 4.15. Complex telomere fusion events. 

Complex telomere fusions obtained from the inter-chromosomal analysis of 9 CLL patient samples 

(n=7). (A) 5p-Chr13q14.2(LINC00441)-chr13q31.1-Tel (DB59), (B) 16p-1p-ccctaa (DB60), (C) 16p-Xp-

Tel (DB60), (D) 15q(16p)-16p-Tel (DB60), (E) 21q+21q+Xp (DB62), (F) Xp21.1(DMD)-17p-17p (DB59) 

and (G) 15q(16p)-Xp-cccta (DB60). Microhomology at the fusion junctions was highlighted in black 

and underlined, coordinates noted. Different colours were used to distinguish the distinct locations 

involved in the fusion event (loc1=blue, loc2=green, loc3=brown, loc4=purple). 
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4.4.3 Variety of TVR identified from the intra analysis 

Telomeres are composed of TTAGGG repeats; however, the telomere-proximal regions 

contain Telomere Variant Repeats (TVRs). TVRs are degenerated repeats such as TTGGGG, 

TCAGGG and TGAGGG (Allshire et al., 1989, Baird, 1995), and other less frequent TVRs 

(Letsolo et al., 2010, Lee et al., 2014a).  

In chapter 3, 5p TL was compared to 17p and XpYp using STELA (Baird et al., 2003) and 

TCAGGG and TGAGGG variant repeat composition was characterised using TVR-PCR (Baird, 

1995). In this chapter, a deep characterisation of TVR in patient CLL-B cells was possible by 

NGS of telomere fusion amplicons. 

In order to evaluate telomere sequence content in patient CLL-B cells, all telomeric reads 

identified from the intra-chromosomal analysis (event type 00 and 0) were pooled together 

and the presence and proportion of distinct TVRs were counted (Figure 4.16 and 

Supplementary Table 13). It was not possible to identity whether the telomeric sequence 

was from 5p, 17p or XpYp, therefore a comparison between the distinct telomeres was not 

achievable. Instead they were counted as total number of TVRs identified. 

From 1950 telomeric repeats noted, 76% were the canonical TTAGGG and the remaining 

24% consisted of 18 distinct TVRs. The most abundant variant repeats were TTGGGG, 

GTAGGG, TGAGGG, TCAGGG and TTAGGGG, constituting 18.41%. Followed by 3.85% 

consisting of TTCGGG, TTTAGGG, CTAGGG and the remaining 1.87% was made of TAAGGG, 

ATAGGG, TTAGGGGGG, TTAAGGG, TTTGGG, GTGGGG, TTAGTG, TTAGCG, TGGGGG, and 

CTGGGG sequences.  

This study provides the first characterisation of TVR in patient’s cells, indicating the variety 

and proportion of TVRs present in 9 patient CLL-B cells. 
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Figure 4.16. Telomere Variant Repeats identified. 

Type and proportion (%) of TVRs identified from the characterisation of telomere fusion events. The 

list of TVRs was in order of abundance: from highest to lowest. Percentages recorded next to the 

TVR. 
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4.4.5 Subtelomeric deletion and asymmetry in sister chromatid and intra-

chromosomal fusion events in CLL samples. 

The characterisation of intra-chromosomal telomere fusions in MRC5 and HCT116 cell lines 

revealed the fusion of sister chromatids with different length, demonstrating an 

asymmetric deletion of each chromatid before ligation (Liddiard et al., 2016). To assess 

whether this was true for patient CLL-B cells, subtelomeric deletion and asymmetry were 

investigated. 

Deletion, which could either be caused by breakage or resection from the point of 

breakage, was investigated at intra-chromosomal fusion junctions by calculating the 

distance from the start of the telomere repeat sequences to the fusion junction for each of 

the chromatids involved in the fusion event. Subsequently, the difference in the degree of 

deletion between each sister chromatid was calculated to obtain the level of asymmetry. 

Sister chromatid deletion and the level of asymmetry for the 5p, 17p and XpYp telomeres 

(Figure 4.17) was calculated with events type 0 and 1 (subtelomere-telomere and sister 

chromatid fusion events) (A-B) and sister chromatid only (C-D).    

Fusion junctions were evenly distributed between the fusion primer and the start of the 

telomere for the 17p and the XpYp subtelomeres. In contrast, a large interval in read 

alignments was found at the 5p subtelomere coincident with the location of the CpG island 

(Figure 4.17A,C).  

It was not possible to determine whether telomere fusion events identified using the intra-

chromosomal analysis were sister chromatid fusions or inter-chromosomal fusion events, 

therefore, asymmetry was more accurately determined using validated sister chromatid 

fusion events only.  

Deletion at each sister chromatid extended up to the primer binding site with a mean of 

2442bp, 1917bp and 1047bp for 5p, 17p and XpYp, respectively (Figure 4.17C). Asymmetry 

of sister chromatids (Figure 4.17D) was observed for 5p, 17p and XpYp with a mean of 

1408bp, 1240bp and 695bp, respectively. The degree of asymmetry was significantly 

greater to the theoretical value 0 (one sample t-test, p<0.001), demonstrating in patient 

CLL-B cells the fusion between sister chromatids of different lengths. No significant 

differences were found in the extent of asymmetry between the different ends (Krustal 

Wallis, p=0.1661). 
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Figure 4.17. Asymmetrical deletion prior 5p, 17p or XpYp sister chromatid fusion. 

(A) Deletion for the 5p, 17p and Xp chromosome ends for events 0+1. Green box highlights the CpG 

island on the 5p subtelomere. Location of the fusion primer indicated, determines the limit of the 

assay from the telomere. (B) Level of asymmetry was determined by calculating the deletion 

difference between each chromatid of the same fusion event. (C) Sister chromatid deletion and (D) 

asymmetry of intra-chromosomal fusion events only (type 1) with mean, SD and SE (bp): 1408, 

492.9, 186.3 for 5p; 1240, 1054 and 272 for 17p; 694.7, 669.8, 211.8 for XpYp, respectively.  
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4.4.6 Distinct microhomology utilisation at the fusion junction 

To investigate the underlying DNA repair mechanisms (C-NHEJ or A-NHEJ) that may be 

associated with each type of event, microhomology at the fusion junction was documented 

(based on sequence of GRCh37 visualised on Ensembl).  

 

 

Figure 4.18. Distinct degree of microhomology at the fusion junction.  

Microhomology (bp) at the fusion junction was compared for the distinct type of events: TTAGGG-

CCCTAA (00), Subtelomere-TTAGGG (0), intra-chromosomal (1), intra- or inter-chromosomal of 16p-

16p and 21q-21q families (1o2T), inter-chromosomal telomeric fusion events (2T), inter-

chromosomal fusions with the ancestral telomere at 2q13 and inter-chromosomal fusions with 

genomic loci (2G). Inter-chromosomal fusions with mitochondrial DNA have been excluded as there 

were only 2 events with mapped fusion junction, one contained an insertion and the other MH=4.  

Statistically significant differences in the extents of microhomology usage were observed 

between some of the different subgroups of telomere fusion events, shown in Figure 4.18 

and Table 4.3. Inter-chromosomal fusions with genomic loci (2G) (mean=9.12bp; n=43), 
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together with intra-chromosomal sister chromatid events (mean=4.09bp; n=32), showed 

the greatest extent of microhomology.  

The microhomology usage identified for the subgroup intra/inter (1/2T) formed by fusion 

of the 16p-16p and 21q-21q families, was a combination of both intra- and inter-

chromosomal telomeric fusions (mean=3.56bp; n=25). Followed by telomere fusions with 

the ancestral telomere at 2q13 (2A) (mean=2.78bp; n=9).  

In contrast, very low or absence of microhomology at the fusion point was observed from 

inter-chromosomal telomeric fusions (mean=1.47bp; n=315), Tel-Tel (mean=0.83bp; n=12) 

and Tel-Subtel (mean=1.64bp; n=303) subgroups. 

Long tracts of microhomology of up to 23bp, were observed at inter-chromosomal fusion 

junctions with genomic loci (Figure 4.19). When the usage of microhomology was >10bp, 

the sequence was enriched for the repeat unit of (AC)n  in 40% (6/15) of events that 

contained at least (AC)5 (motif ACACACACAC).  

Insertions were also observed at the fusion junctions in 6.28% (50/796): 23/50 for type 0, 

4/50 type 1, 2/50 for type 1o2T, 19/50 for type 2T, 1/50 for 2A and 1/50 for 2M) but they 

were not identified at fusions with genomic loci. Insertions ranged from 1-21 nucleotides 

with a mean of 4.5 nucleotides and they were templated, untemplated and/or potential 

TVRs. 

Table 4.3. Microhomology at the fusion junction 

Type of event 00 0 1 1/2T 2T 2G 2A 

Number of values 12 303 32 25 315 43 9 

Mean 0.83 1.64 4.09 3.56 1.47 9.12 2.78 

Std. Deviation 0.83 1.56 3.22 2.66 1.44 5.61 2.49 

Std. Error 0.24 0.09 0.57 0.53 0.08 0.86 0.83 

 Type of event 00 0 1 1/2 2T 2G 2A 

00: Tel-Tel x ns ** ** ns *** ns 

0: Subtel-Tel x x *** ** ns *** ns 

1: Intra x x x ns *** ns ns 

1/2T: Intra/Inter x x x x *** ns ns 

2T: Telomeric x x x x x *** * 

2G: Genomic x x x x x x ns 

2A: Ancestral x x x x x x x 

Not all groups passed normality test. Non-parametric ANOVA Krustal Wallis p<0.001 and Dunn's 
Multiple Comparison Test. 
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Figure 4.19. Long tracts of microhomology at inter-chromosomal fusion junctions with genomic 

loci. 

Examples of 5p inter-chromosomal fusions with genomic loci with different usage of microhomology 

(MH). (A) 5p-chr6p22.3, MH=18bp (DB60), (B) 5p-chr5p14.1 MH=18 (DB60), (C) 5p-chr2q14.1 

MH=13bp (DB61), (D) 5p-chr3q13.32 MH=12 (DB66), (E) 5p-chr1q41 MH=9bp (DB65), (F) 5p-

chr22q13.2 MH=6bp (DB59) and (G) 5p-chr19p13.12 MH=6bp (DB65). 5p subtelomeric sequence in 

capitals, genomic loci in green and microhomology at the fusion junction underlined. 
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4.4.7 Investigating telomere fusion activity with non-telomeric genomic loci  

Telomere dysfunction is associated with increased genomic instability and disease 

progression in CLL (Lin et al., 2010, Lin et al., 2014); therefore a characterisation of inter-

chromosomal telomere fusions with genomic loci was undertaken. This could reveal 

hotspots or provide information about the DNA sequence target of telomere fusion 

activity.  

Inter-chromosomal fusions with genomic loci were identified across the 9 CLL patient 

samples. A total of 93 different locations were validated, of which 67.7% (63/93) had 

defined mapped fusion junctions (mFJ) and 32.3% (30/93) unmapped (uFJ). Some fusion 

junctions were not identified due to the reads not spanning this sequence (Figure 4.20A).  

Distinct locations across the genome were incorporated into telomere fusions: 75 in 

different genomic loci (2G: 48mFJ, 27uFJ), 4 at mitochondrial DNA (2M: 2mFJ, 2uFJ), 11 at 

the ancestral telomere Chr2q13 (2V: 10mFJ, 1uFJ) and 3 genomic locations from complex 

events (2C: 3mFJ, 0uFJ).  

Each location was depicted in a karyotype map shown in Figure 4.20A. However, the loci 

disrupted by telomere fusions were not randomly distributed as the number of mapped 

fusion junctions did not correlate with the chromosome length (r2=0.44) or coding gene 

density of the respective chromosomes (r2=0.32) (Figure 4.20B). However, loci with 

previously-reported copy number aberrations in CLL (Salaverria et al., 2015) were found to 

be incorporated into telomere fusions including 2p15, 2p11.2 (2 events), 2q13 (11 events), 

6q22.31, 11q22.2 and 18q21.32 (single events). In addition, a complex telomere fusion was 

detected involving 4 distinct loci including 13q14.2 that is frequently deleted in CLL (Figure 

4.15). 

Therefore, loci incorporated into telomere fusions were further investigated to reveal a 

potential association with the pathogenesis of CLL.  
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Figure 4.20. Inter-chromosomal telomere-genomic fusions from 9 CLL patient samples. 

(A) Validated inter-chromosomal telomere fusion events on a karyotype map. Telomere-genomic, 

telomere-ancestral telomere 2q13 and telomere-Mitochondria DNA/Chr. All events were sequence-

verified and BLAST-authenticated. Each colour represents a different patient sample. Continuous 

arrow-heads indicate mapped fusion junctions (mFJ), discontinuous arrow-heads represent 

unmapped fusion junctions (uFJ, location of the read represented). A total of 93 events comprising 

of 2G (n=75), 2C (n=3) (1 with two different locations), 2V (n=11) and 2M (n=4). Karyotype plot 

generated in Ensembl. (B) Number of validated inter-chromosomal telomere-genomic fusion 

junctions per Mb of DNA for each chromosome ordered by length (size obtained from Ensembl).  
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4.4.7.1 Telomeric fusions with mitochondrial DNA. 

Four potential telomeric fusions with mitochondrial DNA (two with validated fusion 

junctions) were identified from the inter-chromosomal analysis (Figure 4.21). The list of 

genes disrupted was: MT-ND4, MT-ND5, MT-CO3, MT-TG, and MT-RNR1 (all exons).  

 

Figure 4.21. Telomeric fusion with mitochondrial DNA. 

Four examples of telomeric fusions with mtDNA. Fusion junction mapped for events A (DB61) and B 

(DB66), unmapped for C (DB65) and D (DB66). Mitochondrial DNA was represented in lowercase and 

pink, telomeric sequence was in capitals. Microhomology at the fusion junction was underlined and 

the insertion in highlighted in bold. Coordinate of the FJ and disrupted genes are indicated (pc: 

protein coding). 
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4.4.7.2 Fragility at the ancestral telomere at Chr2q13 

A hotspot of telomere fusions with genomic loci was observed at Chr2q13 (Figure 4.20, 

Figure 4.22), consistent with the location of the ancestral telomere.  

The inter-chromosomal telomere fusion analysis on 9 CLL patient samples revealed 11 

distinct validated telomeric-2q13 fusions, 10 with mapped and 1 unmapped fusion 

junction. These events were detected in 7/9 CLL patient samples, with the 16p and 21q 

families and also with a TTAGGG-repeat sequence. The mean usage of microhomology at 

the fusion junctions was 2.78bp (as described in section 4.4.4).  

Three of these fusion events involved the pseudogenes DDX11L2 (DEAD/H (Asp-Glu-Ala-

Asp/His) box helicase 11 like 2) and WASH2P (WAS protein family homolog 2), and the 

remaining were intergenic (Figure 4.22A). 
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Figure 4.22. Telomeric fusions with the ancestral telomere at 2q13. 

(A) Location of fusion junctions on 2q13 visualised in Ensembl. Arrow heads indicate fusion junctions (continuous line for mapped FJ and dotted line for unmapped FJ for 

which the read location is represented) and each CLL patient sample is represented with a different colour. Gene legend: gold (protein coding, merged Ensembl/Havana) 

black (non-protein coding, pseudogene). (B-D) Three examples of telomeric (capital letters)-2q13 (green) fusions represented (from DB62, DB59 and DB65, respectively). 

Microhomology at the fusion junction was underlined.  
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4.4.7.3 Characteristics of genomic loci that fuse with dysfunctional telomeres  

Validated telomere fusions with genomic loci (2G, n=75), in addition to those identified 

from complex events (2C, n=3) and fusions with mitochondrial DNA (2M, n=4) were 

selected for further characterisation.  

The features of the genomic loci were analysed for all events (mapped/unmapped fusion 

junction, n=82) and separately for those with mapped fusion junction only for greater 

certainty (mFJ, n=54) (Figure 4.23 and Table 4.4). Telomere fusions mainly disrupted 

introns in protein coding genes (43.90%, 51.85%), followed by intergenic regions (40.24%, 

37.04%) and exons in protein coding genes (9.76%, 5.56%) in lower abundance. A small list 

consisted of pseudogenes (2.44%, 1.85%), long-intergenic non-protein coding RNA (LINC) 

(2.44%, 1.85%) and non-protein coding genes (1.22%, 1.85%), respectively.   

Telomere fusions occurred within coding DNA more frequently than expected by chance. 

57.4% of mapped fusion junctions were in introns and exons of protein coding genes, 

significantly higher (Chi-squared analysis p=0.0024) than the average 41.8% gene content in 

the human genome (based on the hg19 RefGene; Pruitt, 2014). 

 

Figure 4.23. DNA features of genomic locus that fuses with dysfunctional telomeres. 

Proportion of fusions with introns in protein coding (PC) genes (dark green), exons in protein coding 

genes (light green), non-protein coding (NPC) genes (brown), intergenic regions (purple), 

pseudogenes (light blue) or long intergenic non-protein coding RNA (LINC) (orange). (A) For 2G, 2M 

and 2C fusion events with genomic loci with mapped or unmapped fusion junction n=82. (B) Only for 

events with defined fusion junctions n=54.  

Transcription regulatory elements such as promotors, enhancers and CTCF binding sites, 

were also found in some locations. Structural variations such as CNV were identified for 

some of the locations using information from the 1000 Genomes Project (Genomes Project 

et al., 2015).  
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Telomere fusions have also been observed with repetitive DNA sequences. 18.3% (14.8% 

with mFJ) fused with Common Fragile Sites (CFSs), similar to the proportion of CFSs 

identified across the human genome (14.90%) (Fungtammasan et al., 2012). In addition, 

14.63% (9.25% with mFJ) of fusions were with Alu elements, similar to the  abundance of 

Alu sequences estimated across the human genome (11%) (Lander et al., 2001, Roy-Engel 

et al., 2001) (Table 4.4). Also, 6 fusion junctions contained the (AC)n motif (with n≥5).  

Table 4.4. Description of genomic loci that fuses with dysfunctional telomeres. 

FEATURE Unmapped fusion junction Mapped fusion junction 

PC INTRON 
EIF2B5, C8A, ORAI1, DCAF6, RDH8, 

SLC39A12, ZNF678, TMEM63C 

POLDIP3, TESPA1, CD8A, KIF26B, RORA, 

EVI5, FGGY, ZNF254, LPHN1, FAM78B, 

CSMD1, KIF13A, PCNXL2, NTF3, BEN 

domain containing 7, FTO, SLC30A10, 

C6orf123, VPS13D, ECE1, PTCD3, HTR7, 

DGKB, NOX5, HDDC2, SHQ1, DMD, 

TBC1. 

PC EXON 
KIF13A, MIP, RALYL, MT-CO3, MT-

RNR1, MT-TG 
DDX18, MT-ND4, MT-ND5 

INTERGENIC - - 

NPC - CTC-575N7.1 

LINC LINC01090 LINC00441 

PSEUDOGENE RP11-353N4.6 RP11-520H11.1 

CFS 

FRA12E (12q24.31), FRA1F (1q21.2), 

FRAK1 (1q32.1), FRA2H (2q32.1), 

FRA3C (3q27.1), FRA1B x2 (1p32.2, 

1p32.3), 

FRA10D (10q22.1), FRA15A (15q22.2), 

FRA18B (18q21.32), FRA1D (1p22.1), 

FRA1B (1p32.1), FRA1I (1q44), FRA3D 

(3q25.2), FRA5E (5p14.1). 

ALU 

AluY x3 (2q32.1, 17q24.2, 8p12), 

AluSx3  (1q24.2),  AluJr x2 (10p12.33, 

19p13.2), FLAM_A (1p32.3) 

AluY (15q22.2), AluSx3 x2 (19p12, 

19p13.12), AluJr4 (1p22.1), AluJb 

(22q13.2). 
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4.4.7.4 B lymphocyte specific-genes and other oncogenes are hotspots of 

telomere fusion activity in CLL 

A total of 31 protein coding genes (n=28 introns, n=3 exons) (Supplementary Table 15) 

with mapped fusion junctions were identified (example Figure 4.24), these were loaded 

into the Database for Annotation, Visualization and Integrated Discovery (DAVID, v6.8, 

(Huang da et al., 2009a, Huang da et al., 2009b)) and GSEA Gene Set Enrichment Analysis 

(GSEA, v5.2, (Mootha et al., 2003, Subramanian et al., 2005)) databases 

(https://david.ncifcrf.gov/; http://software.broadinstitute.org/gsea/index.jsp). 

The DAVID Functional Annotation Tool was used to investigate enrichment in biological 

process gene ontologies (BP_GO) using Ensembl IDs; however, none of the categories were 

significantly enriched. Categories, gene count, p-value and Benjamini-Hochberg multiple 

testing corrected values are listed in Supplementary Table 14.   

The Ensembl Gene IDs were converted to Entrez Gene IDs using DAVID Gene Accession 

Conversion Tool. The same list of 31 protein coding genes (Supplementary Table 15) was 

also submitted to GSEA and compared to all collections available in Molecular Signatures 

Database (MSigDB) (Supplementary Table 16) (Subramanian et al., 2005) in order to find 

overlaps.   

Enrichment in genes overexpressed in CD38+ patient CLL-B cells was found: HTR7 (DB61), 

KIF26B and LPHN1/ADGRL1 (DB65) (p-value 1.5e-6; FDR q-value 2.7e-2). These three genes 

were previously found to be upregulated in CD5+/CD19+/CD38+ CLL cells compared to CD5-

/CD19-/CD38- CLL cells derived from the same patient in a panel of 6 CLL patient samples 

(Pepper et al., 2007). From the 9 CLL patient samples, DB64 and DB65 were CD38+ (>20%) 

and the remaining CD38- (<20%).  

Enrichment in genes with a promoter region containing binding motif that matches the 

annotation for the transcription factor 1 (TCF1) was found (DMD, RORA, NTF3 and HTR7 

with p-value 2.51e-5 and FDR q-value 1.31e-2). Moreover, enrichment in genes 

overexpressed in breast and liver cancer was also identified. More information provided in 

Supplementary Table 16, Supplementary Table 17 and Supplementary Table 18. 

In addition, 19.35% (6/31) of genes disrupted by a telomere fusion were, to some extent, 

expressed in B lymphocytes (data obtained from GeneCards http://www.genecards.org): 

CD8A (CD8a molecule), RORA (RAR Related Orphan Receptor A), TESPA1 (Thymocyte 

Expressed, Positive Selection Associated 1), DMD (Dystrophin), NOX5 (NADPH Oxidase 5) 

and NTF3 (Neurotrophin 3).  

https://david.ncifcrf.gov/
http://software.broadinstitute.org/gsea/index.jsp
http://www.genecards.org/
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Figure 4.24. Telomere fusion with genomic loci 12q13.2. 

Type of fusion 2G. (A) Paired-reads mapped for 21q telomere and 12q13.2 together with breakpoint visualised in IGV. Repetitive element and fragile sites indicated with 

the blue box. (B) Location of the reads for the telomere fusion event shown in Ensembl. Gene identified TESPA1: Thymocyte expressed, positive selection associated 1 

(ENSG00000135426) as indicated by Ensembl/Havana (C) Sequence of the fusion event. The 21q telomeric sequence represented in black and the 12q13.2 in blue. 
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4.5 DISCUSSION 

4.5.1 Higher frequency of bimodal telomere length distributions in CLL-B 

cells with the highest frequency of fusions 

The proportion of samples with a bimodal TL distribution amongst the CLL samples with the 

highest frequency of fusions is surprisingly high when compared to the frequency of 

bimodality observed from the ARCTIC and ADMIRE cohorts: 66.67% (6/9) versus 3.98% 

(11/276), respectively.  

A possible explanation could be the presence of multiclonality (two distinct subclones with 

different TL) in this subset of samples with more genomic instability and potentially a more 

aggressive disease. This hypothesis is supported by the evidence of intra-patient tumour 

heterogeneity in CLL. With the presence of multiple subclones that co-exist and can predict 

relapse particularly since chemotherapy is known to change the tumour composition and 

select for resistant subclones (Landau et al., 2013, Landau et al., 2014).  

The bimodal distributions observed in these patients could also arise from biallelic TL 

variation; however, it is not possible to establish this without undertaking allele-specific 

STELA. Allele-specific STELA requires the presence of characterised sub-telomeric sequence 

polymorphism, this is known for XpYp (Baird, 1995); however, 45% of individuals are 

heterozygous and will thus not be informative in the two patients that exhibit bimodality at 

XpYp. A less likely explanation may simply be related with the purity of the sample 

(presence of other cell types) usually characterised by a very heterogeneous TL profile. To 

exclude this possibility, one of the patient samples was purified for CD19+ cells beforehand, 

revealing that the bimodal TL distribution was within the population of CLL-B cells. In 

addition, for most of the remaining bimodal samples, the absolute lymphocyte count (ALC) 

was similar or higher than the average from the 276 CLL patient samples from the ARCTIC 

and ADMIRE cohorts.   

Taken together these results suggest an increased frequency of telomere dysfunction and 

fusion amongst a subgroup of CLL patients with intra-tumour heterogeneity. Telomere 

fusions might provide a mechanism for the acquisition of genomic rearrangements 

producing genetically heterogeneous tumour cells and contributing to multiclonal 

evolution. 
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Measuring TL using STELA provides valuable information about potential multiclonality 

within the sample that requires further investigation with other techniques given the 

impact of intra-patient tumour heterogeneity in disease progression and relapse. The co-

existence of multiple clones could be assessed by checking the purity of CD19+ CLL cells in 

the sample, sorting CLL-B cells only, growing them in culture and measuring the TL profile 

at different time points. Multiclonality could be assessed based on the SNV from Whole 

Genome Sequencing (WGS) (further explored in Chapter 5).  

4.5.2 Signature of intra- and inter-chromosomal telomere fusion events in a 

panel of 9 CLL patient samples  

Results obtained from the paired-end NGS of telomere fusion amplicons in 9 CLL patient 

samples revealed a distinct signature of telomere fusion activity for each of the patients.  

Complex telomere fusion events (n=7) incorporating up to 4 distinct remote loci were 

detected in patient CLL-B cells implicating wide-spread genomic instability. This was 

consistent with previous observations in MRC5 and HCT116 cell lines (Capper et al., 2007, 

Letsolo et al., 2010, Liddiard et al., 2016). These results support telomere-driven BFB cycles 

in patient CLL-B cells, which can lead to distinct forms of genomic instability that are found 

in human cancers. Including gene amplification, gene loss by loss of heterozygosity (LOH) 

and non-reciprocal translocations, in addition to chromothripsis, kataegis, aneuploidy and 

whole genome duplication (Maciejowski and de Lange, 2017).  

Dysfunctional telomeres require the acquisition of a new telomere to stop BFB cycles 

during a telomere-driven crisis. Some of the telomere fusion events identified from the 9 

CLL patient samples were characterised by the presence of subtelomeric sequence 

followed by canonical TTAGGG-repeats in the same orientation. This could either be 

explained by the acquisition of a new telomere by translocation after BFB cycles (Murnane, 

2006) or chromosome healing (Zschenker et al., 2009). The latter event could have only 

been amplified with the fusion primers if the telomere became dysfunctional and fused 

again.   

Reactivation of telomerase is required in 85% of human cancers for cellular immortalisation 

(Kim et al., 1994). As the telomerase hTERT locus is proximal to the 5p chromosome end, 

chapter 3 focused on the adaptation of the telomere fusion assay to include the 5p 

telomere to investigate telomere dysfunction and fusion at this chromosome end. In this 

chapter, 172 telomere fusions involving the 5p telomere were validated, identifying sister 



Chapter 4: Investigating the impact of telomere dysfunction on the CLL genome 

 

147 
 

chromatid fusion events and inter-chromosomal fusions between 5p with distinct 

telomeres and several genomic loci. These results provide evidence of telomere 

dysfunction and fusion at the 5p chromosome end in CLL patients. Since translocation 

involving hTERT following telomerase upregulation have been observed in B-cell 

malignancies including CLL patients (Nagel et al., 2010, Salaverria et al., 2015), 5p sister 

chromatid fusion events may provide a mechanism for hTERT amplification.   

