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Forecasting methods in energy planning 

models  

Abstract  

Energy planning models (EPMs) play an indispensable role in policy formulation and energy 

sector development. The forecasting of energy demand and supply is at the heart of an EPM. 

Different forecasting methods, from statistical to machine learning have been applied in the past. 

The selection of a forecasting method is mostly based on data availability and the objectives of 

the tool and planning exercise. We present a systematic and critical review of forecasting 

methods used in 483 EPMs. The methods were analyzed for forecasting accuracy; applicability 

for temporal and spatial predictions; and relevance to planning and policy objectives. Fifty 

different forecasting methods have been identified. Artificial neural network (ANN) is the most 

widely used method, which is applied in 40% of the reviewed EPMs. The other popular 

methods, in descending order, are: support vector machine (SVM), autoregressive integrated 

moving average (ARIMA), fuzzy logic (FL), linear regression (LR), genetic algorithm (GA), 

particle swarm optimization (PSO), grey prediction (GM) and autoregressive moving average 

(ARMA). In terms of accuracy, computational intelligence (CI) methods demonstrate better 

performance than that of the statistical ones, in particular for parameters with greater variability 

in the source data. However, hybrid methods yield better accuracy than that of the stand-alone 

ones. Statistical methods are useful for only short and medium range, while CI methods are 

preferable for all temporal forecasting ranges (short, medium and long). Based on objective, most 

EPMs focused on energy demand and load forecasting. In terms geographical coverage, the 

highest number of EPMs were developed on China. However, collectively, more models were 

established for the developed countries than the developing ones. Findings would benefit 

researchers and professionals in gaining an appreciation of the forecasting methods, and enable 

them to select appropriate method(s) to meet their needs. 

Keyword: Forecasting; Prediction; Energy demand; Load forecasting; Energy planning models 

Highlights: 

 ANN is the most popular; outperforms statistical methods in forecasting energy demand 

 Hybrid methods perform better than stand-alone ones in most cases 

 Statistical methods are suitable for short term and computational intelligence methods 

are suitable for all temporal forecasting  

 Fuzzy and Grey prediction methods are suitable for forecasting with incomplete datasets 
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 Energy demand and load forecasting were the main objectives of forecasting models 

1 Introduction 

Increasing greenhouse gases (GHGs) emission contribute to global warming, resulting in 

amplified global temperature and associated vulnerabilities [1]. Mitigating the impacts of climate 

change requires the reduction or at the very least the stabilization of atmospheric CO2 

concentrations, which can be achieved by decreasing global carbon outflow from energy and 

land-use sectors, the two major GHG sources. Emissions from land-use have been nearly 

constant, while the emissions from fossil fuel based energy system climbed up by 29% between 

2000 and 2008 [2]. If current GHG concentrations remain constant, the world would experience 

a few centuries of rising mean temperatures and sea levels [3-5]. Studies suggest that the current 

energy and transportation systems are likely to be responsible for significant CO2 discharges over 

the next fifty years [6], which can increase the global mean temperature by approximately 1.1 to 

1.4˚C between 2010 and 2060 [7]. Future initiatives on energy planning and development should, 

therefore, focus on decarbonizing the energy generation and demand sectors. Research indicates 

that CO2 emissions are negatively associated with national expenditure on energy research; 

therefore, the transition away from carbon intensive energy generation for atmospheric CO2 

stabilization will require significant investments in innovative energy research and development 

[8].  

EPMs are essential for assisting stakeholders in making informed decisions for future energy 

sector development – globally, regionally and nationally. The development of EPMs started in 

the 1960’s [9], but the interest in them increased after the oil crisis in the 1970’s that highlighted 

the effects of dependency on conventional fuel sources on global, regional and national 

economies, in particular the role of exogenous political events on the oil market [10]. The crisis 

acted as a catalyst for the critical assessment of fuel resources, rational use and conservation of 

energy resources, and long-term energy planning for global, regional, national and sectoral 

utilization [11]. In addition, the Rio Earth Summit in 1992 and the report of the 

Intergovernmental Panel on Climate Change (IPCC) in 1995 triggered further environmental 

studies on GHG emissions [12], while cautiously concluding that CO2 emissions had a 

noticeable impact on the environment [13]. Intensive discussions and debates followed, 

legislations were formulated and GHG emission reduction targets were set; e.g. Kyoto Protocol 

in 1998. Although separate models for the evaluation, projection and alleviation of 

environmental impacts were created, EPMs played a critical role in identifying system 

boundaries and underlying relationships between the socio-technical parameters of energy, 

economy and environment. 
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Different authors reviewed EPMs in previous years. Nguyen (2005) classified EPMs into six 

categories – energy information systems, macroeconomic, energy demand, energy supply, 

modular package and integrated models [9]. Pfenninger et al. categorized EPMs into four types – 

energy system optimization; energy system simulation; power system and electricity market and 

qualitative and mixed-method scenarios [14]. Most of the reviews focused on classifying the 

energy planning models as a whole, rather than investigating and categorizing the underlying 

forecasting methods. Suganthi investigated the models for forecasting energy demand [15], albeit 

only partially. Moreover, parameters for categorizing forecasting methods are not same as for 

EPMs. The choice of forecasting method can affect the accuracy and validity of results in an 

EPM. 

Previous treatments of EPM forecasting methods either divide the topic into its areas of 

application or into the broad categories of underlying techniques. Application areas are always 

evolving – through the integration of new domains and concepts, as well as by expanding the 

breadth and depth of a modelled domain. The difficulty arises when previously categorized 

application areas are not flexible enough to accommodate a new area. For example, behavioral 

energy conservation is an important environmental psychology aspect of climate and energy 

debate; and widely considered for the modelling of energy use in buildings and transportation, as 

well as for national energy demand forecasting and policy making.1 On the other hand, dividing 

forecasting methods based on the underlying techniques has similar issues. For example, Weron 

classified forecasting methods into two broad categories – statistical approaches and artificial 

intelligence (AI) based techniques [16]. The developments in computing over the past decades 

have enabled the use of compute-intensive methods for improved accuracy and reduced 

computation time, thereby enhancing their applicability. AI techniques are now widely used to 

tune up parameters in statistical models. Moreover, a number of soft computing or 

computational intelligence2 techniques routinely use advanced statistical concepts. Therefore, 

categorizing the forecasting methods as either statistical or artificial intelligence not only gives an 

inaccurate account but also hinders the informed comprehension of the strengths and weaknesses 

of different approaches. The hybridization of methods to suit application areas is characterized 

                                                      
1 Examples of the use of behavioral aspects of public energy conservation in policy making can be found in 

Japan’s Third National Communication under the United Nations Framework Convention on Climate Change 

(UNFCC) (http://unfccc.int/resource/docs/natc/japnc3.pdf) and Energy Outlook of Vietnam through 2025 

(http://open_jicareport.jica.go.jp/pdf/11899796_02.pdf)  
2 It can be argued that the so called AI methods used in forecasting are in fact, more specifically, computational 

intelligence (CI) techniques, also known as soft computing in AI. For further information on how computational 

intelligence branched out from general AI, initially to distinguish neural networks from hard AI but later to 

incorporate fuzzy systems and evolutionary computation, the reader is referred to the history of IEEE 

Computational Intelligence Society (CIS) at 

http://ethw.org/IEEE_Computational_Intelligence_Society_History  

http://open_jicareport.jica.go.jp/pdf/11899796_02.pdf
http://ethw.org/IEEE_Computational_Intelligence_Society_History
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by data incompleteness and uncertainty; temporal and spatial variability; and domain features – 

all of which mandates a new classification scheme. 

Existing reviews thus lack a comprehensive coverage in terms of scope, accuracy and 

applicability. The objective of this review is, therefore, to analyze the methods utilized in 

different EPMs to investigate their accuracy, objective, temporal and spatial extents with a view 

to identify the factors behind the choice of forecasting methods. Findings of this study would 

benefit researchers in gaining an appreciation of the methods, as well as enable them to select 

appropriate forecasting methods for future research. 

2 Methodology 

A systematic state-of-the-art review was undertaken on published electronic and non-electronic 

resources for the study of underlying forecasting methods in EPMs. A preliminary study was 

conducted to gather an overview of the topics related to forecasting methods in energy planning. 

The identified main topics were: energy demand and/or supply model and/or forecasting; 

energy planning models; emission reduction models; time series analysis; and forecasting. These 

topics were used to identify relevant keywords, listed in Table 1. Keywords were then utilized to 

search electronic databases: Google Scholar, ScienceDirect, Scopus, Ei Compendex and Web of 

Science, for relevant publications on forecasting methods of EPMs. 

<Insert Table 1 about here> 

An advanced search was conducted within the databases by categorizing keywords into four 

word groups and by combining them using the Boolean operator ‘AND’. The search was 

conducted in two stages. Firstly, the model, objective and geographical extent keywords were 

used. Secondly, the model, objectives, methods and analysis measures were applied. The initial 

search results at each stage were refined by applying the following inclusion criteria: 

 Objective: Energy forecasting 

 Language: English 

 Sources: Publications from journals related to energy and core forecasting and planning 

of energy; fossil fuel; renewable energy; carbon emission etc. 

Abstracts of the selected publications were scrutinized. Articles were chosen for review if the 

substance was within the scope of the study. A further search was conducted on the recognized 

authors who had contributed noticeably in related fields. 600 publications were found from the 

search. The criteria for retention were: 

 Studies covering energy demand and/or supply forecasting 
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 Studies with significant contribution in assessing the cost of reducing carbon emissions 

 Studies on forecasting methods for energy planning 

 Key review articles from established authors/institutions in the area of energy forecasting 

and planning models 

Finally, 483 publications and reviews on energy forecasting and planning were retained for 

analysis and interpretation. 

3 Classification  

Forecasting involves the predictions of the future based on the analysis of trends of present and 

past data, comprising three major components: input variables (past and present data), 

forecasting/estimation methods (analysis of trends) and output variables (future predictions), as 

shown in Figure 1. Based on the number of techniques used for trend analysis, the investigated 

methods can be broadly classified into two main types: stand-alone and hybrid. Standalone 

methods apply a single technique for analyzing trends whereas hybrid methods integrate more 

than one standalone techniques. In most cases, the purpose of hybridization is to rationalize or 

make reliable forecast output and to yield higher projection accuracy.  

<Insert Figure 1 about here> 

Based on the type of techniques, stand-alone methods are divided into three categories: 

statistical, computational intelligence (CI) and mathematical programming (MP). Hybrid 

methods are divided into four: statistical-statistical, statistical-CI, CI-CI and statistical-MP 

methods. Some of the reviewed literature utilized multiple standalone and/or hybrid methods for 

comparison and critique. To obtain a comprehensive picture in this paper, underlying techniques 

in hybrid methods are also separately accounted for in the stand-alone method categories in 

Table 2 and Table 3.  

The methods are also analyzed on the basis of geographical extent and forecasting time frame. 

Geographical extent was divided into 3 categories: global, regional and country. Global refers to 

the whole world; regional for a part of the world; e.g., Asia, Europe, G-8, and Sub-Saharan 

Africa; and country for an individual country. Models with geographical extent covering parts of 

a country are incorporated in the country category for brevity.  

The time frame of the forecasted models ranges from hours to 100 years. Grubb [17] suggested a 

period of 5 years or less for the short-term, between 3 and 15 years for the medium-term, and 10 

years or more for the long-term. However, this classification creates confusion for the medium- 

and long-term projections because of the overlapping time spans. This research, therefore, 
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utilizes the following definitions for time span or modelling horizons: short- (𝑡 < 3), medium- 

(3 ≤ 𝑡 ≤ 15) and long-term (𝑡 > 15), where 𝑡 is time span in years.  

The statistical and CI & MP based classification is presented in Table 2 and Table 3 respectively, 

illustrating the techniques used, geographical extent and forecasting time frame, as well as the 

number of studies and references.  

It is evident from the analysis of 483 studies that diversity in statistical methods are more 

prominent than computational intelligence and mathematical programming. 28 different 

statistical methods have been used, compared to 22 CI and one MP for forecasting. Among the 

statistical methods in Table 2, autoregressive integrated moving average (ARIMA) (46 models) 

followed by linear regression (LR) (39 models), autoregressive moving average (ARMA) (22 

models) and logistic regression (LoR) (19 models). Cointegration was widely used (48 models) 

technique to analyze the relations among the variables. ARIMA, LR and other statistical 

methods were utilized to forecast.  

<Insert Table 2 about here> 

With regard to CI techniques, ANN was used in 194 models, followed by SVM (58 models), FL 

(40 models), GA (39 models), PSO (34 models) and GM (29 models) (Table 3). In respect to 

geographical extent, global and regional models mostly adopt statistical methods. However, 

country based models utilized wide range of methods (statistical and CI) for forecasting (Table 2 

and Table 3).  

