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Abstract

Forecasting competitions have been a major drive not only for improving the performance of
forecasting methods but also for the development of new forecasting approaches. Despite the
tremendous value and impact of these competitions, they suffer from the limitation is that
performance is measured only in terms of forecast accuracy and bias, lacking utility metrics.
Using the monthly industry series of the M3-competition, we empirically explore the inven-
tory performance of widely used forecasting techniques, including exponential smoothing,
ARIMA models, Theta method and approaches based on multiple temporal aggregation.
We employ a rolling simulation approach and analyse the results for the order-up-to policy
under various lead times. We find that methods based on combinations result in superior
inventory performance, while Näıve, Holt and Holt-Winters perform poorly.

Keywords: forecasting, inventory, evaluation, utility metrics, bullwhip effect

1. Introduction

Accurate forecasting is claimed to be important for business operations. However, one
should not only focus on minimizing the forecast error per se but maximising the utility
of the forecasts. Forecasting competitions have increased our understanding with regards
to the relative forecasting performance of different methods and approaches. The M and
M3 forecasting competitions are the most impactful to-date, involving more than 4,000 time
series combined with an evaluation of the forecasts produced by more than 30 different
methods. However, little is known about the utility of the forecasting methods in inventory
management settings.

The main result from the M competitions (Makridakis et al., 1982; Makridakis and Hibon,
2000) is that simple forecasting methods, such as exponential smoothing, can perform as
good as, if not better than, more complex ones, such as the Box-Jenkins method. However
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the ranking of the different methods depends on the selected error measure. It has been
shown that forecast combinations usually outperform individual forecasts and forecasting
performance decreases as the forecasting horizon lengthens.

For inventory forecasting, practitioners care about the variance of the forecast errors
over the lead-time and review period (as these factors lead directly to inventory holding
requirements) but also the variance of the forecasts (as this leads to the bullwhip effect,
Wang and Disney, 2016). When demand forecasts are used for replenishment decisions,
it is the resulting inventory performance that ultimately determines the suitability of a
forecasting method. However, in the M and M3 competitions, performance of the various
methods is measured only in terms of forecasting performance. We assert that forecasts
are created to aid business decisions and those forecasts should be judged based on their
economic consequences. If a more stable, but less accurate forecast results in less cost for
the business, that is the forecast that should be used and this calls for an extension on
evaluation based on the inventory performance. In particular, there are three aspects of
inventory performance that are especially important to everyday operations: (holding and
backlog) cost, amplification (of inventory and replenishment orders) and customer service
level.

Our contributions are as follows,
• We extend the results of the M3-competition to include evaluations on inventory per-

formance, using the monthly industry series of the M3-competition.
• We empirically explore the utility of widely used forecasting methods, such as expo-

nential smoothing, and other methods originally evaluated in M3-competition, such as
ARIMA and the Theta method. We also extend to methods that have been proposed
after the M3-Competition took place, such as the automatic selection of the best ex-
ponential smoothing model (ETS), automatic ARIMA (AutoARIMA) and Multiple
Aggregation Prediction Algorithm (MAPA) which have been shown to perform well
in terms of forecasting performance measures.
• We employ a rolling simulation approach and analyse the performance of the fore-

casting mechanism when used inside the order-up-to policy (a commonly adopted
replenishment policy in practice) with various lead times and target service levels.
• We propose a single metric for inventory performance that incorporates first-order

(piecewise linear cost functions), second-order (quadratic cost functions) and service
level, based on which the forecast methods can be compared and contrasted.

The remainder of the paper is organized as follows. Section 2 provides a short review of
existing studies on the inventory performance of forecasting methods. Section 3 describes the
empirical data, the forecasting methods and the inventory system model that were adopted
in this research. Section 4 defines the forecasting and utility measures considered. Section
5 presents the empirical results, and Section 6 concludes.

2. Research background

In this section we present an overview of the literature that has dealt so far with assessing
the inventory performance of various forecasting methods.
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In the slow-moving demand context, Sani and Kingsman (1997) were the first to assess
the performance of various estimators, namely simple moving averages (SMA), simple expo-
nential smoothing (SES) and Croston’s method (Croston, 1972), under different inventory
control systems. They did so by measuring the average regret on annual cost and the average
service regret by using each forecasting method. Eaves and Kingsman (2004) additionally
considered the Syntetos-Boylan Approximation (SBA, Syntetos and Boylan, 2005). They
suggested that SBA can result in reduction of the inventory holding volumes compared to
other intermittent demand estimators. Syntetos and Boylan (2006) performed a similar
analysis considering both the stock volume and the realised customer service level. Boylan
et al. (2008) extended this work to the case of classifying stock keeping units (SKUs) based
on their demand characteristics (Syntetos et al., 2005). In a latter study, Babai et al. (2010)
additionally considered the inventory performance of simple exponential smoothing (SES)
along with Croston’s method and SBA, while focusing on holding and backorder trade-offs.

The utility performance of parametric methods for forecasting intermittent demand has
also been compared against bootstrapping methods (Teunter and Duncan, 2009; Syntetos
et al., 2015) and neural method techniques (Kourentzes, 2013), with interesting insights
emerging from the inventory versus realised service levels and holding versus backlog volume
trade-off curves. Kourentzes (2014) proposed and demonstrated the effectiveness (in terms
of both traditional error measures and inventory performance) of two new cost functions for
parameter optimization of intermittent demand methods.

Fewer studies have empirically examined the inventory performance of forecasting met-
hods for fast-moving demand series. The first attempt, to the best of our knowledge, is
by Gardner (1990). He analysed the SKUs classified as important (Class A) in a military
inventory system. The trade-off curves of inventory investment versus service level (in terms
of number of days to fulfill a backorder) showed the superiority of damped exponential
smoothing over SES, Näıve and Holt’s methods. A later study (Acar and Gardner, 2012)
reached the same results. Snyder et al. (2002) focused on estimating the aggregate (lead-
time) demand using exponential smoothing methods and evaluated the performance on the
fill rate.

