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ABSTRACT   

 

Alzheimer's disease (AD) involves dementia conceivably arising from integrated inflammatory 

processes, amyloidogenesis and neuronal apoptosis. Glutamate can also cause neuronal death via 

excitotoxicity and this is similarly implicated in some neurological diseases. The aim was to 

examine treatment with in vitro generated pro-inflammatory protein S100A9 aggregate species 

alone or with glutamate antibodies (Glu-Abs) on Morris water maze (MWM) spatial learning and 

memory performance in 12-month old mice. Amino acid and monoamine cerebral neurotransmitter 

metabolic changes were concurrently monitored. Initially, S100A9 fibrils were morphologically 

verified by atomic force microscopy and Thioflavin T assay. They were then administered 

intranasally alone or with Glu-Abs for 14 days followed by a 5-day MWM protocol before 

hippocampal and prefrontal cortical neurochemical analysis. S100A9 aggregates evoked spatial 

amnesia which correlated with disrupted glutamate and dopaminergic neurochemistry. 

Hippocampal glutamate release, elevation of DOPAC and HVA, as well as DOPAC/DA and 

HVA/DA ratios were subsequently reduced by Glu-Abs which simultaneously prevented the 

spatial memory deficit. The present outcomes emphasized the pathogenic nature of S100A9 

fibrillar aggregates in causing spatial memory amnesia associated with enhanced hippocampal 

glutamate release and DA-ergic disruption in the aging brain. This finding might be exploited 

during dementia management through a neuroprotective strategy. 
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INTRODUCTION 

Spatial memory deficits have been suggested as specific pathophysiological clinical indicators of 

Alzheimer's disease (AD) dementia
1
 and also as markers in AD animal models

2
. However, the 

altered molecular mechanisms of AD-like memory impairment remain inconclusive. It has been 

reported that in AD neurodegenerative conditions, there are contributory processes such as 

neuroinflammation, oxidative stress and amyloidogenesis which incite memory deficits
3
. The 

amyloid concept primarily assumes that proteins which undergo aberrant physiological folding, 

generate oligomeric and fibrillar species capable of inducing a decline in synaptic plasticity, 

programmed cell death (apoptosis) and perturbation of neuronal networks thereby instigating 

cognitive dysfunction
4
. Recent evidence indicates that the "amyloid cascade hypothesis" alone 

cannot completely account for the neuronal damage observed in AD, as demonstrated both by 

autopsy and imaging studies
5
. Furthermore, neuroinflammation is implicated in this 

neurodegenerative disease, although debate is ongoing concerning its precise role
6
. Whilst the 

memory system is affected during neurodegeneration, a growing number of studies have focused 

on the early identification of integrative molecular processes underlying cognitive insufficiency
1
. 

Thus, we have investigated a combination of neuroinflammatory signals and misfolded protein 

assemblies with respect to altered neurochemistry
7
 which may lead to memory failure in AD. 

Regarding the amyloid-neuroinflammatory cascade, there is one candidate, the pro-inflammatory 

calcium binding protein S100A9, which has been reported to be elevated in several inflammatory 

conditions, including AD
5,8

. Moreover, due to its inherent amyloidogenicity, S100A9 has a 

propensity to amyloid plaque formation along with β amyloid (Aβ) peptide. Accordingly, an 

increased Aβ aggregate load in AD, accompanied by S100A9 inclusion, substantiates a potential 

link between amyloidogenesis and inflammation-related neurodegeneration. In vitro, S100A9 

forms neurotoxic linear and annular amyloid structures resembling Aβ protofilaments
9
. Thus, 

S100A9 amyloid cytotoxicity and native S100A9 pro-inflammatory signaling may be exacerbated 

by its co-aggregation with Aβ. In addition, S100A9 has been observed in both hippocampal and 

cortical neurons in AD dementia and non-demented aging
5
. Recently, we have described outcomes 

of the dual pro-inflammatory and amyloidogenic properties of S100A9 in the passive avoidance 

memory task conducted alongside neurochemical assays in cortical and hippocampal structures in 

aged mice. In consequence, in vitro generated S100A9 oligomers and fibrils both displayed 

amnesic activity which correlated with disrupted prefrontal cortical and hippocampal dopaminergic 

adaptations. Additionally, it was confirmed that intranasal administration of S100A9 aggregates 

was devoid of any anxiety-like behavioral upshot or any motor deficits in an open-field 

environment
7
. These results provide insight into a novel pathogenetic mechanism underlying 
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amnesia in a fear-aggravated memory task based on amyloidogenesis of a pro-inflammatory factor 

in turn leading to disrupted brain neurochemistry. The data further suggests that amyloid species of 

S100A9 create deleterious effects principally on the dopaminergic system and this finding might 

be exploited during dementia management through a neuroprotective strategy.  

