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Type I collagen is an essential extracellular protein that plays an important structural role in tissues that require high ten-
sile strength. However, owing to the molecule’s size, to date no experimental structural data are available for the Homo
sapiens species. Therefore, there is a real need to develop a reliable homology model and a method to study the packing
of the collagen molecules within the fibril. Through the use of the homology model and implementation of a novel simu-
lation technique, we have ascertained the orientations of the collagen molecules within a fibril, which is currently below
the resolution limit of experimental techniques. The longitudinal orientation of collagen molecules within a fibril has a
significant effect on the mechanical and biological properties of the fibril, owing to the different amino acid side chains
available at the interface between the molecules.

Keywords: collagen; molecular dynamics; extracellular matrix protein; computational biology; homology modelling;
protein structure; fibril; orientation

Introduction

Collagen is the most abundant protein in the human
body, constituting over a quarter of the dry mass of the
human body (Kadler, Baldock, Bella, & Boot-Handford,
2007). Found primarily in the extracellular matrix
(ECM), it provides strength, elasticity and functionality
to connective tissues (Ottani, Raspanti, & Ruggeri,
2001). Currently, there are 28 different members of the
collagen family (Kadler et al., 2007), although the fibril-
forming type I collagen is the most abundant in tissues
and organs that require tensile strength, such as tendon,
ligament and bone. The mechanical functions of the
supramolecular structure in collagenous tissues are opti-
mised for the direction and magnitude of load. For
example, in the skin the fibres form an anisotropic net-
work to respond effectively to multidirectional forces
(Ottani et al., 2001), whereas in tendons the fibres align
in one direction to maximise their effectiveness to
respond to a uniaxial load (Silver, Freeman, & Seehra,
2003).

Type I collagen molecules are 300 nm in length,
1.5 nm in diameter and comprise two α1 and one α2
polypeptide chains twisted into a continuous triple helix,
flanked on both ends by non-helical telopeptides. Under
physiological conditions, solvated collagen molecules

spontaneously form long thin fibrils in a process called
fibrillogenesis, which sees the molecules aligned parallel
yet staggered according to the Hodge-Petruska model
(Petruska & Hodge, 1964). Through aligning in this way
an observable periodicity is created known as the D-
band, which is composed of a gap region (0.54D) and an
overlap region of higher protein density (0.46D). Further
association occurs laterally to form fibrils which have
diameters varying between 20 and 500 nm and a length
in the millimetre scale (Kannus, 2000; Pingel et al.,
2014), depending on the organism and the location of
the tissue.

Much attention has been paid previously to investi-
gating the way in which the collagen fibrils align and
orientate within collagen fibres, and how collagen fibres
align in fasicles. A variety of techniques have been
employed to do this; scanning electron microscopy
(Pannarale, Braidotti, D’Alba, & Gaudio, 1994), small
angle X-ray scattering (Liao, Yang, Grashow, & Sacks,
2005; Moger et al., 2007), polarised light microscopy
(Ugryumova, Jacobs, Bonesi, & Matcher, 2009), infrared
and polarised Raman spectroscopy (Bi, Li, Doty, &
Camacho, 2005; Galvis, Dunlop, Duda, Fratzl, & Masic,
2013; Masic et al., 2011; Schrof, Varga, Galvis, Raum,
& Masic, 2014). However, as yet no method is capable
of probing below the fibrillar level to determine the
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orientation of the collagen molecules. It is worth noting
that, although the spectroscopic techniques (Raman and
FT-IRIS) currently offer the closest to atomic-scale
detail, the response of the amide I band (~1620 to
1700 cm−1) is made up of contributions from all of the
amide I scattering centres present in the structure, and
thus it will consist of multiple responses by the collagen
molecule to the incident light. For this reason, there is
still a need to develop more advanced techniques and
methodologies to be able to sample the orientation of the
individual collagen molecules within the fibril.