In addition, in mantle cell lymphoma Chr5p15.33 is a recurrent breakpoint (Schilling et al., 

2013) that could be inappropriately repaired and incorporated into telomere fusions, 

leading to translocations of this gene near an enhancer or a transcription regulator. Further 

evidence comes from the escape from a telomere-driven crisis in MRC5HPCE6E7 cells after 

Chr5p amplification, including hTERT, and reactivation of telomerase (Jones et al., 2014). 

Further research is required to establish this association. A model system in cell lines could 

be designed to investigate activity at the 5p telomere that precedes 5p rearrangements 

and upregulation of hTERT, facilitating escape from senescence or crisis. A 5p 

TALEN/CRISPR technology could be used to induce DSBs at different locations of the 5p 

subtelomere and proximal to the hTERT locus. In addition, primers would be designed 

upstream each breakpoint to allow amplification of a fusion event near the breakpoint. This 

model would allow assessing whether instability at the 5p telomere facilitates the right 

rearrangement to amplify hTERT and escape crisis or senescence. 

4.5.3 Variety of TVR identified from the intra-chromosomal analysis 

The study of telomere sequence content in patient CLL-B cells revealed the presence of 18 

potential TVR sequences: TTGGGG, GTAGGG, TGAGGG, TCAGGG, TTAGGGG, TTCGGG, 

TTTAGGG, CTAGGG, TAAGGG, ATAGGG, TTAGGGGGG, TTAAGGG, TTTGGG, GTGGGG, 

TTAGTG, TTAGCG, TGGGGG, and CTGGGG. TVRs highlighted in bold or underlined were 

previously reported in different cell lines by Lee et al., 2014 and Letsolo et al., 2010, 

respectively. Lee and colleagues suggested the presence of a different category made of 

sequences like: GG, GT, A, G, TT, GGG, TAGGGATAGAG, TTTGAGTAGGG, 

GCCAGGGTTAGAGT, TCAGAATTCAGAGGG, GTTATGG and TCAG. In addition, it remains 

possible that the least abundant hexameric repeats identified, highlighted in italics, were 

potentially a PCR or sequencing error arising from TTAGGG and TTGGGG, instead of a 

conserved TVR. 
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The study of TVRs is important. Although TVRs are located in the proximal regions (Allshire 

et al., 1989, Baird, 1995), they can be found throughout the telomere (Lee et al., 2014a). 

Their frequency and location is relevant because they decrease the binding affinity of 

members of the shelterin complex, having an impact on telomere protection and cellular 

fitness (De Lange, 2005b, Mendez-Bermudez et al., 2009, Stohr et al., 2010).  

4.5.4 Asymmetric deletion at sister chromatids in intra-chromosomal fusion 

events  

The uneven distribution of fusion junctions across the 5p subtelomere is consistent with 

the location of the CpG island and suggests that the GC-rich sequence may hamper the 

detection of 5p fusion events. In contrast, long-range fusion events were effectively 

captured across the 17p and XpYp telomeres. 

The analysis of sister chromatid deletion caused by breakage or resection from the point of 

breakage in CLL-B cells, revealed asymmetrical processing of sister chromatids. This is 

consistent with results obtained from the NGS analysis of telomere fusions in colorectal 

cancer cell lines, postulated to arise from ligation of DNA strands that had been replicated 

differently (Liddiard et al., 2016).  

The ligation of sister chromatid arms of different lengths produced by stochastic DSBs at 

subtelomeric DNA and/or distinct length of resection, would result in asymmetric deletion. 

4.5.5 Distinct degrees of microhomology at the fusion junction 

Distinct degrees of microhomology usage at the fusion junction were identified for each 

type of telomere fusions event and may potentially be associated with specific DNA repair 

pathways.  

In this study, intra-chromosomal and inter-chromosomal fusions with genomic loci 

presented the greatest usage of microhomology (4.09bp and 9.12bp, respectively), 

suggesting a role for LIG3/LIG1-dependent A-NHEJ. Also known as microhomology-

mediated end joining (MMEJ), A-NHEJ is characterised by extensive resection to reveal 2-

20bp (most common 4-6bp) of microhomology to stabilise the junction. In contrast, the 

absence or low usage of microhomology for telomeric inter-chromosomal fusion events 

(1.47bp) could be mediated by LIG4-dependent C-NHEJ, characterised by less processing of 

the DSB ahead of fusion. LIG4 does not rely on microhomology at the fusion junction but if 

required, the endonuclease Artemis is activated by the Ku70/80 and the DNA-dependent 
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protein kinase catalytic subunit (DNA-PKcs) complex, and trims slightly to reveal small 

sections of microhomology (<4bp) (Goodarzi et al., 2006, Gu et al., 2010, Chang et al., 

2015). However, some telomeric inter-chromosomal fusion events contained up to 6bp of 

microhomology, potentially suggesting a role for A-NHEJ. Increased microhomology usage 

has previously been observed at intra-chromosomal (3.01bp) compared with inter-

chromosomal (1.62bp) telomere fusion events, mediated by the A- and C-NHEJ respectively 

Liddiard et al., 2016). Furthermore, LIG3 A-NHEJ is a mutagenic DSB DNA repair mechanism 

that was essential to escape a telomere crisis (Jones et al., 2014).  

Homologous recombination (HR) requires high levels of homology and it has been 

implicated for some intra- and inter-chromosomal fusion events (Mao et al., 2016). In 

contrast, Doksani and De Lange suggest a principal role of A-NHEJ at telomeres, even for 

DSBs within telomeric repeats (Doksani and de Lange, 2016). As microhomology usage is 

limited at telomeric repeats, in this study it may not be reliable to assess the DNA repair 

mechanism involved for events 00 (TTAGGG-CCCTAA, 0.83bp) and 0 (Subtelomere-

TTAGGG, 1.64bp) based on microhomology. 

For genomic DSB repair, A-NHEJ is the main contributor to chromosomal translocations 

(Iliakis et al., 2015). Intriguingly, two distinct clusters of microhomology usage could be 

observed for inter-chromosomal fusions with genomic loci (0-9bp and 12-22bp). It remains 

unknown whether it may be indicative of the participation of specific repair mechanisms 

and the accumulation of fusion events through the years.   

In addition to HR, another mechanism implicated in DSB repair that requires greater usage 

of homology than A-NHEJ is single-strand annealing (SSA) (>20bp). It is similar to A-NHEJ 

but it needs large resection to reveal extended homology and it does not use PARP and Pol 

θ. Instead, it uses RAD52 to mediate alignment and the ERCC1/XPF nuclease to excise the 

overhangs, causing large deletions before ligation (Bhargava et al., 2016). Uninterrupted 

homologous sequences favour SSA repair, which can lead to chromosomal rearrangements. 

A potential role for SSA in a subset of malignancies has been suggested given the 

enrichment of repetitive elements in several cancer-related genes and in genomic 

rearrangements (Elliott et al., 2005, Belancio et al., 2010, Zhang et al., 2011b, Bhargava et 

al., 2016).  

In addition, the presence of the repetitive unit (AC)n in 40% of inter-chromosomal fusion 

junction with genomic loci with microhomology usage greater than 10, might support the 

implication of SSA.  
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Therefore, inter-chromosomal telomere fusions with genomic loci could have been 

mediated by both A-NHEJ and SSA.  

Alternatively, other potential mechanisms that require microhomology and lead to the 

formation of complex chromosomal rearrangements identified in human disease are: 

homologous recombination break-induced replication (BIR) and microhomology-mediated 

BIR (MMBIR) or fork stalling and template switching (FoSTeS). These are characterised by 

high usage of microhomology and templated insertions with duplications or triplications 

(Malkova and Ira, 2013, Zhang et al., 2009, Holland and Cleveland, 2012, Sakofsky et al., 

2015). However, insertions were not observed in telomere fusions with genomic loci.  

Insertions at the fusion junction were identified in 6.28% of the total events with validated 

fusion junctions (50/796). Surprisingly, insertions were found in very low frequency for 

sister chromatid events (4/50). Instead they predominated in telomeric inter-chromosomal 

events (19/50) and in subtelomere with telomeric repeat fusion events (23/50) yet, the 

latter, could be part of rare TVRs instead of insertions. A-NHEJ DNA Pol θ can incorporate 

nucleotides including templated insertions (Wyatt et al., 2016); however, this repair 

pathway is proposed to mediate intra- and not inter-chromosomal telomere fusions. 

Otherwise, those insertions could have been introduced by the C-NHEJ DNA polymerases 

Pol μ and Pol λ that can synthesise DNA in a template-dependent/independent manner 

(Ma et al., 2004, Bebenek et al., 2014). Alternatively, FoSTeS/MMBIR has also been 

implicated in sealing telomeres by introducing terminal duplications to cap telomere 

fusions which may explain the templated insertions observed in head-to-head fusions 

(Lowden et al., 2011, Yatsenko et al., 2012).  

4.5.6 Investigating hotspots of telomere fusion activity with genomic loci  

Telomere-genomic inter-chromosomal fusions were observed across the genome and were 

not associated with chromosomal size, suggesting a non-random distribution. Loci with 

previously-reported copy number aberrations in CLL were found to be incorporated into 

telomere fusions. Moreover, two hotspot locations were identified on ChrM and Chr2q13 

locus.  

4.5.6.1 Telomeric fusions with mitochondrial DNA 

Telomere fusions detected with mitochondrial DNA may potentially disrupt genes required 

for energy availability. One possible mechanism is a telomeric fusion with genomic loci 
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where there has previously been a nuclear mitochondrial (mt) DNA (NUMT) insertion, 

process called numtogenesis, that can be historical in the human genome (germline) or 

specific to the patient sample (somatic). The number of germline NUMT insertions in the 

human genome is between 755-1105 (Mourier et al., 2001, Dayama et al., 2014). However, 

NUMT insertions are up to 4 times more abundant in cancer than in normal cells 

(Srinivasainagendra et al., 2017). Therefore, it is more likely that telomere fusions 

incorporate somatic rather than historical NUMT insertions given the higher abundance of 

the first type in cancer cells.   

Ju and colleagues have shown the presence of mtDNA fusions into gDNA in cancer cell lines 

and primary tumours, frequently combined with nuclear rearrangements. They propose a 

mechanism of somatic mtDNA nuclear transfer and the implication of replication-

dependent DSB repair or NHEJ for nuclear integration (Ju et al., 2015).  Compared to 

normal B cells, CLL cells have increased mitochondrial mass; and higher mtDNA copy 

number associates with higher risk of CLL (Carew et al., 2004, Jitschin et al., 2014, Kim et 

al., 2015). Therefore, another option may be a telomeric fusion with mtDNA that has 

migrated into the nucleus, or within micronuclei.  

Dysfunctional mitochondria can promote telomere shortening and chromosomal instability 

via reactive oxygen species (ROS), by-product of ATP oxidative phosphorylation (Liu et al., 

2002). Moreover, telomere dysfunction activates p53 which represses the mitochondrial 

regulator peroxisome proliferator-activated receptor gamma co-activator (PGC)-network 

which promotes metabolic failure diminishing cellular fitness (Sahin et al., 2011).  

Unlike normal B cells, CLL cells present an altered lipid metabolism. Similarly to adipocytes 

and myocytes, they store lipids in vacuoles, produce energy from free fatty acids (FFA) and 

express genes related to the lipid metabolism. With increased proliferation rate, the 

metabolic program is adjusted. To meet the energy requirement, the number of 

mitochondria and ROS production is increased (Bilban et al., 2006, Rozovski et al., 2016, 

Jitschin et al., 2014).   

Telomere fusions with metabolic genes encoded in the mitochondrial genome included 

mitochondrially encoded 12S RNA (MT-RNR1), cytochrome c oxidase III (MT-CO3), tRNA 

glycine (MT-TG), NADH dehydrogenase 4 (MT-ND4) and NADH dehydrogenase 5 (MT-ND5). 

In addition to telomere fusions with nuclear NADPH oxidase 5 (NOX5) and the lipid 

metabolism, fat mass and obesity associated gene (FTO) were also identified, which have 

been implicated in cancer cell metabolism (Roy et al., 2015, Liu et al., 2017c).  
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In CLL, disease stage has been associated with different metabolic state (Koczula et al., 

2016). Taken together these results suggest that CLL cells with an increased proliferation 

rate, overexpress metabolism-associated genes to meet the energetic requirement, 

facilitating telomere fusions with such actively-transcribed loci and producing additional 

ROS that further damage telomeres.  

In addition, it has recently been shown that aberrant mitochondria release cytochrome C 

that results in self-inflicted nuclear DNA DSBs calling upon the ATM/ATR DDR, which 

contributes to maintaining tumorigenesis (Liu et al., 2017b). This may be a potential 

mechanism for breakage and recombination between mitochondrial DNA, nuclear genome 

and telomeres.  

The implication of telomere dysfunction and fusion with mitochondrial DNA needs to be 

further studied as it may have an impact in malignant transformation in conjunction with 

age-related disorders. 

As the mitochondrial genome is only 16.5Kb long, 4 primers could be designed across the 

ChrM in each orientation to amplify potential telomere-mitochondrial fusion events when 

incorporated to our telomere fusion assay. To amplify telomere-ChrM fusions only, nuclear 

DNA would be extracted to avoid PCR artefacts and primers would target ChrM-specific 

DNA not incorporated in historical/germinal NUMTs. Another method could be the 

combination of the study of telomere fusions using FISH and mtDNA insertions with 

mtFIBER FISH (Koo et al., 2017).  

4.5.6.2 Fragility at the ancestral telomere at Chr2q13 

From the analysis of inter-chromosomal fusions, telomere fusions with the Chr2q13 locus 

were identified. This locus contains the site of an end-to-end fusion of two ancestral 

chromosomes of a common ancestor with the apes that form human chromosome 2 (IJdo 

et al., 1991) estimated to have occurred 0.74-4.5 million years ago (Stankiewicz, 2016).  

Previous research from our group showed some rare telomere fusions with the ancestral 

telomere at 2q13-2q14 (Letsolo et al., 2010). This study provides further evidence and 

suggests the interstitial telomere, previously identified as a common fragile site (Bosco and 

de Lange, 2012), is a hotspot for telomere fusions. However, it remains possible that 

telomere fusions with the 2q13-14 locus are overrepresented because of the proximity of 

the 16p and 21q (family of primers) binding sites on this locus. 
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Genomic deletions at Chr2q13 have mainly been associated with genetic disease. Deletion 

at this locus has been observed in several patients and associated with a variable clinical 

phenotype: facial dimorphisms, developmental delay, autism spectrum disorder and 

restrictive cardiomyopathy amongst other (Yu et al., 2012, Hladilkova et al., 2015, Yu et al., 

2016). Although there are no common rearrangements at this locus in cancer, some cases 

with a 2q13 deletion have been identified in colorectal and prostate cancer (Dong, 2001, 

Hoang et al., 2013, Wang et al., 2016).  

Genome wide association studies (GWAS) have identified SNPs at 2q13, in the acyl-CoA 

oxidase like (ACOXL) involved in lipid metabolism and proximal to the B-cell lymphoma 2 

(Bcl-2) anti-apoptotic family, associated with CLL risk (Berndt et al., 2013, Berndt et al., 

2016). Genomic instability arising from telomere fusions with this locus could have an 

impact on CLL pathogenesis. To further investigate such events, primers specific to the 

2q13-14 sequence only could be designed, and in addition to a 2q13-14-specific probe, 

introduced in the telomere fusion assay. 

4.5.6.3 Characteristics of genomic loci that fuse with dysfunctional telomeres  

Telomere fusions with genomic loci predominated in protein coding DNA, consistent with 

previous observations of telomere-genomic inter-chromosomal fusions in colorectal cancer 

cell lines (Liddiard et al., 2016). A potential explanation may be that these regions are 

transcribed and therefore the open chromatin status, the DSBs to initiate transcription and 

the nearby presence of the DNA repair machinery (Kakarougkas et al., 2014) facilitates 

telomere fusions with these loci. If the gene function is disrupted, most likely cell viability 

will be compromised and result in cell death. However, it remains possible that the 

disruption of tumour-suppressor genes might confer a selective advantage following clonal 

evolution. 

Telomere fusions with transcription regulatory elements including enhancers, promotors 

and CTCF binding sites, could result in gene upregulation if juxtaposed. CTCF is particularly 

relevant since it has been implicated in TERRA transcription, telomere protection and DSB 

repair by HR (Deng et al., 2012, Hilmi et al., 2017) and it is suggested to contribute to 

leukaemogenesis by promoting cell survival and inhibiting apoptosis in ALL (Zhang et al., 

2014).  

Telomere fusions were also observed with CFSs and repetitive elements. CFSs are known to 

initiate cycles of BFB (Coquelle et al., 1997) and are sites of frequent amplification, deletion 
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and translocations in cancer (Arlt et al., 2006, Burrow et al., 2009). Alu elements are the 

only active SINE in the human genome and the most abundant transposable element 

representing almost 11% of the total genome (>1M copies) (Lander et al., 2001, Chen and 

Yang, 2017). In addition, the abundance of the (AC)n motif at the fusion junction could be 

partially explained because this motif is enriched in Class 1 initiation site (IS) that 

represents 44% of all IS. It is a low-efficiency and late replication origin (Cayrou et al., 2015) 

that could cause more replication fork stall.  

4.5.6.4 B lymphocyte specific-genes and other oncogenes are hotspots of 

telomere fusion activity in CLL 

Consistent with the previous explanation, several genes disrupted by inter-chromosomal 

telomere fusions are known to be expressed in CLL-B cells. Surprisingly, three of the genes 

disrupted: HTR7 (serotonin receptor) in DB61, KIF26B (kinesin family member 26B) and 

LPHN1/ADGRL1 (latrophilin 1) in DB65, have been found overexpressed in CD38+ CLL cells 

(Pepper et al., 2007). This is relevant to the pathogenesis of the disease since high levels of 

CD38 are associated with shorter overall survival (Durig et al., 2002, Pepper et al., 2007). In 

addition, LPHN1 is an acute myeloid leukaemia (AML) biomarker (Maiga et al., 2016) and 

the HTR7 is a family member of HTR1 which is a therapeutic target in AML (Etxabe et al., 

2017).  

Furthermore, it is particularly interesting to highlight that 3 of the genes disrupted are 

directly involved in lymphocyte development and are implicated in CLL: TESPA1, RORA and 

CD8A. TESPA1 (Thymocyte expressed, positive selection associated 1) is expressed in T and 

B lymphocytes and regulates the inositol 1,4,5-trisphosphate (IP3R) calcium-dependent 

activation of signalling pathways playing an important role modulating immune function 

(Matsuzaki et al., 2012). RORA (RAR-related orphan receptor alpha) is involved in 

lymphocyte development and inflammatory responses (Dzhagalov et al., 2004) and has 

been found over expressed in CLL among other cancers (Baskar et al., 2008, Daneshmanesh 

et al., 2008, Daneshmanesh et al., 2015). RORA is also a very large CFS gene (within FRA15A 

15q22.2) susceptible to genomic instability and inactivated in many tumours (Zhu et al., 

2006). CD8A (Cluster of Differentiation 8a), the CD8 antigen is expressed in cytotoxic T 

lymphocytes but aberrant expression has been reported in low frequencies in patient CLL-B 

cells and carries an adverse prognostic impact in the disease (Kern et al., 2012). 

Other disrupted genes to highlight are EVI5, DMD and POLDIP3. EVI5 (ecotropic viral 

integration site 5) is a regulator of cell cycle progression and cytokinesis. It has been 
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suggested to prevent exhaustion in pre-leukemic stem cells in Runx1-deficient mouse 

(Jacob et al., 2010) and to cooperate with BCL6 (B cell lymphoma 6) transcription factor in B 

and T-cell lymphomas (Baron et al., 2014). In addition, deletion of 1p22 comprising EVI5 

has been identified in over 20% of patients with multiple myeloma (MM) and low 

expression of this gene associates with worse prognosis in early stage patients (Hofman et 

al., 2017). DMD (Duchenne muscular dystrophy), dystrophin is found to be expressed at 

low but stable level in B cells and upregulated in unmutated CLL cases which associated 

with shorter survival (Bilban et al., 2006, Nikitin et al., 2007). POLDIP3 codes for the 

polymerase delta interacting protein 3 (also known as SKAR) that regulates cell growth by 

specific binding with S6 kinase 1, the ribosomal protein downstream the 

phosphatidylinositol 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) signalling 

pathways (Richardson et al., 2004). NTF3 (neurotrophin 3) and NOX5 (NADPH Oxidase 5) 

were also disrupted and have, to some extent, been associated with B lymphocytes. NOX5 

was expressed in B cells in Hairy Cell Leukaemia (HCL) but not in CLL (Kamiguti et al., 2005). 

B cells are a source of neurotrophins that provide protective autoimmunity in the damaged 

nervous system; however, they express the neurotrophins NGF and BDNF but do not seem 

to express NTF3 and trkB (Edling et al., 2004). Other genes associated with cancer 

pathogenesis have been identified, including HDDC2, NTF3, KIF26B, VPS13D, DDX18, DMD, 

KIF13A, EVI5, POLDIP3, TBC1D15, FOX5, FGGY and SLC30A10.   

It is possible therefore, that genes implicated in B cell development and CLL malignancy, 

that are actively transcribed, are hotspots for telomere fusions in patients with CLL. These 

results are consistent with Boulianne et al. who observed that B-cell lineage-specific genes 

implicated in B-cell development were hotspots for DNA-DSBs during progression to 

malignancy (Boulianne et al., 2017). Thus the presence of telomere fusions with non-

telomeric genomic loci could be partially explained by the fragility associated with highly 

transcribed regions and the susceptibility to breakage of replication fork stalls under 

replication stress at CFSs, or the DSBs to initiate transcription and proximity of DNA repair 

machinery.  

Telomere fusions with genomic loci could be detrimental to normal gene expression, DNA 

replication, cell cycle progression and ultimately to cell viability. However, they have the 

potential to recombine distal locations, disrupt tumour-suppressor genes or reactivate 

genes that facilitate immortalisation, including hTERT. Therefore, telomere fusions can 

confer a selective advantage and provide a mechanism for cellular transformation and 

malignant progression.  
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4.5.7 Summary 

For the first time, the impact of telomere dysfunction and fusion in the CLL genome has 

been studied. Telomere fusion amplicons from 9 untreated CLL patients with the highest 

frequency of fusions were characterised using a specialised paired-end NGS approach. 

Distinct types of telomere fusions were identified including intra- and inter-chromosomal 

telomere fusion events and inter-chromosomal fusions with genomic loci. The later 

consisted on telomere fusions with the ancestral telomere at Chr2q13 fragile site, 

mitochondrial DNA and genomic protein coding loci. Elevated cellular replication can result 

in augmented mitochondrial mass. In parallel to increased energy production, the leak of 

cytochrome C and other ROS provoking additional DSBs may explain the incorporation of 

mitochondrial DNA into telomere fusions. It is also possible that telomeres fused with 

NUMT insertions. In addition, telomere fusions with coding DNA, particularly CLL, B cell or 

cancer associated genes, suggest that loci that are actively transcribed are more prone to 

damage. Complex telomere fusion events involving multiple loci have also been identified, 

which could juxtapose distinct genes and provide a selective advantage to the cell.  

Furthermore, asymmetric deletion at sister chromatids before ligation was observed, most 

likely arising from stochastic DSBs or differential resection of short dysfunctional 

telomeres. Telomere protection could also be compromised by the wide variety of TVRs 

detected, which decrease affinity of the shelterin complex. Moreover, distinct usage of 

microhomology has been reported and suggests the implication of specific DNA repair 

mechanisms. These include C-NHEJ, A-NHEJ and potentially SSA consistent with extensive 

resection to reveal microhomology. To sensitise cells to DNA damage, therapeutic 

combinations targeting these specific DNA repair mechanisms may be required, to sensitise 

CLL B-cell clones with ongoing telomere dysfunction and fusion.  

Given the proximity of hTERT to the 5p telomere, the detection of 5p sister chromatid 

fusion events may provide insights into another mechanism of telomerase amplification. In 

addition, 17p intra-chromosomal fusion events may lead to the loss of TP53.  

Overall, telomere fusions were characterised in untreated CLL patient samples. Telomere 

fusions drive genomic rearrangements that may have a deleterious effect and trigger cell 

death or provide a survival advantage and clonal expansion. These events shape the CLL 

genome and provide a source of tumour heterogeneity that modifies the course of the 

disease. 
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CHAPTER 5: 

     WHOLE GENOME SEQUENCING IN A PATIENT WITH             

CHRONIC LYMPHOCYTIC LEUKAEMIA   

5.1 ABSTRACT 

Intra-tumour heterogeneity and clonal evolution is a persistent problem impacting the 

course of cancer. High-throughput sequencing technologies have enabled the 

characterisation of cancer genomes from individual patients and this has revealed the 

extent of genetic complexity and heterogeneity. Ultimately this information will facilitate 

the selection of tailored treatments, potentially avoiding drug resistance and patient 

relapse (precision medicine).  

In this chapter, tumour heterogeneity was investigated in a patient with a bimodal XpYp 

telomere length distribution and the highest frequency of telomere fusions from a cohort 

of 276 CLL patients with short telomeres. The bimodal distribution was consistent with the 

presence of two CLL B-cell clones with distinct telomere lengths, which was confirmed by 

the allele frequency distribution of SNP data obtained from Whole Genome Sequencing 

(WGS) of tumour and patient-matched control samples. The analysis of mutations revealed 

a signature consistent with non-canonical activation-induced cytidine deaminase (nc-AID) 

which could play a role in early development of the disease. Mutations in CLL driver genes 

(TP53, POT1, CREBBP, BRAF and ATR) and in the MAPK/ERK pathway were identified, in 

addition to novel mutations in REV3L, POT1-AS1, ATR that may have an impact in telomere 

dysfunction and fusion. Chromosomal rearrangements, including a 6q and 13q deletion 

arising from a 6q:13q translocation, were detected. Interestingly, 17p copy neutral loss of 

heterozygosity or uniparental disomy (17p CN-LOH or 17p-UPD) was identified. A 

homozygous TP53 (p.His179Tyr) mutation associated with high-risk CLL was also present in 

the patient sample. It is proposed that excessive genetic instability may be deleterious for 

the cancer cells, which together with the equilibrium of the subclones with long and short 

telomeres, contribute to the patient’s asymptomatic disease. 
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5.2 INTRODUCTION 

CLL is a heterogeneous disease with a median age at diagnosis of 72 years. A significant 

proportion of cases remains asymptomatic and never requires treatment while others have 

an aggressive disease that may eventually become refractory to therapy. Two distinct 

subtypes are distinguished depending if the CLL-B cells have undergone somatic 

hypermutation of the immunoglobulin heavy chain (IGHV) gene. The first subtype, mutated 

CLL (mCLL), is associated with an indolent disease while the second subtype, unmutated 

CLL (uCLL), confers a worse prognosis (Hamblin et al., 1999, Damle et al., 1999). To identify 

distinct subtypes of CLL, the clinical CLL staging system (Rai et al., 1975, Binet et al., 1977) 

and the IGHV mutational status, are used. Moreover, complementary information has been 

obtained from various molecular markers including, amongst others, the levels of zeta 

associated protein (ZAP-70) and CD38 expression (Hus et al., 2006, Durig et al., 2002).  

Over the years, a wide spectrum of cytogenetic markers have been identified and 

associated with a distinct impact on the disease, treatment options and survival. The 

majority of CLL patients (50%) have normal cytogenetics or isolated 13q14 deletion and, in 

general, are associated with a more indolent form of the disease (Dohner et al., 2000). 

Trisomy 12 (a gain of the entire chromosome) is the second most frequent abnormality 

observed in 20% of CLL cases and confers a prognostic impact of intermediate-risk (Dohner 

et al., 2000). In contrast, 11q22-23 deletion (disrupts ATM and BIRC3) is associated with 

high-risk and therapy with Fludarabine, Cyclophosphamide and Rituximab (FCR) is the 

standard treatment option in these cases (Tsimberidou et al., 2009). Very high-risk is 

conferred by deletion at 17p13 (disrupts TP53) which correlates with a more aggressive 

disease. Response to conventional chemotherapeutic agents has generally not been 

successful for this subgroup. Other therapeutic strategies like B cell receptor (BCR) 

inhibitors (Ibrutinib or Idelalisib) or allogeneic hematopoietic stem cell transplantation 

need to be considered for use in these subgroups of patients (Tam and Stilgenbauer, 2015). 

