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Robots with artificial intelligence have made enormous progress in solving complex 36 

cognitive tasks, but when it comes to learning and executing coordinated, smooth, and 37 

complex movements, humans and animals still excel. To ensure consistent skilled 38 

movements, the motor system needs to learn how to control and exploit movement 39 

variability.  40 

 41 

While some movement variability is “noise” that results from stochastic neural and 42 

muscle activity and can reduce task success (Faisal et al., 2008), other movement 43 

variability does not harm performance. For instance, when one is playing tennis, 44 

multiple combinations of movement of the shoulder, elbow, and wrist joint can result in a 45 

successful hit. This abundance of possible movements constitutes “task-irrelevant” 46 

motor variability, so-called because it does not affect successful task completion; the 47 

motor system can, however, exploit task-irrelevant variability to optimize motor 48 

performance (Sternad et al., 2011; Wolpert et al., 2011). Moreover, it can learn through 49 

such variability that certain body positions minimize the impact of unexpected 50 

perturbations and how to flexibly switch to a different movement to compensate for 51 

muscle fatigue or injuries (Latash, 2012). Understanding the neural control of both forms 52 

of movement variability is hence central for the study of human movement control in 53 

health and disease.  54 

 55 

Non-invasive brain stimulation can probe neural sources of motor variability, but current 56 

techniques are limited by relatively poor control over perturbation site and intensity 57 

(Siebner et al., 2009; Horvath et al., 2014). Invasive recordings from implanted 58 

electrodes allow researchers to correlate movement kinematics with neural activity in 59 

small populations of neurons (Churchland et al., 2006; Kaufman et al., 2014), but these 60 

methods are too invasive for use in healthy humans and they do not allow measurement 61 

of simultaneous neural activity from many sites in the brain. In contrast, non-invasive 62 

neuroimaging with fMRI can record the neural correlates of motor variability across the 63 

brain. The blood-oxygen-level dependent (BOLD) signal captured by fMRI reflects the 64 

ratio of oxygenated to deoxygenated blood, which largely depends on energy 65 

consumption by local neural populations and resulting increases in local blood flow due 66 
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to neurovascular coupling, but it is also affected by other, non-neural factors. Potential 67 

methodological concerns for fMRI include the slowness of vascular responses to neural 68 

activity and the presence of non-neural variability (e.g., heart-beat, breathing, and head 69 

motion) that can confound measurements. However, by modelling the delay and 70 

correcting for non-neural noise, fMRI signals can reveal brain activity during fast-71 

evolving behavior like arm reaches.  72 

 73 

In a recent study, Haar et al. (2017b) report intriguing correlations between inter-trial 74 

neural variability (measured with fMRI) and inter-trial movement variability during arm 75 

reaches. They instructed 32 healthy adults to perform out-and-back reaching 76 

movements to near and far target locations using a pen stylus on a digital drawing tablet 77 

while fMRI was recorded. No visual feedback about the endpoint position or trajectory 78 

was provided during or after movements to minimize neural variability stemming from 79 

visual feedback. Hence, subjects did not know whether their reaches were accurate.  80 

 81 

The authors quantified the trial-by-trial neural variability (fMRI variability around 82 

individual mean response) and variability in reach extent, direction, and velocity for each 83 

subject, and they tested whether subjects exhibited consistent magnitudes of neural 84 

variability in multiple cortical motor regions of interest (ROIs) during reaches to different 85 

targets and during reaches with each arm. Neural variability in several motor and pre-86 

motor ROIs in each hemisphere were correlated across reaches to different targets by 87 

the right arm (Fig 5A) and by the left arm (Fig 5B). In addition, variability in the premotor 88 

cortex, superior parietal lobule, and supplementary motor area in each hemisphere was 89 

correlated for right and left arm reaches (Fig. 5C). Taken together, these results indicate 90 

that subjects exhibited consistent magnitudes of neural variability regardless of the arm 91 

used to perform the movements or the target to which they reached.  92 

 93 

To study the neural control of movement variability, Haar et al. tested whether neural 94 

variability was correlated with any of their three measures of movement variability: 95 

reach extent, direction, or velocity. A link between neural variability and movement 96 

variability was found bilaterally in the inferior parietal lobule (IPL), which explained about 97 
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24% of between-subject differences of variability in movement extent (Fig 6). This 98 

finding was corroborated by an exploratory searchlight analysis of the cortical surface. 99 

