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Abstract

Simultaneous inference in longitudinal, repeated-measures, and multi-endpoint designs can be onerous, especially
when trying to find a reasonable joint model from which the interesting effects and covariances are estimated. A novel
statistical approach known as “multiple marginal models” greatly simplifies the modelling process: the core idea is to
“marginalise” the problem and fit multiple small models to different portions of the data, and then estimate the overall
covariance matrix in a subsequent, separate step. Using these estimates guarantees strong control of the familywise error
rate, however only asymptotically. In this paper we show how to make the approach also applicable to small-sample
data problems. Specifically, we discuss the computation of adjusted p-values and simultaneous confidence bounds for
comparisons of randomised treatment groups as well as for levels of a non-randomised factor such as multiple endpoints,
repeated measures, or a series of points in time or space. We illustrate the practical use of the method with a data
example.
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1 Introduction

Simultaneous inference with the aim to control the familywise type I error rate (FWER) is well explored for simple
randomised settings and easily available in major statistical software packages [2, 60]. Affairs can get messy, however,
as soon as some element of repeatedness induces correlation between observations, as is the case with longitudinal data
or multiple endpoints. In this paper we focus on what Quan et al. [46] called a “two-dimensional multiplicity problem”:
simultaneous inference for datasets with a randomised (or between-group) factor variable, such as treatment in a clinical
trial, and a repeated (or within-group) factor variable, such as points in time or space, or multiple endpoints, all of
which are situations where the instances are not mutually randomised—the second time point always comes after the
first. Every subject is exposed to exactly one level of the randomised factor but usually multiple levels of the repeated
factor. Specifically, we look into comparisons

a) between levels of the randomised factor separately and simultaneously at several levels of the repeated factor (e.g.,
comparing treatment effects at each time point), and

b) between levels of the repeated factor separately and simultaneously at several levels of the randomised factor (e.g.,
comparing differences between time points within each treatment group).

Here separately means that we are interested in detailed level-wise comparisons rather than just global tests, while
simultaneously refers to our desire to control the FWER strongly over all comparisons. It is further possible to combine
comparisons of both types a) and b) simultaneously under joint FWER control.

The analysis of suchlike correlated data is a bit of a statistical minefield, with flawed analyses still being omnipresent
in the applied sciences [36]. For instance, separate ANOVAs per time point or endpoint followed by unadjusted post
hoc tests can lead to frighteningly high overall type I error rates [19]. Using a Bonferroni correction is unnecessarily
conservative, especially when the levels of the repeated factor are highly correlated [64]. Ad hoc solutions to cushion
the conservatism of Bonferroni [55] have a very limited range of application, and it is unclear under what circumstances
they are able to control the FWER.

Boiling data from serially repeated measurements down to a single summary measure [9, 10, 53] makes the analyses
simple but often leaves many specific questions open that could be answered with more refined approaches [7, 40,
1]. Standard methods for analysing multiple endpoints [8, 50, 51, 59] compare the treatment means simultaneously
but jointly at multiple occasions i.e., they provide only a global statement of “significance” expressed as p-value(s)
and no confidence intervals. When the interest lies in separate level-wise comparisons, this is neither as detailed
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nor as insightful as typically requested by researchers. Moreover, widespread techniques such as the multivariate
analysis of variance (MANOVA) and repeated measures ANOVA rely on unrealistic—and unverifiable—assumptions
e.g., multisample sphericity [22], and cannot cope with missing values properly.

Our preferred method for comparing means in repeated-measures or multi-endpoint settings are multiple contrast
tests (MCTs) [20], for two reasons: first, they cover many standard procedures such as comparisons to a common
control [6], between all pairs of treatments [57], or with the grand mean [41]; and second, they provide not only test
decisions and adjusted p-values but also informative simultaneous confidence intervals, which are the favoured form of
presenting statistical results [12]. But for MCTs to be sound in the context of correlated data, capturing dependencies
across levels of the repeated variable is pivotal. Traditionally linear mixed-effects modeling [58] has been the method
of choice, but this leaves us with the problem how to shape the random effects and residual covariance matrices.

