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Abstract: 

Neuroimaging studies have identified a variety of structural and functional connectivity 

abnormalities in students experiencing reading difficulties. The present study adopted a novel 

approach to assess the dynamics of resting-state neuromagnetic recordings in the form of 

symbolic sequences (i.e., repeated patterns of neuromagnetic fluctuations within and/or 

between sensors). 

Participants were 25 students experiencing severe reading difficulties (RD) and 27 age-

matched non-impaired readers (NI) aged 7-14 years. Sensor-level data were first represented 

as symbolic sequences in eight conventional frequency bands. Next, dominant types of sensor-

to-sensor interactions in the form of intra and cross-frequency coupling were computed and 

subjected to graph modeling to assess group differences in global network characteristics.  

As a group RD students displayed predominantly within-frequency interactions 

between neighboring sensors which may reflect reduced overall global network efficiency and 

cost-efficiency of information transfer. In contrast, sensor networks among NI students 

featured a higher proportion of cross-frequency interactions. Brain-reading achievement 

associations highlighted the role of left hemisphere temporo-parietal functional networks, at 

rest, for reading acquisition and ability.  

 

Keywords: 

Magnetoencephalography (MEG), symbolic dynamics, Functional connectivity, Graph 

theory, Dyslexia, Connectomics, Intrinsic Coupling Modes 
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Highlights 

• Symbolic dynamics of MEG time series revealed aberrant Cross Frequency Coupling in 

RD students 

• Global efficiency and strength of Cross Frequency Coupling could reliably identify RD 

students from age-matched controls 

• Global Cost Efficiency, coupling strength, and the relative preponderance of cross-

frequency interactions strongly correlated with reading achievement across groups. 
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1. Introduction 

1.1. Cortical connectivity in reading and reading disability 

There is accumulating evidence that the degree of myelination in left hemisphere 

cortico-cortical tracts correlates positively with reading skill (Hoeft et al., 2011; Niogi and 

McCandliss, 2006). Moreover, there is evidence (using Diffusion Tensor Imaging; DTI) of 

reduced myelination in left hemisphere white matter tracts connecting inferior frontal, 

temporal, occipital, and parietal regions among adults with a history of reading disability 

(Vandermosten et al., 2012). Both increased and decreased anatomical (using DTI) and 

functional connectivity (using task-related fMRI) within a network of dorsal and ventral brain 

regions have been reported in struggling readers compared to typically achieving readers 

(Richards et al., 2015). Other task-related fMRI studies reported reduced connectivity within 

the reading network in adults with a history of reading difficulties compared to non-impaired 

readers (Schurz et al., 2014; Van der Mark et al., 2011). fMRI evidence of a less integrated 

brain network has also been found in Chinese dyslexic children compared to typically 

achieving readers which was characterized by reduced long-range communication and 

increased local processing (Liu et al., 2015).  

Studies on functional connectivity patterns at rest (i.e., independent of task 

performance) in dyslexia are scarce. Previous fMRI studies detected a strong association 

between functional connectivity in reading networks and reading ability in both children and 

adults (Koyama et al., 2011, 2013; Schurz et al., 2014; Zhang et al., 2014). Moreover, the 

strength of resting-state connectivity between the ventral visual word form area and the dorsal 

attention network was significant linked to individual reading skill (Vogel et al., 2014). 

Resting-state data may be particularly useful to assess aberrant modes of information exchange 

both within and between key reading-related cortical regions which may, in turn be associated 
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with suboptimal cortico-cortical integration during reading acquisition and performance of 

reading tasks.  

1.2. Cross-frequency coupling as a measure of resting-state functional connectivity 

Magnetoencephalography (MEG) is uniquely suited to address functional connectivity 

because it possesses adequate temporal resolution to describe the real-time dynamics of fine-

grained interactions between neuronal populations. By adopting a dynamic functional 

connectivity analysis of resting-state neuromagmetic data we identified abnormal temporal 

correlations between time series recorded over left temporo-parietal brain areas in students 

experiencing severe reading difficulties (RD) as compared to age-matched typical readers 

(Dimitriadis et al., 2013b). A more recent report using resting-state data from the same cohort 

focussed on cross-frequency coupling between neuromagnetic time series (Dimitriadis et al., 

2016c). Sensor interactions in the form of phase-to-amplitude coupling were quantified though 

the phase-locking index which is thought to represent the degree to which slower brain rhythms 

in a given neuronal population can reset ongoing neurophysiological processes in a different 

neuronal population operating at higher frequencies (Buzsáki, 2010; Canolty and Knight, 2010; 

Buzsáki et al., 2013). Results indicated that resting-state activity in typical readers was 

characterized by more stable cross-frequency interactions than in RD students. One 

interpretation of these findings is that temporally stable cross-frequency information exchange 

reflects a typical and, presumably, optimal working level ensuring efficient neuronal 

transmission (Deco and Corbetta, 2011; Deco et al., 2013) available to support typical reading 

acquisition and performance. 