A complex form of genomic instability associated with poor prognosis is chromothripsis 

that was first identified in CLL and results in a wide-range chromosome fragmentation and 

reorganisation in 2-3% of cases (Edelmann et al., 2012, Puente et al., 2015). 

The extensive heterogeneity observed in CLL disease progression has been partially 

revealed by NGS studies. Significant common CLL driver genes have been identified 

including: TP53, ATM, NOTCH1, MYD88, BIRC3, SF3B1, BRAF and POT1. Interestingly, 

mutations affecting these genes confer a distinct prognosis and response to treatment 
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(Wang, 2011, Puente et al., 2011, Quesada et al., 2012). In addition, a significant long list of 

other potential candidates has been suggested to drive the disease (Landau et al., 2015). 

POT1, encoding protection of telomeres 1, is involved in telomerase recruitment and 

telomere capping. Somatic mutations in this gene have previously been identified in CLL 

patients and are associated with telomere dysfunction (Ramsay et al., 2013). 

In addition to the inter-patient tumour heterogeneity, multiple CLL subclones may co-exist 

within a single patient (intra-patient), impacting the evolution and outcome of the disease. 

Cancer cells acquire genetic and epigenetic mutations and, as they are exposed to intrinsic 

(microenvironment) and extrinsic (treatment) pressures, the fittest clones are selected over 

time (Darwinian selection) (Nowell, 1976, Greaves and Maley, 2012). This clonal evolution 

can be linear with a single clone that acquires the mutations over time or branched with 

multiple coexisting subclones (Landau et al., 2013, Ouillette et al., 2013).   

These subclones can compete for resources or exist in equilibrium. In patients known to 

have intra-tumour heterogeneity, the distinct subclones were in equilibrium in the absence 

of therapy. However, for patients that received chemotherapy a subclone dominated over 

time, changing the equilibrium to a competition (Landau et al., 2013). Polyclonality is a 

common cause of relapse (Landau et al., 2014) and mutations such as TP53 have been 

suggested to give advantage to dominate after relapse (Ouillette et al., 2013).   

In conjunction with a different mutational profile, subclonal populations may exhibit a 

distinct telomere length (TL) distribution. In CLL, TL is an important prognostic marker 

where homogeneous, heterogeneous and biclonal TL distributions have been detected 

using STELA (Lin et al., 2010). It needs to be assessed in independent individuals whether 

this heterogeneity is an indicator of distinct allelic TL distributions or multiple subclones. 
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5.3 AIMS OF THE PROJECT 

The telomere length profiles are generally very homogeneous in CLL patient samples and 

bimodality is only observed in a minor subgroup (4% of 276 CLL patients) (Norris et al., 

manuscript in preparation). However, Chapter 4 revealed that most CLL patients (67%) with 

the highest frequency of fusions presented bimodal TL distributions.  

The purpose of this chapter was to investigate the presence of intra-patient tumour 

heterogeneity in an untreated CLL patient (DB17) with a bimodal TL distribution and the 

highest frequency of fusions. It is hypothesised that a subclone with short dysfunctional 

telomeres could be driving genomic instability and CLL in this patient. However, the 

patient’s indolent disease might be explained from the equilibrium with a distinct subclone 

with long telomeres. 

The aims of this chapter were as follows: 

• To determine the presence of distinct clones in a CLL patient sample with a bimodal 

TL distribution.  

• To investigate the distinct subclonal populations and characterise the CLL genome: 

single-nucleotide variations (SNV) including CLL driver mutations, the signature of 

mutations, kataegis, IGHV status, copy number variations (CNV), translocations and 

chromothripsis.  

• To identify the cause for the increased frequency of telomere fusions and the 

patient’s favourable outcome. 

• To examine the incidence of POT1 mutations that disrupt the POT1/TPP1 

interaction, and to explore telomere dysfunction in CLL patients with short 

telomeres. 
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5.4 RESULTS 

5.4.1 Whole Genome Sequencing of a CLL patient sample with a high 

frequency of telomere fusions and bimodal TL distribution.  

5.4.1.1 CLL patient sample with bimodal TL distribution 

In Chapter 4, patients with bimodal TL profiles were over-represented in the cohort 

exhibiting the highest frequencies of telomere fusions. To assess whether bimodality was 

explained by a biallelic or a biclonal distribution, DB17 was selected for more detailed 

study. Telomere length for this patient was previously determined for the 5p, 17p and XpYp 

telomeres; in addition, STELA at the 2p, 12q and 18q telomeres was performed. 

The DB17 TL distributions observed at XpYp, 2p, 12q and 18q were contrasted to those 

obtained from HT1080 clone 2. In addition to the bimodality observed at XpYp for DB17, 

very heterogeneous TL distributions potentially suggesting the presence of bimodal 

distributions were observed at 2p and 12q telomeres. These results were in contrast to the 

homogeneity observed at the distinct telomeres for HT1080 clone 2 (Figure 5.1). 

 

Figure 5.1. Telomere length at the XpYp, 2p, 12q and 18q. 

STELA on different chromosome ends for (A) HT1080 clone 2 and (B) bimodal CLL patient DB17. 

Standard deviation for each TL profile indicated with red dotted lines.  

TL at XpYp was the clearest indicator of bimodality for DB17 CLL-B cells. To interrogate the 

presence of biclonality, the evolution of the XpYp TL distribution was studied in DB17 
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samples obtained over 7 years processed similarly (Figure 5.2).  XpYp STELA from DB17 

patient sample at 2009 was provided by Dr Thet Lin. A stable TL can be observed for the 

longer TL distribution (A: XpYp TL>2.1Kb) across the 7 years, in contrast to the TL of the 

shorter distribution (B: XpYp TL≤2.1Kb) which erodes over time.  

In addition, the proportion of telomeres detected within cluster B decreased at 2016 when 

compared to 2009, as can be observed from the A/B ratio (0.79 at 2009 to 1.07 at 2016). 

These results explain the increase in the mean TL at 2016 (2.56Kb) when compared to 2009 

(1.99Kb) (Figure 5.2).   

Taken together, these results suggest the presence of two clonal populations with distinct 

TL distributions (A and B), of which the clone A is stable through 7 years while the subclone 

B declines over time.  

 

 

Figure 5.2. XpYp telomere length, 7 

year follow up on a CLL patient.  

Measurement of the TL using XpYp 

STELA on patient CLL-B cells 

throughout 7 years. Samples taken 

in 2009, 2013, 2014 and 2016. 

Hybridisation with the Telomere 

probe. Mean TL and standard 

deviation (SD) indicated 

underneath.  Red dotted line 

indicates the separation of both TL 

distributions arbitrarily selected at 

XpYp TL 2.1Kb after subtracting 

distance to the primer 0.408Kb. 

Number of telomeres and ratio 

within clusters A and B for 2009 and 

2016 indicated below. (2009 TL was 

provided by Dr Thet Lin.) 
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5.4.1.2 Preparation of the CLL patient sample for WGS 

WGS was used to establish the clonal complexity of this patient’s CLL and how this may 

relate to the TL distributions. Matched T cells (control) and CLL B-cell (tumour) samples 

were prepared for WGS.  

Peripheral blood mononuclear cells (PBMC) were isolated from CLL patient DB17 fresh 

whole blood in heparin. CD19+ CLL-B cells were separated by CD19 microbeads using the 

autoMACS and after analysis with Accuri C6 flow cytometer, a purity of 97% CD19+ cells was 

observed. However, a pure CD3+ T cells fraction was not obtained using CD3+ beads. 

Therefore, another approach was performed.  

CD19+ CLL-B cells and CD3+ T cells were purified from PBMC by flow sorting using the FACS-

Aria III with CD19-APC and CD3-FITC antibodies (proportions before purification 

CD19+=61%; CD3+=9%). CD3+ T cells were selected as a control for their close lymphocytic 

origin to B cells and the feasibility to obtain the cell fraction from the same sample. Purity 

of the control fraction was checked after isolation (CD19+=1.2%; CD3+=97%) to ensure there 

was no contamination with cancer cells (Figure 5.3). A total of 2.5x106 T cells and 3x107 B 

cells were obtained for DNA extraction using Phenol/Chloroform.   
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Figure 5.3. Isolation of CD19+ CLL-B cells (tumour) and CD3+ T cells (control). 

(A) Purity of the patient sample before isolation of the CD19+ and CD3+ cells from PBMC by flow 

sorting using CD19-APC and CD3-FITC antibodies. (B) Purity of the control fraction, enriched in CD3+ 

lymphocytes. Proportion of CD19+ and CD3+ lymphocytes highlighted with black box.  

 

To further verify the sample’s purity, STELA at the 5p, 17p and XpYp was performed on the 

sorted CD19+ CLL-B and CD3+ T cells. The telomere length profile obtained from the control 

fraction was different from the tumour fraction and did not overlap, indicative of two 

distinct and pure populations. In addition, the XpYp TL profile did not correspond to any of 

the clusters observed for CD19+ cells, accordant with the presence of distinct subclones and 

not a distinct cell type (Figure 5.4).   
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Figure 5.4. Comparison of the TL profile for the tumour and control fraction. 

(A) Overview of a section of human haematopoiesis, highlighting the common lymphoid progenitor 

route. Common myeloid progenitor route (…) not shown. Within the dotted squared boxes, cells 

selected for tumour (CD19+ CLL-B lymphocytes) and control fractions (CD3+ T lymphocytes) for WGS. 

(B) TL profile at 5p, 17p and XpYp telomeres for both tumour and control fractions.   

WGS was undertaken at BGI Technologies with Illumina HiSeq2000, using 30µg of CD19+ 

cells gDNA for 60x coverage of the tumour genome and 2µg of CD3+ cells gDNA for 30x 

coverage of the control.   
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5.4.2 Intra-tumour heterogeneity detected in a CLL patient sample 

5.4.2.1 Bioinformatics sequence analysis: Identifying SNVs 

To identify SNVs unique to the tumour fraction a combination of two different methods to 

analyse tumour-control pairs were used: Mutect (Cibulskis et al., 2013) and Somatic Sniper 

(Larson et al., 2012) (Supplementary Figure 3).  To increase accuracy and avoid false 

positives, the SNVs from the intersection of both callers were selected. To characterise 

somatic mutations and differentiate them from germline polymorphism, information from 

dbSNP database (https://www.ncbi.nlm.nih.gov/SNP/) and SnpEff (Cingolani et al., 2012) 

was noted. These steps were performed by Dr Kez Cleal, the bioinformaticist in our group.  

For a deeper exploration of the data and to use as a control, the analysis was also 

performed in reverse, using the CD3+ T cells as “R_tumour” and the CD19+ CLL-B cells as 

“R_control”. 

 TUMOUR CONTROL 

STANDARD CONDITIONS CD19+ CLL B cells (DB30) CD3+ T cells (DB31) 

REVERSED CONDITIONS CD3+ T cells (DB31) CD19+ CLL B cells (DB30) 

 

The list of SNVs including SNPs and somatic mutations were documented in an excel file for 

further validation and analysis.  

5.4.2.2 SNV analysis reveals multiclonality 

To determine the presence of tumour multiclonality within the CLL-B cell fraction, the 

variant allele frequency (VAF) was assessed by calculating the fraction of sequence reads 

that supported each mutation.  For a single clone with a heterozygous mutation, the VAF is 

0.5 (1 mutation/2 alleles). In contrast, a biclonal tumour of which one clone carries a 

heterozygous mutation, the VAF is reduced to 0.25 (1 mutation/4 alleles).  Consequently, a 

lower VAF is indicative of multiple clones (or genomes) within the sample. 

The VAF for control CD3+ T cells resulted in a distribution peak at 0.5 associated with one 

population carrying polymorphisms normally present in the human population and not 

associated with disease, and not mutations. In contrast, the study of VAF for CD19+ CLL-B 

cells revealed two distribution peaks, one at 0.5 and the other at 0.25. These results 

indicated the presence of at least two distinct clones carrying clonal (present in all cells) 

and subclonal (present in the subclone only) mutations respectively (Figure 5.5).   

https://www.ncbi.nlm.nih.gov/SNP/
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Figure 5.5. Intra-tumour heterogeneity detected from SNP analysis. 

(A) Cartoon representation of evolution of tumour heterogeneity within a patient. Initial 

transforming event (white lightning bolt) gives place to initial tumour cells amongst normal cells 

(grey). Secondary transforming event (yellow lightning bolt) gives rise to secondary tumour cells 

(yellow). (B) Genetic mutations accumulated in tumour cells. Clonal mutations were those present in 

all cells originated from a primary event and subclonal mutations those that originated from a 

secondary event and are restricted to the subclone. (C) VAF obtained from the SNVs identified for 

CD3+ T cells and CD19+ CLL-B cells. Red: mutations, blue: polymorphisms.   
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5.4.2.3 Validation of tumour multiclonality by STELA and Sanger sequencing  

For other studies DB17 CLL cells had previously been cultured in vitro over a 28 day period 

and DNA samples collected by Dr Ceri Jones. These samples were used to investigate if 

variation in the ratio of the two XpYp TL distributions over time in culture could support the 

presence of distinct clones. The STELA profile obtained at the XpYp telomere showed 

variation in the frequency of telomeres detected at both longer (A) and shorter (B) TL 

distributions between day 1 (baseline, BL) and the last day in culture (day 28). The number 

of telomeres detected in cluster A was maintained from BL to day 28. In contrast, the 

number of telomeres detected in cluster B at day 28 decreased to half compared to BL. This 

was represented with the ratioA/B (0.45 at BL to 1.05 at day 28) (Figure 5.6). This variation in 

the number of telomeres detected was also reflected in the mean XpYp TL: 1.89Kb at 

baseline and 2.50Kb at day 28. The telomere dynamics observed in in vitro was consistent 

with those observed in DB17 over 7 years (Figure 5.2). 

To verify whether this observation was related to a change in population frequencies 

indicative of multiclonal evolution, a subclonal heterozygous mutation in IGF1R 

chr15:99353338 G>A (26% of reads mutated) and a clonal heterozygous mutation in POT1-

AS1 chr7:124630153 T>G (52% of reads mutated) as a control, were amplified and re-

sequenced at BL and day 28 (Figure 5.7).  

The frequency of the IGF1R mutated allele diminished from 24% at BL to 12% at day 28, 

consistent with the loss of half the population with shorter telomeres at day 28 

(ratioA/B=1.05) from BL (ratioA/B=0.45). In contrast, the frequency of the POT1-AS1 mutated 

allele (control) was close to 50% and did not appreciably change over time in culture (BL: 

53%, day28: 46%). The mutations were also Sanger sequenced for the CD19+ DB17 gDNA 

sent for WGS. Results from WGS sample did not differ from baseline (25% mutated IGF1R, 

52% mutated POT1-AS1) (Figure 5.7). 
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Figure 5.6. TL obtained from DB17 CLL cells in culture. 

(A) XpYp TL at baseline (BL) and day 28 (D28) from cultured DB17 CLL cells. (B) Graphical 

representation. (C) Proportion of longer (TL>2.21Kb) to shorter (TL≤2.21Kb) telomeres detected at 

baseline and day 28. Dotted line indicates arbitrary separation of both TL clusters: XpYp TL≤2.1Kb in 

grey; XpYp TL>2.1Kb in green. Distance of the primer for XpYp STELA to the start of the telomere 

=0.409Kb. 
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Figure 5.7. Validating 

multiclonality by sequencing 

mutations in DB17 at baseline 

and day 28. 

(A-C) Sanger Sequencing of the 

clonal POT1-AS1: reference 48% 

T(A) and mutated allele: 52% 

G(C). (D-F) Sequencing subclonal 

IGF1R: reference 74% G(C) and 

mutated allele 26% A(T). For the 

WGS, baseline and day 28 DB17 

samples. Position highlighted 

within a circle. (A, D) 

Electropherogram indicating 

intensity peaks. Maximum 

intensity peak indicated with blue 

line for the reference allele and 

red dotted line for mutation. (B, 

E) Table summarising intensity 

signal. (C, F) Proportion of 

reference and mutated allele for 

each sample.  
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5.4.3 Mutation in CLL drivers and genes associated with telomere 

dysfunction 

5.4.3.1 Identification of mutations: Validation pipeline  

From the list of SNVs identified within the tumour sample, 94% (3607/3821) were point 

mutations, with a frequency across the genome of 1.08 mutations per megabase of DNA 

(3,607bp / 3,326,743,047bp x 106= 1.08 mutations/Mb).  

In contrast, only 4% (309/7469) of SNVs identified within the control T-lymphocytes were 

mutations as 96% (7160/7469) were polymorphisms (Figure 5.8).  

 

 

Figure 5.8. Summary of SNVs identified from the tumour and control sample. 

Proportion of mutations and polymorphisms identified from the tumour and control fractions. 

To confirm the accuracy of the mappers, selected SNVs were further validated by 

observation on IGV and BLAST-alignment of the reads using Ensembl (based on identity and 

E-value). The reference and mutated alleles, together with the mutation impact were 

noted.  SNVs detected from the tumour fraction were further separated into clonal 

(n=3655) and subclonal (n=165) based on a VAF of >0.3 and ≤0.3 respectively, as previously 

observed in Figure 5.5. The certainty of the validation criteria (Figure 5.9) was confirmed by 

Sanger sequencing 8 mutations, 4 of which were subclonal (Table 5.1). The mutations were 

selected based on the location and predicted impact of the mutation on the gene, and the 

association of the gene with cancer or telomeres.   
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Figure 5.9. Pipeline for validation of SNVs. 

Steps required for the identification, validation and sequence verification of SNVs detected from the 

tumour-control WGS sample. Identification using Mutect and Somatic Sniper, validation by 

observation in IGV and BLAST-alignment using Ensembl. Sequence verification with PCR and Sanger 

sequencing.  
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Table 5.1. Clonal and subclonal validated mutations. 

 

*Clonal mutations are present in all cells while subclonal mutations are detected in distinct 

subclones. Proportion of reads with the mutated allele (red) and the reference allele (green) 

indicated. Snapshot of the Sanger sequencing trace and mutation shown (*). 
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5.4.3.2 Impact of mutations: CLL drivers and the MAPK/ERK pathway 

Somatic mutations were categorised based on the predicted impact of variants on genes: 

low (i.e. synonymous variant), modifier (i.e. intron variant), moderate (i.e. missense 

variant) and high (i.e. stop gained), or polymorphisms not associated with disease 

(predicted by SnpEff).  A detailed description of the 3821 SNVs detected for the tumour 

CLL-B cells and 7469 SNVs for the control T-cells is summarised in Supplementary Table 19.  

One high and 14 moderate impact clonal mutations predicted to effect a change at protein 

level were detected. 12 were located in protein coding DNA and 3 in regulatory sequence. 

A nonsense mutation (p.Gln1426*) in the protein coding gene REV3L changed glutamine 

(Gln) for a chain-terminating codon (*), predicted to create a truncated protein coding for 

1426/3130 amino acids. Among the moderate mutations, 78.6% (11/14) triggered an amino 

acid substitution for a missense variant, affecting the following protein coding genes: 

CD163, CREBBP, TP53, CD83, PCLO, FZD1, PLS3, AIFM1, PUS7L, MSR1 and IGHV1-69. The 

remaining 21.4% caused a sequence change at a glycosylation site in SPG20, GHR and 

PKHD1. The impact of the mutations on the biological function of the protein was assessed 

loading the Ensembl protein ID and the amino acid substitution onto the following 

bioinformatics online prediction tools: the Protein Variation Effect Analyzer PROVEAN (Choi 

et al., 2012, Choi and Chan, 2015) and the Sorting Inolerant from Tolerant SIFT (Kumar et 

al., 2009) from the Craig Venter Institute (Supplementary Table 20). In addition, a long list 

of 3080 modifier mutations and 508 with low impact were detected for all CLL-B cells, 

including a novel mutation at POT1-AS1.  

As previously stated, mutations were divided on clonal (VAF>0.3) and subclonal (VAF≤F0.3), 

although it was impossible to assess which subclonal mutations were on the same 

population of cells. Neither high nor moderate impact mutations were subclonal. However, 

137 modifier and 28 low impact subclonal mutations were identified. Given the gene 

association with telomeres, DNA damage response, CLL and oncogenesis, subclonal 

mutations highlighted included: downstream ATR and MYB, others affecting sequence 

features of BRAF, MEIS1 and RET, and an intron variant on IGF1R. 

To assess the main genetic differences present in all cells or characteristic for subclonal 

populations, functional analysis was perform independently with clonal (VAF>0.3) and 

subclonal mutations (VAF≤0.3).  
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The Ensembl ID from 79 subclonal mutated genes (VAF≤0.3) were translated into Entrez 

gene ID using the DAVID conversion tool v6.8 (Huang da et al., 2009a, Huang da et al., 

2009b) and submitted to the DAVID Functional Annotation Tool (Supplementary Table 21). 

Biological processes gene ontologies (GO_BP) enriched amongst this gene set included: 

signalling (38%), cell differentiation (26.6%), nervous system development (20%), positive 

regulation of biosynthetic process (15.2%), positive regulation of DNA-templated 

transcription (12.7%), cell migration (12.7%) and protein autophosphorylation (6.3%) 

(Supplementary Table 22). Similar results were observed from the list of clonal mutations. 

In addition, enrichment in the mitogen-activated protein kinase (MAPK) cascade was 

observed, including 52 distinct genes (5.5%) (Supplementary Table 23). These results may 

be relevant to malignant transformation since the MAPK pathway transmits signals to the 

nucleus that regulate cell growth, differentiation, migration and apoptosis amongst other. 

The mutated genes identified within the CLL-B cells were compared to genes and pathways 

significantly enriched in CLL patients (Puente et al., 2015, Guieze and Wu, 2015). Overlaps 

were identified for genes involved in the following key signalling pathways: DNA damage 

response, apoptosis, NF-κB signalling, cell cycle, NOTCH1 signalling and B-cell signalling 

(Figure 5.10).  

 

Figure 5.10. Significantly mutated genes and pathways in CLL. 

Significantly mutated genes and pathways identified from Puente et al., 2015 and Guieze et al., 

2015. Highlighted within red circle mutated genes identified from DB17 CLL-B cells (CREBBP, BRAF, 

ATR, TP53 and POT1). Red asterisk indicates family member or upstream/downstream of CLL 

significantly mutated genes, identified from the CLL patient sample. Cell cycle: PTPN12, PTPN2 

(PTPN11) and upstream CDKN3 (CDKN1B, CDKN2A). NF-κB signalling: TRAF2 (TRAF3) and 

downstream NKAP. B-cell signalling: upstream BRAFP1 (BRAF), MAP3K7, MAP3K13, MAP7, MAP1B 

(MAP2K1 and MAP2K3) and upstream IRF4. Genome/chromatin structure: ZMYM4 x2 (ZMYM3) and 

downstream HIST1H2APS6 (HIST1H1B). RNA metabolism: CNOT4 (CNOT3). Figure adapted from 

(Delgado et al., 2016). Copyright (2016), with permission from Elsevier. 
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5.4.3.3 Telomeres and POT1 mutations 

Protection of telomeres 1 (POT1) is a member of the shelterin complex that interacts with 

TPP1 and binds the single-stranded G-rich DNA overhang (Figure 5.11A) to cap telomeres 

and regulate telomere lengthening (Hwang et al., 2012). POT1 is essential for telomere 

stability. Mutations in this gene, most affecting the DNA binding domain, have been 

implicated in telomere dysfunction in 3.5% of patients with CLL (Ramsay et al., 2013, Gu et 

al., 2017) (Figure 5.11B). Recently, 7 POT1 mutations predicted to disrupt the POT1/TPP1 

complex have been reported (Rice et al., 2017). To assess the impact of the interruption of 

the POT1/TPP1 complex, a cohort of 31 CLL patient samples with short telomeres 

(TL<3.81Kb), including DB17, were screened for the 7 mutations identified by Rice and 

colleagues (Figure 5.11B, Supplementary Table 24). These mutations were not identified in 

the cohort, suggesting that these events are not enriched in CLL patients with short 

telomeres.  

 

Figure 5.11. Point mutations identified in the human POT1 shelterin protein. 

(A) Shelterin protein complex. Reprinted by permission from Macmillan Publishers Ltd: Nature 

Structural and Molecular Biology (Sarek et al., 2015), copyright (2015). (B) Primary structure of the 

human POT1 protein. Somatic mutations identified in CLL or other cancer from different studies 

marked with black arrowhead. The DNA binding domains (OB1 and OB2) indicated in orange and the 

TPP1 interacting domain (OB3 and HJR) in blue. Highlighted within a red box, somatic mutations 

investigated for this study in 31 CLL patient samples with short telomeres (TL<3.81Kb). Figure 

adapted from (Ramsay et al., 2013, Rice et al., 2017, Gu et al., 2017). 
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5.4.4 The signature of mutations in DB17 CLL-B cells is characterised by T>G 

transversions and associated with nc-AID   

5.4.4.1 Transition/Transversion ratio 

There are two types of DNA substitution mutations: base transitions (Ts) and base 

transversions (Tv). The first type interchanges the one-ring pyrimidines (C-T), or the two-

ring purines (A-G). The second type exchanges one-ring pyrimidines with two-ring bases (A-

C, A-T, G-C and G-T). There are twice as many possible transversions, but transitions are 

generated at a higher frequency as only an interchange of the same number of ring bases is 

required. 

The whole-genome Ts/Tv ratio in human is reported to be between 2.1 and 2.3 (DePristo et 

al., 2011) but the exact value is affected by GC content, proportion of CpG sites, allele 

frequency, natural selection, and other factors. From this data, the Ts/Tv ratio for the T cell 

control sample (reverse) was 2.15, similar to the Ts/Tv whole-genome expected ratio. In 

contrast, the ratio for the CLL B-cell tumour sample was 0.88, indicating that the CLL 

tumour fraction has a higher frequency of transversions than transitions (Table 5.2).  

 

Table 5.2. Transition/Transversion ratio 

 

Table summarising the count and percentage of 

each type of substitution and the Ts/Tv ratio for 

the CLL-B lymphocytes and the control-matched 

T lymphocytes. Transitions indicated in orange 

and transversions in blue. 
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5.4.4.2 Signature of mutations 

The pattern of somatic mutations can reveal information regarding the source or mutagen 

generating them (UV light, tobacco, ageing, etc.). Alexandrov and colleagues (2013) 

identified over 20 distinct signatures from 30 different cancer types. The method is based 

on 6 different base substitutions located in the middle of a tri-nucleotide motif providing 

96 possible substitution mutations (Alexandrov et al., 2013a, Alexandrov et al., 2013b). 

Although CLL has a low prevalence of somatic mutations (<1/Mb) compared to other 

cancer types (Melanoma ~15/Mb), three main signatures have been identified for CLL. 

From a cohort of 131 CLL samples, 86% presented signature 1B (age, C>T), 11% signature 2 

(c-AID/APOBEC, C>T/G) and 17% signature 9 (nc-AID, T>G) (Alexandrov et al., 2013a, Kasar 

et al., 2015). 

In agreement with the Ts/Tv ratio, the pattern of mutations identified for DB17 CLL-B cells 

was characterised by T>G transversions (Figure 5.12) and corresponded to Alexandrov’s 

signature 9, one of the 3 signatures identified in CLL.  

 

Figure 5.12. Signature of mutations. 

Mutation signature found in CLL patient sample DB17 CLL-B cells. Pattern of mutations from left to 

right: repeats of Ax4, Cx4, Gx4, Tx4 for the first nucleotide, and ACGT for the third one as indicated 

in legend: tri-nucleotide motif. The middle base substitution (N) is indicated at the top.  
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5.4.4.3 Localised hypermutation is exclusive to the Immunoglobulin locus  

In CLL, AID- and APOBEC-mediated hypermutation can lead to localised clusters of multiple 

mutations known as kataegis (Alexandrov et al., 2013a, Rebhandl et al., 2014). In contrast, 

nc-AID is characterised by non-clustered mutations (Kasar et al., 2015). To further examine 

the signature of mutations, the presence or absence of kataegis was investigated.  

This form of genomic instability is characterised by a group of 6 or more mutations 

separated by ≤1Kb, therefore it was studied by mapping the genomic distance between 

each SNV (Figure 5.13).  

 

Figure 5.13. Proximity of mutation clusters (Kataegis). 

Karyotype map plotting the genomic distance of SNVs to each other to identify clusters of mutations 

that may be indicative of kategis for (A) DB30 and (B) DB31. Figure legend stating the change of base 

on the right. Cluster of mutations at Chr2p11.2 and Chr14q32.33 highlighted within a black circle. 