Pipper et al. [45] introduced an asymptotic method that makes simultaneous inferences for datasets with both
randomised and repeated variables stunningly easy: the idea is to fit a number of relatively simple models separately
to different portions of the data (e.g., one model per time point or endpoint) and then estimate the joint covariance
matrix in a data-driven manner. Pallmann et al. [42] showed that this method is readily applicable to longitudinal
data, where it can replace much more intricate analyses that would involve specifying random effects and structured
residual covariance matrices. Jensen et al. [26] applied the method to simultaneous inference of model-averaged
derived parameters, Große Ruse et al. [13] used it to assess a binary composite endpoint jointly with its components,
and Kitsche et al. [28] employed it for the joint consideration of the three basic modes of inheritance in genetic
association studies. An extension to settings with more than one repeated variable, such as in longitudinal multi-
endpoint studies, was described as well [25, 49]. All these publications have illustrated the wide applicability of the
method, but also emphasised that it is inherently asymptotic and may therefore break down with too small sample
sizes. This is potentially problematic as many real-world datasets involve smallish samples, often with less than 20 or
even ten independent subjects per treatment group. In this paper we discuss modifications of the Pipper et al. method
that make it applicable to small and even tiny datasets.

In Section 2 we outline the underlying method and our proposed small-sample variant, with a focus on the degrees
of freedom to be used. A simulation study on its performance under the null and alternative hypothesis is summarised
in Section 3. We illustrate the practical application to a longitudinal heart rate study in Section in 4, followed by a
general discussion in Section 5.

2 Methods

Consider a clinical trial setting where several measurements j = 1, . . . ,m (e.g., a longitudinal outcome or multiple
endpoints) are taken from patients i = 1, . . . , n randomised to treatment arms k = 1, . . . , q. The data can be summarised
in a vector y, with yijk being measurement j from patient i receiving treatment k. The number of patients randomised
to arm k is denoted by nk.

The goal of statistical inference is to estimate a set of unknown parameters β that are usually related to effects of
covariates. While some (like age or sex) are only included as adjustments, others (like treatment) are of explicit interest
as they characterise the medical intervention under study, and we wish to estimate them separately for each of the
m time points or endpoints. Here the classical approach is to fit one general linear mixed-effects model with random
effects and/or structured residual covariance matrix to the whole dataset [3]. Working out a “reasonably good” model
can be tedious though, even with the help of an information criterion [24, 61, 62, 27, 65]. Both under- and overfitting
may be detrimental to subsequent inferences [34, 43, 23, 52, 37, 14].

2.1 Multiple marginal models

A hassle-free and foolproof alternative has been suggested by Pipper et al. [45]: instead of devising one big model for
the entire dataset, several “marginal” models are fitted to different slices of the data. For a longitudinal dataset, one
would simply fit one model per time point, and for multivariate data, every endpoint would be modelled separately.
These “marginal” models are typically much simpler than a joint model with all its random effects and/or residual
covariances.

Assume that the data y are sensibly sliceable into m portions y1, . . . ,ym e.g., because they contain m longitudinal
measurements or m endpoints. Further assume that βj = (βj1, . . . , βjq) are interesting model parameters, such as the
effects of q different drugs in a pharmaceutical study, measured at the jth time point or for the jth outcome measure.
In the simplest case these “marginal” models are just linear models that can be fitted with least squares, but they may
also be e.g., generalised linear models (for discrete outcomes), Cox proportional hazard models (for survival outcomes),
or linear mixed-effects models (when additional repeated factors are present). We fit one “marginal” model Mj per
data portion yj using some fixed and known design matrix Xj to estimate βj . Adjustment for (baseline) covariates
is easily possible within the “marginal” models; in that case additional fixed-effect parameters other than βj1, . . . , βjq
will be estimated. Note that the method is sufficiently general to allow different types of “marginal” models, different
sets of (baseline) covariates for different “marginal” models, and yj can also be the full dataset y for some or all j.

All that is left to do now is recover the correlation between the estimates β̂1, . . . , β̂m, which is achieved with a little
mathematical trick that involves “stacking” the score contributions (derivatives of the log-likelihood) of the parameter
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estimates [45]. Here it is instructive to see that asymptotically

(β̂j − βj)
√
n =

1√
n

n∑
i=1

Ψij + oP (1)

where
Ψij = −I−1

j Ψ̃ij

and I−1
j is the row in the inverse Fisher information matrix that corresponds to βj , Ψ̃ij is the score function for the

ith individual, and oP (1) denotes a sequence of random vectors converging to zero in probability.

We can obtain a similar representation when the βj , β̂j , and Ψij are “stacked” over all j = 1, . . . ,m so as to get

longer vectors (but not matrices) β = (β1, . . . ,βm), β̂ = (β̂1, . . . , β̂m), and Ψi = (Ψi1, . . . ,Ψim). This yields

(β̂ − β)
√
n =

1√
n

n∑
i=1

Ψi + oP (1),

which is the asymptotic m-variate extension of the above. The left-hand side converges (by the multivariate central
limit theorem) to an m-variate normal distribution

(β̂ − β)
√
n

d−→ N (0,Σ).

