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Abstract 
 

The purpose of this thesis is to propose a novel application of amorphous magnetic 

ribbons for use as knee force measurement sensors, without the need for secondary 

windings. 

This thesis demonstrates that the magnetic properties of amorphous ribbons are 

retained when embedded in Ultra-high molecular weight polyethylene (UHMWPE) 

tibial inserts, and these properties can be interrogated non-invasively. This is of 

importance, as it offers a viable solution for instrumented prosthesis which can be used 

for in-vivo monitoring.  

The research conducted also demonstrates that the tibiofemoral contact force on the 

instrumented tibial insert can be measured by observing the impedance changes in 

adjacent coils. Other conventional methods, though effective, require additional 

circuitry for non-invasive retrieval of measured data. The work contained herein 

eliminates this need, thereby reducing the structural modification of the implant 

required to accommodate the additional components.  

This research also shows that the variation in the coil impedance can be related to the 

permeability changes in the amorphous ribbons, and these can be quantified by 

tracking the resonant frequency of the coils. Amorphous ribbons have not been used 

in monitoring orthopaedic prosthesis before, and this work shows how the simplified 

measurement system can offer an alternative technique to knee implant monitoring. 

 

 

 

 

 

 

 



iv 
 

Table of Contents 

       

      Acknowledgements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ii 

      Abstract. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 

      Table of contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 

      List of figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .viii 

      List of tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xii 

      List of Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xiii 

      List of symbols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv 

1.    Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .1 

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 

2.    Magnetism, Magnetostriction and Amorphous Metallic Materials. . . . .6 

2.1    Synopsis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .6 

2.2    Fundamental magnetic principles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 

2.3    Magnetic domain theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 

2.3.1 Exchange energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 

2.3.2 Magnetostatic energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 

2.3.3 Magnetocrystalline anisotropy energy. . . . . . . . . . . . . . . . . . . . . . . .13 

2.3.4 Magnetoelastic energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 

2.3.5 Zeeman energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 

2.3.6 Domain wall energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 

2.4    Amorphous magnetic materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 

2.4.1 Properties of amorphous materials. . . . . . . . . . . . . . . . . . . . . . . . . . . .20 

2.4.2 Fabrication of amorphous materials. . . . . . . . . . . . . . . . . . . . . . . . . .21 

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 

3. Knee mechanics and arthroplasty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 

3.1   Synopsis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 

3.2   The human knee joint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 



v 
 

3.2.1 Knee kinematics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 

3.2.2 Knee loading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 

3.3   Osteoarthritis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 

3.4   Brief history of total knee replacement. . . . . . . . . . . . . . . . . . . . . . . . . . . .31 

3.5   Components of a TKR implant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 

3.6   TKR implant failure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  

3.6.1 UHMWPE wear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 

3.6.2 Osteolysis and aseptic loosening. . . . . . . . . . . . . . . . . . . . . . . . . . . .41 

3.6.3 Instability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 

3.6.4 Infection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 

3.6.5 Arthrofibrosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 

3.6.6 Malalignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 

3.7   Conventional force measurement techniques in TKR implants. . . . . . .46 

3.7.1 Resistance strain gauges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46 

3.7.2 Capacitive force sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49 

3.7.3 Pressure sensitive films. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 

3.7.4 Magnetoresistive sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52 

3.7.5 Load cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54 

3.8   The need for magnetic measurement of knee forces. . . . . . . . . . . . . . . . . .55 

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56 

4. Permeability changes in embedded amorphous ribbons. . . . . . . . . . . . . .65 

4.1   Synopsis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .65 

4.2   Background theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 

4.3   Experimental method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 

4.3.1 Test plate preparation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 

4.3.2 Measurement technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 

4.4   Results and explanation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 

4.5   Summary . . . . . . . . . . . . . . … . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . 74 

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75 

5. Non-invasive measurement of knee implant forces. . . . . . . . . . . . . . . . . . . . .76 

5.1   Synopsis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .76 

5.2   Background theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76 

5.2.1 Magnetic field in Helmholtz coils. . . . . . . . . . . . . . . . . . . . . . . . . . . .76 



vi 
 

5.2.2 LC circuit resonance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .79 

5.3   Experimental method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82 

5.3.1 Test plate preparation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82 

5.3.2 Measurement technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82 

5.4   Results and explanation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 

5.5   Summary. . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . .89 

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90 

6. Finite element modelling of knee implant stresses. . . . . . . . . . . . . . . . . . . . .91 

6.1   Synopsis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . .91 

6.2   Analytical approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91 

6.2.1 Implant geometry and design. . . . . . . . . . . . . . . . . . . . . . . . . . . .  .91 

6.2.2 Material properties of UHMWPE and CoCr alloy. . . . . . . . . . . . . .93 

6.2.3 Loads, constraints and meshing. . . . . . . . . . . . . . . . . . . . . . . . . . . .97 

6.3   Results and explanation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97 

6.4   Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  102 

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103 

7. Force measurements using resonant frequency tracking. . . . . . . . . . . . . .104 

7.1   Synopsis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104 

7.2   Experimental method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104 

7.2.1 Helmholtz coil design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104 

7.2.2 Femoral component fabrication. . . . . . . . . . . . . . . . . . . . . . . . . . . .105 

7.2.3 Tibial insert fabrication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 

7.3   Results and explanation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112 

7.4   Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119 

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120 

8. Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121 

8.1   Analysis of experimental results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121 

8.2   Comparison with existing research. . . . . . . . . . . . . . . . . . . . . . . . . . . .124 

8.3   Repeatability and measurement uncertainty. . . . . . . . . . . . . . . . . . . . .125 

8.4   Limitations of this study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127 

9. Conclusions and future work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128 



vii 
 

9.1 Conclusions.  .  .  .  .  .  . .  .  .  .  .  .  . .  .  .  .  .  .  . .  .  .  .  .  .  . .  .  .  .  .  .  .128 

9.2 Future work. .  .  .  .  .  . .  .  .  .  .  .  . .  .  .  .  .  .  . .  .  .  .  .  .  . .  .  .  .  .  .  .128 

List of publications. .   .  .  .  .  .  . .  .  .  .  .  .  .  .  .  .  . .  .  .  .  .  .  . .  .  .  .  .  . . . .130 

 

Appendix 1: Manuscript titled “In vivo monitoring of orthopaedic implant wear 
using amorphous ribbons” by D. Okhiria, D.E. Giebaly, T. Meydan, S. Bigot and P. 
Theobald. 

      Appendix 2: Manuscript titled “Non-invasive measurement of stress levels in 

knee implants using a magnetic based detection method” by D. Okhiria, T. Meydan 

and P.I. Williams. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 
 

List of Figures 

1.1 Knee joint before (left) and after (right) replacement surgery. . . . . . . . .  2 

2.1    Illustrative representation of domain structure on the side plane of a 

Cobalt crystal. The directions of magnetisation are indicated by the 

arrows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

 

10 

2.2  (a) 90o and (b) 180o domain walls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 

2.3    Magnetisation rotation in a (a) Bloch wall and (b) Neel wall. . . . . . . . . 10 

2.4    Schematic illustration of the division of magnetisation into domains (a) 

single domain (b) two domains (c) four domains and (d) closure 

domains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

 

12 

2.5 The direction cosines between the applied field and the principal 

crystallographic directions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

14 

2.6     Schematic diagram depicting the magnetostriction in (a) the disordered 

paramagnetic state; (b) the demagnetised ferromagnetic state; and (c) 

the ferromagnetic state, magnetised to saturation. . . . . . . .  

 

 

16 

2.7  Configuration of individual atoms within crystalline and amorphous 

structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

20 

2.8  Schematic diagram showing Chill Block Melt Spinning process. . . . . .  22 

2.9  Typical sample of amorphous ferromagnetic ribbon . . . . . . . . . . . . . . . . .  22 

3.1    Anatomy of the human knee joint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27 

3.2   Degrees of freedom of the knee joint. . . . . . . . . . . . . . . . . . . . . . . . . . . 28 

3.3   Anatomical planes of the human body. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 

3.4    Normal joint space between the femur and the tibia (Left). Decreased 

joint space due to damaged cartilage and bone spurs (Right) . . . . . . . . . 

 

31 

3.5    Gluck’s ivory knee replacement assembled (Top) and its constituent 

parts (Bottom) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

33 

3.6   Total knee replacement designs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 

3.7   Gunston’s polycentric knee prosthesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36 

3.8  ICLH knee prosthesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 

3.9  (a) Unicondylar and (b) Duocondylar prosthesis. . . . . . . . . . . . . . . . . . . .  37 

3.10    Insall’s Total Condylar prosthesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37 

3.11    Typical TKR components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 



ix 
 

3.12 Representative image of retrieved tibial components showing 

extensive wear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 

41 

3.13    Osteolysis (red arrow) around the tibial component, causing it to loosen 

from the bone (blue arrow) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 

42 

3.14   MRI image of the right knee showing localised anterior arthrofibrosis 

(Cyclops lesion) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

44 

3.15  (a) Standing radiograph demonstrating the mechanical (MA) and 

anatomic (AA) axes of the femur and tibia (AA) and (b) schematic 

diagram showing the tibiofemoral angle. . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

 

45 

3.16    Positioning of strain gauges inside the PE insert. . . . . . . . . . . . . . . . . . 47 

3.17   Configuration of strain gauges within PE insert. . . . . . . . . . . . . . . . . . 47 

3.18  Microstructured polymer thin film strain sensor. . . . . . . . . . . . . . . . . . 48 

3.19   Cross section of the instrumented tibial tray for force and moment 

measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

49 

3.20    Diagram of concept for a capacitive sensor. . . . . . . . . . . . . . . . . . . . . . . . . 50 

3.21   Schematic diagram of RC time constant measurement circuit. . . . . . . . . 50 

3.22    Experimental apparatus for contact pressure tests using pressure-

sensitive films. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

52 

3.23    Diagram of the tibial insert with embedded magnetoresistive sensor. . .  53 

3.24  Schematic diagram of load cell positioning within the tibial tray. . . . . . 54 

4.1  The coordinate system used in the demagnetising factor calculations, 

with the origin located at the prism centre. . . . . . . . . . . . . . . . . . . . . . . . .  

 

67 

4.2   Compression moulding process for test plate fabrication. . . . . . . . . . . . .  69 

4.3    Diagram of embedded test plates showing dimensions and position of 

amorphous ribbons (including search coil orientation) . . . . . . . . . . . . . . 

 

70 

4.4    Topology of compensated search coils with the direction of current 

indicated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

70 

4.5  Block diagram of the measurement system. . . . . . . . . . . . . . . . . . . . . . . . . 71 

4.6   Frequency dependent sensitivity of sample B (constant peak magnetic 

flux density) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

72 

4.7   Sensitivity of all three samples (uniform magnetic flux 

density) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

72 



x 
 

4.8    Normalised output voltage of sample A for different loading conditions 

at 1 kHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

73 

5.1   Magnetic field in a current-carrying circular loop. . . . . . . . . . . . . . . . . . 77 

5.2    Ideal parallel LC circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  79 

5.3  Parallel RLC circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 

5.4 Phasor diagram of component reactances. . . . . . . . .  . . . . . . . . . . . . . . 81 

5.5  Cross-sectional view showing position of polypropylene condyles and 

UHMWPE insert within the Helmholtz coils. . . . . . . . . . . . . . . . . . . . . . . . 

 

83 

5.6 Schematic diagram of electrical measurement circuit. . . . . . . . . . . . . . . .  84 

5.7  Actual measurement apparatus showing position of polypropylene 

condyles and UHMWPE insert within the Helmholtz coils. . . . . . . . . 

 

84 

5.8  Frequency sweep of tank circuit showing resonant frequency. . . . . . . . . 86 

5.9  Measured impedance spectrum for various values of contact pressure 87 

5.10  Normalized impedance versus contact pressure at various frequencies 

(adjusted R2 > 0.9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

88 

6.1   Femoral component indenter, with the CoCrMo region highlighted. . . .  92 

6.2 Peripheral dimensions of the modelled tibial insert. . . . . . . . . . . . . . . . . . 92 

6.3    Designed tibial insert with both components mated. . . . . . . . . . . . . . . . . . 93 

6.4    Femoral and tibial components assembled with highlighted contact 

surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

94 

6.5   UHMWPE specimens (type I) utilised in tensile testing. . . . . . . . . . . . . .  95 

6.6    Graphical determination of Ramberg-Osgood parameters. . . . . . . . . . . .  96 

6.7   Graphical comparison between true and Ramberg-Osgood stress-strain 

curve used in simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 

98 

6.8   Surfaces for contact pressure and sensor strain calculations. . . . . . . . . 98 

6.9    Applied force against tibiofemoral surface contact pressure (adjusted 

R2 > 0.9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

100 

6.10  Applied force against uniaxial (x-direction) strain (adjusted R2 > 

0.9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

100 

6.11    Modelled peak contact stresses at various loads. Top: insert 1, bottom: 

insert 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

101 

7.1    Fabricated Helmholtz coils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 

   



xi 
 

7.2    Frequency sweep of fabricated Helmholtz coils showing self-resonant 

frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 

 

1 0 6 

7.3 Design of 3D printed CoCrMo component. . . . . . . . . . . . . . . . . . . . . . . . 106 

7.4    Direct metal laser sintering process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 

7.5    Side, front and articulating surface of the fabricated CoCr component 

mounted on a polyamide femur. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

109 

7.6  Fabricated UHMWPE inserts with amorphous ribbon embedded. . . . . .  110 

7.7    Experimental assembly showing position of tibial insert and femoral 

component within the Helmholtz coils. . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

111 

7.8  Frequency sweep of tuned circuit showing resonant frequency. . . . . . . . 112 

7.9  Cross section of measured impedance curves for various applied force 

values in insert 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

113 

7.10   Cross section of measured impedance curves for various applied force 

values in insert 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

114 

7.11  Impedance curves showing steady shift in resonant frequency with 

applied force. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

115 

7.12   Plots showing calculated coil inductance against applied force. . . . . . . . 117 

7.13    (a) Relationship between measured resonant frequency and modelled 

strain (insert 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

118 

7.13

.   

(b) Relationship between measured resonant frequency and modelled 

strain (insert 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

119 

 

 

 

 

 

 

 

 

 



xii 
 

 

 

List of Tables 

 

3.1  Statistics relating to knee joint loading during various activities.  .  .  .  .  . 30 

3.2  

 

4.1    

Prevalent failure modes and their percentage occurrence in TKR 

revisions.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 

Metglas 2605SC properties (as cast). . . . . . . . . . . . . . . . . . . . . . . . . . . . .    

 

40 

66 

5.1   Calculated contact pressure for various values of applied force.  .  .  .  .  .  86 

6.1 UHMWPE and CoCrMo properties used in modelling.  .  .  .  .  .  .  .  .  .   94 

6.2  Calculated tibiofemoral contact surface area for each 

insert.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

 

99 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiii 
 

List of Abbreviations 

AA Anatomic axis 

AC Alternating current 

ACL Anterior Cruciate Ligament 

ASTM American Society for Testing Materials 

CAD Computer Aided Design 

CBMS Chill Block Melt Spinning 

CoCr Cobalt Chromium 

CoCrMo Cobalt Chromium Molybdenum 

DMLS Direct Metal Laser Sintering 

DUT Device Under Test 

EMF Electromotive Force 

FEA Finite Element Analysis 

FEM Finite Element Model 

GUEPAR Le Groupe pour l’Utilisation et l’Etude des Prosthèses 

Articulaires 

HPDE High Density Polyethylene 

HSS Hospital for Special Surgery 

ICLH Imperial College London Hospital 

InSb Indium Antimonite 

KPI Knee Prosthesis Instability 

LC Inductance-Capacitance 

LCL Lateral Collateral Ligament 

LLW Super low Pressure 

LVDT Linear Variable Differential Transformer 

LW Low Pressure 

MA Mechanical Axis 

MCL Medial Collateral Ligament 

MS Medium Pressure 

Ni-Fe-Mo Nickel-Iron-Molybdenum 

OA Osterarthritis 

PA Polyamide 



xiv 
 

PCL Posterior Cruciate Ligament 

PE Polyethylene 

PMMA Polymethyl Methacrylate 

RC Resistance-Capacitance 

RF Radio Frequency 

SLS Selective Laser Sintering 

TENS Transcutaneous Electrical Nerve Stimulation 

TKR Total Knee Replacement 

UHMWPE Ultra High Molecular Weight Polyethylene 

UK United Kingdom 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xv 
 

List of Symbols 

A Area 

a Lattice spacing 

B Magnetic flux density 

C Capacitance 

e Strain 

E Modulus of elasticity (Young’s modulus) 

E λ Magnetoelastic energy 

EBW Bloch wall energy 

Eex Exchange energy 

EH Zeeman energy 

Ek Magnetocrystalline energy 

Em Magnetostatic energy 

f Frequency (Hertz) 

H Applied magnetic field 

Hd Demagnetisation field 

I Current 

Jex Exchange integral 

K1, K2 First and Second order anisotropy constants 

l Length of conductor 

L Inductance 

M Magnetisation of material 

m Magnetic dipole moment 

Ms Spontaneous magnetisation 

N Number of turns 

Nd Demagnetisation factor 

R Resistance 

Si, Sj Angular momenta of atoms 

vd Domain volume 

XC Capacitive reactance 

XL Inductive reactance 

α1, α2, α3 Cosines of magnetisation vector angles 



xvi 
 

β1, β2, β3 Cosines of strain direction angles 

γ1, γ2, γ3 Direction cosines between applied stress and cubic edges 

δ Domain wall width 

θ Angle between saturation magnetisation and stress directions 

λ Magnetostriction 

λ0 Spontaneous magnetostriction 

λ100, λ111 Saturation magnetostriction coefficients measured along <100> 

and <111> directions 

λS Saturation magnetostriction 

μ Magnetic permeability 

μ0 Vacuum permeability 

μr Relative permeability 

ρ Resistivity 

σ Stress 

Φ Magnetic flux 

Φ Angle between momenta of atoms 

χ Magnetic susceptibility 

ω Angular frequency 

ω0 Natural resonant frequency 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

1. Introduction 
Technological advancements in knee arthroplasty (replacement) have made it 

prevalent around the world, with over half a million primary procedures performed in 

England and Wales alone during the last decade [1]. It is a complex surgical procedure, 

requiring precise alignment of the new and existing bearing surfaces, in combination 

with accurate re-positioning of the associated connective tissues as shown in Figure 

1.1. The number of total knee replacement (TKR) surgeries is constantly rising due to 

increased population and life expectancy rates; as well as a general decline in the age 

at the time of initial TKR. As a result of this, extensive research is being carried out 

on how to improve the survival rates and prolong the lifespan of the implant [2]. That 

cases often exceed 15 years longevity [2], is due to surgical skill, evolving component 

designs and the use of enhanced bearing materials that minimise the wearing of these 

critical surfaces.  Polyethylene (PE) bearings are the most common, having evolved 

through ultra-height molecular weight (UHMWPE), highly cross linked, and now 

chemically-impregnated derivatives.  Simulator and computational studies have 

demonstrated the superior tribological characteristics of these materials over extended 

time periods; however, such performance is only achieved within an optimal bio-

mechanical environment [3].  The realities and complexities of orthopaedic surgery, 

however, means a proportion of all PE bearings experience stresses that fall outside of 

the optimal boundaries, typically as a consequence of minor implant malpositioning 

and/or soft-tissue imbalance.  Such instances are likely to cause accelerated wear of 

the bearing surfaces and/or fracture, leading to premature failure [3].  

 

The integrity of the bearing surfaces is critical to implant longevity.  On-going 

monitoring is, however, problematic due to PE being radiolucent (i.e. invisible when 

viewed via x-ray), meaning that cases of accelerated implant wear may only be 

detected when the patient reports discomfort and/or pain.  This pain is likely to be 

caused by the implant (aseptic) loosening, a severe and irreversible physiological 

response to foreign debris generated from abrasive wear in the UHMWPE.  Indeed, 

implant loosening is one of the primary causes of premature implant failure [4]. Such 

instances require further surgery, with an increased morbidity and mortality risk, and 

significant financial cost.  
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Figure 1.1   Knee joint before (left) and after (right) replacement surgery [5] 

 

Therefore, effective monitoring of the active stresses within the UHMWPE insert can 

provide a clearer perception of knee biomechanics, and provide real-time observation 

on the condition of the knee implant. Early detection of high wear-rate cases would 

also allow for proactive treatment (physiotherapy, orthotics, etc.), providing the 

opportunity to avert premature implant failure.  