While the amyloid cascade and its involvement in amnesia is under extensive study, the activation 

of specific neurochemical circuits still needs scrutiny. As long ago as 1984, the concentrations of 

free neurotransmitter amino acids (taurine, glutamate and GABA) were reported to be lowered in 

post mortem temporal cortex from sufferers of Alzheimer-type dementia
10

. However, it has also 

been reported that excessive release of glutamate is a key contributor to neuronal damage in 

several neurological diseases
11

. Glutamate is a ubiquitous excitatory neurotransmitter in the 

mammalian CNS and it plays an important role both in physiological and pathological brain 

function
12

. It has also been reported that glutamate can regulate molecular and cellular processes 

such as neurogenesis, neurite outgrowth, synaptogenesis and apoptosis
13

. Moreover, it has been 

established that some of the most important brain functions, including learning and memory 

depend on the release of synaptic glutamate
12

. Elevated extracellular glutamate levels can cause 

neuronal death and this phenomenon, termed “excitotoxicity”, is involved in many neurological 

diseases where there is disruption of CNS normal activity
14

.  

Glutamate neurotoxicity arises from glutamate binding to NMDA receptors (NMDARs) and other 

receptor subtypes and this process depends on neuronal Ca
2+

 overloading
15

. Additionally, essential 

molecules participating in NMDAR signalling at different subcellular locations have been 

proposed as crucial in activating pathways leading to neuroprotection versus neurodestruction
12

. It 

has also been established that glutamate is not only dependent on calcium homeostasis, but also on 

mitochondrial function
16

. Characteristically, in AD-like neurodegeneration, Aβ compromises 

neurons in the magnocellular nucleus basalis via an excitotoxic pathway entailing astroglial 

depolarization, extracellular glutamate accumulation, NMDA receptor activation and a subsequent 

intracellular Ca
2+

 overload leading to cell death
17

. Deficits in glutamate neurotransmission and 

mitochondrial function have been detected in the frontal cortex and hippocampus of aged 3×Tg-

Alzheimer's disease mice and it was suggested that impairment of mitochondrial bioenergetics 

might sustain failure in energy-requiring glutamatergic transmission
16

. 

Mechanisms of brain cell protection against glutamate toxicity are notionally useful against 

neurodegenerative conditions and immunoprotection is one practical approach. Previously, we 

unveiled antiamnestic efficacy of glutamate antibodies (Glu-Abs) following administration of the 

neurotoxic amyloidogenic fragment-Aβ25-35 into the nucleus basalis of Meynert which led to 
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murine long-term memory impairment. Hence, a single intranasal treatment with Glu-Abs 1 h after 

neurotoxic damage in these animals restored learning capacity in the conditioned passive 

avoidance paradigm. In addition, in these experimental conditions, Glu-Abs reduced caspase-3 

activity in the prefrontal cortex and hippocampus reflecting a decrement in apoptotic signal
18

. 

Consequently, the aim of this study was primarily to investigate the effects of intranasal treatment 

with in vitro generated S100A9 fibrils alone and in combination with Glu-Abs on performance in 

the Morris water maze spatial learning and memory paradigm in aged mice. Concomitantly, 

hippocampal and prefrontal cortical monoamine and amino acid cerebral neurotransmitter 

metabolic changes were measured. 

 

RESULTS AND DISCUSSION 

Characterization of S100A9 fibrillar aggregates 

S100A9 fibrillar structures were developed after 24h of incubation under the protocol conditions. 

S100A9 fibrils were characterized by curved and coiled morphology as shown in the AFM height 

image (Fig. 1A).  

 

Figure 1.                  In vitro characterization of S100A9 amyloid fibrils 

 

A. AFM height image of S100A9 amyloid fibrils formed after 24 h of incubation. 

B.  AFM cross-sectional analysis of representative fibril.  

Lower white scale bar = 100 nm and AFM cross-section of amyloid fibrils is indicated by grey arrowed bar in 

A. 
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They reached a few hundred nanometers in length and due to their curved nature they formed 

encircled structures (Fig. 1A). Some oligomeric species, shown as round-shaped structures in the 

AFM image, were also present in the sample, but only in a minor quantity. S100A9 fibrils were 

thin with 1.5 nm to 2 nm AFM heights as shown in the AFM cross-section in Fig. 1B. The fibrillar 

sample was also characterized by ca. 5.6-fold increase in Thioflavin-T fluorescence and by 

reactivity with A11 antibodies
19

 which further confirmed their amyloid character.  

Morris water maze amnestic effect of intranasal S100A9 fibrils reversed by glutamate antibodies 

in aged mice. 

Daily intranasal treatment with saline combined with MWM training induced long-term spatial 

memory formation in 12-month old mice. This was reflected by a steady decline in mean escape 

latency (the time to locate the platform) from 120.0 ± 0.0 s on the first training day to 57.9 ± 16.6 s 

on the last test day (Fig. 2). 

 

Figure 2.     Behavioral effects of intranasal dosing with S100A9 fibrillar species in the presence or 

absence of Glu-Ab co-treatment in 12-month old C57Bl/6 mice on escape latency (s) in the MWM 

paradigm involving 4 training days (protocal days 15-18) and testing on the 5th day (protocol day 

19) in the absence of the platform. 

 

*P< 0.05 compared with control. 
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 In contrast, administration of S100A9 fibrils over 14 days significantly (P<0.005) impaired 

memory formation and produced an amnestic effect manifested by an increased escape latency on 

all days in comparison with the saline control treated group (P<0.05). An intranasal combination of 

glutamate antibodies plus daily dosing with S100A9 aggregates reversed the memory deficit 

produced by S100A9 fibrillar species to a level that was comparable to the saline treated control 

group during the training period and the test day (Fig. 2 and 3).  