Forecasting models, which adopted metaheuristic methods to develop hybrid method, utilized 

genetic algorithm and particle swarm optimization most of the time. Also, global models utilized 

metaheuristic methods such as GA, PSO and Artificial bee colony optimization (ABCO). 

Moreover, country wise forecasting models utilized a wide range of methods both metaheuristic 

and MP.  

In case of temporal span, statistical methods are suitable for short term (Table 2) and CI methods 

are suitable for all temporal (Short, medium and long) forecasting (Table 3). 

<Insert Table 3Table 2 about here> 

4 Stand-alone methods 
Most of the analyzed models adopted stand-alone methods, which can be divided into three 

categories- statistical, computational intelligence (CI) and mathematical programming (MP) 

methods. 

4.1 Statistical methods  
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Statistics methods investigates the accumulation, examination, elucidation, presentation, and 

association of data [18] and can be divided into several categories from the analyzed models. For 

example: 

4.1.1 Regression analysis 

There are different regression methods for forecasting. Among, the regression methods six 

methods were utilized in the studied models. The methods were: Linear regression (LR), 

ordinary least squares (OLS), nonlinear regression (NLR), logistic regression (LoR), 

nonparametric regression (NR), partial least squares regression (PLSR) and stepwise regression 

(SR).  

Thirty-four reviewed models utilized linear regression (LR) method. LR is applied to model the 

relationship between two variables by fitting a linear equation to observed data [19].  Among the 

reviewed models which utilized LR, 89.7% models forecasted energy and electricity demand.  

Three forecasting models utilized non-linear regression (NLR). Bilgili et al. forecasted the 

electricity consumptions of Turkey with NLR [20]. Ghiassi et al. proposed a dynamic artificial 

neural network (DAN2) model for forecasting nonlinear processes and compared to NLR, the 

method was effective for forecasting nonlinear processes [21]. Tsekouras et al. developed a 

nonlinear multivariable regression to midterm energy forecasting of power systems of Greece 

[22]. Logistic or logit regression (LoR) was applied in 19 reviewed models, of which 68.4% 

models forecasted energy and electricity demand. 

Three models utilized nonparametric regression (NR) method. NR establishes model according 

to information derived from the data from larger sample sizes. Charytoniuk et al. developed a 

short-time load forecasting model by applying NR [23]. Another study applied NR model to 

short-term wind power forecasting [24]. Jónsson et al. presented an analysis of how day-ahead 

electricity spot prices are affected by day-ahead wind power forecasts. The author utilized NR to 

assess the wind power forecast [25]. 

Partial least squares regression (PLSR) was applied in two forecasting models. Zhang et al. 

forecasted China’s transport energy demand for 2010, 2015 and 2020 with PLSR method. The 

results demonstrated transport energy demand for 2020 will reach to a level of around 433.13 

million tons of coal equivalent (Mtce) and 468.26 Mtce, respectively [26]. Meng et al. analyzed 

and forecasted China’s annual electricity consumption with PLSR. It showed real estate and 

relative industry electricity consumption was affected by unusual development [27].  

Seven models forecasted with stepwise regression (SR) method. Ekonomou utilized SR to 

estimate energy consumption of Greece for 2005–2015 to compared with the results produced by 

LR and ANN method [28].Tso et al. utilized SR method to predict electricity consumption in 
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Hong Kong [29]. Rao et al. utilized SR to select the relevant cross-products to be used in a non-

homothetic Translog function to forecast and analysis of demand for petroleum products in India 

[30]. Aranda et al. utilized SR to select the correct model form to predict the annual energy 

consumption in the Spanish banking sector [31]. 

4.1.2 Univariate time series methods 

Among the studied models, five univariate time series methods were utilized. The methods were: 

moving average (MA), autoregressive integrated moving average (ARIMA), seasonal 

autoregressive integrated moving average (SARIMA), autoregressive moving average model 

with exogenous inputs (ARMAX) and autoregressive moving average (ARMA). 

Four forecasting models utilized moving average (MA). Azadeh et al. forecasted electricity 

consumption in Iran with moving average (MA) to make the data trend free to train the ANN. 

Also forecasted electricity consumption to compare the predicted results [32]. Xu et al. combined 

two statistical methods to model to forecast natural gas consumption in China from 2009 to 

2015. One of the method was MA [33]. In another study, Zhu et al. developed an improved 

hybrid model (MA-C-WH) to forecast electricity demand in China, which utilized MA [34]. Li et 

al. applied single and double MA for forecasting power output of a grid connected photovoltaic 

system [35]. 

The general form of Autoregressive integrated moving average (ARIMA) is ARIMA (p,d,q) 

where p is the order of the auto-regressive part, d is the order of the differencing, and q is the 

order of the moving average process. Some ARIMA has seasonal and non-seasonal part and 

denoted as ARIMA (p,d,q) (P,D,Q)s where P, D, Q is the seasonal part of the model, S the 

number of periods per season. Among the analyzed models, ARIMA was applied in 46 models 

(Table 2 and Table 4). Among the ARIMA models, 46% forecasted energy and electricity 

demand.  

<Insert Table 4 about here> 

Seasonal autoregressive integrated moving average (SARIMA) was applied in 13 projection 

models (Table 2). Zhu et al. developed MA-C-WH model to forecast electricity demand in China 

and utilized the results from a SARIMA model to compare the accuracy of the proposed model 

[34]. Cadenas et al. forecasted wind speed with integrated ARIMA and ANN to compare with 

the results from SARIMA for Oaxaca, Mexico [36]. Jeong et al. applied SARIMA for 

determining the annual energy cost budget in educational facilities. In this study, models for 

elementary, middle, and high schools SARIMA (13, 1, 0) (0, 1, 0), SARIMA (6, 1, 1) (0, 1, 0), 

and SARIMA (6, 1, 1)(0, 1, 0) respectively were developed [37]. Ediger et al. applied SARIMA 

methods to forecast primary energy demand of Turkey from 2005 to 2020 [38]. Monthly energy 
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forecasting model for Thailand was developed with SARIMA (l, 0,1)(0,1,0)12 [39]. Ediger et al. 

applied SARIMA to forecast production of fossil fuel sources in Turkey [40]. Forecasting 

electricity demand with SARIMA (0,1,1)(1,1,1) by Sumer et al. in [41]. Bouzerdoum et al. 

applied SARIMA for short-term power forecasting of a small-scale grid-connected photovoltaic 

plant [42]. Guo et al. applied SARIMA for forecasting wind speed in Hexi Corridor of China 

[43]. Wang et al. developed electricity demand forecasting with SARIMA method for China 

[44]. Boata et al. developed hourly solar irradiation forecasting model with SARIMA 

(1,0,1)(1,0,1)24 [45]. Wang et al. applied SARIMA to forecast electric load in [46]. 

Autoregressive moving average model with exogenous inputs (ARMAX) was utilized in 10 

forecasting models (Table 2). Darbellay et al. applied ARMAX to forecast Czech electricity 

demand [47]. Li et al. developed forecasting model for power output of a grid connected 

photovoltaic system with ARMAX [35]. González et al. applied SARMAX for forecasting 

power prices [48]. Bakhat et al. applied ARMAX for estimation of tourism-induced electricity 

consumption in Balearics Islands, Spain [49]. For short-term load forecasting Wang et al. utilized 

ARMAX based on evolutionary algorithm and particle swarm optimization [50]. Lira et al. 

utilized ARMAX for short-term electricity prices forecasting of Colombia [51]. Hickey et al. 

developed four ARMAX–GARCH models for forecasting hourly electricity prices [52]. 

Autoregressive moving average (ARMA) is a statistical method consist of two polynomials- 

autoregressive (AR) and moving average (MA). Among the reviewed models, 22 utilized ARMA 

(Table 2), of which 32% and 27% were utilized for energy & electricity demand and load 

forecasting respectively.  

4.1.3 Multivariate time series methods  

Vector autoregression (VAR) was applied in 13 reviewed models (Table 2). Among these 13 

models, 77% models forecasted energy and electricity demand. Bayesian vector autoregression 

(BVAR) was applied in four reviewed models (Table 2). Chandramowli et al. forecasted New 

Jersey’s electricity demand with BVAR [53]. To forecast energy consumption in China from 

2004–2010, Crompton et al. applied BVAR and concluded energy demand would rise at an 

annual average rate of 3.8% [54]. Energy consumption and projected growth was modelled with 

BVAR for selected Caribbean countries in [55]. Bayesian hierarchical model was developed for 

one-hour-ahead wind Speed Prediction in [56]. Multivariate VARIMA (0,1,1) model was applied 

to model and forecast fossil fuels, CO2 and electricity prices and their volatilities. VARIMA 

approach gives better results in the case of electricity prices. However, the time span of 

forecasting tends to be short [57].  

Structural Time Series Model (STSM) was utilized by Dilaver et al. to predicted that Turkish 

industrial electricity demand will be somewhere between 97 and 148 TWh by 2020 industrial 
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electricity demand [58]. In another study, Dilaver et al. predicted Turkish aggregate electricity 

demand will be somewhere between 259 TWh and 368 TWh in 2020 by utilizing STSM [59].  

4.1.4 Autoregressive conditional heteroscedasticity (ARCH) methods 

Generalized autoregressive conditional heteroskedasticity (GARCH) was applied in fourteen 

models. GARCH can be both univariate and multivariate [60].  

Seasonal generalized autoregressive conditional heteroscedasticity (SEGARCH) and Winters 

model with exponential form of generalized autoregressive conditional heteroscedasticity 

(WARCH) was applied to forecast energy consumption in Taiwan by developing hybrid 

nonlinear models with ANN [61]. Exponential generalized autoregressive conditional 

heteroscedasticity (EGARCH) method was utilized by Bowden et al. for short term forecasting 

of electricity prices [62]. 

4.1.5 Others 

Six analyzed model utilized autoregressive distributed lag (ARDL) (Table 2). Dilaver et al. 

forecasted industrial electricity demand [58] and aggregate electricity demand [59] in Turkey 

with ARDL. In another study, Dilaver et al. predicted Turkish aggregate electricity demand will 

be somewhere between 259 TWh and 368 TWh in 2020 by utilizing ARDL. Adom et al. utilized 

ARDL to forecast electricity demand in Ghana to be within 20,453 and 34,867 GWh by the year 

2020 for analyzed three scenarios [63]. Kim et al. forecasted energy demand of South Korea for 

2000-2005 after reviewing the 1990s [64]. Zachariadis T. forecasted electricity consumption in 

Cyprus with ARDL [65]. Vita et al. developed ARDL bounds testing approach to estimate the 

long-run elasticities of the Namibian energy demand [66]. 

Among the reviewed models, four models applied Log linear analysis (LA) (Table 2). Parikh et 

al. used the LA to project the demand of petroleum projects and natural gas in India. The study 

projected the demand of petroleum products to be 147 and 162MT in the business as usual 

scenario (BAU) of 6% and optimistic scenario (OS) of 8% GDP growth, respectively for 2011–

2012 [67]. In another study, Pilli-Sihvola utilized log-linear econometric model to project and 

examines the impact of gradually warming climate on the need for heating and cooling in five 

European countries form 2008-2050 [68]. Limanond et al. project transport energy consumption 

in Thailand from 2010 to 2030 with LR [69]. Wadud et al. projected natural gas demand in 

Bangladesh from 2009-2025 with log-linear Cobb–Douglas method [70]. 

Geometric progression (GP) was utilized in three studied models (Table 2). Mackay et al. 

forecasted crude oil and natural gas supplies and demands from 1995 to 2010 for France [71] and 

Denmark [72] by utilizing geometric progression method. In a separate study, Mackay et al. 

forecasted fluid fossil fuel supplies and demands for UK with geometric progression method [73].  
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Transcendental logarithmic (Translog) was applied in two forecasting models (Table 2). Rao et 

al. developed a translog model on a non-homothetic translog function to forecast and analyze the 

demand for petroleum products in India [30]. Furtado et al. forecasted petroleum consumption 

in Brazil up to 2000 with translog model along with logistic and learning model. The study 

demonstrated that translog model performed better than logistic and learning model [74].  

Polynomial curve model (PCM) is one of the trend extrapolation methods best modelled with 

polynomial equations. Xu et al. combined two statistical methods to forecast natural gas 

consumption in China from 2009 to 2015; one of the methods was PCM [33].  

Four reviewed models utilized partial adjustment model (PAM) for forecasting (Table 2). Nasr et 

al. utilized PAM to develop econometric model to estimate electricity consumption of post war 

Lebanon [75]. Adom et al. identified the factors that affect aggregate electricity demand in 

Ghana and forecasted electrical consumption from 2012 to 2020 with PAM and ARDL [63]. To 

analyze demand for natural gas in Kuwait, PAM was utilized in [76]. 

