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Abstract— Unlike image blending algorithms, video blending
algorithms have been little studied. In this paper, we investigate
six popular blending algorithms—feather blending, multi-band
blending, modified Poisson blending, mean value coordinate
blending, multi-spline blending, and convolution pyramid blend-
ing. We consider their application to blending realtime panoramic
videos, a key problem in various virtual reality tasks. To evaluate
the performances and suitabilities of the six algorithms for this
problem, we have created a video benchmark with several videos
captured under various conditions. We analyze the time and
memory needed by the above six algorithms, for both CPU
and GPU implementations (where readily parallelizable). The
visual quality provided by these algorithms is also evaluated both
objectively and subjectively. The video benchmark and algorithm
implementations are publicly available.1

Index Terms— Video blending, video stitching, video quality
assessment, panoramic video.

I. INTRODUCTION

MANY image editing [1] tasks involve blending images,
e.g. panorama stitching, or copying-and-pasting of

objects into images. As human eyes are sensitive to color
and lighting inconsistencies within images, image blending is
used to provide smooth transitions between image parts from
different sources. Image blending is now a standard part of
modern image editing tools such as Adobe Photoshop.

While state-of-the-art image blending algorithms [2]–[7]
can achieve good results, it is difficult to find evaluations of
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the trade-off between their speed and quality of results. This
is mainly because these algorithms can provide high quality
results in a short time: e.g. mean value coordinate blending [5]
can blend a region with 1 million pixels in about 1 s.

For video blending, especially at high resolution, the situ-
ation changes. The quantity of data is much higher, so effi-
ciency becomes a major concern. For example, virtual reality
applications, e.g. involving live sports, can demand real-time
content creation based on 360° panoramic video blending;
these panoramic videos are much larger than ordinary videos.
In a typical 4k 360° 30fps panoramic video, blending must
be done in under 30 ms (and often significantly less to allow
time for other processing tasks on each frame). Thus, real-time
high resolution video blending is much more challenging than
image blending, and indeed, parallelization is often needed.

Recently, many works have considered generating high-
quality panoramic videos by stitching multiple videos together.
The input videos may be captured from structured [8], [9] or
unstructured camera arrays [10], or even multiple moving cam-
eras [11], [12]. Early work [13] addressed the parallax issue by
recovering depth information in the overlap region followed by
new view synthesis. Later, various energy functions [14], [15]
were proposed to calculate a warp to alleviate issues due to
parallax while preserving spatial-temporal coherence. While
such approaches can often generate high-quality panoramic
videos, they rely on sophisticated video content analysis. This
makes such methods unsuitable for realtime processing, and
at times, they may lack robustness.

As noted, then, the aim of this paper is to compare the
suitability of various image blending algorithms for real-time
usage for video blending in high resolution panoramic video
stitching. We first briefly describe each algorithm, as well as
analysing the relationships between them. Then, we conduct
experiments on a benchmark dataset, evaluating both their
performance on different kinds of scenes, considering both
time and memory costs, and the quality of the blended results,
using both objective and subjective assessments. Unlike image
blending, which is a one-shot operation, video blending
involves a sequence of frames, which may share a common
fixed camera position. Some algorithms take advantage of this
by performing a (possibly lengthy) precomputation. For short
video clips, when using methods like mean value coordinate
blending, the precomputation may even comprise the majority
of the computation.

We do not include content-aware blending
algorithms [16], [17] in our comparison as they are unsuited
to real-time video blending, for two reasons: (i) these methods
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Fig. 1. Capture device. Left: camera rig holding multiple cameras. Center:
rig mounted on a car. Right: rig mounted on a tripod.

are relatively slow due to the need to analyze content, and
(ii) they cannot readily provide interframe coherence.

We have captured a set of benchmark videos including
various types of scenes, to enable evaluation of different
aspects of the blending algorithms. Each video has 6 separate
overlapping streams; we also provide a stitching template
which defines where the pixels in each stream are to go in
the final panorama. A blending algorithm under test uses this
information to produce the panoramic result.

The contributions of this paper are:
• A comparative study of the suitability of several state-of-

the-art image blending algorithms for panoramic video
blending, making clear the advantages and disadvantages
of each algorithm, as well as the relationships between
them. Our implementations of these algorithms are pub-
licly available.

• A benchmark set of videos for evaluation of panoramic
video blending methods, again publicly available.

In Section II we describe our benchmark. We describe the
different blending algorithms tested and their relationships
in Section III. The behaviour of these algorithms on our
benchmark is examined in Section IV, and we give our
conclusions in Section V.

II. BENCHMARK AND EXPERIMENTAL SETTING

A. Hardware

To evaluate the performance of blending algorithms when
used for panoramic video blending, we captured videos from
various indoor and outdoor scenes to make a benchmark. Our
camera mount was based on a six GoPro camera rig—see
Figure 1. Five cameras were arranged symmetrically in a plane
around a vertical axis, while the last camera pointed vertically
upwards. A GoPro Smart Remote was used to synchronize
video capture from all cameras. Each video has the same
resolution (1920 × 1440, at 30 fps).

