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Abstract 27 

Statistical power is essential for robust science and replicability, but a meta-analysis by 28 

Button et al. in 2013 diagnosed a “power failure” for neuroscience. In contrast, Nord et al. (J 29 

Neurosci 37: 8051-8061, 2017) re-analyzed these data and suggested that some studies feature 30 

high power. We illustrate how publication and researcher bias might have inflated power 31 

estimates, and review recently introduced techniques that can improve analysis pipelines and 32 

increase power in neuroscience studies.  33 
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Many scientific disciplines, including psychology, medicine, and neuroscience currently 51 

suffer from low statistical power, i.e. they have a low chance to detect the effects they 52 

investigate. One of the main reasons for low power are small sample sizes. These usually 53 

contain higher levels of noise and are thus less likely to find an effect. However, if a 54 

statistically significant result is found with a small sample, some researchers tend to believe 55 

that such results must reflect a truly large effect (“what does not kill my effect makes it 56 

stronger”; Loken and Gelman, 2017). This belief is misleading because the increased noise in 57 

small studies makes effect size estimates imprecise and increases their variability (see also 58 

shape of distributions in Figure 1). In fact, significant estimates are often inflated, i.e. much 59 

larger than the true effect size (Loken and Gelman 2017). Recent estimates suggest that for 60 

this reason, more than 50% of published findings in neuroscience are likely to be false 61 

positives (Szucs and Ioannidis 2017): treatments that are reported to work may not work 62 

reliably, genes that are reported to contribute to a phenotype may contribute little, and 63 

conditions that are reported to matter for cognitive processes may only play a marginal role.  64 

 65 

What are the underlying reasons for the high rate of false positives in science articles? 66 

Publication bias is one main reason: significant results are more likely to be accepted for 67 

publication than nonsignificant results (Dwan et al. 2008). Another reason for the high rate of 68 

false positive findings is researcher bias: questionable research practices — such as 69 

generating hypotheses after looking at the data, selecting dependent and control variables 70 

post-hoc, defining data exclusion criteria post-hoc, and reporting results selectively based on 71 

their statistical outcome — can increase the likelihood of false positive results (Munafò et al. 72 

2017). Furthermore, fields that work with high dimensional data, such as produced by brain 73 

signals, require complex “analysis pipelines”. These usually involve numerous pre-processing 74 

and data analysis steps, which often result in many ways to analyze such data. In 75 
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consequence, different analysis pipelines can lead to vastly different analysis outcomes and 76 

interpretations (Carp 2012).  77 

 78 

Questionable research practices have been investigated for different neuroscience fields. For 79 

functional neuroimaging, Carp (2012) demonstrated how exhaustive combinations of possible 80 

pre-processing and data analysis steps results in several thousand unique analysis pipelines. 81 

Their results varied remarkably with regards to brain activation strength, location, and extent. 82 

For event-related potentials (ERPs) in  electrophysiology, Luck and Gaspelin (2017) 83 

demonstrated how the common practice of first selecting time windows based on a test 84 

statistic (e.g. the grand average) and then comparing conditions on the very same statistic may 85 

yield statistically significant, but hardly replicable results. For non-invasive brain stimulation, 86 

Héroux et al. (2017) investigated the prevalence of questionable research practices among 87 

researchers who work with brain stimulation techniques. In their survey, the authors found 88 

that a high proportion admitted to committing questionable research practices such as 89 

selective reporting of outcomes and adjusting statistical analyses to reach significant results. 90 

As we would expect, when researchers tweak analyses to reach significant results, small or 91 

non-existent effects become inflated and appear more reliable in the literature than they really 92 

are.  93 

 94 

To counter questionable research practices and improve replicability, funders and publishers 95 

increasingly urge researchers to adopt more rigorous research practices, including pre-96 

registrations and a-priori power calculations (Munafò et al. 2017). These calls seem timely 97 

given that in 2013, Button et al.'s seminal meta-analysis diagnosed a “power failure” in 98 

neuroscience. However, one remaining question was whether low power affected all of 99 

neuroscience, or only certain subfields.  100 

 101 
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In a study recently published in The Journal of Neuroscience, Nord et al. (2017) re-analyzed 102 