Intermutation distance indicated on the Y-axis (bp) and genomic position on the X-axis. 

SNVs were evenly scattered across the genome for CLL-B cells (DB30) with exception of 2 

potential clusters of mutations at 2p11.2 and 14q32.33 with intermutation distance below 
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1Kb. When compared to the karyotype map observed for the T cells (DB31), the 6q, 13q 

and 17p regions were identified. These co-localised with copy number deletions in the CLL-

B cells at 6q and 13q, and CN-LOH at 17p described later in this chapter (Figure 5.13). In 

addition, a cluster of mutations at 14q32.33 was also identified for the T cells. 

As the potential locus of kataegis located on chr2p11.2 was unique to CLL-B cells (DB30), 

this region was further investigated using IGV. 32 mutations were identified within 743Kb 

(chr2:89,159,650-89,160,393) in the tumour but not in the control sample (Figure 5.14). A 

coverage drop was observed at 3′ from the cluster of mutations indicating a copy number 

loss. This was consistent with the 279Kb deletion detected using the Copy Number 

estimation by a Mixture Of PoissonS tool (cn.MOPS) (Klambauer et al., 2012) at 

chr2:89160001-89440000 (Supplementary Figure 4). Over 30 reads supported a breakpoint 

at chr2:89,160,436 with the paired-reads mapping 282Kb downstream, providing 

confirmation of this deletion event. 

 

Figure 5.14. Kataegis and CNV at 2p11.2.  

Cluster of 32 mutations identified within chr2:89,159,245-89,161,112 on CLL-B cells (DB30) followed 

by a CNV (deletion) as it can be observed from the drop in number of reads (coverage shown in grey) 

and breakpoint (read selected in red).  

The immunoglobulin kappa joining 5 gene (IGKJ5 exon1/1, ENSG00000211593) was located 

within the cluster of mutations at chr2p11.2. The CNV region included many 

immunoglobulin kappa variable and joining genes (IGV and IGJ) (Ensembl GRCh37). 

At chr14q32.33, several clusters of mutations were observed within the tumour fraction 

along the genomic region that harbours Ig heavy locus genes (14:106032614-107288051). 
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In addition, deletions in that region were also identified in the tumour cells 

(Supplementary Figure 4), further supported with the cluster of SNVs present in the 

control fraction indicative of LOH (Figure 5.13B).  

Altogether, these results were consistent with wide-spread mutations that are 

characteristic of nc-AID (signature 9). Mutation clusters were exclusive to the 

Immunoglobulin loci, distinctive of mature B lymphocytes that have undergone somatic 

hypermutation (SHM) (see section 5.4.5). 

Despite the presence of specific copy number deletions, the absence of large-scale 

clustering of CNV across the genome suggested chromothripsis did not contribute to the 

CLL-B cell tumour genome (Supplementary Figure 4).  

 



Chapter 5: Whole genome sequencing in a CLL patient 

 

182 
 

5.4.5 Mutated IGHV gene or multiple clones with diverse IGHV status? 

Mature B lymphocytes contribute to adaptive immunity by producing immunoglobulins (Ig) 

that recognise foreign antigens. The process for generating Ig diversity is through somatic 

hypermutation (SHM) of Ig genes in the germinal centre.  

Patients with unmutated IGVH and short telomeres have a more aggressive disease and 

shorter progression-free survival and overall survival (Strefford et al., 2015). Assessing the 

IGHV status is a standard procedure in the clinic performed by RT-PCR and Sanger 

sequencing and compared to known germ-line genes.  

The mutation status of DB17 was previously established using Sanger sequencing during 

the routine diagnostic work up. To assess whether multiple clones could be detected with 

diverse IGHV status, the IGHV4-61 locus (Chr14:107,095,164-107,095,288) was visualised on 

IGV from WGS data (Figure 5.15A). The 9 SNPs previously detected by Sanger sequencing 

were confirmed consistent with DB17 presenting with mutated IGHV CLL (Figure 5.15B).  

However, the VAF for each allele was ~0.35 mutated and ~0.65 reference, and mutated 

alleles were located in the same reads (Figure 5.15A, and Table 5.3). Recent IGHV-NGS 

analysis has revealed the presence of multiple subclones with different IGHV mutation 

status (Kriangkum et al., 2015, Stamatopoulos et al., 2017). There is the possibility that 

these results indicated the presence of multiple clones with differential IGHV gene status. 

However, it is likely that in agreement with the clinical diagnosis, the patient CLL-B cells 

present mutated IGHV and the observation in IGV represents allelic exclusion, which is the 

mono-allelic V(D)J gene recombination and SHM of the Ig cell surface antigen receptor 

(Vettermann and Schlissel, 2010, Fraenkel et al., 2007).   

Table 5.3. VAF of 9 mutations on the IGHV4-61 locus for CLL patient DB17. 

VAF 1 2 3 4 5 6 7 8 9 

A (%) 2 0 0 36 0 34 0 0 36 

C (%) 61 41 36 0 33 0 35 35 0 

G (%) 1 0 0 0 0 66 0 0 0 

T (%) 35 59 64 64 67 0 65 65 64 

*Mutated allele underlined. 
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Figure 5.15. IGHV status in 

DB17 CLL patient sample. 

Mutations present on the IGHV4-

61 locus. Chr14:107,095,164-

107,095,288 shown on (A) IGV 

and (B) by Sanger sequencing 

from the CLL patient sample. 

The 9 mutations identified in 

this region are indicated. The 

nucleotides written within the 

black boxes represent the 

mutated (top) and the reference 

(bottom) allele.  Colour legend: 

red (T), blue (C), green (A) and 

brown (G). 
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5.4.6 The common CLL 13q deletion arising from a 6q:13q translocation 

Several common CNVs have been identified in CLL patients: trisomy 12 (20%), 2p gain (5-

28%), and deletion of 11q (6-20%), 13q14 (50%), 17p13 (5-10%) and 6q21 (5-7%) with 

distinct impact on the disease. Deletion in 13q14 is found in ~50% of CLL patients and 

associates with a better prognosis when identified as the only abnormality. Deletion of 

6q21 is present in 5-7% of patients and the prognostic significance is unknown (Ghamlouch 

et al., 2017). 

The detection of CNV using cn.MOPS from WGS of the tumour/control pair 

(Supplementary Figure 4) revealed a deletion at 6q21 (Chr6:107975001-109465000, 

1.49Mb) and at 13q14.2-13q14.3 (Chr13:50525001-51500000, 0.98Mb) (Figure 5.16A). The 

number of reads covering these regions, decreased from 70 to 35, therefore suggesting 

that both events were clonal and mono-allelic. These results were also in agreement with 

data obtained by Dr Thet Lin using array CGH in a sample from the same patient (Figure 

5.16B). The genes deleted in the 6q21 and 13q14.2-13q14.3 CNV are listed in 

Supplementary Figure 5. The 13q14 deletion included the minimal deleted region (MDR) 

that is found in most cases and encompasses DLEU2, MIR16-1 and MIR-15A. Genes within 

the MDR regulate B cell proliferation and MDR deletion results in CLL (Klein et al., 2010). 

Surprisingly, observation of both regions in IGV revealed that the 6q21 and 13q14 deletions 

originated from a 6q:13q translocation. To further corroborate this observation, a pair of 

primers was designed surrounding each fusion point: A (Chr6:107,974,284-

Chr13:51,501,490) and B (Chr13:50,523,174-Chr6:109,465,113). PCR and Sanger 

sequencing was successful across the two translocation fusion points in DB17 but not in 

other 8 CLL patient samples (DB59-66) (Figure 5.16C-F, Supplementary Figure 6 and 

Supplementary Figure 7).  
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Figure 5.16. Common 13q deletion originated from 6q:13q tranlocation 

 (A) CNV observed using cn.MOPS (B) CNV observed using array CGH (provided by Dr Thet Lin) (C) 

Cartoon representation of the 6q:13q translocation causing deletion at Chr6q21 (1.49Mb) and 

Chr13q14.3 (0.98Mb). (D) Illustration of the 6q:13q translocation with pairs of primers to amplify the 

fusion points A (Chr6:107,974,284-Chr13:51,501,490) and B (Chr13:50,523,174-Chr6:109,465,113). 

(E) PCR for the validation of the 6q:13q translocation (fusion points A and B) in the WGS patient 

DB17 as well as the other 8 CLL patients that underwent NGS analysis of telomere fusion amplicons 

in Chapter 4 (negative control). As an internal control (P) reamplification of a section of the POT1 

gene (primers POT2A and POT2B). All PCR products expected around 250bp. Red arrowheads 

indicate the presence of the translocation. (F) Sequencing of the breakpoints A and B. Deleted 

sequence in grey, microhomology in black underlined, Chr6 in green and Chr13 in blue. 
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5.4.7 Copy neutral loss of heterozygosity: 17p uniparental disomy (17p UPD) 

with mutated TP53 

SNVs were not regularly distributed for T cells: 69.7% (5209/7649) of total SNVs detected in 

the control sample concentrated at chr17p (0-1.765x107) (Figure 5.17BC). These results 

were indicative of LOH at 17p in the CLL-B cells. Although LOH usually arises from the 

mono-allelic loss of genetic material, a deletion was not identified using cn.MOPS or array 

CGH at 17p (Supplementary Figure 4). Altogether, results indicated the presence of a copy 

neutral LOH (CN-LOH) or UPD at 17p in the tumour CLL-B cells (Figure 5.17). 

From the total number of SNVs identified in CLL-B cells, 0.44% (17/3821) located at the 17p 

LOH region which may have been acquired after LOH. From those, 17.6% (3/17) were 

polymorphisms and 82.4% (14/17) mutation. A missense mutation at Chr17:7,578,395 in 

the TP53 gene was predicted to have a deleterious effect since it triggered a change of 

histidine 179 to tyrosine in the protein core (Figure 5.18). 
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Figure 5.17. 17p Copy Neutral Loss of Heterozygosity (CN-LOH). 

Distribution of mutations per Mb across the genome for (A) Tumour CD19+ CLL-B cells (DB30) and 

(B) Control CD3+ T cells (DB31). Region with high frequency of mutations at Chromosome 17 

highlighted within black box. (C) Zoom into region with high frequency of mutations at Chr17:0-

1.765x107. (D) Coverage of Chr17 for both tumour and control fractions.  
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Figure 5.18. DB17 CLL patient sample with a homozygous TP53 mutation. 

(A) Observation of the mutation on IGV. (B) Structure of tumour protein p53 (ID: P04367) visualised 

on Swiss Pdb (Guex and Peitsch, 1997). Red arrow points the location of the His179Tyr mutation.  
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5.5 DISCUSSION 

5.5.1 Multiclonality: theories 

Potential biclonality was observed in a CLL patient sample (DB17) with two distinct XpYp TL 

distributions using STELA. However, it could have also indicated a biallelic TL distribution or 

cellular contamination but both possibilities were excluded in subsequent experiments. The 

TL measurement of the patient CLL-B cells over 7 years indicated that the population with 

shorter telomeres declined over time (Figure 5.2). These results were further corroborated 

in vitro after comparing the TL profile of DB17 at baseline with day 28 (Figure 5.6). The 

possibility of distinct cellular composition was ruled out after measuring the TL of purified 

CD19+ CLL-B cells compared with CD3+ T cells (Figure 5.4). Biclonality or polyclonality was 

subsequently verified with the VAF obtained from SNP data analysis (Figure 5.5).  These 

results suggest that the TL profile obtained with STELA may, in some cases, be a potential 

indicator of intra-tumour heterogeneity. 

There were two possible explanations for the emergence of multiple clones in this patient. 

The first model proposes 2 distinct clones stably maintained over time: one with short and 

another with long telomeres. However, this hypothesis was not likely since the WGS data 

revealed that most mutations were clonal and present in all cells with only a small 

percentage that were subclonal. Therefore, the second hypothesis was most probable: a 

CLL first clone with longer telomeres that became more heterogeneous over time, from 

which a subclone originated and expanded until reaching equilibrium while its telomeres 

continued to erode (Figure 5.19).  

To more formally examine this hypothesis, it would be important to isolate both clones in 

culture to characterise their TL and frequency of fusions in order to assess whether 

telomere instability is exclusive to the subclone with shorter telomeres. Treatment is 

known to change the tumour composition and select for the fittest clones which usually 

associate with relapse (Landau et al., 2013). Since the CLL patient has never been treated it 

is most likely that the distinct clones are found in equilibrium. In the future it would be 

important to perform in vitro experiments that would allow comparing the responses of 

each clone to selected CLL chemotherapeutics, particularly if the patient needs to be 

treated. 

Equilibrium of distinct subclones is generally associated with better outcome compared 

with competition (Landau et al., 2014). This chapter’s original hypothesis stated that the 
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increased frequency of fusions was product of the subclone with short telomeres. 

However, the patient’s stable disease could be partially explained by the equilibrium with 

the clone with longer telomeres.  

 

Figure 5.19. Predicted 

evolution of the XpYp TL 

for the patient CLL-B 

cells. 

Cartoon representation of 

the predicted TL 

evolution observed with 

STELA. A homogeneous TL 

distribution becomes 

more heterogeneous. A 

subclone with shorter 

telomeres (red) expands 

but its telomeres erode 

over time. Both 

populations finally reach 

the bimodal distribution. 

 

5.5.2 Impact of mutations 

5.5.2.1 CLL drivers and the MAPK/ERK signalling pathway 

Enrichment analysis from the list of mutated genes identified the RAS-RAF-MEK-ERK 

(MAPK/ERK) signalling pathway. This route culminates in controlling cell growth, cell 

survival, metabolism, invasion and senescence (Dhillon et al., 2007). The MAPK/ERK 

pathway has also been shown upregulated in a subset of CLL patients by transcriptomic 

analysis (Ferreira et al., 2014). It is possible that the genes involved in the MAPK/ERK 

pathway were actively transcribed in the CLL-B cells and thus exposed to DNA damage. 

Targeted genes contained clonal mutations present in all cells, suggesting it might have 

been an early event.  

Amongst the mutated genes, TP53, POT1, CREBBP, BRAF and ATR have been identified in 

CLL and are a part of the DNA damage response, apoptosis, NF-κB signalling, cell cycle, 

NOTCH1 signalling and B-cell signalling (Puente et al., 2015, Guieze and Wu, 2015) (Figure 
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5.10). The first three were clonal mutations while mutations in BRAF and ATR were 

subclonal.   

A novel mutation was detected in the epigenetic regulator cAMP-response element binding 

protein (CREBBP) predicted to cause an amino acid substitution (p.Asn1131Thr) with 

damaging effect. CREBBP is involved in several functions including cell cycle, antigen 

presentation and repair of DNA damage (Kretsovali et al., 1998, Chae et al., 2015). CREBBP 

regulates the transcription of the CLL driver NOTCH1 and may modulate the MAPK/ERK 

signalling pathway (Bienvenu et al., 2010, Dixon et al., 2017). Mutations in this gene are 

present in many cancers, particularly contributing to lymphomagenesis in germinal-centre 

B-cells (Zhang et al., 2017). Other novel clonal missense mutations triggering an amino acid 

substitution with predicted deleterious effect that may be relevant to the pathogenesis of 

the disease include: AIFM1 (p.Pro545Arg) and CD83 (p.Tyr45His). The apoptosis-inducing 

factor, mitochondrion-associated, 1 (AIFM1) plays a role in apoptosis and has been 

associated with tumorigenesis (Joza et al., 2001). Interestingly, the CD83 antigen (CD83) is 

expressed by activated B lymphocytes and has a role as an immunosuppressive agent and a 

regulator of lymphocyte survival and differentiation (Kretschmer et al., 2009). In addition, 

elevated levels of soluble CD83 in plasma of patients with CLL have been associated with 

shorter treatment-free survival (Hock et al., 2009).  

In addition to BRAF and ATR, subclonal mutations were also identified in MEIS1, IGF1R, RET 

and MYB amongst other. None of them was predicted to produce a change at protein level; 

however, mutations in regulatory sequence can also modify gene expression. Ataxia 

Telangiectasia and Rad3 related (ATR) protein kinase is important for preventing telomere 

fragility and telomere fusions, and the recruitment of telomerase (McNees et al., 2010, 

Tong et al., 2015). The oncogene MYB and the insulin-like growth factor-1 receptor (IGF1R) 

are overexpressed in some cases with CLL. In addition IGF1R been identified as a 

therapeutic target in CLL (Vargova et al., 2011, Yaktapour et al., 2013). Both clonal and 

subclonal mutations were identified in MEIS1, a transcription factor required for self-

renewal in normal and leukemic haematopoiesis and suggested to activate the PI3K/Akt 

and MAP kinase signalling pathways (Wong et al., 2007, Heuser et al., 2011, Gibbs et al., 

2012). In addition, higher levels of MEIS are associated with resistant Acute Myeloid 

Leukaemia (AML) and it has been identified as a promising prognostic marker (Liu et al., 

2017a, Mohr et al., 2017).  

These data must be interpreted with caution since it is not possible to distinguish driver 

from passenger mutations merely from the genetic data. A further study with more focus 
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on downstream gene expression analysis, to accurately assess the impact these mutations 

have in the cell, is therefore suggested.   

5.5.2.2 Truncated REV3L and chromosome instability  

A novel mutation in the REV3L gene predicted to create a truncated protein (1426/3130 

amino acids) was identified from this dataset (Figure 5.20). REV3L is the catalytic subunit of 

the low fidelity DNA polymerase zeta (Pol ζ) which is implicated in the tolerance of DNA 

damage in translesion synthesis (TLS) and is important for maintaining genome stability 

(Lange et al., 2013). REV3L interacts with REV7 (MAD2L2), which confers resistance to DNA 

damage (cisplatin and UV radiation) preventing DNA breaks and maintaining chromosome 

stability (Tomida et al., 2015). This REV3L p.Gln1426* novel mutation would cause the loss 

of the REV7 binding domain and the polymerase domain, leading to a dysfunctional 

protein. Moreover, depletion of REV3L results in more common fragile site expression, 

chromosome breaks and increased anaphase bridges (Bhat et al., 2013).  

 

Figure 5.20. REV3L p.Gln1426* mutation causes loss of polymerase domain and REV7 binding site. 

Primary structure of the REV3L protein (UniProt ID: O60673), the catalytic component of the 

polymerase ζ. (A) Intact and (B) truncated protein caused by a somatic mutation (p.Gln1426*) coding 

for a stop codon identified in the CLL patient DB17, that provokes the loss of the REV7 binding 

domain (blue) and the polymerase domains (green). Adapted from Lange et al., 2016.  

REV3L is as a promising therapeutic target in several cancer types and its overexpression 

conferred resistance to DNA damaging agents allowing a higher yield of viable cells. In 

contrast, its depletion resulted in a high incidence of chromosome breaks leading to cell 
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death and sensitised the cells to chemotherapeutic agents like cisplatin (Lee et al., 2014b, 

Yang et al., 2015, Lange et al., 2016, Huang et al., 2016).  

It appears that this clonal heterozygous mutation in REV3L creates a truncated protein 

missing the REV7 and POLZ binding domains, which may explain the high frequency of 

telomere fusions in this patient. Further research is required to investigate the effect of this 

high-impact REV3L mutation, on telomere dysfunction. This could be undertaken by 

modelling the Gln1426* mutation in the CLL cell line MEC1 (Stacchini et al., 1999) using 

genome editing techniques, following measurement of the TL using STELA (Baird et al., 

2003) and telomere fusion activity (Capper et al., 2007). 

This discovery may provide key information for the pathogenesis of this patient. Intact Pol ζ 

provides the cell with survival advantage as it allows TSL replication past DNA lesions.  

However, dysfunctional REV3L may result in increased collapsed replication forks and it is 

associated with increased sensitivity to cisplatin and higher chromosomal aberrations. In 

this case, the mutation in REV3L may contribute to the patient’s indolent disease by 

negatively impacting on the viability of the CLL cells. Therefore, it will also be important to 

assess whether REV3L can be a therapeutic target in CLL. This could be assessed by 

establishing CLL cell lines with REV3L suppression or overexpression and determine their 

proliferative impact, apoptosis rate and response to cisplatin and other chemotherapies.  

5.5.3 POT1 and telomeres 

POT1 is a component of the shelterin complex that binds telomeric DNA, regulating its 

accessibility to DNA-modifying enzymes (Baumann and Cech, 2001).  Mutated POT1 is a CLL 

driver. Mutations in the OB domain of this gene that disrupt the POT1-DNA binding site, 

have been associated with telomere dysfunction in CLL (Ramsay et al., 2013). 

Disruption of the POT1-TPP1 interaction was shown to decrease the binding affinity of 

POT1 to DNA (Rice et al., 2017). In this study the presence of 7 mutations predicted to 

disrupt that interaction was investigated in 31 CLL patients with short telomeres (Figure 

5.11). However, these mutations did not appear to be enriched in CLL patients with short 

telomeres.  

Mutations in the OB domain disrupting the interaction with DNA have been identified in 

many cancers and shown to promote genomic instability by initiating the DNA damage 

response (A-NHEJ) at telomeres that leads to chromosome fusions (Gu et al., 2017). POT1 

forms a complex with TPP1 to regulate TL by controlling the access of telomerase (Tejera et 
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al., 2010). It has been observed that POT1 mutations in the OB domain or defective POT1-

TPP1 complex result in defective elongated telomeres (Gu et al., 2017, Rice et al., 2017). 

Therefore it is conceivable that mutations disrupting the POT1-TPP1 heterodimer may 

result in telomere fusion in CLL-B cells that exhibit long telomeres. Investigation of these 

mutations and association with dysfunctional telomeres is required in a cohort of CLL 

patients with long telomeres.  

Whole genome analysis of DB17, the CLL patient with high fusion frequency in this study, 

revealed a novel clonal mutation in POT1 antisense RNA 1 (POT1-AS1) that may contribute 

to the genomic instability of this patient. Functional studies by modelling this new mutation 

in the CLL cell line MEC1 (Stacchini et al., 1999) using gene editing technology 

(CRISPR/CAS9-mediated mutation) will enable understanding the role and impact of this 

POT1-AS1 novel mutation compared to other CLL recurrent POT1 mutations in TL, stability 

and fusion activity. 

5.5.4 Mutated CLL and a signature of mutations consistent with nc-AID 

The IGHV mutational status has been known as an important prognostic marker in CLL for 

almost two decades (Hamblin et al., 1999, Damle et al., 1999). In this case study, the 

patient presented mutated IGHV CLL (Figure 5.15) which is generally associated with 

indolent disease and is most likely originated from a memory B-cell that have undergone 

IGHV somatic hypermutation at the germinal centre (Seifert et al., 2012).  

The frequency of somatic mutations ranges from 0.001-400 mutations/Mb depending on 

the cancer type (Alexandrov et al., 2013a). In this study, patient DB17 CLL-B cells had a 

mutational frequency of 1.08 mutations/Mb, with a total of 3,607 point mutations 

identified across the genome. These results are in line with previous observations in CLL.  

Kasar et al., identified an average of 0.92 mutations/Mb (3,055 mutations genome-wide) 

from 30 CLL patients (Kasar et al., 2015). Similarly, Puente et al., identified an average of 

0.87 and 0.89 mutations/Mb for CLL and MBL, respectively (Puente et al., 2015).  

The pattern of somatic mutations identified for the CLL patient sample corresponded to 

Alexandrov’s signature 9 (Figure 5.12) present in cancer cells undergoing immunoglobulin 

gene hypermutation (Alexandrov et al., 2013a).  Somatic hypermutation is exclusive to B-

lymphocytes at immunoglobulin regions and is mediated by canonical AID (c-AID) (Arakawa 

et al., 2002). However, c-AID creates a distinct signature of mutations (clustered C>T/G, 

signature 2) not accordant with the pattern observed in signature 9 (non-clustered T>G) 
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(Figure 5.13) (Alexandrov et al., 2013a). In a later study, Kasar and colleagues proposed a 

role for non-canonical AID (nc-AID) earlier in tumour development in CLL patients with 

signature 9 characterised with non-clustered mutations (Kasar et al., 2015). 

Off-target activity of AID/APOBEC deaminases at unrepaired single-strand breaks (SSBs) 

during S or G2/M phase can result in deamination that has been associated with kategis in 

cancer (Alexandrov et al., 2013a, Rebhandl et al., 2014, Casellas et al., 2016). However, for 

DB17, localised hypermutation (kataegis) was exclusive to IGLK (Chr2p11.2) and IGHV 

(Chr14q32.33) immunoglobulin loci (Figure 5.13 and Figure 5.14). In addition, the 

mutations identified from DB17 CLL-B cells were not clustered instead they were spread 

across the genome, consistent with nc-AID. Through the low-fidelity non-canonical DNA 

mismatch repair pathway, nc-AID uses the error-prone polymerase η contributing to 

mutagenesis (Pena-Diaz et al., 2012). The author also proposed that nc-AID may also be 

responsible for inducing DSBs, translocations and telomere fusions in B cells.  

Altogether, it is possible that nc-AID may have contributed to the somatic mutations 

present in this patient’s tumour, playing a role in progression of the normal B-cell to a 

malignant CLL cell in this patient.  

5.5.5 6q:13q translocation leads to 13q14 and 6q21 deletion in CLL patient.  

For this patient, clonal monoallelic deletion at 13q14, including the minimal deleted region 

(MDR), and 6q21 were identified.  

The prognostic significance of 13q14 deletions is debated in the literature. The 13q14 

deletion is the most common chromosomal aberration in CLL (50-60%) and as a sole 

abnormality, has typically been associated with an indolent disease (Dohner et al., 2000).  

The deleted section at 13q14 sometimes can included the MDR that harbours DLEU2, 

MIR16-1 and MIR-15A, which are considered to have a tumour suppressor function in CLL. 

They are negative regulators of BCL2 expression, regulating cell cycle and apoptosis, and 

therefore the loss of the MDR may result in anti-apoptotic resistance and is associated with 

a more aggressive disease (Klein et al., 2010). However, later studies in CLL patients 

showed that neither monoallelic nor biallelic 13q deletion, in the absence or presence of 

MDR, were sufficient to be considered an adverse prognostic factor (Puiggros et al., 2013, 

Grygalewicz et al., 2016). 

Deletions in 6q (including 6q21) were observed in 5 to 7% of CLL patients (dependent on 

the study) and were associated with a higher lymphocyte count, CD38 positivity and an 
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intermediate-risk prognosis (Stilgenbauer et al., 1999, Cuneo et al., 2004). 6q21 deletion 

has been linked to the tumour suppressor ZNF292, a growth hormone-dependent 

transcription factor (Puente et al., 2015, Ghamlouch et al., 2017). 

Surprisingly, the current study in DB17 found that the 13q14 and 6q21 deletion originated 

from a 6q:13q unbalanced inter-chromosomal translocation (Figure 5.16). This was not an 

isolated case as it was reported that about 37% of cases with 13q deletions occurred by an 

inter-chromosomal unbalanced translocations (Hruba et al., 2012, Kasar et al., 2015). In 

this case, the partner was chromosome 6q. CLL patients with 13q14 deletion arising from 

13q translocations have been associated with patients with more unstable genome and 

poor clinical outcome (Puiggros et al., 2014). 

In this patient, the monoallelic 6q:13q unbalanced translocation could have been an early 

event in the initiation of malignancy since it was present in all clones.  

5.5.6 17p UPD, TP53 and telomeres 

Copy neutral loss of heterozygosity (CN-LOH) or uniparental disomy (UPD) was identified at 

the 17p chromosome in the patient’s tumour CLL-B cell fraction. This chromosomal 

aberration resulted from the loss of a portion of chromosome 17p and replacement by the 

duplication of the remaining allele (paternal or maternal). This resulted in the loss of the 

polymorphic differences that existed between the two alleles, giving place to two exact 

copies of genetic information for that specific segment of the chromosome, including a 

homozygous mutation in TP53 (Figure 5.17 and Figure 5.18).  

Unlike inherited UPD, the creation of somatic or acquired UPD is not well understood. 

Firstly, it may arise from an attempt to correct for an initial deletion using the remaining 

fragment as a template for duplication, or secondly as a result of mitotic homologous 

recombination with gene conversion (Stephens et al., 2006). Locations closer to the 

centromeres or telomeres have been identified as hotspots for mitotic recombination that 

lead to UPD (Stephens et al., 2006). UPD can contribute to clonal outgrowth and it presents 

a mechanistic role in cancer including myeloid and lymphoid malignancies such as CLL. 