 

International research groups have, for a number of years, been developing 

technologies to acquire highly valuable in vivo bio-mechanical data, and have 

achieved success across very small cohorts.  Their techniques, however, typically 

require extensive retrofitting of strain gauges, batteries and antennae; many are only 

usable during the surgical process or require modifications to existing implant 

architecture and so are not viable solutions for mass-production [6] - [10]. One way 

around this is the utilisation of the magnetomechanical (Villari) effect exhibited by 

amorphous magnetic metallic glasses, in which their magnetic properties vary as a 
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function of mechanical strain. Magnetoelastic anisotropy is introduced in the 

amorphous material as a result of the strain, and this produces changes in its magnetic 

permeability. This effect has been researched extensively, and has been proposed as a 

basis for viable sensors [11] – [16]. 

 

The objective of this study is to integrate amorphous magnetostrictive ribbons in to 

UHMWPE as sensors, evaluating how the proportional change in their magnetic 

properties (with particular emphasis on the magnetic permeability) when subjected to 

a mechanical stress offers the potential to ultimately enable a mass-produced 

instrumented orthopaedic implant that may prevent premature failure. The intended 

implant would have the benefit of utilising low cost components, reduced circuitry and 

a non-invasive measurement technique, whilst maintaining the conventional implant 

design. 

 

The literature review section of this thesis was split into two parts. Chapter 2 outlines 

the fundamental magnetic principles which form the basis for the sensing element used 

in this research. The characteristics and kinetics of the human knee joint are detailed 

in Chapter 3, along with the history, components and failure mechanisms associated 

with total knee replacement procedures. A summary of existing knee force 

measurement techniques is also contained within this chapter. 

 

The experimental and results portion are split into four chapters. Chapter 4 deals with 

the measurement of permeability changes in amorphous ribbons due to mechanical 

stress whilst embedded in UHMWPE. These permeability variations induce changes 

in coil inductance which can be measured using a tuned circuit as depicted in the 

Chapter 5. Finite element modelling (FEM) was used to design and estimate the 

contact stresses, the results of these are presented in Chapter 6, while Chapter 7 

describes experimental work carried out based on the modelled system including how 

these inductance changes can be easily tracked and related to the applied force or 

stress. 

 

Chapter 8 presents a more detailed discussion of the results explained in Chapters 4 – 

8, while the conclusions drawn and identified future work are contained in Chapter 9. 
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2. Magnetism, Magnetostriction and Amorphous Metallic 

Materials 

 

2.1   Synopsis 

This chapter deals with the basic concepts of magnetism and the derivation of 

fundamental magnetic equations from first principles. The effects of stress on 

magnetism and vice versa in ferromagnetic materials are also discussed, as well as the 

intrinsic mechanisms influencing these phenomena. Finally, an overview of 

amorphous (glassy) metallic materials is provided, along with its characteristics and 

fabrication techniques. 

 

2.2   Fundamental magnetic principles 

One objective of the work carried in this research is to relate the changes in coil 

inductance to permeability variations of the material in its core. In doing this, a 

derivation of the correlation between these two quantities from first principles is 

necessary.  

When a potential difference is applied across a conductor, the result is a movement of 

electrons through it. The stream of the electric charges carried by these electrons in 

motion causes a current, I (A) to flow in the conductor, and a corresponding magnetic 

field H (A/m) is generated in the region around it. Considering a symmetrical, circular 

current-carrying conductor with l length and N turns, the magnetic field produced can 

be related by the Maxwell-Ampere equation [1] as 

𝐻𝐻 =  
𝑁𝑁𝑁𝑁
𝑙𝑙

                                                                      (2.1) 

If this field is generated in a medium, the reaction of that medium to the field is its 

flux density (or magnetic induction) B, which can be defined as [2] 

𝐵𝐵 = 𝜇𝜇𝜇𝜇                                                                         (2.2) 

with 𝜇𝜇 being the permeability, which is a measure of the capability of the medium to 

aid the formation of a magnetic field within itself. Ferromagnetic materials are 
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composed of singular randomly-magnetised domains which are oriented such that in 

the demagnetised state, the net magnetization within the material is approximately 

zero. Below the Curie point (the temperature at which they lose their magnetic 

characteristics), they exhibit spontaneous magnetisation and for such materials, 

Equation 2.2 becomes 

𝐵𝐵 = 𝜇𝜇0(𝐻𝐻 + 𝑀𝑀)                                                             (2.3) 

where 𝜇𝜇0 is the vacuum permeability, a physical constant equivalent to 4𝜋𝜋 ∗ 10−7 

(H/m) and M is the magnetisation of the material, which is defined as the density of 

the induced magnetic dipole moments (magnetic moments per unit volume) and is 

expressed as  

𝑀𝑀 =
𝑚𝑚𝑚𝑚

𝑣𝑣
                                                                   (2.4) 

where 𝑚𝑚𝑚𝑚 is the magnetic dipole moments and 𝑣𝑣 is the volume of the material. The 

magnetic field and the magnetisation are related by [1, 2] 

𝑀𝑀 = 𝜒𝜒𝜒𝜒                                                                      (2.5) 

where χ is the magnetic susceptibility of the material. Thus, substituting Equation 2.5 

into Equation 2.3 gives [1, 2] 

𝐵𝐵 = 𝜇𝜇0(𝐻𝐻 + 𝜒𝜒𝜒𝜒) = 𝜇𝜇0𝐻𝐻(1 + 𝜒𝜒)                                          (2.6) 

The expression (1 + 𝜒𝜒) is known as the relative permeability of the ferromagnetic 

medium µr. It should be noted that both µr and 𝜒𝜒 are tensors which describe the 

directionally-dependent response of the material to a magnetic field, while B and H 

are vectors.  Comparing Equations 2.2 and 2.6, 

𝜇𝜇 =  𝜇𝜇0𝜇𝜇𝑟𝑟                                                                      (2.7) 

The flux density is defined as the amount of magnetic flux Φ, passing through a unit 

area A, given by [1, 2] 

𝐵𝐵 =
Φ
𝐴𝐴

                                                                             (2.8) 

For a solenoidal coil with N turns, an electromotive force (emf) is induced by the time-

varying magnetic flux 𝑑𝑑Φ 𝑑𝑑𝑑𝑑� , which causes a current to flow through the coil in a 
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direction which opposes the initial flux. This is described by Faraday’s second law of 

electromagnetic induction, and the induced emf which is measured in volts can be 

expressed as [3] 

𝑣𝑣 = −𝑁𝑁
𝑑𝑑Φ
𝑑𝑑𝑑𝑑

                                                                    (2.9)  

The polarity (direction) of the emf is given by Lenz’ law. Thus, fusing Equations 2.8 

and 2.9,  

𝑣𝑣 = −𝑁𝑁𝑁𝑁 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

                                                                  (2.10)                                                                

Now, incorporating Equations 2.1 and 2.7 into Equation 2.2, we obtain 

𝐵𝐵 = 𝜇𝜇0𝜇𝜇𝑟𝑟
𝑁𝑁𝑁𝑁
𝑙𝑙

                                                                 (2.11) 

Substituting Equation 2.11 into 2.10,  

𝑣𝑣 = −
𝜇𝜇0𝜇𝜇𝑟𝑟𝑁𝑁2𝐴𝐴

𝑙𝑙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

                                                      (2.12) 

In electromagnetics, a change in the current through an electrical conductor induces 

an emf in it which opposes the current change. This property is known as the 

inductance L (in Henries) and is related to the rate of change of the current by [4] 

𝑣𝑣 = −𝐿𝐿
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

                                                                  (2.13) 

Combining Equations 2.12 and 2.13,  

𝐿𝐿 =
𝜇𝜇0𝜇𝜇𝑟𝑟𝑁𝑁2𝐴𝐴

𝑙𝑙
                                                            (2.14) 

The equation above clearly illustrates the dependence of the inductance not only on 

the coil geometry, but also on the permeability of the magnetic core. 

 

2.3   Magnetic domain theory 

One of the peculiar characteristics of ferromagnetic materials is their unfilled 3d and 

4f atomic subshells, which result in unpaired electron spins on adjacent atoms [5]. The 

exchange interaction between two adjacent spins is resisted by the thermal excitation 



9 
 

of the atoms caused by the rise in temperature, leading to the random orientation of 

the magnetic moments when the material is heated above its Curie temperature Tc [6, 

7]. This temperature is material-dependent and above this temperature, the material 

exhibits paramagnetic properties. 

During the cooling process of the material, the spins are rotated into a structured state. 

These spin motions are responsible for the magnetic moments within the bulk material, 

and they are aligned in small volumes known as domains [8] as depicted in Figure 2.1. 

These domains are formed in order to minimise the total energy and within each 

domain, the magnetic moments are oriented parallel to one another which results in 

spontaneous magnetisation even without an externally applied magnetic field. The 

spontaneous magnetisation is the sum of all magnetic moments m within the domain 

per unit volume, and can be given as 

𝑀𝑀𝑠𝑠 =
∑𝑚𝑚
𝑣𝑣𝑑𝑑

                                                             (2.15) 

where 𝑣𝑣𝑑𝑑 is the volume of the domain. The spontaneous magnetisation is a vector 

quantity with a constant magnitude across all domains, although its direction varies 

between domains. The net magnetisation of the bulk material is the sum of the 

individual spontaneous magnetisation vectors, which is nearly zero in an un-

magnetised specimen.  

Domains are separated by walls, which are comparatively thin regions where the 

magnetic moments gradually transition between one orientation and the other [9, 10]. 

They can be categorised based on the angle of the magnetisation between the two 

neighbouring domains which the wall borders, as illustrated in Figure 2.2.  

1. 90o wall: this is the boundary between two domains in which the magnetisation 

lies perpendicular to each another i.e. the magnetisation rotates by 90o from 

domain to domain. 

2. 180o wall: this is the boundary between two oppositely magnetised domains. 

These can be further divided into two classes based on the plane of 

magnetisation rotation: Bloch walls and Neel walls, as illustrated in Figure 2.3. 

For Bloch walls, the magnetisation rotation is in a plane parallel to that of the 

domain wall whilst in Neel walls, it is perpendicular.  
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Figure 2.1   Illustrative representation of domain structure on the side plane of 

a Cobalt crystal. The directions of magnetisation are indicated by the arrows 

[11]. 

 

 

Figure 2.2 (a) 90o and (b) 180o domain walls [10] 

 

 

Figure 2.3   Magnetisation rotation in a (a) Bloch wall and (b) Neel wall [10] 
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Domain theory and micromagnetics are based on the same minimum energy principles 

which were derived from thermodynamics. The equilibrium domain structure of a 

material is one in which the free energy is minimised. As proposed by Landau and 

Lifshitz [12], the total free energy equation consists of five constituent magnetic 

energy densities: the exchange energy Eex, magnetostatic energy Em, 

magnetocrystalline anisotropy energy Ek, magnetoelastic energy Eλ, and the Zeeman 

energy EH which is due to an externally applied magnetic field. Another term referred 

to as the domain wall or Bloch wall energy (𝐸𝐸𝐵𝐵𝐵𝐵) exists [1] and is regulated by the 

equilibrium between the exchange and magnetocrystalline anisotropy energies that 

create it. Thus, a robust equation for the total free energy can be expressed as  

𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐸𝐸𝑒𝑒𝑒𝑒 + 𝐸𝐸𝑚𝑚 + 𝐸𝐸𝑘𝑘 + 𝐸𝐸𝜆𝜆 + 𝐸𝐸𝐻𝐻                                     (2.16) 

The Bloch wall energy often replaces 𝐸𝐸𝑒𝑒𝑒𝑒 and 𝐸𝐸𝑘𝑘 in Equation 2.16. The individual 

energy densities are further discussed subsequently. 

 

2.3.1   Exchange energy 

The exchange energy is mostly dependent on the relative orientation of two adjacent 

atomic magnetic moments, and their propensity for parallel alignment. For two 

neighbouring atoms i and j, the exchange energy between them can be simplified as 

𝐸𝐸𝑒𝑒𝑒𝑒 = −2𝐽𝐽𝑒𝑒𝑒𝑒𝑺𝑺𝒊𝒊𝑺𝑺𝒋𝒋 = −2𝐽𝐽𝑆𝑆2 cos𝜙𝜙                                            (2.17) 

where 𝐽𝐽𝑒𝑒𝑒𝑒 is the exchange integral, 𝑺𝑺𝒊𝒊 and 𝑺𝑺𝒋𝒋 are the angular momenta of the atoms 

and 𝜙𝜙 is the angle between them [14]. It can be seen that for a positive value of  𝐽𝐽𝑒𝑒𝑒𝑒, 

the exchange energy is minimum when the magnetic moments are parallel (𝜙𝜙 = 0,

cos𝜙𝜙 = 1) and maximum when they are antiparallel (𝜙𝜙 = 180°, cos𝜙𝜙 = −1). 

Conversely, when 𝐽𝐽𝑒𝑒𝑒𝑒 is negative, the exchange energy is minimised when the 

magnetic moments are antiparallel. Therefore, in order for ferromagnetism to occur, 

the exchange integral needs to be positive.  
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2.3.2   Magnetostatic energy 

As previously mentioned, the main purpose of magnetic domains is to minimise the 

free energy of the material. For a ferromagnetic material with a single domain which 

is uniformly magnetised along the easy axis, the associated magnetostatic energy is 

large. This is due to the generation of a demagnetising field by the formation of 

magnetic free poles at the surface of material, Hd. This demagnetising field can be 

expressed as  

𝑯𝑯𝒅𝒅 = −𝑁𝑁𝑑𝑑𝑀𝑀                                                              (2.18) 

where Nd is the demagnetisation factor which is a tensor function dependent on the 

sample geometry, and M is the magnetisation that exists within the domain.  

The division of the magnetisation into two antiparallel domains as shown in Figure 

2.4 effectively halves the magnetostatic energy. This is due to the reduction in the 

demagnetising field, as a result of the reduced distance between oppositely polarised 

poles. Further splitting of the structure into four domains reduces the magnetostatic 

energy to about a quarter of the initial value. 

 

 

 

Figure 2.4   Schematic illustration of the division of magnetisation into domains 

(a) single domain (b) two domains (c) four domains and (d) closure domains 

[13] 
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The energy associated with the domain wall formation, which is proportional to the 

area of the wall, also adds to the overall energy. Hence, domain formation only 

proceeds provided the resultant reduction in the magnetostatic energy is greater than 

the energy required to form the domain wall. To reduce the magnetostatic energy, 

closure domains are formed on the surfaces as shown in Figure 2.4(d) which contain 

the magnetic flux within the material thereby cancelling out the free poles.  

The magnetostatic energy density is given by [1] 

𝐸𝐸𝑚𝑚 = −�
𝜇𝜇0
2
�𝑴𝑴𝑯𝑯𝒅𝒅 =

𝜇𝜇0
2
𝑁𝑁𝑑𝑑𝑀𝑀2                                            (2.19) 

As 𝐸𝐸𝑚𝑚 relates to self-energy, the factor of 1 2�  is introduced since the moments cannot 

be accounted for twice [1].  

 

2.3.3   Magnetocrystalline anisotropy energy 

Magnetisation in directions with an angular offset to the easy axis tend to necessitate 

larger applied fields in order to achieve saturation, and this is known as the magnetic 

anisotropy energy [1]. In other words, magnetocrystalline anisotropy occurs when 

there is a preferred direction of magnetisation. Considering a single cubic crystal, three 

principal crystallographic directions can be identified by their Miller indices (as shown 

in Figure 2.5) as: 

• <100> consisting of [100], [010] and [001] which are the directions along the 

cubic edges of the unit cell 

• <110> consisting of [110], [101] and [011] which are the directions along the 

diagonals of the cube faces 

• <111> which is the direction along the diagonals of the unit cell 
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Figure 2.5   The direction cosines between the applied field and the principal 

crystallographic directions [14]. 

 

Magnetic saturation occurs at the lowest field strength when the field is applied along 

the easy magnetic axis. The <110> and <111> directions are known as the medium 

and hard magnetic axis respectively, as magnetisation in these directions requires 

increasingly higher fields. Considering α1, α2 and α3 as the cosines of the angles the 

magnetisation vector subtends with the cubic orthogonal magnetic axes, the anisotropy 

energy (J/m3) is denoted by 

𝐸𝐸𝑘𝑘 = 𝐾𝐾1(𝛼𝛼12𝛼𝛼22 + 𝛼𝛼22𝛼𝛼32 + 𝛼𝛼32𝛼𝛼12) + 𝐾𝐾2(𝛼𝛼12𝛼𝛼22𝛼𝛼32)                               (2.20)  

where 𝐾𝐾1 and 𝐾𝐾2 are the first and second order materials anisotropy constants (J/m3). 

It can be deduced from the equation that the anisotropy energy is minimal when the 

magnetic moments are all aligned along one of the easy directions. 

 

2.3.4   Magnetoelastic energy   

When a ferromagnetic material is magnetised, it exerts a stress against its surroundings 

which causes its dimensions to change as long as it is unrestrained [15]. This is referred 

to as magnetostriction, and it encompasses any effect which involves the collaboration 

between magnetisation and mechanical stress. It was first established by James Joule 
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in 1842, when he observed a change in the length of ferromagnetic bars in the direction 

of magnetisation. 

When the magnetic moments are aligned, the initial length l of the material increases 

by a factor of Δl in the magnetisation direction when an external field is applied. This 

fractional change in length is known as magnetostriction λ, and can be expressed as 

𝜆𝜆 =
∆𝑙𝑙
𝑙𝑙

                                                                  (2.21) 

Magnetostriction is an intrinsic property of the material and can either be negative or 

positive, depending on whether the material length decreases or increases with an 

increasing applied field. In most materials, the rotation of the electron spins due to an 

externally applied field is usually quite small. When these spins lie parallel or 

antiparallel to the external field, no rotational force is exerted on them. This easy axis 

is defined as an energetically favourable direction of spontaneous magnetisation [9]. 

However, if the spins lie at an angle to the direction of the field, they rotate towards 

the field direction which results in a corresponding increase in the volume of the 

containing domain. Further increase in the external field causes the domains to align 

and eventually merge into a single domain (saturation) parallel to the external field 

direction. The magnetisation of the material reaches saturation when it becomes 

unaffected by increases in the external field [5].  

The interaction between magnetic moments produces forces between the atoms, and 

this tends to introduce anisotropic strain in the domain structure of the bulk material. 