As a consequence we can estimate the covariance Σ consistently as

Σ̂ =
1

n

n∑
i=1

Ψ̂
T

i Ψ̂i

where the Ψ̂i are obtained by plugging the parameter estimates from the m marginal models into Ψi. This is imple-
mented as function mmm in the R package multcomp [21].

2.2 Simultaneous inference

Having estimated the effect parameters β and covariances Σ as shown in 2.1, we can specify comparisons of interests
as linear contrasts

η = Cβ

where C is a z ×mq coefficient matrix, and z the number of single contrasts. With the parameters in the vector β
being ordered as

β = (β11, . . . , β1q, . . . , βm1, . . . , βmq),

comparing treatments separately and simultaneously for outcomes 1, . . . ,m requires a coefficient matrix

C1 = Im ⊗C0

where Im is an identity matrix of dimension m, ⊗ denotes the Kronecker product, and C0 is a “per-outcome” coefficient
matrix that defines the comparisons of treatment means carried out for one single endpoint or time point. As an
example, with q = 3 treatments, this would result in the following matrices for many-to-one, all-pairwise, and grand-
mean comparisons:

Cmto
0 =

[
−1 1 0
−1 0 1

]
, Cap

0 =

 −1 1 0
−1 0 1
0 −1 1

 , Cgm
0 =

 2/3 −1/3 −1/3
−1/3 2/3 −1/3
−1/3 −1/3 2/3

 .
For comparisons of outcome means simultaneously and separately for treatment arms 1, . . . , q the coefficient matrix
becomes

C2 = C0 ⊗ Iq,

and C0 would be the “per-group” coefficient matrix.
The computation of adjusted p-values and simultaneous CIs is described in detail in [20].

2.3 Small-sample degrees of freedom

Using the covariance Σ̂ estimated as in 2.1 warrants strong FWER control asymptotically [45] but not for small sample
sizes. Pallmann et al. found by simulation that the asymptotic tests are unduly liberal for sample sizes of less than
30 per treatment group [42]. This requirement is unacceptable in many real-world experiments, and thus solutions for
smaller samples are needed.

We propose to replace the multivariate normal reference distribution of the asymptotic procedure by a multivariate
t with some appropriate degrees of freedom (DF). The residual DF associated with the jth marginal linear model is

νj = nj − qj
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where nj and qj are the numbers of patients and treatment groups, respectively, from which measurements were obtained
for the jth time point or endpoint. A practicable approximation to the DF for a set of outcome-wise comparisons of
treatments is the minimum of the marginal models’ residual DFs:

νminj = min
j

νj .

In case of substantial sample size imbalance, this DF will get conservative. Alternatively, the average of the marginal
models’ DFs could be used:

ν̄j =
1

m

m∑
j=1

νj .

For treatment-wise comparisons of outcomes these approximations are rather poor; an ad hoc alternative for the kth
treatment group is

νk = nk − 1,

and the DF for the set of treatment-wise comparisons of outcomes may again be approximated as the minimum

νmink = min
k

νk

or average

ν̄k =
1

q

q∑
k=1

νk.

Non-integer values of ν̄j and ν̄k are rounded down to the nearest integer.
We investigate the performance of these DF methods via simulation in 3.1 and 3.2.

2.4 Extension: a duplex procedure

Assume we wanted to perform the comparisons defined in C1 and C2 (see 2.2) under joint FWER control, then the
resulting coefficient matrix would be

C12 =

[
C1

C2

]
.

In such a set of comparisons between and within treatment groups the DFs νj and νk can be very different. For
example, in a balanced design with q = 4 treatments and nk = 10 patients per arm, we get νj = 36 and νk = 9, which
leads to very different reference quantiles. Unfortunately, the most common form of multivariate t distributions [29]
only allows one single DF. Straightforward choices are the minimum DF

νmin = min(νminj , νmink )

and the (weighted) average DF

ν̄ =
1

z
(zjν

min
j + zkν

min
k )

where zj and zk are the numbers of comparisons among treatment and outcome means, respectively, and zj + zk = z.
As in 2.3, non-integer values are rounded down.

Both νmin and ν̄ are clearly not ideal: νmin will make the test procedure conservative overall i.e., the global test
size will be less than α, because some elementary comparisons will be tested with too stringent a reference quantile,
except in the unlikely case when νminj = νmink . On the other hand, ν̄ will allow too many rejections of H0 for some
hypotheses and too few for others, again unless νminj = νmink .

