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Summary 

Most epidemiological studies concerning multidrug resistance (MDR) or extensively 

drug resistance (XDR) emphasise the prevalence of resistance in clinical settings 

whereas environmental contamination is often ignored a topic of increasingly great 

concern, especially in low middle-income countries (LMICs). This thesis reports on 

the prevalence and associations of carbapenemases and extended spectrum b-

lactamases (ESBLs) in clinical and environmental settings in and the effects of 

climate factors and local hospital cleaning regimes on the XDR rate in post-surgical 

infections. Furthermore, I attempted to restore sensitivity to carbapenem antibiotics 

by introducing peptide nucleic acid (PNA) as an alternative therapy. 

A preliminary study of environmental samples isolated from Karachi, Pakistan 

demonstrated the presence of New Deli Metalo-β-lactamase (blaNDM) and cefotaxime 

β-lactamase (blaCTX-M-15) in animal’s faeces, insects, hospital surface and drinking 

water. Similarly, the environmental (insect and hospital surface) and clinical (surgical 

wound) samples from Peshawar, Pakistan revealed very high rates of blaNDM, blaCTX-

M-15 and Oxacillin β-lactamase (blaOXA-48)- like. Additionally, strains with similar 

restriction length polymorphism (REP) profiles and STs (sequence types) were 

recovered from environmental and clinical samples indicating their possible spread 

across clinical and environmental sectors.  

In the Peshawar study, the collected in winter were shown to carry more resistance 

compared to summer.  However, the cleaning regime had no significant association 

with the carriage of resistance.  
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Finally, it was attempted to use PNA to inhibit the expression of carbapenemases. 

However, despite exhibiting antimicrobial properties when targeted to the acyl carrier 

protein gene (acpP), PNA was unable to restore the sensitivity of resistant strains to 

carbapenem antibiotics.  

The current work herein contributes to the understanding that contaminated touch 

surfaces may play an essential role in the transfer of MDR bacteria, whereas insects 

may be a key vector in their dissemination across distant niches. Such holistic 

studies are crucial in determining the role of atypical environmental co-factors in 

contributing to the increased resistance dissemination in LMICs. 
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1.1. Antibiotics and the Emergence of Resistance  

 

1.1.1. The Discovery of Antibiotics 

The discoveries of Salvarsan, in 1910, and Prontosi, in 1935, are documented as the 

earliest events in the commencement of antimicrobial chemotherapy for bacterial 

infectious diseases. However, the mass production of penicillin and streptomycin in 

the 1940s can be regarded as a real breakthrough in establishing the golden era of 

antibiotics discovery (Jayaraman 2009; Aminov 2010).  Antibiotic use dramatically 

reduced the rate of infectious diseases and the associated mortality and morbidity. It 

is perceived that penicillin alone is responsible for saving approximately 200 million 

people (Fernandes 2006). However, it was soon realized that exposing bacteria to 

antimicrobials results in the development of resistance which could compromise the 

drug efficiency. Eventually, multiple resistance mechanisms started to emerge and 

spread rapidly. To overcome the resistance, modification to the existing antibiotics 

and some synthetic antibiotics such as fluoroquinolones were introduced. New 

bacterial cell targets were also identified and multiple metabolic pathways were 

targeted (Figure 1). However, none of the synthetic derivatives, as well as the natural 

compounds, were able to sustain its antimicrobial properties effectively and as the 

number of antibiotics increased, the resistance mechanisms also increased in 

parallel (Fernandes 2006; Aminov 2010). Furthermore, the emergence MDR (a 

bacterial strain resistant to more than one antimicrobial agent), and more recently 

XDR (resistant to multiple antimicrobial agents and likelihood of becoming resistant 

to almost all approved antimicrobial agents), complicated an already alarming 

situation (Walsh and Toleman 2012; Lewis 2013). 
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1.1.2. Anthropology of Antibiotic Resistance  

Owing to the benefits seen with antibiotics, they have been used widely all over the 

world (Orzech and Nichter 2008; Aminov 2010). Several developed nations quickly 

introduced prescription policies, especially the UK and Sweden. However, this is not 

true for all developed nations, for example Greece, and there is no or little control on 

the consumption of antibiotics in the third world countries. The extensive use of 

antibiotics has contributed to the pharmaceuticalisation of the global health (Orzech 

 

 

Figure 1. The target and mechanism of antibiotics. The image above shows the 

different targets of antimicrobials within a bacterial cell and its derivatives. Reproduced 

with permission (Rasheed 2006). 
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and Nichter 2008). This is detrimental for the efficiency of antibiotics as it 

encourages greater unnecessary use and, as a consequence, aids in the 

development of antibiotic resistance (WHO 2015a). Lack of knowledge and 

understanding is also a contributing factor. Antibiotics are often deemed as an 

instant remedy to improve symptoms of other unrelated conditions with no need for 

antibiotic therapy. Again, this is especially true for developing countries where a 

general lack of knowledge, in addition to the availability of unprescribed “over the 

counter” antibiotics, is exerting an unnecessary selection pressure on the bacteria. 

Furthermore, the environment has also been contaminated extensively by using 

antibiotics in veterinary, agriculture, aquaculture and farming (Quintela-Baluja et al. 