There are three mechanisms in which the strain emanates from: 

i. Spontaneous strain: this is due to the alignment of the magnetic moments into 

domains when the material is cooled below its Curie temperature. At the onset 

of ferromagnetism, the material experiences spontaneous magnetisation at the 

domain level along with spontaneous strain e and magnetostriction λ0 which 

are related by 

𝜆𝜆0 =
𝑒𝑒
3

                                                              (2.22)  
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Here, even though the magnetic moments are aligned within the individual domains, 

the domains themselves remain randomly oriented as shown in Figure 2.6(b). 

ii. Induced strain: this is due to the alignment of the domains parallel to the 

direction of the externally applied field, as shown in Figure 2.6(c). At 

saturation, all domains within the material merge and are in line with the 

external field; the relationship between the spontaneous strain and the 

saturation magnetostriction 𝜆𝜆𝑆𝑆  is given by  

𝜆𝜆𝑆𝑆 =
2𝑒𝑒
3

                                                             (2.23) 

which is simply the difference in strain between the demagnetised and saturated 

ferromagnetic states. The saturation magnetostriction in a single cubic crystal domain 

can be expressed using the Becker-Doring equation as  

 

 

Figure 2.6    Schematic diagram depicting the magnetostriction in (a) the 

disordered paramagnetic state; (b) the demagnetised ferromagnetic state; and (c) 

the ferromagnetic state, magnetised to saturation [2].                
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𝜆𝜆𝑆𝑆 =
3
2
𝜆𝜆100 �𝛼𝛼12𝛽𝛽12 + 𝛼𝛼22𝛽𝛽22 + 𝛼𝛼32𝛽𝛽32 −

1
3
�

+  3𝜆𝜆111(𝛼𝛼1𝛼𝛼2𝛽𝛽1𝛽𝛽2 + 𝛼𝛼2𝛼𝛼3𝛽𝛽2𝛽𝛽3 + 𝛼𝛼3𝛼𝛼1𝛽𝛽3𝛽𝛽1)                                                  (2.24) 

 

with β1, β2 and β3 being the cosines of the angles subtended by the strain direction with 

respect to the cubic edges; λ100 and λ111 being the saturation magnetostriction 

coefficients measured along the <100> and <111> directions. Saturation 

magnetisation is usually measured in the same direction as the applied magnetic field, 

which reduces Equation 2.24 to  

𝜆𝜆𝑆𝑆 =
3
2
𝜆𝜆100 + 3(𝜆𝜆111 − 𝜆𝜆100)(𝛼𝛼12𝛼𝛼22 + 𝛼𝛼22𝛼𝛼32 + 𝛼𝛼32𝛼𝛼12)                        (2.25) 

 

iii. Villari effect: this is the inverse of the magnetostrictive effect as discovered 

by Emilio Villari in 1864, whereby a unidirectional mechanical stress causes a 

shift in the magnetic susceptibility of a material. This is due to a change in the 

direction of domain magnetisation, and the magnetoelastic energy which will 

be affected by the anisotropy and magnetostriction of the material is expressed 

as 

𝐸𝐸𝑖𝑖 = 𝐾𝐾1(𝛼𝛼12𝛼𝛼22 + 𝛼𝛼22𝛼𝛼32 + 𝛼𝛼32𝛼𝛼12) + 𝐾𝐾2(𝛼𝛼12𝛼𝛼22𝛼𝛼32) − 3
2
𝜆𝜆100𝜎𝜎(𝛼𝛼12𝛾𝛾12 + 𝛼𝛼22𝛾𝛾22 + 𝛼𝛼32𝛾𝛾32) −

3𝜆𝜆111𝜎𝜎(𝛼𝛼1𝛼𝛼2𝛾𝛾1𝛾𝛾2 + 𝛼𝛼2𝛼𝛼3𝛾𝛾2𝛾𝛾3 + 𝛼𝛼3𝛼𝛼1𝛾𝛾3𝛾𝛾1)                             (2.26) 

where γ1, γ2, and γ3 are the direction cosines between the applied stress and the cubic 

edges. For an isotropic material, 𝜆𝜆100 = 𝜆𝜆111 = 𝜆𝜆𝑆𝑆 and the last two terms of Equation 

2.26 reduce to  

𝐸𝐸𝜆𝜆 = −
3
2
𝜆𝜆𝑆𝑆𝜎𝜎 cos2 𝜃𝜃                                                     (2.27) 

where 𝜎𝜎 is the applied uniaxial stress, and 𝜃𝜃 is the angle between the saturation 

magnetisation and stress directions. It can be deduced from the Equation 2.27 that the 

magnetoelastic energy is minimised in a positive magnetostrictive material when the 

magnetisation lies parallel to the applied stress. Conversely, the magnetoelastic energy 

in negative magnetostrictive materials is minimal when the stress is perpendicular to 

the alignment of the magnetic moments.  
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2.3.5   Zeeman energy 

This is also referred to as the external field energy, and is the potential interaction 

energy between the magnetisation vector and an externally applied field [11]. It is 

defined by the following equation 

𝐸𝐸𝐻𝐻 = −𝜇𝜇0𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒𝑀𝑀 cos𝜙𝜙                                                   (2.28) 

where 𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒 is the externally applied magnetic field, and 𝜙𝜙 is the angle subtended by 

the field and magnetisation. For a uniformly applied field, the energy is dependent 

only on the average magnetisation, and is irrespective of the domain structure or 

material shape [11]. The Zeeman energy in the material is minimised when the 

directon of magnetisation of the material lies parallel to the external field (i.e. cos𝜙𝜙 =

1).  

 

2.3.6   Domain Wall energy 

The exchange energy between two adjacent magnetic moments is given as 

𝐸𝐸𝑒𝑒𝑒𝑒 = −2𝐽𝐽𝑒𝑒𝑒𝑒𝑺𝑺𝒊𝒊𝑺𝑺𝒋𝒋 = −2𝐽𝐽𝑆𝑆2 cos𝜙𝜙                                           (2.29) 

Using small angle approximation �cos𝜙𝜙 = 1 − 𝜙𝜙2

2� �, 𝐸𝐸𝑒𝑒𝑒𝑒 can be re-written as 

𝐸𝐸𝑒𝑒𝑒𝑒 = −2𝐽𝐽𝑆𝑆2 + 𝐽𝐽𝑆𝑆2𝜙𝜙2                                                   (2.30) 

For a Bloch wall, the 180o rotation takes place across N magnetic moments which 

makes the average angle between two moments 𝜋𝜋
𝑁𝑁� . If a is the lattice spacing, then 

each row of magnetic moments populates an area of a2 on the surface of the wall. 

Therefore, the Bloch wall exchange energy density is given by [1] 

𝐸𝐸𝑒𝑒𝑒𝑒𝐵𝐵𝐵𝐵 = 𝐽𝐽𝑆𝑆2
𝜋𝜋2

𝑁𝑁𝑎𝑎2
                                                           (2.31) 

Also, the anisotropy energy density increases with N and can be approximated as 

𝐸𝐸𝑘𝑘𝐵𝐵𝐵𝐵 = 𝐾𝐾1𝑁𝑁𝑁𝑁                                                              (2.32) 

Combining Equations 2.31 and 2.32, the total wall energy becomes 
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𝐸𝐸𝐵𝐵𝐵𝐵 =  𝐽𝐽𝑆𝑆2
𝜋𝜋2

𝑁𝑁𝑎𝑎2
+ 𝐾𝐾1𝑁𝑁𝑁𝑁                                                   (2.33) 

It can be observed from Equation 2.33 that the exchange energy term prefers a large 

N, whilst the anisotropy energy density contrarily favours a smaller N. The equilibrium 

domain wall width is that which minimises the total wall energy, and this can be 

ascertained by equating the first derivative to zero. This gives  

𝑑𝑑𝐸𝐸𝐵𝐵𝐵𝐵

𝑑𝑑𝑑𝑑
= −𝐽𝐽𝑆𝑆2

𝜋𝜋2

𝑎𝑎2
1
𝑁𝑁2 + 𝐾𝐾1𝑎𝑎 = 0                                         (2.34) 

Therefore,  

𝑁𝑁𝑒𝑒𝑒𝑒 = �
𝐽𝐽𝑆𝑆2𝜋𝜋2

𝐾𝐾1𝑎𝑎3
                                                           (2.35) 

The domain wall width δ can be expressed as 

𝛿𝛿 = 𝑁𝑁𝑒𝑒𝑒𝑒𝑎𝑎 = 𝜋𝜋�𝐴𝐴 𝐾𝐾�                                                      (2.36) 

where A is the exchange stiffness constant, which is an estimate of the rigidity of the 

magnetisation vector as a result of the exchange forces that encourage parallel 

alignment and is denoted by 

𝐴𝐴 =
𝐽𝐽𝑆𝑆2

𝑎𝑎
                                                                   (2.37) 

 

2.4   Amorphous magnetic materials 

Amorphous ferromagnetic materials are an important class of materials which have 

been exploited in a diverse range of magnetic applications [16 - 20]. The word 

“amorphous” was derived from the Greek language, the prefix a meaning without, and 

morphe which means form or shape. Therefore, amorphous materials have no defined 

crystalline structure at the macroscopic level; however, varying degrees of short range 

(atomic scale) order does exist within the material depending on the type of atomic 

bonding present. They are usually produced by sputtering or rapid solidification 

techniques which typically require high cooling rates (between 104 to 106 C/s), and 

this facilitates the formation of an order similar to that of the molten alloy.  
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The amorphous (glassy) state of the material is normally sustained by alloying the 

metallic elements with glass formers (metalloids) like boron, silicon, carbon and 

phosphorus. There are various chemical configurations for producing these amorphous 

alloys, but those of magnetic significance are based either on 3d transition metals or 

rare earth metals. The basic configuration for ferromagnetic alloys is T100-xMx, where 

T depicts one or more metallic components and M represents one or more metalloids 

with 15 < x < 30 % approximately [1]. 

 

2.4.1   Properties of amorphous materials 

The absence of a long-range ordered atomic structure in amorphous metallic alloys as 

depicted in Figure 2.7 leads to many features which are favourable for assorted 

applications. At the macroscopic level, magnetostriction is isotropic [21] and the 

magnetocrystalline anisotropy is nearly zero which makes magnetisation rotation easy. 

However, residual stresses during the manufacturing process introduce a minor 

uniaxial anisotropy along the material axis, although this can be suppressed by 

annealing (heating the material to temperatures between 150oC and 250oC). 

 

 

Figure 2.7   Configuration of individual atoms within crystalline and 

amorphous structures [22] 
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Electron scattering, which arises from the atomic disarray, produces high electrical 

resistivity in the material (ρ ≈ 100 – 200 µΩ.cm) and this is beneficial in high 

frequency magnetisation reversal for eliminating eddy currents. Also, amorphous 

alloys tend to have higher relative permeability in comparison to typical ferromagnetic 

materials [23] due to the lack of magnetocrystalline anisotropy, and this makes them 

easier to magnetise.  

The mechanical properties of the amorphous material are also enhanced. As they are 

devoid of a defined crystalline structure through which dislocation motion would be 

comparatively easy, they possess high values of Young’s modulus and tensile strength. 

This in turn increases their elastic and bending fatigue limits with little plastic 

deformation, and makes them less susceptible to magnetic deterioration during cyclic 

loading. In addition, they are homogenous and possess no microstructural 

discontinuities (for example, grain boundaries) through which impurities can 

penetrate, hence they are highly resistant to corrosion.  

 

2.4.2   Fabrication of amorphous materials 

There are various methods by which amorphous metallic alloys can be produced, in 

both ribbon and wire forms. These include deposition (vacuum, sputter, electro and 

chemical) as well as melt spinning, all of which involve rapid cooling rates as this is 

a necessary condition for attaining an amorphous state. Of all the techniques 

mentioned, chill block melt spinning (CBMS) is the most widely employed method 

for mass production of amorphous ribbons in uninterrupted lengths.  

In this technique, the constituent materials are deposited into a quartz crucible and 

then heated until liquefaction. Using pressure from an inert gas (e.g. argon), the liquid 

metal is then ejected through an aperture at high speed onto the circumferential surface 

of a water-cooled rotating drum. A pool of liquid forms at the end of the liquid stream, 

and the ribbon is then drawn out from underneath [24]. A schematic diagram of this 

process is shown in Figure. 2.8, and an amorphous ribbon sample shown in Figure 2.9. 

Experimental studies have been carried out based on sweeping different cast and melt 

parameters. These include the melt viscosity, melt pool dimensions, volumetric flow 
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rate, ejection pressure, nozzle diameter, wheel surface velocity, and injection angle. 

The ribbon geometry has been shown to vary as a function of these parameters [24]. 

 

 

 

Figure 2.8   Schematic diagram showing Chill Block Melt Spinning process [25] 

 

 

 

Figure 2.9   Sample of amorphous ferromagnetic ribbon  
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3. Knee mechanics and arthroplasty 
 

3.1   Synopsis 

The purpose of this research is to develop a system for measuring forces in total knee 

replacements. To put this into context, a good understanding of the joint behaviour is 

necessary. This chapter details the loading and kinematics the knee is subjected to, 

along with a summary of the main factor necessitating replacement surgery. The knee 

prosthesis is also described, as well as the root causes of implant failure. Finally, a 

detailed description of existing force measurement techniques is presented.  

 

3.2   The Human knee joint 

The knee is one of the largest and most complicated joints in the human body [1-3]. It 

is tricompartmental in nature, connecting the femur (thighbone), tibia (shinbone) and 

patella (kneecap) [4]. Figure 3.1 depicts the anatomy of a typical human knee joint. 

The femoral condyles, which are two rounded prominences on the distal end of the 

femur, articulate with the tibial plateaus through the tibial and lateral menisci. These 

menisci are crescent-shaped, rubbery fibrocartilages that act as shock absorbers 

between the femur and tibia, provide lubrication and make the joint more conforming 

[4, 5]. The patella, which is a sesamoid bone (embedded within a tendon), lies anterior 

to the knee surface. It articulates with the femur in the trochlear groove and the groove 

geometry and quadriceps muscles mutually govern its movement.  

The cruciate and collateral ligaments bond and stabilise the tibiofemoral joint. The 

anterior and posterior cruciate ligaments (ACL and PCL) maintain the anterior-

posterior sliding constraint in the tibia, with the ACL particularly preventing 

hyperextension of the knee. Conversely, the medial and lateral collateral ligaments 

(MCL and LCL) maintain varus-valgus constraint in the coronal plane. A thin layer of 

hyaline cartilage covers the articulating surfaces of each joint, which provides superior 

lubrication and safeguards them from damage [6]. Like all other synovial joints, a joint 

capsule envelopes the bones in the knee joint. This capsule consists of an outer fibrous 

layer of collagen connected to the knee ligaments, and an inner membrane that secretes 

lubricating synovial fluid to reduce friction and wear in the joint [7, 8].  
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Besides these, various critical structures also surround the knee which aid in softening 

the effects of friction and external stress. Bursae, which are small sacs of synovial 

fluid, encompass the knee to reduce friction [9, 10]. Articular fats pads composed of 

adipose tissues also help absorb shock from extrinsic stress and provide improved 

stability by filling empty spaces created during knee motion [11].  

 

 

Figure 3.1   Anatomy of the human knee joint [12] 

 

3.2.1   Knee kinematics 

The knee joint is trocho-ginglymus in nature, a combination of a hinge and pivot joint 

that has rolling, sliding and rotational motions [13]. The tibiofemoral joint has six 

degrees of freedom, comprising three rotational and three translational motions [4, 

14], as shown in Figure 3.2. This is because of the flexibility of the cartilages between 

the articulating surfaces of the bones in the joint. The rotational motions include 
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flexion-extension, internal-external (axial) and varus-valgus (adduction/abduction). 

The translations exist in the anterior-posterior and medial-lateral directions which are 

shown in Figure 3.3, as well as compression and separation of the joint.  

The primary motion in the knee joint is flexion and extension. The typical range is 

from full extension to about 160o fully flexed in the sagittal plane, with a small 

measure of hyperextension (between 3-5o) also achievable [4]. Axial rotation of the 

femur is also largest when the knee is flexed at 90o and least when the knee is in full 

extension due to soft tissue restriction.  

 

 

Figure 3.2   Degrees of freedom of the knee joint [15] 
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Figure 3.3   Anatomical planes of the human body [16] 

 

 

3.2.2   Knee loading  

The resultant forces and moments acting on the knee joint are dependent on the task 

embarked upon at any instant. These have previously been ascertained using motion 

analysis, and results achieved for different tasks such as walking, sitting, standing and 

even sporting activities [17 - 22]. 

The quadriceps and hamstrings respectively supply the extension and flexion 

moments. The maximum axial load in the joint, which is approximately the contact 

force whilst neglecting soft tissue loading, is commonly expressed as a multiple of the 

bodyweight. For instance, contact force has been determined to be between three to 

four times average bodyweight in the normal gait cycle and is the generally accepted 

standard in total knee replacement designs [23]. Table 3.1 contains typical values 

obtained from research into load bearing of the knee for different activities.  
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Table 3.1 Statistics relating to knee joint loading during various activities [17 – 

22] 

Research Activity Peak tibiofemoral 
force  (x Bodyweight) 

Kuster et al (1997) Level Walking 
Downhill Walking 

3.4 (male) 3.9 (female) 
7 (male)        8 (female) 

Costigan et al (2002) Stair Climbing 3 - 6 (Mixed Sex) 

Christina & Cavanagh 
(2002) Stair Decent 

1.4 - 1.48 ± 0.20 
(mixed sex aged 21-27) 

1.43 - 1.50 ± 0.27 
(mixed sex aged 71-75) 

Nisell and Ericson (1992) Jogging 
Running 

12 (male) 
7.5 (male) 

Kutzner et al (2010) 

Stair descending 
Stair ascending 
Level walking 

One legged stance 
Knee bending 
Standing up 
Sitting down 

Two legged stance 

3.46 
3.16 
2.61 
2.59 
2.53 
2.46 
2.25 
1.07 

D’lima et al Walking, stair climbing, 
chair rise, squat 2 – 3 

 

 

3.3   Osteoarthritis 

Long-term degeneration of the joints is inevitable in almost all individuals. 

Osteoarthritis (OA), which is one of the most common forms of arthritis [24, 25], is 

the continuous deterioration of the articular cartilage due to some amalgamation of 

mechanical and biochemical wear, as depicted in Figure 3.4. It is a concentrated effect, 

and is one of the principal causes of the requirement for replacement surgery in knee 

joints. Since 2003 when orthopaedic data compilation began in the UK, over 96% of 

primary knee replacement surgeries performed as at the end of 2015 were attributed 

to osteoarthritis [26].  

The gradual degeneration of the cartilage may be due to normal wear and tear brought 

about by daily activities, injury or disease. OA can also be caused by repetitive stress 

to articulating surfaces of the joint, or any external trauma that alters its normal 

functioning. Other factors like age and obesity are also believed to increase the 
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probability of developing OA [27, 28]. The associated symptoms include joint pain 

and stiffness, inflammation, deformation, slight swelling, reduced range of motion and 

creaking of the joint [29, 30].  

 

 

Figure 3.4   Normal joint space between the femur and the tibia (Left). 

Decreased joint space due to damaged cartilage and bone spurs (Right) [31] 

 

Although there is no complete cure for OA, milder symptoms are still manageable 

through lifestyle changes. These include weight loss, physiotherapy and medication 

(analgesics, steroid injections and non-steroidal anti-inflammatory drugs). 

Additionally, pain relief is achievable by using transcutaneous electrical nerve 

stimulation (TENS) which sends pulses to the brain and modifies the pain messages 

received by the brain [32, 33]. However, in more severe cases where quality of life is 

significantly affected, replacement surgery is usually recommended.   

 

3.4   Brief History of Total Knee Replacement (TKR) 

A German surgeon and physician, Themistocles Gluck, is generally regarded as a 

pioneer in the use of endoprosthetes by conducting the first ever knee replacement in 

1890 [34]. He accomplished this feat using a hinged ivory implant and bone cement 

consisting of colophony, pumice and gypsum. A diagram of the implant materialised 
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is shown in Figure 3.5. Although his methods proved to be inadequate due to infection 

caused by the ivory and the weakness of the bone cement to the applied knee forces, 

most of the fundamental concepts used in contemporary implants had already been 

visualised by him. These include elemental design of implants, osseointegration 

(where bone ingrowth solely determines the implant stability), biocompatibility and 

structural properties of materials, and allotransplantation.  

After Gluck’s initial design, different scientists made various efforts to both 

understand and replicate the motions of the knee joint. In the early 1950s, a Swedish 

scientist named Borje Walldius designed a cobalt chrome alloy roller bearing implant 

(Figure 3.6a), later modified to include a patellar flange and longer stems for the 

supporting bone structures [35 – 38]. In that same decade, Shiers developed a hinged 

prosthesis with an even longer tibial stem (Figure 3.6b) for better alignment and a 

posterior roller bearing joint [39 – 40]. McKee, an English scientist from Norwich, 

also developed an implant similar in design to the Walldius hinge (Figure 3.6c); 

however, screws initially secured the stem to the bone [41]. This was then modified to 

incorporate a tapered tri-fin blade stem with cemented fixation, the rationale for this 

being improved load distribution.   

In 1969, a group of French surgeons known as Le groupe pour l’utilisation et l’étude 

des prosthèses articulaires (GUEPAR) introduced their eponymous hinged prosthesis 

(Figure 3.6d) [42] which was fleetingly popular, but was plagued by undesirable 

loosening and infection due its inadequate capacity for intricate knee forces. That same 

year, the Royal National Orthopaedic Hospital group presented the Stanmore hinge 

(Figure 3.6e), which consisted of titanium stems, cobalt chromium molybdenum 

(CoCrMo) alloy roller bearing system with a high-density polyethylene (HPDE) insert 

[43].  

Even though hinged knee prostheses proved to be significant in the developmental 

cycle of TKR, they were not without flaws. Due to insufficient understanding of the 

leg alignment, the designs did not incorporate valgus stems. The constrained nature of 

the hinge could not accommodate the complex rotations of the knee joint; hence, 

loosening and mechanical failure rates were high. In addition, the surgical process of 

fitting the prosthesis required the excision of a considerable volume of bone, which 

made the joint difficult to salvage during revision procedures in the event of failure. 
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Figure 3.5   Gluck’s ivory knee replacement assembled (Top) and its constituent 
parts (Bottom) [34] 

 

The polycentric knee prosthesis designed by Frank Gunston, a Canadian-born 

engineer and doctor, was the first to consider the natural knee biomechanics [44]. It 

comprised two separate semi-circular stainless steel runners secured into slots in the 

articulating surfaces of the femoral condyles, coupled with two concave HDPE tracks 

fixed into slots in the tibial plateaus (Figure 3.7). Both components attached to the 

bones using self-curing polymethylmethacrylate (PMMA) cement. Post-operative 

results were remarkable, as better physiological stability and movement range were 

achieved due to the retention of the cruciate and collateral ligaments. In addition, the 

design allowed the centre of rotation to vary with knee flexion; hence, it was able to 

replicate the intricate gliding and rocking motions in the joint better. Unfortunately, 

the narrow femoral components subjected the polyethylene tracks unfavourably high 

pressure points. 
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A collaboration between Dr Michael Freeman and Alan Swanson of the Imperial 

College London Hospital (ICLH) produced the first condylar knee arthroplasty in 

1970 [45]. The Freeman-Swanson (later ICLH) knee prosthesis consisted of a cobalt 

chromium femoral component, and a shallow-grooved HDPE tibial tray initially 

including two staples for additional stability (Figure 3.8) that were later discarded in 

subsequent models. This simplified “roller in trough” design had a constant radius of 

curvature, and maximised the area of the articulating surfaces for polyethylene wear 

reduction. Removal of both cruciate ligaments was necessary, and the absence of a 

tibial intramedullary stem increased the risk of infection and rendered the joint less 

redeemable during revision surgeries. As did it predecessors, the implant also suffered 

from aseptic loosening which was a major disadvantage. 