One possible corrective that circumvents these issues is to use a vector of comparison-specific DFs

ν = (ν1, . . . , νz)

and compare every test statistic against a quantile from its own multivariate t reference distribution [11, 16]. This
approach—although an approximation only—has been shown in simulations to work reasonably well for heteroscedastic
data [15]. As an alternative we can use a z-dimensional reference distribution whose marginals are univariate t distribu-

tions with DFs ν1, . . . , νz, linked by a normal or t copula [39] with the estimated correlation matrix Σ̂. Supplementary
Figure S4 displays the peculiar shapes of these copula-generated distributions.

We will investigate the effects of both approaches on the test size of our procedure in 3.3. Additionally, they may
also be applied to the DFs νj and νk in 2.3 when there is imbalance, either by design (e.g., more patients randomised
to the control arm) or due to dropout.

Two R functions multipleDF and copulaDF for calculating adjusted p-values and simultaneous CIs using comparison-
specific DFs and a copula-based multivariate reference distribution, respectively, are provided in a supplementary file.
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2.5 Approximate power

We can approximate the global power i.e., the probability of finding at least one elementary comparison of Gaussian
means significant [17], of the “multiple marginal models” procedure with two-sided hypotheses as

P
(
∃ h : |Th| > ttwoz,1−α(ν,R)

)
= 1− Tz

(
−ttwoz,1−α(ν,R), ttwoz,1−α(ν,R),R, ν, δ

)
where Th is the Wald-type test statistic for the hth contrast (h = 1, . . . , z), ttwoz,1−α is the two-sided equicoordinate 1−α
quantile of the z-dimensional t distribution with ν DF and correlation matrix R, and Tz(a, b,R, ν, δ) is the z-variate t
probability with integration bounds a and b (same in all z dimensions), correlation matrix R, ν DF, and noncentrality
vector δ.

The one-sided analogues are

P
(
∃ h : Th > tonez,1−α(ν,R)

)
= 1− Tz

(
−∞, tonez,1−α(ν,R),R, ν, δ

)
and

P
(
∃ h : Th < −tonez,1−α(ν,R)

)
= 1− Tz

(
−tonez,1−α(ν,R),∞,R, ν, δ

)
.

Similar to the global power is the any-pair power i.e., the probability of finding at least one elementary comparison
significant for which the corresponding contrast is truly under the alternative [48]. We can approximate it as

P
(
∃ h ∈ A : |Th| > ttwoz,1−α(ν,R)

)
= 1− Tz∗

(
−ttwoz,1−α(ν,R), ttwoz,1−α(ν,R),R∗, ν, δ∗

)
with z∗ being the number of elementary hypotheses that is under the alternative, R∗ the submatrix of R containing
the elements of R that correspond to the elementary hypotheses under the alternative, and δ∗ the subvector of δ that
contains only the z∗ values referring to the set A = {h : Hh

A : ηh 6= δh}, which is the subset of contrasts that are
truly under the alternative, and 1 ≤ z∗ ≤ z. In case all contrasts are under H0, the any-pair power is set to α. The
expressions for the one-sided analogues are similar to those for the global power.

For practical purposes we suppose the global power is more relevant; it is “contaminated” with elementary type I
errors from contrasts that are truly under the null, but in practice these will be indistinguishable from true effects.

We provide two R functions globalPower and anypairPower to compute these powers in a supplementary file.

3 Simulation study

Proof that the “multiple marginal models” method controls the FWER asymptotically was given in [45], but its
small-sample behaviour is best investigated in simulations. We looked into the type I error rates and powers of the
approximate procedure that uses a multivariate t reference distribution with DF as in 2.3 and 2.4. All simulations were
run in R version 3.1.3 [47], using the add-on packages multcomp [21] for the “multiple marginal models” procedure and
copula [18] for copulas.

3.1 Small-sample test size

We studied balanced settings involving q ∈ {3, 4, 5} randomised treatments, m ∈ {3, 4, 5} repeated measurements, and
nk ∈ {3, 4, . . . , 20} subjects per group, with repeated observations being correlated and heteroscedastic as they would
be e.g., in many longitudinal experiments. Random data for each treatment arm were drawn from an m-variate normal
distribution Nm(µ,Λ) with mean vector µ = (10, . . . , 10) and joint covariance matrix Λ = ABA where B = (ρjj′),