In this study we extend these findings by examining both same-frequency and cross-

frequency interactions in the same cohort of RD and typical readers. The novelty of the present 

report entails computing sensor interaction metrics based on the concept of symbolic dynamics, 

wherein neuromagnetic signals are first transformed into symbolic sequences consisting of a 
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finite set of substrings (Janson et al., 2004; Dimitriadis et al., 2012a; Robinson and Mandell, 

2016). Sensor interactions were then quantified using a variant of Mutual Information (King et 

al., 2013; Robinson and Mandell, 2016), a rather popular approach in the search for aberrant 

patterns of functional connectivity based on EEG and MEG recordings in a variety of clinical 

conditions (Colclough et al., 2017; Uhlhaas and Singer, 2006). The original Mutual 

Information algorithm was adapted here to accommodate symbolic time series and to compute 

an undirected weighted connectivity estimator (i.e., Symbolic Mutual Information). Surrogate 

data analyses were then used to identify the dominant type of intra- or cross-frequency coupling 

for each pair of sensors and construct a weighted, integrated functional connectivity graph 

characteristic of the resting-state recordings of each participant. Finally, estimated functional 

networks were spatially filtered through bootstrapping and submitted to graph analyses in order 

to assess both sensor-specific and overall network efficiency and cost-efficiency (Stam, 2014).  

The present study had three aims: First, to identify aberrant spectral (intra- and cross-

frequency coupling) and spatial characteristics of functional brain networks in RD students; 

Second, to assess the value of features associated with sensor-level brain network metrics in 

discriminating between RD and age-matched typical readers using machine learning 

techniques. Finally, to establish the functional significance of these metrics for basic reading 

skills through correlational analyses. We hypothesized that RD children would demonstrate 

reduced efficiency of information flow compared to non-impaired readers and sensor 

interactions that operate predominantly in same-frequency oscillations. Conversely, cross-

frequency interactions would be more prominent in typical readers and their relative 

predominance will serve as a significant predictor of basic reading skill.  
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2. Material and Methods 

2.1 Participants 

Participants were two age-matched groups of students aged 7-14 years. The RD group 

included 25 children (12 boys) with reading difficulties (RD group) as indicated by scores 

below the 16th percentile level (standard score of 85) on the Basic Reading composite index 

(Word Attack and Letter–Word Identification subtest scores of the Woodcock–Johnson Tests 

of Achievement-III; Woodcock et al., 2001; WJ-III). These scores are consistent with the 

presence of dyslexia and is lower than in previous studies (Rezaie et al., 2011; Simos et al., 

2011) of this cohort because we focused on studying severely impaired children. They were 

recruited from a larger Grade 6–8 intervention study (Vaughn et al., 2010) involving students 

at-risk for further academic failure because they failed to pass the school-administered Texas 

Assessment of Knowledge and Skills (TAKS).  

Twenty-seven children (9 boys) who had never experienced difficulties in reading (NI 

group) served as a comparison group. These students had standard scores >90 on the Basic 

Reading Composite (corresponding to the 36th percentile) and were recruited from the same 

schools as the RD group in an attempt to control for educational history, ethnicity, and SES 

factors. All participants had Full Scale IQ scores >80 on the Wechsler Abbreviated Scale of 

Intelligence (Wechsler, 1999). 

Detailed psychoeducational and demographic data are provided in Table 1. The two 

groups were comparable on age, ethnicity, handedness (there was one left handed student in 

each group), and Performance IQ (p > 0.1 in all cases). As expected the RD group demonstrated 

significantly lower scores than the NI group on measures of reading, Verbal IQ and spelling. 

Additionally, participants were selected for inclusion in either group only if they had T scores 

below 65 on the Attention Problems scale of the Child Behavior Checklist (Achenbach, 1991), 

as indicators of low risk for ADHD (Chen et al., 1994). Written informed assent and consent 
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forms were signed by all participating children and their parents or guardians, respectively. The 

study had been approved by the Health Science Center-Houston and University of Houston 

Institutional Review Boards. 

 

2.2. MEG Recordings 

Three minutes of continuous brain activity was acquired with a whole-head 

neuromagnetometer array (4-D Neuroimaging MagnesWH3600), consisting of 248 first-order 

axial gradiometer sensors, housed in a magnetically shielded chamber. Participants were placed 

in a supine position and instructed to keep their eyes closed during the recording. Data were 

collected at a sampling rate of 1017.25 Hz and bandpass filtered in the 0.1–200 Hz range.  

 

Table 1. Demographic and psychoeducational data for typical (NI) and students with 

severe reading difficulties (RD).  

 Group Mean SD Range 

Age (years) 
NI 11.35 2.8 7-14 

RD 12.20 2.1 7-14 

LWID** 
NI 99.55 8.9 90-126 

RD 80.73 8.2 62-85 

WA** 
NI 99.44 9.6 91-130 

RD 84.78 7.2 68-85 

Composite** 
NI 99.70 9.7 90-130 

RD 81.78 6.9 65-85 

Spelling 
NI 103.86 9.91 88-128 

RD 78.33 11.24 56-103 

VIQ* 
NI 104.04 16.6 80-141 

RD 90.76 13.3 81-128 

PIQ 
NI 100.29 11.2 80-117 

RD 95.39 12.6 80-129 

FSIQ 
NI 102.34 12.4 80-124 

RD 93.48 13.2 80-129 

Group differences: *p < .01, **p < .001. Abbreviations, LWID, WA, Composite, 

Spelling: Woodcock-Johnson III Letter-Word Identification, Word Attack, Reading 
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composite, and Spelling subtests, respectively; VIQ, PIQ, FSIQ: WASI Verbal IQ, 

Performance IQ and Full Scale IQ scores, respectively. 