It is worth noting that considerable research was being carried out in other parts of the 

world, which also defined the evolution of knee replacements. At the Hospital for 

Special Surgery (HSS) located in New York, surgeons developed the Unicondylar and 

Duocondylar prostheses (Figure 3.9), which were similar in design to Gunston’s 

articulating surfaces substitution. The Duocondylar prosthesis retained the cruciate 

ligaments and bridged the condylar elements, bringing improved stability. Further 

evolution brought about the first total condylar prosthesis including a tibial stem 

(Figure 3.10). This design sacrificed both cruciate ligaments and created equal spaces 

in both flexion and extension. In addition, it included a patellofemoral flange, a 

polyethylene patellar button and anatomically shaped condyles.  
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Figure 3.6   Total knee replacement designs [46] 
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Figure 3.7   Gunston’s polycentric knee prosthesis [44] 

 

 

Figure 3.8   ICLH knee prosthesis [47] 
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Figure 3.9 (a) Unicondylar and (b) Duocondylar prosthesis [48] 

 

 

 

Figure 3.10   Insall’s Total Condylar prosthesis [48] 
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3.5   Components of a TKR implant 

Typically, TKR implants consist of four main components, which are 

1. Femoral component: This metallic component curves around the distal end 

of the femur and replaces the femoral condyles. Grooves allow the patella glide 

smoothly against it as the knee flexes and extends. 

2. Patellar component: This dome-shaped plastic component replicates the 

kneecap, and glides along the groove in the femoral component. 

3. Tibial insert: This plastic component provides a cushion between the femoral 

component and the tibial tray. It is disc shaped  

4. Tibial tray: This metallic component supports the tibial insert. It usually has 

a stem through which it is fixed in place by the cancellous bone in the tibia.  

 

The plastic components are usually made from ultra-high molecular weight 

polyethylene (UHMWPE) which has a low coefficient of friction to enable fluid 

motion between the articulating surfaces. In addition, UHMWPE is resistant to 

abrasion, non-toxic and has low moisture absorption, making it suitable for 

implantable biomedical devices [4, 50]. 

The metallic parts of the TKR implant are mostly fabricated from cobalt chromium 

(CoCr) alloys, although titanium is sometimes used when lower strength is required. 

The percentage composition of CoCr alloy used for orthopaedic implants is defined 

by the industry standard ASTM F75 [51]: cobalt, chromium (27 – 30%) and 

molybdenum (5 – 7%). The limits of other consisting elements are also specified such 

as silicon and manganese (< 1%), iron (< 0.75%), nickel (< 0.5%), carbon (< 0.35%), 

nitrogen (< 0.25%), tungsten (< 0.2%), aluminium and titanium (< 0.1%), phosphorus 

(< 0.02%) and boron and sulphur (< 0.01%). These components are depicted in Figure 

3.11. 
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Figure 3.11   Typical TKR components [52] 

 

3.6   TKR implant failure 

In the United Kingdom alone, there were 5,856 cases of knee revisions in 2015, which 

accounts for over 6% of the TKR surgeries performed that year [26]. Some of the more 

prevalent failure modes have been widely reported for both early (< 2 years post-

surgery) and late revisions and a comparison of their occurrence presented in Table 

3.2 [53 – 58]. A discussion of the most common modes follows. 

 

3.6.1   UHMWPE wear 

This abrasive wear arises due to articulation of the UHMWPE insert with the harder 

surface of the femoral component. The van der Waals interactions of the molecular 

chains in UHMWPE are much weaker compared to those that exist within the metallic 

femoral component, hence some of the UHMWPE material is gradually removed 

during mutual movement as shown in Figure 3.12. The resulting particles further 

induce other wear processes like aseptic loosening and infection. 
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Table 3.2   Prevalent failure modes and their percentage occurrence in TKR 

revisions 

 

Overall input to TKR revisions (%) 
Dalury 

et al 
(2013) 

Sharkey 
et al 

(2002) 

Fehring 
et al 

(2001) 

Sharkey 
et al 

(2014) 

Schroer  
et al 

(2013) 

Suarez 
et al 

(2008) 
PE wear 18.1 25 7 3.5 10 22 

Osteolysis 4.5 N/A N/A N/A N/A N/A 
Aseptic 

loosening 23.1 24.1 16 39.9 31.2 21 

Instability 17.7 21 26 7.5 18.7 20 

Infection 18 17.5 38 27.4 16.2 22 

Arthrofibrosis 9.3 14.6 N/A 4.5 7 N/A 
Malpositioning 
/Malalignment 2.9 11.8 N/A ~3 6.6 N/A 

Fractures 1.4 2.8 N/A 4.7 3.2 N/A 

Arthritis 1.7 0.9 N/A N/A N/A N/A 

Patellofemoral N/A 6.6 8 ~8 4.3 N/A 

Other 2.9 N/A 5 N/A 2.7 14 
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Figure 3.12   Representative image of retrieved tibial components showing extensive 

wear [59]. 

 

 

3.6.2   Osteolysis and Aseptic loosening 

This occurs due to the breakdown of the bond between the implant and the underlying 

bone, in the absence of an infection. Worn-away particles of UHMWPE, metal and 

bone cement from the joint are dispensed into the body. This then induces a biological 

inflammatory response in which macrophages (a type of white blood cell) attempt to 

digest the debris through a process known as phagocytosis. Enzymes are secreted 

during this process which contribute to the periprosthetic osteolysis (bone resorption 

around the joint), leading to failure due to movement of the joint in the ensuing 

cavities. This is depicted in Figure 3.13 below. 
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Figure 3.13   Osteolysis (red arrow) around the tibial component, causing it to 

loosen from the bone (blue arrow) [60].  

 

 

3.6.3   Instability 

Knee prosthesis instability (KPI) is the irregularly occurring disproportionate 

movement of the articular components leading to clinical failure of the implant [61]. 

It can be attributed to various factors including malalignment or malpositioning of the 

components, component loosening, implant breakage, inferior implant design, 

improper balancing of the flexion-extension space, patella fracture and ligament 

rupture [62, 63]. In addition, other patient-related factors such as obesity and hip or 

foot deformities can also bring about instability after TKR.  
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3.6.4   Infection  

 

Infection is a complication that can occur during and/or after any surgical procedure. 

The large surface area of the TKR components provides a platform that bacteria may 

attach to, which then become unreachable by antibiotics. Although bacterial presence 

during surgery is inevitable, restricting the amount significantly reduces the 

probability of infection. The administration of oral and intravenous antibiotics also 

helps reduce post-operative infection. Antibiotics can also be added to bone cement 

for surgeries involving cemented fixation [64, 65]. 

The surgical process required for treatment depends on the degree of infection. In early 

post-operative infection instances, debridement with implant retention can be utilised 

[66]. For late chronic infection however, two separate revision surgeries are necessary. 

The first one is to remove the infected components and insert an antibiotic-

impregnated cement spacer. Subsequently, a second surgery is performed to remove 

the spacer and insert a new implant [67 – 69].   

 

3.6.5   Arthrofibrosis  

Complexities in TKR surgeries can induce abnormal scarring, due to the formation of 

excessive fibrous tissue during the healing process. This dense tissue forms within the 

joint and its surrounding soft tissue spaces, causes the joint to contract and restricts 

the normal range of motion, as depicted in Figure 3.14. Diagnosis of this reaction is 

known as arthrofibrosis, or more simply, stiff knee syndrome [70, 71].  

Early detection of acute cases is treatable by thorough physical therapy; however, 

revision surgery is required in more severe instances to dissect the tissue. 
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Figure 3.14   MRI image of the right knee showing localised anterior 

arthrofibrosis (Cyclops lesion) [72] 

 

 

3.6.6   Malalignment  

This is the deviation of the TKR from the neutral axis of the joint, leading to uneven 

weight bearing in the joint. A line passing through the centres of the femoral head and 

knee determines the mechanical axis of the femur, while that of the tibia is measured 

from the centres of the proximal tibial plateau and ankle in normal knees [73 - 75]. 

This axis is in 3o valgus (outward angulation) from the vertical axis of the body as 

shown in Figure 3.15(a). A proximal to distal line in the intramedullary canal that 

bisects the femur defines its anatomical axis, whilst that of the tibia corresponds to its 

mechanical axis. The tibiofemoral angle subtended by the mechanical and anatomic 

axes of the femur (Figure 3.15(b)) is usually between 5-7o, although this may vary 

depending on the hip angle as well as tibial or femoral deformities [73].  

Deviation of components results in an alteration of the normal stress distribution, 

causing the load transferred to the bone to shift either medially or laterally. This in 

turn may lead to implant instability, loosening of the tibial component and accelerate 

polyethylene wear [76]. Various techniques exist to achieve neutral alignment, which 
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is usually between 0 ± 3° relative to the mechanical axis. Computer-aided navigation 

systems that reduce these errors and help enhance post-operative alignment are in 

development.  

 

 

Figure 3.15 (a) Standing radiograph demonstrating the mechanical (MA) and 

anatomic (AA) axes of the femur and tibia and (b) schematic diagram showing 

the tibiofemoral angle [73, 77] 
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3.7   Conventional force measurement techniques in TKR implants 

Previous efforts have been made to monitor the forces in knee implants, mostly using 

non-magnetic approaches. Whilst doing this, simultaneous research has also been 

carried out on monitoring knee kinematics and the remote powering of active 

components used in these systems. However, in keeping within the scope of this thesis, 

this review focuses mainly on the force measurement methods used. 

 

3.7.1   Resistance strain gauges 

A strain gauge is a device in which its electrical resistance varies proportionally to the 

amount of applied strain. This has been primarily utilised in majority of the research 

carried out on knee force measurements. Here, resistance strain gauges were 

positioned as sensors within the knee prosthesis in such a way that the strain on the 

material due to applied tibiofemoral forces caused a change in the electrical resistance 

of the gauges [78 – 82].  

A variety of gauge arrangements have been used to achieve this. One method was to 

use Finite element analysis (FEA) to determine the strain distribution within the 

prosthesis, and this was implemented in the design and location of the strain gauges 

within the polyethylene insert as shown in Figure 3.16. Dry etching was used to 

fabricate the sensors in a polyamide-metal-polyamide sandwich, in order to maintain 

their biocompatibility characteristics. To determine the resistance variations, the strain 

gauges were connected in a Wheatstone bridge configuration with other resistors of 

known values. The output was amplified, digitised and then fed to an RF transponder 

for wireless transmission.  

The designed insert was subjected to contact forces and all three rotational forces 

(flexion-extension, abduction-adduction and internal-external rotations) using a 

mechanical knee joint simulator. To validate the measurement system, a reference 

force transducer was integrated into the tibial tray and the measured data from both 

systems compared. A benefit of this measurement system is that the gauges can be 

configured to measure the total contact forces, as well as the forces on the medial and 

lateral sides of the insert separately. 
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Figure 3.16   Positioning of strain gauges inside the PE insert [78] 

 

Another method used was to locate two strain gauges in the medial and lateral sides 

of the insert, 15.5 mm away from the centre as shown in Figure 3.17. The gauges were 

fabricated using the polyimide-metal-polyimide sandwich structure, and were 

positioned above designed cavities to allow for deformation due to applied forces. 

Separate Wheatstone bridges were used for the strain gauges, as shown in Figure 3.18. 

The sensor and electronics were embedded between two 5 mm sections of 

polyethylene, which was sealed using an epoxy and cured for 16 hours at 45o. 

 

 

Figure 3.17   Configuration of strain gauges within PE insert [80] 
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Figure 3.18 Microstructured polymer thin film strain sensor [80] 

 

Loading was applied using a specially designed robotic knee simulator, using data 

collected from gait analysis by motion capture. To validate the system, a force sensor 

was integrated below the tibial plate of the knee simulator to provide a reference 

measurement. 

A more advanced method has been developed to measure the forces and moments 

within the knee using an instrumented tibial tray. In this approach, the tibial plateau 

consisted of two plates with a small separation gap (about 0.635 mm) which were 

connected by a hollow, shrink-fit cylindrical stem. The proximal part of the assembly 

consisted of the unconstrained tibial tray which held the polyethylene insert, and the 

hollow stem which was fitted with a minimum of six strain gauges to measure the 

deformation when loaded. The distal part, which is intended to be cemented into the 

tibia and was kept fixed, consisted of a flat platform and a hollow shoulder which 

house the additional circuitry necessary for powering and wireless data transmission. 

A cross section of the instrumented tibial tray is as shown in Figure 3.19. 

The tray was subjected to various loads and moments which simulate the forces in the 

knee, and a calibration matrix was determined which shows the correlation between 

the applied loads and the signal obtain from the strain gauges. 
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Figure 3.19   Cross section of the instrumented tibial tray for force and moment 

measurement [82] 

 

3.7.2   Capacitive force sensors 

Another approach to measuring the forces in knee replacement systems was to 

integrate piezoelectric ceramic sensors into the tibial tray whereby the dielectric 

thickness of the capacitors changed with applied force, thus varying the effective 

capacitance [83]. A diagram depicting this is shown in Figure 3.20. This variation in 

capacitance was measured using the RC time constant method which measures the 

discharge time of the charged capacitor to reach a set threshold (in this case, 25% of 

the supply voltage). To do this, a resistor with a known value R was connected to the 

electrical circuit and the voltage across the capacitor monitored using a comparator. 

Figure 3.21 shows a schematic diagram of the time constant measurement circuit. The 

discharge time was then calculated by 

𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝜏𝜏 ln � 𝑉𝑉𝐶𝐶𝐶𝐶
0.25𝑉𝑉𝐶𝐶𝐶𝐶

� = 1.4𝜏𝜏                                  (3.1) 
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where 𝜏𝜏 = 𝑅𝑅𝑅𝑅.  

Real time low pass filtering was applied to the data obtained to eliminate some small 

noise present in the measured values. 

 

 

 

Figure 3.20   Diagram of concept for a capacitive sensor [83] 

 

 

Figure 3.21   Schematic diagram of RC time constant measurement circuit [83] 
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A linear correlation between the discharge time and the capacitance was verified by 

carrying out tests using various precision capacitors. Observation of the RC voltage 

waveform showed that the charge time for the circuit was significantly greater than 

the calculated time response. This proved that the charge time was sufficient to ensure 

the sensor was fully charged before measurements were taken.  

A linear relationship was established between the measured capacitance and applied 

force; however, there was a slight variation in the capacitance of each sensor for every 

level of applied force. After determining that this variation was not due to the load 

application device, each sensor was then calibrated using previously derived data from 

load cells and linear scale factors applied. As suggested by the author, the sensors 

utilised had poor repeatability. 

 

3.7.3   Pressure-sensitive films 

In this study, a mobile bearing knee prosthesis consisting of a cobalt chromium alloy 

femoral component and tibial tray, as well as a UHMWPE tibial insert were designed 

and prototyped [84]. Fuji Prescale (FP) pressure-sensitive films were used as the 

measurement transducer, whereby the film displays various densities of red depending 

on the value of pressure applied locally. Three types of FP films with different pressure 

ranges were used in this approach: Super Low Pressure (LLW) with a range of 0.5 – 

2.5 MPa, Low Pressure (LW) with a range of 2.5 – 10 MPa, and Medium Pressure 

(MS) with a range of 10 – 50 MPa.  

To calibrate the films, 40 x 50 mm strips of each film type were subjected to five 

different pressure values within the range of each film. Each applied load was 

measured with a load cell, and the ambient temperature controlled through a 

thermocouple. Digitised images of the films were obtained, and the mean values of 

the colour density in the imprinted regions were calculated and assigned to the applied 

pressure. 

Two FP strips were located between each femoral condyle and the insert, and two 

more between the insert and the tibial tray. Various vertical loads were applied for 60 

seconds and at different flexion angles; 2200 N at 15o, 3200 N at 45o and 2800 N at 

60o. A diagram of the experimental set up is shown in Figure 3.22. 
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Figure 3.22   Experimental apparatus for contact pressure tests using pressure-

sensitive films [84] 

The results obtained showed good repeatability, with less than 3% standard deviation 

in the measurements taken for each flexion angle. In addition, similar values to the 

measured contact pressures were obtain through FEA modelling of the experimental 

set up. However, as the author pointed out, the films do not fully conform to the 

curvature of the insert due and the surface of the films suffer crimping. As a result, 

multiple smaller strips are required for better adherence but this may also lead to 

overestimation of the contact pressures due to boundary effects. Also, this method 

cannot be used for non-invasive monitoring as physical inspection of the colour 

intensity is necessary. 

 

3.7.4   Magnetoresistive sensors 

In this study, a force transducer consisting of three strategically-located 

magnetoresistors and permanent magnets was proposed [85]. The magnetoresistors 

were Sn-doped single crystal indium antimonite (InSb) films deposited on to alumina 

substrates. The magnets used were fabricated from samarium-cobalt alloy (Sm2Co17), 

3 mm in length with a diameter of 4 mm. To direct the magnetic field along a 
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predetermined path, two Ni-Fe-Mo alloy strips with high relative magnetic 

permeability were positioned around the transducer – one above the magnet and one 

below, as shown in Figure 3.23.  

An applied force on the femoral component generates a deformation in the tibial insert, 

which alters the distance between the magnet and the magnetoresistors. Consequently, 

the magnetic field that is coupled with the sensitive region of the magnetoresistor 

changes and this effectively results in a fluctuation in the sensor output resistance. A 

deformation-resistance curve was obtained experimentally by controlling the 

separation distance between the magnetoresistor and the magnet, whilst taking 

measurements for the resistance and magnetic field. This was used for sensor 

characterisation.  

The insert was subjected to two dynamic loading conditions, the first being vertical 

compressive forces ranging from 0 -  3000 N to simulate substantial physical activity 

like jumping. For the second loading condition comprised a static component of 800 

N alongside a sinusoidally-varying component with an amplitude of 200 N. The 

applied forces and distance variation were measured using a load cell and a linear 

variable differential transformer (LVDT) respectively, which were both integrated 

with the loading machine.  

 

Figure 3.23   Diagram of the tibial insert with embedded magnetoresistive 

sensor [85] 
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The results obtained in both scenarios showed an inverse correlation between the 

applied force and the measured distance, whilst the measured resistance varied directly 

with the applied force. 

 

3.7.5   Load cells 

In this approach, load cells were positioned at the four quadrants (anteromedial, 

anterolateral, posteromedial and posterolateral) of the tibial tray as shown in Figure 

3.24 [86, 87]. Although the dimensions of the tibial tray in the transverse plane were 

kept standard, the thickness was significantly higher than that found on the prosthesis 

used. This was done in order to make room for the load cells utilised. The tibial plateau 

comprised of upper and lower plates, held together by four 2.5 mm square posts which 

were 0.5 mm in height. Measurements of the force on each cell were taken, and the 

data obtained used to determine the total force acting on the insert as well as the 

position of the centre of pressure. These were calculated using the following equations. 

𝑥𝑥 =
22.86(𝐹𝐹3 + 𝐹𝐹4 − 𝐹𝐹1 − 𝐹𝐹2)

∑ 𝐹𝐹𝑖𝑖4
𝑖𝑖

                                       (3.2) 

𝑦𝑦 =
10.34(𝐹𝐹2 + 𝐹𝐹3 − 𝐹𝐹1 − 𝐹𝐹4)

∑ 𝐹𝐹𝑖𝑖4
𝑖𝑖

                                       (3.3) 

𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = � 𝐹𝐹𝑖𝑖
4

𝑖𝑖
                                                    (3.4) 

 

Figure 3.24   Schematic diagram of load cell positioning within the tibial tray 

[86, 87] 
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where x, y is the centre of pressure in the x and y directions in mm, and Fi is the force 

on the ith load cell. 

Separate studies have been conducted using this transduction principle. In the initial 

research, in-vitro loading was performed using an actuator and the sensor output was 

obtained using strain gauges in full Wheatstone bridge configuration connected to the 

flexural members [86]. In-vivo measurements have also been taken intraoperatively 

for fixed flexion angles, and the data collected wirelessly through integrated electronic 

circuitry [87]. 