Seven models utilized analysis of variance (ANOVA) (Table 2). ANOVA was applied to 

compare the selected ANN, regression and actual data of forecasting electricity consumption [32, 

77]. ANOVA F-test was applied for ANN, simulated-based ANN, time series and actual test 

data for forecasting electrical energy consumption in Iran [78]. 

Cointegration implies restrictions on multivariate time series and is widely believed that it can 

produce better long horizon forecasting [79]. Unit root test and/or Cointegration was utilized in 

48 models (Table 2). The major objective behind applying cointegration method was to find the 

relations among the variables of a model. Nasr et al. utilized cointegration method to develop 

econometric model to estimate electricity consumption of post war Lebanon [75]. 

Decomposition was utilized in 16 analyzed models (Table 2).  

4.2 Computational intelligence (CI) methods 

There were 22 methods utilized in the analyzed models. The real life problems have nonlinear 

characteristics while forecasting, especially for energy planning. Computational methods were 

useful for prediction problems where numerical formulae and prior data on the relationship 

between inputs and outputs are unknown [80]. The applied CI methods can be divided into four 

categories.  

4.2.1 Machine learning methods 

Artificial Neural Network (ANN) was highly utilized method for varied objectives. Inspired by 

the human brain, ANN can learn and generalize from samples and analyses unpretentious useful 

connections among the information regardless of the possibility that the fundamental 
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connections are obscure or difficult to portray [81]. A schematic diagram of a feed-forward 

neural network architecture is shown in Figure 2. ANN has three layers: input, hidden and 

output. In Figure 2, only one hidden layers are shown and the number can be more than that 

depending on the complexity of the analyzed problem. Each neuron is connected to every other 

neuron of the previous layer through adaptable synaptic weight. A training process is carried out 

to train ANN by modifying the connection weights and weights are adjusted to produce the 

desired outputs as shown in Figure 3. Description of basic ANN method can be found in [82]. 

<Insert Figure 2 about here> 

<Insert Figure 3 about here> 

Among the reviewed models, 194 models applied ANN or different form of NN. The detail 

analysis of ANN can be found inError! Reference source not found. Table 5, which is 

demonstrating layer number, neuron number in different layers and neuron composition of 

different NN models, which differs depending on the objective. According to reviewed literature, 

NN structure with two hidden layers produced best results for the monthly load forecasting, the 

peak load forecasting and the daily total load forecasting modules [83]. However, one hidden 

layer is sufficient for most forecasting problems according to Zhang et al. [81]. In another study, 

the performance of the hierarchical model on long-term peak-load forecasts outperformed the 

multilayer perceptron [84]. Analysis of reviewed models revealed that 83% models utilized three 

layer neuron structure with one hidden layer. Only 6% and 17% models used two and four 

neuron layers respectively. 49%, 38%, 78% and 11% of the neuron structures had less than 5 

neurons respectively in first, second, third and fourth layer. In the case of the first and second 

layer, 26% and 43% of the neuron structures respectively had neuron numbers between 5 and 10. 

Moreover, 23% and 18% neuron structures had more than 10 neurons in the first and second 

layers respectively. Only 8% neuron structures had more than 10 neurons in third layer, which is 

only 1% in fourth layer (Table 5).  

<Insert Table 5 about here> 

Support vector machine (SVM) was utilized in 58 forecasting models (Table 3). Yuan et al. 

developed a short-term wind power prediction model with least squares support vector machine 

(LSSVM), because the kernel function and the related parameters of the LSSVM influences the 

greater accuracy of the prediction [85]. Some of the models utilized Support vector regression 

(SVR), which is SVM applied to the case of regression. Ju et al. utilized SVR and seasonal SVR 

forecast electricity load in Taiwan [86]. Among the reviewed models, 41.4%, 22.4% and 20.7% 

forecasted electric load, renewable energy and energy & electricity demand. 
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Abductive networks is a machine learning method. It was found to be applied in two forecasting 

models (Table 3). Abdel-Aal, R.E. utilized AIM (abductory inductive mechanism) and GMDH 

(group method of data handling) approach for forecasting monthly energy demand. AIM is a 

supervised inductive machine-learning tool. It automatically develops abductive network models 

form database of input and output variables. GMDH is a learning algorithm and formalized 

paradigm for iterated (multi-phase) polynomial regression [87]. In another study, Abdel-Aal et al. 

utilized AIM monthly electric energy consumption in eastern Saudi Arabia and demonstrated 

that AIM performed better than that of regression method [88].  

Decision tree develop an empirical tree which represents a segmentation of the data and able to 

classify and predict categorical variables. The segment are developed by applying a series of 

simple rules/logics. Advantage of the decision tree is that it produces a model which have 

segments of system with interpretable rules or logic statements [29]. However, it performs poorly 

with nonlinear and noisy data [80]. Tso et al. utilized decision tree method to predict electricity 

consumption in Hong Kong [29]. Yu et al. developed a building energy demand predictive 

model with decision tree and demonstrated high accuracy with 93% for training data and 92% 

for test data [89]. 

4.2.2 Knowledge based methods 

Expert systems was applied in seven models (Table 3). Most of the models utilized expert system 

for short term load forecasting [90-94]. Ghanbari et al. applied cooperative ant colony 

optimization-genetic algorithm (COR-ACO-GA) for energy demand forecasting with 

knowledge-based expert systems, which yielded better accuracy [95]. In another study, Ghanbari 

et al. integrated ant colony optimization (ACO), genetic algorithm (GA) and fuzzy logic to 

develop a load forecasting expert system [96]. 

4.2.3 Uncertainty methods 

Fuzzy logic was applied in 40 models (Table 3). In the analyzed models fuzzy method was 

proved to be efficient with incomplete or limited dataset. The theory of fuzzy sets is the 

foundation of the fuzzy logic. The basic description of the method can be found in [97]. 

Grey prediction (GM) belongs to family of grey system among which the GM (1, 1) model is the 

most frequently used. GM methods adopts essential part of grey theory (GT) which deals with 

systems with uncertain and deficient data [98, 99]. The real world systems are modelled with the 

assumptions based on the inadequate information [100]. GM method has been successfully 

adopted for forecasting models in different disciplines. Among the reviewed models, twenty-nine 

models applied GM. The basic description of the method can be found in [101]. 

4.2.4 Metaheuristic methods 
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Evolutionary methods are subset of metaheuristic methods which uses mechanisms inspired by 

natural biological evolution, such as reproduction, mutation, recombination, and selection. 

There were several types of metaheuristic methods applied in forecasting models- 

Genetic algorithm (GA) was utilized in thirty-nine forecasting models. The basic description of 

the method can be found in [102]. Forouzanfar et al. forecasted natural gas consumption for 

residential and commercial sectors in Iran with LoR. However, to make process simpler, two 

different methods are proposed to estimate the logistic parameters, of which one was GA based 

[103]. Zhang et al. utilized stimulated annealing algorithms with chaotic GA to develop a hybrid 

method to assist a SVR model to improve load forecasting performance [104]. Assareh et al. 

applied GA for forecasting energy demand [105] and oil demand [106] in Iran based on 

population, GDP, import, and export. Chaturvedi et al. applied GA for electric load forecasting 

[107]. The objective of the models, purpose of GA in that model and the publishing year can be 

found in Table 6. Among the reviewed models, 27% utilized GA for parameter optimization in 

the hybrid methods.  

<Insert Table 6 about here> 

Evolutionary algorithm (EA) was utilized in only one forecasting model. Wang et al. utilized a 

hybrid optimization method based on evolution algorithm and particle swarm optimization to 

improve accuracy of forecasting ARMAX model [50].  

Memetic algorithm (MA) was applied in one forecasting model. For forecasting electricity load, 

Hu et al. applied firefly algorithm (FA) based memetic algorithm (FA-MA) to appropriately 

determine the parameters of SVR model [108]. 

Particle swarm optimization (PSO) was applied in 34 models (Table 3). Zhu et al. developed an 

improved hybrid model (MA-C-WH), which utilized MA and adaptive particle swarm 

optimization (APSO) algorithm to forecast electricity demand in China. APSO was utilized to 

determine weight coefficients of the MA-C forecasting model and the objective function of this 

optimization problem was to minimize the MAPE [34]. Kiran et al. applied PSO to develop 

ACO-PSO hybrid method to forecast energy demand of Turkey [109]. The proposed ACO-PSO 

method by Kiran et al. was applied for to forecast the wind power output of Binaloud wind farm 

in Iran in [110]. Assareh et al. applied PSO for forecasting energy demand [105] and oil demand 

[106] in Iran based on based on population, GDP, import, and export. AlRashidi et al. 

constructed long term electric load forecasting model with PSO [111]. Also for modelling and 

forecasting long-term natural gas consumption in Iran PSO was utilized [112]. Abdelfatah et al. 

constructed a global CO2 emissions froecasting model with PSO [113]. The objective of the 

models, purpose of PSO in that model and the publishing year can be found in Table 7. Among 
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the reviewed models, 33% utilized PSO for parameter optimization in the hybrid methods. The 

basic description of the method can be found in [114, 115]. 

<Insert Table 7 about here> 

Artificial bee colony optimization (ABCO) was applied in four forecasting models among the 

reviewed models (Table 3). For forecasting world CO2 emissions, BCO was utilized for finding 

optimal values of weighting factors for forecasting [116]. Chaotic artificial bee colony algorithm 

was applied for electric load forecasting to determine suitable values of its three parameters for 

forecasting [117].  

Ant colony optimization (ACO) was utilized in ten forecasting models (Table 3). For energy 

demand forecasting, Ghanbari et al. applied Cooperative Ant Colony Optimization (COR-ACO) 

to learn linguistic fuzzy rules (degree of cooperation between data base and rule base), which 

would yield better accuracy [95]. In another study, Ghanbari et al. applied ACO-GA to generate 

optimal knowledge base (KB) for expert system to forecast load [96]. Niu et al. applied ACO 

with SVM model to forecast short-term power load, where ACO to pre-process the data which 

influence uncertain factors in forecasting [118]. NOx emission forecasting model for Iran utilized 

ACO to estimate optimal values of weighting factors regarding actual data in [119]. To estimate 

energy demand of Turkey, ACO was applied in [120]. In another study, to forecast energy 

demand of Turkey, ACO was applied to develop ACO-PSO hybrid method [109]. For estimating 

the net electricity energy generation and demand of Turkey, ACO was applied based on the 

GDP, population, import and export [121]. ACO based hybrid method was applied for to 

forecast the wind power output of Binaloud wind farm in Iran in [110]. Yu et al. applied ACO to 

forecast energy demand of China [122] and primary energy demand of China [123]. 

Chaotic ant swarm optimization (CAS) is deterministic chaotic optimization method inspired by 

behaviors of real ants [124], which was utilized by two models (Table 3). Hong et al. for electric 

load forecasting. In the proposed model CAS was applied to improve the forecasting 

performance of SVR by searching its suitable parameters combination [125]. For electric load 

forecasting with SVR model, Hong W.-C. applied CAS to determine suitable parameter 

combination for the model [126]. 

Differential evolution (DE) was applied in three of the analyzed models (Table 3). Wang et al. 

developed a load forecasting model with DE and SVR [127]. In another study, adaptive 

differential evolution (ADE) was applied with BPNN for developing method for electricity 

demand forecasting in [128]. For short term load forecasting Xiaobo et al. developed a GRA-

DE-SVR model, where DE to optimize parameters of SVR model [129]. 
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Gravitational search algorithm (GSA) was applied assist to develop three demand estimation 

models to forecast oil consumption based on socio-economic indicators in [130]. GSA was 

utilized to forecast electricity load in Taiwan to assist the seasonal SVR model in [86]. GSA was 

applied to optimize the parameters of the LSSVM model developed by Yuan et al. to short-term 

wind power prediction model [85]. Gavrilas et al. proposed a model of electric load forecasting 

with GSA combined with regression method and Kohonen neural networks [131].  

Harmony search (HS) was utilized to develop HArmony Search Transport Energy Demand 

Estimation (HASTEDE) model, in a study conducted by Ceylan et al. to project the transport 

sector energy consumption in Turkey. The results demonstrated overestimation of transport 

sector energy consumption by about 26% and linear and exponential forms underestimate by 

about 21%, compared to Ministry of Energy and Natural Resources projections. The study 

pointed out the under and overestimation might be the outcome of the choice of modelling 

parameters and procedures [132]. 

Immune algorithm (IA) was applied for electric load forecasting model, where IA determined the 

parameter selection of SVR model [133].  