B. Formulation

The 6 video streams St , t = 1, . . . , 6, are recorded
simultaneously using the rig. Before blending, these must
be transferred to a single frame of reference in which the
panorama is described. Given our fixed camera rig, and
known camera intrinsic parameters, we first perform radial and
tangential distortion correction for each stream, then match
keypoints [18] between adjacent streams. We pick one frame
as a reference for each stream and apply its correction to
all remaining frames, to ensure coherence between frames.

Fig. 2. A typical stitched panorama. Region 0 is captured by the upwards-
pointing camera. Regions 1–5 are captured by the other cameras. Purple lines
indicate the boundary seams between overlapping adjacent video streams.

We then select one stream as a base, and rotate other streams in
the viewing sphere according to the yaw, pitch and roll which
best match the keypoints. Spherical projection is then used to
map the rotated content in the viewing sphere to the planar
panoramic output video. We finally perform a local varying
warp following [19] to further align details. For example,
the stream of the top camera (see Figure 1) is mapped to
the top region in the output panorama (see Figure 2). The
resulting pixels in the panorama corresponding to each initial
stream are determined by a mapping function:

Pt = ϕt (St ). (1)

The final panorama has resolution 4000 × 2000.
We associate a mask Mt with each mapped stream Pt ,

which contains 1 for panorama pixels covered by that stream,
and 0 for pixels not covered. Each mapped stream overlaps
adjacent streams by about 20% of its total area, an overlap
being necessary for certain blending algorithms. Other blend-
ing algorithms require boundaries between streams, which we
determine in the overlap region using distance transforms [20]
on the first frame to place seams at locations equidistant to
each pair of adjacent streams. This boundary is used to trim
the original mask Mt to a new mask M ′

t . See Figure 2.
We may divide blending algorithms into two categories:

those that calculate the blended pixels directly, and those that
first compute a color offset map, and then add the offset map’s
colour values to each original video. The offset map is an
image with the same resolution as each video frame, in which
the pixel value at each position is the difference between the
desired blended value and the original value.

Algorithms in the first category obtain the final panoramic
video P by computing:

P = f (P1, M1, . . . , Pz, Mz) (2)

where f is some function that performs operations on the
mapped streams P1, . . . , Pz .

Algorithms in the second category produce the final
panoramic video by computing:

P = P ′ + P∗ (3)

where P ′ is a video obtained by directly trimming and
compositing the mapped input streams along precomputed
boundaries, and P∗ is a combined offset map formed from
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the offset maps of each mapped input stream, using the same
boundaries. Thus P ′ is computed using:

P ′ =
6∑

t=1

M ′
t Pt

′ (4)

where P ′
t is the mapped t th stream. P∗ is defined in a similar

way:

P∗ =
6∑

t=1

M ′
t Pt

∗. (5)

The way in which the individual offset maps P∗
t are computed

varies according to the blending algorithm.

C. Benchmark

To produce the benchmark, we captured videos with vari-
ation in three key properties—illuminance conditions, camera
motion, and object distance to the camera—as the quality
of blending results can be significantly effected by changes
in these properties. In the benchmark, illuminance variations
cover both indoor and outdoor scenes, with adequate and poor
lighting. While video cameras often automatically determine
exposure, changes in illuminance conditions may have a strong
effect on the brightness of the video. We provide videos from
both static and moving camera setups. The latter cause content
to change along the boundary seams, sometimes substantially,
e.g. if the camera rig is mounted on a moving vehicle.
As noted, for video blending, we manually pick one frame as
a reference and compute a stitching template, and apply this
template to all other frames, to ensure coherence in the blended
video. However, even if we perfectly stitch the reference
frame, when the template is applied to other frames, this can
result in misalignments. Thus, distances of key objects from
the video cameras can also affect blending results; objects with
varying distances can cause bleeding artefacts near seams.
As human eyes find larger objects more salient, artefacts in
objects closer to the cameras are often more obvious. We
thus captured scenes with moving objects at near, intermediate
and far distances. In total, we have 4 illumination conditions,
2 motion types, and 3 distance types, giving 24 types of video;
our benchmark provides 2 of each type, giving 48 video scenes
altogether, each lasting from a few to tens of minutes.

III. BLENDING ALGORITHMS

A. Overview

Image blending is well studied. Perhaps the most widely
used approach is multi-band blending [3]. It is easy to imple-
ment and provides stable blending results. It blends the images
at each level of a Laplacian pyramid, and merges them to give
the result.