2015). There has been no restriction on limiting or reserving some antibiotics 

exclusively for human use and, as a result, resistance could arise due to extensive 

use in other veterinary, agriculture and food industry which may circulate to distinct 

environments and eventually colonize humans (Wang et al. 2017). Over the years 

several resistance mechanisms have emerged, and spread globally, leading the 

world into a post-antibiotic era, where once treatable common infections and minor 

injuries could now lead to fatal consequences (Clatworthy et al. 2007; WHO 2013a). 

The continuous increase in drug resistant pathogens and decreased production of 

new antibacterial agents are key contributory factors. The pharmaceutical companies 

have somewhat lost their interest in the discovery and development of new 

antimicrobials. It is estimated that the development of a new antibiotic takes about 

seven to ten years and it takes the same time for bacteria to generate a considerable 

resistant population which decreases the efficiency of the drug (Clatworthy et al. 

2007; Lewis 2013). Most antibiotics in use today have the resistance mechanisms 

already distributed around the world. In addition, conventional drug discovery 
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methods are proving to be ineffectual and, over the last 30 years, no major new 

class of antibiotics have been developed (Figure 2) (WHO 2013a). Recently a new 

class of antibiotic, (teixobactin) has been developed (not shown in the figure below) 

which is active against Gram-positive bacteria only and inhibits cell wall synthesis by 

binding to a highly conserved region of peptidoglycan teichoic acids in the cell wall. 

However, teixobactin is only active against Gram-positive bacteria and is not 

effective against Gram-negative bacteria (Ling et al. 2015).  

 

 

Figure 2. Timeline of antibiotic development and the emerging resistance. The 

image shows the timeline for the clinical antibiotics’ introduction. Since 1987 a discovery 

void has been observed and no new class of antibiotics have been introduced in the 

market. Image copied from (WHO 2013a). 
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1.1.3. Resistance Mechanisms and Transfer  

Several mechanisms may produce a resistance phenotype such as changes in the 

permeability of the bacterial cell wall to restrict the access of the active compound in 

to the cell, efflux pumps to discharge the antibiotic out of the cell, enzymatic 

modification of the antibiotic, degradation of the antimicrobial agent, acquisition of 

alternative metabolic pathways, modification of antibiotic targets and overproduction 

of the target enzyme (Van Hoek et al. 2011). Resistance can also be inherited or 

intrinsic. Intrinsic resistance is the inherited innate ability of bacterial species to 

withstand the activity of a drug. It is independent of selective pressure and present 

among pathogens as well as environmental bacteria (Blair et al. 2014).  

Gram-negative bacteria are intrinsically more resistant to certain antibiotics than 

Gram-positive bacteria due to the presence of an additional outer membrane 

providing an extra layer of protection and limiting the entry of some compounds 

(Denyer and Maillard 2002; Holmes et al. 2016a). Smaller hydrophilic molecules can 

pass through by diffusion with a size limit of < 600 Da whereas the entry of large or 

hydrophobic molecules is either restricted completely or 50-100 times slower than for 

Gram-positive bacteria; for example, vancomycin, a 1500 Da hydrophilic glycol-

peptide antibiotic inhibiting peptidoglycan crosslinking in the periplasm of Gram-

positive bacteria, is ineffective against Gram-negative bacteria due to its large size 

(Denyer and Maillard 2002; Blair et al. 2014).  

Intrinsic mechanisms enable bacteria to proliferate in a competitive environment with 

no link to previous antibiotic exposure. In contrast, acquired resistance arises 

through mutations in the genes or by gene acquisition which render bacteria 

resistant to a previously susceptible antibiotic (Holmes et al. 2016a). Mutations are 
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rare events in nature occurring at approximately 1 × 10−3 per genome per 

generation. However, once established successfully, they can persist in the 

organism and passed on by direct descent (Lee et al. 2012). Furthermore, they may 

transfer from one species to another by horizontal gene transfer (HGT) via mobile 

genetic elements (MGE) such as plasmids, transposons and integrons (Bennett 

2008; Van Hoek et al. 2011).  

1.1.4. Horizontal Gene Transfer of Plasmids, Integrons and Other Mobile 

Genetic Elements 

HGT is the transfer of foreign DNA between different bacterial species. It is 

responsible for much of the plasticity observed between strains and has been linked 

to the evolution of species. Large sections of DNA can be acquired over a short 

period of time creating remarkable diversity. Comparing whole genomes of 

Escherichia coli revealed that the genome consists of approximately 5000 genes, 

3100 of which constitute the core genome (genes found in all E. coli genomes) 

whereas the others are accessory genes (genes found in some strains). However, 

for one E. coli only 10% of the genes are present in the pan-genome (all genes 

found in the species tested) (Land et al. 2015).  

Although challenging the neo-Darwinian paradigm, HGT has an important role in the 

evolution of different species-specific features and characteristics such as 

antimicrobial resistance and virulence traits. Yet, once acquired, “natural selection” 

can select the genes providing survival advantage and spread across to the other 

organisms (Boto 2010). The movement of antimicrobial resistance (AMR) via HGT in 

the population provides a genetic pool with easy access for the acquisition and 

propagation of the preferred genes. Nevertheless, AMR has caused  a paradigm 
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shift since the discovery of HGT of plasmids and other mobile genetic elements 

(MGEs) (Darmon and Leach 2014). 