 

2.3 Data Preprocessing 

The MEG data underwent artifact reduction using Matlab (The MathWorks, Inc., 

Natick, MA, USA) and Fieldtrip (Oostenveld et al., 2011). Independent component analysis 

(ICA) was used to separate cerebral from non-cerebral activity using the extended Infomax 

algorithm as implemented in EEGLAB (Delorme and Makeig, 2004). The data were whitened 

and reduced in dimensionality using principal component analysis with a threshold set to 95% 

of the total variance (Delorme and Makeig, 2004; Escudero et al., 2011). Kurtosis, Rényi 

entropy, and skewness values of each independent component were used to identify and 

remove ocular and cardiac artifacts. A given component was considered an artifact if, after 

normalization to zero mean and unit variance, more than 20% of its values were greater/lower 

than 2 SDs from the mean (Escudero et al., 2011; Dimitriadis et al., 2013a; Antonakakis et al., 

2013, 2015). Additionally, we inspected the time course of each IC, its spectral profile, and the 

topological distribution of the IC weights to further confirm that an IC was an artifact.  Across 

participants, the average number of ICs removed was 6 out of 50 ICs. The artifact-free ICs 

were then used to reconstruct the MEG time series. Axial gradiometer recordings were 

transformed into planar gradiometer field approximations using the sincos method 

implemented in Fieldtrip (Oostenveld et al., 2011). The data were then bandpass-filtered in the 

following frequency ranges using a 3rd-order Butterworth filter (in zero-phase mode): 0.5-4, 4-

8, 8-10, 10-13, 13-15, 15-19, 20-29, and 30-45Hz corresponding to δ, θ, α1, α2, β1, β2, β3, and 

γ bands. 
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2.4 Spectral Power  

For each participant and MEG sensor we calculated the power spectral density using 

the Fast Fourier Transform employing partially (50%) overlapping Hanning windows each 

consisting of 4096 data points. This yielded a frequency resolution of 0.25Hz. Relative power 

within each frequency band was calculated to assess the relative contribution of several 

oscillatory components to the global power (Leuchter et al., 1993; Rodriguez et al., 1999). The 

alpha peak frequency was also estimated to assess group differences. For further details on 

spectral power estimation see Supp. Material Sections 1-2. 

 

2.5  Functional Connectivity indexed by Symbolic Mutual Information  

Analyses described in this section aimed to assess relatively stable functional 

associations between every pair of MEG sensors. This procedure sought, first, to identify a 

finite set of systematic temporal patterns within each time series, reflecting the degree of signal 

predictability over time (the derived signal Complexity index is described in detail in Suppl. 

Material Section 4.1 and used as one of the comparison indices in participant classification as 

described in 2.10). Each pair of time series was then transformed into two symbolic sequences 

utilizing a common set of symbols (for more details see section 4.2 in Supp. Material). To 

achieve this goal the Natural Gas algorithm was adapted for pairs of time series (Dimitriadis et 

al., 2016a). The latter comprised of same-frequency/between-sensor pairs, cross-

frequency/between-sensor pairs, and cross-frequency/within-sensor pairs. The strength of 

linear and non-linear functional associations for each pair of symbolic sequences was indexed 

by Symbolic Mutual Information (SMI), an undirected weighted connectivity estimator (King 

et al., 2013; Robinson and Mandell, 2015). SMI is defined as: 
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𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓(𝑖𝑖, 𝑗𝑗) =  𝑆𝑆(𝐴𝐴𝑠𝑠𝑠𝑠(𝑓𝑓),𝐵𝐵𝑠𝑠𝑠𝑠(𝑓𝑓) ) = ��𝑝𝑝(𝑥𝑥,𝑦𝑦) log� 𝑝𝑝(𝑥𝑥,𝑦𝑦)𝑝𝑝𝑥𝑥(𝑥𝑥)𝑝𝑝𝑦𝑦(𝑦𝑦)
�𝑥𝑥∈𝑋𝑋𝑦𝑦∈𝑌𝑌 (1) 

 

where X = Ast and Y=Bst, p(x, y)p(x, y) is the joint probability distribution function of X and Y 

and px(x) = ∑ p(x, y)y∈Y  and py(y) = ∑ p(x, y)x∈X  are the marginal probability distribution 

functions of X and Y, respectively. SMI values range between 0 and 1, with 0 denoting no 

functional coupling and 1 indicating perfect functional coupling over the entire recording 

period. This procedure resulted in a single functional connectivity graph per participant, 

frequency band (8), and pair of frequency bands (28) consisting of SMI values.  