 

 

Figure 3.    Behavioral effects of intranasal dosing with S100A9 fibrillar species in the presence or 

absence of Glu-Ab co-treatment in 12-month old C57Bl/6 mice on platform latency (s) in the MWM 

paradigm testing on protocol day 19. 

 

*P< 0.05 compared with control; 
#
P< 0.05 compared with the S100A9 fibril treatment group 

 

Thus, S100A9 fibrils significantly impaired acquisition of MWM spatial memory performance 

thereby producing amnesia. Interestingly, similar to their passive avoidance test outcomes, all 

animals from the S100A9 aggregate treatment group exhibited amnestic behavior expressed as an 

increase in their escape latency in the water maze paradigm. These mice exhibited platform access 

learning inability throughout the protocol and displayed slower latencies on the test day following 

platform removal. Behavioral analysis did not reveal any differences between water maze 

parameters such as distance traveled or swim speed in the S100A9 fibrillar aggregate treated 

group. These data confirm that the physical activity of aged mice was not altered during intranasal 

administration of S100A9 aggregates implicating cognitive rather than motor processes
7
. This 
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conclusion is reinforced by the fact that the S100A9 gene is significantly upregulated not only in 

the AD brain but also in AD animal models
5,20

. In addition, experiments have shown that 

knockdown of S100A9 expression improves cognitive function in Tg2576 mice (an AD model) 

and these animals exhibit a reduced amyloid plaque burden. In this context, a new transgenic 

animal model of AD was established by crossbreeding Tg2576 mice with S100A9 knockout mice. 

Furthermore, the resultant S100A9KO/Tg2576 mice displayed increased spatial reference memory 

in the MWM and Y-maze tasks as well as decreased Aβ neuropathology and elevated anti-

inflammatory as well as reduced inflammatory markers. Overall, such findings signified that 

S100A9 is involved in the neurodegeneration and cognitive deficits in Tg2576 mice
20

. 

 

Morris water maze distance travelled and swim speed parameters of aged mice treated with 

S100A9 fibrils in the presence and absence of glutamate antibodies. 

In animals administered daily intranasal S100A9 fibrils, S100A9 fibrils plus Glu-Abs or saline 

vehicle, there were no significant group mean differences in distance travelled or swim speed 

throughout the entire 4 days of MWM acquisition training followed by testing on the next day 

(data not shown). In the 1980s, it was reported in the context of senescence that aged rats exhibited 

impaired water maze performance
21

, motor incoordination, downgraded locomotor activity and 

exploratory behavior
22

. The current results accord with previous “open field” and “passive 

avoidance” findings which verified that neither locomotor activity nor emotionality (anxiety-like 

behavior) was perturbed at the end of 14-day intranasal S100A9 aggregate daily dosing
7
.   

The ensuing question was to unveil the specific molecular processes initiating the amnesia 

observed in our study. Previously, cellular mechanisms were postulated via the amyloid hypothesis 

that misfolded proteins generate toxic oligomeric species capable of inducing a decline in synaptic 

plasticity, disordered neuronal function and cell death
23

 instigating cognitive dysfunction. 

Moreover, spatial memory in the Morris water maze is a hippocampal-dependent phenomenon
24

 

and damage to this neuroanatomical structure and its connections is conducive to amnesia
25

. In 

relation to this deduction, hippocampal-prefrontal cortical circuitry has been postulated as an 

integrative structural center for spatial memory establishment
26

.  
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Activity of intranasal S100A9 fibril treatment in the presence or absence of glutamate antibody 

intranasal co-treatment on hippocampal and prefrontal cortical concentrations of free 

neurotransmitter amino acids (aspartate, glutamate, glycine taurine and GABA) in aged mice. 

In saline control treated animals after the MWM protocol, the following concentrations of free 

neurotransmitter amino acids were identified in hippocampal samples: aspartate (1.97±0.21 μM/g 

tissue), glutamate (5.35±0.10 μM/g tissue), glycine (0.61±0.05 μM/g tissue), taurine (5.18±0.46 

μM/g tissue) and GABA (1.38±0.19 μM/g tissue). In the prefrontal cortex after the MWM 

protocol, the following levels were documented: aspartate (3.56±0.85 μM/g tissue), glutamate 

(11.19±1.72 μM/g tissue), glycine (0.65±0.18 μM/g tissue), taurine (11.61±1.70 μM/g tissue) and 

GABA (2.30±0.34 μM/g tissue). There were no significant mean differences between groups either 

in hippocampal, or prefrontal cortical aspartate, glycine, taurine or GABA levels. However, it was 

notable that hippocampal but not prefrontal cortical glutamate concentrations were augmented 

(P<0.05) compared to those in the saline control group although this elevated level was 

significantly decreased by co-administration of Glu-Abs to a level that was not different from 

controls (Figs. 4 and 8).  