1.1.4.1. Conjugation, Transformation and Transduction 

Bacteria use three main mechanisms for the exchange of DNA between cells: 

namely conjugation, transformation and transduction. All these mechanisms are not 

restricted to one MGE and some may use more than one mechanism to successfully 

transfer DNA. In addition, all of them have contributed to the acquisition and spread 

of AMR. Plasmid transfer by conjugation is, by far, the most superior mechanism 

found in bacteria. However, integrative and conjugative element (ICE) transfer is the 

most common mechanism of HGT and has extensively contributed to the 

development of MDR acquisition and transfer (Holmes et al. 2016a). Plasmids are 

extra-chromosomal genetic material with the ability to replicate autonomously and 

control their copy number to ensure constant inheritance. They have been classified 

according to their replicon (Carattoli 2009). Plasmids depends on their host for the 

regulation of replication and maintenance. They usually carry other non-essential 

genes that code for certain characteristics and features that may be useful in 

exploiting specific environmental conditions; for example resistance to antibiotic and 

toxic heavy metals (Gullberg et al. 2014). The classification scheme for plasmids is 

based on their replicon and their ability to maintain stable conjugation. Plasmids with 

the same, or closely related, replicons cannot be maintained together in a bacterial 

cell and are therefore termed as incompatible. However, the above statement is not 

entirely true and a few base pair mutations in the replicon region can result in the 

maintenance of same or closely related Inc group plasmids in the same cell 

(Toleman and Walsh 2011).  
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Plasmids can have a narrow host range or can be promiscuous, with a broad-host-

range, with the ability of HGT between species from different genera. Although the 

role of plasmids in AMR spread is undisputable, promiscuous plasmids are regarded 

as very important tools in the HGT of AMR among different bacterial kingdoms 

(Toukdarian 2004; Carattoli et al. 2012). Some plasmids, termed as conjugative, are 

capable of self-transfer and carry genes required for conjugation, whereas 

mobilisable plasmids lack genes required for self-transfer but can use conjugative 

plasmids mate-forming machinery for horizontal transfer (Ramsay et al. 2016). Mate-

pairing is initiated by the transfer gene which encodes the ‘coupling protein’ through 

a characteristic secretion type IV pilus formation. A single stranded nucleoprotein 

complex, termed a relaxosome, is formed by nicking the plasmid DNA at the origin of 

transfer by a relaxase enzyme (Holmes et al. 2016a). The relaxosome is transferred 

via pilus across the host cell membrane into the recipient and the complementary 

strands are synthesised in both cells (Figure 3). (Frost et al. 2005; Darmon and 

Leach 2014). Plasmids are often seen to reduce the fitness of the host and costly to 

maintain in the cell in the absence of selection pressure. Therefore, they are usually 

maintained in the cells in the presence of selection pressure. However, once a 

favourable environment (without selection pressure) is achieved, the plasmid may be 

lost from the new cells (Gullberg et al. 2014). 

Other MGE such as ICE and conjugative Transposons (Tns) also use conjugation for 

DNA transfer (Holmes et al. 2016a). Tns and ICE are normally integrated into the 

host chromosome but can also initiate conjugation upon excision whereby the DNA 

is nicked and a single strand is transferred. Integrative and mobilisable elements 

(IMEs) lack the conjugation machinery but, like conjugative deficient plasmids, IMEs 
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also depend on the conjugation machinery of other MGEs for transfer (Blair et al. 

2014).  

Transformation is the uptake of free DNA from the environment which is then 

integrated into the new host (Blair et al. 2014). Some cells can be naturally capable 

of transformation, termed as “naturally competent”, whereas others only become 

competent under certain physiological conditions. The DNA acquired by 

transformation is incorporated into the host chromosome or plasmid by 

recombination and, therefore, it can only incorporate a slightly different form of the 

same gene and is an insignificant vehicle for HGT. Unlike transformation, 

transduction is virus, bacteriophages or phage mediated transfer of host DNA from 

one cell to another (Figure 3). The life cycle of a bacteriophage involves a lytic and 

lysogenic cycle (Lin et al. 2017). The lytic cycle uses the host machinery to replicate 

and releases new phages until triggering a lysogenic cycle, in which the phage DNA 

is integrated into the host chromosome as a prophage. The phage DNA is replicated 

along the host DNA and eventually excised to undergo lytic cycle.  Random host 

DNA packaging during lytic cycle is termed as generalised transduction whereas 

specific nearby DNA packing during lysogenic cycle is termed specialised 

transduction. Generally, bacteriophages are very specific and usually can only 

invade a single or a few strains of a given species. Therefore they are not very 

important for HGT as can only transfer a gene from one strain of E. coli to exactly the 

same strain (Frost et al. 2005; Seed 2015).  
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Figure 3. Mechanisms involved in HGT between bacterial cells. The image 

represents examples of HGT mechanisms; Transduction of phages (1), Conjugation 

of plasmid (2) and Transposition of integron gene cassettes (3). Reproduced with 

permission from (Frost et al. 2005). 