 

2.6 Dominant Intrinsic Coupling Modes for each pair of symbolic sequences 

Individual functional connectivity graphs were further processed through surrogate data 

analyses to determine the Dominant Intrinsic Coupling Mode for each pair of symbolic 

sequences. 10,000 surrogate data sets were created by shuffling the symbolic sequence of the 

second MEG sequence Bst in each pair (Ast and Bst) and re-estimated SMI values. Finally, a p-

value was assigned to each pair of symbolic sequences (same-frequency/between-sensor, 

cross-frequency/between-sensor, and cross-frequency/within-sensor pairs) reflecting the 

proportion of surrogate SMI values that were higher than the observed SMI. This procedure 

produced a 3D tensor of p values for each participant of size 36 x 248 x 248. Significant 

Dominant Intrinsic Coupling Mode(s) for each pair of symbolic sequences were determined by 

applying a Bonferroni-adjusted statistical threshold of p < 0.01/36 = 0.00028 in order to control 

for family-wise Type I error. When more than one frequency or frequency pairs exceeded this 

threshold, the one associated with the lowest p value was retained. This procedure resulted in 

two 2D matrices for each participant of size 248 x 248: one containing the highest/statistically 

significant SMI values and the second the identity of the corresponding frequency or frequency 
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pair (e.g., 1 for δ, 2 for θ, …, 8 for γ, 9 for δ-θ, …, 15 for δ-γ,…, 36 for β3-γ). In view of the 

purported importance of cross frequency interactions for efficient neuronal communication, the 

ratio of probability distributions of inter-frequency over the probability distribution of intra-

frequency Dominant Intrinsic Coupling Modes was also computed (r index). 

 

2.7 Topological Filtering and Graph Theory Analysis of Functional Brain Networks 

In this stage of the analysis workflow, the integrated Functional Connectivity Graphs 

were submitted to topological filtering using surrogate data. This procedure relied on a data-

driven variant of the Minimal Spanning Tree algorithm, namely Orthogonal Minimal 

Spanning Trees (OMST; for details of the algorithm see Dimitriadis et al., 2017b), and aimed 

to identify the subset of functional interactions that would ensure optimal information flow 

(indexed by network global efficiency) while minimizing the cost incurred by preserved 

functional connections. The GE-Cost vs. Cost function was optimized after 11 OMSTs leading 

to a selection of 2,689 out of 61,504 connections. 

The relative importance of each sensor for information exchange within the individual 

functional connectivity graphs was quantified using the Global Efficiency metric derived from 

graph theory. Sensor-specific Global Efficiency was derived from the SMI values representing 

the Dominant Intrinsic Coupling Mode for each sensor pair and is defined as the inverse of the 

shortest distance between a given sensor and every other sensor. Network Global Efficiency 

reflects the overall efficiency of parallel information transfer within the entire set of 248 

sensors and was estimated as the average sensor-specific GE value over all sensors using the 

following formula:  

𝐺𝐺𝐺𝐺 =
1𝑁𝑁�∑ �𝑑𝑑𝑖𝑖𝑖𝑖�−1𝑖𝑖∈𝑁𝑁,𝑖𝑖≠𝑖𝑖𝑁𝑁 − 1𝑖𝑖∈𝑁𝑁  (2) 
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Overall Network Cost-Efficiency, defined as the global network efficiency minus 

overall network cost, was computed using a data-driven technique based on the maximization 

of overall network global efficiency: 

)3(CostGEGCE −=
 

Cost was computed as the sum of the highest/significant functional connections divided by the 

sum of SMI values of the full-weighted functional network. Global Cost-efficiency was defined 

as the Global Efficiency at a given cost C minus the Cost value, which typically has a positive 

maximum value at some cost   Cmax, for an economical small-world network. Importantly, this 

metric of network topology is independent of arbitrary, user-defined thresholds. Additionally, 

the Global Cost-Efficiency curve was estimated over a wide range of thresholds, and optimal 

threshold was derived for the maximum Global Efficiency value occurs at a specific Cost and 

Global Cost-Efficiency value (Bassett et al., 2009). Statistical group comparisons were 

conducted on overall network Global Efficiency, Cost, and Global Cost-Efficiency using the 

Wilcoxon Rank Sum Test.  

 

2.9 Group-specific sensor subnetwoks 

Dominant Intrinsic Coupling Modes that survived statistical (Section 2.6) and topological 

filtering (Section 2.7) were further processed using the Network Based Statistic toolbox 

(Zalesky et al., 2010) in an attempt to identify sets of sensor pairs forming a subnetwork, the 

strength of which significantly differed between the two groups. The nominal statistical 

threshold was set to 0.01, FDR-corrected over 5,000 iterations.  
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2.10 Classification of participants according to reading ability group based on network 

features 

2.10.1 Feature selection procedure 

Initially, the optimal set of features to enter into the classification schemes were selected. 

Each original set of sensor-specific, univariate features (relative power, global efficiency, and 

signal complexity [see Supplementary Material Section 4.1]) consisted of 8 (frequency bands) 

x 248 (sensors) = 1984 features. Selection of optimal features from each set involved 

computation of Laplacian scores described in Section 1 of the Supplementary Material. Next, 

bootstrapping was employed to assign a p-value to each of the 1984 features. The criterion for 

feature selection was a Bonferroni-adjusted p < 0.05/(8 [frequency bands] * 248 [sensors]).  