j 6= j′ is an m × m Toeplitz correlation matrix with elements ρjj′ = 1 − |j−j
′|

10
that is pre- and postmultiplied by

A = diag(
√

1,
√

2, . . . ,
√
m). With m = 4, for instance, this generates

B =


1 0.9 0.8 0.7

1 0.9 0.8
1 0.9

1

 and Λ =


1 1.27 1.39 1.40

2 2.20 2.26
3 3.12

4

 .
We simulated 5000 datasets under H0 and carried out many-to-one (Dunnett), all-pairwise (Tukey), and grand-mean
comparisons among treatment means per measured outcome, or among outcome means per treatment group, for two-
sided hypotheses using the “multiple marginal models” method

a) with a multivariate t reference distribution and νmin DF (equal to ν̄ in this case), or

b) with the asymptotic multivariate normal reference distribution,

and checked for each of them whether the smallest adjusted p-value was below α = 0.05.
Figure 1 shows the simulated type I error rates for q = 3 treatments and m = 3 outcomes. When comparing multiple

treatments per outcome measure using the asymptotic method, the realised α can be as high as 12% with nk = 4 and
even 17% with nk = 3. Sample sizes of at least 15–20 are necessary for the test sizes to come reasonably close to the
desired 5%, as suggested by [42]. The small-sample variant using νminj on the other hand keeps the nominal FWER
very well, with only minor α inflation (around 6%) for samples as small as nk = 3.
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Figure 1: Simulated type I error rates for many-to-one, all-pairwise, and grand-mean comparisons among 3 Gaussian
treatment means separately and simultaneously for 3 repeatedly measured outcomes (top row), or among 3 repeatedly
measured Gaussian outcome means separately and simultaneously for 3 treatment groups (bottom row), with nk inde-
pendent subjects per treatment group (5000 simulation runs). The horizontal grey line is at α = 0.05.

When comparing multiple outcome measure per treatment group, the asymptotic test procedure is essentially
unusable, with type I error rates of 50% and more for nk = 3. Even with seemingly reasonable sample sizes like
nk = 20, it is still noticeably liberal with α around 7–9%. In contrast, the small-sample version using νmink keeps the
nominal type I error level very well for nk > 5 or, as in the case of the many-to-one test, is even slightly conservative
with test sizes between 3.5 and 4.5%.

Further simulation results for m, q > 3 are shown in supplementary Figures S1 and S2. We also simulated a
scenario with patient dropout (10% chance of missingness at the last time point, completely at random), but this led
to essentially no worse performance in comparison to complete data (supplementary Figure S3).

3.2 Small-sample power

To assess the power advantage of the multiplicity adjustment using quantiles from a multivariate t reference distribution
in comparison to Bonferroni, we simulated data in a similar way as in 3.1 but no longer under H0. Instead we mimicked
a treatment effect in one treatment group that arises for the last outcome measure only, which is the one with the
largest variance. With q = 3 groups and m = 3 repeated outcomes we now have treatment means µ = (10, 10, 10) for
two outcomes and µ = (10, 10, 10 + δ) for the third outcome, where δ ∈ {0, 0.2, . . . , 4}. We generated 1000 datasets per
δ for nk ∈ {5, 10, 20} and performed two-sided many-to-one, all-pairwise, and grand-mean comparisons of treatment
means per outcome measure, or outcome means per treatment group, using a “multiple marginal models” analysis

a) with a multivariate t reference distribution and νmin DF (equal to ν̄ in this case), or

b) with a Bonferroni-type correction that ignores any correlation between outcome measures.

Figure 2 shows the simulated power curves. We see that the adjustment based on the multivariate t distribution is,
not surprisingly, more powerful than Bonferroni throughout. With nk = 5 the power gain can be up to 15 percentage
points for comparisons of treatment means and even more than 20 percentage points for comparisons of outcome means.
This advantage is somewhat lower as nk increases, but still up to around 10 percentage points for nk = 20 (the steepness
of these curves makes the vertical distances between them look negligible where in reality they are not).

3.3 Small-sample test size for the duplex procedure

We simulated 5000 datasets under H0 as detailed in 3.1 with q = 3 treatment groups and m = 3 repeated measurements
and applied the duplex procedure of 2.4 using
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Figure 2: Simulated powers for many-to-one, all-pairwise, and grand-mean comparisons among 3 Gaussian treatment
means separately and simultaneously for 3 repeatedly measured outcomes (top row), or among 3 repeatedly measured
Gaussian outcome means separately and simultaneously for 3 treatment groups (bottom row), with nk ∈ {5, 10, 20}
independent subjects per treatment group (1000 simulation runs). The horizontal grey line is at α = 0.05.

a) a multivariate t reference distribution with either νmin or ν̄,

b) separate multivariate t reference distributions providing comparison-specific critical values based on comparison-
specific DFs ν1, . . . , νz, or

c) a joint multivariate reference distribution composed of univariate t distributions with comparison-specific DFs,
linked by a normal or t copula (using the average ν̄ for the t copula itself).