The alignment of the collagen molecules has been
well studied, with the D-banding periodicity being the
subject of many research articles (Cameron, Cairns, &
Wess, 2007; Fraser, MacRae, Miller, & Suzuki, 1983;
Kukreti & Belko, 2000; Orgel, Irving, Miller, & Wess,
2006; Ottani et al., 2001). A variety of techniques have
been utilised to probe this D-banding periodicity,
although the most common method is through the use of
small angle X-ray diffraction, with a series of sharp X-
ray peaks present parallel to the fibre axis. However, to
the best of our knowledge, no study to date has looked
at the rotational orientation of the individual collagen
molecules within the fibril.

A low-resolution crystal structure was first deter-
mined for type I collagen taken from the tail of Rattus
Norvegicus by Orgel et al. in 2006, after early attempts
to use X-ray diffraction data were thwarted by the elec-
tron density map being un-interpretable in the gap
regions (Orgel et al., 2006). Particular attention was paid
to the lateral packing of collagen molecules into the
quasi-hexagonal packing structure. However, no mention
was made as to the orientation of the collagen molecules
around the longitudinal axis, possibly due to the resolu-
tion of the crystal structure being too low. The presence
of a single molecule of collagen within the resulting pub-
lished structure (PDB code: 3HR2) suggests that no
deviation in orientation was observed between the colla-
gen molecules, essentially suggesting all collagen mole-
cules within the collagen fibril, extracted from a rat tail
tendon, exhibit an orientation around the longitudinal
axis of 0°.

The orientation of the collagen molecules about their
principal axis will greatly influence the structural proper-
ties of collagen fibrils, as the orientation of collagen
molecules will determine mechanical properties, owing
to the different possible intermolecular forces that occur
at the interface between the collagen molecules. The
most significant influence of orientation will be on the
biological properties, with orientation determining the
accessibility of the biomolecule binding sites and presen-
tation of key amino acid residues. The availability of cer-
tain amino acids at the interface between the collagen
molecules will alter the tissue properties, owing to the
different possible inter-molecular interactions. Examples

include the side chains available to form non-enzymatic
advanced glycation end product cross-links between the
molecules (Monnier et al., 2014), and the side chains
available to form inter-molecular hydrogen-bonds, either
directly or through a water-mediated process (Streeter &
de Leeuw, 2011).

Initially, the collagen molecules aggregate as a result
of the intermolecular forces, before later forming the
covalent interactions via the mature enzymatic cross-link.
This scenario could therefore mean that the driver for the
determination of the orientation of the collagen mole-
cules will be to maximise the number of favourable
inter-molecular interactions to form a low energy fibril.
To investigate the lowest energy orientations of the colla-
gen molecules we will use a novel two stage modelling
approach, which takes its inspiration from the work by
Adams, Arkin, Engelman, & Brünger, 1995 on computa-
tional method development for the determination of con-
formation and rotation angles of the pentameric
transmembrane domain of phospholamban (Adams et al.,
1995). Our approach begins by conducting a comprehen-
sive single-point energy search of all of the possible ori-
entations at small rotation intervals of 6°, using the
Homo sapiens sequence for type I collagen. The results
of the single point energy search are then used to con-
duct short molecular dynamics searches of the 150 low-
est energy orientations, for further sampling of the
potential energy landscape, to find the lowest energy ori-
entation. Validation is then conducted by testing some of
the lowest energy orientations within a fibrillar environ-
ment, to develop a new homology model for Homo sapi-
ens type I collagen that takes into account the orientation
of the collagen molecules about the longitudinal axis.

Results and discussion

First, a Blast scoring search was conducted to determine
a suitable template structure to use for the production of
the supramolecular structure of the new homology model
(Altschul, Gish, Miller, Myers, & Lipman, 1990). A tem-
plate sequence search was conducted with the BlastP
software suite, using the human target sequence of the
α1 and α2 chains given in the Uniprot entries;
CO1A1_human (P02452) and CO2A1 (P08123), respec-
tively. From the results of the BlastP database search, it
was clear that the highest scoring sequence is that of col-
lagen α1 and α2 for the Rattus norvegicus, which had
BLAST max scores 1.8 and 2 times larger than the next
sequence with an experimentally determined structure
3HQV. As such, we decided to use the structure of the
Rattus norvegicus sequence, as used in our previous
work (Collier, Nash, Birch, & de Leeuw, 2015), as the
reference structure to generate the model structure for
the Homo sapiens sequence. We considered that this
approach would generate a reliable method, owing to the
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strong sequence identity similarity of 91% between the
two sequences.