In addition to monoaminergic disruption, S100A9 fibrillar structures also augmented hippocampal 

glutamate thus promoting the likelihood of excitotoxicity and a deficit in performance of the 

navigation task (Figs. 2, 4 and 8). Glutamate is stored in synaptic vesicles by an uptake system that 

is dependent on the proton electrochemical gradient. Along with inflammatory signals from 

S100A9 species, disturbance of the glutamatergic system can activate fast-acting excitatory 

ionotropic receptors and slower-acting metabotropic receptors.  

These actions may well stimulate Na
+
-dependent glutamate transporters located on neuronal and 

glial cell membranes to rapidly terminate glutamate activity and maintain its extracellular 

concentration below excitotoxic levels
27

. Accumulating evidence suggests that mitochondrial 

dysfunction might be a primary event in glutamate excitotoxicity
28

. In fact, during ATP 

production, mitochondria also produce reactive oxygen/nitrogen species (ROS/RNS) as a product 

of cell respiration which can damage neurons promoting the release of glutamate. Taking into 

consideration that ROS appears to be one of the key contributory factors in disturbing 

mitochondrial respiration, these molecular species are thought to be extensively involved in 

functional changes in the brain during aging 
29

. Along with these facts, it is widely accepted that 

alterations in mitochondrial function are actively engaged in a range of neurodegenerative diseases, 

including AD
30

. It has even been hypothesized that deficits in these organelles may be the source 

of AD progression itself during aging
31

 and along with glutamate neurotoxicity, the phenomenon is 

magnified. 
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The amnestic effects of S100A9 fibrils on spatial memory in the MWM arising from an increased 

hippocampal glutamate release and a DA-ergic decrement prompts the possibility that protection 

against glutamate toxicity may be a prospective therapeutic strategy. It has been shown that 

immune protection is effective for brain defense and the organism itself instigates this type of 

mechanistic protection in AD-like brain damage
32,33

. On this topic, we have also demonstrated an 

in vivo effectiveness for generated Glu-Abs in reducing Aβ25-35 peptide amnesia through a decrease 

in caspase-3 activity
18

. Daily application of S100A9 fibrillar species, in combination with Glu-Abs, 

resulted in a shortening of escape and platform latencies signifying an abolition of memory deficit 

through glutamate-Glu-Ab binding. This was supported by the Glu-Ab-induced decline in 

hippocampal glutamate release to a level comparable to controls and the fall in HVA (Figs 2, 4 and 

5). In light of this outcome, we recently identified impaired passive avoidance learning after 

chronic intranasal administration of pro-inflammatory S100A9 fibrillar protein structures in aged 

mice. Moreover, combined treatment with S100A9 fibrils and glutamate antibodies in these 

animals was followed by an increase in locomotor activity in the open-field test
34

. 

 

Figure 4.  Amino acid neurotransmitter levels measured in the hippocampus and prefrontal cortex of 12-

month old C57Bl/6 mice following intranasal dosing with S100A9 fibrillar species in the presence of Glu-Ab 

co-treatment. 

 

Animal groups (n=14) were intranasally administered saline, S100A9 fibrils or S100A9 fibrils plus Glu-Abs 

daily for 14 days and amino acid levels were measured as % of control. 

In saline control or Glu-Abs treated animals after the MWM protocol, the following free neurotransmitter 

amino acids were identified in hippocampal and prefrontal cortical samples: aspartate, glutamate, glycine, 

taurine and GABA.  

 

*P< 0.05 compared with control. 
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Figure 5.    Hippocampal and prefrontal cortical levels (expressed as % control) of DA, HVA and DOPAC 

and prefrontal cortical 3-MT levels measured in 12-month old C57Bl/6 mice following intranasal dosing with 

S100A9 species in the presence or absence of Glu-Ab co-treatment. 

 

Animal groups (n=14) were intranasally administered saline, S100A9 fibrils or S100A9 fibrils plus Glu-Abs 

daily for 14 days and hippocampal DA, DOPAC and HVA levels were measured as % of control.   

 

*P< 0.05 compared to control. 

 

 

 

  
Figure 6.      Hippocampal and prefrontal cortical levels (expressed as % control) of NA, 5-HT and 5-HIAA 

measured in 12-month old C57Bl/6 mice following intranasal dosing with S100A9 fibrillar species in the 

presence or absence of Glu-Ab co-treatment. 

Animal groups (n=14) were intranasally administered saline, S100A9 fibrils or S100A9 fibrils plus Glu-Abs 

daily for 14 days and hippocampal NA, 5-HT and 5-HIAA levels were measured as % of control. 

 

 *P< 0.05 compared to control. 
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Figure 7. Hippocampal and prefrontal cortical DOPAC/DA, HVA/DA and 5-HIAA/5-HT ratios (calculated 

as % of control) in 12-month old C57Bl/6 mice following intranasal dosing with S100A9 fibrillar species in 

the presence or absence of Glu-Ab co-treatment. 

 

Animal groups (n=14) were intranasally administered saline, S100A9 fibrils or S100A9 fibrils plus Glu-Abs 

daily for 14 days and hippocampal and prefrontal cortical DOPAC/DA, HVA/DA and 5-HIAA/5-HT ratios 

were expressed (control values = 100%). 