Button et al.'s (2013) data to test whether their sample contained distinct subsets of studies 103 

with different degrees of statistical power. Button et al. reported an alarmingly low median 104 

power of only 0.21, which means that only once in five times, studies could detect the effect 105 

they were investigating. Button et al. performed a “meta-meta-analysis” on all meta-analyses 106 

published in neuroscience in 2011 (N = 49), assuming that all studies stemmed from the same 107 

population of studies. However, while most studies had very low statistical power, the 108 

descriptive statistics in Button et al. suggested that a small proportion of studies had very high 109 

power (Figure 3 in Button et al.). In response, Nord et al. proposed that these studies likely 110 

stemmed from different underlying subpopulations of studies, i.e. the data were 111 

heterogeneous. Nord et al. tested this proposition using Gaussian mixture modelling (GMM), 112 

a technique that fits a pre-specified number of separate normal distributions to an observed 113 

distribution. For heterogeneous data, this method is more informative than a single summary 114 

statistic (such as the median) because GMM can cope with multimodal distributions. For 115 

instance, if a data set featured many low and a few highly powered studies, a median merely 116 

reports that (at least) 50% of these studies feature low power. In contrast, GMM can infer that 117 

a distinct subset of highly powered studies exists and hence allows a more nuanced 118 

interpretation of the data. Nord et al. estimated the power of each single study (N = 730) 119 

based on their sample size and their weighted mean effect size (as reported in the respective 120 

original meta-analysis). They fitted models with different numbers of underlying normal 121 

distributions and determined which model fitted the data best (Figure 2 in Nord et al.).  122 

 123 

Nord et al. indeed found indicators for highly powered studies, thereby challenging Button et 124 

al.’s conclusion that there is a general “power failure” in neuroscience. Foremost, the data 125 

were best described by four underlying normal distributions, one of which covered studies 126 

with very high power. Hence, if interpreted as a single representative number, the median 127 
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power of 0.21 reported by Button et al. was misleading. In fact, over 70% of studies featured 128 

power of less than 0.5 (i.e. less than the chance level of landing heads or tails in a coin toss). 129 

However, their data also suggested that ~13% of studies appeared sufficiently or even highly 130 

powered (> 0.80; Figure 3a in Nord et al.). Moreover, Nord et al. pointed out that in total, 131 

seven meta-analyses found null results. If an effect does not exist, it cannot be detected, and 132 

power is hence not defined. After excluding studies that reported null results, the median 133 

power increased to 0.30. Lastly, the authors investigated the composition of power 134 

distributions for the subfields of genetics, psychology, neuroimaging, treatment, 135 

neurochemistry, and miscellaneous, separately. Notably, these fields work with very different 136 

data types and effect sizes. They found that gene association studies in particular, which 137 

composed one third of the sample, featured mainly very low-powered (<0.2) studies. It should 138 

be noted, however, that this field has formed large consortia to increase power, for instance 139 

ENIGMA and CommonMind
1
. Hence, statistical power for more recently published gene 140 

association studies has likely improved.  141 

 142 

Taken together, Nord et al. seemed to extend Button et al.’s finding, showing that power in 143 

their data set was heterogenous. However, Nord et al.’s analyses were limited by the data 144 

because they included exclusively published studies, which likely reported inflated power 145 

estimates due to publication bias. High power estimates can occur with a) large samples that 146 

can detect small, moderate, and large effect sizes, and b) small samples that can only pick up 147 

large effect sizes—which are likely inflated estimates of small effects. The probability that a 148 

reported power estimate reflects truly high power (case a) can be inferred from three 149 

assumptions (Szucs and Ioannidis, 2017): 1) Only few effects are truly large, but many are 150 