A large empirical study of 28,000 SKUs was undertaken by Strijbosch et al. (2011).
However, they compared the performance of only two simple forecasting methods: SMA
and SES. Liao and Chang (2010) considered a wider pool of methods that includes the
most commonly used ones from the exponential smoothing family (SES, Holt, Damped).
However, the study was limited to a small number of time series. The inventory implications
of forecast combination of a wide range of forecasting methods were examined by Barrow
and Kourentzes (2016), suggesting that lower safety stocks are required compared to the
base models. Lastly, Ali et al. (2012) examined the effects of information sharing in terms of
forecasting on inventory savings (inventory holding volumes and inventory costs) under three
forecasting methods (the optimal methods corresponding to AR(1), MA(1) and ARMA(1,1)
series).

Some studies have examined the inventory implications of judgmentally revising statis-
tical forecasts. Syntetos et al. (2009) showed that the benefits of judgmental interventions
on forecast accuracy are also evident in terms of stock control performance (stock and ser-
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vice levels). Syntetos et al. (2010) also demonstrated that, when fast demand is considered,
small improvements in terms of accuracy as a result of judgmental revision of the statistical
output could mean large gains in terms of inventory reductions. Wang and Petropoulos
(2016) considered the cases of combination and forecast selection. They found that simple
combinations of statistical and judgmental forecasts, or the appropriate selection between
them, can lead to statistically significant reductions in the total inventory cost (consisting
of holding cost and backlog cost) and variance of the inventory and the orders (which can be
translated to reduction of the bullwhip effect, Wang and Disney, 2016), while maintaining
similar achieved service levels compared to either statistical or judgmental forecasts.

This short literature review suggests that there exist many open research questions re-
garding the inventory performance of forecasting methods for fast-moving demand series:
• How does Holt-Winters method, arguably the most widely used method for fast-moving

seasonal data, perform in terms of utility?
• What is the relative inventory performance of exponential smoothing over ARIMA?
• What is the inventory performance of the Theta method (Assimakopoulos and Nikolopou-

los, 2000), the M3-Competition winner?
• Building on the research by Barrow and Kourentzes (2016), how do combinations of

forecasting methods perform relative to the base models in terms of inventory volumes
and realized service levels?
• While a few papers (Babai et al., 2012; Petropoulos et al., 2016) have studied the

inventory implications of temporal non-overlapping aggregation (Nikolopoulos et al.,
2011), a question that still remains is what is the inventory performance of multiple
temporal aggregation (Kourentzes et al., 2014)?

3. Experimental design

3.1. Empirical data

The empirical data for this study is the “monthly industry” subset of the M3-competition
data (Makridakis and Hibon, 2000). This allows us to investigate the utility implications of
forecasting methods in an operations related context, whilst retain the results of the original
M3 competition as the accuracy benchmark.

We consider the monthly data, where utility will most probably relate to inventory.
While many real-life inventory management settings operate on a daily or weekly basis,
following the popular lean production philosophy which advocates as short a cycle as possible
(Hedenstierna and Disney, 2016), there are still supply chains that operate on a monthly
basis; usually supply chains with long lead-times and high capacity costs. We focus on the
monthly frequency time series within the M3 dataset as data with a weekly frequency is
not available. Such frequency corresponds to the inventory review period. Hence, adopting
monthly data implies that the inventory levels are reviewed and ordering decisions are made
each month. Since the focus of this paper is not setting the optimal review period, we refer
to Silver and Robb (2008) or Hedenstierna and Disney (2016) for more information on this
issue.
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We exclude M3 time series falling under the categories “micro”, “macro”, “finance”,
“demographic” and “other” as these are not directly relevant to the nature of the problem
investigated here nor could we reasonably assume that such data is part of an inventory
system. Thus, we only consider the industry data with monthly frequency. After examining
the description of the “monthly industry” subset in M3 data, we have found that, out of 334
time series, 256 directly corresponds to sales, shipment or production. These can be safely
assumed to resemble the demand to be forecasted in the inventory system. For instance,
the production data can be easily transformed to the demand or consumption of spare
parts. In general, the network structure of supply chains allows us to translate non-demand
data to the demand or consumption of some other products. Although there are some cases
representing services rather than physical stock keeping units, we opt for not excluding these
time series so that the M3-industry subset remains intact and the results provided from this
work become comparable with the ones from the original research (Makridakis and Hibon,
2000). Insights derived from analysing just the 256 series that directly corresponds to sales,
shipment or production are in-line with the results presented in this study.

Monthly or even seasonal data at the industry level has been widely applied in inventory
and bullwhip analysis (Cachon et al., 2007). More importantly, the microscopic inventory
system model have been used to model and analyse such data (Blinder and Maccini, 1991).
This is an acceptable research norm for the inventory theorists, particularly when business
level data with a finer granularity is not available. From the technical perspective, data from
the industry level can be seen as an aggregation of business level data. Since it is difficult to
track the aggregation policies in use, and hence the effect of aggregation on data structure
and characteristics, we believe that it is safe for us to focus on the characteristics of the
data.

The subset under investigation consists of 334 monthly time series of varying lengths
(at least 96 and at most 144 observations), with the vast majority of the series recording
at least 11 years of history. The data set consists of both stationary and non-stationary
time series. We employ a rolling origin forecasting approach that allows for the inventory
simulation discussed in Section 3.3. In more detail, we initially set the in-sample to hold the
first 36 observations of the data and we produce forecasts for the next year (for the next 12
months, periods 37 to 48). We then include the 37th observation in the in-sample and we
once again produce forecasts for the next 12 months (periods 38 to 49). A forecast horizon of
12 periods corresponds to the maximum lead time that we consider in this research, which
includes transportation lead-time and review period. We repeat this procedure until we
reach the end of the data. For the shortest of the available series, this procedure is repeated
60 times (the first origin is the 36th observation; the last origin is the 95th observation from
which only the first-step-ahead forecast can be evaluated).

3.2. Forecasting methods

In this research we cannot make use of the publicly available forecasts submitted by
the original participants of the M3-competition, as these forecasts are produced from a
single forecast origin that would render the inventory evaluation practically impossible.
However, we include methods that featured in the M3-competition that are freely available
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(i.e. they do not require proprietary software), widely used in practice, and/or achieved
good performance.

Apart from the simple Näıve (random walk) method, where the forecast for the next
period is equal to the latest recorded actual, we consider several widely used methods com-
ing from the exponential smoothing family, namely simple exponential smoothing (SES),
Holt’s exponential smoothing (Holt), Holt-Winters exponential smoothing (Holt-Winters)
and Damped trend exponential smoothing (Damped).