Perez et al. [6] formulate image blending via a Poisson
equation whose solution can be obtained by solving a large
sparse linear system. Although this is mathematically elegant
and provides perfect results when the intensity changes across
the boundary is smooth, it is time consuming, especially for
large images. It also suffers from bleeding artefacts when the

intensity changes across the blending boundary is insufficiently
smooth.

Agarwala [2] observes that the color offset between the
original content and the blended content in the target region
is piecewise smooth, allowing ready approximation of the
whole offset field by a quadtree. This significantly reduces the
number of variables in the linear system, accelerating blending.

Szeliski et al. [21] further observe that if each image has a
separate offset field represented by a low-dimensional spline,
each offset field is everywhere smooth, not just piecewise
smooth. As the spline has low dimensionality, the number of
variables is further reduced.

To avoid solving linear equations, Farbman et al. [5] instead
use mean-value coordinates (MVC) to interpolate the smooth
offset field from boundary differences. For a target region of
fixed shape, these coordinates can be precomputed and re-
used for all frames of a video. Furthermore, this method is
readily parallelizable, but since it approximates the Poisson
formulation, it too suffers from bleeding artefacts.

In [4] Farbman et al. observe that the key operations
in MVC interpolation are convolution operations with large
kernels; these can be approximated by several small kernels
to further reduce computation.

Poisson blending can also be improved by adding an inten-
sity constraint [7], as explained later (and henceforth referred
to as the modified Poisson approach).

We analyze six representative blending algorithms, chosen
for the following reasons. Feather blending has the lowest
computational expense (apart from trivially clipping images
at the seams), and provides a baseline of visual quality.
Multi-band blending is the most widely used approach in
the open source community [22], and is relatively insensitive
to misalignment. MVC blending can be readily parallelized,
and avoids large linear equations, while providing almost
visually identical results to standard Poisson blending. Using
a convolution pyramid approximates the MVC approach and
further speeds it up. Multi-spline blending offers another
strategy to approximate the original Poisson equation, resulting
in a significantly smaller linear system. The differences in
formulation of modified Poisson blending lead to visually
different blending results.

We do not consider the original Poisson blending method,
which is both slow and memory hungry, so unsuited to high
resolution realtime video blending. We also do not consider
the quadtree approximation to Poisson blending as it uses the
smoothness of the offset map in a similar way to multi-spline
blending, but the latter solves a smaller linear system.

B. Intensity Changes

Since different blending algorithms have different formula-
tions, they affect the pixel intensities in the result in different
ways. We briefly analyse their effects here, and schematically
show the trends of pixel intensity changes produced by differ-
ent blending algorithms in Figure 3 (real examples are given
later).

Feather blending linearly blends the images in the over-
lapped regions, and other regions remain unchanged.
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Fig. 3. One dimensional schematic illustration of results produced by different blending algorithms.

Multi-band blending blends the images everywhere at dif-
ferent frequencies, causing intensities to be averaged across
the whole image.

Since MVC blending approximates Poisson blending, and
convolution pyramid blending further approximates MVC
blending, in these two algorithms, the regions to be blended
change in intensity to fit the anchor region (the region whose
pixel intensities remain unchanged).

Multi-spline blending uses splines to approximate the offset
map, so lighting inconsistency is obvious along the bound-
ary seams, especially if the input scenes are poorly aligned
(see Figure 13, row 5).

Modified Poisson blending tries to preserve the original
intensities as well as the gradient field of the blended region,
so it produces rather different results to all the other algo-
rithms.

In summary, MVC blending, modified Poisson blending and
convolution pyramid blending are sensitive to choice of anchor
stream, while feather blending, multi-band blending and multi-
spline blending produce the same blending results given an
arbitrary blending order. This implies that MVC blending,
convolution pyramid blending and modified Poisson blending
are not symmetric, treating their two input images differently,
while feather blending, multi-band blending and multi-spline
blending are symmetric. Lack of symmetry is acceptable for
cut and paste applications, but is inappropriate when the two
input images have the same status, as in panorama blending.
They require a blending order to be chosen, and there is no
direct way to choose a good blending order automatically.
In our implementation, we manually choose a blending order.

C. Algorithms

We now detail the algorithms tested.
1) Feather Blending (FB): Feather blending simply linearly

combines the regions to be blended, using:

P =
6∑

i=1

ωi Pi (6)

where ωi is a per pixel weight for each input stream. At each
pixel, the weights of all streams sum to 1, so FB only affects
areas where streams overlap. The simplest approach uses
weights of 0.5 everywhere in the overlap. A better approach
uses a weight of 0.5 at the seam, with the weight falling as
we go nearer to the edge of the stream, until it becomes
zero. As each pixel is processed independently, FB is fully
parallelizable.

