ORCA – Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:https://orca.cardiff.ac.uk/id/eprint/109361/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Williams, Christopher, Carter, James H., Dummer, Nicholas F., Chow, Ying Kit, Morgan, David J., Yacob, Sara, Serna, Pedro, Willock, David J., Meyer, Randall J., Taylor, Stuart H. and Hutchings, Graham J. 2018. Selective oxidation of methane to methanol using supported AuPd catalysts prepared by stabilizer-free solimmobilization. ACS Catalysis, pp. 2567-2576. 10.1021/acscatal.7b04417

Publishers page: http://dx.doi.org/10.1021/acscatal.7b04417

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

Supporting Information

Selective oxidation of methane to methanol using supported AuPd catalysts prepared by stabiliser-free sol-immobilisation

Christopher Williams^[a], James H. Carter^[a], Nicholas F. Dummer^[a], Y. Kit Chow^[a], David J. Morgan^[a], Sara Yacob^[b], Pedro Serna^[b], David J. Willock^[a], Randall J. Meyer^[b], Stuart H. Taylor^[a] and Graham J. Hutchings^{*[a]}

- [a] Cardiff Catalysis Institute, School of Chemistry, Cardiff University, CF10 3AT
- [b] ExxonMobil Research and Engineering Company, Corporate Strategic Research, Annandale, NJ 08801, USA

*Corresponding email: hutch@cardiff.ac.uk

Entry	Total metal loading (wt.%)	Support	Preparation temperature (°C)	Calcination temperature (°C)	Abbreviation
1	1	P25	25	dried	1%AuPd/P25-RT-dried
2	1	P25	25	400	1%AuPd/P25-RT-400
3	1	P25	25	600	1%AuPd/P25-RT-600
4	1	P25	25	800	1%AuPd/P25-RT-800
5	1	P25	70	dried	1%AuPd/P25-70-dried
6	1	P25	70	400	1%AuPd/P25-70-400
7	1	P25	70	600	1%AuPd/P25-70-600
8	1	P25	70	800	1%AuPd/P25-70-800
9	1	rutile	25	dried	1%AuPd/rutile-RT-dried
10	1	rutile	25	400	1%AuPd/rutile-RT-400
11	1	rutile	25	600	1%AuPd/rutile-RT-600
12	1	rutile	25	800	1%AuPd/rutile-RT-800
13	1	rutile	70	dried	1%AuPd/rutile-70-dried
14	1	rutile	70	400	1%AuPd/rutile-70-400
15	1	rutile	70	600	1%AuPd/rutile-70-600
16	1	rutile	70	800	1%AuPd/rutile-70-800
17	0.13	rutile	25	dried	0.13%AuPd/rutile-RT-dried
18	0.13	rutile	25	400	0.13%AuPd/rutile-RT-400
19	0.13	rutile	25	600	0.13%AuPd/rutile-RT-600
20	0.13	rutile	25	800	0.13%AuPd/rutile-RT-800

Table S1: Summary of prepared catalysts and their abbreviations.

Figure S1: Typical ¹H NMR spectrum of post-reaction solution for methane oxidation reaction.

Figure S2: Transmission electron microscopy of 1 wt. % AuPd/TiO₂ prepared at room temperature: (a) Dried, (b) calcined at 400 °C, (c) 600 °C and (d) 800 °C.

Figure S3: Transmission electron microscopy of 1 wt. % AuPd/TiO₂ prepared at elevated temperature (70 °C): (a) Dried, (b) calcined at 400 °C, (c) 600 °C and (d) 800 °C.

Figure S4: Time-on-line analysis for H_2O_2 decomposition for 1 wt. % AuPd/TiO₂ prepared at room temperature.

Figure S5: Time-on-line analysis for H₂O₂ decomposition for 1 wt. % AuPd/TiO₂ prepared at 70 °C.

Figure S6: Powder X-ray diffraction of 1 wt. % AuPd/TiO₂ (P25) catalysts prepared at (a) room temperature and (b) 70 °C. (i) Dried only, (ii) heat treated at 400 °C, (iii) 600 °C, and (iv) 800 °C. \blacktriangle = Rutile; \circ = Anatase.

Figure S7: X-ray photoelectron spectra of Pd 3d region for 1 wt. % AuPd/ TiO_2 prepared at room temperature. Pd^0 = blue line; Pd^{2+} = green line; Au 4d = red line. The dashed lines indicate the peaks due to Pd⁰ and Pd²⁺.