We also include in our pool the standard version of the Theta method, as proposed by
Assimakopoulos and Nikolopoulos (2000). The Theta method is a data-decomposition ap-
proach that attempts to separate the short term movements from the long-term trend of
the data. Hyndman and Billah (2003) and Fiorucci et al. (2016) showed that the standard
version of Theta method that was applied at the M3-Competition is mathematically equiva-
lent to SES with drift. Given that the Theta method outperformed all other methods in the
original results of the M3-competition, it would be interesting to see if its superior perfor-
mance holds when considering inventory implications rather than traditional error measures
used in the forecasting literature.

For the methods outlined so far and that do not model seasonality explicitly, we consider,
in line with the original set-up of the M3-competition, a three-step forecasting procedure:
seasonal adjustment (if data are seasonal), forecasting, re-seasonalization. In more detail, a
seasonal test is applied using the in-sample data (that is used for fitting the different met-
hods). The seasonal test applied in this study is described in detail by Fiorucci et al. (2016)
and is based on the auto-correlation function with lag equal to 12 periods, corresponding
to the seasonal cycle for the monthly frequency. We opt for a 90% confidence level for the
seasonality test. If a series is identified as seasonal, then a multiplicative classical decompo-
sition is applied to calculated the seasonal indices. The in-sample data are divided by the
respective seasonal indices towards the calculation of the seasonally-adjusted in-sample data;
at the same time, the hold-out sample remains intact. Then, the non-seasonal forecasts are
produced using the seasonally-adjusted in-sample observations. Finally, these forecasts are
re-seasonalised using the seasonal indices derived by the classical decomposition. The final
seasonal forecasts are then compared with the hold-out sample. This procedure is repeated
for each forecast origin. If data are not identified as seasonal, then forecasting is performed
on the original data. Lastly, it should be noted that a 12-month cycle encapsulates com-
monly observed shorter business cycles, such as quarterly ones linked with financial reporting
activities.

We additionally consider forecasting approaches proposed after the M3-competition and
have shown to perform well. These include the algorithms proposed by Hyndman and
Khandakar (2008) referring to automatic model selection for the exponential smoothing and
the ARIMA families of models. Hereafter these approaches will be referred to as ETS and
AutoARIMA respectively. The selection is based on information criteria with the default
option of these automatic approaches being the corrected Akakie Information Criterion for
finite sample sizes (AICc). We choose to add these approaches in our study as these are
implemented as functions of the very popular forecast package of the R statistical software
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and are nowadays considered as the benchmarks in automatic time series forecasting.1

We also investigate the performance of a recently proposed combination approach, the
Multiple Aggregation Prediction Algorithm (MAPA, Kourentzes et al., 2014), which is based
on the temporal transformation of the original time series. MAPA suggests that forecasts are
not produced using just the original (monthly in this case) frequency, but also higher non-
overlapping temporal aggregation levels (lower frequencies), such as bi-monthly, quarterly,
up to the yearly frequency. The advantage is that different time series features (trend and
seasonality) will be enhanced and/or smoothed out at different aggregation levels, rendering
their extrapolation more robust. Consequently, the estimates of the states (level, trend and
seasonality) at the different levels are combined towards the final forecast.

The inclusion of MAPA is based on the increased popularity of the temporal aggregation
since 2011 coupled with their increased forecast accuracy, especially if one focuses on the
longer horizons. Additionally, approaches based on the combination of various temporal
aggregation levels are of managerial importance, as the produced forecasts are aligned to
operational, tactical and strategic decision making purposes.

Table 1 summarises the methods and approaches implemented in this research. In line
with the reproducibility agenda (Boylan et al., 2015; Boylan, 2016) this table also details
the R packages and functions that were used to produce the forecasts.

Table 1: Forecasting methods and approaches used in this study.

Method R package Function
Näıve forecast 6.2 naive(...)

SES forecast 6.2 ets(..., model="ANN")

Holt forecast 6.2 ets(..., model="AAN", damped=FALSE)

Holt-Winters forecast 6.2 ets(..., model="MAM", damped=FALSE)

Damped forecast 6.2 ets(..., model="AAN", damped=TRUE)

Theta forecTheta 2.1 stheta(...)

ETS forecast 6.2 ets(...)

AutoARIMA forecast 6.2 auto.arima(...)

MAPA MAPA 1.9 mapasimple(...)

Apart from single methods and approaches, the performance of combinations, which
have been shown to perform well in the M3-competition, is explored. More specifically, we
consider the simple (equal-weight) combination of SES, Holt and Damped methods (denoted
as SHD) and the simple combination of the ETS and AutoARIMA approaches.

We would like to note that the scope of this study is to compare the various methods and
approaches when these are applied “out-of-the-box”, i.e. using implementations that can

1The forecast package is currently ranked within the top 1% (across all R packages available in CRAN
repository) in terms of monthly downloads, with an average of 56,000 downloads per month. Also, the study
that proposed ETS and autoARIMA automatic forecasting approaches (Hyndman and Khandakar, 2008)
has been cited more than 800 times so far based on Google Scholar.
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be found within the solutions of popular forecasting software providers. For instance, the
parameters for the exponential smoothing methods have been estimated by minimising the
one-step-ahead mean squared error. We do not investigate what are the potential gains of
matching the optimisation objective with a particular utility objective, such as minimisation
of the holding cost or maximisation of the achieved service level; we consider this as a
separate study.

3.3. Inventory system

The evaluation method proposed does not need the specification of an inventory replen-
ishment policy, as long as it takes demand and forecast as input. However, for the sake
of simulation studies, here we adopt the order-up-to policy as the inventory replenishment
policy. This policy has been frequently applied to industrial practices as well as academic
research, due to its simple structure and ease of implementation (Lee et al., 1997). It is
also the optimal linear policy for minimizing inventory related costs when there is no fixed
ordering cost (Hosoda and Disney, 2006).

The policy is defined as follows:

ot = D̂L
t + sst − ipt, (1)

where ot is the determined ordering quantity in period t, D̂L
t the forecast of lead-time demand

and L is the lead-time; sst the safety stock, and ipt the inventory position at the end of
period t respectively. Note that the term L includes the transportation lead-time and a one
sequence of events delay.