 

1.1.4.2. Integrons 

One of the important events in the HGT of Gram-negative AMR is regarded as the 

construction of class 1 integrons. It is believed to be a “three-step”, one-off 

evolutionary event that gave rise to the basic structure of the class 1 integron of 

today.  Initially, the class 1 integrase, and its attachment site, were captured by 

Tn5090/Tn402 transposon which attached to a fused qacE (quaternary ammonium 
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disinfectant resistance gene cassette) and sul1 (sulphonamide resistance) to form 

the 3’ conserved segment (3’CS). This was subsequently followed by the fusion of 

insertion sequence common regions-1 (ISCR1) to the 3’ CS of qacEDsul1 providing 

a structure equipped with sophisticated machinery to capture and carry gene 

cassettes by site-specific recombination and play a central role in the carriage and 

dissemination of AMR (Toleman and Walsh 2011). Integrons are composed of a 

gene encoding for integrase (IntI), a recombination site (attI) and a promoter (Pc) 

(Deng et al. 2015). Gene cassettes are independent mobile units which contain an 

open reading frame (ORF) and a recombination site (attC) and are integrated into 

integrons by a site-specific recombination event between the attI site of the integron 

and the attC sites of the cassette. Excision of gene cassettes occur through a site-

specific recombination event between two attC sites (Figure 4) (Vinué et al. 2011). 

Different types of integrons have been identified; however, class 1 integrons have 

received the most attention due to their increased association with AMR (Diene and 

Rolain 2014).  

An integron may carry multiple resistance genes to various antibiotics.  (Deng et al. 

2015). Since the gene cassettes are generally promoter-less, they are transcribed 

from the Pc promoter. Different variants of Pc promoters have been identified and 

the location or distance from the genes has been shown to influence the strength of 

transcription (Jové et al. 2010; Wozniak and Waldor 2010). Although class 1 

integrons are deficient in initiating their own transfer, they can be acquired by other 

MGEs for subsequent transfer (Diene and Rolain 2014). Other type of integrons such 

as superintegrons are described as chromosomal integrons and are very large, non-

mobile elements accounting for approximately 3% of the host genome. 

Superintegrons usually carry genes (minimum array of 20) encoding for proteins 
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involved in a cell’s environmental interaction. However, not all genes are expressed 

and the Pc promotor can only induce the expression of a few genes based on the 

proximity from the promotor and most of the genes remain silent (Darmon and Leach 

2014).  

 

Figure 4. Class 1 integron gene. The figure shows schematic representation of the 

class 1 integron structure  and the process involved in the integration and excision of 

gene cassette (Davies 2007).  

 

1.1.4.3. Transposons, ISs and ISCRs� 

Transposons are termed as the jumping gene systems that can carry a variety of 

genes including AMR. They can move between plasmids and bacterial 

chromosomes and generally do not require DNA homology with the insertion sites 

(Darmon and Leach 2014). Transposons can be divided into composite and unit 

transposons. Unit transposons carry genes involved in transposition in addition to 
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other genes such as antibiotic resistance. Composite transposons are formed by 

insertion sequences (IS) flanking a section of DNA or gene (Dortet et al. 2014). IS 

are short DNA sequences with one or two ORFs usually coding for proteins required 

for transposition. Both IS and transposons are flanked by inverted repeats which, 

upon insertion into the host cell, can generate direct repeats (Dortet et al. 

2014).They can have profound effects by inactivating, interrupting or altering the 

expression of adjacent genes upon insertion into a sequence. Furthermore, the 

presence of multiple transposons in high number in one cell could lead to genetic 

information loss by recombination events and increase the mutation. Therefore, 

some transposons use transposition immunity to limit the number of transposons to 

two copies per cell; for example, Tn3. However, increasing chances of mutation can 

be beneficial in certain circumstances, especially if the mutation provides a growth 

advantage in the presence of selection pressure; for example, IS26 with no 

transposon immunity. The early distribution of blaSHV gene from the chromosome of 

K. pneumoniae was attributed to the resistance gene acquisition by IS26. It is 

believed that IS26 inserted on both sides of the resistance gene mobilising it on a 

plasmid to distribute among different strains and species (Toleman and Walsh 2011).  

In some cases, IS may contribute to altering the expression of a gene by inserting 

partial or full -35 promoter sequence (Darmon and Leach 2014). For example, 

ISAba125 is commonly seen to enhance the expression of blaNDM-1 by providing a -

35 sequence motif of the promoter for blaNDM-1 gene (Dortet et al. 2014). A different 

kind of transposition, termed as one-ended transposition, is also shown to be a 

powerful gene movement tool as it only requires one IS moving adjacent to the gene 

of interest to initiate transposition (Toleman and Walsh 2011). 
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Other transposable elements such as ICEs and ISCR are also associated with the 

acquisition and spread of AMR genes. ICEs are capable of transposition as well as 

conjugation (Garneau-Tsodikova and Labby 2015; Holmes et al. 2016a). ISCR, on 

the other hand, shares similarities with IS91 and has gained a lot of attention due to 

the movement of gene clusters on plasmids and chromosomes. However, unlike IS 

and other Tns, ISCR do not contain IR but rather they have definite sequences 

involved in initiation and termination of movement found at either end of the element 

ie ori and ter sequences and movement is mediated by rolling circle replication. 