Derivation of features from the topologically-filtered Functional Connectivity Graphs 

involved dimension reduction using a procedure appropriate for multidimensional matrix data. 

For this purpose, we adopted Tensor Subspace Analysis (He and Cai, 2005), which treats the 

entire sensor network as a matrix (i.e., a network representation) rather than as a vector (i.e., a 

vectorized version of the weights comprising each graph). This method has been used 

successfully on resting-state (Dimitriadis et al., 2015a,b; Antonakakis et al., 2016) and task-

related MEG data from mild traumatic brain injury patients (Dimitriadis et al., 2015b) in 

previous reports from our group. Tensor Subspace Analysis blends multi-linear algebra and 

manifold data learning. Given some Functional Connectivity Graph sampled from the space of 

functional connectivity patterns, the Tensor Subspace Analysis approximation is modeled by 

first building an adjacency graph capturing the proximity relationships among the connectivity 

patterns and then deriving a tensor subspace that faithfully represents these relationships. 

Tensor Subspace Analysis provides an optimal linear approximation to the Functional 

Connectivity Graph manifold. We selected a dimension of d=6 per dimension of the Functional 

Connectivity Graph which equals to a feature subspace of size 6 x 6. 
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2.10.2 Classification procedure 

Classification performance based on selected, sensor-specific relative power, symbolic 

complexity, and Global Efficiency features was assessed in separate schemes using two types 

of classifiers: a k–nearest neighbor algorithm and Support Vector Machines. Separate 

classification attempts were conducted on network-wise features, namely overall network 

Global Efficiency, Cost, Global Cost-Efficiency, and dimensions derived from the spatially-

filtered weighted Integrated Connectivity Graphs through Tensor Subspace Analysis.  

A 10-fold cross validation scheme was adopted each time. Each set of extracted features 

from the entire sample was randomly partitioned into two subsets, a training set (the database 

of features of known class) corresponding to 80% of the participants (20 NI and 22 RD 

students) and a test set (cases for which the class had to be predicted) corresponding to the 

remaining 20% of participants (5 NI and 5 RD students).  

As a measure of classification performance we used the correct recognition rate which 

was calculated as the proportion of subjects in the test set for which the correct label was 

predicted. The cross-validation scheme was repeated 100 times and the mean value and 

standard deviation of the correct recognition rate, sensitivity, and specificity were estimated.  

 

2.11. Associations between resting-state features and reading achievement 

Potential predictors of Woodcock-Johnson III Basic Reading composite scores were 

assessed through correlational analyses performed on the entire sample of participants. The 

initial pool of features consisted of 248 sensor-specific Global Efficiency values, the SMI 

values of dominant coupling modes, where significant group differences were revealed through 

the Network Based Statistic, the overall network Global Efficiency, network cost, and network 

cost-efficiency values, and the r index. All indices had values ranging between 0 and 1. The 
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measure of association used to construct the original correlation matrix between MEG-derived 

features and reading achievement scores was Distance Correlation which permitted 

quantification of linear as well as non-linear associations between every pair of features across 

groups (R; Szekely et al., 2007). The R metric ranges between 0 and 1 and has the important 

property that R(X,Y)=0 if and only if X and Y are truly independent. In order to control for 

multicolinearity among predictor variables, the original correlation matrix was reduced to a 

smaller number of feature clusters using a dominant-sets graph clustering algorithm 

(Dimitriadis et al., 2009, 2012a-d). In this method, the feature with the highest correlation 

coefficient with WJ-3 scores was retained from each of the remaining feature clusters.  

Given the small number of participants compared to the number of independent 

variables, a leave-one out cross-validation scheme within an Extreme Learning Machine 

approach was followed to obtain multiple regression analysis results. Extreme Learning 

Machines have been shown to be suitable to handle difficult tasks without demanding extensive 

training sessions (Huang et al., 2006). They are feedforward Artificial Neural Networks with a 

single layer of hidden nodes, where the weights connecting inputs to hidden nodes are 

randomly assigned and never updated (Huang et al., 2015). In the current analyses, the Extreme 

Learning Machine was trained on MEG features and WJ-3 scores from N-1 participants to 

predict the scores of the Nth participant. This procedure was repeated N times. Fig. 1 

summarizes the main steps of the proposed analytic procedure.  

 

[Figure 1 around here] 

 

3 Results 

3.1 Group differences on network efficiency and type of sensor-interactions 

As a group RD students displayed lower sensor-specific global efficiency than NI 

students as shown in Figure 2a-b. These differences reached significance (p < 0.00001; 
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Wilcoxon Rank Sum Test) for sensors located over left temporal, and bilateral parietal and 

frontal sensors (see Figure 2c). With respect to overall network metrics, RD students as a group 

displayed lower Global Efficiency and Global Cost Efficiency, and higher average Cost values 

as compared to the NI group (p < 0.00001; Wilcoxon Rank Sum Test; Fig. 3), suggesting less 

efficient network communication with higher cost in the former.  