2) Multi-Band Blending (MBB): In essence, multi-band
blending combines feather blending results from versions
of the images containing different frequencies. A Laplacian
pyramid is built, and the regions to be blended are linearly
combined at each level. The final result is obtained by merging
the blended images from the different levels. The Laplacian
pyramids can be constructed in parallel using equivalent
weighting functions [3]. As each level of the pyramid can
be regarded as a function of the original image, it is possible
to precompute the function mapping between the input image
and the other levels, allowing computation of each level of the
pyramid simultaneously. Combination of the Laplacian images
using a Gaussian weight image is also fully parallelizable.
Multi-band blending can be defined as:

P =
l∑

j=1

U(Q j ), (7)

where l is the number of layers in the pyramid, U() up-samples
an image to the original resolution, and Q j is defined as:

Q j =
6∑

i=1

G j
i L j

i . (8)

Here, G j
i is the i th stream’s Gaussian pyramid at level j ,

obtained by convolving a small weighting function (for exam-
ple, a 5×5 filter) with the image, and L j

i is the i th stream’s
Laplacian pyramid at level l. We use 8 levels in our imple-
mentation.
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3) MVC Blending (MVCB): MVC blending approximates
the Laplacian membrane used in Poisson blending, construct-
ing a harmonic interpolant from the boundary intensity dif-
ferences. Unlike Poisson blending, which finds the final pixel
values directly, MVC blending computes a color offset map;
the final blended result is obtained by adding this offset map to
the region to be blended: see Equation 3. For each pixel in the
output region, the offset value is a weighted linear combination
of all the boundary differences; the weights are derived from
each pixel’s mean value coordinate. The boundary is the outer
boundary of the region to be blended. In detail, given a point
x in the region to be blended, P∗(x) is calculated by:

P∗(x) =
m−1∑

i=0

λi (x)�(pi), (9)

where pi is a pixel along the boundary of the region to be
blended, �() is the pixel-wise difference operation between
the two images (to blend Pa and Pb , changing Pb to fit Pa ,
�() computes Pa − Pb along the blending boundary), and
m is the number of boundary points. λi is the mean value
coordinate of x with respect to the current boundary points—
see [5]. As the boundary seams have fixed locations, the mean
value coordinates and weights can be precomputed once, for
all frames, saving effort in video blending. Since the value at
each position of the offset map only depends on the boundary
differences, MVCB is parallelizable.

4) Convolution Pyramid Blending (CPB): In MVCB,
the final membrane (i.e. offset map) can be written as:

P∗(x) =
∑
k

wk(x)b(xk)

∑
k

wk(x)
, (10)

where xk are boundary points, b(x) are boundary values and
wk(x) are corresponding mean value coordinates. As shown
in [4], Equation 10 can be rewritten as a ratio of convolutions
by incorporating a characteristic function χ P̂ which is 1 where
P̂ is non-zero and 0 otherwise:

P∗(xi ) =

6∑
j=1

w(xi , x j )P̂(x j )

6∑
k=1

w(xi , x j )χ P̂ (x j )

= w ∗ P̂

w ∗ χ P̂

, (11)

and P̂ is an extension of the boundary b to the entire domain:

P̂(xi ) =
{

b(xk), if xi = xk

0, otherwise
. (12)

Calculation of the offset map now involves convolutions with
large filters. Multiscale transforms [4] allow these to be
approximated by a set of smaller filters in linear time.

5) Multi-Spline Blending (MSB): Poisson blending can be
expressed in an energy minimization formulation [6]. The
energy may be written in offset map form as:

E =
∑

i, j

(P∗li+1, j
i+1, j − P∗li, j

i, j − ĝx
i, j )

2

+ (P∗li, j+1
i, j+1 − P∗li, j

i, j − ĝ y
i, j )

2, (13)

where li, j indicates which stream each pixel comes from
(as given by the mask information), (i, j) indicates the loca-
tion in the image plane, and the (modified) gradient ĝx

i, j is
defined by:

ĝx
i, j = P ′li, j

i, j − P ′li+1, j
i, j + P ′li, j

i+1, j − P ′li+1, j
i+1, j . (14)

Here, P ′li, j
i, j is the pixel intensity at location (i, j) in the

lth stream. The modified y gradient ĝ y
i, j is defined similarly.

The energy E can be minimized by solving a linear system
Az = b where z represents the unknown pixel values in the
offset map. By using spline cells to approximate the assumed-
smooth offset map, each pixel in the final offset map can be
represented as:

P∗l
i, j =

∑

k,m

cl
k,m B(i − k R, j − m R), (15)

where R is the pixel spacing (we choose 64 in our experiment)
of the spline cells, B(i − k R, j − m R) is the spline basis, and
the ck,m are the spline control points. In this way, the size of
the linear system is reduced significantly.