Occasionally the ter sequence is not recognised and in these cases replication and 

movement events mobilise several genes adjacent to the ter sequence. In ISCR1 the 

ter sequence is missing entirely and, in this case, the ISCR normally mobilises 

adjacent sequences and can produce variant forms of the class1 integron called 

extended class one integrons (Toleman et al. 2006; Toleman and Walsh 2010). 

ICEs are vastly more common than plasmids and chimeric i.e. formed by the fusion 

of a bacteriophage and a conjugative plasmid. They contain genes that behave both 

like bacteriophages and insert in the host chromosome for replication, and like 

plasmids and transfer to other cells through conjugation (Toleman and Walsh 2011; 

Zakharova and Viktorov 2015). Multiple ICEs have been identified carrying a vast 

array of AMR genes and, among them, one of the most detailed is the SXT/R391 

family.  SXT carries genes encoding resistance to sulphamethoxazole and 

trimethoprim and was initially identified in isolates of Vibrio cholera that were causing 

cholera endemic in India in 1992. Since then, SXT elements are commonly found in 

all clinical V. cholera serovars in Asia (Ryan et al. 2016). ICEs, typically, have three 

distinct modular structures which carry genes for integration and excision, 

conjugation, and regulation. The SXT/R391 family contains gene modules closely 
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related to that of IncA/C plasmids. This includes the shared similarity between the 

location and the amino acid sequence of the transfer genes and many other genes of 

unknown function, implying a common ancestor for both ICE and IncA/C plasmid. It 

is suggested that the insertion of a phage into the IncA/C backbone most probably 

gave rise to the early SXT/R391 ICE family (Toleman and Walsh 2011). SXT/R391 

has 52 core genes which are highly conserved among the family. However, inter-ICE 

recombination events are frequent at the “hot-spot” regions. As a result, different 

variants are formed with various genes encoding for the antibiotic and heavy metal 

resistance among the many other functions (Zakharova and Viktorov 2015; Ryan et 

al. 2016).  
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1.2. Antibiotic Resistance  

 

1.2.1. Antibiotic Inactivating Enzymes 

Resistance mechanisms are usually defined as active or passive. Passive resistance 

mechanisms are independent of the selective pressure, for example the outer 

membrane of Gram-negatives, whereas active resistance can arise as a response to 

a specific evolutionary pressure to antibiotics, for example efflux pumps membrane 

proteins pumping antibiotic resistance out of the cell, modification of the antibiotic 

target and synthesis of antibiotic destroying enzymes. Antibiotic inactivation 

enzymes act on a specific molecule through hydrolysis or chemical group transfer 

(Blair et al. 2014). 

Multiple variants of enzyme-catalysed drug inactivating agents have been identified 

producing resistance to different classes of antibiotics including β-lactams, 

aminoglycosides and macrolides. The enormous family of b-lactamases has 

thousands of variants, some of which can hydrolyse multiple different classes of β-

lactam antibiotics such as penicillins, cephalosporins, carbapenems and 

monobactams (Nordmann 2014; Woodford et al. 2014). Other common clinical 

antibiotics such as aminoglycoside, chloramphenicol, Rifamycin and Fosfomycin are 

usually inactivated by enzymes through the addition of a chemical group to the 

susceptible sites of antibiotics (Spanogiannopoulos et al. 2012; Castañeda-García et 

al. 2013; Garneau-Tsodikova and Labby 2015). 

Rifamycins are broad-spectrum antibiotics that target b-subunit of bacterial RNA 

polymerase. Resistance usually arises by amino acid mutation in the target. 
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However, enzymatic inactivation of the drug occurs through group transfer 

mechanisms of glycosylation, ADP ribosylation and phosphorylation, 

phosphotransferases and glycosylation (Spanogiannopoulos et al. 2012). Similarly, 

resistance to fosfomycin could occur through enzymatic inactivation by FosA, FosB 

or FosX which follows the same mechanism of adding a chemical group to inactivate 

the antibiotic but differ from each other by using different substrates to conduct the 

task (Castañeda-García et al. 2013). On the other hand, Chloramphenicol resistance 

is most often associated with the presence of chloramphenicol acetyltransferases. All 

these classes of enzymes are evolutionarily diverse and evolved by multiple genetic 

mutation events fuelled by the presence of selection pressure (Garneau-Tsodikova 

and Labby 2015).  

 

1.2.2. Resistance to Aminoglycosides  

Since 1943, aminoglycosides (AG) have been used widely as effective broad-

spectrum antibiotics against life threatening conditions of Gram-negative and Gram-

positive bacteria such as plague, tularemia, brucellosis and endocarditis (Ramirez 

and Tolmasky 2011). They can bind to the 30s subunits of RNA constraining the 

subunit assembly and inhibiting protein translation. Like most antibiotics, AG are 

derived from a natural source (actinomycetes) and hence the resistance exists in the 

environment. However, several other mechanisms have evolved, for example, 

inactivation of AGs by aminoglycoside modifying enzymes (AMEs), mutations of the 

ribosome by methyltransferase enzymes (RMTases), cell membrane impermeability 

by lipid modification and the formation of efflux pumps (Figure 5) (Doi et al. 2016). 
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AMEs are also commonly associated with β-lactam resistance and hence, limit the 

therapeutic options considerably (Garneau-Tsodikova and Labby 2015). 