A straight-chained structure of the Homo sapiens col-
lagen molecule, with the correct helical propensity, was
generated using the Triple Helical Building Script (THe-
BuScr) (Rainey & Goh, 2004). To accurately apply the
rotation of the collagen molecule, the assumption is
made that the collagen molecule must be considered as a
straight rod/cylinder, and thus the straight molecule from
the THeBuScr programme was used directly. The strands
are generated within the fibrillar environment by posi-
tioning a box of length 360 nm at the beginning of the
collagen molecule, so that the strand contains a full col-
lagen molecule, a gap region and a short 110 residue tri-
ple helical and telopeptide section. The second strand is
generated by placing the end of the box at the end of the
collagen molecule, such that this strand also includes a
short triple helical region, telopeptide, a gap region and
a full collagen molecule, as seen in Figure 1.

Two explicit collagen molecules were defined as
shown in the bottom image of Figure 1, and these mole-
cules were rotated independently by 6° increments from
0–354°, with the energy computed for each of the 3600
possible combinations. Next, the energies of the resulting
systems were plotted, showing the energy as a function
of its orientation in the AC and BD strands, which can
be seen in Figure 2. Less than 2% of the simulations
yielded close contacts or steric clashes between bulky

side chains on the collagen molecules, which resulted in
a large increase in energy, i.e. orders of magnitudes
greater than the average energy. Due to the relatively
low proportion of these high-energy structures, depicted
by the white regions in Figure 2, it was decided to omit
these from the results of the simulations. The potential
energy reported is made up of contributions resulting
from a wide variety of inter-molecular interactions within
and between the collagen molecules, i.e. primarily salt
bridges (Keshwani, Banerjee, Brodsky, & Makhatadze,
2013; Persikov, Ramshaw, Kirkpatrick, & Brodsky,
2005; Yang, Chan, Kirkpatrick, Ramshaw, & Brodsky,
1997), direct hydrogen bonding (Brodsky, 1999; Brodsky
& Ramshaw, 1997; Persikov, Ramshaw, Kirkpatrick, &
Brodsky, 2002) and water-mediated hydrogen bonding
(De Simone, Vitagliano, & Berisio, 2008; Kuznetsova,
Rau, Parsegian, & Leikin, 1997; Streeter & de Leeuw,
2011).

From Figure 2, we can see that there is a wide distri-
bution of energies throughout, with a number of regions
in white exhibiting potential energies higher than −6.85
× 106 kcal/mol, with no significant clustering of low
energy regions. However, what can be seen in Figure 2
is the large number of smaller regions of low energy
configurations, illustrated by the dark blue regions.
Through comparison of the energies of these regions we
were able to identify the lowest 150 orientations from
the single energy point scan.

Figure 1. Schematic of the fibril (Top), with the red box (AC) and green box (BD), illustrating the regions of the collagen fibril used
in the orientation study.
Notes: After generation of the two strands, alignment to the x-axis, rotation about the x-axis, followed by translation, we obtain the
quarter-staggered two collagen molecule model illustrated at the bottom of this figure, with the AC strand on the bottom and the BD
strand above.
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Beginning with the 150 lowest energy structures
identified from the single point energy search, short
molecular dynamics simulations (MD) were run to iden-
tify both the most abundant orientations, as well as the
lowest energy orientations. During thermostatted MD
simulations the free energy of a system tends to a mini-
mum and hence the lower energy states are more proba-
ble, although random thermal fluctuations will introduce
occasional higher energy states. This has two conse-
quences for our investigation; the first is that a sub-opti-
mal orientation will tend towards a thermodynamic
equilibrium, therefore rotating into a state of optimal
interaction with the second molecule. The second is that
we can use the frequency of orientations as a measure of
the stability of that particular orientation. Therefore, as
the simulations proceed, higher energy structures will
move towards a lower energy state. This was indeed
observed, as illustrated by an example of the 240–84°
initial orientation in Figure 3, where we see a change in
the orientation observed until a relatively steady state is
obtained, in this case for the AC strand. The BD strand
in Figure 3, began at an initial good approximation of
the lower energy orientation, and hence it remains at
steady state. After an initial relaxation period, which we
excluded from our results, we were able to monitor the
average orientation to determine the most frequent orien-
tations present.