Some of the regions affected include genes relevant to the pathogenesis of the disease 

such as UPD2q (MAP2 deletion in MCL), UPD5q (APC mutation in colorectal cancer), UPD9p 

(JAK2 mutation in AML), UPD13q (BRCA2 mutation in ovarian cancer, and miR-15a and miR-

16–1 deletion in CLL), UPD17p (TP53 mutation in MDS and CLL) (Jasek et al., 2010, 

Makishima and Maciejewski, 2011).   
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In this study, 17p UPD was identified in a CLL patient with the highest frequency of 

telomere fusions. Moreover, short telomeres have been associated with UPD in CLL 

(Sellmann et al., 2016), therefore it is possible to hypothesise that telomere dysfunction 

and cycles of breakage-fusion-bridge may drive UPD in cancer. 

In addition, the patient’s CLL-B cells presented a clonal TP53 mutation that might explain 

the increased frequency of telomere fusions observed. Besides, it has been reported that 

CLL patients with mutated TP53 present high telomerase expression, short fusogenic 

telomeres, high levels of genomic instability and associate with poor outcome (Guieze et 

al., 2016). Surprisingly and contrary to expectations, the CLL patient presents an indolent 

CLL and has been treatment-free for 14 years. 

In the case study exposed in this Chapter, the following model was proposed to explain the 

development of the 17p-UPD. Initially, an initial heterozygous TP53 clonal mutation 

(p.His179Tyr) (primary event) partially inactivates p53, inhibiting the cellular responses to 

dysfunctional telomeres. This may facilitate telomere instability and the initiation of cycles 

of fusion and breakage of chromosomes. Then, intra/inter-chromosomal fusion with 17p 

telomere results in the loss of the 17p arm containing the protective wild type allele (17p 

LOH). Subsequently, a duplication of the chromosome segment (17p UPD) results in the 

homozygous TP53 mutation that inactivates the tumour suppressor gene which permits 

further cell proliferative advantage, resulting in clonal outgrowth (Figure 5.21). 

Interestingly, the mutation was present in 95% of the reads in the dataset. It was therefore 

possible to hypothesise that it could be a primary and clonal event implicated in the 

initiation of malignancy.  
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Figure 5.21. Proposed model explaining the origin of the 17p UPD in the patient CLL-B cells. 

Clonal event present in all cells. Normal pair of chromosome 17 undergoes an initial mutational event (white lightning bolt): a heterozygous TP53 somatic missense 

mutation (red) that triggers an amino acid substitution (p.His179Tyr). This event was followed by the initiation of telomere instability and potential cycles of BFB. In this 

case a 17p telomere fuses with another telomere (ChrA) leading to a 17p deletion (0-1.765x107) of the allele containing the WT TP53, and loss of heterozygosity (LOH). The 

remaining 17p arm was duplicated leading to two exact copies of the 17p fragment, including the homozygous TP53 mutation.  Finally, 17p copy neutral LOH or 17p 

uniparental disomy (17p UPD) with homozygous TP53 mutation was observed from the WGS. 
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5.5.7 Excessive genetic instability may negatively impact on cancer cell 

fitness resulting in patient’s indolent disease 

The biclonal CLL patient investigated in this case study presented the accumulation of many 

adverse prognostic factors: from driver mutations to telomere dysfunction and 

chromosomal rearrangements (Figure 5.22). Contrary to expectations this patient 

presented a mild and asymptomatic disease and has been treatment-free for 14 years.  

Given the results obtained from the WGS of DB17 tumour/control, a timeline of events 

contributing to CLL in this particular patient is proposed. An early clonal event may have 

been a mutated TP53, which allowed the initiation of telomere fusions and may explain the 

increased frequency fusions detected in this patient. Cycles of BFB could have driven large-

scale genomic rearrangements including 17p UPD. Additionally, other chromosomal 

aberrations like the 6q:13q translocation may have occurred.  

In parallel, a non-canonical DNA mismatch repair driven by nc-AID and Pol η may have 

contributed to the majority of somatic mutations present in the CLL-B cells. In addition, a 

potentially dysfunctional Pol ζ might have resulted in decreased tolerance to TLS DNA 

damage. This is characterised with the accumulation of replication forks, anaphase bridges 

and chromosomal breaks that negatively impact cellular fitness, partially explaining the 

increased frequency of fusions. Most important, by preventing the accumulation of cells 

with acquired mutations it most likely contributed to the patient’s indolent disease. Further 

research is required; however, REV3L, the catalytic subunit of Pol ζ may be a potential 

therapeutic target in CLL sensitising cells to DNA damage. 

Altogether, this is in line with Birkbak and colleagues’ discovery who proposed that an 

excess of chromosomal instability (CIN) is poorly tolerated by the cancer cells, resulting in a 

better prognosis for the patient (Birkbak et al., 2011). For this particular CLL patient, this 

scenario may be the case. 

Interestingly, the presence of intra-tumour heterogeneity has been confirmed. Thus, it is 

proposed that later during malignant progression, a subclone with short telomeres may 

appear from the primary clonal population. The telomeres of the subclonal population may 

continue to erode, as it was observed from the CLL patient samples obtained over 7 years, 

as well as in vitro.  

The distinct clones may be in equilibrium; however, if in the future the patient needed 

treatment, it is important to consider that therapy may change the tumour composition. 
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This would allow the fittest clone to survive, potentially resulting in relapse. Therefore, 

while the patient presents an asymptomatic disease (stage A) and given the tumour’s 

genetic information, the patient is better untreated. However, if therapeutic options need 

to be considered in the future, it is important to reflect that the standard of care FCR 

treatment would be damaging for the patient given the TP53 mutation associated with 

high-risk CLL (Tam and Stilgenbauer, 2015). In contrast, dysfunctional Pol ζ provides 

increased sensitive to cisplatin (Lee et al., 2014b, Huang et al., 2016). Other therapeutic 

options like Ibrutinib or Venetoclax should be considered. 

This chapter has improved the understanding of the disease of a CLL patient and proposed 

a timeline of events contributing to malignancy including the evolution of intra-tumour 

heterogeneity. This work has emphasised the importance of telomere instability which may 

drive chromosomal rearrangements and it has identified novel mutations that may be 

relevant to telomere instability, CLL pathogenesis and an indolent disease.  

Altogether, this chapter highlights the potential of precision medicine to establish 

prognosis and elaborate patient-tailored treatment. 
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Figure 5.22. The paradoxical effect of excessive genetic instability in cancer progression. 

Integrated study summarising the information acquired for the CLL patient. Telomere length 

distribution, frequency of telomere fusions, intra-tumour heterogeneity, molecular markers, SNVs, 

cytogenetics and other information relevant to CLL is reported.  
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CHAPTER 6: 

 GENERAL DISCUSSION AND FUTURE DIRECTIONS 

6.1 SUMMARY  

This study aimed to assess the impact of telomere dysfunction on the cancer genome of 

CLL patients, with a particular focus on the 5p telomere that is proximal to the hTERT locus.  

The aim of chapter 3 was to characterise the 5p telomere. STELA, TVR-PCR and the 

telomere fusion assay were successfully adapted to study the 5p chromosome end. The 5p 

telomere length (TL) of 57 patient CLL-B lymphocytes was measured and compared with 

the 17p and XpYp telomeres. Although the 5p telomere initially measured significantly 

longer than that of XpYp (but not 17p), this difference disappeared after subtracting the 

length contribution of the telomere variant repeats (TVRs), indicating that the canonical 

TTAGGG repeat content of the 5p telomere did not differ from the other telomeres 

analysed.  

Chapter 3 aimed to detect telomere fusions in a cohort of CLL patients with short 

telomeres, to identify those patients with the highest fusion frequency and to assess 

whether the frequency of fusions could further stratify CLL patients into prognostic 

subgroups. In addition, it aimed to investigate whether the 5p telomere was dysfunctional 

and fusogenic in CLL patients and during a telomere-driven crisis in culture. Telomere 

fusions, targeting a total of 24 distinct telomeres, were investigated in 276 untreated CLL 

patient samples with predominantly short TL (<3.81Kb) obtained from UHW in Cardiff, as 

well as the LRF CLL4 clinical trial and the ARCTIC and ADMIRE clinical trials. Telomere 

fusions were detected in 71.7% of patients with varied frequencies. The frequency of 

fusions did not correlate with TL and failed to significantly provide prognostic information 

(although shorter survival was observed among patients with the highest fusion frequency). 

Telomere fusions involving the 5p chromosome end were detected in 22.6% of CLL patient 

samples. Moreover, 5p fusions were detected in crisis-stage HCT116DN-hTERT cells prior to the 

amplification of the 5p chromosome end and the upregulation of telomerase activity.  

The aim of chapter 4 was to provide a detailed characterisation of telomere fusion 

amplicons, particularly those involving 5p, from CLL patients with the highest frequency of 

fusions. The purpose was to investigate which areas of the genome become incorporated 
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into telomere fusions and whether there is an association with CLL or other oncogenic 

pathways. In addition, it aimed to examine microhomology at the fusion junction to 

elucidate the DNA repair mechanisms involved. A large-scale sequence characterisation of 

914 single-molecule amplified telomere fusion events detected in CLL-B cells from 9 

patients with the highest fusion frequency (>4.20x10-5 per diploid genome) was undertaken 

using high-throughput paired-end Illumina sequencing. Head-to-head, intra- and inter-

chromosomal telomere fusions were identified. It is important to note that some fusion 

events incorporated non-telomeric loci including protein-coding genes expressed in CLL-B 

cells, other oncogenes, the ancestral telomere at Chr2q13 and mitochondrial DNA. 

Moreover, loci with previously-reported copy number aberrations in CLL were found to be 

incorporated into telomere fusions. At least 19% (172/914) telomere fusions included the 

5p chromosome end. 5p sister chromatid fusions that could impact telomerase expression 

were also detected. Characterisation of the fusion junctions revealed differential usage of 

microhomology associated with particular types of fusions, implicating the involvement of 

distinct DNA repair mechanisms including classical non-homologous end joining (C-NHEJ), 

alternative-NHEJ (A-NHEJ) and single-strand annealing (SSA).  

Surprisingly, bimodal TL distributions were detected in 67% (6/9) of patients with the 

highest frequency of telomere fusions. This proportion was notably elevated when 

compared with the 4% (11/276) of CLL patients with bimodal TL from the ARCTIC and 

ADMIRE cohorts (XpYp TL range: 0.80-7.49kb) as observed by Norris et al., (manuscript in 

preparation). The aim of chapter 5 was to investigate whether the bimodality observed 

using STELA was a reflection of distinct subclonal populations. Therefore, intra-patient 

tumour heterogeneity was investigated in one of the 9 CLL patients with the highest 

frequency of fusions. The presence of tumour heterogeneity was confirmed by the allele 

frequency of SNP data obtained after WGS of patient-matched tumour/control samples.  

In addition, chapter 5 aimed to reveal the impact of the distinct clonal populations on the 

patient’s prognosis and to examine the patient’s whole genome to investigate the cause of 

the increased fusion frequency and the patient’s indolent disease. However, most 

mutations and genomic rearrangements detected were clonal events, except for some low-

modifier impact mutations. The patient’s genome was characterised with 6q and 13q 

deletions arising from a 6q:13q translocation. Surprisingly, 17p UPD was identified, 

harbouring a homozygous TP53 (p.His179Tyr) mutation that is associated with high-risk CLL 

and elevated frequency of telomere fusions. Mutations were detected in CLL driver genes 

and in genes involved in the MAPK/ERK pathway. In addition, a novel mutation in the 
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catalytic subunit of the polymerase ζ gene REV3L involved in DNA translesion synthesis was 

revealed. Altogether, potential CLL high-risk factors including increased frequency of 

fusions, elevated genomic instability and tumour heterogeneity were detected in a CLL 

patient with indolent disease (over 14 years of study to date).    

6.2 GENERAL DISCUSSION 

6.2.1 Differences in telomere length at distinct chromosome ends 

It has been proposed that specific chromosomes have different TLs that may associate with 

the size of the chromosome arm (Martens et al., 1998, Deng et al., 2004, Wise et al., 2009). 

Heterogeneous or multimodal chromosome-specific TL distributions in non-purified 

samples could be a reflection of mixed cell populations. In addition, bimodal TL 

distributions have been observed from the same pure cellular population, indicative of 

distinct allelic distribution (Deng and Lucas, 1999, Baird et al., 2003, Londono-Vallejo et al., 

2001, Graakjaer et al., 2003). However, bimodal distributions can also reflect patient intra-

tumour heterogeneity (Lin et al., 2010, Lin et al., 2014), as demonstrated in this study. 

Another potential explanation for chromosome-specific differences in TL distributions may 

relate to TVRs, non-functional repeats located at the proximal regions of the telomere. 

TVRs have also been found interspersed throughout the telomere in ALT cells (Mendez-

Bermudez et al., 2009, Conomos et al., 2012, Lee et al., 2014a). The study of variant 

repeats is important since these sequences can disrupt shelterin binding sites and alter the 

formation of telomere quadruplex structures, affecting chromosome integrity (Mendez-

Bermudez et al., 2009, Broccoli et al., 1997a, Broccoli et al., 1997b). Several variants have 

previously been dentified, including TCAGGG, TGAGGG and TTGGGG most commonly, as 

well as the lower frequency variants GTAGGG, TTAGGGG, TTCGGG, TTTAGGG, CTAGGG, 

TAAGGG, ATAGGG, TTAAGGG, TTTGGG, GTGGGG, TTAGCG and TGGGGG (Allshire et al., 

1989, Baird, 1995, Baird et al., 2003, Letsolo et al., 2010, Lee et al., 2014a). By high-

resolution sequencing of telomere fusion events, this study has identified these known 

TVRs in addition to other less abundant repeat motifs.  

The mechanism for generation of TVRs remains unclear. Some studies propose that they 

are product of the telomere repeat misincorporation by telomerase (Lee et al., 2014a). In 

this situation, a random proportion and distribution of TVRs would be expected for each 

telomere. In contrast, a unique composition of TVRs has been identified for XpYp, 12q, 16p, 

16q and 17p telomeres, where these TVRs were considered to be propagated via intra-
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allelic mechanisms including replication slippage or unequal sister chromatid exchange 

(Baird, 1995, Coleman et al., 1999, Baird et al., 2003, Letsolo et al., 2010). Consistently, in 

this study, a greater proportion of variant repeats was identified in 5p compared with XpYp 

and this differential provides an explanation for the differences in the relative TL 

distributions observed. These results also suggest that differences in TLs within the same 

cell may, at least in part, be explained by the unique diversity of TVRs at distinct 

chromosome ends. Thus, it is likely that TVRs arise from replication errors and that only 

those restricted to the proximal telomeric sequence are maintained. Moreover, if TVRs 

propagate through sister chromatid exchange, it is likely that they are maintained at the 

specific chromosome ends and therefore that individual telomeres have a distinct TVR-

pattern associated. 

A potential impact of the extent of TVRs may be related to chromatin modifications 

modulated by TL. Telomere position effect over long distance (TPE-OLD) (Robin et al., 2014) 

has been proposed to epigenetically silence telomerase through a telomeric loop when 

telomeres are long (Kim et al., 2016). However, when telomeres become short, TPE-OLD 

mechanism could be implicated in reactivation of telomerase in cancer. It is interesting to 

speculate that the 5p telomere may contain more TVR, that make this telomere 

significantly longer than other telomeres, to help repress telomerase in somatic cells. 

However, this would depend on the affinity of the shelterin components to bind the 

different types of TVRs and the specific TVR interspersion patterns. 

6.2.2 Telomere dysfunction and fusion, including the 5p telomere, in CLL 

patient samples and in HCT116 human colorectal cancer cell line  

Telomere shortening is considered to function as a tumour suppressor mechanism through 

the induction of senescence and restriction of the replicative lifespan of normal somatic 

cells (Harley et al., 1990, Bodnar et al., 1998). However, in the absence of functional DNA 

damage cell-cycle checkpoints, dysfunctional telomeres can initiate cycles of breakage-

fusion-bridge (BFB) that could result in large-scale genomic rearrangements that drive 

cancer progression (McClintock, 1941, Ma et al., 1993, Maciejowski and de Lange, 2017). 

For malignant progression, TL stabilisation is required, which occurs by telomerase 

reactivation in 85% of human cancers (Kim et al., 1994, Meyerson et al., 1997). Different 

mechanisms of telomerase reactivation include point mutations in the hTERT promotor, 

gene amplifications or translocations that result in hTERT being proximal to an enhancer 

that can drive gene expression (Horn et al., 2013, Huang et al., 2013, Bell et al., 2015, 
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Valentijn et al., 2015). In CLL, genomic rearrangements of the 5p chromosome arm 

including hTERT have been associated with telomerase upregulation (Nagel et al., 2010, 

Schilling et al., 2013, Salaverria et al., 2015). Since the hTERT locus is proximal to the 5p 

telomere (1.2Mb away), it is plausible that 5p-5p sister chromatid telomere fusions could 

initiate hTERT amplification. This study investigated telomere dysfunction and fusion at the 

5p telomere to determine whether this mechanism can be implicated in CLL progression. 

Telomere fusions have previously been detected in CLL patients with short telomeres in 

association with increased genomic instability (Lin et al., 2010). The adaptation of the 

telomere fusion assay (Capper et al., 2007) to include the 5p chromosome end enabled, for 

the first time, the detection of 5p telomere fusions in CLL patient samples. Thus, 172 fusion 

events involving the 5p telomere have been identified, including inter-chromosomal 

fusions with other telomeres and non-telomeric loci, which could potentially translocate 

hTERT. Furthermore, 5p-5p intra-chromosomal telomere fusions with the potential to drive 

gene amplification were identified. Although it is unknown whether these ongoing events 

can provide further selective advantage in pre-established telomerase-expressing CLL cells, 

they provide evidence for a biological process that could occur in pre-malignant cells during 

a telomere-driven crisis or contribute to treatment-associated relapse. 

The frequency of 5p fusions detected was likely to be under-represented. This is because 

within the 5p telomere-adjacent DNA, a CpG island (~0.9 Kb) was identified which 

prevented the amplification and sequencing of telomere fusions that included this region. 

GC-rich sequence can form secondary structures and therefore are usually refractory to 

long-range PCR (McDowell et al., 1998).  

Amplification of the 5p chromosome end including the hTERT locus and upregulation of 

telomerase activity was observed in an HCT116DN-hTERT cell model that escaped from a 

telomere-driven crisis, (Jones et al., 2014). Telomere fusions including the 5p telomere 

were detected during the crisis state prior to 5p amplification; however, there was no 

evidence of 5p duplication or LOH from the TL profile after crisis. Since the 5p TL 

distribution was very heterogeneous post-crisis, which may be indicative of distinct 

subclonal populations, it is conceivable that telomerase was not reactivated throughout the 

population.  
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6.2.3 Telomere fusion frequency and prognosis in CLL patients with short 

telomeres 

Given the diverse clinical outcome of patients with CLL, it is essential to establish accurate 

predictors of patient survival. It has long been considered that TL could be a prognostic tool 

in CLL (Bechter et al., 1998) and several studies have attempted to combine TL with distinct 

prognostic markers including Binet stage, IGHV gene status and cytogenetics (Grabowski et 

al., 2005, Rossi et al., 2009). The development of STELA allowed the measurement of single 

telomeres to precisely determine TL distributions with high resolution (Baird et al., 2003). 

Using STELA in CLL patient samples it was observed that shorter TL distributions, within the 

range at which telomere fusions can be detected, accurately identified patients with poorer 

prognosis (Lin et al., 2010, Lin et al., 2014). Short telomeres have also been linked to 

elevated genome instability and potential for Richter transformation (Roos et al., 2008, Lin 

et al., 2010). TL predicted response to treatment in CLL patients from the ARCTIC and 

ADMIRE cohorts (Norris et al., manuscript in preparation). However, the impact of the 

frequency of fusions on patient survival had not been reported. Thus, in this study it was 

investigated whether the presence or the frequency of fusions could resolve additional 

subdivisions within the subgroup of CLL patients with short TL. The IGHV gene mutation 

status, the widely used prognostic marker, failed to further stratify patients with short 

telomeres for progression-free survival (PFS) and overall survival (OS). Whilst not 

statistically significant, 15 month shorter PFS and reduced OS were observed within a 

subgroup of patients with the highest frequency of fusions (>4.20x10-5) than the subgroup 

without fusions. Therefore, further research with a larger sample size or a more sensitive 

technique is required to clarify whether the frequency of fusions provides valuable 

prognostic information, in parallel with TL, in CLL patients. 

The presence of deletion of 11q (ATM) and 17p (TP53) are valuable prognostic markers in 

CLL (Krober et al., 2002). Inactivation of TP53 by mutation or 17p deletion in CLL patients 

has been associated with short telomeres, high telomerase expression, chromosome end-

to-end fusions and high genomic instability (Guieze et al., 2016). Surprisingly, no 

association between deletion/mutation status and fusion frequency was identified in this 

study. It remains possible that not all telomere fusions were captured or that they occurred 

earlier in the progression of CLL and are absent in the expanded clones.  In addition, the 

proportion of CLL patients screened for TP53 and ATM mutations was too small to draw 

any significant conclusions: 2/30 and 3/13 patients with mutated genes, respectively. 
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6.2.4 The impact of telomere dysfunction and fusion on the CLL genome 

It is known that dysfunctional telomeres can undergo BFB cycles and initiate genomic 

instability including amplifications, deletions, translocations, chromothripsis and 

tetraploidy (Capper et al., 2007, Maciejowski and de Lange, 2017), most of which are 

commonly found in the CLL genome (Ghamlouch et al., 2017). As discussed in the previous 

section, CLL patients with short and fusogenic telomeres associate with increased genomic 

instability and worse prognosis. Altogether, this suggests that telomere dysfunction may 

play an important role in shaping the CLL cancer genome. Although Sanger sequencing of 

reamplified telomere fusions has previously been reported (Lin et al., 2010), a thorough 

characterisation of such events had not been performed. This study has allowed the high-

resolution characterisation of 914 fusion events from 9 CLL patients, revealing distinct 

signatures of telomere fusions.  

This study revealed 7 complex telomere fusions that incorporated up to 4 distant loci, 

indicating genome-wide instability. Complex telomere fusion events had previously been 

observed in MRC5 fibroblasts and the HCT116 colorectal cancer cell line (Capper et al., 

2007, Letsolo et al., 2010, Liddiard et al., 2016). In agreement with Liddiard et al., this study 

revealed that telomere fusions can incorporate genomic loci, predominantly with coding 

sequence. Surprisingly, CLL-related genes and other oncogenes, as well as mitochondrial 

DNA were also incorporated into telomere fusions. Boulianne et al., observed in B cell 

precursors that increased DNA damage and fragility, characterised by DSBs, concentrated 

at leukaemia specific genes during malignant progression because of an elevated 

transcription of these loci (Boulianne et al., 2017). Transcription-associated genomic 

fragility was related to exposed ssDNA, associated with R-loop formation and induction of 

DSB mediated by Topoisomerase 2 during rapid transcriptional activation (Boulianne et al., 

2017). It is therefore credible that genes actively transcribed during the development of 

CLL are more prone to damage and hence may become incorporated into telomere fusions 

that result from the inappropriate repair of DSBs. Telomere fusion events could be 

detrimental for cell viability since they may disrupt genes required for cell survival or 

contribute to the cellular burden of genomic instability that is poorly-tolerated. However, 

fusions may also provide a selective advantage for malignant transformation and disease 

progression. They could potentially disrupt tumour suppressor genes, recombine distant 

locations and reactivate oncogenes, including hTERT, shaping the CLL genome. 
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6.2.5 Telomere dysfunction and fusion potentially drive clonal evolution and 

intra-tumour heterogeneity 

The cancer genome is subjected to mutation and large-scale genomic alterations that can 

drive tumour evolution with the selection of the fittest clones over time (Nowell, 1976, 

Greaves and Maley, 2012). In CLL, elevated inter- and intra-patient tumour heterogeneity 

has been observed (Crossen et al., 1993, Landau et al., 2013, Landau et al., 2014). The 

evolution and outcome of the patient’s disease can be influenced by the co-existence of 

multiple subclones within the same patient, which is associated with adverse clinical 

outcome (Crossen et al., 1993, Landau et al., 2013, Landau et al., 2014). In addition, 

therapy and tumour microenvironment (including hypoxia, acidosis, ecological niche and 

immune system) can accelerate this process selecting for resistant subclones and resulting 

in patient relapse (Puente and Lopez-Otin, 2013, Ojha et al., 2015, Del Giudice et al., 2016, 

McGranahan and Swanton, 2017). 

In this study, an increased proportion of CLL patients within the subgroup with the highest 

frequency of fusions exhibited bimodal TL distributions compared with the ARCTIC and 

ADMIRE cohort (67% vs. 4%). The presence of distinct subclonal populations with different 

TLs was confirmed for one of the CLL patients. In this case, it is conceivable that the 

subclone with shorter telomeres evolved from the primary clone, with subsequent 

telomere erosion over time as the subclonal population expanded. It remains possible that 

the bimodal TL distribution observed in CLL patients with the highest frequency of fusions, 

in addition to heterogeneous TL distributions with large standard deviation, reflect 

multiclonal populations. Further evidence supporting telomere dysfunction and fusion 

driving tumour heterogeneity is provided by the comparison of the 5p TL distribution in an 

HCT116DN-hTERT clone prior to and after escape from a telomere-driven crisis. A clonal 

population with a very homogeneous TL distribution resulted in an extremely 

heterogeneous with potentially distinct TL clusters indicative of multiple subclones. 

These results provide insights into the impact of telomere dysfunction and fusion as a 

mechanism for the production of genetically heterogeneous cells that may drive 

multiclonal evolution (intra-tumour heterogeneity) and a more aggressive disease.   



Chapter 6: General discussion and future directions 

 

210 
 

6.2.6 Excessive genetic instability and decreased tolerance to DNA damage 

may negatively impact on cancer cell survival, improving patient 

outcome  

Chromosomal instability (CIN) is generally associated with poor prognosis in human cancers 

since it can provide some survival advantage to the cell. However, severe CIN has been 

shown to have a negative impact on cancer cell viability as it may induce cell death (Cahill 

et al., 1999). Extreme levels of CIN have been associated with better patient prognosis, 

compared to intermediate CIN, in breast, ovarian, gastric, and non-small cell lung cancer 

(Birkbak et al., 2011). Similarly, the number of distinct subclones within a tumour may also 

influence patient survival. An increased mortality risk was observed in patients that 

presented 2 to 4 distinct clones; however, mortality risk decreased when more than 4 

subclones coexisted (Andor et al., 2016). 

In this investigation, a case study of a 79 year old CLL patient with elevated genomic 

instability but an indolent disease was presented. Analysis of the patient’s CLL-B cells 

revealed the highest frequency of telomere fusions from a cohort of 276 CLL patients, intra-

tumour heterogeneity and a CLL genome characterised by chromosomal rearrangements 

and CLL driver mutations.  

Mutations in CLL drivers and in genes involved in the oncogenic MAPK/ERK signalling 

pathway (upregulated in a subset of CLL patients (Ferreira et al., 2014)) were identified in 

this patient, suggesting that DNA damage occurs in genes that are actively transcribed 

(Boulianne et al., 2017). The common CLL 6q21 and 13q14 deletions were identified, but 

found to arise from a previously unreported 6q:13q translocation. Interestingly, a 17p copy 

neutral LOH or UPD with a homozygous TP53 mutation associated with high-risk CLL was 

revealed. Since 17p telomere fusions were detected, it is conceivable that dysfunction at 

this telomere initiated the 17p UPD. Altogether, the genomic rearrangement and high-

impact mutations described were clonal and not exclusive to the subclonal population. 

However, it remains possible that some subclonal events were not detected. 