The lead-time demand and the forecast of lead-time demand are calculated simply by
summing single-period demand and forecasts within the lead-time, i.e.,

DL
t =

L∑
k=1

dt+k, (2)

D̂L
t =

L∑
k=1

d̂t,t+k, (3)

where dt is the demand (consumption) in period t, and d̂t,t+k is the forecast of demand

in period t + k made at period t. The single-period forecasts d̂t,t+k are generated by the
forecasting methods discussed in Section 3.2.

The safety stock is updated iteratively in a Newsvendor fashion. That is, it is determined
by the desired service level (availability), αs, and the standard deviation of past lead-time
demand forecast errors,

sst = Φ−1(αs)σe, (4)

where Φ−1(·) is the inverse cumulative distribution function of the standard normal distri-
bution, and σe is the standard deviation of past forecast errors, calculated from the first
period up to period t. The adoption of order-up-to policy is needed here to ensure that we

8



can use the standard deviation of forecast errors (σe) to replace the standard deviation of
inventory levels (σi). We acknowledge that often exponential smoothing is used in practice
to update σe (Chen et al., 2000).

Lastly, the inventory position is updated every period following the linear assumption,

ipt = ipt−1 + ot−1 − dt. (5)

The linear assumption implies that unmet demand can be backlogged and the capacity of
supply is infinite. We keep these assumptions for the simplification of the inventory system
model, as relaxing them would potentially hinder our focus on the impact of forecasting
methods. The inventory position can further be broken down to net inventory level and
work-in-progress level (ordered placed but not yet received), ipt = it + wt, where

it = it−1 + ot−L − dt,

wt = wt−1 + ot−1 − ot−L.

4. Measuring performance

4.1. Forecasting performance

In this study we consider one bias and two accuracy measures. The Mean Percentage
Error (MPE) is used to measure bias. A single point forecast Percentage Error (PE) is
defined as

PE =
dt − d̂t
dt

× 100%. (6)

The MPE can be calculated as the arithmetic mean of PEs across horizons, origins and
time series.

To measure accuracy, we consider the symmetric Mean Absolute Percentage Error (sMAPE),
which was also the main error measure in the M3-competition, as well as the Mean Absolute
Scaled Error (MASE, Hyndman and Koehler, 2006). A symmetric Absolute Percentage
Error (sAPE) and a Absolute Scaled Error (ASE) can be defined as

sAPE =
| dt − d̂t |
| dt | + | d̂t |

× 200%. (7)

ASE =
| dt − d̂t |

(n−m)−1
∑n

i=m+1 | di − di−m |
, (8)

where m is the periodicity of the data (12 for monthly time series) and n is the length of
the in-sample. The sMAPE and MASE can be computed by appropriately calculating the
arithmetic means of the sAPEs and ASEs respectively across horizons, origins and time
series.
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4.2. Inventory performance

There are three categories of performance metrics typically involved in evaluating an
inventory system: financial, operational, and service. The financial metrics look at the cost
incurred in the system with regards to inventory holding, backlog, and ordering. On the other
hand, due to the limited availability of financial data, sometimes only operational metrics,
such as the order and inventory variance, are considered, as their calculation requires only
quantity related information. Lastly, service metrics measure the percentage of periods that
end with inventory available (availability) or the proportion of demand satisfied directly
from the stock (fill rate, Disney et al., 2015).

From a modelling perspective, often a cost function has to be considered which dictates
the relationship between financial cost and quantity. For instance, the linear cost function
in the classic Economic Order Quantity (EOQ) model assumes that the total inventory
holding costs are linearly increasing with the level of inventory-on-hand. The fixed ordering
cost implies that the ordering cost is a step function of the order quantity. The metrics can
then be categorized according to the type of cost function.

Linear (or piecewise-linear) cost functions are most commonly adopted in inventory con-
trol literature, which can be found in EOQ, Newsvendor and (s,S) models (where s is the
reorder point and S is the order-up-to level) (Axsäter, 2006). It is assumed that the cost
and quantity form a linear (or piecewise-linear) relationship. This assumption is deemed
valid when the contribution of each item to the total cost remains constant. In this study,
the total inventory-related cost is considered to be the summation over holding and backlog
costs, which are linear to inventory-on-hand and backlog levels respectively:

TC = Ch + Cb = hE
[
(it)

+
]

+ bE
[
(−it)+

]
, (9)

where h and b are unit holding and backlog costs respectively. (·)+ = max(·, 0) is the
maximum function used to indicate whether the inventory is sufficient to satisfy customers’
demand and E [·] is the expectation operator. There is inventory-on-hand if it > 0, and a
backlog if it < 0.

Another frequently used cost function is a quadratic one. The relationship between
cost and quantity is assumed to be quadratic (i.e. of second-order). This is a special case
of diseconomy of scale, where the increment of cost increases with quantity. The well-
known bullwhip effect and inventory amplification, commonly defined as the variance of
order quantity (vo) and inventory level (vi), can be seen as quadratic cost functions (Wang
and Disney, 2016).

When the inventory distribution is normal and perfectly known and the safety stock is
set as (4), the total cost is then

TC =
√
vi(b+ h)φ

[
Φ−1

(
b

b+ h

)]
. (10)

in which there is a direct correlation between inventory variance and inventory cost. However
it is important to note that in the current study, such relationship does not strictly follow
(10) as the neither of the assumptions is satisfied.
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Figure 1: Relationship between the inventory performance measures. The highlighted measures contribute
to the calculation of RMS in Section 4.3.

The availability metric α (a.k.a. service level), measures the likelihood that a period
ends with stock on-hand. It can be evaluated retrospectively with historical inventory data
as the probability of non-negative inventory level:

α = Pr{it > 0}

The safety stock formula (4) is designed for normally distributed forecast errors, which
is a common assumption in most operations management textbooks. This is not necessarily
true for the empirical data-set that we have used in this paper. Also, the fitted distribution
based on available data can never be identical with the real one. These lead to a deviation
between the target and achieved service level, and a fact that the achieved service level
cannot be estimated in the Newsvendor fashion.