Through monitoring the frequency of particular ori-
entations within the 100 ps MD simulations, we were
able to collate orientation frequency data, as shown in
Figure 4. The data were collated into bins such that only
integer values were used for the remainder of the study;

this reduced the number of possible configurations to
129,600 possible discrete orientations, making the data
more manageable and reliable within the limits of the
calculated ±0.30° standard error of the mean. What can
immediately be seen from Figure 4 is that a significant
proportion of the possible orientations remain unpopu-
lated. Instead, there is a clustering of frequently popu-
lated orientations and an almost complete exclusion of
states elsewhere. Of particular note are the four key
exclusion regions from the 340–0° to 20–359°; 160–0°
to 200–359°; 0–340° to 359–20°; and 0–160° to 359–
200°, which leads to a cross-shaped region through the
plot. This observation supports the idea presented in

Figure 2. A plot of the potential energy as a function of the orientation angle of the AC strand and the orientation of its correspond-
ing BD strand, with the scale plotted reduced for increased resolution.
Notes: Potential energy is defined by the colour on a sliding scale from yellow – high energy – to blue – low energy – with white
representing values significantly off scale due to very high energies.

Figure 3. The equilibration of both explicit collagen mole-
cules from the initial 240–84° orientation, AC strand in red
moving to equilibration and the BD strand in black beginning
at approximate equilibrium.
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Figure 3, that despite a large number of potential orienta-
tions being identified in the SPE scan, within that region
equilibration of the system results into the molecules
adjusting into a lower energy orientation, resulting in the
frequency at which particular orientations occur reducing
to zero during the MD simulations.

Within these clusters of high occurrence orientations
observed in Figure 4, we see a small number of very
high occurrence orientations, or two very closely related
orientations. To gain a better understanding of the
favourable orientations that collagen molecules like to
adopt, we identified the 30 most frequent orientations,
which are presented in Figure 5, along with their accom-
panying frequency as a percentage of the total number of
calculated orientations. Although the frequencies reported
look relatively low, with the largest frequency being
0.21%, when you consider that nearly 42,000 orienta-
tions were calculated from the MD simulations in which
a possible 129,600 orientations are possible, the signifi-
cance of these values becomes apparent.

Upon extracting the most frequently occurring 30 ori-
entations, we first wanted to investigate the distribution
of these orientations. The distribution of the 30 values
can be seen in Figure 6, as red squares. Additionally we
overlaid the position of the lowest 150 orientations from
the single point energy searches. It is apparent that the
most frequently occurring orientations are located in four
distinct regions of the orientation plot, with the same

four exclusion regions present for the SPE identified ori-
entations, but slightly extended. This finding is of signifi-
cance, as it indicates that interaction between either the
top and bottom surface (320–40° and 130–240° regions)
of the collagen molecule likely results in unfavourable
interactions.

The final stage in identifying the preferential interac-
tions between the collagen molecules for packing in a
microfibril is to investigate their effect on the energetics
of the system. To do this we calculated the potential
energy for the 30 most frequently occurring orienta-
tions, for the duration of the 100 ps simulations relative
to the 0–0° model energy, the results of which are pre-
sented in Figure 7. What is immediately apparent is that
all of these orientations have lower energies than those
calculated for the 0–0° interaction model. Within these
most frequent orientations we have three orientations:
106–258°; 110–254°; 124–302°, with values 50% lower
than the average values for the other 27 orientations,
making them the optimum interaction orientations. It is
seen that the orientations with higher frequencies tend
to have lower energies, but with a couple of exceptions.
In these cases, a neighbouring orientation is also abun-
dant, for example the 298–268° orientation reports a
very low energy but a relatively small frequency owing
to the neighbouring 298–264° orientation also exhibiting
a high frequency. Considering these data, we can use
the clusters of the 30 highest frequency orientations to

Figure 4. 3D frequency histogram plot of the relative orientations of the two collagen model strands, with angle of the AC strand
on the x axis, angle of BD strand on the y axis, and the frequency of the orientation on the z axis.
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determine the most favourable interactions sites. If we
transpose the clusters consisting of the 30 most frequent
orientations onto a representative collagen molecule, we

see a ‘bow’ shape of favourable values in Figure 8(A).
If we then do the same for the 15 lowest energy orien-
tations we see a narrowing of the left hand ‘bow’ as

Figure 5. Thirty most frequent orientations identified from the molecular dynamics simulations accompanied with their frequency as
a percentage of the total calculated orientations.