Figure S8: X-ray photoelectron spectra of Pd 3d region of 1 wt. % AuPd/ TiO₂ at elevated 70 °C. $Pd^0 =$ blue line; $Pd^{2+} =$ green line; Au 4d = red line. The dashed lines indicate the peaks due to Pd^0 and Pd^{2+} .

			Pd spe	cies [%]	Binc	ling Energ	y [eV]	SEM-	EDX	MP-AI	ES
Entry	Heat Treatment	AuPd/TiO₂	Pd ²⁺	Pd ^o	Pd ²⁺	Pd ⁰	Au (4f)	Total metal loading (wt. %)	Au content (wt. %)	Total metal loading (wt. %)	Au content (wt. %)
1	Dried	0.009	0	100	-	334.7	82.9	0.92	0.44	0.97	0.49
2	400 °C	0.006	100	0	336.3	-	83.1				
3	600 °C	0.004	100	0	336.5	-	83.1				
4	800 °C	0.022	100	0	336.6	-	83.3				
5	Dried	0.005	0	100	-	334.3	82.8	0.85	0.44	0.89	0.44
6	400 °C	0.004	100	0	336.4	-	83.1				
7	600 °C	0.004	100	0	337.0	-	83.8				
8	800 °C	0.011	100	0	337.0	-	83.3				

Table S2: Surface elemental composition of 1 wt. % AuPd/ TiO₂ (P25) catalysts. Entries 1-4: prepared at room temperature, Entries 5-8: prepared at 70 °C.

Figure S9: Powder X-ray diffraction of 1 wt. % AuPd/rutile TiO₂ catalysts prepared at (a) room temperature and (b) 70 °C. (i) Dried only, (ii) heat treated at 400 °C, (iii) 600 °C, and (iv) 800 °C. \blacktriangle = Rutile; \circ = Anatase.

Figure S10: Transmission electron microscopy of 1 wt. % AuPd/rutile TiO_2 prepared at room temperature: (a) Dried, (b) calcined at 400 °C, (c) 600 °C and (d) 800 °C.

Figure S11: Transmission electron microscopy of 1 wt. % AuPd /rutile TiO₂ prepared at 70 °C: (a) Dried, (b) calcined at 400 °C, (c) 600 °C and (d) 800 °C.

Figure S12: Time-on-line analysis for H_2O_2 decomposition for 1 wt. % AuPd/rutile TiO₂ prepared at room temperature.

Figure S13: Time-on-line analysis for H_2O_2 decomposition for 1 wt. % AuPd/rutile TiO₂ prepared at 70 °C.

Figure S14: X-ray photoelectron spectra of Pd 3d region for 1 wt. % AuPd/rutile TiO₂ prepared at room temperature. Pd^0 = blue line; Pd^{2+} = green line; Au 4d = red line. The dashed lines indicate the peaks due to Pd⁰ and Pd²⁺.

Figure S15: X-ray photoelectron spectra of Pd 3d region of 1 wt. % AuPd/rutile TiO₂ prepared at 70 °C. Pd^0 = blue line; Pd^{2+} = green line; Au 4d = red line. The dashed lines indicate the peaks due to Pd^0 and Pd^{2+} .

	Hoat	Aupd/	Pd spe	cies [%]	Binding Energy [eV]			SEM-	-EDX	MP-	-AES Au content (wt.%) 0.49 0.48
Entry	Treatment	Ti	Pd ²⁺	Pd ⁰	Pd ²⁺	Pd ⁰	Au (3d)	Total metal loading (wt. %)	Au content (wt.%)	Total metal loading (wt. %)	Au content (wt.%)
1	Dried	0.065	0	100		334.6	334.5	1.03	0.52	1.00	0.49
2	400 °C	0.059	52.1	47.9	336.4	334.4	334.3				
3	600 °C	0.038	58.4	41.6	336.5	334.4	334.3				
4	800 °C	0.027	52.7	47.3	336.5	334.4	334.3				
5	Dried	0.040	0	100		334.6	334.5	0.74	0.41	0.91	0.48
6	400 °C	0.037	37.1	62.9	336.4	334.4	334.6				
7	600 °C	0.029	39.6	60.4	336.4	334.3	334.6				
8	800 °C	0.019	40.5	59.5	336.4	334.3	334.5				

Table S3: Surface elemental composition of 1 wt. % AuPd/rutile TiO₂ catalysts. Entries 1-4: prepared at room temperature, Entries 5-8: prepared at 70 °C.