Simulated annealing algorithms (SA) is an evolutionary method was applied in six models 

(Table 3). Zhang et al. utilized SA with chaotic GA to develop a hybrid method to assist a SVR 

model to improve load forecasting performance [104]. Pai et al. utilized SA algorithms were 

employed to choose the parameters of a SVM model to forecast electricity load in Taiwan [134]. 

Hong, W.-C. developed SVMSA model for load forecasting, where SA was applied to 

determining appropriate parameter combination for SVR model [126].  

Moreover, Firefly algorithm (FA) and Cuckoo search algorithm (CSA) are two metaheuristic 

methods utilized in four and two forecasting models respectively to develop hybrid methodology 

in recent times (Table 3).  

4.3 Mathematical programming (MP) 

Mathematical programming or mathematical optimization prescribes best solution/s from a set 

of available alternatives under some conditions. Among the analyzed models one mathematical 

programming methods were found- Nonlinear programming (NLP). Forouzanfar et al. 

forecasted natural gas consumption for residential and commercial sectors in Iran with LoR. 

However, to make process simpler, two different methods are proposed to estimate the logistic 

parameters, of which one was GA based [103]. 

5 Hybrid methods 
In some models, for specific reasons (i.e. parameter tuning, elevating accuracy) different stand-

alone methods were combined to construct hybrid methods. Hybrid methods were utilized to 
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develop the assumptions and parameters in some forecasting models [135]. The hybrid methods 

found in analyzed models, can be divided in following four categories: 

5.1 Statistical-statistical methods 

Xu et al. combined MA and PCM to develop a Polynomial Curve and Moving Average 

Combination Projection (PCMACP) model to forecast natural gas consumption in China from 

2009 to 2015. The model demonstrated, the average annual growth rate will increase and the 

natural gas consumption will reach 171600 million cubic meters in 2015 in China. [33]. To 

estimate the long-run elasticities of the Namibian energy demand, Vita et al. applied ARDL 

bounds testing approach to cointegration [66]. 

Tan et al. developed a day-ahead electricity price forecasting model by combining Wavelet 

(WT)–GARCH–ARIMA [136]. Bowden et al. applied ARIMA-EGARCH-M for short term 

forecasting of electricity prices [62]. Hickey et al. developed four ARMAX–GARCH models for 

forecasting hourly electricity prices. The four models were- GARCH (1,1), EGARCH (1,1), 

APARCH (1,1) and CGARCH (1,1) power ARCH (PARCH), where EGARCH is exponential 

GARCH; APARCH is asymmetric power ARCH; and CGARCH is Component GARCH [52]. 

Liu et al. developed ARMA-GARCH models (ARMA-SGARCH, ARMA-QGARCH, ARMA-

GJRGARCH, ARMA-EGARCH and ARMA-NGARCH) and their form of ARMA–GARCH-

in-mean to forecast short-term electricity prices [137]. 

5.2 Statistical-CI methods 

Pao developed hybrid nonlinear models with SEGARCH and WARCH with ANN to forecast 

energy consumption in Taiwan [61]. For wind speed forecasting Cadenas et al. developed a 

ARIMA-ANN model [138]. González-Romera et al. developed a hybrid method where the 

periodic behavior was forecasted with a Fourier series while the trend was predicted with a 

neural network [139]. For forecasting symbolic interval time series, Maia et al. developed a 

ARMA-ANN model, where it performed better than that of ARMA [140]. Kandananond, K. 

developed prediction models of the electricity demand in Thailand with ANN, MLR and 

ARIMA methods to develop ANN-MLR and ANN-ARIMA hybrid methods [141]. ANN model 

using statistical feature parameters (ANN-SFP) and historical data series (ANN-HDS) was 

applied for sort-term solar irradiance forecasting (STSIF) [142]. Shi et al. applied ARIMA with 

ANN and SVM to develop two hybrid models of ARIMA-ANN and ARIMA-SVM for 

forecasting of wind speed and wind power generation [143]. Bouzerdoum et al. developed 

SARIMA-SVM model for short-term power forecasting of a small-scale grid-connected 

photovoltaic plant [42]. Guo et al. developed a hybrid Seasonal Auto-Regression Integrated 

Moving Average and Least Square Support Vector Machine (SARIMA-LSSVM) model for 

forecasting wind speed in Hexi Corridor of China [43]. Wang et al. applied PSO optimal Fourier 
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approach on residual modification of SARIMA to develop F-S-SARIMA model to forecast 

electricity demand for China [44]. Wang et al. developed a combined model is to forecast electric 

load. For the model SARIMA, seasonal exponential smoothing (S-ESM) and Weighted SVM 

(W-SVM) was constructed by linear combination and APSO was utilized for determining weight 

coefficients of combined forecasting model [46]. Wang et al. applied seasonal decomposition 

with LSSVR for hydropower consumption forecasting in China [144]. 

Song et al. applied fuzzy regression analysis in the short-term load forecasting problem [19]. Xu 

et al. applied GM (1,1) with ARMA to develop GM-ARMA model to forecast energy 

consumption for Guangdong Province of China [145]. Amin-Naseri et al. developed a model for 

daily electrical peak load forecasting (PLF) with feed forward neural network (FFNN) method, 

where the Davies–Bouldin validity index was introduced to determine the best clusters [146]. 

Forouzanfar et al. forecasted natural gas consumption for residential and commercial sectors in 

Iran by utilization of LoR. However, GA based approach was proposed to estimate the logistic 

parameters, to make process simpler [103]. Zhu et al. developed an improved hybrid model 

(MA-C-WH), which utilized MA and adaptive particle swarm optimization algorithm to forecast 

electricity demand in China [34]. A electric load forecasting model was developed with 

regression method combined with GSA or Kohonen neural networks [131]. GSA was applied to 

estimate optimal weighting factors for three demand estimation models to forecast oil 

consumption based on socio-economic indicators up to 2030 [130].  

5.3 CI-CI methods 

To forecast solar radiation, Chen et al. developed a fuzzy neural network (FNN) model with 

ANN and fuzzy logic [147]. Fuzzy neural network was applied for day-ahead price forecasting of 

electricity markets in [148]. Bazmi et al. utilized adaptive neuro-fuzzy network (ANFIS) for 

electricity demand forecasting for state of Johor, Malaysia [149]. In another study, Zahedi et al. 

applied neuro-fuzzy network for electricity demand forecasting for Ontario province, Canada 

[150]. Esen et al. utilized neuro-fuzzy network for forecasting performances of ground-coupled 

heat pump system [151]. Forecasting model of mean hourly global solar radiation was developed 

with ANFIS [152]. Akdemir et al. utilized ANFIS for long-term load forecasting [153]. Chen et 

al. applied a collaborative principal component analysis and fuzzy feed- forward neural network 

(PCA-FFNN) approach for long term load forecasting [154]. In another study Chen, T. applied a 

collaborative fuzzy-neural approach for long term load forecasting [155]. Chang et al. applied 

weighted evolving fuzzy neural network for monthly electricity demand forecasting in Taiwan 

[156]. FNN was also applied for short term load forecasting in [157-159]. Padmakumari et al. 

applied FNN for long term land use based distribution load forecasting [160].  
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In case of metaheuristic methods, genetic algorithm (GA), Particle swarm optimization (PSO) 

and Ant colony optimization (ACO) were mostly utilized methods. El-Telbany et al. applied 

PSO and BP algorithm to train NN model to forecast electricity demand in Jordan [161]. 

Ghanbari et al. applied cooperative ant colony optimization-genetic algorithm (COR-ACO-GA) 

for energy demand forecasting with knowledge-based expert systems, which yielded better 

accuracy than ANFIS and ANN [95]. Ghanbari et al. integrated ACO, GA and fuzzy logic to 

develop hybrid method to construct a load forecasting expert system for Iran in [96]. Niu et al. 

developed ACO-SVM model for forecasting short-term power load [118]. NOx emission 

forecasting model for Iran, where GA, PSO and ACO was applied to estimate optimal values of 

weighting factors regarding actual data in [119]. In another study, to forecast energy demand of 

Turkey, ACO-PSO based hybrid method was applied [109]. Hybrid ACO-PSO method was 

applied for to forecast the wind power output of Binaloud wind farm in Iran in [110]. To forecast 

Annual electricity demand, Yu et al. utilized GA to optimizes the structure and PSO-GA to the 

parameters of the basis and weights of the Radial Basis Function (RBF) neural network [162]. 

Yu et al. applied PSO–GA approach to forecast energy demand of China [122] and primary 

energy demand of China [123]. In another study, Yu et al. utilized improved PSO-GA to forecast 

energy demand for China [163]. Lee et al. constructed a GP-based GM(1, 1) model [164] and 

hybrid dynamic GPGM model [165] to predict energy consumption. 

Hu et al. applied firefly algorithm (FA) based memetic algorithm (FA-MA) to appropriately 

determine the parameters of SVR model for load forecasting [108]. Hong, W.-C. developed IA-

SVR model for electric load forecasting [133]. Fan et al. integrated two machine learning 

techniques: Bayesian clustering by dynamics (BCD) and SVR to forecast the electricity load 

[166]. 

Hsu et al. developed an improved GM (1, 1) model, that combines residual modification with 

ANN sign estimations [167]. For predicting hourly load demand Bashir et al. applied ANNs and 

utilized PSO algorithm to adjust the network’s weights in the training phase of the ANNs [168]. 

Xie et al. constructed improved natural gas consumption GM (1, 1) model by applying GM for 

optimizing parameters [169].  

Zhang et al. utilized SA with chaotic GA to develop a chaotic genetic algorithm-simulated 

annealing algorithm (CGASA), with an SVR model to improve load forecasting. The proposed 

CGASA was utilized for internal randomness of chaotic iterations to overcome premature local 

optimum, which yielded better accuracy [104]. SA algorithms were employed to choose the 

parameters of a SVM model to develop SVMSA method to forecast electricity load in Taiwan in 

[134]. Ko et al. combined SVR, radial basis function neural network (RBFNN), and dual 

extended Kalamn filter (DEKF) to develop SVR-DEKF-RBFNN model for short-term load 
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forecasting [170]. To forecast electric load, CAS was applied to improve the forecasting 

performance of SVR by searching its suitable parameters combination in [125]. Azadeh et al. 

developed electrical energy consumption forecasting models with GM-ANN method, where GA 

tuned parameters and the best coefficients with minimum error were identified for ANN [171]. 

Cinar et al. applied GA to determine the hidden layer neuron numbers for GA-FFBPNN model 

to forecast the hydro energy potential of Turkey [172]. Xiaobo et al. developed a GRA-DE-SVR 

model for short term load forecasting with DE and SVR [129]. 

For forecasting world CO2 emissions, BCO was utilized for finding optimal values of weighting 

factors for forecasting with ANN [116]. In another study, chaotic artificial bee colony algorithm 

was applied to determine suitable values of its three parameters for electric load forecasting [117]. 

Continue genetic algorithm was applied to determine the number of neurons in the hidden layer 

and connecting weights for ANN model to forecast short term electricity load [173]. For accurate 

forecasting of electric load, Hong W.-C. applied CAS, CGA, CPSO and SA with SVR model, to 

determine suitable parameter combination for the model [126].  

GSA was utilized to assist the seasonal SVR model to develop SVRGSA and SSVRGSA for 

forecasting electricity load in Taiwan in [86]. Yuan et al. developed a LSSVM-GSA model to 

short-term wind power prediction model where GSA was applied to optimize the parameters of 

the LSSVM [85]. Niu et al. applied particle swarm optimization (PSO) as a training algorithm to 

obtain the weights of the forecasting methods (i.e. method of proportional (MP), LR, GM and 

BPNN) [115]. Wang et al. developed a load forecasting model with DE and SVR, where DE 

algorithm was used to choose the appropriate parameters for the SVR model [127]. Wang et al. 

applied ADE-BPNN forecasting method for developing prediction for electricity demand 

compared with different methods (i.e. ARIMA, BPNN, GA–BPNN, DE–BPNN, SSVRCGASA 

and TF-e-SVR-SA) [128]. Cao et al. applied quantum-behaved particle swarm optimization 

(QPSO) to optimize the parameters for the SVR model and developed a SVR-QPSO model to 

forecast the energy demand of China [174].  

5.4 Statistical-MP methods 

Forouzanfar et al. forecasted natural gas consumption for residential and commercial sectors in 

Iran by utilization of LoR. However, NLP and GA based approach were proposed to estimate 

the logistic parameters, to make the process simpler [103]. 

6 Discussion  

6.1 Accuracy 

An accurate forecasting of energy (demand and supply) and relevant parameters is critical to 

making informed decisions on energy infrastructure for power generation and distribution. 
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Forecasting accuracy is determined using different performance evaluation measures. Root mean 

square error (RMSE), mean absolute error (MAE), and mean absolute percentage forecast error 

(MAPE) were mostly utilized [61, 115, 134, 147, 175-177]. Among other methods, mean 

absolute deviation (MAD), normalized root-mean-square error measure (NRMSE), standard 

error of prediction (SEP) and absolute relative error (ARE) were also applied [44, 134, 145, 175]. 