It is obvious to see that the five metrics introduced above (Ch, Cb, vo, vi, and α) are not
independent with one another. For instance, as the service level α measures the probability of
non-negative inventory, and backlog cost Cb is determined by the level of negative inventory,
it is safe to infer that a negative relationship exists between α and Cb. On the contrary, the
relationship between vo and vi is not deterministic and dependent on various factors. There is
research suggesting that trade-off exists between these two metrics, especially when one tries
to adjust the inventory feedback in the ordering policy (Disney et al., 2004). Furthermore,
vo and vi could change in the same direction with the influence of forecast errors (Wang
and Petropoulos, 2016). Similarly, Ch and Cb do not have a monotonic relationship, as they
are both affected by the mean and standard deviation of net inventory. Figure 1 shows the
relationship between these metrics.
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4.3. Holistic measure of inventory performance

In most inventory scenarios, decisions will be based on more than one of the three
inventory performance measures suggested in Section 4.2, due to trade-offs and interactions
among these measures. Most existing papers use the sum of holding cost and backlog cost,
overlooking the cost induced by ordering swings (Axsäter, 2006). There are attempts to
adopt multiple criteria in past literature on inventory control. For instance, a weighted
sum of order variance and inventory variance (Disney et al., 2004); trade-off curve between
holding cost and service level (Babai et al., 2012); the costs of inventory holding and backlogs
and production idling and overtime, (Hosoda and Disney, 2012). However, there are concerns
over these cost function settings, e.g., that the weighting factors are difficult to set in practice,
and that the forecasting methods are not easily ranked when multiple criteria are present.

Consequently, we combine the utility metrics mentioned in the previous subsection to-
wards a single measure. To that end, we exclude the standard deviation of inventory vi
and the backlog cost Cb as to avoid correlations in measurement. The correlation is strong
between vo and vi (ρ = 0.686) and between Cb and α (ρ = −0.516). Another reason that
we exclude Cb is that the unit backlog cost is difficult to estimate in practice and businesses
prefer to use service level to measure the probability of stockout. Thus, we end up with the
variance of orders vo, the holding cost Ch and the service level α. These three measures are
widely used in industrial practice and they are highlighted in Figure 1 with grey shades.
Moreover, the correlation between the three measures are low (ρ < 0.25).

As such, for the current multi-criteria optimisation problem we propose utilising the root
mean square (RMS). Assuming two criteria, A and B, for which we wish to minimise their
value, RMS can be written as

RMS =

√
1

2
(A2 +B2). (11)

The adoption of L2 norm rather than L1 can be explained by the dis-economy of scale
in operations. It is generally believed that a unit increase in inventory level when it is high
brings more cost than when it is low. This is also true for shortage and order fluctuation.
Therefore, the squared form of performance measure better reflects the true cost structure
(Holt et al., 1960).

Equation (11) implies that equal weights are associated with A and B. The equal weight-
ing is derived from the notion that the decision maker gives equal emphasis on inventory
holding, shortage and order fluctuation. We acknowledge that this is often not the case
in practice, where planners focus more on one measure than the others. In Section 5.4 we
will show through a sensitivity analysis that the weights do not significantly affect the final
results.

Also, the units and scale of A and B can be different. In our case, holding cost is
measured in dollars, standard deviation by product quantity and service level by percentage.
We suggest normalising each criterion by dividing its value with the mean value of the same
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criterion across all cases considered (in this study, across all forecasting methods), or:

RMS =

√√√√1

2

[(
A

A

)2

+

(
B

B

)2
]
. (12)

Equation (12) suggests that the relative improvement/deterioration of each criterion over
the average case is fed into the calculation of RMS, which is analogous to the introduction
of percentage error in forecasting literature.

Considering the three inventory performance indicators identified in the previous subsec-
tion (Ch, vo and α) and accounting for the fact that achieved service level has to be inverted,
the RMS for our problem is expressed as

RMS =

√√√√1

3

[(
Ch

Ch

)2

+

(
vo
vo

)2

+

(
α

α

)2
]
. (13)

Note that Ch and vo are to be minimized, whereas α is to be maximized. Thus we take
the inverse of the last term in (13). Consequently, the forecasting method with lower RMS
is considered to be superior to those with higher RMS.

5. Results

In this section we will present the empirical results of the study. First, we will show the
forecasting performance of the various methods considered (Section 5.1). Then, inventory
performance is presented in terms of order variance versus inventory variance (Section 5.2)
and holding cost versus achieved service level (otherwise known as an efficient frontier,
Section 5.3). Lastly, we combine the various inventory performance metrics using RMS
(Section 5.4).

5.1. Results on forecasting performance

Table 2 presents the forecasting performance results of the various methods and com-
binations considered. Accuracy is measured in terms of sMAPE and MASE, while bias
is measured in terms of MPE. Results in this table are presented for lead-time equal to
12 periods, as a long lead-time amplifies the differences in performance which allows us for
better observation. We do note however that a 12-month lead-time seldom exist in real-life
supply chains. Also, we have found that the insights for the other lead times (1,3 and 6) are
similar.

We observe that there is a great deal of disagreement between the bias and the accuracy
measures. Näıve is ranked 1st in terms of bias, but is between the bottom-three methods
in terms of both sMAPE and MASE. On the other hand, MAPA and ETS-AutoARIMA
perform badly in terms of bias (8th and 9th respectively), but are ranked 1st and 2nd in terms
of accuracy. In any case, all methods over-forecast.
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Table 2: Forecasting performance of the various methods and combinations (L = 12). Ranks are presented
in brackets.

Method MPE (%) sMAPE (%) MASE
Näıve −2.530 (1) 12.824 (9) 0.945 (9)
SES −2.718 (3) 11.759 (3) 0.865 (5)
Holt −3.059 (7) 13.544 (11) 0.961 (11)
Damped −2.769 (4) 12.140 (6) 0.883 (7)
Holt-Winters −3.728 (11) 13.444 (10) 0.960 (10)
Theta −2.845 (5) 11.923 (5) 0.862 (4)
ETS −2.653 (2) 11.819 (4) 0.851 (3)
AutoARIMA −3.661 (10) 12.211 (7) 0.880 (6)
MAPA −3.108 (8) 11.322 (1) 0.832 (2)
SHD −2.849 (6) 12.248 (8) 0.884 (8)
ETS-AutoARIMA −3.157 (9) 11.499 (2) 0.827 (1)

Damped exponential smoothing confirms its title as a benchmark method for time series
forecasting, achieving a median rank across all methods, being slightly better in terms of
bias. SES performs exceptionally well in this subset of M3-Competition, being ranked 3rd

in terms of MPE and sMAPE and 5th in terms of MASE. The performance of the
Theta method confirms the results of M3-Competition, ranked second after SES amongst
the methods originally participated in the large empirical exercise by Makridakis and Hibon
(2000). However, it is outperformed by more recently proposed approaches, such as MAPA
and ETS.