 

Activity of intranasal S100A9 fibril administration in the presence or absence of glutamate 

antibody intranasal co-treatment on hippocampal and prefrontal cortical concentrations of 

dopamine and its metabolites in aged mice. 

In saline control treated animals after the MWM protocol, the following concentrations of DA and 

its metabolites were identified in hippocampal samples: DA (0.79±0.06 nM/g tissue), DOPAC 

(0.27±0.01 nM/g tissue) and HVA (0.33±0.02 nM/g tissue). In the prefrontal cortex after the 

MWM protocol, the following levels were noted: DA (11.44±1.82nM/g tissue), DOPAC 

(0.89±0.04 nM/g tissue), HVA (1.67±0.03 nM/g tissue) and 3-MT (0.57±0.04 nM/g tissue). 

Although hippocampal and prefrontal cortical DA concentrations remained unchanged following 

intranasal administration of S100A9 fibrils, after the MWM protocol hippocampal but not cortical 

levels of DOPAC and HVA were increased (P<0.05). However, only the HVA effect was reversed 

by concomitant treatment with Glu-Abs. By way of contrast, although 3-MT levels were below the 

detection limits of the assay in the hippocampus, prefrontal cortical 3-MT concentrations were 

effectively reduced by S100A9 fibrillar administration (P<0.05) after the MWM protocol. In fact, 
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this decline remained unaltered by combined dosing with S100A9 fibrils plus Glu-Abs (Figs 5 and 

8). 

The present evidence indicates that S100A9 fibrillar aggregates modified hippocampal DA 

metabolism not only raising DOPAC and HVA concentrations but also escalating the consequent 

DOPAC/DA and HVA/DA metabolic marker ratios (Figs. 5, 7 and 8). Co-treatment with Glu-Abs 

on the other hand, reversed these dopaminergic metabolic changes. In the case of the amnesia 

caused by S100A9 fibrils, it may be suggested that these misfolded aggregates incited 

inflammation
35

 and interfered with DA metabolism thereby contributing to memory impairment
36

. 

It is also interesting to note, that in the prefrontal cortex, as opposed to the hippocampus, S100A9 

fibrils influenced only the NA-ergic system causing a 20% fall in NA concentration (Fig. 6 and 8). 

In regard to this result, the monoaminergic system overall is implicated in cognitive processes 

through an influence on cortical and subcortical regions
37

. 

Extensive neuropathological studies have established a compelling link between abnormalities in 

structure and function of subcortical monoaminergic systems and AD pathophysiology. The main 

neuronal and glial cell populations of these systems (locus coeruleus, raphe nuclei, and the 

tuberomamillary nucleus) undergo degeneration in AD thus depriving hippocampal and cortical 

neurons of their critical modulatory influence. The widespread distribution of these 

monoaminergic networks is one of the main difficulties in analyzing their functions and 

interactions
38

. To address this complexity in relation to the present results, it might be assumed that 

amyloid structures specifically destroy monoaminergic systems which escalate brain adaptive 

processes during cognitive failure. 

 

Activity of intranasal S100A9 fibril treatment in the presence or absence of glutamate antibody 

intranasal co-treatment on hippocampal and prefrontal cortical concentrations of NA, 5-HT and 

5-HIAA in aged mice. 

In saline control treated animals after the MWM protocol, the following hippocampal 

concentrations of NA (4.16±0.63 nM/g tissue), 5-HT (7.10±0.98 nM/g tissue) and 5-HIAA (3.81 

±0.67 nM/g tissue) were detected. Control animals also exhibited the following prefrontal cortical 

concentrations of NA (3.14±0.54 nM/g tissue), 5-HT,  (4.73±0.85 nM/g tissue), 5-HIAA (1.41±0.3 

nM/g tissue).  

 Only prefrontal cortical NA concentrations were decreased (P<0.05) by S100A9 fibrillar treatment 

and this decrement was unaffected by glutamate antibody co-administration. In the case of the 
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hippocampal or prefrontal cortical concentrations of 5-HT or 5-HIAA and hippocampal NA, there 

were no significant variations induced by Glu-Ab treatment in comparison with the saline control 

treated group after MWM training and testing (Figs. 6 and 8)  

 

Activity of intranasal S100A9 fibril treatment in the presence or absence of glutamate antibody 

intranasal co-treatment on hippocampal and prefrontal cortical DOPAC/DA, HVA/DA or 5-

HIAA/5-HT ratios in aged mice. 