The accuracy evaluation methods were different in various models. The different choice of 

accuracy methods made is hard to categorize the methods from best to worst, because the 

methods were not evaluated with same data or for similar objective. Under this circumstances, 

this study focused on the accuracy results of the reviewed models and their comparisons to find 

out which model performs better in specific objective (Table 8).  

This study found that combination of statistical methods performs better than that of stand-alone 

statistical methods and in most of the cases, CI methods outperformed statistical methods. 

Moreover, hybrid methods performed superiorly in accuracy to CI methods (Table 8). In case of 

forecasting nonlinear and discontinuous data, machine learning methods performed better than 

that of statistical methods [81, 167, 178]. When the relationship between the variables is not 

known or complex machine learning methods can forecast the data, which is difficult to handle 

statistically [179]. In some studies, authors combined machine learning methods with statistical 

methods to increase the accuracy [88, 139, 143, 151, 180]. However, machine learning methods 

tend to be complex in learning and application, while statistical methods are easy to adopt [181]. 

Some authors noted the learning complexity of methods influence the choice of forecasting 

techniques [103]. Data availability also effects the choice of forecasting method. ANN is a data 

driven method and requires large amount of data for higher forecasting accuracy [182]. In case of 

incomplete data sets, fuzzy logic is better. However, the accuracy level is not always satisfactory 

[182]. Grey prediction is another useful method while working with uncertainty problems with 

small sample; incomplete and discrete data [183, 184]. Significant numbers of authors advocated 

the utilization of hybridization methods to enhance the accuracy of the forecasting models. On 

the other hand, it would add more complexity in the model structure.  

<Insert Table 8 about here> 

6.2 Time analysis 

Based on the analysis of the previous EPMs, the research on forecasting models started on 1985, 

after the oil shock/crisis of 1970’s (Figure 4). At the starting period the number of models were 

low. After the United Nations Framework Convention on Climate Change (UNFCCC) 

committed State Parties to reduce GHG gas emission created by man-made CO2 emission 

systems, the development of forecasting EPMs started to rise from 1995 because energy sector 

has been one of the highest global emissions source.  
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<Insert Figure 4 about here> 

The number of models started to increase from 2005, when the Kyoto Protocol was entered into 

force in 2005. The number of models published escalated from 12 to 25 within 2004-2005. In the 

last 12 years, 76% EPMs were developed (Figure 4). The highest number of  models (46) were 

developed in 2010. However, the number of EPMs reduced to 34 in 2011 & 2012. In 2013 and 

2014, the published model number reduced to 20 and 24 respectively. The EPM number elevated 

to 27 in 2015. Up to June 2017, six models were published with the objective of forecasting in 

energy planning sector.  

Among the forecasting methods, statistical methods were the first to rise in use from 2005. 

Before 1990, statistical methods were mostly utilized (Figure 5). After 1990’s use of machine 

learning methods started to rise. From 2007, the use of machine learning methods augmented 

significantly as well as with statistical methods. After 2009 the integration of metaheuristic 

methods in forecasting started to grow. In 2015, 56 models utilized CI methods which is four 

times more than that of the statistical ones (14 models). The CI method use is demonstrating an 

exponential growth in past 12 years, where statistical methods are showing a gradual descend 

since 2010 (Figure 5). Major cause of the growth maybe the better accuracy of the CI methods 

(Table 8) and elevated speed in computational capabilities [185].  

<Insert Figure 5 about here> 

6.3 Geographical analysis 

Continent wise, all the continents with human habitation developed EPMs. According to United 

Nations, there 269 countries in the world [186]. Among these countries, forecasting models were 

developed for only 59 countries. Among all the countries, highest number of forecasting models 

were developed in China. Total 122 models were developed with 27 different methods of the 50 

analyzed methods of this study.  

In Europe, there are 53 countries [186], but only 18 countries developed energy planning 

forecasting models. The countries were- UK, Ireland, France, Netherlands, Denmark, Germany, 

Spain, Portugal, Italy, Croatia, Romania, Russia, Czech Republic, Hungary, Poland, Cyprus, 

Greece and Turkey. But most of the models were developed in the UK, Turkey, Spain and 

Greece (Figure 6).  

There are 41 counties in North America [186]. But only 6 countries (Haiti, Jamaica, Trinidad 

and Tobago, Mexico, USA and Canada) developed models for energy forecasting. Most of the 

models among these countries were developed in USA (Figure 6).  
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The continent of Oceania contains 25 countries [186], of which only Australia and New Zealand 

developed models. In this region other 23 countries of Melanesia, Micronesia and Polynesia are 

considered developing regions [186]. This concludes the fact that in this continent only 

developed countries established energy forecasting models.  

In Asia Japan, China, Hong Kong, Taiwan, South Korea, Jordan, Lebanon, Oman, Saudi 

Arabia, Kuwait, Iran, Pakistan, India, Bangladesh, Sri Lanka, Nepal, Indonesia, Singapore, 

Philippines, Malaysia and Thailand developed forecasting models for energy planning. So, 21 

countries among 50 countries [186] of the continents developed forecasting models. In Asia, the 

only developed economy is established in Japan. Along with Japan, other developing countries 

also established some models. In Asia, China, Taiwan, Iran and India developed higher number 

of forecasting models.  

Africa has 58 countries, of which only 5 courtiers developed forecasting models. Namibia, 

Ghana, Algeria, Tunisia and South Africa established 2, 4, 2, 1 and 5 models respectively.  

Among 14 countries of South America, Ecuador, Peru, Chile, Venezuela, Columbia, Argentina 

and Brazil adopted forecasting model for energy planning. Brazil developed most number of 

models. 

Among the studied 483 models, twelve models were developed for global forecasting (Table 2). 

LR, ANN, GA, ABCO and PSO were utilized for forecasting for global geographical extend 

(Figure 6).  

However, 30 models were established for regional geographical extend. The regions considered 

were- OECD countries, G-7 countries, Europe, CIS Countries, GCC countries, BRIC country, 

Middle East, North America, South America, Asia and developing countries. Among the 30 

models, 8 models were developed for Europe. From the analysis of the geographical extend, it is 

evident that developed economics have more EPMs than that of developing and least developed 

ones (Figure 6). Statistical methods are utilized for developed, developing and least developed 

contexts. However, CI methods are widely used in developed contexts (Figure 6).  

<Insert Figure 6 about here> 

6.4 Objective based analysis 

The studied EPMs had different objectives. From the analysis of 483 models, 11 objectives were 

identified (Table 9). These were energy and electricity demand, energy supply, renewable energy, 

GHG emissions, energy economic, socio-economic, energy and electricity price , load 

forecasting, planning and/or policy analysis, performance analysis and model development. 

Among the 28 statistical forecasting methods, ARIMA was used for 9 objectives, while LR 
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complied with 7 objectives, followed by ARMA (6 objectives) (Table 9). Among the 28 statistical 

methods, 24 methods were utilized for energy and electricity demand forecasting in 53.9% of the 

reviewed 483 models (Table 9).  

Among the CI and MP methods, ANN was utilized for 9 objectives, followed by GM and PSO 

both for 7 objectives. FL, SMV and ACO were utilized for seven objectives each. Moreover, GA 

were utilized for achieving six of the objectives (Table 10). Among the 22 CI and MP methods, 

17 and 14 methods were utilized for energy and electricity demand, and electric load forecasting 

respectively. In the reviewed 483 models, 73%, 38%, 18% and 13% of the model objectives were 

energy and electricity demand, electric load, renewable energy, and energy & electricity price 

forecasting respectively. For energy and electricity demand forecasting, statistical methods were 

used in 18% more models than that of CI and MP. However, CI methods were utilized in 28% 

and 4% more in electric load and renewable energy forecasting models respectively than that of 

statistical ones (Figure 7). 

<Insert Figure 7 about here> 

Among the 50 analyzed methods, maximum number of methods (25 statistical, 12 CI and one 

MP) were utilized to develop energy and electricity demand forecasting models. Second highest 

number of methods (8 statistical and 18 CI) were utilized to forecast electric load. Third highest 

number of methods (7 statistical and 9 CI) were used to renewable energy forecasting (Table 9 

and Table 10).  

<Insert Table 9 about here> 

<Insert Table 10 about here> 

7 Conclusion 

Energy planning models assist stakeholders assess the impact of current and future energy 

policies. The accuracy of EPMs depend on applying appropriate forecasting methods for demand 

and supply sector projections. Among all the forecasting methods, choice of appropriate one 

depends on different factors. The complexity and nature, as well as, the objective of the research 

problem is one of the key determinant of method choice. Other important factors of forecasting 

method selection can be accuracy and estimation adaptability with incomplete data-set.  

The review of 483 EPMs, revealed the use of fifty different methods between 1985 and June, 

2017. Among the 50 identified methods, statistical, computational intelligence (CI) and 

mathematical programming (MP) methods were 28, 21 and one respectively. Among CI 

methods, ANN was utilized in 194 EPMs, followed by SVM (58 models), FL (40 models), GA 

(39 models),  PSO (34 models) and GM (29 models). In the case of statistical methods, ARIMA, 
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LR and ARMA were utilized in 46, 39 and 22 EPMs respectively for forecasting. Evidently, CI 

methods were widely utilized than that of statistical ones for electric load and renewable energy 

forecasting. However, statistical methods were used in 18% more models than that of CI and MP 

for energy and electricity demand forecasting. The accuracy of CI methods for forecasting were 

better than that of statistical ones. Significant number of forecasting models utilized multiple 

stand-alone methods to develop hybrid approach, because they yielded higher accuracy than that 

of stand-alone ones. In case of incomplete data-set, some CI methods such as fuzzy logic and 

grey prediction outperformed other stand-alone ones.  

The analysis of the studied model objectives showed that most of the forecasting methods were 

applied to forecast energy demand and electricity load. The development of the forecasting 

models started from 1985, it spiked after 2005 and it is still continuing. Most number of models 

were developed in 2010. In case of the geographical extend, although most of the models were 

established for developed countries, some of the developing countries also established forecasting 

models. The highest number of models were developed for China.   
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Figure 1: Basic forecasting or estimation model structure 
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Figure 2: ANN schematic diagram  
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Figure 3: ANN process; adopted from [82] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Training data 
Data pre-

processing 

Selection of X% 

data for training  

Feeding data for 

training 

MSE ≤ 

Error rate 

Testing and 

validating ANN 

with X%- 100% 

data  

Post-processing 

data with de-

normalization 

process  

Terminate 

ANN process 

Yes No 



50 
 

Figure 4: Publishing year of the studied models 
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Figure 5: Publishing year of the models with methods utilized in energy planning models 

 

 

 

0

10

20

30

40

50

60

1985 1990 1993 1996 1999 2002 2005 2008 2011 2014 2017

N
u

m
b

er
 o

f 
m

o
d

el
s

Year (-)

Statistical methods

0

10

20

30

40

50

60

1985 1990 1993 1996 1999 2002 2005 2008 2011 2014 2017

N
u

m
b

er
 o

f 
m

o
d

el
s

Year (-)

CI  methods

MP method



52 
 

Figure 6: Country wise number of models utilizing different forecasting methods  
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Figure 7: Objectives of the models 
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Table 1: Searched keywords and associated groups 

Model Objective Geographical extent Time horizon 

Energy  Forecasting Global Short 

Electricity Projection Regional Medium 

Energy information   County Long 

Energy economic     

Energy supply and/or demand     

Emission reduction     

Energy planning    
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Table 2: Analysis of stand-alone statistical methods utilized in forecasting models 

Methods Geographical extend Time frame of forecasting Number 

of 

models 

References 

Global Region Country Short Medium Long 

Linear regression (LR) ■ - ■ ■ ■ ■ 39 [19, 20, 28, 71-73, 115, 

122, 123, 129, 141, 146, 

164, 175, 187-211]  

Nonlinear regression (NLR) - - ■ ■ ■ ■ 3 [20-22] 

Logistic regression (LoR) - ■ ■ ■ ■ ■ 19 [73, 74, 103, 193, 212-

226] 

Nonparametric regression (NR) - - ■ ■ - - 3 [23-25] 

Partial least squares regression (PLSR) - - ■ - ■ - 2 [26, 27] 

Stepwise regression (SR) - - ■ ■ ■ - 7 [28-31, 207, 227, 228] 

Moving average (MA) - - ■ - ■ - 4 [32-35] 

Autoregressive integrated moving average 

(ARIMA) 