We should mention that Holt and Holt-Winters are the two methods with the worst
performance amongst all contenders. This is not a surprising as these methods did not
perform well in the original competition either.

In Figure 2, we also present the results from multiple comparisons from the best (MCB)
test, as applied by Koning et al. (2005). Essentially, MCB tests if the average (across time
series) rank of each method is significantly different from that of other methods. If the
intervals of two methods do not overlap, this indicates statistically different performance.

The panels for sMAPE and MASE generally agree with the results presented in Table 2.
MAPA and ETS-AutoARIMA are the top performers. ETS, SES and Theta follow without
being significantly different. However, the last six methods’ ranked performance (Damped,
SHD, AutoARIMA, Holt-Winters, Näıve and Holt) is significantly worse than that of both
MAPA and ETS-AutoARIMA.

The results of the panel for MPE of Figure 2 show a slightly different picture from the
respective column of Table 2. MPE in Table 2 is calculated as the arithmetic mean of the
percentage errors. This means that large positive and large negative errors cancel out. In
MCB we first consider the absolute values of the signed percentage errors, so that average
ranks make sense. In any case, all methods, apart from MAPA, perform similarly (their
rank intervals overlap) in terms of bias according to the MCB test.
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Figure 2: Multiple comparisons with the best based on the MPE, sMAPE and MASE (averaged per
series, across horizons and origins).
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5.2. Variance of orders and inventory

Figure 3 shows order and inventory variance for each forecasting method as lead-time
and service level varies. In all three service level cases (90, 95 and 99%), order and inventory
variance increases with lead-time. One can compare the resulted order and inventory vari-
ance for the different methods when a specific lead time and target service level is assumed.
Consider, for instance, that we are interested in lead-time equal to three periods and a target
service level equal to 90%. The first panel of Figure 3 indicates that MAPA produces less
order and inventory variance compared to all other methods.

In the order-up-to inventory system, in the long term under a constant safety stock, the
variance of inventory equals to the variance of lead-time demand forecast error, var(i) =
var(e), et = DL

t − D̂L
t , Hosoda and Disney (2012). On the other hand, the variance of

orders is influenced by the amplitude of change (first-order difference) in lead-time demand
forecast, and the relationship between such change and actual demand. This can be formally
expressed by the following proposition:

Proposition 1. If the safety stock is constant, vo = var(∆D̂L) + var(d) + 2cov(∆D̂L, d),
where ∆D̂L

t =
∑L

j=1 d̂t,t+j −
∑L

j=1 d̂t,t−1+j is the change of lead-time forecast between periods
t− 1 and t.

Proof. The proof is straightforward from (1) and (5), where one directly gets ot = D̂L
t −

D̂L
t−1 + dt = ∆D̂L

t + dt.

Proposition 1 indicates that low order variance can be derived by (i) small fluctuation
of the change in lead-time demand forecast; and (ii) negative correlation between demand
and the change in lead-time demand forecast. Table 3 shows the ratios between var(∆D̂L),
cov(∆D̂L, d), var(e) and var(d) for each forecasting method. L = 12 and α = 99% is selected
as an illustrative case.

Table 3: Variance and covariance of lead-time demand forecast and error when L = 12 and α = 99%. Ranks
are presented in brackets.

Method var(∆D̂L)
var(d)

cov(∆D̂L,d)
var(d)

var(e)
var(d)

Näıve 87.656 (11) 0.768 (11) 109.478 (9)
SES 22.690 (3) 0.636 (6) 81.006 (2)
Holt 58.660 (10) 0.701 (10) 152.757 (11)
Damped 32.975 (7) 0.629 (5) 97.421 (7)
Holt-Winters 47.970 (9) 0.601 (3) 135.963 (10)
Theta 29.269 (6) 0.560 (2) 94.025 (5)
ETS 29.194 (5) 0.668 (9) 97.299 (6)
AutoARIMA 21.915 (2) 0.639 (7) 84.074 (3)
MAPA 11.280 (1) 0.478 (1) 71.898 (1)
SHD 33.461 (8) 0.655 (8) 99.605 (8)
ETS-AutoARIMA 24.903 (4) 0.614 (4) 87.348 (4)
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Figure 3: Order variance vs. inventory variance for various forecasting methods, target service levels and
lead-times. Note that we have used log scales for clarity.
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The values of cov(∆D̂L, d) is negligible compared with var(∆D̂L), therefore, we can
conclude that the performance of order variance is mostly determined by the variance of
change in lead-time demand forecast. The Näıve method generates the highest order change
variance, which is the reason why it generates so much bullwhip. To make matters worse,
the Näıve method also gives the highest variance of lead-time demand forecast errors, which
solely determines the inventory variance.

In contrast, MAPA method provides both the lowest order and inventory variance, mak-
ing it the strongest candidate in reducing inventory cost and bullwhip effect. The reason
of this advantage, as shown in Table 3, is the fact that MAPA outputs both accurate (as
measured in MASE) and smooth lead-time demand forecasts. The advantage of MAPA
over other methods can also be seen for other lead-time and target service level scenarios,
where the margins might be less significant.

Note that in this study we consider traditional parameter spaces for the forecasting
methods. Li et al. (2014) showed that Damped method is capable of removing the bullwhip
effect, but this requires some usually not recommended parameter settings that are not
available in the R package.

5.3. Costs versus service levels

Figure 4 presents the trade-off curves of holding cost (horizontal axis) versus achieved
service level (vertical axis). Each curve shows the performance of a method for three different
targeted service levels (90, 95, and 99%). The four panels correspond to the different lead
times assumed in the analysis (1, 3, 6 and 12).