6) Modified Poisson Blending (MPB): Tanaka et al. [7]
modified the original Poisson energy function by adding an
intensity constraint:

E ′ =
∑

i, j

ε(Ii, j − Pi, j )
2 + (gi, j − ∇ Pi, j )

2, (16)

where Ii, j is the original pixel intensity at location (i, j), Pi, j

is the intensity of the final panorama at that location, ε is
a weight, ∇ Pi, j is the gradient of the final panorama, and
g = gi, j is a gradient map computed by summing the gradients
of each stream gi :

g =
6∑

i=1

gi M ′
i (17)

Unlike in the original Poisson blending approach, the coor-
dinates (i, j) now range over the whole image, so that all
streams change the pixel value. Tanaka et al. [7] solve this
equation in the frequency domain:

PT
i, j = vT

i, j − εuT
i, j

dT
i, j − ε

, (18)

where PT
i, j is the discrete cosine transform (DCT) of each

pixel in the final panorama, vT
i, j is the DCT of the Laplacian of

the image (found by combining the Laplacians of each stream
using Equation 17), uT

i, j is the DCT of the original intensity
image, and dT

i, j is the DCT of the Laplacian operator. The
final panorama is obtained by computing the inverse DCT of
PT

i, j . In our implementation ε was set to 1e-8.

D. Requirements for Overlapping Areas

The above blending algorithms have different requirements
for overlapping regions. FB only blends pixels in overlapping
regions. Thus, no blending is performed if there is no overlap.
MBB requires the images to be blended to completely overlap
if we are to use a complete pyramid. In our implementation we
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TABLE I

COMPUTATION TIMES (PER FRAME) AND MEMORY USAGE FOR 4000 × 2000 RESOLUTION VIDEO, FOR EACH OF THE SIX ALGORITHMS

Fig. 4. Temporal coherence score over time for each blending algorithm
over all the scenes.

achieve this by mirroring each input stream to fill the whole
panorama. Since MVCB and CPB are approximations of
Poisson blending, these two algorithms require pixel intensity
differences along the blending boundary, so there must be
at least a one-pixel wide overlap along the boundary. The
only change MPB makes is to add a color constraint to the
original Poisson blending, so it also only requires a one-pixel
wide overlap along the boundary. MSB requires a two pixel-
wide overlap along the boundary since it diffuses boundary
differences in two opposite directions.

E. GPU Acceleration

As already noted, FB, MBB, MVCB and CPB can be easily
parallelized. As MSB needs to solve an optimization problem
represented by a linear system for each high resolution video
frame, even a parallel solver [23] is still time-consuming.
For MBB and CPB, convolution is the most time-consuming
operation. In our implementation, accessing GPU memory
takes most of the time, as each pixel is accessed c2 times,
where c is the kernel size. We take full advantage of GPU
shared memory, which is much faster than ordinary GPU
memory, by decomposing the 2D convolution into 2 1D
convolutions, vertically then horizontally. Using this strategy,
each pixel is accessed only c times. In our implementation,
due to a limited amount of shared memory for each thread,
we perform this computation 256 pixels at a time.

IV. EXPERIMENTS

Our experiments were performed on a PC with an Intel
Xeon E5-2620 2.0GHz CPU with 32GB memory, and an
NVIDIA GTX 970 GPU with 4GB memory; the bandwidth
between PC memory and GPU memory was 4GB/s. The
blending algorithms were implemented in C++, while GPU
implementations used CUDA.

A. Performance

1) Theory: We initially considered the theoretical time
complexity of these 6 representative algorithms. Since feather

Fig. 5. (a) A blended result using MVCB (cropped from the panorama). (b)
Energy map. (c) Bleeding map.

Fig. 6. (a): Output blended video. (b): Local seam regions.

blending only computes a linear combination for each pixel,
its complexity is O(n) where n is the number of pixels. Multi-
band blending also has complexity O(n), as the extra levels
only multiply the number of pixels to process by a constant
factor. MVC blending requires target region triangulation and
adaptive boundary sampling, with O(m) cost for evaluating
the membrane, where m is the number of pixels along the
boundary; this is typically O(

√
n). Since the last step inter-

polates the membrane values to all n pixels, the total cost is
again O(n). Convolution pyramid blending uses small kernels
to approximate a large kernel, so its complexity is again
O(n). Multi-spline blending needs to solve an O(n/s2) linear
system where s is the sampling space of the spline, which
also has complexity asymptotically O(n). Modified Poisson
blending finds pixels in the frequency domain with complexity
O(n log(n)).
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Fig. 7. From left to right, top to bottom: scenes 1–6 used in our evaluation.

2) Practice: We experimentally measured the time required
by each blending algorithm, per output frame, as well as the
memory used, for output videos of size 4000 × 2000 pixels.
Note that for all algorithms, the time and memory costs only
depend on the resolution of the input videos and the shape of
the mask, and not on the video content, so one scene sufficed
for this experiment. I/O times as well as precomputation times
were not considered, as we are interested in how suitable each
method is for continuous realtime operation. Table I gives the
results, both for CPU implementation, and where appropriate,
GPU implementation. They show that, when using a GPU
with sufficient memory, multi-band blending, MVC blending,
feather blending and convolution pyramid blending are fast
enough for realtime performance.