Figure 3 shows that the average DF leads to clearly too many rejections of H0, even for sample sizes of nk ≥ 10.
This problem is attenuated with the minimum DF, at the cost of making the procedure slightly conservative. Using
comparison-specific critical values from reference distributions with variable DFs is a compromise that seems to work
well unless the sample size becomes too small (nk < 5). In that case only the copula-based approach maintains FWER
control, but it also has a tendency to be conservative, a little more so with the normal copula than with the t copula.

4 Data example: heart rates

Milliken and Johnson [38] described a placebo-controlled clinical trial that assessed the efficacy of two novel drugs, AX23
and BWW9. 24 women were randomly assigned to one of the active drug arms or control, resulting in three groups of
eight subjects each. The clinical endpoint of interest was the heart rate, measured for each woman at four subsequent
occasions every five minutes. Heart rate patterns over time are quite different among the three treatments (Figure 4).
The rates seem to be slightly decreasing over time for control and BWW9 whereas AX23 leads to much higher rates at
the second and third time point compared to the first and last. The difference between BWW9 and control is relatively
constant over time. We also see that BWW9 exhibits the smallest and control the largest variability at all time points.
Correlations are high between adjacent time points, especially in the control arm, and tend to decrease with greater
separation in time (Figure 5), which translates to the correlations of test statistics shown in supplementary Figure S5.

One research question we can address with this dataset is: which treatments increase the heart rate compared to
control at any particular time point, and by how much? This suggests comparing the treatment arms separately and
simultaneously for each of the four measurement times. Another research goal could be to find out for each treatment
arm whether there are relevant differences of heart rates over time, which calls for comparisons between time points
separately and simultaneously for each treatment. And finally, we can combine both questions into one “claim” that we
investigate whilst controlling a joint type I error rate. The sample size here is clearly too small to rely on asymptotics
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Figure 3: Simulated type I error rates for many-to-one, all-pairwise, and grand-mean comparisons among 3 Gaussian
treatment means separately and simultaneously for 3 repeatedly measured outcomes and among 3 repeatedly measured
Gaussian outcome means separately and simultaneously for 3 treatment groups, with nk independent subjects per treat-
ment group and using average, minimum, or separate comparison-specific degrees of freedom, or a copula-generated
reference distribution (5000 simulation runs). The horizontal grey line is at α = 0.05.
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Figure 4: Heart rate data. Left: individual patient trajectories (dashed) and sample mean trajectories per treatment arm
(solid) of heart rates; right: boxplots.
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Figure 5: Heart rate data: correlation between time points for treatment arms AX23 (left), BWW9 (centre), and control
(right).

[42], thus we make use of the small-sample procedures described in Section 2. R code to reproduce the analyses is
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provided in a supplementary file.

4.1 Comparing multiple drugs simultaneously at multiple time points

Our first question is: when do which active treatments differ (significantly) from control, and by how much? To answer
this we perform many-to-one comparisons of treatment means separately and simultaneously for each of the four time
points. We use νj = 21 as a DF approximation; as the design of the study is balanced, νj is the same for all m marginal
models and hence also the same as νminj and ν̄j . For comparison purposes we include the asymptotic test procedure as
well as a Bonferroni-corrected version that ignores all correlation between time points.

Table 1: Simultaneous inference for the heart rate data: estimated differences of heart rates, standard errors, and adjusted
p-values for many-to-one comparisons of AX23 and BWW9 against control separately and simultaneously per time point.

Estimate SE p(DF) p(asym) p(Bonf)
T1: AX23 - control -2.250 2.762 0.897 0.901 1.000
T1: BWW9 - control 9.000 2.762 0.018 0.007 0.030
T2: AX23 - control 8.125 3.132 0.074 0.047 0.135
T2: BWW9 - control 11.625 3.132 0.007 0.001 0.010
T3: AX23 - control 9.500 2.794 0.013 0.004 0.022
T3: BWW9 - control 7.125 2.794 0.081 0.053 0.149
T4: AX23 - control 2.125 2.859 0.927 0.932 1.000
T4: BWW9 - control 8.750 2.859 0.028 0.014 0.047

The summarised results in Table 1 show that AX23 leads to a significantly increased heart rate only at T3 whereas
the increase in the BWW9 group is significant at all time points except T3—this is where the mean profiles of AX23 and
BWW9 cross paths (Figure 4). The simultaneous 95% CIs in Figure 6 visualise the actual magnitude of the estimated
treatment effects, revealing that even for the significant comparisons the CI bounds are rather close to zero.