                                                 
1 ENIGMA (Enhancing Neuro Imaging Genetics Through Meta Analysis) is a network of researchers in 

neuroscience imaging genomics http://enigma.ini.usc.edu/). CommonMind is a public-private partnership that 

pursues projects within and outside of neuroscience (http://sagebase.org/research-projects/the-commonmind-

consortium/).  

http://enigma.ini.usc.edu/
http://sagebase.org/research-projects/the-commonmind-consortium/
http://sagebase.org/research-projects/the-commonmind-consortium/


MAY THE POWER BE WITH YOU   7 

 

 

small; 2) in typical, small samples, small effects can only become significant if they are 151 

inflated (Loken and Gelman 2017); and 3) significant effects are more likely to be published 152 

(publication bias). This effect is also illustrated in Figure 1. Small sample sizes result in 153 

larger variability and hence a broader distribution (see red distribution) compared to large 154 

sample sizes (see green distribution). Assuming publication bias and a true effect size of d = 155 

0.30 (often considered a moderate effect size), small studies with significant results 156 

overestimate the true effect more than large studies with significant results. Therefore, among 157 

the studies published and included in meta-analyses, there will be more studies that 158 

overestimate effect sizes—and hence create the illusion of high power—than studies that 159 

estimate effect sizes accurately. 160 

 161 

Altogether, in the presence of publication and researcher bias, large reported effects (and 162 

power estimates) are more likely to reflect small effects that are inflated than truly large 163 

effects. Therefore, such biases cannot only distort the estimates of single studies but might 164 

even lead to overestimations in meta-analyses. Crucially, both Button et al. as well as Nord et 165 

al. focused on sample size as the sole determinant of power. However, besides using larger 166 

samples, choosing more efficient analysis techniques can also increase power. In the 167 

following paragraphs, we will review recent developments in model-based (multilevel 168 

models) and model-free (machine learning) approaches that allow for a more efficient data 169 

usage.  170 

 171 

How can neuroscientists solve their power problem? First, they can improve their power 172 

calculations. Researchers should calculate power before data collection and specify their 173 

smallest effect size of interest (SESOI; Lakens et al. 2018). They should neither rely on effect 174 

sizes reported in the literature, which are often inflated, nor on effect size estimates from 175 

small-sample pilot studies, which vary largely (Figure 1, red distribution) and might thus 176 
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severely underestimate the sample size required for adequate power. In contrast, SESOIs 177 

require that researchers specify the smallest effect size they consider worthwhile 178 

investigating. SESOIs may vary between different fields and hypotheses. For instance, 179 

translational researchers may use minimal clinically important differences (MCIDs) for an 180 

outcome variable to power intervention studies. Taken together, researchers who work with 181 

SESOIs are more likely to conduct adequately powered studies.  182 

 183 

In addition to using larger sample sizes, researchers can also employ repeated-measures 184 

designs to increase power, e.g. by collecting multiple measures of the same individual and 185 

analyzing data with multilevel models (also called "hierarchical models" or "mixed effects 186 

models"; Aarts et al. 2015): Often, experiments yield so-called nested data, e.g., recordings of 187 

multiple trials performed by the same subject or nerve cells from the same cell colony. Data 188 

points from the same source are on average more similar than data points from different 189 

sources. Hence, the error terms of data points from the same source are correlated, and the 190 

assumption of independent observations is violated. Traditional approaches account for this 191 

structure by aggregating across trials and performing statistical tests on the average responses 192 

of subjects. However, these approaches reduce meaningful within-subject variance, which 193 

decreases power and makes tests more susceptible to unbalanced designs, missing data, and 194 

outliers. In contrast, multilevel models can fit the effects of experimental manipulations for 195 

each subject separately (random effects), as well as for the entire sample (fixed effects). By 196 