Each panel can be read as follows. Assuming a vertical line that corresponds to a
specific holding cost (for example, 1000 for the first panel), then the various methods result
in different achieved service levels; so we can relatively rank the methods based on the
achieved service level. Similarly, assuming an horizontal line that corresponds to a constant
achieved service level (for example, 90% in the first panel), then the different approaches
can be relatively ranked in terms of realised holding cost. In other words, and given the
trade-off relationship between holding cost and achieved service level (as the one gets worse,
the other gets better), we should prefer the method depicted by curves that are closer to
the top-left corner of each panel and we should avoid methods with by curves closer to the
bottom-right corner. We present with solid black curves the methods that perform best for
each lead time; with grey colour the methods that perform on average; and with dashed and
dotted black curves the worst methods.

We observe that MAPA is among the top-performing methods for reducing inventory
holding cost. This is especially the case for shorter lead times. AutoARIMA and the
simple combination of ETS-AutoARIMA also performs well when lead-time is long (L =
3, 6, 12). On the other hand, Näıve, Holt and Holt-Winters are always among the worst
performing methods when it comes to holding cost, especially Holt-Winters. All other
methods constitute the gray middle class and seem to have indifferent performance in terms
of holding cost. This means that there is little to distinguish between the performance of
SES, Damped and Theta and the simple combination SHD.
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Figure 4: Trade-off curves of holding cost versus achieved service levels for different methods and lead times.
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Another noteworthy observation is that the achieved service levels are lower than the
targeted ones. While this can be observed for all lead times, it is especially the case when
L = 3. This is because the distribution of forecast errors is most left-skewed when L = 3
(−0.13, negative skewness indicating long tail on the left), compared with other lead-time
cases (−0.07 for L = 1, −0.12 for L = 6 and −0.07 for L = 12), averaged over all time
series, forecasting methods and target service level. On the other hand, the safety stock
calculation in the current research design assumes normally distributed inventory. Hence,
the safety stock calculated under the normality assumption is not sufficient to maintain
target service level with the actual inventory distribution.

The shape of inventory distribution is another reason for the differences in service level
performance among forecasting methods, apart from the inventory fluctuation. Although
MAPA is shown to be superior in maintaining a low standard deviation of inventory, it also
gives the most right skewed inventory distribution (−0.115 in skewness, compared with 0.03
for Näıve). This result is linked with the bias measure of forecasting methods (first panel of
Figure 2).

5.4. Combined performance and discussion

Table 4 presents the inventory performance results in terms of the RMS (equation 13)
that was proposed in Section 4.3. The RMS is averaged across all lead times (1 to 12) and
all service levels (90, 95 and 99%). Column 2 presents the values of RMS together with the
ranks (in brackets) of the methods based on these values respectively. Column 3 presents
the respective values for MASE averaged across all horizons, 1 to 12.

Table 4: Average root mean square (RMS) values for the different methods (and ranks), contrasted with
the MASE.

Method RMS MASE
Näıve 1.819 (11) 0.945 (9)
SES 0.976 (4) 0.865 (5)
Holt 1.134 (9) 0.961 (11)
Damped 0.986 (6) 0.883 (7)
Holt-Winters 1.183 (10) 0.960 (10)
Theta 0.952 (2) 0.862 (4)
ETS 0.991 (7) 0.851 (3)
AutoARIMA 1.004 (8) 0.880 (6)
MAPA 0.930 (1) 0.832 (2)
SHD 0.980 (5) 0.884 (8)
ETS-AutoARIMA 0.962 (3) 0.827 (1)

The first observation is that forecasting methods that are based on combinations (MAPA,
Theta, SHD and ETS-AutoARIMA) perform very well in terms of their combined inventory
performance. Note that the ranks of all these four methods improve compared to their
respective ranks in terms of MASE. At the same time, the ranked performance of model
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selection techniques, such as ETS and AutoARIMA, is decreased for RMS compared to
MASE. One should consider model selection frameworks directly linked to inventory per-
formance, as Wang and Petropoulos (2016) show. In any case, the three forecasting methods
that show the worst forecasting performance (Näıve, Holt and Holt-Winters), continue to
perform poorly in terms of inventory.

Another noteworthy observation is that methods and approaches that have been intro-
duced more recently (such as MAPA, Theta and the combination of ETS-AutoARIMA) and
have proved to perform well in terms of accuracy, they also do well in terms of inventory
performance.

Over all metrics of inventory performance, MAPA is ranked first with its ranked per-
formance being significantly different than that of all other methods (see Figure 5 for the
MCB test). The bottom-three methods (Näıve, Holt and Holt-Winters) perform similarly
between them but significantly worse than all other methods. The ranked performance of
all other methods (Theta, ETS-AutoARIMA, SES, Damped, ETS, SHD and AutoARIMA)
is statistically indifferent.

Multiple comparisons with the best (RMS)

MAPA

Theta

ETS−AutoARIMA

SES

Damped

ETS

SHD

AutoARIMA

Holt−Winters

Holt

Naive

2 4 6 8 10

Figure 5: Multiple comparisons with the best based on the RMS.

A comparison of Figures 2 and 5 suggests that the differences between methods in terms
of forecasting performance are amplified when one is evaluating inventory performance.
While methods perform similarly in terms of bias and the top-five methods show statistically
indifferent accuracy results, the differences in performance become more distinct with RMS.
This result agrees with a previous study by Syntetos et al. (2010).

It is worth stretching that the RMS allows for a holistic view of various performance
dimensions. For example, the inventory versus achieved service level trade-off curves for lead
time 12 (last panel of Figure 4) show that MAPA only achieves only an average performance
(it is depicted by the grey color). This result alone contradicts the findings of Kourentzes
et al. (2014) who found greater improvements for the longer horizons. However, according
to Figure 3, MAPA dominates all other methods and approaches in terms of order and

21



inventory variance, especially for longer horizons. As such, the RMS allows the integration
of different (and potentially contradicting) measures.