- ■ ■ ■ ■ ■ 46 [35, 36, 38, 40, 41, 43, 

47, 62, 108, 117, 126, 

128, 134, 136, 138, 139, 

141, 143, 165, 229-254] 

Seasonal autoregressive integrated moving 

average (SARIMA) 

- - ■ ■ ■ ■ 13 [34, 36-46, 255] 

Autoregressive moving average model with 

exogenous inputs (ARMAX) 

- - ■ ■ ■ - 10 [35, 48-52, 191, 256-258] 
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Autoregressive moving average (ARMA) - - ■ ■ - - 22 [48, 129, 137, 140, 145, 

161, 180, 237, 246, 259-

271] 

Vector autoregression (VAR) ■ ■ ■ - ■ ■ 13 [53, 75, 272-282] 

Bayesian vector autoregression (BVAR) - - ■ ■ ■ - 4 [53-56] 

Structural Time Series Model (STSM) - - ■ - ■ ■ 3 [58, 59, 283] 

VARIMA - - ■ ■ - - 1 [57] 

Generalized autoregressive conditional 

heteroskedasticity (GARCH) 

- ■ ■ ■ ■ - 14 [49, 52, 60, 136, 137, 

175, 251, 284-290] 

Seasonal exponential form of generalized 

autoregressive conditional heteroscedasticity 

(SEGARCH) 

- - ■ ■ - - 1 [61] 

Exponential generalized autoregressive 

conditional heteroscedasticity (EGARCH) 

- - ■ ■ - - 1 [62] 

Winters model with exponential form of 

generalized autoregressive conditional 

heteroscedasticity (WARCH) 

- - ■ ■ - - 1 [61] 

Autoregressive distributed lag (ARDL) - ■ ■ - ■ ■ 6 [58, 59, 63-66] 

Log-linear analysis (LA) - ■ ■ - ■ ■ 4 [67-70] 

Geometric progression (GP) - - ■ - ■ ■ 3 [71-73] 

Transcendental logarithmic (Translog) - - ■ - ■ ■ 2 [30, 74] 

Polynomial curve model (PCM) - - ■ - ■ - 1 [33] 

Partial adjustment model (PAM) - - ■ ■ ■ - 4 [63, 75, 76, 240] 
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Analysis of variance (ANOVA) - - ■ - ■ ■ 7 [32, 77, 78, 291-294] 

Unit root test and/or Cointegration  ■ ■ ■ ■ ■ ■ 48 [63, 66, 75, 76, 240, 273, 

281, 283, 289, 295-333] 

Decomposition - ■ ■ ■ ■ ■ 16 [39, 58, 59, 334-346] 

Total number 3 8 28 18 22 14   

Percentage of all statistical methods (%) 11% 29% 100% 64% 79% 50%   
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Table 3: Analysis of stand-alone computational intelligence and mathematical programming methods utilized in forecasting models 

Methods Geographical extend Time frame of forecasting Number of 

models 

References 

Global Region Country Short Medium Long 

Computational intelligence (CI) methods         

Support vector machine (SVM) - ■ ■ ■ ■ ■ 58 [28, 43, 46, 85, 86, 104, 

108, 117, 118, 126-129, 

133, 134, 143, 144, 

166, 170, 174, 184, 

206, 208, 227, 228, 

249, 251, 258, 269-271, 

290, 345, 347-370] 

Decision tree* - - ■ ■ ■ - 4 [29, 89, 371, 372] 

Artificial neural network (ANN) ■ ■ ■ ■ ■ ■ 194 [20, 21, 28, 29, 32, 36, 

37, 47, 61, 69, 77, 78, 

83, 84, 87, 90, 95, 108, 

115, 116, 126-128, 131, 

138-143, 146-158, 160-

162, 167, 168, 170-177, 

180, 184, 191, 205, 

207, 227, 228, 231, 

246, 251, 253, 255, 

256, 263, 268-271, 280, 
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293, 294, 344, 349, 

352, 354, 357, 360, 

361, 365, 367, 369, 

373-478] 

Abductive networks - - ■ ■ - - 2 [87, 88] 

Expert system - - ■ ■ ■ - 7 [90-96] 

Grey prediction (GM) - - ■ ■ ■ ■ 29 [43, 101, 115, 145, 164, 

165, 167, 169, 184, 

230, 248, 390, 479-495] 

Fuzzy logic (FL) - - ■ ■ ■ ■ 40 [19, 45, 51, 96, 97, 147, 

149-160, 251, 253, 255, 

256, 357, 376, 435, 

454, 458, 461, 465, 

477, 496-504] 

Genetic algorithm (GA) ■ - ■ ■ ■ ■ 39 [95, 96, 102-108, 119, 

122, 123, 126, 128, 

156, 162-165, 169, 171, 

172, 247, 253, 268, 

270, 351, 357, 465, 

477, 505-513] 

Artificial bee colony optimization (ABCO) ■ - ■ ■ - ■ 4 [116, 117, 270, 469] 

Ant colony optimization (ACO) - - ■ ■ ■ ■ 10 [95, 96, 109, 110, 118-

123] 
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Particle swarm optimization (PSO) ■ - ■ ■ ■ ■ 34 [34, 44, 46, 50, 105, 

106, 108-113, 115, 119, 

122, 123, 126, 161-163, 

168, 174, 253, 290, 

364, 368, 452, 453, 

461, 471, 493, 504, 

514, 515] 

Gravitational search algorithm (GSA) - - ■ ■ - ■ 4 [85, 86, 130, 131] 

Chaotic ant swarm optimization (CAS) - - ■ ■ ■ - 2 [125, 126] 

Differential evolution (DE) - - ■ ■ ■ ■ 4 [127-129, 464] 

Harmony search (HS) - - ■ - - ■ 1 [132] 

Evolutionary algorithm (EA) - - ■ ■ - - 1 [50] 

Memetic algorithms (MA) - - ■ ■ - - 1 [108] 

Immune algorithm (IA) - - ■ - ■ - 1 [133] 

Simulated annealing algorithms (SA) - - ■ ■ ■ - 6 [104, 108, 126, 128, 

134, 359] 

Firefly algorithm (FA) - ■ ■ ■ - - 4 [108, 270, 363, 516] 

Cuckoo search algorithm (CSA) - ■ ■ ■ - - 2 [251, 474] 

Mathematical programming (MP) methods         

Nonlinear programming (NLP) - - ■ - - ■ 1  [103] 

Total number 4 4 22 19 13 12   

Percentage of all CI and MP methods (%) 18% 18% 100% 86% 59% 55%   

*Random forest was included under decision tree as they are collection of decision tree in the modelling. 



62 
 

Table 4: ARIMA model objectives and structures 

Objective Year ARIMA Structure  Ref. 

p,d,q (p,d,q) (P,D,Q)s 

Electricity load  2005 2,2,1 - [134] 

Electricity load  2013 1,1,1 - [86] 

Electricity demand  2003 0,1,0 - [167] 

Wind speed  2010 1,0,0; 2,0,0 - [138] 

Electricity demand  2006 0,1,1; 0,0,2; 3,2,0 (0,1,1)12 [231] 

Electricity demand  2008 - (0,1,1) (0,1,1)12 [139] 

Wind speed  2007 - (0,1,1) (0,1,1)12 [36] 

Electricity demand 1997 - (1,1,0) (1,1,0)12 [234] 

Electricity load 2011 1,1,1 - [117] 

Electricity demand 2011 0,2,2; 1,2,1; 1,1,0; 0,2,0 - [141] 

Energy demand 1999 1,1,1; 1,2,1 - [377] 

Global solar radiation 2000 - (1,0,1) (0,1,1) [152] 

Electricity demand 1999 - (0,1,1) (0,1,1) [235] 

Electricity demand 1999 - (1,1,0) (0,1,1) [235] 

Black-coal production 1999 - (1,0,1) (0,1,1) [235] 

Antracite production 1999 - (0,1,1) (0,1,1) [235] 

Electricity generation 1999 - (0,1,3) (1,1,0) [235] 

Solar radiation 2009 - (1,0,0) (1,1,0) [243] 

Electricity demand  2015 1,1,1 - [128] 

Electricity price  2002 2,1,1 - [232] 

Natural gas demand 2010 36,1,0 - [233] 

Electricity demand  2007 13,2,0 - [240] 

Power output of a grid connected 

photovoltaic system 

2014 1,1,1 - [35] 

Load forecasting 2009 2,2,1 - [126] 

Electricity demand 2006 0,1,0 - [248] 

CO2 emissions, energy demand and 

economic growth  

2012 - - [479] 

Electricity price  2010 - - [136] 

Energy demand 2007 - - [38] 

Electricity price 2008 - - [62] 

CO2 emissions, energy demand, and 

economic growth 

2011 - - [230] 
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Electricity load 2001 - - [238] 

Electricity price 2003 - - [229] 

Fossil fuel production  2006 - - [40] 

Electricity demand 2001 - - [236] 

Electricity load 1987 - - [237] 

Electricity demand 1993 - - [239] 

Electricity load 1995 - - [241] 

Electricity price  2005 - - [242] 

Electricity demand 2009 - - [41] 

Wind speed  2009 - - [244] 

Natural gas demand 1991 - - [245] 

Electricity demand 2012 - - [165] 

Wind speed  2011 - - [43] 

Wind speed and electricity 

generation 

2012 - - [143] 
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Table 5: ANN model objectives and structures 

Forecasted variable  Year No. of layers No. of neurons in layers Neuron 

composition 

Ref. 

2 3 4 

1st  2nd  3rd  4th  

<
5

 

5
-1

0
 

>
1

0
 

<
5

 

5
-1

0
 

>
1

0
 

<
5

 

5
-1

0
 

>
1

0
 

<
5

 

5
-1

0
 

>
1

0
  

Electricity demand  2006 - ■ - 
- ■ - - ■  ■ - - - - - 5-5-1 [191] 

- ■ - - ■  ■ - - - - - 5-6-1 

Electricity demand  2012 - ■ - ■ - - - ■  ■ - - - - - 4-8-2 [20] 

Energy demand 2010 - - ■ ■ - - - ■ - - - ■ ■ - - 4-20-17-1 [28] 

Electricity load  2008 - ■ - 

- ■ - - - ■ ■ - - - - - 8-36-1 [146] 

- ■ - - ■ - ■ - - - - - 9-10-1 

- ■ - - - ■ ■ - - - - - 10-31-1 

- ■ - - - ■ ■ - - - - - 8-17-1 

- ■ - ■ - - ■ - - - - - 9-2-1 

Electricity demand 2007 - - ■ - - ■ - - ■ - ■ - ■ - - 12-16-6-1 [32] 

Energy demand 2011 - ■ ■ 

- ■ - - ■ - ■ - - - - - 5-5-1 [69] 

- ■ - - ■ - ■ - - - - - 5-10-1 

- ■  - ■ - - ■ - ■ - - 5-5-5-1 

Energy demand  2008 - ■ - 

- - ■ ■ - - ■ - - - - - 12–4–1 [87] 

- - ■ - ■ - ■ - - - - - 12–5–1 

- - ■ - ■ - ■ - - - - - 12–6–1 

■ - - - ■ - ■ - - - - - 3–5–1 
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Energy demand 2009 - ■ - 
■ - - ■ - - ■ - - - - - 2-3-1  [61] 

■ - - ■ - - ■ - - - - - 2-4-1 

Solar radiation 1998 - ■ - ■ - - - ■ - ■ - - - - - 4-10-1 [176] 

Wind speed  2010 ■ ■ - 

■ - - ■ - - - - - - - - 3-1  [138] 

■ - - ■ - - - - - - - - 2-1 

■ - - ■ - - ■ - - - - - 3-3-1 

■ - - ■ - - ■ - - - - - 3-2-1 

Electricity demand  2000 - ■ - - ■ -  ■  ■ - - - - - 6-6-1 [47] 

Wind speed  2007 ■ - - ■ - - ■ - - - - - - - - 3-1 [36] 

Electricity demand 2011 - ■ - - ■ - - ■ - ■ - - - - - 5-12-1 [77] 

Electricity demand  2013 - ■ - - - ■ - - ■ - - ■ - - - 48-97-48 [344] 

Electricity demand 2012 - ■ - ■ - - ■ - - ■ - - - - - 1-2-1 [184] 

Time-series forecasting 2010 - ■ - 

- ■ - ■ - - ■ - - - - - 8-3-1 [373] 

- ■ - ■ - - ■ - - - - - 8-4-1 

- - ■ ■ - - ■ - - - - - 12-4-1 

■ - - ■ - - ■ - - - - - 4-4-1 

- ■ - - ■ - ■ - - - - - 7-5-1 

Electricity demand 2007 - ■ ■ 

■ - - ■ - - ■ - - - - - 2-2-1 [171] 