 

 

Figure 5. Mechanisms involved in AG resistance. The diagram is a schematic 

representation of the different intrinsic and acquired resistance mechanism to AG 

resistance. Reproduced from (Ramirez and Tolmasky 2011) with permission from 

the Centre National de la Recherche Scientifique (CNRS) and The Royal Society of 

Chemistry. 

 

1.2.2.1. Ribosomal Mutation Ribosomal methylation 

The first plasmid encoded RMTases gene, RmtA, was discovered in Japan from a P. 

aeruginosa strain in 1997 which was followed by subsequent identification of other 
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acquired genes displaying less than 30% sequence similarity to intrinsic naturally 

occurring RMTases in actinomycetes (Garneau-Tsodikova and Labby 2015). This 

suggests a possible evolution event occurring, not very recently, to give rise to 

RMTases enzymes. These enzymes can provide resistance by methylation of the 

16S rRNA AG-binding site. They are further divided based on the position of the 

nucleotide they methylate: ArmA, RmtA, RmtB, RmtC, RmtD1, RmtD2 RmtE, RmtF, 

RmtG and RmtH methylate at the N7 position of nucleotide G1405 whereas NpmA 

methylate at the N1 position of A1408 (Galimand et al. 2012; Zhang et al. 2017). 

Currently, RmtB and ArmA are the most prevalent RMTases and have spread to 

various locations around the world. Interestingly, aminoglycosides are usually 

transferred with other ESBLs and carbapenmase genes and are commonly found on 

the same MGE (Doi et al. 2016). 

 

1.2.2.2. AG Modifying Enzymes 

AME are the most common type of resistance against AG. They are divided into 

three main families based on their mode of action, such as aminoglycoside 

phosphoryltransferase [APH], aminoglycoside acetyltransferase (AAC), and 

aminoglycoside nucleotidyltransferase (ANT) or also known as aminoglycoside 

adenytransferase (AAD) (Zhang et al. 2017). The nomenclature is somewhat 

confusing and two main systems exist. One of them uses a three-letter identifier 

based on the activity and amino acid position of enzyme modification. Additionally, 

for sub-classification, some may add further information such as a roman number to 

identify the resistant profile and lower-case letter as a unique identifier. For example, 

aac(6′)- ia represents N-acetyltransferase with acetylation activity at position 6′ and 
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an identical resistance profile to aac(6′)-i enzymes (Doi et al. 2016; Zhang et al. 

2017). Another system uses the gene name followed by a capital letter for 

modification site and a number as a unique identifier. For example, aacB is AME 

catalysing AG at position 6 and ANTs catalysing AME at position 6 is ANT(6) 

(Ramirez and Tolmasky 2011). For the purpose of this thesis the first nomenclature 

explained above will be used.  

Among the AME, aac family of acetyltransferase enzymes consisting of aac(1), 

aac(2’), aac(3) and aac(6’) is the most widely spread across the globe providing 

resistance against tobramycin, netilmicin, kanamycin, amikacin and gentamicin 

(Zhang et al. 2017). The genes are frequently isolated from Gram-negative species 

of Acinetobacter, Enterobacteriaceae and Pseudomonas and commonly associate 

with MGE such as plasmids and integrons. Among them, aac(6′) class of enzymes is 

the most common and clinically relevant type. In pseudomonas species aac(6′)-Ib is 

frequently identified as a gene cassette within class 1 integrons (Ramirez and 

Tolmasky 2011; Garneau-Tsodikova and Labby 2015). Similarly, the genes 

responsible for adenylation of aminoglycosides by ANT or AAD enzymes, providing 

resistance against gentamycin and streptomycin, also exist as gene cassettes and 

are commonly carried on plasmids and transposons (Doi et al. 2016). For example, 

aadA type gene aadA15 is frequently found fused to the 3′ end of blaOXA-10. On the 

other hand, aac(6′)-Ib is usually integrated within integrons carrying other ESBLs and 

more specifically CTX-M genes (Ramirez and Tolmasky 2011). Other AME enzymes, 

APH, possess inactivating phosphorylation activity against aminoglycosides such as 

kanamycin, neomycin and streptomycin. Although most of APHs are rarely found in 

clinical isolates, they are mostly associated with transposons and frequently 

manipulated as a molecular biological tool. For example, APH enzymes aph (3')-II, 
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aph(6)-Ic and aph(3′)-IIa or aphA-2 are associated with transposon Tn5 and aph(3′)-

Ia or aphA-1 is part of Tn903 transposon (Zhang et al. 2017). Similarly, aphA-1, 

aphA-2 and aph(6)-Ic are widely used as resistance marker genes in cloning vectors 

(Garneau-Tsodikova and Labby 2015). 