T4: BWW9 − control

T4: AX23 − control

T3: BWW9 − control

T3: AX23 − control

T2: BWW9 − control

T2: AX23 − control

T1: BWW9 − control

T1: AX23 − control

−10 0 10 20
Estimated Difference of Heart Rates [1/min]

DF Asymptotic Bonferroni

Figure 6: Heart rate data: 95% simultaneous confidence intervals for many-to-one comparisons of AX23 and BWW9
against control separately and simultaneously per time point. DF: using a multivariate t reference distribution with a
small-sample approximation to the degrees of freedom; asymptotic: using a multivariate normal reference distribution;
Bonferroni: using a Bonferroni adjustment ignoring correlation across time points.

Using the asymptotic normal reference distribution—which is clearly inadequate with so few patients—makes the
adjusted p-values unduly small and the simultaneous CIs too narrow. By contrast, ignoring the correlation and adjusting
with Bonferroni yields unnecessarily large p-values and wide simultaneous CIs.

4.2 Comparing multiple time points simultaneously for multiple drugs

Our second question is: by how much do the heart rates differ across time points within each treatment arm? To this
end we carry out all-pairwise comparisons of time point means separately and simultaneously for each of the three
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treatments. We approximate the DF as νk = 7, which equals both νmink and ν̄k due to the balanced study design.
Again we include the asymptotic test procedure and a Bonferroni version for comparison purposes.

Table 2: Simultaneous inference for the heart rate data: estimated differences of heart rates, standard errors, and adjusted
p-values for all-pairwise comparisons of T1, T2, T3, and T4 separately and simultaneously per treatment group.

Estimate SE p(DF) p(asym) p(Bonf)
AX23: T2 - T1 10.000 1.417 0.002 <0.001 0.004
AX23: T3 - T1 10.500 1.066 <0.001 <0.001 <0.001
AX23: T4 - T1 2.625 1.324 0.504 0.429 1.000
AX23: T3 - T2 0.500 1.673 1.000 1.000 1.000
AX23: T4 - T2 -7.375 1.924 0.056 0.002 0.116
AX23: T4 - T3 -7.875 1.319 0.006 <0.001 0.010
BWW9: T2 - T1 2.250 1.532 0.779 0.799 1.000
BWW9: T3 - T1 -3.125 1.411 0.395 0.280 1.000
BWW9: T4 - T1 -2.000 2.217 0.976 0.988 1.000
BWW9: T3 - T2 -5.375 1.943 0.207 0.073 0.501
BWW9: T4 - T2 -4.250 1.925 0.398 0.283 1.000
BWW9: T4 - T3 1.125 1.544 0.993 0.997 1.000
Control: T2 - T1 -0.375 0.816 1.000 1.000 1.000
Control: T3 - T1 -1.250 1.009 0.884 0.914 1.000
Control: T4 - T1 -1.750 1.613 0.937 0.960 1.000
Control: T3 - T2 -0.875 0.778 0.925 0.951 1.000
Control: T4 - T2 -1.375 1.438 0.967 0.982 1.000
Control: T4 - T3 -0.500 0.891 0.999 1.000 1.000

The heart rate in the AX23 arm is significantly higher at T2 and T3 compared to T1, as well as at T3 compared
to T4, and the comparison between T2 and T4 is just marginally non-significant (Table 2), reflecting the up-and-down
pattern we observed in Figure 4. In particular for the comparisons of T2 and T3 against T1 the simultaneous CI
bounds are far from zero (Figure 7). No significant time effects can be detected for BWW9 or control, whose mean
profiles are relatively constant over time. Again the Bonferroni-adjusted CIs are needlessly wide, and those based on
the asymptotic procedure too narrow.

4.3 Comparing multiple drugs and multiple time points

Finally, we can combine the many-to-one comparisons of treatment groups and the all-pairwise comparisons of time
points into one set of hypotheses to be assessed under joint FWER control. The DF for comparisons among treatments
is νj = 21, and for comparisons among time points it is νk = 7. As there are no missing values, the DF is the same for
all comparisons of each type. We apply the duplex procedure with the three DF approximations discussed in 2.4.

The results of this analysis are summarised in supplementary Table S1 and supplementary Figure S6. Using the
minimum DF νmin = 7 and also the weighted average DF ν̄ = 11 makes the simultaneous CIs for the comparisons
between treatments wider than with separate DFs where νj = 21. For the comparisons between time points, the
simultaneous CIs using νmin and separate νk’s are identical because the DFs are; the intervals using ν̄, however, are
too narrow, but still wider than the asymptotic ones that we included for comparison.