 

 

3.8   The need for magnetic measurement of knee forces 

The various methods which have been used to measure knee forces and moments in 

total knee replacements have been outlined in the previous section. Whilst each 

method has inherent advantages, one common denominator of these methods is the 

necessity to embed additional electronic circuitry for non-invasive retrieval of 

measured data. In doing this, the original design of the prosthesis is often significantly 

modified and this may compromise its structural characteristics. This research aims to 

tackle this by proposing a new technique which eliminates this need. In the following 

chapters, the experimental work carried out using the proposed method is detailed, 

along with the relevant results achieved.  

 

 

 

 

 

 

 

 



56 
 

References 

[1]     Özkaya, N., Nordin, M., Goldsheyder, D. and Leger, D. (2012). Fundamentals 

of biomechanics. 3rd ed. New York [u.a.]: Springer, p.80.  

[2]    Singh, V. (2015). General Anatomy. 2nd ed. New Delhi: Elsevier, p.103. 

[3]    Schlossberg, L. and Zuidema, G. (1997). The Johns Hopkins atlas of human 

functional anatomy. 1st ed. Baltimore: Johns Hopkins University Press, p.16. 

[4]    Bartel, D., Davy, D. and Keaveny, T. (2006). Orthopaedic biomechanics. 1st 

ed. Upper Saddle River, N.J.: Pearson/Prentice Hall, pp.314 - 334. 

[5]    Fox, A., Bedi, A. and Rodeo, S. (2011). The Basic Science of Human Knee 

Menisci: Structure, Composition, and Function. Sports Health: A 

Multidisciplinary Approach, 4(4), pp.340-351. 

[6]    Alters, S. (2000). Biology: Understanding life. 1st ed. Boston: Jones and 

Barlette Publishers, p.345. 

[7]    Abernethy, B., Hanrahan, S., Kippers, V., Mackinnon, L. and Pandy, M. 

(2005). The biophysical foundations of human movement. 2nd ed. Champaign, 

IL: Human Kinetics, p.22. 

[8]    Khurana, J. (2009). Bone pathology. 2nd ed. Dordrecht: Humana Press, p.55. 

[9]    Chatra, P. (2012). Bursae around the knee joints. Indian Journal of Radiology 

and Imaging, 22(1), p.27. 

[10]    Chhabra, A. and Cerniglia, C. (2013). Bursae, Cysts and Cyst-like Lesions 

About the Knee. Journal of the American Osteopathic College of Radiology, 

2(4). 

[11]    Majumdar, S. (2010). Advances in MRI of the knee for osteoarthritis. 1st ed. 

Singapore: World Scientific, p.24. 

[12]    Behnke, R. (2012). Kinetic anatomy with web resource. 3rd ed. Champiagn, 

IL.: Human Kinetics. 

[13]    Yen, Y. (2014). Assessment and Treatment of Knee Pain in the Child and 

Adolescent Athlete. Pediatric Clinics of North America, 61(6), pp.1155-1173. 



57 
 

[14]   Komdeur, P., Pollo, F. and Jackson, R. (2002). Dynamic knee motion in 

anterior cruciate impairment: a report and case study. Proceedings (Baylor 

University Medical Center), 15(3), pp.257 - 259. 

[15]  Hirschmann, M. and Müller, W. (2015). Complex function of the knee joint: 

the current understanding of the knee. Knee Surgery, Sports Traumatology, 

Arthroscopy, 23(10), pp.2780-2788. 

[16] Wilkie, Y. and Kerr, C. (n.d.). Human planes. [image] Available at: 

http://kneestability.weebly.com/anatomy.html [Accessed 7 Nov. 2016]. 

[17]    Kutzner, I., Heinlein, B., Graichen, F., Bender, A., Rohlmann, A., Halder, A., 

Beier, A. and Bergmann, G. (2010). Loading of the knee joint during activities 

of daily living measured in vivo in five subjects. Journal of Biomechanics, 

43(11), pp.2164-2173. 

[18]   D’Lima, D., Patil, S., Steklov, N., Chien, S. and Colwell, C. (2007). In vivo 

knee moments and shear after total knee arthroplasty. Journal of 

Biomechanics, 40, pp. S11-S17. 

[19]    Nisell, R. and Ericson, M. (1992). Patellar forces during isokinetic knee 

extension. Clinical Biomechanics, 7(2), pp.104-108. 

[20]    Kuster, M., Wood, G., Stachowiak, G. and Gächter, A. (1997). Joint Load 

Considerations In Total Knee Replacement. The Journal of Bone and Joint 

Surgery, 79(1), pp.109-113. 

[21]    Costigan, P., Deluzio, K. and Wyss, U. (2002). Knee and hip kinetics during 

normal stair climbing. Gait & Posture, 16(1), pp.31-37. 

[22]    Christina, K. and Cavanagh, P. (2002). Ground reaction forces and frictional 

demands during stair descent: effects of age and illumination. Gait & Posture, 

15(2), pp.153-158. 

[23]    British Standards Institute (2014). BS ISO 14243-3: Implants for surgery – 

Wear of total knee joint prostheses. London: British Standards Institute. 

[24]    Arthritis Foundation. (2016). Osteoarthritis. [online] Available at: 

http://www.arthritis.org/about-arthritis/types/osteoarthritis/ [Accessed 12 Dec. 

2016]. 



58 
 

[25]    National Health Service, UK. Arthritis - NHS Choices. [online] Available at: 

http://www.nhs.uk/Conditions/Arthritis/Pages/Introduction.aspx [Accessed 

12 Dec. 2016]. 

[26]    National Joint Registry for England, Wales, Northern Ireland and the Isle of 

Man, (2016). 13th Annual Report. [online] Available at: 

http://www.njrreports.org.uk [Accessed 12 Dec. 2016]. 

[27]    Glyn-Jones, S., Palmer, A., Agricola, R., Price, A., Vincent, T., Weinans, H. 

and Carr, A. (2015). Osteoarthritis. The Lancet, 386(9991), pp.376-387. 

[28]    Sowers, M. and Karvonen-Gutierrez, C. (2010). The evolving role of obesity 

in knee osteoarthritis. Current Opinion in Rheumatology, 22(5), pp.533-537. 

[29]   Arthritis Action, UK. Osteoarthritis. [online] Available at: 

https://www.arthritisaction.org.uk/living-with-arthritis/what-is-

arthritis/osteoarthritis/ [Accessed 12 Dec. 2016]. 

[30]    National Institute of Arthritis and Musculoskeletal and Skin Diseases. Handout 

on Health: Osteoarthritis. [online] Available at: 

https://www.niams.nih.gov/health_info/Osteoarthritis/default.asp [Accessed 

12 Dec. 2016]. 

[31]    American academy of orthopaedic surgeons. Osteoarthritis of the knee. 

[Image] Available at: http://orthoinfo.aaos.org/topic.cfm?topic=a00212 

[Accessed 16 Nov. 2016] 

[32]    Hosie, G. and Dickson, J. (2000). Managing osteoarthritis in primary care. 1st 

ed. Oxford: Blackwell Science. 

[33]    Wallace, G., Moulton, S., Higgins, M. and Kapsa, R. (2012). Organic bionics. 

1st ed. Weinheim: Wiley-VCH, pp.23 - 24. 

[34]    Eynon-Lewis, N., Ferry, D. and Pearse, M. (1992). Themistocles Gluck: an 

unrecognised genius. BMJ, 305(6868), pp.1534-1536. 

[35]    Walldius, B. (1953). Arthroplasty of the knee joint employing an acrylic 

prosthesis. Acta Orthopaedica Scandinavica, 23(2), pp.121-131. 



59 
 

[36]     Walldius, B. (1957). Arthroplasty of the knee using an endoprosthesis. Acta 

Orthopaedica Scandinavica, 28(sup 24), pp.1-112. 

[37]    Walldius, B. (1960). Arthroplasty of the knee using an endoprosthesis. Acta 

Orthopaedica Scandinavica, 30(1), pp.137-148. 

[38]    Walldius B. Arthroplasty of the knee using an endoprosthesis. SICOT 11th 

Congress, Mexico; pg 447. 

[39]    Shiers, L. (1954). Arthroplasty of the knee. Preliminary report of a new 

method. The Bone and Joint journal, 36-B (4), pp.553 - 560. 

[40]    Shiers, L. (1960). Arthroplasty of the knee. Interim report of a new method. 

The Bone and Joint journal, 42-B (1), pp.31 - 39. 

[41]    Blundell-Jones, C. (1972). Arthroplasty of the knee. Modern trends in 

orthopaedics, 8, p.210. 

[42]    Alnot, J., Aubriot, J., Deburge, A., Dubousset, J., Kenesi, C., Mazas, F., Patel, 

A. and Schramm, P. (1971). Arthoplastie totale du genou : le prosthese 

GUEPAR : description et technique de pose. Revue de Chirurgie Orthopédique 

et Réparatrice de l’Appareil Moteur, (57), pp.575 - 581. 

[43]    Lettin, A., Deliss, L., Blackburne, J. and Scales, J. (1978). The Stanmore hinge 

knee arthroplasty. The Bone and Joint journal, 60-B (3), pp.327 - 332. 

[44]    Gunston, F. (1971). Polycentric knee arthroplasty: prosthetic simulation of 

normal knee movement. The Bone and Joint journal, 53-B (2), pp.272 - 277. 

[45]    Freeman, M. and Swanson, S. (1972). Total prosthetic replacement of the knee. 

The bone and Joint journal, 54-B (1), pp.170-171. 

[46]    Shetty, A., Tindall, A., Ting, P. and Heatley, F. (2003). The evolution of total 

knee arthroplasty. Part II: the hinged knee replacement and the semi-

constrained knee replacement. Current Orthopaedics, 17(5), pp.403-407. 

[47]    Bonnin, M., Amendola, N., Bellemans, J., MacDonald, S. and Menetrey, J. 

(2012). The knee joint: Surgical techniques and strategies. Paris: Springer, 

p.700 



60 
 

[48]   Shetty, A., Tindall, A., Ting, P. and Heatley, F. (2003). The evolution of total 

knee arthroplasty. Part III:. Current Orthopaedics, 17(6), pp.478-481. 

[49]    TheOrthoSurgeon.com. Total knee replacement components. [image] 

Available at: http://theorthosurgeon.com/joomla/index.php/knee-replacement 

[Accessed 18 Nov. 2016]. 

[50]    Tong, J., Ma, Y., Arnell, R. and Ren, L. (2006). Free abrasive wear behavior 

of UHMWPE composites filled with wollastonite fibers. Composites Part A: 

Applied Science and Manufacturing, 37(1), pp.38-45. 

[51]    ASTM Standard F75. (2012). Specification for Cobalt-28 Chromium-6 

Molybdenum Alloy Castings and Casting Alloy for Surgical Implants (UNS 

R30075). ASTM International. [online] Available at: 

https://www.astm.org/cgi-bin/resolver.cgi?F75 [Accessed 10 Feb. 2016]. 

[52]    Dartmouth-Hitchcock. Total knee replacement components. [image] Available 

at: http://www.dartmouth-hitchcock.org/ortho/knee_pain_treatments.html 

[Accessed 4 Jan. 2017]. 

[53]    Dalury, D., Pomeroy, D., Gorab, R. and Adams, M. (2013). Why are Total 

Knee Arthroplasties Being Revised? The Journal of Arthroplasty, 28(8), 

pp.120-121. 

[54]    Sharkey, P., Hozack, W., Rothman, R., Shastri, S. and Jacoby, S. (2002). Why 

Are Total Knee Arthroplasties Failing Today? Clinical Orthopaedics and 

Related Research, 404, pp.7-13. 

[55]    Fehring, T., Odum, S., Griffin, W., Mason, J. and Nadaud, M. (2001). Early 

Failures in Total Knee Arthroplasty. Clinical Orthopaedics and Related 

Research, 392, pp.315-318. 

[56]    Sharkey, P., Lichstein, P., Shen, C., Tokarski, A. and Parvizi, J. (2014). Why 

Are Total Knee Arthroplasties Failing Today—Has Anything Changed After 

10 Years? The Journal of Arthroplasty, 29(9), pp.1774-1778. 

[57]    Schroer, W., Berend, K., Lombardi, A., Barnes, C., Bolognesi, M., Berend, 

M., Ritter, M. and Nunley, R. (2013). Why Are Total Knees Failing Today? 



61 
 

Etiology of Total Knee Revision in 2010 and 2011. The Journal of 

Arthroplasty, 28(8), pp.116-119. 

[58]    Suarez, J., Griffin, W., Springer, B., Fehring, T., Mason, J. and Odum, S. 

(2008). Why Do Revision Knee Arthroplasties Fail? The Journal of 

Arthroplasty, 23(6), pp.99-103. 

[59]    Musib, M. (2012). Response to Ultra-High Molecular Weight Polyethylene 

Particles. American Journal of Biomedical Engineering, [online] 1(1), pp.7-

12. Available at: 

http://article.sapub.org/10.5923.j.ajbe.20110101.02.html#Ref [Accessed 28 

Nov. 2016]. 

[60]    American academy of orthopaedic surgeons. Osteolysis and implant 

loosening. [image] Available at: 

http://orthoinfo.aaos.org/topic.cfm?topic=A00712 [Accessed 28 Nov. 2016]. 

[61]    Rodriguez-Merchan, E. (2011). Instability Following Total Knee Arthroplasty. 

HSS Journal, 7(3), pp.273-278. 

[62]    Vince, K., Abdeen, A. and Sugimori, T. (2006). The Unstable Total Knee 

Arthroplasty. The Journal of Arthroplasty, 21(4), pp.44-49. 

[63]    Chang, M., Lim, H., Lee, N. and Moon, Y. (2014). Diagnosis, Causes and 

Treatments of Instability Following Total Knee Arthroplasty. Knee Surgery & 

Related Research, 26(2), pp.61-67. 

[64]    Masri, B., Duncan, C. and Beauchamp, C. (1998). Long-term elution of 

antibiotics from bone-cement. The Journal of Arthroplasty, 13(3), pp.331-338. 

[65]    Hsieh, P., Tai, C., Lee, P. and Chang, Y. (2009). Liquid Gentamicin and 

Vancomycin in Bone Cement. The Journal of Arthroplasty, 24(1), pp.125-130. 

[66]    Kalore, N. (2011). Diagnosis and Management of Infected Total Knee 

Arthroplasty §. The Open Orthopaedics Journal, 5(1), pp.86-91. 

[67]    Insall, J., Thompson, F. and Brause, B. (1983). Two-stage reimplantation for 

the salvage of infected total knee arthroplasty. The Journal of Bone & Joint 

Surgery, 65(8), pp.1087-1098. 



62 
 

[68]    Nazarian, D., Jesus, D., McGuigan, F. and Booth, R. (2003). A two-stage 

approach to primary knee arthroplasty in the infected arthritic knee. The 

Journal of Arthroplasty, 18, pp.16-21. 

[69]    Pitto, R. and Spika, I. (2004). Antibiotic-loaded bone cement spacers in two-

stage management of infected total knee arthroplasty. International 

Orthopaedics, 28(3), pp.129-133. 

[70]    Hegazy, A. and Elsoufy, M. (2011). Arthroscopic Arthrolysis for 

Arthrofibrosis of the Knee after Total Knee Replacement. HSS Journal, 7(2), 

pp.130-133. 

[71]    Jerosch, J. and Aldawoudy, A. (2006). Arthroscopic treatment of patients with 

moderate arthrofibrosis after total knee replacement. Knee Surgery, Sports 

Traumatology, Arthroscopy, 15(1), pp.71-77. 

[72]    Minné, C., Velleman, M. and Suleman, F. (2012). MRI findings of cyclops 

lesions of the knee. SA orthopaedic journal, [online] 11(2), pp.56 - 60. 

Available at: http://www.scielo.org.za/pdf/saoj/v11n2/11.pdf [Accessed 28 

Nov. 2016]. 

[73]    Cherian, J., Kapadia, B., Banerjee, S., Jauregui, J., Issa, K. and Mont, M. 

(2014). Mechanical, Anatomical, and Kinematic Axis in TKA: Concepts and 

Practical Applications. Current Reviews in Musculoskeletal Medicine, 7(2), 

pp.89-95. 

[74]    Donaldson, J., Joyner, J. and Tudor, F. (2015). Current Controversies of 

Alignment in Total Knee Replacements. The Open Orthopaedics Journal, 

9(1), pp.489-494. 

[75]    Cooke, T., Sled, E. and Scudamore, R. (2007). Frontal plane knee alignment: 

A call for standardised measurement. The Journal of Rheumatology, 34(9), 

pp.1796 - 1801. 

[76]    Perillo-Marcone, A. and Taylor, M. (2006). Effect of Varus/Valgus 

Malalignment on Bone Strains in the Proximal Tibia after TKR: An Explicit 

Finite Element Study. Journal of Biomechanical Engineering, 129(1), p.1. 



63 
 

[77]    Lee, D. and Byun, S. (2012). High Tibial Osteotomy. Knee Surgery & Related 

Research, [online] 24(2), pp.61-69. Available at: 

http://www.jksrr.org/journal/view.html?doi=10.5792/ksrr.2012.24.2.61 

[Accessed 30 Nov. 2016] 

[78] Arami, A., Simoncini, M., Atasoy, O., Ali, S., Hasenkamp, W., Bertsch, A., 

Meurville, E., Tanner, S., Renaud, P., Dehollain, C., Farine, P., Jolles, B., 

Aminian, K. and Ryser, P. (2013). Instrumented Knee Prosthesis for Force and 

Kinematics Measurements. IEEE Transactions on Automation Science and 

Engineering, 10(3), pp.615-624. 

[79] Hasenkamp, W., Thevenaz, N., Villard, J., Bertsch, A., Arami, A., Aminian, 

K., Terrier, A. and Renaud, P. (2013). Design and test of a MEMS strain-

sensing device for monitoring artificial knee implants. Biomedical 

Microdevices, 15(5), pp.831-839. 

[80] Arami, A., Aminian, K., Forchelet, D. and Renaud, P. (2014). Implantable and 

wearable measurement system for smart knee prosthesis. 2014 IEEE 

Biomedical Circuits and Systems Conference (BioCAS) Proceedings. 

[81] Kirking, B., Krevolin, J., Townsend, C., Colwell, C. and D’Lima, D. (2006). 

A multiaxial force-sensing implantable tibial prosthesis. Journal of 

Biomechanics, 39(9), pp.1744-1751. 

[82] Heinlein, B., Graichen, F., Bender, A., Rohlmann, A. and Bergmann, G. 

(2007). Design, calibration and pre-clinical testing of an instrumented tibial 

tray. Journal of Biomechanics, 40, pp. S4-S10. 

[83] Holmberg, J., Alexander, L., Rajamani, R. and Bechtold, J. (2013). Battery-

Less Wireless Instrumented Knee Implant. Journal of Medical Devices, 7(1), 

p.011006. 

[84] Villa, T., Migliavacca, F., Gastaldi, D., Colombo, M. and Pietrabissa, R. 

(2004). Contact stresses and fatigue life in a knee prosthesis: comparison 

between in vitro measurements and computational simulations. Journal of 

Biomechanics, 37(1), pp.45-53. 



64 
 

[85] Crescini, D., Sardini, E. and Serpelloni, M. (2011). Design and test of an 

autonomous sensor for force measurements in human knee implants. Sensors 

and Actuators A: Physical, 166(1), pp.1-8. 

[86] Kaufman, K., Kovacevic, N., Irby, S. and Colwell, C. (1996). Instrumented 

implant for measuring tibiofemoral forces. Journal of Biomechanics, 29(5), 

pp.667-671. 

[87] Morris, B., DʼLima, D., Slamin, J., Kovacevic, N., Arms, S., Townsend, C. 

and Colwell, C. (2001). e-Knee: Evolution of the Electronic Knee 

Prosthesis. The Journal of Bone and Joint Surgery-American Volume, 83, 

pp.62-66. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



65 
 

4. Permeability changes in embedded 

amorphous ribbons 

4.1   Synopsis 

The wearing mechanism of the ultra-high molecular weight polyethylene (UHMWPE) 

bearing surfaces in orthopaedic surgical implants is presently difficult to track; hence, 

implant failure only becomes apparent when the patient experiences some discomfort. 

In exploring the integration of wireless stress sensors into UHMWPE, this chapter 

describes the first step in achieving the monitoring of knee implant stresses using 

magnetostrictive amorphous ribbons.  

The objective of this set of experiments is to establish that changes in the permeability 

of the amorphous ribbons due to stress are still detectable after embedding in 

UHMWPE. This is particularly important due to the non-biocompatibility of the 

amorphous ribbons; hence, they are only usable within the body if completely 

encapsulated. The contents of this chapter have been peer reviewed and published in 

the IEEE Transactions on Magnetics [1]. 