	Temperature of reduction (°C)		Product	s [μmol]		Oxygenate	Methanol	Total		H ₂ O ₂ Remaining [%]
Entry		Methanol	Formic Acid	Methyl hydroperoxide	CO ₂	selectivity [%]	Selectivity [%]	Productivity [mol kg _(cat) -1 h ⁻¹]	TOF [h⁻¹]	
1	400	0.0	0.0	0.0	0.4	0.0	0.0	0.077	1.07	1.3
2	800	0.1	0.0	0.1	0.4	40.6	20.2	0.127	1.75	2.9

Table S4. The effect of reducing 1 wt.% AuPd/TiO₂ (P25) before reaction.^[a]

[a] Standard reaction conditions: time: 30 minutes, temperature: 50 °C, P_{CH4}: 30.5 bar, stirring rate: 1500 rpm, all catalysts (1 wt. % total): 7.24x10⁻⁷ mol of metals equal to 10 mg for solid catalysts, volume: 10 mL of H₂O.[H₂O₂]: 0.5 M.. Catalysts were prepared by SI at room temperature (entries 2-5) or at 70 °C (entries 6-9). Catalyst is dried at 110 °C, 10 °C min⁻¹, 16 h, before reduction: Various temperatures, flowing 5 % H₂/Ar, 3 h, 20 °C min⁻¹ [b] Analysed by ¹H NMR spectroscopy with 1 % TMS in CDCl₃ internal standard. [c] Analysed by gas chromatography using an FID methaniser. Values obtained using CO₂ calibration curve. [d] Oxygenate selectivity calculated as (moles oxygenates/total moles of products) x 100. [e] Total productivity calculated as (moles(products) / weight(catalyst))/time). [f] TOF: Turn-over frequency, calculated as (moles(products) / total moles(metal)) / time (h). [g] Remaining H₂O₂ assayed by Ce⁴⁺(aq.) titration. Calculated as (moles(initial)/moles(final) x100. [h] Determined by transmission electron microscopy.[i] H₂O₂ decomposition reaction conditions: time: 30mins, temperature: 24 °C, atmospheric pressure, stirring rate: 1000 rpm, all catalysts (1 wt. % total): 7.24x10⁻⁷ mol of metals equal to 10 mg for solid catalysts, volume: 10 mL of H₂O.[H₂O₂]: 0.5 M

Figure S16: Transmission electron microscopy of 0.13 wt. % AuPd/rutile TiO_2 prepared at room temperature: (a) Dried, (b) calcined at 400 °C, (c) 600 °C and (d) 800 °C.

Figure S17: Time-on-line analysis for H_2O_2 decomposition for 0.13 wt. % AuPd/rutile TiO₂ prepared at room temperature.

Figure S18: X-ray photoelectron spectra of Pd (3d) region for 0.13 wt. % AuPd/rutile TiO₂ prepared at room temperature. Pd^0 = blue line; Pd^{2+} = green line; Au 4d = red line. The dashed lines indicate the peaks due to Pd^0 and Pd^{2+} .

	Heat	AuPd/Ti	Pd speci	es [%]	Binding Energy [eV]				MP-AES		
Entry	Treatment		Pd ²⁺	Pd ⁰	Pd ²⁺	Pd ⁰	Au (4f)	Au (3d)	Total metal loading (wt. %)	Au content (wt. %)	
1	Dried	0.015	0	100		334.8	83.2	334.0	0.15	0.10	
2	400 °C	0.009	52.0	48.0	336.6	334.8	83.4	334.0			
3	600 °C	0.010	58.4	41.5	336.6	334.7	83.3	334.0			
4	800 °C	0.008	52.7	47.3	336.4	334.7	83.2	334.0			

Table S5: Surface elemental composition of 0.13 wt. % AuPd/rutile TiO₂ SI catalysts prepared at room temperature.

Figure S19: Powder X-ray diffraction of 0.13 wt. % AuPd/rutile TiO₂ catalysts prepared at room temperature. (i) Dried only, (ii) heat treated at 400 °C, (iii) 600 °C, and (iv) 800 °C. \blacktriangle = Rutile; \circ = anatase.