B. Visual Quality

We also both objectively and subjectively evaluated the
blended videos produced by these algorithms.

1) Objective Evaluation: Image and video quality assess-
ment methods can be classified into full-reference and no-
reference approaches [24], [25]. Full-reference approaches
such as PSNR (peak signal-to-noise ratio) and SSIM (struc-
tural similarity index) require an original image or video as
a reference, but in video blending there is no such ground
truth. Thus, our objective evaluation for blended videos relies
on no-reference approaches. We used 6 state of the art no-
reference video quality metrics: BIQI [26], BRISQUE [27],
FRIQUEE [28], NIQE [29], SSEQ [30] and VIIDEO [31].
Each metric was applied to assess the quality of the 42 blended
videos produced by 7 different algorithms (the 6 video blend-
ing algorithms tested plus simple stitching without blending).
The resulting objective scores were statistically analysed. For
each metric, an analysis of variance (ANOVA) was performed
by selecting the predicted quality as the dependent vari-
able, and the blending algorithm as the independent variable.
ANOVA aims to analyse the differences among group means,
providing a statistical test of whether or not the means of
several groups are equal. The ANOVA results show that, for
each case, the algorithm has no statistically significant effect
on video quality (P>0.05 at the 95% confidence level). This
means that combining videos with a sophisticated blending
algorithm is no better than stitching without blending. These
findings are clearly contradictory to a simple visual assessment

TABLE II

TEMPORAL COHERENCE SCORES FOR 6 BLENDING ALGORITHMS

which makes it obvious that the stitched videos have lower
quality. Unfortunately, this implies that the video quality
metrics are not adequate for the kinds of artefacts arising in
blending—indeed, they were mainly devised to assess defects
due to compression and transmission of video. This finding is
in itself an interesting topic for future research. However, for
the topic investigated here, problem-specific objective evalua-
tions as well as subjective quality assessment were required to
determine the effect of different blending algorithms on video
quality.

2) Temporal Coherence: Blending video is unlike blending
still images, in that temporal coherence largely contributes to
the overall blended video quality. Inspired by [32], we calcu-
late the temporal coherence score of the blended video as:

∑

n

∑

x

∥∥∥Pn(x) − warp(Pn−1(x))
∥∥∥

2
. (19)

Here x represents the spatial location of the frame, Pn is the
current frame and Pn−1 is the previous frame. warp() is a
mapping given by the optical flow [33] between the previous
frame and the current frame. For each blending algorithm,
we calculate the mean and standard deviation of the temporal
coherence score for all scenes. The temporal coherence score
for each scene is divided by the number of frames. We show
the results in Table II. Lower temporal score indicates better
temporal coherence. Not surprisingly, MVCB and CPB are
worst at providing temporal coherence. Since the blended
result of these two Poisson blending approximations largely
depends on boundary differences, even a subtle change at
the boundary will propagate to the entire blended region.
In practise, misalignment and noise are always present in the
blending boundary, resulting in boundary differences which
temporally vary in an unsmooth manner. MSB and MPB
provide better temporal coherence than MVCB and CPB but
worse than FB and MBB. In MSB only vertex intensities are
calculated from the boundary differences, and the intensity
of the pixels inside each cell are obtained by interpolation
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Fig. 8. Blending result on local seam regions. From top to bottom: blending results using no-blending, MVCB,FB, MBB, CPB, MSB and MPB.

of the corresponding vertices. Thus, MSB has a smoother
offset map than MVCB and CPB. Compared to the original
Poisson blending formulation, the added color constraint helps
to ensure temporal coherence. Among the 6 blending algo-
rithms tested, MBB and FB have best temporal coherence.

FB computes a linear blend in the overlapping region while
MBB can be regarded as a multi-frequency linear blending
algorithm. Since MBB blends more regions as well as at more
frequencies, the temporal coherence of its is slightly better
than that of FB. We also demonstrate the temporal coherence
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TABLE III

BLEEDING DEGREES FOR DIFFERENT ALGORITHMS

score per frame over time for each blending algorithm, for
all scenes in Figure 4. We picked 150 continuous frames
and calculated the temporal coherence scores, plotting the
149 scores in different colours for different algorithms.