One limitation of the RMS as implemented above is that we assumed equal-importance
weights for the three utility metrics (Ch, vo and α), as equation 13 suggests. However, one
could consider unequal weights. We did a sensitivity analysis of the values of RMS using
weights for the three metrics so that each weight ∈ [0.2, 0.5] and the sum of all three weights
equals unity. We repeated this 1,000 times, allowing for different combinations of weights.
The average RMS values for each case and method were calculated and the differences in
the average RMS values for each method are presented as box-plots in Figure 6. It is worth
noting that even if there is some small deviation from the equal weights, the relative rankings
of the forecasting methods considered in this study remains to a high degree unchanged.
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Figure 6: Sensitivity analysis of the average RMS values when different weights for the three utility metrics
(Ch, vo and α) were applied.

To better understand how the various methods and approaches considered in this study
perform under different conditions, we separately consider four categories of the data: series
with no trend nor seasonality; series with trend only; series with seasonality only; series
with both trend and seasonality. The identification of the time series characteristics was
based on the model form of the exponential smoothing model (using the ets() function)
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that optimally fits the data. To this end, the first five years (60 months) of each series were
used. Table 5 presents the series counts in each category.

Table 5: Series counts based on identified characteristics.

Trend
Seasonality

Total
No Yes

No 110 122 232
Yes 41 61 102

Total 151 183 334

Table 6 provides the values for the RMS together with their ranks for each category
separately. The respective MCB plots are shown in Figure 7. It should be noted that Table
6 reports arithmetic means of the values of RMS whereas Figure 7 reports the respective
mean ranks; this explains some inconsistencies in the ranks for some methods. MAPA
is ranked first in three out of four categories in terms of average RMS and also ranked
first across all categories in terms of average ranks. Theta and the combination of ETS-
AutoARIMA follow. Näıve, Holt-Winters and Holt are the three worst performing methods
across all categories, despite the apparent expectation that Holt and Holt-Winters would
ranked higher for the trended only and the trended and seasonal series respectively. Overall,
we can conclude that the summary results based on the RMS in Table 4 stand if the series
are splitted in categories based on their characteristics. One exception is the performance
of SES, which as expected is negatively influenced by the existence of trend.

Table 6: Average root mean square (RMS) values for the different methods (and ranks) decomposed for
data with different time series characteristics.

Method
No trend,

no seasonality
Trend,

no seasonality
No trend,
seasonality

Trend,
seasonality

Näıve 1.733 (11) 1.697 (11) 1.844 (11) 2.005 (11)
SES 0.930 (2) 1.020 (7) 0.983 (2) 1.027 (8)
Holt 1.047 (9) 1.204 (10) 1.184 (9) 1.140 (9)
Damped 0.967 (7) 0.980 (5) 1.011 (3) 0.974 (3)
Holt-Winters 1.160 (10) 1.134 (9) 1.219 (10) 1.185 (10)
Theta 0.930 (2) 0.910 (2) 0.975 (1) 0.983 (5)
ETS 0.953 (5) 1.040 (8) 1.019 (6) 0.985 (6)
AutoARIMA 0.980 (8) 0.984 (6) 1.046 (7) 0.994 (7)
MAPA 0.850 (1) 0.882 (1) 1.052 (8) 0.928 (1)
SHD 0.958 (6) 0.956 (4) 1.011 (3) 0.974 (3)
ETS-AutoARIMA 0.930 (2) 0.955 (3) 1.018 (5) 0.948 (2)
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Figure 7: Multiple comparisons with the best based on the RMS decomposed for data with different time
series characteristics.
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6. Conclusion

In this research, we have compared the performance of several popular forecasting met-
hods in terms of inventory control objectives by a simulation approach. The data and several
forecasting methods are consistent with those adopted in the M3 competition, making this
research an extension to Makridakis and Hibon (2000).

We established an inventory system model based on the order-up-to policy to observe the
performance under different scenarios of lead-time and target service levels. We developed
an overall measure for the inventory performance which takes into account order variance,
inventory holding cost and achieved service level in order to rank these forecasting methods.
Below we explicitly address the research questions raised in Section 2.
• On the utility performance of Holt-Winters method. Holt-Winters’ weak forecasting

performance (Makridakis and Hibon, 2000) is coupled with a very weak performance
in terms of inventory, being the worst method when inventory cost/service levels trade-
offs are considered. Together with Näıve and Holt, are the worst-three methods in this
exercise.
• On the utility performance of exponential smoothing and ARIMA. Overall, ETS per-

forms better than AutoARIMA, a result that agrees with the relative forecast perfor-
mance of these two approaches. At the same time, AutoARIMA shows competence
for longer lead-times. Also, Damped method’s robust forecasting performance is con-
firmed in terms of inventory, suggesting that it can be considered as a benchmark
(Gardner, 1990; Acar and Gardner, 2012).
• On the utility performance of Theta method. Theta method is ranked 2nd overall, con-

firming its good performance on the M3-competition data. However, its performance
is not statistically different to ETS-AutoARIMA or SES.
• On the utility performance of combinations. Forecast combinations (SHD and ETS-

AutoARIMA) outperform their base methods in terms of inventory performance.
Moreover, modern approaches that are based on combinations (MAPA and Theta)
are top-ranked.
• On the utility performance of MAPA. Multiple temporal aggregation exhibited im-

proved forecasting performance (Kourentzes et al., 2014). At the same time, it pro-
duces smooth forecasts minimising the bullwhip effect and the best trade-off curves
for inventory cost versus service level. Overall, MAPA results in the best ranked per-
formance as measured by RMS, a performance that is significantly different from all
other methods.

This study is limited to 334 time series (monthly industry data) from the M3-competition.
An obvious path for future research would be to replicate the results presented here using
different and richer data sets, both in terms of quantities but also frequencies (weekly or even
daily data). Also, in the future we plan to extend this research in terms of different inventory
distributions (e.g., arbitrary), service measures (e.g., fill rate) and inventory policies (e.g.,
s-S or r-nQ). It would also be interesting to investigate forecasting performance via pure
economic measures such as the inventory holding/backing and guaranteed hours/overtime
approach in Hosoda and Disney (2012).
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As a last comment, we would like to note that our empirical study considered a wide range
of benchmarks, widely used methods and state-of-the-art approaches coupled with a wide
range of performance measures that are relevant in production and operations management.
Moreover, we evaluated the performance of the methods over multiple origins (rolling origin
evaluation; Tashman, 2000) so that the results are not overfitted on a single evaluation
window. We invite future empirical forecasting studies to follow a similar design that allows
for rich comparisons over established methods and benchmarks.
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