1.2.3. β-Lactamases 

b-Lactam antibiotics were the first antibiotics introduced in clinical settings with 

broad-spectrum activity and they are still the major component of modern anti-

infective medicine.  They act on bacterial cell walls which are composed of 

peptidoglycan strands with peptide side chains cross linked by penicillin binding 

proteins or trans peptidases. Trans-peptidases are also a substrate for b-lactam 

antibiotics and, upon binding with the antibiotics, they form inert enzyme 

intermediates, resulting in halting the cell wall synthesis and eventually cell lysis 

occurs (King et al. 2012). All b-lactam antibiotics have a common four membered b-

lactam (four membered cyclic amide) ring attached to different functional groups 

which is regarded as fundamental for establishing the range of activity for a drug. 

Alteration in attached functional groups led to the production of different varieties of 

b-lactam antibiotics, many with broad-spectrum activity and valuable clinical use. 

Therefore, since their introduction, b-lactams antibiotics have been used widely and 

consequently resistance developed and spread rapidly (King et al. 2012; Zeng and 

Lin 2013). Resistance may arise by multiple mechanisms including the decreased 

expression of outer membrane proteins, efflux pumps and changes in the active site. 

However, the production of b-lactamases that bind to PBPs and hydrolyse the 

antibiotic is by far the most common mechanism of resistance found (Holmes et al. 

2016b). Phylogenetic analysis, based on the sequence homology, revealed that β-
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lactamases and the PBPs share a common ancestor. It has also been observed that 

b-lactamases can interact with both b-lactam antibiotics and trans-peptidases. 

However, the hydrolysed or inactivation of the antibiotic is much faster than the 

trans-peptidase enzymes (Zeng and Lin 2013; Meini et al. 2014). 

Various b-lactamases have been identified and they are generally grouped using two 

classification systems. The Ambler system is based on the amino acid sequence 

homology whereas the Bush classification scheme uses biochemical and functional 

characteristics to group b-lactamases (Queenan and Bush 2007). The mechanism of 

hydrolysis is not completely understood but class A, C and D contain an active 

serine residue whereas class B metalo-b-lactamases (MBL) contain an active zinc 

residue which is believed to be involved in the hydrolysis of the β-lactam ring (Meini 

et al. 2014).  

 

1.2.4. ESBLs: An Introduction  

Antibiotic resistance to the first b-lactam antibiotic, penicillin, was identified in 1940 

even before its introduction in clinical practice in 1945. Chain and Abraham noticed 

that an enzyme extract from E. coli was capable of destroying the properties of 

penicillin (Abraham and Chain 1940). In 1940, the mortality rate due to bacterial 

infections was huge with one clinical study from Boston reporting over 80% death 

due to bacteraemia associated with S. aureus (Skinner and Keefer 1941). However, 

the introduction of penicillin saw a reduction in bacterial infections and, as a result, 

penicillin use increased which led to the spread of plasmid mediated transferable 

resistance and ESBLs (Tumbarello et al. 2012). The most well-known first ESBLs 
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were derived from TEM-1 (named after the patient its isolated from, Temoniera) and 

SHV-1 (for sulphydryl variable). While SHV-1 was chromosomally encoded, TEM-1, 

being on a plasmid, was soon transferred to other species of bacteria (Datta and 

Kontomichalou 1965; Brun-Buisson et al. 1987). After the introduction of oxyimino-

cephalosporins in the 1980s, SHV and TEM variants, expressing resistance to these 

expanded-spectrum b-lactam antibiotics, started to emerge and spread rapidly due 

to the presence of the resistance gene on the plasmids (Kliebe et al. 1985; Sirot et 

al. 1987; Paul et al. 1989). ESBL enzymes provide resistance against penicillin, first, 

second, and third-generation cephalosporins, and aztreonam (but not the 

cephamycins or carbapenems) and are inhibited by b-lactamase inhibitors such as 

clavulanic acid (Vasoo et al. 2015).  

 

1.2.4.1. CTX-M General Characteristics and Properties  

Among all the ESBLs, CTX-M is by far the most important public health concern 

because of its dramatic spread over a very short period. Although being carried by 

multiple species, the acquisition of blaCTX-M by pathogens such as K. pneumoniae 

and E. coli was the most important event. It’s not only limited to nosocomial 

infections but spread to the community and frequently isolated from the environment 

and animals (Pitout and Laupland 2008). CTX-M ESBLs only share 40% identity with 

other ESBLs of TEM and SHV. Both SHV and TEM ESBLs arose from point 

mutations in their progenitor genes whereas CTX-M enzymes originated from 

several different Kluyvera species (Sirot et al. 1987; Bradford 2001). Some of the 

chromosomally encode cefotaximases from Kluyvera spp. such as KLUA-2, c-CTX-

M-2, c-CTX-M-3 from K. ascorbata, KUUY-1, KLUG-1 and c-CTX-M-78 from K. 
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georgiana and c-CTX-M-37 and KLUC-2 from K. cryocrescens show 87.6-100% to 

plasmid encoded blaCTX-M genes and, hence, each cluster can be traced back to its 

progenitor gene of Kluyvera spp. (Zhao and Hu 2013). So far, CTX-M enzymes have 

been classified into 7 clusters based on amino acid sequence homology, namely 

CTX-M-2 (16 members), CTX-M-3 (42 members), CTX-M-8 (3 members), CTX-M-14 

(38 members), CTX-M-25 (7 members), CTX-M-64 (2 members) and CTX-M-45 

containing only one member (Zhao and Hu 2013; Lahlaoui et al. 2014). All members 

of the clusters are also very similar and share more than 95% of the sequences 

(Lahlaoui et al. 2014). 