 

4.2   Background theory 

For a small pick-up coil in a uniform magnetic field, the voltage generated is as a result 

of electromagnetic induction. In this instance, the magnetic flux passing through the 

coil is the product of the area of the coil and the magnetic field component normal to 

the coil plane. Denoting the angle between the magnetic field vector and the normal 

to the coil by α, the flux through the pick-up coil is defined as [2, 3] 

Φ = 𝐴𝐴𝐵𝐵 cos𝛼𝛼                                                         (4.1) 

As described in Chapter 2 (Equation 2.9), the emf induced in a solenoidal coil is 

proportional to the time rate of change of the magnetic flux density (dB/dt) and can be 

written as 

𝑣𝑣 = −𝑁𝑁
𝑑𝑑Φ
𝑑𝑑𝑑𝑑

= −𝑁𝑁𝑁𝑁 cos𝛼𝛼
𝑑𝑑𝐵𝐵
𝑑𝑑𝑑𝑑

                                              (4.2) 
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where N is the number of turns in the search coil. The source magnetic field generated 

by a sinusoidal current can be written as 

𝐵𝐵 = 𝐵𝐵0 sin𝜔𝜔𝜔𝜔                                                          (4.3) 

Where 𝜔𝜔 is the angular frequency of the alternating current and B0 is the amplitude of 

the magnetic field. Merging both equations, we obtain 

𝑣𝑣 = −𝜔𝜔𝜔𝜔𝜔𝜔𝐵𝐵0 cos𝛼𝛼 cos𝜔𝜔𝜔𝜔                                               (4.4) 

From the above equation, it is evident that the induced voltage is proportional to the 

frequency, amplitude of the magnetic field and the cosine of the angle between the 

field and the normal to the pick-up coil. This induced voltage is maximised when 𝛼𝛼 =

0 𝑜𝑜𝑜𝑜 𝜋𝜋 (i.e. cos𝛼𝛼 = ±1). Comparing Equation 4.4 with the general form of a 

sinusoidal wave, the amplitude of the induced voltage becomes 

𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = −𝜔𝜔𝜔𝜔𝐴𝐴𝐵𝐵0 = −2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝐵𝐵0                                          (4.5) 

where f is the frequency in Hertz. 

 

4.3   Experimental method 

 

4.3.1   Test plate preparation 

As-cast highly magnetostrictive Metglas 2605SC (Fe81Si13.5B3.5C2) amorphous ribbon 

produced by Allied Signal was selected for use due to its high stress sensitivity and 

magnetomechanical coupling factor. Some magnetic and mechanical properties of the 

material are tabulated in Table 4.1.  

Table 4.1 Metglas 2605SC properties (as cast) 

Maximum relative permeability 45000 

Saturation magnetostriction (ppm) 27 

Tensile strength (GPa) 1 – 2 

Elastic modulus (GPa) 100 - 110 

Curie temperature (oC) 395 
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The ribbons were 25 µm thick, and cut down into strips measuring 5 mm by 25 mm 

using a scalpel. This was done to minimise the opposing demagnetising field generated 

within the ribbon sample by magnetic poles formed at it ends when subjected to an 

applied field. Assuming the ribbon sample used is uniform, homogenous and shaped 

like a rectangular prism, the origin of a Cartesian coordinate system can be located at 

its centre along with the associated dimensions as shown in Figure 4.1. If the applied 

field acts in the z-direction, the opposing field is proportional to the sample 

magnetisation by a demagnetisation factor Dz, which can be calculated theoretically 

by [4] 

𝜋𝜋𝐷𝐷𝑧𝑧 =
𝑏𝑏2 − 𝑐𝑐2
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ln�
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�

+
𝑎𝑎2 − 𝑐𝑐2

2𝑎𝑎𝑎𝑎
ln�

√𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2 − 𝑏𝑏
√𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2 + 𝑏𝑏
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2𝑐𝑐
ln�

√𝑎𝑎2 + 𝑏𝑏2 + 𝑎𝑎
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�

+
𝑎𝑎

2𝑐𝑐
ln�

√𝑎𝑎2 + 𝑏𝑏2 + 𝑏𝑏
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�+ 2 tan−1 �
𝑎𝑎𝑎𝑎

𝑐𝑐√𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2
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𝑎𝑎3 + 𝑏𝑏3 − 2𝑐𝑐3

3𝑎𝑎𝑎𝑎𝑎𝑎

+
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�𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2 +

𝑐𝑐
𝑎𝑎𝑎𝑎

��𝑎𝑎2 + 𝑐𝑐2 + �𝑏𝑏2 + 𝑐𝑐2�

−
(𝑎𝑎2 + 𝑏𝑏2)3 2� + (𝑏𝑏2 + 𝑐𝑐2)3 2� + (𝑐𝑐2 + 𝑎𝑎2)3 2�

3𝑎𝑎𝑎𝑎𝑎𝑎
                                                (4.6) 

 

Figure 4.1   The coordinate system used in the demagnetising factor calculations, with 

the origin located at the prism centre 
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Where a is half of the sample width, b is half of the sample thickness and c is half of 

the sample length. This resulted in a demagnetisation factor of approximately 0.002.  

 

Test plates in the form of 10 mm thick discs were produced by compression moulding 

using three manufacturing approaches for the integration of the amorphous ribbons. 

This moulding process was done by depositing a pre-determined amount of 

UHMWPE powder (charge) into the bottom half of the metal, and then applying a 

constant pressure with the top half to ensure the powder makes contact with all 

surfaces of the mould whilst maintaining a steady temperature of 140o C for 30 minutes 

to allow for proper curing [5]. The justification for selecting this curing temperature 

is the melting point of UHMWPE, which is between 130 – 140 oC [6 - 8]. The mould 

was then allowed to cool gradually to room temperature, thus allowing for complete 

plasticisation. A schematic diagram representing this is Figure 4.2. 

The first manufacturing approach consisted of depositing the amorphous ribbon on top 

of a layer of virgin UHMWPE powder, which was then covered with another layer of 

powder and moulded (Sample A).  It was assumed that this would ensure the best 

possible adhesion between the UHMWPE and the amorphous ribbon, consequently 

improving stress transfer. However, this approach also makes it difficult to repeatedly 

position the ribbon accurately within the plates. The second approach involved 

sandwiching the amorphous ribbon between two pre-moulded UHMWPE plates, thus 

facilitating a more accurate positioning before moulding (Sample B). However, this 

approach raised concerns regarding the adhesion between the UHMWPE and the 

ribbon, as well as between the two pre-solidified UHMWPE plates. Finally, a third 

approach was considered as a compromise between the previous two, in which the 

amorphous ribbon was deposited on top of a pre-moulded PE plate and then covered 

with a layer of virgin powder, before the embedding moulding process (Sample C). A 

diagram of the resultant embedded plates is depicted in Figure 4.3. 
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Figure 4.2   Compression moulding process for test plate fabrication 

 

 

4.3.2   Measurement technique 

The discs produced were subjected to longitudinal tensile stresses in the presence of 

an applied AC magnetic field of magnitude 50 A/m generated using a 364-turn, 0.58 

m long solenoid fed by a power amplifier. Direct loading of the discs with fixed masses 

using a pulley system introduced the stresses, and the resulting voltage changes 

measured using identical compensated search coils of 100 turns each, with a 2 cm 

radius and 1 cm length. The field coil was wound around the centre of the disc in the 

direction of the ribbon length, and the compensating coil located beside it within the 

same field intensity. The coils were coupled differentially, such that the direction of 

current in each coil opposes the other as shown in Figure 4.4. This forms a gradiometer 

coil sensor, subtracting the effect of the applied field and only measuring the voltage 

induced by the flux changes in the amorphous ribbons.  A simplified block diagram of 

the measurement system is shown in Figure 4.5, with device under test (DUT) 

signifying the prepared samples.  

The transducers were sinusoidally magnetised at frequencies of 100 Hz, 500 Hz and 1 

kHz respectively, and the search coil voltages measured using an Agilent 34401A 

digital multimeter. For each measurement, the output was sampled 100 times and the 

mean value recorded. 
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Figure 4.3   Diagram of embedded test plates showing dimensions and position 

of amorphous ribbons (including search coil orientation) 

 

 

 

Figure 4.4   Topology of compensated search coils with the direction of current 

indicated 
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Figure 4.5   Block diagram of the measurement system 

 

4.4   Results and explanation 

The first set of measurements was to establish that the magnetic characteristics of the 

amorphous ribbon (not shown here) could be measured after the embedding process. 

This was done by estimating the frequency dependent sensitivity of the samples whilst 

keeping the peak amplitude of the magnetic flux constant. Figure 4.6 shows the full 

load output voltages obtained for the disc-disc sample (Sample B) expressed as a 

normalised percentage for better comparison. It was observed that the sensitivity 

increased with frequency, as indicated by a greater drop in the output voltages 

(denoted by an increased slope). Figure 4.7 shows a comparison of the samples’ 

sensitivities normalised as a percentage of the full load output voltage, at a frequency 

of 1 kHz. As can be seen from the plots, sample A showed the greatest sensitivity to 

the applied stress. This can be attributed to the better adhesion between the amorphous 

ribbon and the UHMWPE when embedding is performed using virgin powder only; 

hence, more stress would appear to be transferred to the ribbon.   
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Sample A (being the most favourable) was further subjected to various tensile loading 

conditions using the same pulley system but in steps of 25 N and at a uniform applied 

magnetic field of 1.1kA/m. The normalised output measured is as shown in Figure 4.8.  
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Figure 4.6   Frequency dependent sensitivity of sample B (constant peak 
magnetic flux density) 
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Figure 4.7   Sensitivity of all three samples (uniform magnetic flux density) 
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Figure 4.8   Normalised output voltage of sample A for different loading 

conditions at 1 kHz 

 

 

The application of higher tensile stresses produced greater strain on the sample and 

consequently a steady drop in the output voltage, thereby confirming the established 

relationship between the two quantities. This is due to the change in shape of the 

magnetic hysteresis curve of the ferromagnetic material due to the applied tensile 

stress.  

 

This relationship can be further improved by annealing the amorphous ribbon, thereby 

eliminating internal casting stresses which may oppose those applied. It should also 

be noted that the direction of the applied magnetic field was parallel to that of the 

stress; however, the magnetostrictive effect is maximum when the domains are 

oriented perpendicular to the easy axis. In this case, the application of a magnetic field 

parallel to the easy axis produces 90o domain rotations, thereby maximising the 

magnetostrictive effect. 
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4.5   Summary 

The objective of the work contained in this chapter was to verify that the magnetic 

properties of the amorphous ribbon could still be measured after being encapsulated 

in UHMWPE. The results obtained confirm this, and show a correlation between the 

applied strain in the ribbon and the output voltage measured across adjacent search 

coils. This is a direct consequence of the changes in the magnetic permeability of the 

ribbon, as described by the Villari effect. 
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Non-invasive measurement of knee implant 

forces 

5.1   Synopsis 

As demonstrated in the previous chapter, the variation in flux density can be observed 

using an induction coil placed near or around the magnetic material. Assuming a 

uniform flux density distribution in the region enclosed by the coils, and from the 

inductance approximation, it follows that the inductance of the coil varies 

proportionally with the change in permeability. The presence of the ferromagnetic 

material increases the flux density for a specified current value, and this alters the 

inductance of the coil. These variations in inductance can be measured using a parallel 

tuned circuit with known capacitance, where the magnitude of the resultant impedance 

is maximal at the resonant frequency. The contents of this chapter have been peer 

reviewed and published in the IEEE Transactions on Magnetics [1]. 

 

5.2   Background theory 

5.2.1   Magnetic field in Helmholtz coils  

The magnetic field generated by an electric current passing through a wire is described 

by the Biot-Savart law as 

 𝑩𝑩��⃗ =
𝜇𝜇0
4𝜋𝜋

�
𝐼𝐼𝐼𝐼𝒍𝒍 × 𝒓𝒓�
𝑟𝑟2

 (5.1) 

Consider the field generated by a single current loop at a point P located on its axis, 

as depicted in Figure 5.1. The differential current element situated at 𝒓𝒓�⃗ ′can be 

expressed as 

 
𝐼𝐼𝑑𝑑𝒍𝒍���⃗ = 𝐼𝐼 �𝑑𝑑𝒓𝒓′������⃗

𝑑𝑑𝑑𝑑� �𝑑𝑑𝑑𝑑 = 𝐼𝐼 �
𝑑𝑑(𝑅𝑅(cos𝜙𝜙 𝒊̂𝒊 + sin𝜙𝜙 𝒋𝒋̂))

𝑑𝑑𝑑𝑑
�𝑑𝑑𝑑𝑑 

                              = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(− sin𝜙𝜙 𝒊̂𝒊 + cos𝜙𝜙 𝒋𝒋̂) 

 

 

(5.2) 

The position vector of the point P located at a distance z from the centre of the loop is 

denoted by  𝒓𝒓�⃗ 𝑝𝑝 = 𝑧𝑧𝒌𝒌� . Therefore, the relative position vector is expressed as 
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 𝒓𝒓�⃗ = 𝒓𝒓�⃗ 𝑝𝑝 − 𝒓𝒓�⃗ ′ = −𝑅𝑅 cos𝜙𝜙 𝒊̂𝒊 − 𝑅𝑅 sin𝜙𝜙 𝒋𝒋̂ +  𝑧𝑧𝒌𝒌� (5.3) 

 

 

Figure 5.1   Magnetic field in a current-carrying circular loop 

 

Thus,  

 𝑟𝑟 = |𝒓𝒓�⃗ | = �(−𝑅𝑅 cos𝜙𝜙)2 + (−𝑅𝑅 sin𝜙𝜙)2 + 𝑧𝑧2 = �𝑅𝑅2 + 𝑧𝑧2  (5.4) 

 

Therefore, the unit vector from Idl to point P can be written as  

 𝒓𝒓� =
𝒓𝒓�⃗
𝑟𝑟

=
−𝑅𝑅 cos𝜙𝜙 𝒊̂𝒊 − 𝑅𝑅 sin𝜙𝜙 𝒋𝒋̂ +  𝑧𝑧𝒌𝒌�

𝑟𝑟
 (5.5) 

Computing the cross product, 𝑑𝑑𝒍𝒍 × 𝒓𝒓� is simplified as  

 
𝑑𝑑𝒍𝒍 × 𝒓𝒓� =

1
𝑟𝑟
�𝑅𝑅𝑅𝑅𝑅𝑅(− sin𝜙𝜙 𝒊̂𝒊 + cos𝜙𝜙 𝒋𝒋̂)

× �−𝑅𝑅 cos𝜙𝜙 𝒊̂𝒊 − 𝑅𝑅 sin𝜙𝜙 𝒋𝒋̂ +  𝑧𝑧𝒌𝒌��� 
 

 =
𝑅𝑅𝑅𝑅𝑅𝑅
𝑟𝑟

�𝑧𝑧 cos𝜙𝜙 𝒊̂𝒊 + 𝑧𝑧 sin𝜙𝜙 𝒋𝒋̂ + 𝑅𝑅𝒌𝒌��                                           (5.6) 

Applying the Biot-Savart law around the loop, the field at point P is 

 𝑩𝑩��⃗ =
𝜇𝜇0𝐼𝐼𝐼𝐼

4𝜋𝜋
�

𝑧𝑧 cos𝜙𝜙 𝒊̂𝒊 + 𝑧𝑧 sin𝜙𝜙 𝒋𝒋̂ + 𝑅𝑅𝒌𝒌�

�√𝑅𝑅2 + 𝑧𝑧2�
3

2𝜋𝜋

0
𝑑𝑑𝑑𝑑 (5.7) 
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The x and y components vanish since the integral of the functions over the limits is 

equal to zero. This leaves on a z-component denoted by 

 𝐵𝐵𝑧𝑧 =
𝜇𝜇0𝐼𝐼𝑅𝑅2

4𝜋𝜋
�

𝑑𝑑𝑑𝑑

�√𝑅𝑅2 + 𝑧𝑧2�
3

2𝜋𝜋

0
=

𝜇𝜇0𝐼𝐼𝑅𝑅2

2�√𝑅𝑅2 + 𝑧𝑧2�
3 (5.8) 

 

In the case of a coil with a finite number of turns N, the field is 

 𝐵𝐵𝑧𝑧 =
𝜇𝜇0𝑁𝑁𝑁𝑁𝑅𝑅2

2�√𝑅𝑅2 + 𝑧𝑧2�
3 (5.9) 

For a system consisting of two coils serially connected, the field generated at a point 

located between them becomes 

 𝐵𝐵𝑧𝑧 =
𝜇𝜇0𝑁𝑁𝑁𝑁𝑅𝑅2

2
�

1

�√𝑅𝑅2 + 𝑧𝑧2�
3 +

1

��𝑅𝑅2 + (𝑑𝑑 − 𝑧𝑧)2�
3� (5.10) 

where d is the separation between the two coils. 

A Helmholtz coil configuration is composed of two identical magnetic coils positioned 

symmetrically along a mutual axis, and the separation between them equivalent to the 

radius of one coil. The magnetic field generated in the domain between the coils is 

near-uniform.  

For a Helmholtz coil geometry, 𝑑𝑑 = 𝑅𝑅. Thus, the field induced at a point midway 

between the coils (i.e. 𝑧𝑧 = 𝑅𝑅
2� ) is given by 

 𝐵𝐵𝑧𝑧 =
𝜇𝜇0𝑁𝑁𝑁𝑁𝑅𝑅2

2

⎝

⎜
⎜
⎜
⎛

1

��𝑅𝑅2 + �𝑅𝑅2�
2
�
3 +

1

��𝑅𝑅2 + �𝑅𝑅 − �𝑅𝑅2��
2

�

3

⎠

⎟
⎟
⎟
⎞

  

 = �
2
√5
�
3 𝜇𝜇0𝑁𝑁𝑁𝑁

𝑅𝑅
                                                                              (5.11) 
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5.2.2   LC circuit resonance 

Consider an ideal LC (tuned) circuit which consists of an inductor and a capacitor 

connected in parallel, as shown in Figure 5.2. If the capacitor is in a fully charged 

state, current will flow through the inductor and induce a magnetic field around it, 

thereby reducing the capacitor voltage until it is completely discharged. Due to the 

fact that inductors oppose current changes, the current flow continues and the capacitor 

begins to recharge with a voltage opposite in polarity to the initial charge. This goes 

on until the current flow is depleted and the capacitor is once again at full charge. The 

cycle repeats itself, with the inductor current flowing in the opposite direction.  

 

Figure 5.2   Ideal parallel LC circuit 

 

The energy oscillation between the inductor and capacitor at the natural frequency 

steadily reduces the amplitude due to power losses as a result of the circuit resistance. 

If the circuit is driven by an external supply, resonance is achieved when the 

magnitude of the reactances of both components equal each other i.e. 

|𝑋𝑋𝐿𝐿| = |𝑋𝑋𝐶𝐶|                                                 (5.12) 

𝜔𝜔𝜔𝜔 =
1
𝜔𝜔𝜔𝜔

                                                            (5.13) 
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Solving, we obtain  

𝜔𝜔0 =
1

√𝐿𝐿𝐿𝐿
                                                          (5.14) 

Where L is the inductance in Henries, C is the capacitance in Farads and 𝜔𝜔0 is the 

natural resonant frequency in radians per second. In most instances, the resistance R 

of the inductor windings is taken into account and the equivalent circuit is shown in 

Figure 5.3. The resistance of this circuit is given by 

𝑍𝑍𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =
1

1
𝑅𝑅 + 𝑋𝑋𝐿𝐿

+ 1
𝑋𝑋𝐶𝐶

                                                 (5.15) 

A phasor diagram of the reactances is shown in Figure 5.4. Assuming R<<XL, the 

circuit impedance at resonance becomes 

𝑍𝑍𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =
1

1
|𝑋𝑋𝐿𝐿|∠90° + 1

|𝑋𝑋𝐶𝐶|∠ − 90°

                                  (5.16) 

which approaches infinity. Thus, the circuit impedance is at its highest and entirely 

resistive (known as dynamic resistance) which makes the current minimal. 

 

Figure 5.3   Parallel RLC circuit 
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Figure 5.4   Phasor diagram of component reactances 

 

Combining the impedances in the parallel branches, 

𝑍𝑍𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = (𝑅𝑅 + 𝑗𝑗𝑋𝑋𝐿𝐿)‖(𝑗𝑗𝑋𝑋𝐶𝐶) =
(𝑅𝑅 + 𝑗𝑗𝑋𝑋𝐿𝐿)(𝑗𝑗𝑋𝑋𝐶𝐶)
𝑅𝑅 + 𝑗𝑗(𝑋𝑋𝐿𝐿 + 𝑋𝑋𝐶𝐶) =

𝑗𝑗𝑗𝑗𝑋𝑋𝐶𝐶 − 𝑋𝑋𝐿𝐿𝑋𝑋𝐶𝐶
𝑅𝑅 + 𝑗𝑗(𝑋𝑋𝐿𝐿 + 𝑋𝑋𝐶𝐶)                     (5.17) 

Rationalising the denominator, we obtain 

𝑍𝑍𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =
𝑅𝑅𝑋𝑋𝐶𝐶2 + 𝑗𝑗(𝑅𝑅2𝑋𝑋𝐶𝐶 + 𝑋𝑋𝐶𝐶𝑋𝑋𝐿𝐿2 + 𝑋𝑋𝐿𝐿𝑋𝑋𝐶𝐶2)

𝑅𝑅2 + (𝑋𝑋𝐿𝐿 + 𝑋𝑋𝐶𝐶)2                                       (5.18) 

Since the impedance is purely resistive at resonance, it has no imaginary part. 