In saline control treated animals after the MWM protocol, the following 

metabolite/neurotransmitter ratios were calculated from the hippocampal samples: DOPAC/DA = 

0.82, HVA/DA = 0.43 and 5-HIAA/5-HT = 0.52. In the prefrontal cortex samples after the MWM 

protocol the following control metabolite/neurotransmitter ratios were derived: DOPAC/DA = 

0.07, HVA/DA = 0.14 and 5-HIAA/5-HT = 0.30. Daily intranasal inoculation with S100A9 fibrils 

boosted the hippocampal DOPAC/DA ratio (P<0.01) when measured after the MWM protocol and 

this was very noticeably reversed by concomitant Glu-Ab administration. Likewise, the HVA/DA 

ratio was raised by administration of S100A9 fibrils in the hippocampus (P<0.05) but this increase 

was brought down by Glu-Ab co-treatment. There were no changes in hippocampal or prefrontal 

cortical 5-HIAA/5-HT ratios, neither was there any alteration in cortical DOPAC/DA nor 

HVA/DA ratios in response to S100A9 fibrils in the presence or absence of Glu-Abs (Fig. 7 and 8) 

The AD-like amnesia provoked by S100A9 fibril administration noted here potentially stems from 

neuroinflammation and protein neuroaggregation linked to aberrant neurochemistry
36

.  Earlier, we 

have shown that fibrillar S100A9 treatment induced passive avoidance memory retention deficits 

in 87.3% of aged animals and this correlated with an enhancement of DA turnover in the prefrontal 

cortex as well as an increased DA level and its metabolites in the hippocampus
7
. It has also been 

reported previously that different degrees of DA dysfunction can occur during AD progression
39

. 

There have been indications of a distinctive DA role along with its receptors in forming long-

lasting memories. For example, activation of the prefrontal cortical, striatal, and hippocampal 

dopamine DA1- family of receptors (D1- but not D5-like receptors) is necessary for normal spatial 

information processing
40

. In addition, reduced DA transporter (DAT) expression in the caudate 

putamen, hippocampus and frontal cortex has been described during human brain aging
41

 and DAT 

has also been hypothesized as a possible target of amyloid insult. Thus, an influence of S100A9 

aggregates on DAT function cannot be excluded as one of the elements of DA disrupted function 

in spatial memory
42

.   
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Conclusion 

During neurodegenerative conditions where memory loss may occur, there are contributory 

cascade-dependent phenomena such as neuroinflammation, oxidative stress and amyloidogenesis 

which induce memory impairment. Recent findings established that hippocampal inflammatory 

processes contribute to spatial memory deficits
43

. Analogously, the pro-inflammatory and 

amyloidogenic properties of S100A9 protein have been explored in a fear aggravated memory task 

(passive avoidance) alongside neurochemical assays in the prefrontal cortex and hippocampus of 

aged mice
7
. The novel outcome of the current study has emphasized the pathogenic nature of 

S100A9 fibrillar aggregates in causing spatial memory amnesia in the water maze paradigm which 

is associated with enhanced hippocampal glutamate release and DA-ergic disruption in the aging 

brain (Graphic Table). Moreover, it might be hypothesized that a treatment for AD could be based 

on application of Glu-Abs to prevent the central glutamate neurotoxicity induced by misfolded 

protein species. 

 

Figure 8.    Summary showing the significant hippocampal and prefrontal cortical neurochemical 

outcomes of 14-day intranasal administration of S100A9 fibrils in 12-month old C57Bl/6 mice on 

protocol day 20. 

 Upward arrow = increase; downward arrow = decrease; horizontal double headed arrow = no 

change. 
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MATERIALS AND METHODS 

Subjects 

Adult male C57Bl/6 mice aged 12-months and weighing 31.2±1.1g, were used throughout. The 

animals were group housed on a 12:12 light-dark cycle at a constant temperature of 21
o
C and 50% 

humidity with access to food and water ad libitum. All experimental procedures were carried out in 

accordance with the National Institute of Health Guide for the Care and Use of Laboratory 

Animals (NIH Publications No. 80-23, revised 1996); the UK Animals Scientific Procedures Act 

1986 and associated guidelines; the European Communities Council Directive of 24 November 

1986 (86/609/EEC) for care and use of laboratory animals. They were also approved by the 

Animal Care and Use Committee of the P. K. Anokhin Research Institute of Normal Physiology. 

 

Procedures and dosing protocol 

Experiments were performed between 10.00-15.00 hours and mice were divided into three groups 

(n = 14 per group) which underwent the protocol chronology shown in Fig. 9. Group (1; naïve 

control) was administered saline vehicle intranasally (i.n) in alternate nostrils daily in a total 

volume of 8 µL/animal daily (i.e. 4 µL/nostril using a Hamilton syringe) over a total dosing period 

of 14-days. Group (2) was administered a solution of S100A9 fibrillar aggregates (15.0 µg in 8 µL 

= 0.48 mg/kg) using the same 14-day dosing schedule. Group (3) was co-administered S100A9 

fibrillar aggregates (15.0 µg in 8 µL = 0.48 mg/kg) in one nostril nasal side and antibodies to 

glutamate (7.8 µg in 8 µL = 0.25 mg/kg) to the other nostril another side using the 14-day dosing 

schedule. At the end the 14-day protocol (i.e. on day 15), animal groups 1-3, underwent a modified 

behavioral protocol
7 

[13] involving four days of acquisition training (Fig. 1). The next day, after 

behavioral testing (day 5), mice were killed and neurochemical analysis of the hippocampus and 

prefrontal cortex was performed (n = 12 per group). All behavioral tests and neurochemical 

analyses were performed under blind conditions. 
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Figure 9. Scheme showing the chronology of the intranasal S100A9 dosing protocol, MWM acquisition 

training and testing then the post mortem hippocampal and prefrontal cortical sampling period in 12-month 

old C57Bl/6 mice prior to neurochemical analysis. 