■ - - - ■ - - ■ - ■ - - 2-10-10-1 

■ - - - - ■ - - ■ ■ - - 2-20-20-1 

Electricity demand 2008 - ■ - ■ - - ■ - - ■ - - - - - 3-2-1 [78] 
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Electricity demand 2008 - - ■ ■ - - ■ - - ■ - - ■ - - 5–3–2–1 [293] 

Electricity load 2003 - ■ - ■ - - ■ - - ■ - - - - - 3-2-1 [375] 

Electricity load 2005 - - ■ 
- ■ - - ■ - - ■  ■ - - 6-5-8-1 [83] 

- ■ - - ■ - - ■ - ■ - - 9-5-8-1 

Energy demand 2009 - ■ - 

■ - - - ■ - ■ - - - - - 4-5-1 [294] 

■ - - ■ - - ■ - - - - - 4-4-1 

■ - - ■ - - ■ - - - - - 4-3-1 

■ - - ■ - - ■ - - - - - 4-2-1 

Electricity demand 2011 - ■ - 

■ - - - ■ - ■ - - - - - 4-10-1 [141] 

■ - - - ■ - ■ - - - - - 4-6-1 

■ - - - ■ - ■ - - - - - 4-8-1 

■ - - - ■ - ■ - - - - - 4-6-1 

■ - - - ■ - ■ - - - - - 4-5-1 

Energy demand 1999 - ■ - 

■ - - - ■ - ■ - - - - - 2-7-1 [377] 

■ - - - ■ - ■ - - - - - 3-7-1 

■ - - - ■ - ■ - - - - - 4-7-1 

- ■ - - ■ - ■ - - - - - 5-7-1 

Electricity demand 2007 - ■ - ■ - - ■ - - ■ - - - - - 4-2-4 [379] 

Energy demand 2005 - - ■ 
- ■ - ■ - - ■ - - ■ - - 5-4-4-1 [380] 

- ■ - ■ - - ■ - - ■ - - 7-4-4-1 

Energy demand 2002 - ■ - - - ■ - - ■ ■ - - - - - 55-27-1  [385] 
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- - ■ ■ - - ■ - - - - - 55-02-1 

Electricity load 1994 - ■ - - - ■ - - ■ - - ■ - - - 77-24-24 [397] 

Electricity load 1996 - ■ - - - ■ - - ■ - - ■ - - - 63-24-24 [402] 

Electricity load 1993 - ■ - 

- - ■ - ■ - ■ - - - - - 29-8-1 [396] 

- - ■ - ■ - ■ - - - - - 22-5-1 

- - ■ - - ■ - - ■ - - - 39-10-24 

Electricity load 1992 - ■ - - ■ - - ■ - ■ - - - - - 5-8-1 [394] 

Electricity load 1996 - ■ - - - ■ - - ■ - - ■ - - - 81-81-24 [403] 

Electricity load 1998 
- ■ - 

- - ■ - - ■ ■ - - - - - 15-(7-12)*-1 [404] 

- - ■ - - ■ ■ - - - - - 7-(10-16) †-1 

Electricity load 2006 - ■ - - - ■ - - ■ ■ - - - - - 32-65-1 [409] 

Electricity load 2008 - ■ - ■ - - ■ - - ■ - - - - - 4-3-1 [411] 

Electricity price 2007 - ■ - ■ - - - ■ - ■ - - - - - 5-7-1 [414] 

Electricity load 2009 - - ■ - - ■ - - ■ - - ■ - - ■ 19-20-15-24 [417] 

Electricity demand 1999 - ■ - ■ - - - ■ - ■ - - - - - 3-5-1 [420] 

Electricity demand 2015 - ■ - - ■ - ■ - - ■ - - - - - 5–3–1 [162] 

Solar energy potential 2005 - ■ - - ■ - - ■ - ■ - - - - - 6-6-1 [427] 

Electricity demand 2001 - ■ - 

■ - - - ■ - ■ - - - - - 2-6-1 [433] 

■ - - - ■ - ■ - - - - - 3-9-1 

■ - - - ■ - ■ - - - - - 3-5-1 

■ - - ■ - - ■ - - - - - 1-3-1 
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Wind speed  2005 - ■ - - - ■ - - ■ ■ - - - - - 14-15-1 [437] 

Wind speed  2012 - ■ - - ■ - - ■ - ■ - - - - - 5-10-1 [438] 

Wind speed  2009 ■ ■ - 

■ - - ■ - - - - - - - - 3-1 [441] 

■ - - ■ - - - - - - - - 2-1 

■ - - ■ - - ■ - - - - - 3-3-1 

■ - - ■ - - ■ - - - - - 3-2-1 

Electricity price 1999 - ■ - - - ■ - - ■ ■ - - - - - 15-15-1 [440] 

Electricity demand  2013 - ■ - ■ - - - ■ - ■ - - - - - 4-6-1 [95] 

Natural gas demand  2013 - ■ - ■ - - - ■ - ■ - - - - - 3-5-1 [95] 

Oil products demand  2013 - ■ - ■ - - ■ - - ■ - - - - - 2-3-1 [95] 

Energy demand  2009 - ■ - - ■ - - ■ - ■ - - - - - 7-8-1 [442] 

Electricity load 2008 - - ■ - - ■ - ■ - - ■ - ■ - - 11-5-5-1 [450] 

Electricity demand 1999 - ■ - 
■ - - ■ - - ■ - - - - - 3-2-1 [160] 

■ - - ■ - - ■ - - - - - 3-1-1 

Electricity demand  2015 - ■ - - - ■ ■ - - ■ - - - - - 12-4-1 [128] 

Total number 
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* Number of hidden layer neurons form week 1 to 21 ranged from 7 to 12 for feedforward networks 

† Number of hidden layer neurons form week 1 to 21 ranged from 10 to 16 for recurrent networks 
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Table 6: The purpose of GA in the reviewed hybrid models  

Forecasted variable 

Purpose of GA 

Year Ref. 
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Electricity demand ■ - - ■ - - - - - 2007 [171] 

Electricity load - - ■ - ■ - - - - 2009 [173] 

Hydro energy 

potential 

- - ■ - ■ ■ - - - 2010 [172] 

Electricity demand  - ■ ■ - ■ - - - - 2015 [162] 

Electricity demand  - - ■ - - - - - - 2015 [128] 

Electricity load ■ - - - - - - - - 2013 [108] 

Energy demand  - - - - - - ■ - - 2013 [95] 

Electricity load - - - - - - ■ - - 2011 [96] 

Electricity load - ■ - - - - - - - 2009 [126] 

NOx Emission  - - - - ■ - - - - 2013 [119] 

Energy demand  - - - ■ - - - - - 2012 [122] 

Energy demand  - - - ■ - - - - - 2012 [123] 

Energy demand  - ■ - - - - - - - 2012 [163] 

Energy demand  - - - - - - - ■ - 2011 [164] 

Energy demand  - - - - - - - ■ - 2012 [165] 

Energy distribution* - - - - - - - - ■ 2000 [505] 

Energy distribution* - - ■ - - - - - - 2006 [506] 

Energy demand - ■ - - - - - - - 2004 [507] 

Electricity demand - - - - - - - - ■ 2005 [512] 

Electricity demand - ■ - - - - - - - 2005 [508] 

Petroleum exergy 

production & 

demand 

- - - - ■ - - - - 2004 [511] 
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Transport energy 

demand  

- - - - ■ - - - - 2005 [509] 

Oil demand  - ■ - - - - - - - 2006 [510] 

Electricity demand - ■ - ■ - - - - - 2007 [247] 

Natural gas demand - ■ - - - - - - - 2009 [169] 

Global CO2 emission - - - - ■ - - - - 2012 [513] 

PV power generation - ■ - - - - - - - 2015 [268] 

Total number  2 9 5 4 7 1 2 2 1   

% 6% 27% 15% 12% 21% 3% 6% 6% 3%   

* Transmission network expansion planning (TNEP), Power generation expansion planning 

(PGEP) 
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Table 7: The purpose of PSO in the reviewed hybrid models 

Forecasted variable 

Purpose of PSO 

Year Ref. 
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Electricity load - - - - - - - 2009 [115] 

Electricity demand  - ■ - - ■ - - 2015 [162] 

Electricity load - - - - ■ - - 2009 [168] 

Electricity demand  - ■ - - - - - 2012 [44] 

Electricity load - - - - - - ■ 2008 [50] 

Electricity load ■ - - - - - - 2013 [108] 

Electricity load - ■ - - - - - 2009 [126] 

NOx emission  - - - - ■ - - 2013 [119] 

Energy demand  - ■ - - - - - 2014 [174] 

Energy demand  - - - ■ - - - 2012 [122] 

Energy demand  - - - ■ - - - 2012 [123] 

Energy demand  - ■ - - - - - 2012 [163] 

Economic emissions - - - - - ■ - 2013 [514] 

Electricity load - - - - ■ - - 2010 [46] 

Electricity demand - - - - - - ■ 2008 [161] 

Electricity consumption  - - ■ - - - - 2011 [452] 

Energy demand  - - - - ■ - - 2014 [515] 

Energy demand - ■ ■ - - - - 2012 [453] 

Wind power ■ - - - - - - 2015 [461] 

Electricity load - ■ - - - - - 2014 [493] 

Total number of models 2 7 2 2 5 1 2   

% 10% 33% 10% 10% 24% 5% 10%   
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Table 8: Method-wise accuracy of the selected reviewed models 

Forecasting 

objective 

Methods Accuracy* Best method Ref. 

 MAPE 

(%) 

MAE (-) RMSE (-) MAD 

(-) 

NRMSE 

(-) 

SEP 

(-) 

ARE 

(%) 

 

Electricity price 

WT–GARCH–ARIMA 1.61 - - - - - - 

WT–GARCH–
ARIMA 

[136] 
ARIMA 10.61 - - - - - - 

ARIMA–GARCH 8.65 - - - - - - 

WT–ARIMA 6.37 - - - - - - 

Electricity 
consumption 

AR (1)+HPF - 4.64† - - - - - 

AR (1)+HPF [236] AR (1) - 7.23† - - - - - 

ARIMA - 6.11† - - - - - 

Power from PV 
system 

ARMAX 38.88 - 104.77 77.27 - - - 

ARMAX [35] 

ARIMA 76.66 - 172.96 140.9 - - - 

Single moving average 82.09 - 190.59 153.8 - - - 

Double moving average 88.10 - 180.25 152.0 - - - 

Single exponential smoothing 72.93 - 180.95 141.5 - - - 

Double exponential smoothing 72.85 - 181.04 141.5 - - - 

Holte Winter’s additive 72.36 - 185.10 144.6 - - - 

Holte Winter’s multiplicative 75.94 - 185.43 146.5 - - - 

Electricity 
consumption (48 
historical data) 

LR  8.60 1341.57 1508.96 - - - - 

ANN [191] 

RSREG** 9.51 1489.72 1701.90 - - - - 

ARMAX 4.83 764.90 931.13 - - - - 

ANN 3.19 460.74 635.38 - - - - 

Electricity 
consumption (132 
historical data) 

LR  8.84 1376.26 1542.43 - - - - 

RSREG** 7.58 1171.78 1295.43 - - - - 

ARMAX 8.88 1386.99 1566.34 - - - - 

ANN 4.02 598.65 709.25 - - - - 

Energy 
consumption 

WARCH 2.90 - - - - - - 

WARCH-ANN [414] 
SEGARCH 3.65 - - - - - - 

WARCH-ANN  2.56 - - - - - - 

SEGARCH-ANN 2.98 - - - - - - 

Electricity 
demand 

PSO (training) 2.42 - - - - - - 
PSO [161] 

PSO (test set) 2.52 - - - - - - 
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BP algorithm (training) 3.2 - - - - - - 

BP algorithm (test set) 2.82 - - - - - - 

ARMA (training) 3.98 - - - - - - 

ARMA (test set) 3.93 - - - - - - 

Energy 
consumption 

GPGM (1, 1) (training) 2.59 - - - - - - 

GPGM (1, 1) [164] 

GPGM (1, 1) (test set) 20.23 - - - - - - 

GM(1,1) (training) 4.13 - - - - - - 

GM(1,1) (test set) 26.21 - - - - - - 

LR (training) 4.20 - - - - - - 

LR (test set) 27.76 - - - - - - 

Energy 
consumption 

Hybrid dynamic GM 0.40 874.19 1383.11 - - - - 

Hybrid dynamic 
GM 

[165] 

GM (1,1) 16.94 26945.07 30384.99 - - - - 

NDGM(1,1) 33.33 73052.8 93230.75 - - - - 

ARIMA 17.99 41890.49 59271.76 - - - - 

GP 5.12 10631.51 13325.14 - - - - 

Hybrid GM(1,1) 4.93 9949.13 12054.78 - - - - 

Mid-term load 
forecasting 

DLS-SVM 1.082 - - - - - - 

DLS-SVM 

[350] 