A mutation in REV3L was identified 2.2Mb downstream (towards the telomere) of the 6q21 

deletion; however, it was not possible to determine whether it was located on the 

translocated chromatid since the deletion was mono-allelic and the mutation 

heterozygous. This novel mutation in REV3L is predicted to result in a truncation in the 

catalytic subunit of polymerase ζ that could compromise translesion synthesis and 
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contribute to the mutational burden of the cell.  This REV3L mutation could, therefore, 

sensitise cells to DNA damage leading to increased genomic instability that results in cell 

death despite mutated TP53. Previous research has shown that REV3L loss-of-function 

sensitises cells to chemotherapeutic agents including cisplatin and is associated with 

increased DSBs and anaphase bridges, whilst its overexpression confers resistance to DNA 

damaging agents (Bhat et al., 2013, Lee et al., 2014b, Yang et al., 2015, Lange et al., 2016, 

Huang et al., 2016). 

The novel REV3L mutation identified in this CLL patient could hence be related to the 

increased frequency of fusions and, together with the increased genomic instability and the 

intra-tumour heterogeneity, may explain the patient’s indolent disease resulting from 

increased cancer cell death. Further research is required since REV3L may be a promising 

therapeutic target to alter chemosensitivity in several cancers, including CLL.   

6.2.7 Potential therapeutic interventions to prevent cells from escaping crisis  

Targeting the DNA repair mechanisms that mediate telomere fusions may provide a 

potential cancer therapeutic strategy that could limit clonal evolution. 

Telomere fusion events lacking telomere repeats have previously been detected in cells 

undergoing crisis in culture, as well as in CLL and breast cancer samples (Capper et al., 

2007, Lin et al., 2010, Letsolo et al., 2010, Roger et al., 2013). In addition, subtelomeric 

asymmetrical deletion has been observed at fused sister chromatids (Liddiard et al., 2016). 

Consistent with previous research, the analysis of 5p, 17p and XpYp intra-chromosomal 

fusions in CLL patients suggests that stochastic DSB and/or differential resection can occur 

at subtelomeric DNA before ligation.  In addition, Liddiard et al., proposed C-NHEJ and A-

NHEJ as DNA repair mechanisms primarily mediating inter- and intra-chromosomal 

telomere fusions, respectively. In CLL, microhomology at the junction of telomere fusions 

consistent with A-NHEJ has previously been observed (Lin et al., 2010). In this study, the 

characterisation of 739 telomere fusion junctions revealed a differential usage of 

microhomology for the distinct types of telomere fusion events detected, implicating 

divergent DNA repair mechanisms. C-NHEJ most likely mediates head-to-head fusions 

containing telomeric sequence since microhomology usage was low or undetected at the 

fusion junctions. In contrast, A-NHEJ probably facilitates sister chromatid fusions and inter-

chromosomal fusions with genomic loci since microhomology usage was evident at fusion 

junctions. An additional DNA repair mechanism, potentially SSA that depends on higher 
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usage of microhomology, may be responsible for a subgroup of telomere fusions with 

genomic loci.  

Jones et al., showed that LIG3 was required to escape a telomere-driven crisis, mediated by 

A-NHEJ and cells that escaped exhibited increased proportions of intra-chromosomal 

compared with inter-chromosomal telomere fusions (Jones et al., 2014). Targeting 

components of the A-NHEJ pathway, including LIG3, LIG1 and PARP1, have been shown as 

promising therapeutic targets in neuroblastoma (Newman et al., 2015). Currently, PARP 

inhibitors are effective in BRCA1 and BRCA2-deficient breast and ovarian cancer that are 

compromised for homologous recombination (HR) repair (Livraghi and Garber, 2015, 

Meehan and Chen, 2016). PARP inhibitors block ss-DNA repair mechanism at the site of 

damage that results in increased DSBs. The repair is then mediated by error-prone NHEJ 

that can cause genomic instability at a level that is incompatible with cell viability (Lord and 

Ashworth, 2016). Another strategy investigated for the treatment of leukaemia has been 

the inhibition of cell cycle checkpoint components (ATM/ATR/CHK1/CHK2/WEE1) that have 

a primary role in the DDR. These inhibitors are mostly used to enhance the effectiveness of 

standard chemotherapy by blocking the response of tumour cells to genotoxic agents and 

result in accumulation of DNA damage, arrest and cell death (Ghelli Luserna di Rora et al., 

2017). The long-term effects on normal healthy cell populations remain to be determined, 

in particular to exclude the possibility that they could undergo malignant transformation 

(Ghelli Luserna di Rora et al., 2017). 

The benefit of patients with BRCA-mutated cancers treated with PARP inhibitors, highlights 

how elevating genomic instability to lethal levels in genetically unstable cancer cells can be 

exploited as a therapeutic target (Lord and Ashworth, 2016). In CLL, a recent report 

identified that ATM-deficient mice were sensitive to PARP inhibition (Knittel et al., 2017). 

Further research should be undertaken to study the impact of PARP inhibitors in CLL-B 

cells. PARP inhibitors may be effective on their own in a subset of patients with deletion of 

11q or ATM mutation, potentially compromised for HR, since ATM recruits BRCA1 to DSBs 

and promotes HR (Isono et al., 2017). In cells with no previous evidence for HR-deficiency, 

PARP inhibitors could be used in combination to molecules that interfere with HR, like 

RAD51 inhibitors (Wang et al., 2012).  

Since LIG3-mediated A-NHEJ was required to escape a telomere-driven crisis (Jones et al., 

2014) and most telomere fusions in CLL patients are potentially mediated by A-NHEJ, it will 

be important to investigate whether PARP inhibitors may also be effective in those patients 
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with the highest frequency of fusions. Otherwise, they may need to be used in combination 

with conventional DNA damaging agents. REV3L loss-of-function was shown to compromise 

translesion synthesis and HR (Huang et al., 2016), thus clinical targeting of REV3L could be 

explored to enhance cancer cell sensitivity to PARP inhibitors.  Patients with tumours that 

exhibit short dysfunctional telomeres may represent good candidates for these novel 

agents or treatment combinations. 

6.3 CONCLUSIONS AND FUTURE DIRECTIONS 

• In this project, tools to successfully study the 5p telomere that is proximal to the 

hTERT locus have been provided: 5p STELA, TVR-PCR and the telomere fusion assay 

at 5p. 5p STELA allows the determination of TL profiles and LOH at the 5p telomere. 

Furthermore, the adapted telomere fusion assay is an improvement on the existing 

technique that allows detecting increased number of fusions including the 5p 

chromosome arm. Together, both assays may turn out to be an informative 

diagnostic tool for measuring TL and genomic instability in patient samples. 

 

• The 5p TL distributions are similar to the XpYp and 17p telomeres. Distinct 

telomeres may contain the same amount of canonical repeats but different 

proportions of TVRs. It has been proposed that TPE-OLD at the 5p telomere may 

repress telomerase expression (Kim et al., 2016). Research questions that should 

be asked include whether the 5p telomere contains greater proportion of TVRs or 

specific TVR interspersion patterns that are capable of binding TRF1 and TRF2, 

resulting in a longer telomere to further protect somatic cells from telomerase 

reactivation. A comparison of the TL and sequence composition of distinct 

telomeres amplified with STELA should be undertaken in an increased cohort size 

to precisely quantify canonical and variant repeats.  

 

• Telomere dysfunction and fusion at the 5p telomere has been identified, for the 

first time, in CLL patient samples. Sequencing 5p telomere fusions has revealed that 

this chromosome end can fuse to other telomeres and genomic loci, which could 

potentially translocate the hTERT locus near an enhancer. Most importantly, intra-

chromosomal fusion events that may provide a potential mechanism of hTERT 

amplification were identified. Further research should be undertaken to establish 

whether telomere dysfunction and fusion at 5p precedes hTERT reactivation and 
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facilitating the escape from crisis. A comparison of the ability of HCT116 DN-hTERT 

cells, with or without targeted 5p DSBs induced using TALEN or CRISPR/Cas9 

technology to escape crisis and reactivate hTERT could be performed. 5p fusion 

primers could be designed upstream of the 5p TALEN or CRISPR/Cas9 breakpoint to 

capture and sequence telomere fusions. This would allow investigation of whether 

instability at this telomere leads to hTERT rearrangements that drive malignant 

progression. 

 

• 17p telomere fusions were detected in the CLL patient with the 17p CN-LOH or UPD 

with a homozygous TP53 mutation. It should be further investigated whether 

telomere dysfunction can result in this genomic rearrangement. A potential 

strategy could be to experimentally induce DSBs using the 17p telomere-specific 

TALEN system in HCT116DN-hTERT cells and investigate 17p LOH and UPD in clones 

escaping replicative senescence most likely from the loss of function of the tumour 

suppressor TP53. 

 

• Varied frequencies of telomere fusions were identified amongst CLL patient 

samples with short telomeres. Further investigation would allow to clarify whether 

the fusion frequency differences arise from specific mutations in cell cycle 

checkpoints or dysfunctional sheltering components in each particular patient. A 

panel of genes, including TP53, REV3L, POT1, TRF2, ATM and ATR, should be 

sequenced in the cohort of CLL patients.  

 

• The frequency of telomere fusions failed to provide further prognostic information 

among a subgroup of CLL patients with short telomeres. However, since shorter 

PFS and reduced OS were observed within a subgroup of patients with the highest 

frequency of fusions (>4.20x10-5) than the subgroup without fusions, further 

research with an increased cohort size should be undertaken. Moreover, it might 

be useful to develop a more sensitive technique to detect telomere fusions. 

 

• The frequency of bimodal TL distributions was enriched in a subset of patients with 

the highest frequency of fusions, potentially reflecting intra-tumour heterogeneity. 

This was confirmed for one of the CLL patients but to validate this hypothesis, the 

presence of distinct subclones should be investigated in the remaining CLL patients 
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with bimodal TL distribution. In addition, it remains possible that patients with 

heterogeneous TL profiles with greater standard deviations also represent the 

tumour heterogeneity within the sample. Together with the previous finding, it is 

suggested that increased telomere dysfunction and BFB cycles provide the genomic 

diversity required to drive intra-tumour heterogeneity which results in a more 

aggressive disease. This would provide additional prognostic value to the 

measurement of TL and the frequency of fusions; however, further studies need to 

be undertaken to validate this hypothesis. 

 

• An exception to the previous hypothesis has been observed in a case study. Thus, it 

is interesting to propose that dysfunctional REV3L may potentially be implicated in 

the increased frequency of fusions and sensitivity to DNA damage in the patient 

CLL-B cells that may have resulted in the patient’s indolent disease. To investigate 

the impact of this truncated protein on Pol ζ function, a MEC1 CLL cell line 

(Stacchini et al., 1999) model with WT and mutated REV3L (Gln1426*) could be 

established using TALEN or CRISPR/Cas9 technology. The tolerance to translesion 

synthesis, the impact on telomere fusions and cellular fitness would be 

investigated. In addition, WT and REV3L-mutant cells could be treated with 

cisplatin, other DNA damaging agents or cell cycle checkpoint inhibitors to 

investigate whether this protein may provide a potential therapeutic target in CLL. 

In the future, those CLL patients with the highest frequency of fusions might 

benefit from Pol ζ functional inhibition to elevate the levels of genomic instability 

beyond the threshold tolerated by the cancer cell. In combination with other DNA 

damaging agents, this approach may also be effective in other cancer patients. 

 

• In addition, further research should be taken to investigate the impact of PARP 

inhibitors in patients with dysfunctional telomeres, particularly those ATM-

deficient CLL patients that may be compromised for HR repair. In the future, 

screening patients with 11q deletion or mutated ATM could allow selecting for 

more tailored treatments.  

 

• Telomere dysfunction and fusion, originating from extremely short or unprotected 

telomeres, likely facilitates the acquisition of the rearrangements found in the CLL 

genome that lead to malignant progression.  The high-resolution sequencing of CLL 
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patient telomere fusion events has revealed genomic loci that can be incorporated 

into telomere recombinations. Such events could be expected to be detrimental to 

normal cell gene expression, DNA replication and cell cycle progression. However, 

certain molecular recombinations have the potential to confer a selective 

advantage if they disrupt growth suppressor genes or reactivate genes that 

facilitate immortalisation, including hTERT. To determine the impact and functional 

consequences of telomere-genomic fusions in CLL, specific areas of the genome 

identified as susceptible to recombination with telomeres in CLL patient samples 

could be destabilised. This could be achieved by using TALEN or CRISPR/Cas9 

technology in the MEC1 CLL cell line (Stacchini et al., 1999). Subsequent to targeted 

genomic disruption, telomere fusion frequency, cell viability, cell cycle progression 

and RNA or protein expression should be studied. 

 

• Altogether, telomere dysfunction and fusion, originating from extremely short or 

unprotected telomeres, likely facilitates the acquisition of the rearrangements 

found in the CLL genome that lead to malignant progression.  
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6.3.1 Final conclusions  

The final conclusions obtained from this Ph.D. project are summarised in Figure 6.1. 

Telomere dysfunction and BFB cycles can initiate genome-wide instability as evidenced 

from the high-throughput sequencing of 914 telomere fusion events from 9 CLL patient 

samples. This has the potential to drive large-scale genomic rearrangements including 

deletions, amplifications and translocations that are commonly detected in CLL patients’ 

genome.  

Telomere fusions provide a source for genetic variability that can result in two distinct 

cellular outcomes. Fusions can deliver a selective advantage to the cell for malignant 

progression, driving clonal evolution or intra-tumour heterogeneity. Evidence to support 

this is provided by the increased frequency of CLL patients with bimodal TL detected 

amongst the subgroup with the highest frequency of fusions compared with the total 

ARCTIC and ADMIRE cohort (67% vs. 4%). Biclonality or multiclonality was validated for one 

of the CLL patients but further research should be taken to investigate multiclonality within 

the other CLL patient samples. In addition, an increased frequency of fusions and intra-

tumour heterogeneity may result in a more aggressive disease.  

An alternative outcome from a telomere-driven crisis is cell death, resulting from the 

increased and unsustainable genomic instability. Thus, I propose that this may be 

disadvantageous to the cancer cell and could be exploited for therapeutic benefit by 

targeting DNA repair mechanisms in cells already sensitised to DNA damage.  In this study, 

the CLL patient with increased genomic instability, high fusion frequency and an indolent 

disease was found to possess a novel REV3L gene mutation predicted to result in a loss-of-

function of Pol ζ, thereby potentially sensitising the CLL cells to DNA damage. The 

functional consequences of this mutation should be further investigated since it may prove 

a useful therapeutic target in CLL.  

Altogether, in this Ph.D. project I have illustrated how telomere dysfunction can potentially 

shape the CLL genome and modify the course of the disease, as well as identified novel 

therapeutic targets that may prove useful in subsets of CLL patients.  

 



Chapter 6: General discussion and future directions 

 

218 
 

 

Figure 6.1. The impact of telomere dysfunction and fusion on Chronic Lymphocytic Leukaemia. 

Summary of the findings identified from this Ph.D. project, providing evidence on how dysfunctional 

telomeres can shape the CLL genome and modify the course of the disease. 
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APPENDIX 

SUPPLEMENTARY FIGURES 

 

Supplementary Figure 1. STELA protocol for 6 samples. 

(A) Master mix (MM) calculated for 6 + 1 samples to allow for additional volume. (B) 6 reactions (rxs) 

were prepared for each sample; 63µL of MM was transferred into a tube containing 7µL of the 

DNA/Tel2 mix. (C) 10µL of each reaction was loaded into the 8-well PCR strips that were transferred 

into the 96-well thermo cycler for STELA PCR. (D) The 6 STELA PCR rxs prepared per each of the 6 

samples (blue squares) together with 4 wells used for the DNA ladders (black square) that were 

loaded into a 40-well agarose gel. Usually, several STELA agarose gels were run at the same time. In 

such occasions the preceding process was escalated for the TL analysis of multiples of 6 numbers of 

samples. 

A 

B 

C 

D 
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Supplementary Figure 2. Telomere fusion protocol for 6 samples. 

(A) Master mix (MM) calculated for the positive control, 6 samples and additional volume. (B) For 

the positive control, 3.5 reactions (rxs) were prepared so 28µL of MM was transferred into a tube 

containing 7µL DNA. For the 6 samples, 11rxs were prepared for each sample so 88µL of MM was 

transferred into a tube containing 22µL DNA. (C) 10µL from 3 rxs for the positive control, and 

10µL from 10 rxs of each of the 6 samples were loaded into the 8-well PCR strips. The telomere 

fusion PCR rxs were transferred into the 96-well thermo cycler. (D) The 10 PCR rxs prepared for 

each of the 6 samples (blue squares) together with the 3 rxs of the positive control (light blue 

squares) were loaded into a 2x40-well agarose gel, alongside the DNA ladders (black square). The 

rows were separated by 20cm in the 40cm-long gel. The preceding process was escalated for the 

telomere fusion analysis of multiples of 6 numbers of samples as several agarose gels were run at 

the same time. 

 

 

A 

B 

C 

D 



Appendix: Supplementary information 

 

221 
 

 

Supplementary Figure 3. Identifying SNVs present on the tumour sample. 

For increased accuracy a combination of Mutect and Somatic Sniper was used to detect SNVs from 

DB17 patient tumour/control samples. SNVs from the intersection were selected. Detected in 

patient DB17 CLL-B cells. 
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Supplementary Figure 4. Copy Number Variation identified across the genome of DB17 CLL-B cells. 

CNV detected by (A) cn.MOPS and (B) array CGH for the DB17 tumour and control samples. CNV 

study was performed in (A) 2014 and (B) 2010. Detected in patient DB17 CLL-B cells. 
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Supplementary Figure 5. Copy 

number deletion at chr6q21 and 

chr13q14. 

Ensembl snapshot image of the 

deleted loci at (A) chr6q21 and at (B) 

chr13q14.2-13q14.3. Gene Legend: 

Ensembl protein coding, merged 

Ensembl/Havana, processed 

transcript, pseudogene, RNA gene.  

Detected in DB17 CLL-B cells. 
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Supplementary Figure 6. Sequencing the breakpoint A of the 6q:13q translocation. 

(A) Visualisation in IGHV of the 6q:13q translocation fusion point A (Chr6:107,974,284-

Chr13:51,501,490). (B) Sanger sequencing trace obtained with the forward and (C) reverse primers 

after sequencing breakpoint A. (D) Results obtained after BLAST-alignment of the sequence in 

Ensembl GRCh37. Microhomology in black and highlighted. Detected in DB17 CLL-B cells. 
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Supplementary Figure 7. Sequencing the breakpoint B of the 6q:13q translocation. 

(A) Visualisation in IGHV of the 6q:13q translocation fusion point B (Chr13:50,523,174-

Chr6:109,465,113). (B) Sanger sequencing trace obtained with the forward and (C) reverse primers 

after sequencing breakpoint B. (D) Results obtained after BLAST-alignment of the sequence in 

Ensembl GRCh37. Microhomology in black and highlighted. Detected in DB17 CLL-B cells. 
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SUPPLEMENTARY TABLES 

Supplementary Table 1. List of oligonucleotides used during this study. 

APPLICATION PRIMER NAME SEQUENCE (5′-3′) 

Development of STELA and 

the telomere fusion assay at 

the 5p chromosome end 

5p4_F AGGGAGTGCATTAGCATACAGGTG 

5p5_R GGAGCAGCATTCTCTTCACCACAG 

5p6_1.4_F CGTAGAGGAGGGTGGAACCTC 

5p7_2_R AGCACGGATAAGGAGGACATTAAC 

5p8_3.2_R CCTCTACTAACCTTTAAGGCTGTG 

5p9_6_R AGATATTTCCCATGTAGCCGCAAC 

Characterisation of the 1.4Kb 

5p8 background band (non-

fusion amplicon) 

5p_seq1 AGCTGATTGCAGGAGCTTTC 

5p_seq2 CCTTATAACGGGACATAATTGGA 

5p8.2_R AAGGCTGTGAACCCTGTAATCTAG 

5p8.3_R ATCTAGGTATCAGGCTGGCTTTTC 

Measurement of the 

telomere length at different 

chromosome ends using 

STELA 

5p5 GGAGCAGCATTCTCTTCACCACAG 

XpYpE2 TTGTCTCAGGGTCCTAGTG 

17pseq1rev GAATCCACGGATTGCTTTGTGTAC 

18qrev4M CACAGGGATGGTTAGGTATCTC 

2p2 GAGCTGCGTTTTGCTGAGCAC 

12q -197A GGGAGATCCACACCGTAGCA 

Teltail TGCTCCGTGCATCTGGCATC 

Tel2 TGCTCCGTGCATCTGGCATCTAACCCT 

Measurement of the 

Telomere Variant Repeat 

content using TVR assay 

5p5 GGAGCAGCATTCTCTTCACCACAG 

XpYpE2 TTGTCTCAGGGTCCTAGTG 

17pseq1rev GAATCCACGGATTGCTTTGTGTAC 

TAG-TelW 
TCATGCGTCCATGGTCCGGACCCTTACCCTTACCCT

NACCCTA 

TAG-TelX 
TCATGCGTCCATGGTCCGGACCCTTACCCTTACCCT

NACCCTC 

TAG-TelY 
TCATGCGTCCATGGTCCGGACCCTTACCCTTACCCT

NACCCTG 

Detection of telomere fusions 

using the 

5p8:17p6:XpYpM:16p1:21q1 

telomere fusion assay 

5p8 CCTCTACTAACCTTTAAGGCTGTG 

17p6 GGCTGAACTATAGCCTCTGC 

XpYpM ACCAGGTTTTCCAGTGTGTT 

16p1 TGGACTTCTCACTTCTAGGGCAG 
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21q1 CTTGGTGTCGAGAGAGGTAG 

Validation of mutations by 

Sanger sequencing SNVs 

identified from WGS of a CLL 

patient sample 

BRAF_F AAGATGGAGTTTTGCCCTTGTCAC 

BRAF_R CAAGATCCCCAAATGATTCGTGTC 

ATR_F AAGAATTAGCTGGGTATGGTGGTG 

ATR_R ATGTGGTATGCTCTCACTTCCATG 

EHMT1_F GGGAAGGAGTAGATGTTTTCCAGT 

EHMT1_R GTTCTTACCGCCACTAATATGCTG 

IGF1R_F GTGGGGAAAGGAGAGGTGTATATG 

IGF1R_R AGCAGTACACCAGTCAAGTTTCTC 

TMPRSS15_F CTAAAGCTGAGTTCCTGGAGTAGC 

TMPRSS15_R TTGGACCTGTTGCCTGTTCATTC 

POT1_F ATGCCCCAGTTCTCTTAGTGTATG 

POT1_R ACTGGTCCTCTTCCTCTGTCTATC 

TP53_F AGAGCAATCAGTGAGGAATCAGAG 

TP53_R CTTTATCTGTTCACTTGTGCCCTG 

REVEL_F CACCAAATGCTGAAGGTGTTGAC 

REVEL_R TCAAAGCTGGACCAAGCATATACC 

CREBBP_F ACTTATAGACTCGGGATGTCTTGC 

CREBBP_R GAGTAAAATCAGTTGCGTCAGAGG 

Sanger sequencing the fusion 

points A and B of a 6q:13q 

translocation identified from 

WGS of a CLL patient sample  

T6Q13Q_A_F GCTCACTTTATTGCAGTGGTCTAG 

T6Q13Q_A_R CAGAAAGAGCAAGGACACAAAGAC 

T6Q13Q_B_F CACGTGCCTATAATCTCAGCTACT 

T6Q13Q_B_R GAGATCAACATTAGTCACAGCTGG 

Validation of POT1 mutations 

in a cohort of CLL patient 

samples by Sanger 

sequencing 

POT1A CCACAGAGTACATATATGTTAG 

POT1B TAAGGAATAGCAGACTCATATG 

POT2A ACCTACGTAACAAACCTCCATG 

POT2B CTCACACGTTATTTAATAGGACTG 

POT3A ACTTTATATGTACTAGGTTGTCTG 

POT3B CATGGAGTGACACTTAATAGAG 
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Supplementary Table 2. Characteristics of 5p STELA PCR primers. 

DISTANCE TO 

TELOMERE (Kb) 

ID PRIMER SEQUENCE 

5′-3′ 

LENGTH 

(bp) 

Tm (°C) GC (%) 

0.056 5p4_R AGGGAGTGCATTAGCATACAGGTG 24 62.50 50.00 

0.367 5p5_F GGAGCAGCATTCTCTTCACCACAG 24 63.70 54.17 

Product size= 0.335Kb 

 

Supplementary Table 3. Comparison of the mean telomere length (Kb) and standard deviation at 

5p, 17p and XpYp for 57 CLL patient samples. 

SOURCE Thesis 
# 

5p  
Mean 

5p  
SD 

17p  
Mean 

17p  
SD 

XpYp  
Mean 

XpYp  
SD 

LRF CLL4 1 1.57 1.28 1.43 1.44 1.22 1.32 

LRF CLL4 2 3.34 1.59 3.24 1.77 2.78 0.76 

LRF CLL4 3 3.71 2.09 2.27 1.06 2.37 1.05 

LRF CLL4 4 3.15 0.85 3.46 1.25 2.82 1.01 

LRF CLL4 5 1.96 1.82 1.84 1.22 0.88 0.84 

LRF CLL4 6 2.66 0.66 2.46 0.64 2.71 0.95 

LRF CLL4 8 3.69 2.31 3.86 1.47 2.71 0.99 

LRF CLL4 9 1.38 0.64 1.64 1.05 1.40 0.42 

LRF CLL4 10 1.59 1.42 1.42 0.47 1.21 1.09 

LRF CLL4 11 1.95 0.74 2.14 0.94 1.88 0.76 

LRF CLL4 12 2.63 0.71 3.06 1.20 2.55 0.84 

LRF CLL4 13 3.45 0.72 4.16 1.63 2.85 0.86 

LRF CLL4 14 1.59 0.76 2.52 2.16 1.97 1.53 

LRF CLL4 15 3.13 1.84 2.84 1.18 2.68 1.09 

LRF CLL4 16 2.03 1.62 2.87 2.22 2.80 3.48 

LRF CLL4 17 2.59 0.93 2.81 1.11 2.21 1.29 

LRF CLL4 18 1.66 1.09 1.60 1.17 1.63 0.93 

LRF CLL4 19 4.02 1.22 3.36 1.51 3.28 1.47 

LRF CLL4 20 2.77 1.3 3.49 0.83 2.11 0.67 

LRF CLL4 21 2.58 0.76 2.62 0.49 2.23 0.87 

LRF CLL4 22 3.33 1.66 2.71 0.77 2.25 0.67 

LRF CLL4 23 1.84 2.03 1.67 1.03 1.19 0.48 

LRF CLL4 24 3.44 0.67 2.70 0.76 2.43 0.76 

LRF CLL4 25 2.43 1.85 1.71 1.56 2.16 1.76 

LRF CLL4 26 4.40 2.08 3.80 0.96 3.04 0.82 

LRF CLL4 27 4.49 3.21 2.68 0.61 2.04 0.52 

LRF CLL4 28 3.70 1.95 2.84 1.06 2.31 0.78 

LRF CLL4 29 3.29 1.38 2.84 0.81 2.28 0.51 

LRF CLL4 30 2.95 0.85 2.94 0.93 1.93 0.78 

LRF CLL4 31 2.94 1.78 2.15 1.00 3.01 0.80 

LRF CLL4 32 3.09 1.4 2.56 0.82 2.05 0.59 
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LRF CLL4 33 4.13 1.12 3.44 1.07 2.69 0.99 

LRF CLL4 34 3.47 1.1 3.34 0.85 2.25 1.23 

LRF CLL4 35 1.49 1.75 1.07 0.49 1.61 0.76 

LRF CLL4 36 3.48 0.9 2.88 1.16 2.40 1.13 

LRF CLL4 37 3.58 1.56 4.41 1.58 3.43 0.83 

HOSPITAL 41 4.80 0.83 2.30 0.98 2.63 1.47 

HOSPITAL 42 3.05 0.84 2.70 1.03 2.32 0.82 

HOSPITAL 43 2.52 1.10 2.70 1.06 1.76 0.63 

HOSPITAL 45 2.90 1.87 3.42 1.34 3.10 0.90 

HOSPITAL 46 5.04 2.00 3.21 1.19 4.13 1.55 

HOSPITAL 47 3.66 2.06 4.72 1.52 3.28 1.21 

HOSPITAL 48 3.78 1.84 4.03 2.12 3.87 1.32 

HOSPITAL 51 1.97 1.84 2.64 0.75 1.39 0.84 

HOSPITAL 52 3.95 1.94 2.97 0.99 2.72 0.70 

HOSPITAL 53 6.53 2.33 5.72 2.52 5.36 1.41 

HOSPITAL 54 5.42 2.23 5.26 1.54 5.36 0.93 

HOSPITAL 55 3.41 1.60 2.92 1.30 2.33 0.91 

HOSPITAL 56 4.92 1.56 3.69 1.17 3.15 1.06 

HOSPITAL 65 6.62 3.16 6.75 2.83 5.59 2.36 

HOSPITAL 70 2.25 1.34 1.76 1.01 2.29 1.40 

ADMIRE 105 1.93 1.90 1.85 1.76 1.04 0.54 

ADMIRE 108 3.32 2.24 3.77 2.79 2.34 1.63 

ADMIRE 112 2.25 2.17 1.81 1.40 1.74 1.32 

ADMIRE 118 2.12 1.73 1.67 1.35 1.34 1.13 

ADMIRE 226 3.40 1.53 2.66 0.98 3.05 1.18 

ADMIRE 251 3.92 3.02 2.90 1.39 2.96 1.68 

TOTAL  3.18 1.16 2.92 1.07 2.51 0.98 

 

Supplementary Table 4. TL before and after correcting for TVR limit (Kb). 