3) Bleeding: Poisson image blending and its variants have
elegant mathematical definitions but suffer from bleeding
artefacts when the blending boundary is not smooth. This
artefacts is manifest as a particular color leaking into its
surroundings, as illustrated in Figure 5(a). Since MVCB, CPB,
MSB and MPB are all variants of Poisson image blending,
we assess its significance using the bleeding degree proposed
in [34] to evaluate results for all scenes in our dataset.
To calculate the bleeding map we first calculate an offset map
by subtracting the original image from the blended image.
An energy map (illustrated in Figure 5(b)) is given by the
absolute values of the offset map, and the bleeding map is
computed from the energy map by:

B(x) = max(0, x − α
Eh

Ah + δ
), (20)

where Ah is the number of non-zero values in the binarized
energy map (binarized by Otsu’s method [35]), and Eh is
the sum of the energies at the non-zero positions in the
binarized map. α is a weight, set to 2 in our evaluation, used
to truncate high peak values, and δ is set to 1e-8. An example
of bleeding map is shown in Figure 5(c). Given the bleeding
map, the bleeding degree, i.e. the total amount of bleeding per
frame is given by

V n =
∑

B(x)2. (21)

This quantity is averaged over all frames, for all scenes in
our dataset. The results for MVCB, CPB, MSB and MPB
are shown in Table III. Clearly, MSB and MPB suffer much
less from bleeding artefacts than MVCB and CPB. MVCB
and CPB are particularly affected when there the blending
boundary is not smooth. For MSB, spline cells are used
to approximate the offset map, which largely alleviates the
bleeding artefacts. MPB not only considers gradients, but also
the colors, so it too suffers less from bleeding artefacts.

4) Subjective Evaluation: We did not use all scenes in sub-
jective testing (given that there are 6 algorithms for compar-
ison): to avoid fatigue, we limited the assessment performed
by each observer to last under 20 minutes. We thus used 6
representative scenes from our benchmark for subjective eval-
uation.

The subjective video quality assessment followed the guide-
lines described in [36]. The experiments were carried out in
a standard office environment. The output videos (stimuli)
were displayed on a 24-inch LCD with a native resolution of
3840 × 2160 pixels. The viewing distance was approximately
50 cm. A single-stimulus method was adopted, so that subjects

Fig. 9. Mean opinion score (MOS) averaged over all participants, for each
blended video and each algorithm, in our subjective quality experiment. The
vertical axis gives the MOS, with error bars indicating a 95% confidence
interval.

Fig. 10. Mean opinion score (MOS) averaged over all participants and all
blended videos for each algorithm, in our subjective quality experiment. The
vertical axis gives the MOS, with error bars indicating a 95% confidence
interval.

had to score the overall quality for each stimulus in the absence
of any reference. The ITU-R absolute category rating (ACR)
5-point scale (i.e., 1 = Bad, 2 = Poor, 3 = Fair,
4 = Good, 5 = Excellent) was used for quality scoring. For
the 6 test videos, we picked 10 s from each scene and used
the results of 7 different algorithms (the above 6, plus simple
stitching without blending) as stimuli, giving each participant
420 seconds of video to view. Since artefacts mainly appear
near seams, we also cropped 5 square regions around the
seams between different streams for each scene. We manually
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Fig. 11. An outdoor scene with obvious illuminance differences for different streams. Top row: results of feather blending and multi-band blending; middle
row: results of MVC blending and convolution pyramid blending; bottom row: results of multi-spline blending and modified Poisson blending.

picked five 300×300 local regions containing the most moving
objects; the areas of the subregions divided by the seam
are approximately in correspondence. During the subjective
assessment, the whole blended video was presented to subjects
to evaluate the overall blending quality, while the local seam
regions were presented to evaluate the artefacts caused by
the blending algorithms. Thus, the total time of videos to be
viewed was 840 seconds, so an entire subjective assessment
could be done in under 20 minutes. The interface for subjective
assessment is illustrated in Figure 6. The participants in the
study consisted of two groups of people. The first group
comprised university students, 18 male and 12 females who
were inexperienced with video quality assessment. The second
group comprised 3 experts in image processing: one uni-
versity faculty member, one postdoctoral associate and one
Ph.D. student.

Before the start of each experiment, written instructions
concerning the experimental procedure, including the scoring
scale and timing, were given to each subject. A training
set of several typical scenes and their blending results was
presented to the participants in order to familiarise them with
the issues in visual blending quality and with use of the
scoring scale. These were annotated with an expert’s remarks
on the video such as “there is an obvious seam and the
color is not very consistent near it” or “there is flickering
around the moving object”. Several kinds of artefact were also
described. The stimuli used in training were different from
those used for assessment. After training, the scenes showing
the results of different blending algorithms were presented to

TABLE IV

ANOVA TEST RESULTS EVALUATING THE EFFECT OF VIDEO CONTENT

AND BLENDING ALGORITHMS ON THE QUALITY OF VIDEO BLENDING

each participant in a random order. Each stimulus was shown
once, and the participants were requested to assess its quality
immediately after viewing it. Figure 7 illustrates scenes 1–6
used in our experiment. Figures 11–13 show some scenes
and the results of the 6 video blending algorithms applied to
each scene. Blending result on local seam regions of different
algorithms are illustrated in Figure 8.