Therefore, 

𝑅𝑅2𝑋𝑋𝐶𝐶 + 𝑋𝑋𝐶𝐶𝑋𝑋𝐿𝐿2 + 𝑋𝑋𝐿𝐿𝑋𝑋𝐶𝐶2 = 0                                               (5.19) 

Dividing through by 𝑋𝑋𝐶𝐶 , 

𝑋𝑋𝐿𝐿2 = −𝑋𝑋𝐿𝐿𝑋𝑋𝐶𝐶 − 𝑅𝑅2 

𝜔𝜔2𝐿𝐿2 =
𝐿𝐿
𝐶𝐶
− 𝑅𝑅2 

𝜔𝜔0 = � 1
𝐿𝐿𝐿𝐿

− �
𝑅𝑅
𝐿𝐿
�
2

                                                       (5.20) 

jωL 

-j/ωC 
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It can be seen that specific values of R, L and C can only resonate at a single frequency. 

However, the resonant frequency can be altered by varying one component value 

whilst keeping the others constant. 

 

5.3   Experimental method 

5.3.1   Test plate preparation 

The Metglas 2605SC ribbon utilised previously in Chapter 4 was cut into rectangular 

strips measuring 48 mm by 7 mm, and a total of four strips (to increase the material 

volume and amplify the inductance changes) were stacked and glued together with an 

epoxy resin to obtain a solid core (with a demagnetising factor of approximately 

0.003). The resulting amorphous sample was sandwiched between two 5 mm thick 

circular UHMWPE discs machined from solid blocks and measuring 50 mm in 

diameter. To allow for deflection of the ribbons when stressed, a 2 mm deep 

rectangular trench measuring 40 mm by 8 mm was bored centrally on the inner surface 

of the bottom disc. This was to ensure the induction of sufficient strain in the ribbons. 

The low coefficient of friction of UHMWPE makes bonding difficult but this problem 

was circumvented by treating the surfaces with a polyolefin primer prior to bonding 

with a cyanoacrylate based adhesive. A profile of the resulting insert design is shown 

in Figure 5.5, where it can be noted that only a 40 mm section of ribbon actually 

experiences deflection due to strain. To simulate the femoral condyles, a model was 

fabricated from polypropylene (which has a higher compressive strength than 

UHMWPE at about 40 MPa) with spherical articulating surfaces of radius 20mm. This 

radius was selected in order to achieve initial contact stresses which fall within the 

reported range after TKR (about 30 – 60 MPa) [2, 3].  

 

5.3.2   Measurement technique 

The inserts were subjected to axial compressive loads varying from 100 N to 5000 N, 

using a Zwick Roell Z050 materials testing machine, in the presence of an AC magnetic 

field generated by a pair of Helmholtz coils measuring 22cm in diameter and with 

1470 turns each. The coils were fed by a Krohn-Hite model 7500 wideband power 
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amplifier and were connected in parallel with a 0.01 µF capacitor to form a tuned (LC) 

circuit. The resonant frequency, the voltage across the tuned circuit as well as the line 

current through the circuit for each value of applied load were measured and recorded. 

Voltage and current (through the shunt) measurements were automated using two 

Agilent 34401A digital multimeters controlled using LabVIEW software. A diagram of 

the electrical circuit is shown in Figure 5.6, whilst the actual measurement apparatus 

used is shown in Figure 5.7. For each value of applied stress, five measurements were 

taken and the mean value recorded and analysed. 

 

 

Figure 5.5   Cross-sectional view showing position of polypropylene condyles 

and UHMWPE insert within the Helmholtz coils 
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Figure 5.6   Schematic diagram of electrical measurement circuit. 

 

 

Figure 5.7   Actual measurement apparatus showing position of polypropylene 

condyles and UHMWPE insert within the Helmholtz coils 

v 

v 
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5.4   Results and explanation 

A frequency sweep of the unloaded tuned circuit indicated that it resonated at 1.82 

kHz as shown in Figure 5.8. At parallel resonance, the total circuit impedance is 

maximum which minimises the current by Ohms law. As mentioned earlier, the 

imaginary part of the circuit impedance tends to zero at resonance. Thus, from 

Equation 5.16, we obtain 

𝑍𝑍𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =
𝑋𝑋𝑐𝑐2

𝑅𝑅
 

Since the associated strains are small and both articulating surfaces are non-

conforming, the value of applied stress was approximated using the Hertzian theory 

of non-adhesive elastic contact between a sphere and half-space [4]. The radius of the 

contact area between each condyle and the surface of the insert is given by 

𝑎𝑎 = �3𝐹𝐹𝐹𝐹
4𝐸𝐸∗

3
 

where F is the applied force per condyle in Newtons. In this case, the effective radius 

(R) is the radius of the condyles since the insert is flat. The reduced modulus, E*, can 

be defined as 

𝐸𝐸∗ = �
1 − 𝑣𝑣12

𝐸𝐸1
+

1 − 𝑣𝑣22

𝐸𝐸2
�
−1

 

with 𝐸𝐸1,2 and 𝑣𝑣1,2 being the elastic moduli and Poisson’s ratios for the condyles and 

insert respectively. The maximum contact pressure on the insert is given by 

𝑝𝑝0 =
3𝐹𝐹

2𝜋𝜋𝑎𝑎2
 

The forces were applied centrally to the fabricated condyles, hence, the force on each 

condyle was assumed to be equal to half of the total applied. The elastic moduli of 

polypropylene and UHMWPE were taken as 1.5 and 0.7 GPa respectively, whilst the 

Poisson’s ratio for both materials was set as 0.45. The corresponding contact pressure 

values at the surface of the insert for the applied forces are presented in Table I. From 

the measured voltage and current values, the magnitude of the LC circuit impedances 

at different frequencies were calculated using Ohm’s law and plotted as shown in 

Figure 5.9. The application of varying stress values causes changes in the permeability  
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Figure 5.8   Frequency sweep of tank circuit showing unloaded resonant 

frequency. 

 

 

Table 5.1   Calculated contact pressure for various values of applied force 

Total applied force 
(Newtons) 

Radius of contact area 
circle per condyle (mm) 

Max. contact pressure 
per condyle (MPa) 

100 1.08 20.54 
200 1.36 25.88 
300 1.55 29.62 
400 1.71 32.60 
500 1.84 35.12 
1000 2.32 44.25 
2000 2.93 55.75 
3000 3.35 63.82 
4000 3.69 70.24 
5000 3.97 75.66 
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of the amorphous ribbons, which in turn varies the inductance of the surrounding 

Helmholtz coils. This inductance variation produces a proportionate change in the total 

impedance of the coil, as well as a shift in the circuit resonant frequency. As the insert 

wears out due to abrasion, the load bearing surface gets thinner; hence the deflection 

in the ribbons due to similar axial loading is more. This introduces more strain which 

further leads to a proportional change in initial permeability. It was observed that 

increasing the contact pressure whilst keeping the frequency constant resulted in a 

steady decay in the measured LC circuit impedance. For better comparison, 

normalised values of the measured impedance and corresponding contact pressure at 

different frequencies are plotted as shown in Figure 5.10. 

 

 

Figure 5.9   Measured impedance spectrum for various values of contact 

pressure 
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Figure 5.10   Normalised impedance versus contact pressure at various 
frequencies (adjusted R2 > 0.9) 

 

The variation remained approximately linear for contact pressure up to about 40 MPa 

before tapering off and the sensitivity was highest at resonance (evidenced by the 

steepest slope in the impedance-contact pressure curves in Figure 5.10) but this 

declined sharply as the frequency deviated from this value. Although the magnitude 

of the impedance varied considerably with applied pressure (over the range of about 2 

MΩ), the changes in the actual inductance were quite small (a 2 mH variation 

compared to the measured coil inductance of 780 mH). A consequence of this was that 

the resonant frequency appeared fairly constant over the range measured. This may be 

overcome by using coils with lower inductance, such that small inductance changes 

will produce a significant and measurable shift in the resonant frequency. Also, using 

more sensitive meters with higher resolution will enable easier detection of resonance 

changes down to a few Hertz. Greater sensitivity may be realised by increasing the 

dimensions of the amorphous ribbons utilised, and eliminating random intrinsic 

stresses to obtain a uniaxial domain structure. 

The repeatability has been assessed in terms of the standard deviation of the measured 

quantities at each frequency. The maximum standard deviation was about 0.08 and 
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this occurred when the insert was initially stressed. As the contact pressure increased 

to about 29 MPa, the standard deviation dropped to less than 0.04 and increasing the 

contact pressure beyond that dropped the deviation even further. Similarly, the 

maximum value of the normalised error of the impedance at the point of initial stress 

was 0.1 (at the resonant frequency) but this dropped steadily with increased loading to 

0.06. This reported uncertainty is based on a standard uncertainty multiplied by a 

coverage factor k = 1, which provides a confidence level of approximately 68%. 

Additional research can be carried out to determine optimal positioning of the 

amorphous ribbons within the insert for maximum stress transfer. The data obtained 

establishes that the set-up is suitable for measuring the peak contact pressure due to 

the combined axial forces which the insert is subjected to, up to about 70 MPa, which 

falls within the reported stresses after total knee replacement.  

 

5.5   Summary 

The objective of the work contained in this chapter was to relate the induced strain in 

the amorphous ribbons to inductance variation in adjacent Helmholtz coils, which can 

then be measured by resonant frequency tracking. The obtained results show a 

decrease in coil impedance with increased stress; however, there was minimal change 

in the measured resonant frequency due to the high inherent inductance of the utilised 

coils. In addition, it was established that the measured sensitivity peaked at the 

resonant frequency. 
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6.   Finite Element Modelling of knee implant 

stresses 

6.1   Synopsis 

The wear and damage of the polyethylene insert remains a dominant cause of revision 

surgeries, and this wear is generally attributed to the existing contact stresses. These 

stresses frequently surpass the yield strength of UHMWPE due to the reduced contact 

area of the articulating surfaces after total knee replacement. Research on the contact 

stresses have previously been estimated using mathematical models or measured with 

pressure sensors subjected to predicted knee forces. A Finite Element Model (FEM) 

of the components utilised in this research was created in order to have a better 

comprehension of the associated contact stresses and strains the designed tibial insert 

is subjected to.  

 

6.2   Analytical approach 

6.2.1   Implant geometry and design 

A Finite Element Model (FEM) of the knee system was designed using COMSOL 

Multiphysics version 5.0, which is a commercially available software. The femoral 

component and the polyethylene insert were both modelled as detailed below. 

 

i. Femoral component 

The femoral component was modelled as a rigid indenter, with its dimensions 

taken from the natural knee. This was done to ensure universality of the study; 

hence the model can be adapted to suit various implant designs.  

To achieve this, a 3-dimensional surface scan of an adult femur was imported into 

a CAD software and extruded to form a solid body. A 20 mm partition was then 

created to define the CoCrMo region of the component which was used as the 

indenter, as shown in Figure 6.1.  
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ii. Tibial insert 

The peripheral dimensions of the tibial insert are as shown in Figure 6.2. Its design 

was split into two parts. The bottom part was 5 mm thick, with two 2 mm deep 

rectangular trenches measuring 30 mm by 10 mm located on its inner surface. The 

trenches were positioned 4 mm apart, thus providing a fulcrum for improved stress 

deformation.  

 

 

Figure 6.1   Femoral component indenter, with the CoCrMo region highlighted 

 

Figure 6.2   Peripheral dimensions of the modelled tibial insert (all dimensions 

in mm) 
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The concave articulating surfaces of the top part were designed to have 100% 

conformity with the femoral component in order to maximise the contact area. A larger 

contact area between the articulating surfaces serves to minimise the contact pressure 

which could potentially lower wear rates, although previous research indicates that 

reducing tibiofemoral condylar conformity helps to prolong implant lifespan [1 – 3]. 

However, for the purposes of this research, a fully conforming design was used in 

order to provide a higher contact surface area such that low contact pressure values 

are still detectable. To achieve this, the thickness of the top part of the insert was 

initially extruded to 12 mm and the articulating surface of the femoral component 

subtracted. Two different thicknesses were specified, with the distance between the 

lowest contact point on the articulating surface and the base of the top part varied by 

1 mm. The components were then assembled to form a single part using the mates 

function available in SolidWorks CAD software, as depicted in Figure 6.3.  

 

6.2.2   Material properties of UHMWPE and CoCrMo alloy 

The entities described above were imported into the COMSOL software, and an 

assembly was formed in order to create a contact pair between the articulating surfaces 

as shown in Figure 6.4. The properties detailed in Table 6.1 were defined for the 

different materials which constitute each domain. To obtain the Young’s modulus of 

UHMWPE, tensile tests were carried out using standardised methods as specified in 

ASTM D638 which deals with the properties of plastics [4].  

 

 

Figure 6.3   Designed tibial insert with both components mated 
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Figure 6.4   Femoral and tibial components assembled with highlighted 

contact surfaces 

 

Five sets of measurements were taken and averaged, and the specimens used with 

their dimensions are shown in Figure 6.5. The resulting engineering stress-strain 

curve was then converted into a true stress-strain curve, the relationship between 

both quantities given as 

𝜎𝜎𝑡𝑡 = 𝜎𝜎𝑒𝑒(1 + 𝜀𝜀𝑒𝑒)                                                          (6.1) 

𝜀𝜀𝑡𝑡 = ln(1 + 𝜀𝜀𝑒𝑒)                                                           (6.2) 

where 𝜎𝜎𝑡𝑡 and 𝜀𝜀𝑡𝑡  are the true stress and strain values respectively, with 𝜎𝜎𝑒𝑒 and 𝜀𝜀𝑒𝑒 

being the engineering equivalents.  

 

Table 6.1 UHMWPE and CoCrMo properties used in modelling [5 – 8] 

 UHMWPE CoCrMo 

Density (g/cm3) 0.93 8.3 

Young’s modulus (GPa) From stress-strain data 200 

Poisson’s ratio 0.45 0.29 
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Figure 6.5   UHMWPE specimens (type I) utilised in tensile testing 

 

The depletion of UHMWPE in tibial inserts has already been associated with the yield 

stress. Even though polyethylene has previously been modelled as elastic-perfectly 

plastic material (i.e. the strain increases at the yield point without further increase in 

stress), its true stress strain relationship shows some strain hardening. The yield 

criteria are often specified using Von Mises stresses whereby the material exhibits 

purely elastic properties up to the yield point, and strain hardening beyond this limit.  
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Thus, the UHMWPE insert was modelled as a non-linear elastoplastic material, and 

the values obtained from the true stress-strain curve were integrated using the 

Ramberg-Osgood relationship [9] given by  

𝜀𝜀𝑎𝑎 =
𝜎𝜎𝑎𝑎
𝐸𝐸

+ 𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟 �
𝜎𝜎𝑎𝑎
𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟

�
𝑛𝑛

                                                       (6.3) 

where E is the initial elastic modulus, n is the strain hardening exponent, 𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟 is the 

reference strain at the offset yield strength  (usually 2% in plastics) [10 – 11] and 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟 

is the stress at the reference strain. These parameters were derived graphically from 

the true stress-strain curve as shown in Figure 6.6, while the strain hardening exponent 

was obtained by 

𝑛𝑛 =
ln 20

ln
𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟
𝜎𝜎𝑝𝑝

                                                                      (6.4) 

With 𝜎𝜎𝑝𝑝 being the proportionality limit, which is the region of the stress strain curve 

where Hooke’s law applies. 𝜎𝜎𝑝𝑝 and E were determined to be 9 MPa and 370 MPa 

respectively, thus,  𝑛𝑛 = 4.669 𝑎𝑎𝑎𝑎𝑎𝑎 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟 = 17.1 𝑀𝑀𝑀𝑀𝑀𝑀.  

 

 

Figure 6.6   Graphical determination of Ramberg-Osgood parameters  

True strain 

True stress 
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6.2.3   Loads, constraints and meshing 

This current study deals with axial pressure as previous research shows that it accounts 

for over 95% of the loads during the stance phase of measured activities. Hence, the 

load on the femoral indenter was simulated with a downward acting body load 

(denoted as a negative value in the z-direction) up to 3000 N. A fixed boundary 

condition was applied to the base of the insert, and no displacement in the x and y 

directions were permitted.  

Tetrahedral elements were used in the entire geometry meshing due to the complex 

topology of the model to ensure convergence. An adaptive refinement using the L2-

norm (least squares) error estimation was then applied for mesh optimisation.  

 

6.3   Results and explanation 

The main objective of this FEM study was to investigate the stresses the designed 

tibial insert is subjected to. The true stress-strain curve obtained from the tensile tests 

is plotted in Figure 6.7, alongside that derived from the Ramberg-Osgood equation for 

comparison. For each value of force applied, the contact pressure on the articulating 

surface of the tibial insert as well as the strain of the sensor surface were obtained. The 

reference surfaces where these values were calculated are highlighted in Figure 6.8. It 

should be noted that the contact surface area differed in each insert, as tabulated in 

Table 6.2.  
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Figure 6.7   Graphical comparison between experimental true and 

Ramberg-Osgood stress-strain curve used in simulation 

 

 

Figure 6.8   Surfaces for contact pressure and sensor strain calculations 
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Table 6.2 Tibiofemoral contact surface area for each insert 

Insert 
Contact area 

(mm2) 

1 2238.6 

2 2476.8 

 

 

Figure 6.9 shows a plot of the articulating tibiofemoral surface contact pressure against 

the applied force for each insert where expectedly, a direct and almost linear variation 

exists between the two quantities. For each value of applied force, the contact pressure 

was observed to decrease as the surface area increased in the inserts. This validates 

the model and supports the hypothesis that wear rates are lowered with larger contact 

areas, since sliding (abrasive) wear has been linked to contact stress. The contact 

pressure in the thicker insert (insert 1) varied up to 1.5 MPa, and this dropped down 

to 1.35 MPa in the thinner insert (insert 2) for the same value of applied force.  

 

As previously mentioned in Section 2.3.4, the magnetoelastic energy in a 

ferromagnetic material is related to the induced anisotropic strain in its domain 

structure. This strain is due to the alignment of the domains parallel to the direction of 

the externally applied field, which in this instance is the x-direction of the coordinate 

system employed in the model. A plot of the uniaxial longitudinal strain at the sensor 

surface against the applied force is as shown in Figure 6.10.  

 

Although the articulating surface contact pressure was lower in insert 2, the strain at 

the sensor surface was largest in this insert. This is attributable to the reduced 

polyethylene thickness between the articulating and sensor surfaces. The strain 

obtained was about 0.290 ppm/N in insert 2, as compared to 0.259 ppm/N in insert 1.  
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Figure 6.9    Applied force against tibiofemoral surface contact pressure 

(adjusted R2 > 0.9) 
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Figure 6.10   Applied force against uniaxial (x-direction) strain 

 (adjusted R2 > 0.9) 
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The stresses in knee implants are usually reported in terms of the peak contact pressure 

the tibial insert is subjected to at the tibiofemoral surface, and these have been plotted 

in Figure 6.11. The peak contact pressure in both inserts ranged between 6 – 15 MPa. 

 

 

 

Figure 6.11   Modelled peak contact stresses at various loads (Top: insert 1, 

bottom: insert 2) 
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6.4   Summary 

This chapter aimed at modelling the stresses and strains the designed insert is subject 

to, in order to create a picture of what occurs within it. The contact pressure at the 

insert surface, as well as the strain at the sensor surface, varied directly with the applied 

force as expected while the strain at the sensor surface varied inversely with the 

polyethylene thickness.  
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7.   Force measurements using resonant 
frequency tracking 

 

7.1   Synopsis 

Previously, it was established that the inductance of the Helmholtz coils can be varied 

due to changes in the permeability of the amorphous ribbon situated at its centre. One 

way of better visualising this variation is by forming a tuned LC circuit and tracking 

its resonant frequency. This was achieved by using low inductance coils, such that 

changes in the coil inductance produced sufficiently measurable variations in the 

circuit resonant frequency. 