ID STELA  TL TVR limit TL corrected by TVR 

# 5p XpYp 5p XpYp 5p XpYp 

48 3.41 3.46 2.24 0.73 1.17 2.73 

53 6.16 4.95 1.47 0.49 4.69 4.46 

47 3.29 2.87 1.99 0.86 1.30 2.01 

52 3.58 2.31 1.39 0.85 2.19 1.46 

54 5.05 4.95 2.14 3.05 2.91 1.90 

40 2.97 1.01 0.94 0.50 2.03 0.51 

41 4.43 2.23 2.11 0.45 2.32 1.78 

42 2.68 1.91 1.40 1.53 1.28 0.38 

56 4.55 2.74 3.09 1.70 1.46 1.04 

46 4.67 3.73 1.05 0.34 3.62 3.39 

TOTAL 4.08 3.02 1.78 1.05 2.30 1.97 
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Supplementary Table 5. Oligonucleotide sequences for the 5p chromosome end: distance to 

telomere, primer ID, sequence, length, expected Tm and GC content. 

DISTANCE TO 

TELOMERE (Kb) 

ID PRIMER SEQUENCE 

5′-3′ 

LENGTH 

(bp) 

Tm 

(°C) 

GC 

(%) 

0.056 5p4_R AGGGAGTGCATTAGCATACAGGTG 24 62.50 50.00 

0.367 5p5_F GGAGCAGCATTCTCTTCACCACAG 24 63.70 54.17 

1.310 5p6_R CGTAGAGGAGGGTGGAACCTC 21    61.30    61.90     

1.925 5p7_F AGCACGGATAAGGAGGACATTAAC 24    60.44    45.83     

3.406 5p8_F CCTCTACTAACCTTTAAGGCTGTG 24    58.58    45.83     

5.930 5p9_F AGATATTTCCCATGTAGCCGCAAC 24    61.28    45.83     

 

Supplementary Table 6. 5p primer combination and PCR product. 

 F primer R primer PCR product (Kb) PCR amplification Optimal Tm 

A 5p5 5p4 0.335 Yes 62-65°C 

B 5p7 5p4 1.893 No - 

C 5p8 5p4 3.374 No - 

D 5p9 5p4 5.898 No - 

E 5p7 5p6 0.636 Yes 62-65°C 

F 5p8 5p6 2.117 Yes 62°C 

G 5p9 5p6 4.641 Yes 62-65°C 

 

Supplementary Table 7. Telomere dynamics at the 5p chromosome end for HCT116DN-hTERT. 

 HCT116DN-hTERT WT cl11 HCT116DN-hTERT LIG3-/-mL3+nuc. LIG3 cl15 

Day 10 42 49 66 91 22 103 153 173 224 

Mean 5p TL (Kb) 2.76 1.78 1.91 1.49 1.64 1.25 1.70 1.88 2.36 3.17 

Erosion (Kb) 1.27       

Elongation (Kb)    0.15 1.92 
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Supplementary Table 8. Number and proportion of CLL patients for each category of fusions. 

 ALL HOSPITAL LRF CLL4 ARCTIC and ADMIRE 

CATEGORY #FUSIONS FREQUENCY # % # % # % # % # % # % # % # % 

NONE 0 0.00E+00 78 28.26 78 28.26 11 33.33 11 33.33 14 35.90 14 35.90 53 25.98 53 25.98 

LOW 

1 6.00E-06 72 26.09 

143 51.81 

4 12.12 

11 33.33 

13 33.33 

20 51.28 

55 26.96 

112 54.90 2 1.20E-05 41 14.86 3 9.09 5 12.82 33 16.18 

3 1.80E-05 30 10.87 4 12.12 2 5.13 24 11.76 

MEDIUM 

4 2.40E-05 22 7.97 

40 14.49 

5 15.15 

8 24.24 

2 5.13 

4 10.26 

15 7.35 

28 13.73 5 3.00E-05 13 4.71 1 3.03 2 5.13 10 4.90 

6 3.60E-05 5 1.81 2 6.06 0 0.00 3 1.47 

HIGH >7 4.20E-05 15 5.43 15 5.43 3 9.09 3 9.09 1 2.56 1 2.56 11 5.39 11 5.39 

 
 

TOTAL 276 100 276 100 33 100 33 100 39 100 39 100 204 100 204 100 

*Number of telomere fusion events and frequency of fusions detected from 10 fusion PCR reactions, 100ng gDNA/reaction. 
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Supplementary Table 9. Description of potential 5p fusions detected in CLL patient samples. 

CATEGORY #FUSIONS FREQUENCY 5P FUSIONS:  TYPE & SIZE (Kb) ID-CLL 

LOW 1 6.00E-06 5p-21q (~2.75) 68 

LOW 1 6.00E-06 5p-5p (~0.8) 29 

LOW 1 6.00E-06 5p-16p/21q (~0.5) 144 

LOW 1 6.00E-06 5p-16p/21q (~2.6) 182 

LOW 1 6.00E-06 5p-5p (~1.6) 198 

LOW 2 1.20E-05 5p-16p/21q (~2.75) 107 

LOW 2 1.20E-05 5p-5p (~1.75) 86 

LOW 2 1.20E-05 5p-5p (2kb) 142 

LOW 2 1.20E-05 5p-5p (~1.75) 153 

LOW 2 1.20E-05 5p-5p (1.75) 160 

LOW 2 1.20E-05 5p-5p (~1.75); 5p-5p (~4.1) 269 

LOW 2 1.20E-05 5p-5p (~1.75); 5p-16p/21q (~2.75) 274 

LOW 3 1.80E-05 5p-16p/21q (~2.75) 236 

LOW 3 1.80E-05 5p-5p (~1.75) 76 

LOW 3 1.80E-05 5p-5p (~2.75); 5p-5p (~2.9) 117 

MEDIUM 4 2.40E-05 5p-16p/21q (~2.75) x2 60 

MEDIUM 4 2.40E-05 5p-16p/21q (~2.75) 217 

MEDIUM 4 2.40E-05 5p-5p (~1.6) 232 

MEDIUM 4 2.40E-05 5p-5p (~1.75) 233 

MEDIUM 4 2.40E-05 5p-5p (~0.25); 5p-5p (~1.2) 243 

MEDIUM 4 2.40E-05 5p-5p (~1.75) 255 

MEDIUM 4 2.40E-05 5p-5p (~0.75) 271 

MEDIUM 5 3.00E-05 5p (~2.75) 113 

MEDIUM 5 3.00E-05 5p-16p/21q (~2.75) 120 

MEDIUM 5 3.00E-05 5p-5p (~3.7); 5p-5p (~1.2) 235 

MEDIUM 5 3.00E-05 5p-5p (~0.75) 246 

MEDIUM 5 3.00E-05 5p-17/XpYp (~2.0) 272 

MEDIUM 6 3.60E-05 5p-16p (~0.4) 59 

MEDIUM 6 3.60E-05 5p-17/XpYp (~3.5) 112 

HIGH 7 4.20E-05 5p-16p/21q (~2.75) 219 

HIGH 7 4.20E-05 5p-17/XpYp (~6.5) 253 

HIGH 8 4.80E-05 5p-5p (~0.5) 108 

HIGH 8 4.80E-05 5p-5p (~0.25); 5p-16p/21q (~2.75) 121 

HIGH 8 4.80E-05 5p-5p (~1.75); 5p-16p/21q (~1.0) 215 

HIGH 8 4.80E-05 5p-5p (~0.75) 251 

HIGH 10 6.00E-05 5p-21q (~2.75); 5p-5p (~4kb) 65 

HIGH 12 7.200E-05 5p-5p (~1.75) 226 

HIGH ~20 ~1.20E-04 5p-YpYp (~2.5) 41 

HIGH ~20 ~1.20E-04 5p-21q (~5.5); 5p-21q (~7.5) 70 

HIGH ~20 ~1.20E-04 5p-5p (~1.6); 5p-5p (~2.3); 5p-16p/21q 
(~2.75) 

118 

 

 



 
 
 

Appendix: Supplementary information 

 

233 
 

Supplementary Table 10. Summary of events resulting from intra-chromosomal fusion analysis. 

INTRA TOTAL " U T/R 
Tel-Tel 
(#00) 

Subtel-
Tel (#0) 

Intra 
(#1) 

Intra/Inter 
(#1o2) 

Inter 
(#2T) 

2q13 
(#2V) 

Genomic 
(#2G) 

Complex 
(#2C) 

Mt DNA 
(#2M) 

DB17 47 0 6 41 0 36 5 0 0 0 0 0 0 

DB59 49 1 3 45 3 38 2 0 1 0 0 1 0 

DB60 10 0 0 10 0 3 5 0 1 0 0 1 0 

DB61 7 0 1 6 0 6 0 0 0 0 0 0 0 

DB62 19 0 1 18 4 8 3 0 3 0 0 0 0 

DB63 58 0 9 49 3 41 5 0 0 0 0 0 0 

DB64 8 0 1 7 0 1 6 0 0 0 0 0 0 

DB65 5 0 1 4 3 0 1 0 0 0 0 0 0 

DB66 7 0 1 6 0 2 3 0 1 0 0 0 0 

TOTAL 210 1 23 186 13 135 30 0 6 0 0 2 0 

 
             

5p 68 0 13 55 4 41 7 0 3 0 0 0 0 

17p 65 1 1 63 5 43 13 0 1 0 0 1 0 

XpYp 77 0 9 68 4 51 10 0 2 0 0 1 0 
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Supplementary Table 11. Summary of events resulting from inter-chromosomal fusion analysis. 

 

 

 

 

INTER TOTAL " U T/R 
Tel-Tel 
(#0D) 

Subtel-
Tel (#0) 

Intra 
(#1) 

Intra/Inter 
(#1o2) 

Inter 
(#2T) 

2q13 
(#2V) 

Genomic 
(#2G) 

Complex 
(#2C) 

Mt DNA 
(#2M) 

DB17 131 3 9 119 0 52 10 21 29 2 5 0 0 

DB59 116 7 18 91 0 58 1 3 18 1 9 1 0 

DB60 148 7 9 132 0 48 0 9 63 1 8 3 0 

DB61 53 6 6 41 0 11 0 1 15 1 12 0 1 

DB62 173 12 13 148 0 28 2 4 108 1 4 1 0 

DB63 29 5 3 21 1 13 1 2 3 0 1 0 0 

DB64 41 8 7 26 1 5 1 4 6 0 9 0 0 

DB65 41 6 7 28 1 2 0 0 4 3 17 0 1 

DB66 149 14 13 122 0 8 4 5 91 2 10 0 2 

TOTAL 881 68 85 728 3 225 19 49 337 11 75 5 4 

              

TOTAL (≥3 reads) 806 68 69 669 3 221 18 49 326 11 36 5 0 

TOTAL (<3 reads) 75 0 16 59 0 4 1 0 11 0 39 0 4 
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Supplementary Table 12. Summary of events resulting from both intra- and inter-chromosomal fusion analyses. 

ALL TOTAL " U T/R 
Tel-Tel 

(00) 
Subtel-
Tel (0) 

Intra (1) 
Intra/Inter 

(1o2) 
Inter 
(2T) 

2q13 
(2V) 

Genomic 
(2G) 

Complex 
(2C) 

Mt DNA 
(2M) 

INTER (≥3 reads) 806 68 69 669 3 221 18 49 326 11 36 5 0 

INTER (<3 reads) 75 0 16 59 0 4 1 0 11 0 39 0 4 

INTER-TOTAL 881 68 85 728 3 225 19 49 337 11 75 5 4 

INTRA (≥3 reads) 210 1 23 186 13 135 30 0 6 0 0 2 0 

INTRA (<3 reads) 0 0 0 0 0 0 0 0 0 0 0 0 0 

INTRA-TOTAL 210 0 23 187 13 135 31 0 6 0 0 2 0 

TOTAL (≥3 reads) 1016 68 92 856 16 356 49 49 332 11 36 7 0 

TOTAL (<3 reads) 75 0 16 59 0 4 1 0 11 0 39 0 4 

TOTAL 1091 68 108 914 16 360 49 49 343 11 75 7 4 

Table indicating the number of events detected with ≥3 or <3 reads.  
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Supplementary Table 13. Type and proportion of TVRs identified. 

Abundance 
(Lee, 2014) 

TVR TOTAL TOTAL% 

1 TTAGGG 1483 76.05 

6 TTGGGG 88 4.51 

5 GTAGGG 84 4.31 

3 TGAGGG 71 3.64 

2 TCAGGG 59 3.03 

 
TTAGGGG 57 2.92 

4 TTCGGG 36 1.85 

 
TTTAGGG 20 1.03 

9 CTAGGG 19 0.97 

7 TAAGGG 6 0.31 

 
TTAAGGG 6 0.31 

 
TTAGGGGGG 5 0.26 

8 ATAGGG 4 0.21 

 
TTAGTG 4 0.21 

 
GTGGGG 3 0.15 

10 TTTGGG 2 0.10 

 
TTAGCG 1 0.05 

 
TGGGGG 1 0.05 

1 CTGGGG 1 0.05 

 
TOTAL 1950 100.00 
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Supplementary Table 14. Biological process gene ontologies enriched in gene list, with validated 

fusion junction, disrupted by inter-chromosomal fusion events. 

DAVID assigned GO Term 
Biological Process 

# genes within 
GO category 

% genes within 
GO category 

p-value 
Benjamini-Hochberg 

corrected p-value 

biological regulation 22 68.8 7.10E-02 9.90E-01 

HTR7, CD8A, CSMD1, POLDIP3, FGGY, FTO, NOX5, RORA, SHQ1, TBC1D15, ADGRL1, DGKB, DMD, 
EVI5, ECE1, KIF26B, NTF3, PTCD3, SLC30A10, TESPA1, VPS13D, ZNF254 

anatomical structure 
development 

13 40.6 7.90E-02 9.80E-01 

CD8A, FTO, ND4, NOX5, RORA, TBC1D15, ADGRL1, DMD, EVI5, ECE1, KIF26B, NTF3, TESPA1 

developmental process 13 40.6 9.50E-02 9.60E-01 

CD8A, FTO, ND4, NOX5, RORA, TBC1D15, ADGRL1, DMD, EVI5, ECE1, KIF26B, NTF3, TESPA1 

regulation of biological 
quality 

11 34.4 2.50E-02 9.80E-01 

HTR7, CSMD1, FGGY, FTO, RORA, ADGRL1, DGKB, DMD, ECE1, SLC3A10 

system development 11 34.4 8.10E-02 9.80E-01 

CD8A, FTO, ND4, NOX5, RORA, ADGRL1, DMD, ECE1, KIF26B, NTF3, TESPA1 

cellular component 
assembly 

9 28.1 3.10E-02 9.90E-01 

ND4, ND5, SHQ1, TBC1D15, ADGRL1, DMD, EVI5, KIF13A, TESPA1 

macromolecule 
localization 

9 28.1 4.60E-02 9.90E-01 

POLDIP3, NOX5, SHQ1, TBC1D15, DMD, EVI5, KIF13A,KIF26B, VPS13D 

establishment of 
localization in cell 

8 25 2.40E-02 9.90E-01 

POLDIP3, TBC1D15, ADGRL1, DMD, EVI5, KIF13A, KIF26B, VPS13D 

regulation of localization 8 25 6.40E-02 1.00E+00 

FTO, NOX5, SHQ1, TBC1D15, DMD, EVI5, NTF3, SLC30A10 

cellular localization 8 25 7.20E-02 9.90E-01 

POLDIP3, TBC1D15, ADGRL1, DMD, EVI5, KIF13A, KIF26B, VPS13D 

anatomical structure 
morphogenesis 

8 25 8.40E-02 9.70E-01 

NOX5, RORA, TBC1D15, DMD, EVI5, ECE1, KIF26B, NTF3 

regulation of multicellular 
organismal process 

8 25 8.80E-02 9.70E-01 

FTO, NOX5, RORA, ADGRL1, DMD, ECE1, NTF3, TESPA1 

regulation of 
developmental process 

7 21.9 8.80E-02 9.70E-01 

FTO, TBC1D15, ADGRL1, DMD, EVI5, NTF3, TESPA1 

cellular macromolecular 
complex assembly 

6 18.8 1.50E-02 1.00E+00 

ND4, ND5, SHQ1, DMD, KIF13A, TESPA1 

intracellular transport 6 18.8 8.20E-02 9.70E-01 

POLDIP3, TBC1D15, EVI5, KIF13A, KIF26B, VPS13D 

homeostatic process 6 18.8 9.10E-02 9.60E-01 

CSMD1, FGGY, FTO, RORA, DMD, SLC30A10 

protein complex subunit 
organization 

6 18.8 9.70E-02 9.60E-01 

ND4, ND5, DMD, KIF13A, PTCD3, TESPA1 
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cellular protein complex 
assembly 

5 15.6 9.70E-03 1.00E+00 

ND4, ND5, DMD, KIF13A 

cell-cell adhesion 5 15.6 9.10E-02 9.60E-01 

CD8A, RORA, ADGRL1, KIF26B, TESPA1 

single organismal cell-cell 
adhesion 

4 12.5 9.10E-02 9.60E-01 

CD8A, RORA, KIF26B, TESPA1 

activation of GTPase 
activity 

3 9.4 6.10E-03 1.00E+00 

TBC1D15, EVI5, NTF3 

calcium-mediated 
signalling 

3 9.4 2.00E-02 1.00E+00 

CD8A, ADGRL1, DMD 

receptor metabolic 
process 

3 9.4 2.10E-02 9.90E-01 

DMD, ECE1, NTF3 

lymphocyte 
differentiation 

3 9.4 3.70E-02 9.90E-01 

CD8A, RORA, TESPA1 

second-messenger-
mediated signalling 

3 9.4 4.70E-02 9.90E-01 

CD8A, ADGRL1, DMD 

response to hypoxia 3 9.4 6.70E-02 1.00E+00 

ND4, ND5, RORA 

vacuolar transport 3 9.4 6.80E-02 9.90E-01 

EVI5, KIF13A, VPS13D 

response to decreased 
oxygen levels 

3 9.4 7.10E-02 9.90E-01 

ND4, ND5, RORA 

mitochondrial electron 
transport, NADH to 
ubiquinone 

2 6.2 7.60E-02 9.90E-01 

ND4, ND5 

regulation of cilium 
assembly 

2 6.2 8.70E-02 9.70E-01 

TBC1D15, EVI5 

mitochondrial respiratory 
chain complex I assembly 
and biogenesis 

2 6.2 9.00E-02 9.70E-01 

ND4, ND5 

regulation of vesicle 
fusion 

2 6.2 9.00E-02 9.70E-01 

TBC1D15 
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Supplementary Table 15. List of human genes with validated fusion junction submitted to DAVID 

and GSEA. 

ENSEMBL ENTREZ Gene Gene Name 

ENSG00000048707 55187 VPS13D vacuolar protein sorting 13 homolog D 

ENSG00000067208 7813 EVI5 ecotropic viral integration site 5 

ENSG00000069667 6095 RORA RAR related orphan receptor A 

ENSG00000072071 22859 LPHN1  
(ADGRL1) 

Latrophilin  
(adhesion G protein-coupled receptor L1)  

ENSG00000088205 8886 DDX18 DEAD-box helicase 18 

ENSG00000100227 84271 POLDIP3 DNA polymerase delta interacting protein 3 

ENSG00000111906 51020 HDDC2 HD domain containing 2 

ENSG00000117298 1889 ECE1 endothelin converting enzyme 1 

ENSG00000121749 64786 TBC1D15 TBC1 domain family member 15 

ENSG00000132300 55037 PTCD3 pentatricopeptide repeat domain 3 

ENSG00000135426 9840 TESPA1 thymocyte expressed, positive selection 
associated 1 

ENSG00000135749 80003 PCNX2 pecanex homolog 2 (Drosophila) 

ENSG00000136267 1607 DGKB diacylglycerol kinase beta 

ENSG00000137177 63971 KIF13A kinesin family member 13A 

ENSG00000140718 79068 FTO FTO, alpha-ketoglutarate dependent 
dioxygenase 

ENSG00000144736 55164 SHQ1 SHQ1, H/ACA ribonucleoprotein assembly factor 

ENSG00000146521 26238 C6orf123 
(LINC01558) 

chromosome 6 open reading frame 123/ long 
intergenic non-protein coding RNA 1558 

ENSG00000148680 3363 HTR7 5-hydroxytryptamine receptor 7 

ENSG00000153563 925 CD8A CD8a molecule 

ENSG00000162849 55083 KIF26B kinesin family member 26B 

ENSG00000165626 222389 BEND7 BEN domain containing 7 

ENSG00000172456 55277 FGGY FGGY carbohydrate kinase domain containing 

ENSG00000183117 64478 CSMD1 CUB and Sushi multiple domains 1 

ENSG00000185652 4908 NTF3 neurotrophin 3 

ENSG00000188859 149297 FAM78B family with sequence similarity 78 member B 

ENSG00000196660 55532 SLC30A10 solute carrier family 30 member 10 

ENSG00000198786 4540 MT-ND5 NADH dehydrogenase, subunit 5 (complex I) 

ENSG00000198886 4538 MT-ND4 NADH dehydrogenase, subunit 4 (complex I) 

ENSG00000198947 1756 DMD dystrophin 

ENSG00000213096 9534 ZNF254 zinc finger protein 254 

ENSG00000255346 79400 NOX5 NADPH oxidase 5 

ENSG00000231473  LINC00441 long intergenic non-protein coding RNA 441 

ENSG00000251680  CTC-575N7.1 novel antisense; non protein coding 

ENSG00000262987  RP11-
520H11.1 

unprocessed pseudogene 
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Supplementary Table 16. GSEA MSigDB gene set collections (Mootha, 2003; Subramanian, 2005). 

MSigDB gene set collections 

H Hallmark gene sets are coherently expressed signatures derived by aggregating many 

MSigDB gene sets to represent well-defined biological states or processes. 

C1 Positional gene sets for each human chromosome and cytogenetic band. 

C2 Curated gene sets from online pathway databases, publications in PubMed, and knowledge 

of domain experts. 

C3 Motif gene sets based on conserved cis-regulatory motifs from a comparative analysis of the 

human, mouse, rat, and dog genomes. 

C4 Computational gene sets defined by mining large collections of cancer-oriented microarray 

data. 

C5 GO gene sets consist of genes annotated by the same GO terms. 

C6 Oncogenic signatures defined directly from microarray gene expression data from cancer 

gene perturbations. 

C7 Immunologic signatures defined directly from microarray gene expression data from 

immunologic studies. 

http://software.broadinstitute.org/cancer/software/gsea/wiki/index.php/MSigDB_collections  

 

 

Supplementary Table 17. Enrichment in GSEA MSig collections from a list of disrupted genes with 

validated fusion junction. 

Collections 
# Overlaps 

Shown 

# Gene Sets in 

Collections 

# Genes in 

Comparison (n) 

# Genes in 

Universe (N) 

C2 1 4729 31 45956 

C3 2 836 31 45956 

C4 5 858 31 45956 

C6 2 189 31 45956 

 

http://software.broadinstitute.org/cancer/software/gsea/wiki/index.php/MSigDB_collections
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Supplementary Table 18. Gene set overlaps found between a list of genes with validated fusion junction disrupted by inter-chromosomal telomere fusions and the 

Molecular Signatures Database (MSigDB v. 5.2) using Gene Set Enrichment Analysis (GSEA v.5.0; Broad Institute). 

MSigDB 

collection 
MSigDB gene set name 

Number of 

genes in gene 

set (K) 

Description of gene set 
Number of gene list genes in 

overlap (k) 
k/K p-value 

False Discovery 

Rate (FDR) FDR q-

value 

C2 

PEPPER_CHRONIC_LYMP

HOCYTIC_LEUKAEMIA_U

P 

33 
Genes up-regulated in CD38+ [GeneID=952] CLL (chronic lymphocytic 

leukaemia) cells. 
3 (HTR7, LPHN1, KIF26B) 0.091 1.5 e-6 7.07 e-3 

C3 V$HNF1_Q6 253 

Genes with promoter regions [-2kb,2kb] around transcription start site 

containing the motif WRGTTAATNATTAACNNN which matches annotation 

for TCF1: transcription factor 1, hepatic; LF-B1, hepatic nuclear factor 

(HNF1), albumin proximal factor 

4 (DMD, RORA, NTF3, HTR7) 0.016 2.51 e-5 1.31 e-2 

C3 V$OCT_C 268 

Genes with promoter regions [-2kb,2kb] around transcription start site 

containing motif CTNATTTGCATAY. Motif does not match any known 

transcription factor 

4 (DMD, LPHN1, KIF13A, 

POLDIP3) 
0.015 3.14 e-5 1.31 e-2 

C4 MODULE_67 230 Genes in the cancer module 67 (Breast and liver cancer). 
4 (HDDC2, NTF3, KIF26B, 

VPS13D) 
0.017 1.73 e-5 1.48 e-2 

C4 MODULE_279 141 Genes in the cancer module 279 (Breast cancer). 3 (DDX18, DMD, KIF13A) 0.021 1.19 e-4 4.63 e-2 

C4 MODULE_334 166 Genes in the cancer module 334 (Breast cancer). 3 (DDX18, DMD, KIF13A) 0.018 1.93 e-4 4.63 e-2 

C4 GCM_CSNK1D 32 Neighbourhood of CSNK1D 2 (EVI5, POLDIP3) 0.062 2.16 e-4 4.63 e-2 

C4 GCM_CSNK1A1 36 Neighbourhood of CSNK1A1 2 (TBC1D15, POLDIP3) 0.055 2.73 e-4 4.69 e-2 

C6 
KRAS.BREAST_UP.V1_D

N 
145 

Genes down-regulated in epithelial breast cancer cell lines over-expressing 

an oncogenic form of KRAS [Gene ID=3845] gene. 
3 (NTF3, FOX5, FGGY) 0.021 1.3 e-4 2.45 e-2 

C6 PRC2_EED_UP.V1_UP 194 
Genes up-regulated in TIG3 cells (fibroblasts) upon knockdown of EED 

[Gene ID=8726] gene. 
3 (EVI5, DMD, SLC30A10) 0.015 3.05 e-4 2.88 e-2 

http://software.broadinstitute.org/gsea/msigdb/geneset_page.jsp?geneSetName=PEPPER_CHRONIC_LYMPHOCYTIC_LEUKEMIA_UP
http://software.broadinstitute.org/gsea/msigdb/geneset_page.jsp?geneSetName=PEPPER_CHRONIC_LYMPHOCYTIC_LEUKEMIA_UP
http://software.broadinstitute.org/gsea/msigdb/geneset_page.jsp?geneSetName=PEPPER_CHRONIC_LYMPHOCYTIC_LEUKEMIA_UP
http://software.broadinstitute.org/gsea/msigdb/geneset_page.jsp?geneSetName=V$HNF1_Q6
http://software.broadinstitute.org/gsea/msigdb/geneset_page.jsp?geneSetName=V$OCT_C
http://software.broadinstitute.org/gsea/msigdb/geneset_page.jsp?geneSetName=MODULE_67
http://software.broadinstitute.org/gsea/msigdb/geneset_page.jsp?geneSetName=MODULE_279
http://software.broadinstitute.org/gsea/msigdb/geneset_page.jsp?geneSetName=MODULE_334
http://software.broadinstitute.org/gsea/msigdb/geneset_page.jsp?geneSetName=GCM_CSNK1D
http://software.broadinstitute.org/gsea/msigdb/geneset_page.jsp?geneSetName=GCM_CSNK1A1
http://software.broadinstitute.org/gsea/msigdb/geneset_page.jsp?geneSetName=KRAS.BREAST_UP.V1_DN
http://software.broadinstitute.org/gsea/msigdb/geneset_page.jsp?geneSetName=KRAS.BREAST_UP.V1_DN
http://software.broadinstitute.org/gsea/msigdb/geneset_page.jsp?geneSetName=PRC2_EED_UP.V1_UP
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Supplementary Table 19. Summary of impact of clonal and subclonal SNVs detected in DB17 tumour sample. 