Results of the experiment were filtered [37] to reject outlier
evaluations and individuals. Results more than two standard
deviations from the mean score for a test were considered to be
outliers; an individual was an outlier if 1/3 of scores submitted
were outliers. This caused one participant to be rejected. After
data filtering, the remaining scores were analysed. Figure 9
gives the mean opinion score (MOS) in our subjective exper-
iment, averaged over all participants, for each blended video.
It shows that both video content and blending algorithm affect
the overall perceived blending quality.

The observed tendencies were statistically analysed with a
full factorial ANOVA using subjective quality as the dependent
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Fig. 12. An indoor scene. Top row: results of feather blending and multi-band blending; middle row: results of MVC blending and convolution pyramid
blending; bottom row: results of multi-spline blending and modified Poisson blending.

TABLE V

MEAN AND STANDARD DEVIATION OF THE QUALITY SCORE AVERAGED OVER ALL SCENES AND ALL PARTICIPANTS FOR EACH BLENDING ALGORITHM

variable, the video content and blending algorithm as fixed
independent variables, and the participant as the random inde-
pendent variable. Two-way interactions of the fixed variables
were included in the analysis. The results are summarised
in Table IV, where the F-statistic and its associated degrees
of freedom and p-value are reported for each variable. These
results indicate that video content and blending algorithm
have a statistically significant effect on perceived quality.
Not all participants have the same average rating of qual-
ity, which is normal in a typical video quality assessment
experiment, as human observers can have different internal
scales.

The interaction between video content and blending algo-
rithm is significant, which implies that the impact the different
blending algorithms have on video quality depends on the
video content. Not all output scenes have the same overall
quality. The test reveals the output scenes have the following
order of quality (qualities of jointly underlined scenes do
not significantly differ from each other): scene6 < scene4 <
scene1 < scene2 < scene5 < scene3. These differences may
be because different scenes have different levels of interactions

between blending artefacts and visual content, consequently
affecting the visibility of artefacts in different scenes.

There is clearly a significant difference in qual-
ity between the 6 blending algorithms. The analysis
reveals the following order in quality (jointly underlined
algorithms do not significantly differ): No-blending <
MVCB < FB < CPB < MSB < MBB < MPB. Figure 10
and Table V summarises the impact of the 6 different algo-
rithms as well as no blending on video quality, averaged
over all scenes. The subjective evaluation shows that using
a blending algorithm improves output video quality relative to
stitching videos without blending, and that MPB outperforms
other algorithms in terms of final video quality. Considering
the standard deviations in Table V, MPB also provides the
most consistent quality of video results across all test scenes
and all participants.

When considering local seam regions, stitching again has
the lowest quality while CPB, MSB and MPB have the
highest quality. Comparing the mean scores for the whole
video and the local seam regions allows us to draw several
conclusions. MPB provides the highest quality in both global
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Fig. 13. A challenging scene taken with a moving camera rig. Top to bottom:
results of feather blending, multi-band blending, MVC blending, convolution
pyramid blending, multi-spline blending and modified Poisson blending.

and local evaluation. Stitching has the lowest quality globally,
and second lowest quality in local evaluation, for which FB
is worst. This is because several scenes in the evaluation have
not been well aligned. Such misalignments lead to ghosting

artefacts, which leads to a very poor viewing experience when
concentrating on local windows. MVCB and CPB do poorly
in the global evaluation but rather higher in a local evaluation,
as the bleeding artefacts of these Poisson approximations have
greater effects on a large scale than locally.

V. CONCLUSIONS

We have compared the performance and visual quality
of 6 blending algorithms when used for realtime 4K video
blending for a variety of scenes. Simple approaches such
as FB and MBB are fast when implemented on a GPU,
but do not produce high quality blending results. The main
problem with MVCB and CPB is that they are too sensitive to
boundary conditions, and suffer from bleeding artefacts. MSB
suffers less from bleeding than MVCB and CPB, but obvious
lighting inconsistencies are visible in the output when the input
video streams are not well aligned. Our experiments show that
modified Poisson blending performs surprising well on various
scenes, but it is not as efficient as some other approaches.
This suggests that further work to improve the efficiency of
modified Poisson blending would be useful, making it more
practical in real world applications.

Hopefully, further efficient blending algorithms will become
available in future, with improved capabilities and speed.
We have made our video benchmark and code implementing
each method publicly available to facilitate further evaluation
of new algorithms in this field.

A side-result of this work is that current objective quality
assessment algorithms and metrics are unsuitable for applica-
tion to the results of video blending, having been devised to
evaluate the results of compression and transmission errors,
and work is needed to devise new metrics suited to assessing
results of blending.

Although the objective evaluation results are not exactly
the same as the subjective evaluation results, they are highly
consistent. In future work we hope to combine several objec-
tive evaluation results so as to approximate human judgement.
A potential way forward is to explicitly incorporate brightness
consistency between the blended regions as well as several
other kinds of artefacts as evaluation terms in a new metric.
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