 

7.2   Experimental method 

 7.2.1   Helmholtz coil design 

The method and equipment used were mostly the same as those in the Chapter 5, with 

a few changes made. From Equation 2.14, the inductance of a solenoidal coil is given 

by 

𝐿𝐿 =
𝜇𝜇𝑁𝑁2𝐴𝐴
𝑙𝑙

 

It is evident from the equation above that the inductance value can be lowered by 

reducing both the number of turns in the coil and the coil diameter. For this procedure, 

single-layer Helmholtz coils with a 15cm diameter and 100 turns each were fabricated 

using 0.4 mm diameter copper wire on 3D printed polylactide (PLA) reels and utilised, 

as shown in Figure 7.1. The diameter of the coils was selected in order to minimise 

the inductance, but still be largely sufficient to fit around an average adult knee. To 

ensure the selection of a suitable operating range for the sensor, the self-resonant 

frequency of the fabricated coil was determined by sweeping the input frequency and 

measuring the impedance across the coil, using an Agilent 4294A precision impedance 

analyzer. The self-resonant frequency of the coil, which relates to the maximum 

impedance, was established to be about 165 kHz as presented in Figure 7.2.  
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Figure 7.1   Fabricated Helmholtz coils  

 

7.2.2 Femoral component fabrication 

The femoral component was modelled on the geometry of the natural knee condyles, 

using a 3D scan of an adult knee. To better simulate the knee replacement prosthesis, 

a femoral component was manufactured from medical grade CoCrMo (ASTM F75) 

by direct metal laser sintering (DMLS). This additive manufacturing technique fuses  
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Figure 7.2   Frequency sweep of fabricated Helmholtz coils showing self-
resonant frequency 

 

fine metallic powders by aiming a high powered ytterbium fibre laser at specific points 

predefined by a computer aided design (CAD) model to produce a solid three-

dimensional structure [1, 2].  The designed model is shown in Figure 7.3.  

 

Figure 7.3   Design of 3D printed CoCrMo component 
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To do this, a thin layer of metal powder is deposited on the pre-heated building 

platform in the print chamber. Since the temperature of the platform is below the 

melting point of the powder, no fusion occurs. The laser is then aimed at regions 

defined in the CAD model, heating them above the melting point and solidifying a 

cross-sectional portion of the model. The building platform is then lowered, an 

additional powder layer deposited and the process repeated until the complete part is 

sintered. This process is depicted in Figure 7.4. 

The CoCrMo component produced was mounted on to a femur fabricated from 

polyamide (PA) by selective laser sintering (SLS). This procedure is similar to DMLS; 

however, SLS produces parts with a lower resolution as compared to DMLS which 

uses powders with smaller diameter. Also, whilst DMLS is primarily used for metallic 

parts, SLS can be applied to a variety of materials like plastics, ceramics and glass. 

The resulting indenter is shown in Figure 7.5. 
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Figure 7.4   Direct metal laser sintering process [3] 
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Figure 7.5   Side, front and articulating surface of the fabricated CoCr 

component mounted on a polyamide femur 
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7.2.3   Tibial insert fabrication  

The insert parts described in Section 6.2.1(ii) were machined out of solid UHMWPE 

blocks and fabricated as two parts bonded with an adhesive, as described in Section 

5.3. Four Metglas 2605SC amorphous ribbon strips measuring 70 mm by 8 mm were 

stacked and bonded together with an epoxy resin to form the magnetic transducer. This 

was then secured onto the inner surface of the upper part of the insert first by treating 

the surface with a polyolefin primer, and then bonding with a cyanoacrylate based 

adhesive. After allowing the bond to set, both parts of the insert were then fused 

together using the same primer and adhesive. This process was repeated for all the 

inserts produced, whilst ensuring that the amorphous ribbon transducer was secured at 

the same position in each insert. Figure 7.6 shows the resultant inserts, and two of each 

one were fabricated. 

The inserts were located at the centre of the Helmholtz coils as shown in Figure 7.7, 

and were subjected to increasing static axial compressive loads varying from 100 N to 

3000 N in the presence of an AC magnetic field using the same Zwick Roell Z050 

materials testing machine and circuitry as before (see Figure 5.4). Automated 

measurements of the resonant frequency, voltage across the tuned circuit as well as 

the line current through the circuit for each value of applied load were recorded using 

two Agilent 34401A digital multimeters controlled by LabVIEW software.  

 

Figure 7.6   Fabricated UHMWPE inserts with amorphous ribbon embedded  

(Top: insert 1, bottom: insert 2) 
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Figure 7.7   Experimental assembly showing position of tibial insert and femoral 

component within the Helmholtz coils. 
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7.3   Results and explanation 

A plot of the impedance of the tuned circuit against its operating frequency is shown 

in Figure 7.8. The internal resistance of the circuit provides damping, which makes its 

differential equation comparable to that of a mass on a damped spring. Thus, a 

Lorentzian curve fitting was applied to the measured data and the resonant frequency 

of about 20.6 kHz was obtained.  

Figures 7.9 and 7.10 show the resonant frequency measured for various values of 

applied force in each insert. It was observed that increasing the applied force resulted 

in a constant decrease in the measured resonant frequency. This is better visualised in 

Figure 7.11, which shows a steady leftward shift in the impedance curves as the 

applied force is increased. In addition to this, the peak value of the measured 

impedance curve decreases as the applied force is increased. Both observations are 

apparently a result of changing values of the coil inductance, brought about by the 

variations in the permeability of the amorphous ribbon located at the coil centre.   

 

Figure 7.8   Frequency sweep of tuned circuit showing resonant frequency 
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Figure 7.9   Cross section of measured impedance curves for various applied 

force values in insert 1 
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Figure 7.10   Cross section of measured impedance curves for various applied 

force values in insert 2 
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Figure 7.11   Impedance curves showing steady shift in resonant frequency with 

applied force (top: insert 1, bottom: insert 2) 
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Recall from Equation 5.18 that 

𝜔𝜔0 = � 1
𝐿𝐿𝐿𝐿

− �
𝑅𝑅
𝐿𝐿
�
2

 

Rearranging, we obtain  

𝜔𝜔0
2𝐿𝐿2𝐶𝐶 − 𝐿𝐿 + 𝑅𝑅2𝐶𝐶 = 0                                               (7.1) 

This is easily recognised as a quadratic equation with L being the unknown variable, 

𝜔𝜔2𝐶𝐶 the quadratic coefficient, -1 the linear coefficient and 𝑅𝑅2𝐶𝐶 a constant. The 

solution is given by 

𝐿𝐿 =
−1 ± �1 − 4𝜔𝜔02𝑅𝑅2𝐶𝐶2

2𝜔𝜔02𝐶𝐶
                                           (7.2) 

From the measurements taken to obtain the self-resonant frequency of the fabricated 

Helmholtz coils, at 20.6 kHz 

𝑅𝑅 ≅ 18.3 Ω 

A plot of the inductance changes against applied force values is shown in Figure 7.12, 

where the relationship between both quantities is depicted. The measured coil 

resistance has been assumed to remain fairly constant within the frequency range. 

Initial stressing of the insert causes a large gain in the measured inductance, which 

then tapers off as the loading is further increased.  

 

Another mechanism which can be used in tracking the applied force is the Q (quality) 

factor of the inductor coil, which is a dimensionless parameter related to the damping. 

It is ratio of the inductive reactance of the inductor to its series resistance, and can be 

evaluated at any frequency. At resonance, this becomes 

𝑄𝑄𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =
𝜔𝜔0𝐿𝐿
𝑅𝑅

                                                (7.13) 

The Q-factor varies directly as the measured inductance; hence a similar pattern will 

be observed.  
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Figure 7.12   Plots showing calculated coil inductance against applied force. 

Top: insert 1, bottom: insert 2 (adjusted R2 > 0.9) 
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Since the magnetoelastic energy in the amorphous ribbon has been linked to the strain 

in its domain structure, a reliable way of defining the sensitivity would be to establish 

a relationship between the modelled strain at the sensor surface and the measured 

resonant frequency variations in the coil. These plots are as shown in Figure 7.13, 

where it can be observed that resonant frequency declined continuously with 

increasing strain. 

 

In insert 1, a shift in the resonant frequency of up to 50.5 Hz was generated by a 780 

ppm change in the sensor surface strain whilst an 885 ppm strain change in insert 2 

resulted in a 55.5 Hz shift in the measured frequency. This indicates a sensitivity of 

about 0.066 Hz/ppm in both instances, and is based on the assumption of complete 

stress transfer between the surface and the amorphous ribbons. 
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Figure 7.13a   Relationship between measured resonant frequency and modelled 
strain (insert 1) 
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Figure 7.13b   Relationship between measured resonant frequency and 
modelled strain (insert 2) 

 

 

7.4   Summary 

The objective of the work contained in this chapter was to relate the stress in the tibial 

insert due to the applied force to resonant frequency variations in nearby non-invasive 

coils. This is due to the inductance changes brought about by changes in the 

permeability of the embedded amorphous ribbon. It has been established that the 

applied force on the tibial insert surface and the sensor surface strain vary inversely 

with the coil resonant frequency, indicating a direct correlation between those 

quantities and the coil inductance.  
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8.   Discussion 
 

8.1   Analysis of experimental results 

The objective of this research was to explore the potential offered by amorphous 

magnetostrictive ribbons as viable sensors for knee implant monitoring, through 

suitable harnessing of the Villari effect exhibited by these materials when externally 

stressed. This study has successfully demonstrated that the tibiofemoral contact 

pressure in knee implants can be measured non-invasively using amorphous ribbons 

only, without any supplementary embedded components or secondary coil windings. 

The initial experiments were carried out to verify that the magnetic properties of the 

amorphous ribbon are measurable after encapsulation. To achieve this, the frequency 

dependent sensitivity of the specimens to stress was assessed at a constant peak flux 

density. Since the aim was to demonstrate a trend, measurements of the loaded 

specimen were sufficient. The data obtained indicates that the sensitivity varied 

directly with frequency and this is illustrated by an increasing difference in output 

voltage. It should be noted that this does not suggest a linear response, but only shows 

the changes in permeability in the ribbon when stressed. Equation 4.5 explains this, 

where it can be seen that the induced voltage in the coil varies directly with frequency 

when other determinants are kept constant. 

Due to the fact that the discs utilised were produced using three different approaches, 

it became necessary to evaluate their sensitivities as the working principle of the 

proposed sensor is contingent on maximal stress transfer from the UHMWPE to the 

ribbon. A comparison of the output obtained suggested that the sensitivity was highest 

in the disc which was fabricated by fusing the UHMWPE powders with the ribbon 

directly. This can be credited to improved molecular adhesion between the amorphous 

ribbon and the UHMWPE, which relates to enhanced stress transfer as compared with 

those of the other manufacturing approaches. It should be noted that normalised output 

voltages were used for the comparisons made in order to account for the inherent 

stresses which were inevitably introduced during the manufacturing processes of both 

the amorphous ribbons and the UHMWPE discs used.  
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For Fe-based amorphous ribbons with positive magnetostriction, permeability 

increases with increasing tensile stress which results in more flux generation in the 

ribbon at any value of applied field. Since the induced voltage in the search coil is 

proportional to the amount of flux, increasing the tensile stress exerted on the material 

should proportionally raise the measured coil voltage. However, the results obtained 

in Chapter 4 showed a reduction in the induced voltage with increasing stress. This is 

likely due to manufacturing stresses within the amorphous ribbon which were 

generated during the rapid cooling process necessary to achieve its non-crystalline 

state. This feature was also observed in subsequent experimental work carried out; 

however, increased loading eliminated this irregularity. 

Although it was established that most favourable manufacturing approach would be 

molding the UHMWPE powders directly with the ribbon, the next set of experimental 

work involved embedding the ribbons into two discs machined from solid blocks. This 

was done to ease the production process, and also to ensure uniform ribbon positioning 

in the samples used. Also, a solenoidal coil previously supplied the excitation whereas 

Helmholtz coils were utilised subsequently. In addition to providing a highly uniform 

area of magnetisation, they are also more practical than the solenoid for the purposes 

of this research as they are able to accommodate the entire joint.  

It was observed that increases to the contact pressure at constant frequency steadily 

diminished the impedance measured across the LC circuit. As the applied force is 

increasing, more strain is introduced to the ribbon and ultimately, a corresponding rise 

in its initial permeability. As the inductance of the coil is proportionate to the effective 

permeability of the material contained within it, it follows that an increase in the latter 

will raise the former. The impedance of any inductor is directly proportional to its 

inductance and in a parallel tuned circuit, this is signified by a drop in the total circuit 

impedance. In accordance with Lenz’s law, the field generated by the Helmholtz coils 

induces a counter-electromotive force which opposes the current flowing through the 

coils and this effectively attenuates the potential difference across the tuned circuit. 

However, this was controlled by keeping the supply voltage fixed, such that any 

fluctuations in the circuit parameters were purely a function of the inductance changes.  

The highest sensitivity obtained was around the resonant frequency, as indicated by 

the steepest slope (-0.046 Ω/Pa) in the plot of impedance against contact pressure. This 
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correlation remained linear at all measured frequencies for peak contact pressure up 

to about 40 MPa, after which the variation dwindled. Despite the magnitude of the 

impedance varying considerably with applied pressure (over a range of 2 MΩ), the 

changes in the actual coil inductance were calculated to be about 2 mH which equated 

to a 0.13% deviation. A direct repercussion of this was that the resonant frequency 

seemed fairly constant over the range measured. To circumvent this, coils of lower 

inductance were fabricated to be used subsequently, such that small inductance 

changes will produce a quantifiable shift in the resonant frequency.   

Prior to this point, emphasis had been placed solely on the contact pressure with hardly 

any knowledge of the associated stresses and strains within the inserts, particularly at 

the sensor surface. To gain more insight into these variables, finite element modelling 

was employed. In addition, modifications were made to the inserts previously utilised 

to better simulate the ones used in contemporary knee replacement systems. The 

contact pressure was observed to decrease with increasing surface area in the inserts, 

for any given value of applied force. This corroborates the hypothesis that wear rates 

are minimised with larger contact areas, since abrasive wear has been associated with 

contact stress.  

The peak contact pressures realised varied between 6.3 - 16.3 MPa and 7.9 - 15.2 MPa 

in inserts 1 and 2 respectively, which fall within the reported range for assorted knee 

replacement systems at full extension (0o flexion angle) and further validates the 

model utilised [1]. Higher values of peak contact stresses at increased flexion angles 

have been reported; however, this is due to the reduced tibiofemoral contact surface 

area as the knee flexes. Plots of the modelled strain at the sensor surface against the 

applied force showed a linear correlation, which implies operation within the elastic 

region of the stress-strain curve. This shows that the sensor configuration used in this 

study can also be applied to cyclic loading conditions, as little plastic deformation 

takes place at this surface due to the microstrain values. 

To develop a proper correlation between the inductance variation and the articulating 

contact pressure based on the strain values derived, experiments were carried out using 

the same designs modelled. This time however, the lower inductance coils fabricated 

were used in this set of measurements and it was demonstrated that the resonant 

frequency as well as the tuned circuit impedance monotonically decreased with 
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increasing applied force. With all other parameters fixed, this suggests an increasing 

coil inductance value and is consistent with the established relationship between 

permeability and coil inductance. Also, the shape of the inductance-stress curves 

realised from the experiments (Figure 7.11) correlates with theoretical and modelled 

studies of amorphous ferromagnetic materials which further validates the proposed 

measurement method [2, 3]. This variation can be improved by stress-relieving the 

amorphous ribbons through annealing, such that externally applied forces are more 

perceptible. Thus, the permeability change in the ribbons will be easier to detect. 

The actual forces in implants can vary depending on weight, flexion angle and the 

activity being undertaken. One issue that may arise with measurements taken under 

dynamic loading is the mobility of the system. External AC power is required to sweep 

the frequency of the coils, which renders the system immobile. Even though only static 

loading conditions were applied during this study, the sensing principle can still be 

measure forces at various flexion angles during different activities such as squatting, 

bending and sitting.  

 

8.2   Comparison with existing research 

Attempts have previously been made to monitor the forces in knee implants, mostly 

using non-magnetic approaches as highlighted in Chapter 3. However, these 

approaches necessitate the embedding of additional active electronic components for 

data modulation and transmission, and these components often need external 

powering. In addition, these supplementary components come at a cost which adds to 

the overall cost of the instrumented prosthesis. Furthermore, some of the designs 

require significant modification of the prosthesis to complement the geometrical and 

technical specifications of the sensors and telemetric system used.  

Apart from the amorphous ribbon, the measurement procedure used in this thesis does 

not require any additional embedded circuitry for data retrieval. Minimal 

modifications were made to the UHMWPE insert, but the tibial tray and stem do not 

need to be adapted to accommodate any components. Also, the low magnetic field 

generated by the coils have no adverse effect on the human body, and these make the 

measurement system suitable for in-vivo observations. 
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8.3   Repeatability and measurement uncertainty  

The repeatability of the experimental work was assessed in terms of the relative 

standard deviation of the measurements. For each set of measurements taken for every 

value of applied force, the coefficient of variation cv in the calculated impedance 

expressed as a percentage is given by 

𝑐𝑐𝑣𝑣(%) = �
𝜎𝜎𝑠𝑠
𝜇𝜇
� × 100 

where 𝜎𝜎𝑠𝑠 is the sample standard deviation and 𝜇𝜇 is the mean value used in the analysis. 

The maximum coefficients of variation were 0.61% and 0.36% in inserts 1 and 2 

respectively. These low values are indicative of good repeatability of the procedure.  

Assuming that the errors in the voltage and current measurements taken in Chapter 7 

are random and uncorrelated, the uncertainty propagation in the impedance calculation 

using Ohm’s law can be summing the fractional uncertainties in quadrature. This is 

given by 

𝜎𝜎𝑍𝑍
𝑍𝑍

= ��
𝜎𝜎𝑉𝑉
𝑉𝑉
�
2

+ �
𝜎𝜎𝐼𝐼
𝐼𝐼
�
2
 

Where 𝜎𝜎𝑉𝑉 and 𝜎𝜎𝐼𝐼 are the sample standard deviation values of the measured voltage and 

current at each frequency, and V and I are the mean values used in the impedance 

calculation. The maximum uncertainty in inserts 1 and 2 were 0.60% and 0.51% 

respectively.  

 

8.4   Limitations of this study 

In determining the feasibility of utilising amorphous ribbons as sensors for measuring 

forces in knee implants, this study considered only axial static loading. Although it 

has been established that axial forces constitute about 95% of the loading in knee 

implants, the anteroposterior and mediolateral contributions still need to be considered 

in order to obtain a robust measurement system. Also, the knee implants are usually 

subjected to dynamic loading during various daily activities which brings about 

fatigue and creep in the UHMWPE; however, these have not been reflected in this 

study. 
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An assumption made in this research is that total stress transfer occurs between the 

sensor surface and the amorphous ribbons. This is most likely not the case, as some 

stress will be lost at the boundary between both surfaces due to the discontinuity. Also, 

additional stresses introduced into the amorphous material during the bonding process 

were not factored in.  

The measurements were taken at ambient temperature which is lower than that in the 

normal human body; hence, effects of temperature variation have not been accounted 

for. Also, the ambient conditions inside a knee joint (due to bodily fluids and tissues) 

cannot be properly simulated without clinical trials, which are beyond the scope of 

this thesis. 
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9.   Conclusions and future work 

9.1   Conclusions 

The work contained in this thesis proposes a new system for measuring forces in knee 

implants using a magnetic detection method. This was achieved by integrating 

amorphous ferromagnetic ribbons into UHMWPE inserts, and measuring the 

inductance changes in an adjacent coil winding due to applied stress on the insert.  

The winding was connected to form part of a tuned circuit, and the variation in coil 

inductance was detected by evaluating the circuit impedance. The results showed a 

continuous decrease in this impedance with increasing applied tibiofemoral force, 

which indicates an increasing inductance. This is as a result of the increasing 

permeability of the amorphous ribbon located within the coil geometry.  

The inductance changes in the coil windings were quantified by tracking the resonance 

of the tuned circuit whilst varying the applied stress. As expected, the resonant 

frequency decreased monotonically with increasing applied force, thus buttressing the 

established inverse relationship between the coil inductance variation and applied 

stress on the insert. 

The described measurement system can be used for non-invasive monitoring of forces 

in total knee replacement prosthesis, without the need for additional embedded 

circuitry. This not only preserves the initial design of the prosthesis, but the associated 

costs of the supplementary components are reduced. Although this system is limited 

to the measurement of static loads, it can still be applied to measure loads at various 

flexion angles. 

 

9.2   Future work 

Optimal positioning of the ribbons within the insert for maximum stress transfer 

should be ascertained using finite element analysis. The induction of more strain in 

the ribbon produces greater changes in the permeability, which will consequently 

improve the sensitivity.  
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The actual strain at the sensor surface due to various applied loads should be directly 

determined using strain gauges. By doing this, the sensor can be better characterised 

to improve the accuracy of the sensitivity.  

In addition, the flexion angle should be varied while applying different load values to 

produce a data matrix, to enable robust characterisation of the sensor. 
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