ANNOTATION IMPACT 
CLONAL  

CLL (N) 

CLONAL  

CLL (%) 

SUBCLONAL  

CLL (N) 

SUBCLONAL  

CLL (%) 

TOTAL 

CLL (N) 

TOTAL 

CLL (%) 

CONTROL 

T CELL (N) 

CONTROL 

T CELL (%) 

stop gained HIGH 1 0.03 0 0.00 1 0.03 1 0.01 

sequence feature MODERATE 3 0.08 0 0.00 3 0.08 1 0.01 

missense variant & splice region variant MODERATE 0 0.00 0 0.00 1 0.03 1 0.01 

missense variant MODERATE 10 0.27 0 0.00 10 0.26 1 0.01 

intergenic region MODIFIER 1660 45.42 49 29.70 1709 44.73 105 1.41 

intron variant MODIFIER 758 20.74 45 27.27 803 21.02 72 0.96 

upstream gene variant MODIFIER 286 7.82 13 7.88 299 7.83 46 0.62 

downstream gene variant MODIFIER 204 5.58 28 16.97 232 6.07 26 0.35 

3′ UTR variant MODIFIER 24 0.66 0 0.00 24 0.63 2 0.03 

non coding exon variant MODIFIER 4 0.11 1 0.61 5 0.13 6 0.08 

TF binding site MODIFIER 1 0.03 0 0.00 1 0.03 0 0.00 

5′ UTR variant MODIFIER 6 0.16 1 0.61 7 0.18 1 0.01 

sequence feature LOW 475 13.00 26 15.76 501 13.11 45 0.60 

synonymous variant LOW 3 0.08 2 1.21 5 0.13 0 0.00 

5′ UTR premature start codon gain variant LOW 1 0.03 0 0.00 1 0.03 0 0.00 

splice region variant LOW 1 0.03 0 0.00 1 0.03 0 0.00 

UNNANOTATED UNKNOWN 4 0.11 0 0.00 4 0.10 2 0.03 

not associated with disease NONE (dbSNP) 214 5.85 0 0.00 214 5.60 7160 95.86 

TOTAL  3655 100.0 165 100.0 3821 100.0 7469 100.00 

*N= number of events 
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Supplementary Table 20. High and moderate impact mutations in tumour CLL-B cells (DB30). 

Impact Annotation Position R A Gene Gene_ID Prot_ID Prot_Name aa change Impact* 

HIGH stop_gained chr6:111695282 G A REV3L ENSG00000009413 O60673 
DNA polymerase zeta catalytic 

subunit 
p.Gln1426* -/- 

MODERATE missense_variant chr12:7636230 G A CD163 ENSG00000177575 Q86VB7 
Scavenger receptor cysteine-

rich type 1 protein M130 
p.Arg941Cys 1/1 

MODERATE missense_variant chr16:3808027 T G CREBBP ENSG00000005339 Q92793 CREB-binding protein p.Asn1131Thr 0/1 

MODERATE missense_variant chr17:7578395 G A TP53 ENSG00000141510 P04637 P04637 p.His179Tyr 1/1 Ϯ 

MODERATE missense_variant chr7:82584442 T C PCLO ENSG00000186472 Q9Y6V0 Protein piccolo p.Lys1943Glu 0/0 

MODERATE missense_variant chr7:90894846 G T FZD1 ENSG00000157240 Q9UP38 Frizzled-1 p.Lys217Asn 0/0 

MODERATE Missense.variant&splice.region.variant chrX:114881991 A G PLS3 ENSG00000102024 P13797 Plastin-3 p.Lys545Glu 1/0 

MODERATE missense_variant chr14:107170035 A C 
IGHV1-

69 
ENSG00000211973 P01742 

Immunoglobulin heavy 

variable 1-69 
p.Phe83Val 0/- 

MODERATE missense_variant chrX:129264081 G C AIFM1 ENSG00000156709 O95831 
Apoptosis-inducing factor 1, 

mitochondrial 
p.Pro545Arg 1/0 

MODERATE missense_variant chr12:44148838 G T PUS7L ENSG00000129317 Q9H0K6 
Pseudouridylate synthase 7 

homolog-like protein 
p.Pro71Thr 0/0 Ϯ 

MODERATE missense_variant chr8:16043711 A G MSR1 ENSG00000038945 P21757 
Macrophage scavenger 

receptor types I and II 
p.Tyr3His 0/0 

MODERATE missense_variant chr6:14118276 T C CD83 ENSG00000112149 Q01151 CD83 antigen p.Tyr45His 1/1 

MODERATE sequence_feature chr13:36885636 G T SPG20 ENSG00000133104 Q8N0X7 Spartin - -/- 

MODERATE sequence_feature chr5:42644549 T A GHR ENSG00000112964 P10912 Growth hormone receptor - -/- 

MODERATE sequence_feature chr6:51683780 T A PKHD1 ENSG00000170927 P08F94 Fibrocystin - -/- 

*Impact from SIFT and PROVEAN: not applicable/not found (-), neutral/tolerated (0), damaging/deleterious (1), not novel mutation (Ϯ).  
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Supplementary Table 21. List of genes with subclonal mutations. 

Ensembl ID Entrez ID Gene Name 

ENSG00000175054 545  ATR serine/threonine kinase(ATR) 

ENSG00000265612 100616374  microRNA 4539(MIR4539) 

ENSG00000074527 59277  netrin 4(NTN4) 

ENSG00000183117 64478  CUB and Sushi multiple domains 1(CSMD1) 

ENSG00000229656 101929475  uncharacterized LOC101929475(LOC101929475) 

ENSG00000174469 26047  contactin associated protein-like 2(CNTNAP2) 

ENSG00000122584 30010  neurexophilin 1(NXPH1) 

ENSG00000170959 100506627  doublecortin domain containing 5(DCDC5) 

ENSG00000240230 90639  COX19, cytochrome c oxidase assembly factor(COX19) 

ENSG00000109452 8821  inositol polyphosphate-4-phosphatase type II B(INPP4B) 

ENSG00000185274 64409  Williams-Beuren syndrome chromosome region 17(WBSCR17) 

ENSG00000143995 4211  Meis homeobox 1(MEIS1) 

ENSG00000253363 105379374  uncharacterized LOC105379374(LOC105379374) 

ENSG00000136267 1607  diacylglycerol kinase beta(DGKB) 

ENSG00000143951 51057  WD repeat containing planar cell polarity effector(WDPCP) 

ENSG00000141905 4782  nuclear factor I C(NFIC) 

ENSG00000110931 10645  calcium/calmodulin dependent protein kinase kinase 2(CAMKK2) 

ENSG00000169439 6383  syndecan 2(SDC2) 

ENSG00000169891 9185  RALBP1 associated Eps domain containing 2(REPS2) 

ENSG00000151025 57512  G protein-coupled receptor 158(GPR158) 

ENSG00000249464 285419  long intergenic non-protein coding RNA 1091(LINC01091) 

ENSG00000196597 158431  zinc finger protein 782(ZNF782) 

ENSG00000227906 100131208  SNAP25 antisense RNA 1(SNAP25-AS1) 

ENSG00000004534 10180  RNA binding motif protein 6(RBM6) 

ENSG00000171045 203062  t-SNARE domain containing 1(TSNARE1) 

ENSG00000219481 55672  neuroblastoma breakpoint family member 1(NBPF1) 

ENSG00000161551 84765  zinc finger protein 577(ZNF577) 

ENSG00000261609 100616150  microRNA 4720(MIR4720) 

ENSG00000152495 814  calcium/calmodulin dependent protein kinase IV(CAMK4) 

http://www.ensembl.org/Search/Results?species=all;q=545
http://www.ensembl.org/Search/Results?species=all;q=100616374
http://www.ensembl.org/Search/Results?species=all;q=59277
http://www.ensembl.org/Search/Results?species=all;q=64478
http://www.ensembl.org/Search/Results?species=all;q=101929475
http://www.ensembl.org/Search/Results?species=all;q=26047
http://www.ensembl.org/Search/Results?species=all;q=30010
http://www.ensembl.org/Search/Results?species=all;q=100506627
http://www.ensembl.org/Search/Results?species=all;q=90639
http://www.ensembl.org/Search/Results?species=all;q=8821
http://www.ensembl.org/Search/Results?species=all;q=64409
http://www.ensembl.org/Search/Results?species=all;q=4211
http://www.ensembl.org/Search/Results?species=all;q=105379374
http://www.ensembl.org/Search/Results?species=all;q=1607
http://www.ensembl.org/Search/Results?species=all;q=51057
http://www.ensembl.org/Search/Results?species=all;q=4782
http://www.ensembl.org/Search/Results?species=all;q=10645
http://www.ensembl.org/Search/Results?species=all;q=6383
http://www.ensembl.org/Search/Results?species=all;q=9185
http://www.ensembl.org/Search/Results?species=all;q=57512
http://www.ensembl.org/Search/Results?species=all;q=285419
http://www.ensembl.org/Search/Results?species=all;q=158431
http://www.ensembl.org/Search/Results?species=all;q=100131208
http://www.ensembl.org/Search/Results?species=all;q=10180
http://www.ensembl.org/Search/Results?species=all;q=203062
http://www.ensembl.org/Search/Results?species=all;q=55672
http://www.ensembl.org/Search/Results?species=all;q=84765
http://www.ensembl.org/Search/Results?species=all;q=100616150
http://www.ensembl.org/Search/Results?species=all;q=814
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ENSG00000150471 23284  adhesion G protein-coupled receptor L3(ADGRL3) 

ENSG00000181090 79813  euchromatic histone lysine methyltransferase 1(EHMT1) 

ENSG00000149972 53942  contactin 5(CNTN5) 

ENSG00000142207 9875  URB1 ribosome biogenesis 1 homolog (S. cerevisiae)(URB1) 

ENSG00000066855 9650  mitochondrial fission regulator 1(MTFR1) 

ENSG00000260792 101929634  uncharacterized LOC101929634(LOC101929634) 

ENSG00000154227 204219  ceramide synthase 3(CERS3) 

ENSG00000165675 10495  ecto-NOX disulfide-thiol exchanger 2(ENOX2) 

ENSG00000159079 56683  chromosome 21 open reading frame 59(C21orf59) 

ENSG00000204174 5540  neuropeptide Y receptor Y4(NPY4R) 

ENSG00000151322 64067  neuronal PAS domain protein 3(NPAS3) 

ENSG00000165731 5979  ret proto-oncogene(RET) 

ENSG00000003096 90293  kelch like family member 13(KLHL13) 

ENSG00000013583 50865  heme binding protein 1(HEBP1) 

ENSG00000241839 80301  pleckstrin homology domain containing O2(PLEKHO2) 

ENSG00000164904 501  aldehyde dehydrogenase 7 family member A1(ALDH7A1) 

ENSG00000219545 729852  UBAP1-MVB12-associated (UMA) domain containing 1(UMAD1) 

ENSG00000241697 8577  

transmembrane protein with EGF like and two follistatin like 
domains 1(TMEFF1) 

ENSG00000157764 673  B-Raf proto-oncogene, serine/threonine kinase(BRAF) 

ENSG00000168675 753  

low density lipoprotein receptor class A domain containing 
4(LDLRAD4) 

ENSG00000168743 255743  nephronectin(NPNT) 

ENSG00000261231 101927132  uncharacterized LOC101927132(LOC101927132) 

ENSG00000139793 10150  muscleblind like splicing regulator 2(MBNL2) 

ENSG00000176299 441670  olfactory receptor family 4 subfamily M member 1(OR4M1) 

ENSG00000258779 100506172  long intergenic non-protein coding RNA 1568(LINC01568) 

ENSG00000139174 144165  prickle planar cell polarity protein 1(PRICKLE1) 

ENSG00000133106 94240  epithelial stromal interaction 1(EPSTI1) 

ENSG00000144455 285362  sulfatase modifying factor 1(SUMF1) 

ENSG00000171502 255631  collagen type XXIV alpha 1 chain(COL24A1) 

ENSG00000183631 100130613  proline rich 32(PRR32) 

ENSG00000221641 100302233  microRNA 1268a(MIR1268A) 

http://www.ensembl.org/Search/Results?species=all;q=23284
http://www.ensembl.org/Search/Results?species=all;q=79813
http://www.ensembl.org/Search/Results?species=all;q=53942
http://www.ensembl.org/Search/Results?species=all;q=9875
http://www.ensembl.org/Search/Results?species=all;q=9650
http://www.ensembl.org/Search/Results?species=all;q=101929634
http://www.ensembl.org/Search/Results?species=all;q=204219
http://www.ensembl.org/Search/Results?species=all;q=10495
http://www.ensembl.org/Search/Results?species=all;q=56683
http://www.ensembl.org/Search/Results?species=all;q=5540
http://www.ensembl.org/Search/Results?species=all;q=64067
http://www.ensembl.org/Search/Results?species=all;q=5979
http://www.ensembl.org/Search/Results?species=all;q=90293
http://www.ensembl.org/Search/Results?species=all;q=50865
http://www.ensembl.org/Search/Results?species=all;q=80301
http://www.ensembl.org/Search/Results?species=all;q=501
http://www.ensembl.org/Search/Results?species=all;q=729852
http://www.ensembl.org/Search/Results?species=all;q=8577
http://www.ensembl.org/Search/Results?species=all;q=673
http://www.ensembl.org/Search/Results?species=all;q=753
http://www.ensembl.org/Search/Results?species=all;q=255743
http://www.ensembl.org/Search/Results?species=all;q=101927132
http://www.ensembl.org/Search/Results?species=all;q=10150
http://www.ensembl.org/Search/Results?species=all;q=441670
http://www.ensembl.org/Search/Results?species=all;q=100506172
http://www.ensembl.org/Search/Results?species=all;q=144165
http://www.ensembl.org/Search/Results?species=all;q=94240
http://www.ensembl.org/Search/Results?species=all;q=285362
http://www.ensembl.org/Search/Results?species=all;q=255631
http://www.ensembl.org/Search/Results?species=all;q=100130613
http://www.ensembl.org/Search/Results?species=all;q=100302233
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ENSG00000198198 23334  seizure threshold 2 homolog (mouse)(SZT2) 

ENSG00000140443 3480  insulin like growth factor 1 receptor(IGF1R) 

ENSG00000065150 3843  importin 5(IPO5) 

ENSG00000187391 9863  

membrane associated guanylate kinase, WW and PDZ domain 
containing 2(MAGI2) 

ENSG00000103489 64131  xylosyltransferase 1(XYLT1) 

ENSG00000230487 114796  PSMG3 antisense RNA 1 (head to head)(PSMG3-AS1) 

ENSG00000169933 9758  FERM and PDZ domain containing 4(FRMPD4) 

ENSG00000104093 23312  Dmx like 2(DMXL2) 

ENSG00000010438 5646  protease, serine 3(PRSS3) 

ENSG00000137642 6653  sortilin related receptor 1(SORL1) 

ENSG00000156650 23522  lysine acetyltransferase 6B(KAT6B) 

ENSG00000007968 1870  E2F transcription factor 2(E2F2) 

ENSG00000072133 27330  ribosomal protein S6 kinase A6(RPS6KA6) 

ENSG00000165304 9833  maternal embryonic leucine zipper kinase(MELK) 

ENSG00000107249 169792  GLIS family zinc finger 3(GLIS3) 

ENSG00000198785 116443  glutamate ionotropic receptor NMDA type subunit 3A(GRIN3A) 

ENSG00000162670 339479  BMP/retinoic acid inducible neural specific 3(BRINP3) 

ENSG00000174738 9975  nuclear receptor subfamily 1 group D member 2(NR1D2) 

ENSG00000135298 577  adhesion G protein-coupled receptor B3(ADGRB3) 

 

Supplementary Table 22. Enrichment in gene ontology biological process from DB30 subclonal 

mutations. 

DAVID assigned GO Term 
Biological Process 

# genes within 
GO category 

% genes within 
GO category 

P-value 
Benjamini-Hochberg 

corrected P-value 

multicellular organismal 
process 

34 43 2.70E-02 7.60E-01 

single-multicellular 
organism process  

30 38 2.60E-02 7.60E-01 

single organism signalling  30 38 4.70E-02 8.10E-01 

ATR, BRAF, E2F2, GPR158, REPS2, WDPCP, ADGRB3, ADGRL3, CAMK4, CAMKK2, CNTNAP2, DGKB, 
DCDC5, EHMT1, GRIN3A, INPP4B, IGF1R, LDLRAD4, MELK, MAGI2, NPNT, NTN4, NPY4R, NR1D2, 
OR4M1, PRICKLE1, RET, RPS6KA6, SORL1, SDC2. 

developmental process 29 36.7 2.40E-02 7.70E-01 

anatomical structure 
development 

28 35.4 3.00E-02 7.80E-01 

single-organism 
developmental process 

28 35.4 3.00E-02 7.70E-01 

http://www.ensembl.org/Search/Results?species=all;q=23334
http://www.ensembl.org/Search/Results?species=all;q=3480
http://www.ensembl.org/Search/Results?species=all;q=3843
http://www.ensembl.org/Search/Results?species=all;q=9863
http://www.ensembl.org/Search/Results?species=all;q=64131
http://www.ensembl.org/Search/Results?species=all;q=114796
http://www.ensembl.org/Search/Results?species=all;q=9758
http://www.ensembl.org/Search/Results?species=all;q=23312
http://www.ensembl.org/Search/Results?species=all;q=5646
http://www.ensembl.org/Search/Results?species=all;q=6653
http://www.ensembl.org/Search/Results?species=all;q=23522
http://www.ensembl.org/Search/Results?species=all;q=1870
http://www.ensembl.org/Search/Results?species=all;q=27330
http://www.ensembl.org/Search/Results?species=all;q=9833
http://www.ensembl.org/Search/Results?species=all;q=169792
http://www.ensembl.org/Search/Results?species=all;q=116443
http://www.ensembl.org/Search/Results?species=all;q=339479
http://www.ensembl.org/Search/Results?species=all;q=9975
http://www.ensembl.org/Search/Results?species=all;q=577
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0032501
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0032501
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0044707
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0044707
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0044700
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0032502
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0048856
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0048856
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0044767
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0044767
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multicellular organism 
development 

27 34.2 1.30E-02 7.50E-01 

system development  24 30.4 2.00E-02 7.70E-01 

cellular developmental 
process 

23 29.1 1.70E-02 7.70E-01 

cell differentiation  21 26.6 2.60E-02 7.60E-01 

BRAF, BRINP3, MEIS1, WDPCP, ADGRB3, ADGRL3, CAMK4, CERS3, COL24A1, CNTNAP2, GRIN3A, 
LDLRAD4, MAGI2, NPNT, NTN4, NR1D2, PRICKLE1, RET, SZT2, SORL1, SDC2. 

regulation of multicellular 
organismal process 

17 21.5 2.20E-02 7.70E-01 

regulation of multicellular 
organismal development  

16 20.3 8.40E-04 4.90E-01 

regulation of 
developmental process 

16 20.3 6.80E-03 7.90E-01 

nervous system 
development 

16 20.3 8.10E-03 7.30E-01 

generation of neurons 14 17.7 8.40E-04 3.60E-01 

neurogenesis  14 17.7 1.50E-03 4.60E-01 

cell development  14 17.7 2.00E-02 7.50E-01 

regulation of cell 
differentiation  

13 16.5 7.60E-03 7.50E-01 

neuron differentiation  12 15.2 3.70E-03 7.00E-01 

positive regulation of 
macromolecule 
biosynthetic process  

12 15.2 2.50E-02 7.60E-01 

positive regulation of 
nucleobase-containing 
compound metabolic 
process 

12 15.2 3.10E-02 7.80E-01 

positive regulation of 
cellular biosynthetic 
process 

12 15.2 4.10E-02 8.10E-01 

ATR, GLIS3, MEIS1, CAMK4, CAMKK2, IGF1R, KAT6B, NPNT, NPAS3, NR1D2, RET. 

positive regulation of 
biosynthetic process  

12 15.2 4.50E-02 8.20E-01 

positive regulation of 
nitrogen compound 
metabolic process 

12 15.2 4.70E-02 8.20E-01 

cell projection 
organization  

11 13.9 1.60E-02 7.70E-01 

locomotion 11 13.9 4.30E-02 8.20E-01 

neuron development  10 12.7 6.90E-03 7.50E-01 

cell migration  10 12.7 2.40E-02 7.60E-01 

BRAF, WDPCP, ADGRL3, IGF1R, LDLRAD4, MAGI2, PRSS3, RET, SORL1, SDC2. 

cell motility  10 12.7 4.50E-02 8.20E-01 

localization of cell  10 12.7 4.50E-02 8.20E-01 

http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0007275
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0007275
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0048731
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0048869
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0048869
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0030154
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0051239
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0051239
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:2000026
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:2000026
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0050793
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0050793
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0007399
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0007399
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0048699
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0022008
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0048468
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0045595
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0045595
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0030182
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0010557
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0010557
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0010557
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0045935
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0045935
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0045935
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0045935
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0031328
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0031328
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0031328
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0009891
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0009891
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0051173
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0051173
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0051173
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0030030
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0030030
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0040011
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0048666
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0016477
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0048870
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0051674
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positive regulation of 
nucleic acid-templated 
transcription 

10 12.7 4.90E-02 8.10E-01 

positive regulation of 
transcription, DNA-
templated  

10 12.7 4.90E-02 8.10E-01 

GLIS3, MEIS1, CAMK4, CAMKK2, KAT6B, NPNT, NPAS3, NFIC, NR1D2, RET. 

regulation of nervous 
system development  

9 11.4 5.80E-03 7.90E-01 

neuron projection 
development 

9 11.4 8.30E-03 7.00E-01 

regulation of cell 
development 

9 11.4 1.00E-02 7.30E-01 

regulation of anatomical 
structure morphogenesis  

9 11.4 3.30E-02 7.80E-01 

regulation of 
neurogenesis  

8 10.1 1.10E-02 7.00E-01 

cell morphogenesis 
involved in 
differentiation  

8 10.1 1.70E-02 7.40E-01 

behaviour  7 8.9 1.40E-02 7.60E-01 

regulation of neuron 
differentiation  

7 8.9 1.50E-02 7.50E-01 

regulation of cell 
migration  

7 8.9 3.50E-02 7.90E-01 

regulation of cell motility  7 8.9 4.70E-02 8.10E-01 

positive regulation of 
nervous system 
development 

6 7.6 2.20E-02 7.60E-01 

morphogenesis of an 
epithelium  

6 7.6 3.80E-02 8.00E-01 

protein 
autophosphorylation  

5 6.3 8.90E-03 7.00E-01 

ATR, CAMK4, CAMKK2, IGF1R, MELK. 

regulation of cell 
morphogenesis involved 
in differentiation  

5 6.3 3.30E-02 7.70E-01 

neuron maturation  4 5.1 3.60E-04 4.40E-01 

cell maturation  4 5.1 1.70E-02 7.60E-01 

learning or memory 4 5.1 4.40E-02 8.20E-01 

synapse organization  4 5.1 5.00E-02 8.10E-01 

neuron remodelling  2 2.5 3.50E-02 7.80E-01 

 

  

http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:1903508
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:1903508
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:1903508
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0045893
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0045893
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0045893
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0051960
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0051960
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0031175
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0031175
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0060284
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0060284
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0022603
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0022603
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0050767
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0050767
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0000904
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0000904
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0000904
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0007610
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0045664
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0045664
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0030334
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0030334
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:2000145
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0051962
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0051962
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0051962
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0002009
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0002009
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0046777
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0046777
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0010769
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0010769
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0010769
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0042551
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0048469
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0007611
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0050808
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0016322
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Supplementary Table 23. Clonal mutations are enriched in the MAPK cascade. 

DAVID assigned GO Term 
Biological Process 

# genes within 
GO category 

% genes within 
GO category 

P-value 
Benjamini-Hochberg 
corrected P-value 

MAPK cascade 52 5.5 5.30E-03 1.3E-01 

ASH1 like histone lysine methyltransferase (ASH1L), B-cell scaffold protein with ankyrin repeats 1 
(BANK1), BMP binding endothelial regulator (BMPER), CNKSR family member 3 (CNKSR3), EPH 
receptor A4 (EPHA4), EPH receptor A7 (EPHA7), LIM domain only 3 (LMO3), NIMA related kinase 10 
(NEK10), RAS guanyl releasing protein 3 (RASGRP3), RAS protein activator like 2 (RASAL2), Ras like 
without CAAX 2 (RIT2), SAM and SH3 domain containing 1 (SASH1), SHC adaptor protein 3 (SHC3), 
TGF-beta activated kinase 1/MAP3K7 binding protein 3 (TAB3), TNF receptor associated factor 2 
(TRAF2), TNF receptor superfamily member 11a (TNFRSF11A), TNFAIP3 interacting protein 1(TNIP1), 
TRAF2 and NCK interacting kinase (TNIK), adrenoceptor alpha 1A (ADRA1A), angiopoietin 1 
(ANGPT1), docking protein 5 (DOK5), dystrobrevin binding protein 1 (DTNBP1), erb-b2 receptor 
tyrosine kinase 4 (ERBB4), fibroblast growth factor 13 (FGF13), fibroblast growth factor 7 (FGF7), 
fibroblast growth factor receptor 2 (FGFR2), follicle stimulating hormone receptor (FSHR), forkhead 
box O1 (FOXO1), galectin 9 (LGALS9), glutamate ionotropic receptor NMDA type subunit 2A 
(GRIN2A), glutamate ionotropic receptor kainate type subunit 2 (GRIK2), growth hormone receptor 
(GHR), hepatocyte growth factor (HGF), insulin like growth factor 1 receptor (IGF1R), insulin 
receptor (INSR), interleukin 11 (IL11), mitogen-activated protein kinase 13 (MAP3K13), mitogen-
activated protein kinase 7 (MAP3K7), neuregulin 1(NRG1), neuregulin 4 (NRG4), parkin RBR E3 
ubiquitin protein ligase (PARK2), phospholipase C beta 1 (PLCB1), platelet derived growth factor C 
(PDGFC), polycystic kidney and hepatic disease 1 (autosomal recessive) (PKHD1), proteasome 26S 
subunit, ATPase 6 (PSMC6), proteasome subunit beta 1 (PSMB1),protein kinase C alpha (PRKCA), 
protein tyrosine phosphatase, non-receptor type 2 (PTPN2), protein tyrosine phosphatase, receptor 
type J (PTPRJ), receptor tyrosine kinase like orphan receptor 2 (ROR2), spectrin alpha, erythrocytic 1 
(SPTA1), sprouty related EVH1 domain containing 2 (SPRED2). 

 

 

Supplementary Table 24. 7 mutations disrupting POT1-TPP1 binding. 

# bp aa Location hg19 (+) strand (-) strand primer 

1 G-

>T/C 

L343F chr7:124482995 CTCTCCAAATA TATTTGGAGAG POT3B 

2 C->A P446Q chr7:124481059 AAAGCGGGAGA TCTCCCGCTTT POT3A 

3 A->T K465* chr7:124475445 GAGTTTGCAAA TTTGCAAACTC POT2B 

4 C->T P475L chr7:124475414 TCACAGGAATT AATTCCTGTGA POT2A 

5 G->C R477T chr7:124475408 CAGATCTCACA TGTGAGATCTG POT2A 

6 A->T I535F chr7:124467351 TACAATACCCA TGGGTATTGTA POT1B 

7 T->G C591W chr7:124465325 GGAGGACAAAA TTTTGTCCTCC POT1A 

List of 7 mutations predicted to disrupt the POT1-TPP1 interaction. Mutation in the cDNA, change of 

aminoacid, chromosomal location and primers to sequence the mutation are indicated.  
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