 

[Figures 2-3 around here] 

 

The probability distributions of Dominant Intrinsic Coupling Modes for each group, 

computed across all sensor pairs, are shown in Figure 4. A notable finding is the higher 

percentage of significant cross-frequency coupling modes within among NI students (12%) 

compared to only 5% in the RD group. Conversely, RD students showed higher same-

frequency probability distribution values in the θ, α1, and β1 bands compared to non-impaired 

readers. Interestingly, both groups showed prominent Dominant Intrinsic Coupling Modes in 

the δ band.  

 

[Figure 4 around here] 

 

These results were corroborated by group comparisons at the subnetwork level. 

Specifically, significant group differences on SMI values based on the Network Based Statistic 

were detected for 537 sensor pairs which represented predominantly within-frequency 

interactions as illustrated in Fig. 5d. The strength of these interactions which are visualized in 

Fig. 5a-b was higher in the RD as compared to the NI group. Moreover, these interactions took 

place between neighboring sensors (given that nearly all significant SMI values were located 
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at or near the diagonal in Fig. 5c). Analyses failed to reveal a subnetwork of sensor pairs 

featuring higher SMI values in NI as compared to RD students.  

 

[Figure 5 around here] 

 

3.2 Classification of students according to reading achievement groups 

 Table 2 reveals that overall classification accuracy using optimized sets of univariate 

features did not exceed 80% for symbolic Complexity and 70% for Relative Power (RP) 

measures (see Section 1 in Supplementary Material). Substantially higher classification rates 

were achieved using sensor-specific Global Efficiency (approximately 94%). Classification 

accuracy was slightly higher based on the 36 features derived from the topologically-filtered 

Functional Connectivity Graphs using Tensor Subspace Analysis. By comparison, 

classification accuracy based on overall network global Efficiency, Cost, or Global Cost-

Efficiency did not exceed 60%.  

 

Table 2. Results of various classification schemes using sensor-specific and network-level 

measures. 

Measure Classifier Accuracy (%) Sensitivity Specificity # of features 

RP1 k-NN 63.33±7.23 64.91±6.05 65.94±9.35 (19 out of 

8*248) 
 SVM 65.89±8.14 64.43±7.17 67.04±9.54 

CI2 k-NN 77.32±1.12 76.15±1.25 77.03±2.12 (55 out of 

8*248) 
 SVM 80.36±1.14 80.19±1.41 79.28±2.17 

Sensor-specific 

GE3 

k-NN 94.52±1.09 94.89±1.04 94.95±1.67 (67 out of 

8*248) 
SVM 94.36±1.78 93.58±1.39 93.97±2.32 
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r-index  k-NN 72.44±1.66 72.80±1.41 72.24±201 1 

 SVM 73.62±1.87 73.05±1.38 72.88±2.05  

Network GE k-NN 57.44±1.98 55.34±1.17 54.91±1.80 1 

 SVM 59.56±2.01 57.88±1.28 53.67±2.12  

Cost k-NN 54.66±1.72 56.22±1.48 56.21±2.03 1 

 SVM 57.14±1.66 56.39±1.71 55.81±1.81  

Global- Cost 

Efficiency 

k-NN 62.12±3.34 64.41±3.9 64.94±4.45 1 

SVM 63.51±4.13 64.46±4.01 65.04±4.15  

wIFCG 

dimensions 

k-NN 96.68±1.41 96.32±1.67 96.12±2.12 36 

SVM 97.03±1.89 96.77±1.89 95.07±1.98  

Abbreviations, GE: global efficiency; wIFCG dimensions: features derived from the weighted 

Integrated Functional Connectivity Graphs using Tensor Subspace Analysis; k-NN: k-nearest 

neighbor classifier; SVM: Support Vector Machine; RP: Relative Power, CI: Complexity 

Index.  
1 The distribution of Relative Power features across frequency bands was: 1 (δ), 2 (θ), 4 (α1), 5 

(α2), 3 (β1) and 4 (β2). 
2For subword length l = 7; The distribution of Complexity indices across frequency bands was: 

10 (θ), 8 (α1), 10 (α2), 24 (β1), 1 (β2), and 2 (β3). 
3The distribution of sensor-specific Global Efficiency indices across frequency bands was: 13 

(δ), 9 (θ), 6 (α1), 9 (α2), 8 (β1), 5 (β2), 6 (β3), and 11 (γ). 
 

3.3 Predictors of reading achievement 

The dominant-sets graph clustering algorithm reduced the original set or resting-state 

sensor-specific and network-related features to 63 feature clusters demonstrating the highest 

correlation coefficients with reading achievement scores. These features were input to an 

Extreme Learning Machine approach was implemented which was trained on data from N-1 

participants to predict reading achievement scores of the Nth participant. The average R2 across 

N runs was 0.891. The set of features demonstrating the highest associations with reading 

achievement scores included 55 weighted sensor-pair interactions (SMI values), the r index, 
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and Global Cost-Efficiency. Average correlation coefficients (±SD) between distinct types of 

features and WJ-3 scores were: r = 0.43±0.03 for SMI values, r = 0.47±0.03 for the r index, 

and r = 0.35±0.04 for network Global Cost-Efficiency. As a further cross-validation step of this 

approach we created 10,000 data sets by randomly selecting sets of 63 features (with 

replacement) and computed the compound R2 values obtaining an averaged R2 of 0.345 (SD = 

0.067).  