LS-SMV 1.101 - - - - - - [356] 

SMV 2.149 - - - - - - [355] 

Solar radiation 

FNN 6.03- 

9.65 

- - - - - - 

FNN 

[147] 

ARIMA and descriptive 
statistics 

Around 
30 

- - - - - - 
[517] 

Fuzzy logic 13.9 - 
20.2 

- - - - - - 

[147] 
ANN 10.9- 

20.3 
- - - - - - 

Power demand 

GM (1,1) 3.88 - - - - - - 
Improved GM 
(1,1) 

[167] Improved GM (1,1) 1.29 - - - - - - 

ARIMA 2.27 - - - - - - 

CO2 emission 

ARIMA 2.75 9.81 11.25 - - - - 

GP (4 year) [230] 
GP (4 year) 2.46 8.78 11.25 - - - - 

GP (5 year) 4.22 15.27 17.60 - - - - 

GP (6 year) 2.60 9.29 11.75 - - - - 
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Energy 
consumption 

ARIMA 1.75 158.11 174.36 - - - - 

ARIMA 
GP (4 year) 4.40 427.07 627.61 - - - - 

GP (5 year) 3.32 320.06 455.69 - - - - 

GP (6 year) 2.45 231.23 304.28 - - - - 

Economic growth 
(GDP) 

ARIMA 4.17 32.06 41.49 - - - - 

GP (4 year) 
GP (4 year) 1.81 13.69 19.15 - - - - 

GP (5 year) 3.41 26.17 36.90 - - - - 

GP (6 year) 5.44 41.45 55.84 - - - - 

Energy 
consumption 

GM - - - - - - 7.17 

GM-ARMA [145] ARMA - - - - - - 7.62 

GM-ARMA - - - - - - 4.39 

Wind speed 

SARIMA-LSSVM 6.76 - - - - - - 

SARIMA-
LSSVM 

[43] 

ARIMA 18.08 - - - - - - 

SARIMA 11.08 - - - - - - 

LSSVM 8.83 - - - - - - 

GM 8.93 - - - - - - 

ARIMA-SVM 14.81 - - - - - - 

Electric load 

ARIMA 6.044 - - - - - - 

SSVRCGA [351] SVRCGA 3.382 - - - - - - 

SSVRCGA 2.695 - - - - - - 

Electric load 

SVRCPSO  1.61 - - - - - - 

SVRCPSO [126] 
SVRPSO 3.14 - - - - - - 

SVMSA 1.76 - - - - - - 

ARIMA 10.31 - - - - - - 

Electricity 
demand 

SARIMA 6.08 - - - - - - 

MA-C-WH [34] MA-C-H 3.86  - - - - - - 

MA-C-WH 3.69 - - - - - - 

Electric load 

SSVRCGASA 3.73 - - - - - - 

SSVRCGASA [104] TF-ε-SVR-SA 3.799 - - - - - - 

ARIMA 6.04 - - - - - - 

Electric load 
(Eastern regional) 

SVRCAS 2.23 - - - - - - 

SVRCPSO [125] SVRCPSO 2.19 - - - - - - 

SVRCGA 2.57 - - - - - - 
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Regression 4.1 - - - - - - 

ANN 3.6 - - - - - - 

Electric load  

ARIMA  6.04 - - - - - - 

SRSVRCABC [117] 
TF-ε-SVR-SA 3.80 - - - - - - 

SSVRCABC 3.06 - - - - - - 

SRSVRCABC 2.39 - - - - - - 

Electric load 

ARIMA 10.31 - - 13788 0.105997 - - 

SVMSA [134] GRNN 5.18 - - 6758 0.054732 - - 

SVMSA 1.76 - - 2,448 0.026357 - - 

Electric load 

SSVRGSA 2.587 - - - - - - 

SSVRGSA [86] 
ARIMA 6.044 - - - - - - 

SVRGSA 3.199 - - - - - - 

TF-ε-SVR-SA 3.799 - - - - - - 

Electricity 
demand 

ADE-BPNN 1.725 3.0623 3.9925 - - - - 

ADE-BPNN [128] 

ARIMA 6.044 10.6641 12.3787 - - - - 

BPNN 3.341 5.9958 6.9870 - - - - 

GA–BPNN 3.168 5.5618 6.9285 - - - - 

DE–BPNN 3.080 5.4004 6.8622 - - - - 

SSVRCGASA 1.901 3.4347 4.1822 - - - - 

TF-e-SVR-SA 3.799 6.9694 8.6167 - - - - 

Electric load 

SVM - - 12.37† - - - - 

GRA-DE-SVR [129] 
GRA-DE-SVR - - 10.85† - - - - 

ARMA - - 10.93† - - - - 

LR - - 11.99† - - - - 

Natural gas 
consumption 

PCMACP -3.42 - - - - - - 

PCMACP [33] 
Polynomial Curve (2nd order) -10.75 - - - - - - 

BP neural network -10.68 - - - - - - 

GM -39.61 - - - - - - 

Energy 
consumption 

WARCH–ANN 2.56 404184.2 531545.14 - - - - 

WARCH–ANN 
[61] 

WARCH 2.90 474189.2 643744.33 - - - - 

SEGARCH 3.65 606629.3 824500.08 - - - - 

SEGARCH–ANN 2.98 464632.4 596013.96 - - - - 

WARCH–ANN 3.51 112542.5 134832.21 - - - - WARCH–ANN 
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Petroleum 
consumption 

WARCH 4.08 134300.1 165753.68 - - - - 

SEGARCH 4.88 167031.1 204369.84 - - - - 

SEGARCH–ANN 3.71 122320.1 148234.91 - - - - 

Electricity 
demand 

F-S-SARIMA*** 2.19 - 4.91 - - 2.65 - 

F-S-SARIMA [44] 
SARIMA 3.28 - 6.67 - - 3.74 - 

F-SARIMA 2.75 - 6.57 - - 3.68 - 

S-SARIMA 2.91 - 6.25 - - 3.37 - 

Electricity 
demand 

COR-ACO-GA - - 1292.381 - - - - 

COR-ACO-GA [95] 

ANFIS - - 4563.398 - - - - 

ANN - - 6323.944 - - - - 

Natural gas 
demand  

COR-ACO-GA - - 648.31 - - - - 

ANFIS - - 1206.816 - - - - 

ANN - - 2178.246 - - - - 

Oil products 
demand 

COR-ACO-GA - - 3.750578 - - - - 

ANFIS - - 8.795963 - - - - 

ANN - - 11.05846 - - - - 

Electricity price 

BPANN 29.46 8.5021 - - - - - 

DCANN [251] 

FNN 22.03 6.8929 - - - - - 

LSSVM 9.50 4.4632 - - - - - 

ARFIMA 35.08 8.8737 - - - - - 

GARCH 25.11 7.2425 - - - - - 

DCANN 8.87 4.2611 - - - - - 

Electric load 

ARMA 2.3688 34.0608 2.9198 - - - - 

SVR-MFA [270] 

ANN 1.9569 28.8032 2.6396 - - - - 

SVR-GA 1.8501 27.3499 2.1943 - - - - 

SVR-HBMO 1.8375 26.5383 2.0007 - - - - 

SVR-FA 1.8051 26.1718 2.5667 - - - - 

SVR-PSO 1.7381 24.0145 2.1399 - - - - 

SVR-MFA 1.6909 22.5423 2.0604 - - - - 

Energy demand 

SC-SVR 2.36 3913.88 - - - - - 

SC-SVR [369] LSSVR 4.77 8285.22 - - - - - 

BPNN 3.61 4549.69 - - - - - 

Energy demand 
ARMA 6.1 13.6 - - - - - 

FNF-SVRLP [271] 
ANN 5.3 11.9 - - - - - 
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SVRLP 4.4 10.4 - - - - - 

FNF-SVRLP 3.8 9.2 - - - - - 

*  Accuracy metrics: Mean absolute percentage forecast error (MAPE), mean absolute error (MAE), root mean square error (RMSE), mean absolute  
   deviation (MAD), normalized root-mean-square error measure (NRMSE), standard error of prediction (SEP) and absolute relative error (ARE) 
** Response surface regression model (RSREG) 
*** PSO optimal Fourier approach on residual modification of SARIMA was applied 
†  The values in the study was reported in percentage (%)  
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Table 9: Statistical method-wise objective of the reviewed models  
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LR ■ ■ - ■ ■ - ■ ■ - - ■ 7 9.0% 

NLR ■ ■ - ■ ■ - - - - - ■ 5 6.4% 

LoR ■ ■ ■ ■ - - - - - - - 4 5.1% 

NR - - ■ - - - - ■ - - - 2 2.6% 

PLSR ■ - - - - - - - - - - 1 1.3% 

GP ■ - - - - - - - - - - 1 1.3% 

Log linear analysis ■ - - - ■ - - - - - - 2 2.6% 

Translog ■ - - - - - - - - - - 1 1.3% 

Polynomial curve model ■ - - - - - - - - - - 1 1.3% 

MA ■ - - - - - - - - - - 1 1.3% 

ARIMA ■ ■ ■ ■ ■ ■ ■ ■ - - ■ 9 11.5% 

SARIMA ■ ■ ■ - ■ - - ■ - - - 5 6.4% 

ARMAX - - ■ - - - ■ ■ - - - 3 3.8% 

ARMA ■ - ■ ■ - - ■ ■ - - ■ 6 7.7% 

ANOVA ■ - - ■ - - - - - - - 2 2.6% 

SR ■ ■ - - - - - - - - - 2 2.6% 

VAR ■ - - - - - ■ - - - - 2 2.6% 
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ARDL ■ - - - - ■ ■ - - - - 3 3.8% 

PAM ■ - - - - - - - - - - 1 1.3% 

GARCH ■ - - - ■ - ■ - - - - 3 3.8% 

SEGARCH ■ - - - - - - - - - - 1 1.3% 

EGARCH - - - - - - ■ - - - - 1 1.3% 

WARCH ■ - - - - - - - - - - 1 1.3% 

Decomposition ■ ■ - ■ - - ■ ■ - - ■ 6 7.7% 

Unit root test and/or 

Cointegration 

■ - - ■ ■ ■ ■ - - - - 5 6.4% 

BVAR ■ - ■ - - - - ■ - - - 3 3.8% 

Number of methods 25 7 7 8 7 3 10 8 0 0 5   

Number of models  186 11 29 29 14 15 32 23 0 0 6   

Percentage of model (%) 53.9% 3.2% 8.4% 8.4% 4.1% 4.3% 9.3% 6.7% 0.0% 0.0% 1.7%   
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Table 10: CI and mathematical method-wise objective of the reviewed models 

                     

                         Objectives 
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SVM ■ - ■ - ■ - ■ ■ - - ■ 6 8.7% 

Decision tree ■ - ■ - - - - ■ - - - 3 4.3% 

ANN ■ ■ ■ ■ ■ - ■ ■ - ■ ■ 9 13.0% 

Abductive networks ■ - - - - - - - - - - 1 1.4% 

Grey prediction ■ ■ ■ ■ - ■ ■ ■ - - - 7 10.1% 

Fuzzy logic ■ - ■ - - - ■ ■ ■ ■ - 6 8.7% 

Expert system ■ - - - - - - ■ - - - 2 2.9% 

GA ■ - - ■ - - - ■ ■ - ■ 5 7.2% 

ABCO - - - ■ - - - ■ - - - 2 2.9% 

ACO ■ ■ ■ ■ - - - ■ ■ - - 6 8.7% 

PSO ■ - ■ ■ - - ■ ■ ■ - - 7 10.1% 

GSA ■ - ■ - - - - ■ - - - 3 4.3% 

CAS - - - - - - - ■ - - - 1 1.4% 

DE - - - - - - - ■ - - ■ 2 2.9% 

HS ■ - - - - - - - - - - 1 1.4% 

EA - - - - - - - ■ - - - 1 1.4% 
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MA - - - - - - - ■ - - - 1 1.4% 

IA - - - - - - - ■ - - - 1 1.4% 

SA - - ■ - - - - ■ - - - 2 2.9% 

FA - - - - - - - ■ - - - 1 1.4% 

CSA - - - - - - ■ - - - - 1 1.4% 

NLP ■ - - - - - - - - - - 1 1.4% 

Number of methods 13 3 9 6 2 1 6 18 4 2 4   

Number of models  169 5 59 17 5 1 29 162 4 3 12   

Percentage of model (%) 36.3% 1.1% 12.7% 3.6% 1.1% 0.2% 6.2% 34.8% 0.9% 0.6% 2.6%   

 

 