 

Production of S100A9 protein 

S100A9 was expressed in E. coli and purified as described previously
 44

. Its concentration was 

determined by using ε280 = 0.53 (mg/ml)
−1

 cm
−1

. 

 

Production of S100A9 fibrillar aggregates  

In order to avoid the presence of the preformed S100A9 aggregates in solution, the protein was 

initially dissolved in 10 mM PBS buffer, pH 7.4, subjected to 15 min sonication, then to 15 min 

centrifugation at 14,000 rpm in a minicentrifuge (Eppendorf Centrifuge 5417R) and the 

supernatant collected from the upper layer was filtered through a 0.22 um filter (Millex). The final 

solution was incubated in at a 2.0 mg/ml concentration in 10 mM PBS buffer, pH 7.4 at 37 
o
C, 

using continuous agitation at 600 rpm (Eppendorf Thermomixer Compact). Amyloid S100A9 

fibrils were produced after 24h of incubation. The fibrillar sample was stored at +4 °C prior to 

administration. The morphological parameters of stored fibrils were compared with freshly 

produced structures using AFM imaging and they were confirmed to be essentially unchanged. 
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Immunological methods 

Synthesis of glutamate/BSA immunogenic conjugate.  

The synthesis of the glutamate conjugate with bovine serum albumin (BSA, Sigma- Aldrich,USA) 

was performed according to a modified protocol
45

. Glutamate (L-glutamic acid monosodium salt 

monohydrate, Sigma-Aldrich,USA) 10 mg in 1.0 ml of distilled water was mixed with 1.0 ml of 3 

M acetate buffer (pH 7.8) containing 30 mg of BSA. The reaction was started by adding 1.0 ml of 

5% glutaraldehyde and it lasted for 3 min at room temperature. Glutaraldehyde as a crosslinking 

reagent was chosen for its high yield of coupling with the L-amino group of lysyl residues in 

proteins. An orange-yellow color and stability at pH ≈ 7.0 indicated that the coupling reaction was 

complete; 1.0 ml of a sodium borohydride solution (10 mM) (Merck, USA) was added to saturate 

the double bonds. After reduction, the mixture turned from orange-yellow to translucent. The 

solution was then dialyzed at +4.0 
o
C and the precipitate was removed by centrifugation. The 

weight of 1.0 ml of the lyophilized conjugate were determined, allowing molar ratios to be 

calculated as Glu/BSA = 7.0.  

Immunization and production of antibodies to glutamate. 

Three white chinchilla rabbits (6 months old, weighing 2.6-2.7 kg) were housed in individual 

cages, fed a premeasured pelleted diet ration once daily with constant access to water. Animals 

were immunized using immunogenic glutamate conjugate with BSA according a standard 70-day 

immunization serum production protocol
45

. The first booster injection contained 1.0 mg of 

glutamate/BSA conjugate emulsified in 1.0 ml of 0.15 M NaCl and 1.0 ml of complete Freund's 

adjuvant (Difco). Using the resultant 2.0 ml of mixture, 10 subcutaneous sites and 10 intramuscular 

sites were utilized for immunisation. Over the next 14, 28, 42, 56 and 70 days, similar booster 

injections were repeated using incomplete Freund's adjuvant. Production bleeds were performed on 

days 28, 42, 56, 70 days and 10 ml of blood was taken with subsequent separation of serum. The γ-

globulin fraction was produced from serum after ammonium sulfate precipitation, dealization and 

affinity chromatographic purification on BSA/CNBr-activated Sepharose™ 4B sorbent before 

lyophilization. The purified anti Glu/BSA γ-globulin fraction was then analysed by ELISA using 

Glu/BSA conjugate as antigen for Glu/Abs titres and estimations were determined as 1: 1200 ± 1: 

100.  

 

 

http://www.googleadservices.com/pagead/aclk?sa=L&ai=DChcSEwjJsOSX0tLPAhWhznIKHUMjBPwYABAA&ei=Ncz8V7W5EsGL6ATK5K-QBg&ohost=www.google.ru&cid=CAASJORoLTsNKS_GAzyOJHnZI6ShD7J-9jRTuJYe3YSoUoz09ozY8w&sig=AOD64_2CB-mJSde2RmB3D0LrM8zRbVwi7A&q=&sqi=2&ved=0ahUKEwj1p-GX0tLPAhXBBZoKHUryC2IQ0QwIGg&adurl=
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Fluorescence assay 

The thioflavin T (ThT) binding assay was performed using a modification of LeVine’s method
46

. 

Thioflavin T fluorescence was measured by a Jasco FP-6500 spectrofluorometer (Jasco, Japan), 

using excitation at 440 nm and collecting the emission between 450–550 nm, with excitation and 

emission slits set at a 5 nm width. 

 

Atomic force microscopy (AFM) assay 

Atomic force microscopy (AFM) imaging was carried out using a BioScope Catalyst AFM 

(Bruker) in the peak force mode in air at a resonance frequency of ca. 70 kHz and a resolution of 

256 x 256 pixels; scan sizes ranged from 0.5 to 10 μm. Amyloid samples were deposited on the 

surface of freshly cleaved mica (Ted Pella) for 15 min, washed 3 times with 100 μl deionized water 

and dried at room temperature and then subjected to AFM analysis (Fig. 2). 