Figure 6. Plot illustrating the angles of the AC and BD collagen strands for the thirty most frequent orientations identified from the
molecular dynamics simulations, as red squares, and the 150 lowest energy orientations determined from the single point energy rota-
tion search.

6 T.A. Collier et al.



seen Figure 8(B). The red regions are unfavourable ori-
entations for interaction with any orientation of the
neighbouring collagen molecules.

To obtain the lowest energy packing of the collagen
molecules, the system needs to consist of interactions
between the collagen molecules based on the optimum
orientations. Collagen molecules within a microfibril can
pack in a quasi-hexagonal manner (Hulmes & Miller,
1979), as shown in Figure 9. The current implementation
in collagen models, taken from the crystal structure for
the Rattus norvegicus sequence (Orgel et al., 2006), for
the packing, results in 12 interactions within the hexago-
nal arrangement; one 90–70°, three 270–90°, four 150–
330° and four 30–210°. Four of these lie within the high

frequency cluster range, whilst the remaining eight lie
outside of this area. To obtain the optimum packing for
our Homo sapiens sequence, rotation of the explicit col-
lagen molecule needs to be conducted so that the number
of favourable interactions are optimised. Owing to the
periodic nature of the arrangement of collagen molecules
within the fibril, the rotation can only be applied to one
molecule so that the periodicity is conserved. Rotation of
the explicit collagen by 26° in either direction results in
a 50% reduction in the number of unfavourable orienta-
tion interactions and a subsequent 100% increase in the
favourable orientation interactions. The angles of interac-
tion are now one 64–244°, three 244–64°, four 124–
304°, and four 4–184° interactions within the hexagonal

Figure 7. Figure showing the average potential energy difference of the 30 most frequent orientations identified from the molecular
dynamics simulations relative to the average potential energy of the 0-0° orientation system.
Notes: Error bars illustrate standard error in reported values.

Figure 8. Figures showing the calculated favourable interaction regions shown in green and unfavourable shown in red, based on
(A) frequency data and (B) energetics data.

Relative orientation of collagen molecules within a fibril 7



unit after the 26° rotation of the collagen molecules. The
impact of such a rotation, seen in Figure 9, results in a
doubling in the number of favourable interactions within
the hexagonal close-packed unit. In addition to increas-
ing the number of favourable interactions by this 26°
rotation, the rotation also had the added effect that the
second lowest energy orientation could be adopted, i.e.
124–304°, thus having a significant stabilising effect on
the fibril.

To test this hypothesis further a number of explicit
rotations within the fibrillar model were simulated. Five
different rotations were employed: 90° and 26° anti-
clockwise rotations, 0° rotation, and both 90° and 26°
clockwise rotations. MD simulations were performed for
60 ns and the energetics analysed. The relative energies
with respect to 0° rotation (the orientation present in Rat-
tus norvegicus) are reported in Table 1. What is immedi-
ately apparent is that employing the same orientation
present in the template structure would result in a higher
energy fibril compared to all but one of the other rota-
tions tested, i.e. the clockwise 90° rotation which exhi-
bits a higher energy. Our hypothesised 26° rotation
exhibits energies 79 and 48 kcal/mol lower than any
other order of rotation, for the anti-clockwise and clock-
wise rotation, respectively. Therefore, it is most probable
that the Homo sapiens collagen molecules exhibit a 26°
anti-clockwise rotation about their principal axis relative
to the template structure, thus experiencing different

inter-molecular interactions. However, the homology
model’s macroscopic structure is the same as the crystal
structure, with the same undulations seen within the gap
regions.