Figure 6 illustrates the spatial layout of the 53 sensor interactions which emerged as 

features with the highest association with reading achievement scores in the entire sample. In 

the RD group all weighted interactions were between temporo-parietal sensors in the α1 band 

(within-frequency), whereas corresponding interactions in the NI group were both within-

frequency (in the α1 band involving parieto-occipital sensors) and cross-frequency (between 

α1 and β1 bands involving temporal sensors). 

 

[Figure 6 around here] 

 

4 Discussion 

The present study explored a novel approach to represent systematic temporal variability 

of resting-state neuromagnetic time series as sequences of a finite set of distinct chunks of 

successive time points. Time series windows that displayed consistent time-varying profiles 

were represented by distinct symbols, with both symbol number and size determined 

empirically from the recorded data. A similar approach, adapted for sensor pairs, was utilized 

in order to detect common, repeatable patterns of symbolic sequences between sensors, 

providing a variety of indices of functional interaction. These included within and cross-

frequency interaction for sensor pairs, sensor-specific global efficiency metrics derived from 

graph theory, as well as overall network efficiency and cost-efficiency in supporting 

information exchange over time.  
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Results can be summarized as follows: As a group, RD students displayed reduced global 

network efficiency and cost-efficiency of information transfer compared to non-impaired 

readers, which was predominantly realized through within-frequency interactions between 

neighboring sensors. In contrast, the repertoire of dominant sensor interactions among NI 

students featured a higher proportion (12% of total) of cross-frequency interactions, as 

compared to only 5% in the RD group.  

The present findings extend previous results from our group revealing reduced local 

efficiency of short-range connections among left temporo-parietal sensors in the β3 band 

(Dimitriadis et al., 2013).  Evidence suggesting a poorly integrated sensor-level network among 

children with dyslexia has also been reported based on minimal spanning tree analyses of 

resting-state EEG data (Gonzalez et al., 2016). Although not directly comparable, these results 

are generally consistent with reports of disrupted network structure and various connectivity 

abnormalities in dyslexia (Frye et al., 2012; Finn et al., 2014; Koyama et al., 2010; 2013). 

Additional aberrant features of CFC interactions among RD students were highlighted in this 

study, representing globally reduced long-range CFC interactions compared to non-impaired 

readers. It has been proposed that cross-frequency interactions support the synchronization of 

nested hierarchical activities of neuronal assemblies oscillating on a dominant frequency mode 

(Buzsáki, 2010). This mechanism purportedly supports the accuracy in the timing of exchanged 

information among different oscillatory rhythms and the dynamic control of anatomically 

distributed functional networks (Buzsáki, 2006; Canolty and Knight, 2010). 

The aforementioned group-level comparisons were supported by the results of individual 

classification schemes. Classification accuracy of individual students reached ~97% when 

network-level features were used, whereas classification accuracy relying solely on relative 

power at each sensor averaged 70%.  
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The significance of these results for the functional organization of the brain mechanism that 

supports basic reading skills was corroborated via correlational analyses. Results showed that 

an important positive predictor of Reading achievement scores was the relative preponderance 

of cross-frequency interactions both within and across-sensor pairs. Additional predictors were 

the strengths of symbolic interactions (both within and across-frequency) between several left 

temporo-parietal sensors in both groups of participants. These results are consistent with the 

widely held importance of left hemisphere networks for reading. Moreover, failure to identify 

short-range within-frequency interactions as predictors of reading achievement scores in the 

RD group suggest that the increased contribution of such interactions in the overall network of 

information exchange at rest represents a less efficient, compensatory mode of organization.  

 

4.1 Methodological advances and limitations 

The present results were facilitated by a number of methodological advances 

implemented in the current study. First and foremost, a novel approach was implemented in 

order to obtain a symbolic representation of continuous time series data. This symbolization 

scheme, which was first introduced in previous studies of our group (Dimitriadis et al., 2012; 

2013), entails a data-driven procedure that determines the optimal symbol set size and the 

optimal symbol length to ensure representation of either individual time series or pairs of time 

series (Janson et al., 2004). Further, statistical and topological filtering were applied to the 

SMI-based functional connectivity graphs in order to identify the most prominent Dominant 

Intrinsic Coupling Mode features and to estimate both sensor-specific and overall network 

global efficiency and cost-efficiency. In the case of functional connectivity graphs this step 

was complemented by a tensorial approach which involves treating the data in its original 

matrix form preserving spatial associations between sensors. Additional features were also 

explored as sources of between-group variability in the form of relative power and global 
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efficiency at each sensor, a step that had proven useful in increasing prediction accuracy of 

task-related EEG data in a previous study (Dimitriadis et al., 2015a). 