The searchlight identified additional clusters in a medial area of the superior parietal 100 

lobule (SPL), the precuneus (Fig 7). These results extend previous reports of effector-101 

invariant encoding of movement directions (Haar et al., 2017a) to effector-invariant 102 

encoding of movement variability in the IPL and SPL.  103 

 104 

These results raise a question: why does the motor system involve both hemispheres in 105 

processing movement variability of either arm? One possible reason is that the motor 106 

system integrates knowledge of movement variability across arms to maximize error 107 

reduction and thereby facilitate motor learning. Movement extent variability is critical for 108 

task success and provides a crucial learning signal that has been extensively studied in 109 

perturbation experiments (Wolpert et al., 2011). Encoding movement variability across 110 

both arms may come at a higher computational cost for the motor system, but it allows 111 

both hemispheres to learn from errors made by either limb. Transfer of learning 112 

between hands and limbs has been described in simple and complex motor tasks (Lee 113 

et al., 2010; Dickins et al., 2015), and the IPL and precuneus may facilitate this process. 114 

Furthermore, effector-invariant encoding of reaching directions has been shown in an 115 

identical task for several ipsi- and contralateral cortical motor areas, but barely for the 116 

IPL (Haar et al., 2017a). Together, these findings suggest that the IPL might mainly 117 

encode movement variability during reaching when no task feedback is provided. 118 

However, the function of the IPL (and precuneus) in this task setting remains an open 119 

and intriguing question.  120 

 121 

Another interpretation for the observed bilateral IPL and precuneus activity relates to 122 

processes that were emphasized in the present experiment because of the lack of 123 

visual task feedback. While the interpretation above relies on the role of the IPL in motor 124 

planning and preparation (Cohen and Andersen, 2002), these processes typically 125 

require knowledge of task success from previous motor actions. Without visual 126 

feedback about task success, however, motor planning in the present experiment was 127 

limited. As a result, two other processes likely interacted to guide the reaches subjects 128 
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performed in the experiment: 1) shifting attention towards the action space (informed by 129 

reappearing target locations), and 2) monitoring joint configurations (informed by 130 

proprioception). Haar et al’s findings are in line with the expected neural bases of these 131 

processes: the IPL is critically involved in processing and attending to peripersonal 132 

space (Fogassi and Luppino, 2005), i.e., the action space that immediately surrounds 133 

the body, and the IPL’s role in spatial attention has previously been demonstrated 134 

(Mattingley et al., 1998). Similarly, the precuneus – which receives input from premotor 135 

regions and the IPL (Margulies et al., 2009) – is also involved in shifting spatial attention 136 

between different target locations in the absence of visual feedback (Wenderoth et al., 137 

2005) and updating postural representations of the upper limb during reaching (Pellijeff 138 

et al., 2006). The specific experimental design used in the present study likely recruited 139 

these IPL and precuneus functions; therefore, it remains to be tested whether these 140 

regions also process movement variability when visual feedback is provided.  141 

 142 

Another open question is which brain regions process task-irrelevant variability. The 143 

stylus pen recorded movement data only from the tip and thus only quantified task-144 

relevant variability, but the whole movement required complex coordination in multiple 145 

joints of the arm. Therefore, the same position of the stylus tip may have been executed 146 

using many different joint configurations across trials, leading to task-irrelevant 147 

variability. While task-irrelevant joint variability tends to be larger than task-relevant 148 

endpoint variability for healthy subjects (Wolpert et al., 2011), high task-relevant 149 

endpoint variability dominates when joint control is impaired, e.g. due to stroke (Cirstea 150 

and Levin, 2000). Neural correlates of joint-based control over reaching directions for an 151 

identical task included activity in the IPL and SPL (Haar et al., 2017a). Extending this 152 

work to task-irrelevant variability could yield valuable insights into the neural 153 

mechanisms contributing to both the benefits (Sternad et al., 2011; Wolpert et al., 2011; 154 

Latash, 2012), and challenges (Cirstea et al., 2003) that arise from movement variability 155 

in movement control.  156 

 157 

Haar et al. demonstrate that humans show consistent magnitudes of neural variability 158 

across hemispheres regardless of the movements performed. Additionally, they report 159 
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that bilateral IPL, a key region in motor planning, processes movement extent variability 160 

irrespective of arm use. This suggests that both hemispheres cooperate in controlling 161 

movement extent variability, a metric critical for task success and motor learning. 162 

However, the function of IPL, and the generalizability of findings to tasks that involve 163 

visual feedback and quantify task-irrelevant variability remains to be tested.  164 

 165 

 166 
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