The current models (Gautieri, Vesentini, Redaelli, &
Buehler, 2011; Streeter & de Leeuw, 2010) used to
model type I collagen molecules within a fibrillar
environment are based upon the use of the structures
determined by Orgel et al. in 2006 (Orgel et al., 2006).
As we have shown above, this may not be the most
accurate assumption, given that a 26° clockwise rotation
of the explicit collagen molecule will result in a
significant reduction in the energy. However, there are a
number of other factors that also dictate the possible
orientations within the fibril. For example, mature
enzymatic cross-links will likely reduce the number of

Figure 9. Image depicting the impact of a 26° clockwise rotation of the collagen molecules within a hexagonal closed packed unit.
Notes: The red hexagonal unit shows the orientation present within the Rattus norvegicus unit cell and the green hexagonal unit
shows the configuration after the clockwise rotation. Green and red areas on the collagen molecules illustrate the favourable and unfa-
vourable interactions, respectively, as previously described in Figure 8, with the dashed line similarly coloured showing the interaction
orientations of the collagen molecules.

Table 1. Energies of the rotated molecules within the fibrillar
environment, values reported relative to the template structure
of Rattus Norvegicus. Standard error in values is 4.5 kcal/mol.

Orientation Energy (kcal/mol)

90° ACW −3219.1
26° ACW −3298.5
0° 0
26° CW −3267.4
90° CW +328.6

8 T.A. Collier et al.



possible orientations further. Taking these into account,
the current study is probably most comparable to the
possible orientations of collagen molecules within a col-
lagen gel or artificial construct, in the absence of mature
cross-links. Further studies would be required, using a
three- or multi-collagen molecule model with explicit
cross-links, to see how these would influence the possi-
ble orientations, which is, however, beyond the capabili-
ties of current computational resources. In addition,
collagenous tissues are rarely homogeneous; even ten-
dons, which consist of 65–80% (dry weight) collagen
contain other ECM molecules such as decorin on the
surface of the fibril, which may alter the alignment of
the collagen molecules at this interface (22, 311). How-
ever, considering the widespread use of collagen gels as
tissue engineering scaffolds, we can confidently say that
the orientations exhibited in such samples, which have
much lower concentrations of other proteins and in the
absence of enzymatic cross-links, are likely to be those
identified in this study.

Additional studies confirming the cell dimensions of
the model, as well as further validation of the new
homology model are available in the accompanying sup-
plementary information.

Conclusion

Given the absence of a crystal structure for fibrillar
Homo sapiens type I collagen, we have developed a
homology model using the crystal structure of the Rattus
norvegicus sequence as a template. The orientation of
collagen molecules packed within a collagen fibril poten-
tially has significant implications on the fibril’s mechani-
cal and biological properties. However, their
determination remains unresolved. In this work, we have
used a single point energy scan of 6° rotation increments
of two staggered collagen strands, each consisting of a
full collagen molecule, a gap region and a short collagen
peptide, to identify the low energy interaction regions.
The lowest energy orientations identified from this single
point energy scan were then used as starting configura-
tions for short MD simulations. The frequency of orien-
tations and energies were computed over these MD
simulations to determine the most favourable orienta-
tions. Clustering of low energy and high-frequency ori-
entations was observed, in such a way that the
interactions were optimum within two small windows of
orientation, between 50 and 124° and 232–304°, with
respect to the orientation of the collagen molecule in the
Orgel crystal structure (21). Given the hexagonal close
packing of collagen molecules, we identified that a 26°
anti-clockwise rotation of the explicit collagen molecule
in current models would result in an increased number
of favourable interactions. This proposition was verified
by implementation of the 26° anti-clockwise rotation

within the fibrillar model, with the energies reported
being over 3000 kcal/mol lower in energy than for the
orientation present in the template structure, thus making
this rotation the most probable orientation of collagen
molecules within a human fibril, given the findings from
our model.