Behavioral test 

Morris water maze (MWM) test 

Cognitive function was evaluated by a modified protocol of the Morris water maze protocol (Fig. 

1) as previously described by Yu et al.,
47

. The water maze consisted of a grey colored circular pool 

(140 cm in diameter and 60 cm in height) filled to a depth of 40 cm with water rendered opaque by 

the addition of a small quantity of powdered milk
48

. The temperature of the water was maintained 

at 22.0 ± 1.0 
o
C and the pool was divided into four quadrants. A transparent circular escape 

platform (11 cm in diameter, 40 cm in height) was located in one quadrant of the pool 2.0 cms 

beneath the water surface and hidden from animal view. The platform had a rough surface which 

facilitated animal access onto the platform once its presence was detected. The maze was 

positioned in a well-lit room with several posters and other distal visual stimuli on the walls to 

provide external spatial cues.  All groups of mice were trained to spatially locate the hidden 

platform on 4 consecutive days. Each day, they received four consecutive training trials during 

which the hidden platform was kept in a constant location. Every trial was commenced by 

carefully placing each animal into the water facing the wall of the pool at one of three random start 

positions avoiding the quadrant including the platform. Animals were allowed 60 s to find the 

platform and in instances of platform location failure within this period, mice were placed on the 

platform for 10 s, and the latency was recorded as 60 s. Behavioral parameters including escape 
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latency (time to find the platform), distance traveled and swimming speed were analyzed by an 

EthoVision video tracking system version 8 (Noldus Information Technology,Netherlands). On the 

15
th

 protocol day, the hidden platform was removed from the water maze, and mice were allowed 

to swim freely for 60 s; the number of times animals crossed the target platform were recorded. 

Throughout, the observers were blind to the experimental conditions. After behavioral 

experiments, animals were killed and brain structures (hippocampus and prefrontal cortex) were 

dissected on ice (4 
o
C) and immediately stored in liquid nitrogen for subsequent neurochemical 

analysis. 

Neurochemical assays 

Neurochemical determination of hippocampal and prefrontal cortical content of 

neurotransmitter amino acids (aspartate, glutamate, glycine taurine and GABA) in aged mice. 

The determination of amino acid (aspartate, glutamate, glycine taurine and GABA) content in the 

hippocampus and prefrontal cortex of aged mice was performed according to a modified method of 

Pearson et al.,
49

. Since neurotransmitter amino acids are weak chromophores, it was necessary to 

modify them for stable detection by addition of o-phthalaldehyde (OPA) to form fluorescent 

complexes. Cerebral structures were homogenized in 0.1 N perchloric acid (1:20) with 0.5 μM 3,4-

dihydroxybenzoic acid as internal standard and centrifuged (10,000g  x 10 min, 4 
0
C; Eppendorf 

5415 R, Germany). In order to achieve derivatization, 25 μl of 0.1М borate buffer (рН 9.5) and 10 

μl of OPA was added to 25 μl of tissue supernatant. The samples were incubated (20 min at room 

temperature) and  20 μl of each sample was subjected to analysis in an Agilent 1100 

chromatograph with a fluorescent  detector and wavelengths of excitation and emission set at 230 

and 392 nm, respectively (Agilent Technologies, USA) using a HYPERSIL ODS column (4.6×250 

mm, 5 μm). The eluent phase consisted of  0.06 M NaH2PO4 x H2O, 0.0032 M Na2HPO4,  0.025 

mМ EDTA and 1.24 mM CH3OH (pH=5.6) and the flow rate was 1.5 ml/min. A standard sample 

consisted of 0.1 μM/ml in 0.1N НClО4 of GABA, aspartate, glutamate, taurine and glycine 

(Sigma-Aldrich, USA) of each amino acid. 

 

Neurochemical determination of the tissue content of DA, 5-HT and their metabolites (DOPAC, 

HVA and 5-HIAA) as well as NA in mouse brain structures by high performance liquid 

chromatography with electrochemical detection (HPLC/ED) 

 

The procedure for neurochemical determination of tissue content of DA, 5-HT and their 

metabolites (DOPAC, HVA and 5-HIAA) as well as NA in the mouse hippocampus and prefrontal 

https://www.google.ru/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&sqi=2&ved=0ahUKEwi58fvJlNDPAhUqGZoKHRvEAxUQFggqMAI&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAgilent_Technologies&usg=AFQjCNGWzYExLjhUC44GjueGuhDag7UMgw&bvm=bv.135258522,d.bGs
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cortex was performed and analyzed by high performance liquid chromatography with 

electrochemical detection
7
. 

Statistics 

 

Statistica 7.0 software was used for statistical analysis. The distribution of behavioral data did not 

conform to a normal distribution (Lilliefors test, P<0.01) and thus, univariate nonparametric 

analysis of variance Kruskal-Wallis test (H-criterion) with by post-hoc analysis by the Mann- 

Whitney U test was performed. Data are presented as mean ± s.e.m. The critical level of statistical 

significance in the test for the null hypothesis was accepted at P<0.05. 
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