The age-matched design of the present study did not permit us to assess whether the 

differences found between reading ability groups were, at least in part, due to group differences 

in rates of development of underlying brain mechanisms. The wide age range of the present 

sample may have introduced additional error variability in the estimation of reading 

achievement predictors (although standardized age-adjusted reading capacity scores were used 

in the analyses). Moreover, future studies should examine whether the pattern of functional 

network integration that is characteristic of RD children may change following systematic 

reading interventions. In the presence of change, do they represent compensatory processes or 

normalization towards a resting-state network that is similar to the one observed among 

typically achieving students? Another important limitation of the present findings concerns the 

nature of the MEG data employed in the analyses (sensor level), which significantly limited 

the spatial resolution of the results. It should also be noted that classification analyses were 

based on relatively small samples of RD and NI children and an extensive pool of MEG-derived 

features. Thus, despite efforts to select optimum independent variables to be used in the final 

classification models using bootstrapping, results may have still been largely inflated by the 

small subject to feature ratio. Independent validation of the final classification model in a 

different sample is necessary. Finally, it would be of considerable interest to explore how 

resting-state functional network organization is associated with similar features obtained 

during performance of reading tasks (e.g., Vourkas et al., 2011). 

Finally, a cautionary statement is in order with respect to the generalizability of power 

spectrum data reported in the present work. Specifically, the strong similarity of the spatial 

distributions of average power across groups (as displayed in Fig S1-2) is notable. Both 

absolute and relative power are quantitative measures of brain activity integrated across 
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experimental time. Conversion of axial gradiometer recordings into planar-gradiometer 

equivalent signals may have further contributed to this effect.  More sophisticated approaches 

such as the Complexity Index introduced here and multiscale entropy that take into account the 

non-stationarity of brain activity may be more sensitive to group differences.  

Additional precautions were taken in the present work to ensure that (a) group 

differences in the overall spectral profiles did not affect classification results (as indicated by 

comparable distributions of the n coefficient of the individual log[power[ over log[frequency[ 

functions shown in Fig. S3), and (b) the data submitted to the statistical and topological filtering 

and further used for group classification was not significantly contaminated by non-biological 

artifacts (using recordings empty room MEG recording shown in Fig. S5).  

 

5 Conclusion 

Reading-disabled children demonstrated a less efficient network communication 

compared to non-impaired readers characterized by reduced contribution of cross-frequency 

interactions between distant brain areas. The functional significance of these derived features 

was further supported by the linear prediction of Woodcock-Johnson III Basic Reading 

composite scores. The study relied heavily on the notion of Dominant Intrinsic Coupling 

Modes featuring both within and cross-frequency interactions, and on the optimal 

representation of signal dynamics as symbolic sequences to achieve very high rates of 

classification of individual students.  
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Figure Captions 

Figure 1. Data analysis flowchart.  

The analysis workflow and interdependencies among the different analysis procedures and 

computed metrics. Abbreviations, GE: Global Efficiency; GCE: Global Cost-Efficiency; ICA: 

Independent Components Analysis; NBS: Network-Based Statistic; OMST: Orthogonal 

Minimal Spanning Trees.  

 

Figure 2. Group-averaged sensor-specific sensor-specific global efficiency (GE) for non-

impaired (NI; A) and reading-disabled students (RD; B). Sensors where significant 

differences (NI>RD) were found are shown in red (p < 0.00001; Wilcoxon Rank Sum Test) 

(C). 

 

Figure 3. Group-averaged global cost-efficiency (GCE), cost (C) and overall network 

Global Efficiency (GE). Asterisks indicate significantly higher Cost values and lower GE and 

GCE values for Reading Disabled (RD) as compared to typical readers (NI; p < 0.00001; 

Wilcoxon Rank Sum Test).  

 

Figure 4. Group-averaged empirical Probability Distributions (PD) of dominant intrinsic 

coupling modes for NI (A) and RD (B) participants. The diagonal cells correspond to intra-

frequency couplings; off-diagonal cells indicate cross-frequency interactions. 

 

Figure 5. Group-characteristic dominant coupling modes based on Symbolic Mutual 

Information (SMI). The spatial layout of interactions that survived statistical (via 

bootstrapping) and topological filtering (via Orthogonal Minimal Spanning Trees) for each 
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group of participants is illustrated in plots A-B. The vast majority of connections characterized 

by higher SMI values in the RD vs. NI groups were between neighboring sensors. This trend 

is visualized in the middle row of images (C) where SMI values are plotted as matrices with 

dimensions equal the number of MEG sensors. (D) Comodulograms shown in the lower row 

of images (D) indicate the dominant intra or cross-frequency couplings for each group.  

 

Figure 6. Topological layout of functional interactions that emerged as significant 

predictors of Woodcock-Johnson III Basic (WJ3) Reading composite scores for reading 

disabled (RD) and non-impaired readers (NI). The color scale indicates the strength (SMI 

value) of coupling for each of 53 pairs of sensors. Remarkably all interactions in the RD group 

were in the same frequency (a1 rhythm), whereas corresponding interactions in the NI group 

were both within-frequency (in the α1 band) and cross-frequency (between α1 and β1 bands). 
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