Methods

Identification of target structure

The web portal version of Standard Protein BLAST, part
of the blastp suite from the US National Center for
Biotechnology Information, is used for database search-
ing for the template sequence. The accession numbers
for the human target sequence used are CO1A1_human
(P02452) and CO2A1 (P08123), which includes all the
hydroxyproline and hydroxylysine residues, as desig-
nated in the post-translational modification section of the
entries. A number of databases were used for the search,
including the Protein Data Bank (Berman, Henrick, &
Nakamura, 2003; Berman et al., 2000; Bernstein et al.,
1977), UniProt (The UniProt Consortium, 2014),
SwissProt (Bairoch & Apweiler, 2000) and NCBI own
libraries (Pruitt, Tatusova, & Maglott, 2007). For gene
sequence data only, a manual search was conducted to
identify if an available crystal or experimentally derived
PDB file is obtainable.

Building the rotation model

The model was constructed using the amino acid
sequence for Homo sapiens. A straight-chained structure
of a collagen molecule with the correct helical propensity
was generated using the Triple Helical Building Script
(THeBuScr) (Rainey & Goh, 2004). The primary
sequences of the collagen peptide chains α1 and α2,
translated from the genes COL1A1_human (P02452) and
COL1A2_human (P08123) (The UniProt Consortium,
2014), were used as inputs. Proline residues present in
the Yyy position of the triplets were considered to be
hydroxyproline in the study and hydroxyl-lysine residues
stated in the modified residues of the UniProt entry were
also included in the sequence.

To accurately apply the rotation of the collagen mole-
cule, the assumption was made that the collagen mole-
cule must be considered as a straight rod, and thus the
straight molecule from the THeBuScr programme was
used directly. The next stage in the preparation was to
align the principal axis (c-axis) of the collagen molecule
to a Cartesian origin axis using the Orient script in
VMD (Humphrey, Dalke, & Schulten, 1996). In our case
we aligned to the x-axis in such a way, that the back-
bone atoms had almost zero displacement in the y and z
components.
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From this aligned straight collagen molecule two dif-
ferent strands are created. First the molecule is replicated
along the x-axis, preceded by a 36 nm gap region. The
strands are then generated by taking a box of length
360 nm and positioning the box at the beginning of the
collagen molecule, containing a strand comprising a full
collagen molecule, a gap region and a short 110 residue
triple helical and telopeptide section. The second strand
is generated by placing the end of the box at the end of
the collagen molecule, such that this strand also includes
a short triple helical region, telopeptide, a gap region
and a full collagen molecule. Thus, we have two models
aligned to the x-axis, one of a collagen molecule fol-
lowed by a short collagen snippet and the second a short
collagen-like snippet followed by a collagen molecule.

A script was developed to rotate about a chosen axis
a selection or all of a protein by a set number of degrees.
Through an input of a PDB file the script uses a rotation
matrix, or translation vector to alter the coordinates and
generate the modified PDB file. The reference model for
our simulations is the 0–0°, two strands not rotated but
translated by 17 Å. This orientation is the linear version
of the orientation from the 2006 Orgel crystal structure,
in which the glycine of the alpha1 chain is above the
first residues of the other two chains that lay almost in a
horizontal plane parallel to the z axis.

Single point energy scan

A script is used to generate 3600 different models for
the two strands, orientated independently at 6° incre-
ments. The PDB files for all of the models are then fed
through the LeaP part of the AmberTools14 to generate
the input files, during which the models are solvated
using TIP3P water with a buffer of 8.0 Å and the charge
of the system is compensated by the addition of chloride
ions. The models then undergo a very short 1000 step
conjugate gradient minimisation, during which all of the
protein atoms are restrained using a force constant of
1000 kcal/(mol Angstrom2), which is necessary to
remove any high energy fluctuations caused by close
contacts with the recently added water and Cl− ions. A
further one-step minimisation was conducted to get a
single point total energy for the system, which is then
used to direct the search in the second stage of this
investigation.