“shrinking” estimates of individual subjects to values closer to the group-level mean (Aarts et 197 

al. 2015), multilevel models decrease the influence of outliers and account for regression to 198 

the mean, resulting in more robust estimates. Thereby, the use of multilevel models can 199 

decrease the rates of false positive findings and increase replicability.  200 

 201 
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Lastly, with noisy measurements, observed effects are likely to be small, but more efficient 202 

pipelines can increase power. For instance, novel real-time optimisation techniques can 203 

increase the quality of neuroimaging recordings as well as effect sizes in cognitive or 204 

behavioural tasks during data acquisition. A recently introduced machine learning technique 205 

enables algorithms to learn a stimulus-brain response relationship and adaptively choose 206 

stimuli or conditions based on the subject’s individual brain responses ("Neuroadaptive 207 

Bayesian optimisation"; Lorenz et al. 2017). Researchers may for example investigate which 208 

cognitive tasks can optimally disambiguate activity between overlapping, yet distinct brain 209 

networks. The algorithm will explore a given set of experimental paradigms and learn which 210 

stimuli can best disambiguate between the networks. In a similar way, real-time optimisation 211 

can be applied in other contexts to yield more efficient experimental parameters. For instance, 212 

in brain stimulation studies, an optimisation algorithm can learn which subject-specific 213 

frequency and intensity settings yield large brain responses (Lorenz et al. 2017). Moreover, 214 

real-time optimisation can help to fulfil pre-specified data quality standards. For instance, 215 

head motion can corrupt fMRI data, however, real-time optimisation algorithms can flexibly 216 

adapt sequences to minimize the proportion of images with inacceptable head-motion. Taken 217 

together, real-time applications allow researchers to optimise their parameters of interest and 218 

minimise the impact of noise. Lastly, since real-time experiments require that researchers 219 

specify the search space and parameters in advance, they can effectively reduce researcher 220 

bias.  221 

 222 

In conclusion, Nord and colleagues have complemented Button et al. by demonstrating how to 223 

detect heterogeneity in meta-analytic data. They have suggested that some neuroscience 224 

studies may be highly powered. However, this NeuroForum article argues that high power 225 

estimates found in the current literature are more likely to stem from overestimations of small 226 

effects—driven by publication and researcher bias—than from truly adequately powered 227 
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studies. We have presented three approaches that can help neuroscientists to improve power 228 

without increasing sample size. Once researchers specify SESOIs for adequate power 229 

analyses, use more efficient analysis techniques, and pre-register their hypotheses and 230 

analyses, published effect size and power estimates will become more credible and the 231 

literature less biased. Future neuroscience meta-analyses could benefit from Gaussian mixture 232 

modelling as used by Nord et al., for example when monitoring how the above-mentioned 233 

developments impact replicability in neuroscience. As this technique can detect differences 234 

within a set of studies, it may help identify the factors that are most effective in increasing 235 

power.  236 

 237 

 238 

 239 

240 



MAY THE POWER BE WITH YOU   11 

 

 

Acknowledgements 241 

We thank Dr. Chris Chambers, Dr. Paul Hanel, Robert Thibault, and Dr. Rhian Barrance for 242 

helpful comments on a draft of this article. 243 

Grants 244 

Johannes Algermissen is supported by a PhD studentship from Radboud University. David 245 

M.A. Mehler is supported by PhD studentship from Health and Care Research Wales 246 

 (HS/14/20). 247 

Disclosures 248 

The authors declare no conflicts of interest. 249 

 250 

 251 

 252 

 253 

 254 

 255 

 256 

 257 

 258 

 259 

 260 

 261 

 262 

 263 

 264 

 265 

 266 



MAY THE POWER BE WITH YOU   12 

 

 

References 267 

Aarts E, Dolan C V, Verhage M, van der Sluis S. Multilevel analysis quantifies variation in 268 

the experimental effect while optimizing power and preventing false positives. BMC Neurosci 269 

16: 94, 2015. 270 

Button KS, Ioannidis JPA, Mokrysz C, Nosek BA, Flint J, Robinson ESJ, Munafò MR. 271 

Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev 272 

Neurosci 14: 365–376, 2013. 273 

Carp J. On the Plurality of (Methodological) Worlds: Estimating the Analytic Flexibility of 274 

fMRI Experiments. Front Neurosci 6: 149, 2012. 275 

Dwan K, Altman DG, Arnaiz JA, Bloom J, Chan A-W, Cronin E, Decullier E, 276 

Easterbrook PJ, Von Elm E, Gamble C, Ghersi D, Ioannidis JPA, Simes J, Williamson 277 

PR. Systematic review of the empirical evidence of study publication bias and outcome 278 

reporting bias. PLoS One 3: e3081, 2008. 279 

Héroux ME, Loo CK, Taylor JL, Gandevia SC. Questionable science and reproducibility 280 

in electrical brain stimulation research. PLoS One 12: e0175635, 2017. 281 

Lakens D, Scheel AM, Isager P. Equivalence testing for psychological research: A tutorial. 282 

Adv. Methods Pract. Psychol. Sci. (2018). doi: 10.1007/s11947-009-0181-3. 283 

Loken E, Gelman A. Measurement error and the replication crisis. Science (80- ) 355: 584–284 

585, 2017. 285 

Lorenz R, Hampshire A, Leech R. Neuroadaptive Bayesian optimization and hypothesis 286 

testing. Trends Cogn Sci 21: 155–167, 2017. 287 

Luck SJ, Gaspelin N. How to get statistically significant effects in any ERP experiment (and 288 

why you shouldn’t). Psychophysiology 54: 146–157, 2017. 289 

Munafò MR, Nosek BA, Bishop DVM, Button KS, Chambers CD, Percie du Sert N, 290 

Simonsohn U, Wagenmakers E-J, Ware JJ, Ioannidis JPA. A manifesto for reproducible 291 

science. Nat Hum Behav 1: 21, 2017. 292 



MAY THE POWER BE WITH YOU   13 

 

 

Nord CL, Valton V, Wood J, Roiser JP. Power-up: a reanalysis of “power failure” in 293 

neuroscience using mixture modelling. J Neurosci 37: 3592–16, 2017. 294 

Szucs D, Ioannidis JPA. Empirical assessment of published effect sizes and power in the 295 

recent cognitive neuroscience and psychology literature. PLOS Biol 15: e2000797, 2017. 296 

 297 

 298 

 299 

 300 

 301 

 302 

 303 

 304 

 305 

 306 

 307 

 308 

 309 

 310 

 311 

 312 

 313 

 314 

 315 



MAY THE POWER BE WITH YOU   14 

 

 

Figure captions 316 

Figure 1: Distribution of sample estimates of a small effect either in large studies (green 317 

distribution) or in small studies (red distribution). Shaded areas indicate reported effects if 318 

only significant results are reported (publication bias). When there is a true effect of d = 0.30 319 

(cyan vertical line), most studies (80%) with large samples will detect it and yield a 320 

significant result for effect size estimates > 0.21 (shaded in green). In contrast, studies with 321 

small samples can only detect it for effect size estimates > 0.42, and thus only a small fraction 322 

(30%) will detect the effect (shaded in red). In the presence of strong publication bias, small-323 

sample studies only get published when they yield a significant result. Such studies will 324 

always overestimate the true effect (indicated by the lack of an overlap between the red 325 

shaded area and the cyan vertical line) and will do so to a greater extent than large published 326 

studies (see difference between green and red vertical line). The following parameters were 327 

used to create the figure: The small sample size (N = 25) is based on 0.30 power to detect an 328 

effect of Cohen’s d = 0.30. Power of 0.30 is equivalent to the median power in neuroscience 329 

found by Nord et al. after excluding null results from meta-analyses. The large sample size (N 330 

= 90) is based on a hypothetical statistical power of 0.80, which is a value that is often 331 

recommended. Shown are results for a one-sample two-sided t-test at an alpha level of 0.05.  332 
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