Compared to the previous analyses in 4.1 and 4.2, the larger set of hypotheses makes the simultaneous CIs in
supplementary Figure S6 wider than those in Figures 6 and 7. As a consequence, we can no longer claim that BWW9
raises the heart rate significantly at the first and last time point. This conservatism is the price we pay for controlling
the FWER at 5% over comparisons of treatment arms as well as time points simultaneously, which we have done here
merely for illustrative purposes. In practice one will have to weigh up whether FWER control over a large set of
hypotheses is necessary and meaningful [33].

5 Discussion

The “multiple marginal models” method is extremely convenient for simultaneous inference in repeated-measures or
multi-endpoint settings as it obviates the need for a complicated joint model; instead, a set of much simpler models
are fitted to different portions of the data, and the covariances between parameters from the different models are
subsequently recovered. To make this applicable to small-scale studies as well, we have shown in this paper that using a
multivariate t reference distribution with some appropriate DF yields an approximate procedure that is able to control
the FWER even for sample sizes as small as nk = 5 per treatment arm. Adjusted p-values and informative simultaneous
CIs are readily available in R.

The method allows for comparisons among treatment levels per time point or endpoint, among time points or
endpoints per treatment arm, and even for comparisons of both types within the same “claim” [44] if that is of interest.
Especially for this latter type of comparisons, but also when the data are notably unbalanced, we recommend using
separate DFs per elementary comparison and thereby also making the critical values comparison-specific. They were
shown to work well in our simulations and also by [16] and [15], but are admittedly somewhat ad hoc. As an alternative,
a joint multivariate reference distribution with comparison-specific marginal DFs can be constructed using a normal
or t copula; this ensured FWER control even for very small sample sizes (nk ≤ 5) in our simulations. The minimum
DF is a safe and simple workaround that makes the test procedure at worst a bit conservative. Using the average DF,
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Figure 7: Heart rate data: 95% simultaneous confidence intervals for all-pairwise comparisons of T1, T2, T3, and T4
separately and simultaneously per treatment group. DF: using a multivariate t reference distribution with a small-sample
approximation to the degrees of freedom; asymptotic: using a multivariate normal reference distribution; Bonferroni:
using a Bonferroni adjustment ignoring correlation across time points.

however, is a poor idea as it assigns an unduly large DF to some of the contrasts, thus inflating the size of the overall
maximum test. We wonder if this is also a potential problem in other procedures where DFs are routinely averaged
over—as with lsmeans in R [32] using average Kenward-Roger DFs—but this shall be the object of future studies.
All these considerations would probably become obsolete if one could express a multivariate t density with variable
marginal DFs and arbitrary correlation in closed form, but to date this has only been accomplished for very restrictive
special cases e.g., bivariate with zero correlation [54].

Our procedure will break down with multivariate data where the number of endpoints exceeds the number of
independent experimental units by far. One flexible alternative, especially for such high-dimensional scenarios, is
rotation tests [30]. They have recently gained some attention for applications in high-dimensional gene expression
analysis [4, 63, 5, 56] but are also useful with smaller datasets in low dimensions [31]. Like the “multiple marginal
models” approach, rotation tests do not require any specification of the covariance and provide adjusted p-values as
well as informative simultaneous CIs. Similar to resampling methods, however, they need a large number of replications
for the results to stabilise and become reliable.

We have focused on modelling continuous data here but the “multiple marginal models” method is applicable to
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other data types as well. When the outcome is binary or a count variable, the marginal models are GLMs. We
suppose in this case the asymptotic procedure can be tuned in a similar fashion to the small-sample approximation for
continuous data, by using the residual DFs of the marginal GLMs. The same should be true when the marginal models
are linear mixed-effects models, as in longitudinal multi-endpoint studies [25, 49].

Despite its great flexibility and practical usefulness, two limitations of the “multiple marginal models” procedure
should not go unmentioned: first, it can handle missing data only if they are missing completely at random i.e., the
probability to be missing must depend neither on the observed nor unobserved values [35], whereas missingness at
random is usually sufficient with a joint mixed-effects model. In the presence of missing data, not using a joint model
may entail a slight loss in efficiency, as separate “marginal” models cannot “borrow strength” from one another. And
second, “multiple marginal models” are convenient for obtaining adjusted p-values and simultaneous CIs, but whenever
variance components or random effects are to be estimated and interpreted, only a joint mixed-effects model will serve
the purpose.
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