Short MD simulations of orientation model

The structures undergo short molecular dynamics simula-
tions, using a cut-off of 8.0 Å, to allow the models to
relax further into their most favourable orientations. The
models initially undergo 500 steps steepest descent and
2500 steps of conjugate gradient minimisation, followed
by a two-stage heating simulation of 20 ps from 0 to

100 K, and 30 ps from 100 to 310 K. Restraints of
200 kcal/(mol Angstrom2) were applied on all the protein
atoms up until this point in the procedure. Finally, the
model undergoes a further 100 ps simulation in the NPT
ensemble at 1.0 atm pressure. The results of the 100 ps
NPT simulation are used to determine the low energy
orientations of the collagen molecules within the fibril in
two ways: first, through comparing the energies of the
respective orientations, and second, through the use of
another script, which calculates the orientations from the
trajectories of the simulation, allowing us to monitor and
compare the frequency of certain orientations. The
100 ps timescale was chosen, both because the large sys-
tem size prohibits long timescales, but more importantly
because the energies have settled to an acceptable degree
within this timescale (SI Figure 2).

Solvent and side chain atoms were removed using
ptraj, part of the AmberTools14 package, before a sec-
ond script utilised vector-based mathematics about the x-
axis to determine the relative orientations of each of the
heavy atoms within the molecule relative to the 0–0°
model. More specifically the script calculates the angle
of rotation from the dot product of the vector defined by
the new position to a point on the x-axis, relative to the
position of the same atom in the 0–0° configuration to a
point on the x-axis. The results are then averaged over
all the atoms to get the relative orientation of the whole
molecule, and this is repeated for each of the time points
within the trajectory. The functionality and accuracy of
the script were tested on a sample collection (N = 30) of
known rotated models of the same system, with results
reported to within 0.345% accuracy. As the code aver-
ages the orientation of each constituent atom, to report a
single value for the orientation of the entire collagen
molecule it is possible that a portion of the collagen
molecule may rotate to a greater extent than the rest of
the molecule, resulting in an inaccurate value being
recorded for the orientation. To check if twisting was
occurring, we verified a random selection (N = 10) of the
orientations from the short MD runs, to calculate the
standard error of the mean for the molecular orientation
from its constituent atomic angular displacements. It was
found that the standard error of the mean had an average
value of ±0.30°, and therefore twisting of the molecule
was not occurring to a great enough extent to influence
the molecular orientation values reported.

Fibrillar collagen simulations detail

MD simulations were performed on all models using
SANDER, part of the AMBER12 software package
(Case et al., 2012). Periodic boundary conditions were
applied to the unit cell in order to simulate the densely
packed fibrillar environment. The ff99SB force field was
used for the parameterisation of the collagen molecule
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with additional terms based on published values for
hydroxyproline (Hornak et al., 2006). Water molecules
were represented using the TIP3P model (Park, Radmer,
Klein, & Pande, 2005). The ff99SB force field was
parameterized specifically for biological molecules and
describes the non-bonded interactions by pairwise addi-
tive Lennard-Jones 6–12 potentials and pairwise additive
coulombic potentials. Coulombic potentials were calcu-
lated using the Particle Mesh Ewald summation with a
cut-off radius of 8.0 Å. An 8.0 Å cut-off was chosen
due to the dense fibrillar environment of the collagen
molecule within the fibril, which is consistent with many
previous modelling studies on fibrillar collagen; the ener-
gies converge within the timescale of the simulation
(Collier et al., 2015; Klein & Huang, 1999; Marlowe,
Singh, & Yingling, 2012; Streeter & de Leeuw, 2010). A
time step of 2 fs was adopted for all MD simulations
and hydrogen-bond lengths were constrained using the
SHAKE algorithm (Ryckaert, Ciccotti, & Berendsen,
1977). Constant temperature and pressure were main-
tained with the Berendsen algorithm (Berendsen, Postma,
van Gunsteren, DiNola, & Haak, 1984) using a barostat
time constant of 5.0 ps atm−1 and a thermostat time con-
stant of 1.0 ps. As the periodic unit cell has a c lattice
parameter much larger than a and b, it is appropriate to
use anisotropic coordinate rescaling rather than isotropic
rescaling for maintaining constant pressure. This was
achieved by making a small modification to the AMBER
code, the details of which are discussed in our previous
work (Streeter & de Leeuw, 2010). The system density
and the potential energy were monitored to determine
system convergence.

Supplementary material

The supplementary material for this paper is
available online at https://doi.org/10.1080/07391102.
2018.1433553.
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