 

1.2.4.2. Epidemiology and Genetics 

Shortly after their introduction in the mid 1980s, there was some sporadic incidence 

of CTX-M associated outbreaks in UK, Argentina, China and Europe, mainly 

associated with K. pneumoniae and E. coli (Radice et al. 2002; Brenwald et al. 2003; 

Livermore and Hawkey 2005). However, they are the most common type of ESBL 

isolated nowadays and spread across the whole world in many different species of 

Enterobacteriaceae. Yet, E. coli and K. pneumoniae remain the most prevalent 

blaCTX-M carriers. Surprisingly, different variants of blaCTX-M  show an association with 

various geographical locations; however, blaCTX-M-15 is the most dominant type 

worldwide (Figure 6) (Zhao and Hu 2013). The immense spread of blaCTX-M is 

mainly attributed to its genetic plasticity and acquisition by a pathogenic strain of E. 

coli, ST131. The gene is linked with an upstream ISEcp1 which, besides providing a 

promotor for its increased expression, also facilitates transposition to integrons and 

mobile plasmids predominantly IncF group (FIA, FIB and FII) plasmids. These 
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plasmids are exclusive to the family of Enterobacteriaceae and mostly associated 

with E. coli (Lahlaoui et al. 2014). Since F plasmid is thought to have low fitness 

cost, it may maintain the antibiotic resistance gene even in the absence of selection 

and, as a result, may persist even in the absence of selection pressure and 

contribute to the increased distribution (Woodford et al. 2011; Zhao and Hu 2013). 

The first ISEcp1 associated blaCTX-M-15 was isolated from a hospital in New Delhi in 

1999 and since then has been commonly detected in many other epidemiologically 

prevalent CTX-M enzyme variants such as 1, 3, 10, 13, 14, 15, 17, 19, 24, 27, 32, 

54, 62 (Zhao and Hu 2013; Hawkey 2017)  

CTX-M type enzymes are widely spread across the world and certain geographical 

locations are represented by a very large prevalence rate; for example,in countries of 

Asia and specifically South-East Asia, the Middle East and Africa. The immense 

spread of blaCTX-M in those regions is mainly attributed to inefficient sewage 

infrastructure, sanitation and public health facilities (Hawkey 2017). CTX-M enzymes 

have contaminated the environment and have also been isolated from animal and 

food sources (Zhao and Hu 2013; Hawkey 2017). The prevalence rate has increased 

considerably since the first identification and a large number of the human population 

carry blaCTX-M in their gut, serving as reservoirs. India alone represents approximately 

60% of faecal carriage for blaCTX-M-15  in the community (Woerther et al. 2013). 

Population dynamics are also believed to have a role in the worldwide distribution of 

CTX-M genes.  A study by Tham et al. demonstrated that travelling to those regions 

can result in the acquisition of blaCTX-M compared to travel inside Europe. For 

example, 78% patients returning from India, 50% from Egypt and 22% from Thailand 

were carrying ESBLs compared to 3% of the patients who had travelled in Europe. 
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Among those ESBLs, 90% of the genes were of CTX-M type belonging to Group 1 

and followed by Group 9 (Tham et al. 2010). 
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Figure 6. The spread of most common variants of CTX-M enzymes in different regions of the world. The map shows the 
distribution of the most prevalent CTX-M enzyme variants around the world. CTX-M-1 is most prevalent in Italy, Libya and Russia; 
CTX-M-2 in South America and South Africa; CTX-M-3 in Japan, South Africa and Poland; CTX-M9 in Spain and England; CTX-M-
14 in Canada and South-East Asia; CTX-M-15 in Europe, USA, Middle-East and India. Map created with Mapchart.net and the data 
derived from (Zhao and Hu 2013; Lahlaoui et al. 2014).
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1.2.4.3. Clinical Significance 

CTX-M enzymes are presented as efficient hydrolytic agents of cefotaxime with 

MICs in the range of 64 µg/ml. Aztreonam MICs are usually variable and although 

ceftazidime MICs are generally in the susceptible range of 2-8 µg/ml, some might 

show higher MICs of up to 256 µg/ml (Zhao and Hu 2013). Furthermore, it is not 

uncommon that some organisms may exhibit an altered antibiotic profile due to the 

presence of other ESBLs producing enzymes such as SHV and TEM or AmpC-type 

b-lactamases or even insensitivity to inhibitor due to the loss of membrane porins 

(Livermore 2012; Vasoo et al. 2015). Theoretically, a combination of antibiotic and 

inhibitor or quinolones for the treatment would be recommended; however, they are 

not advised due to the increased risk of treatment failure. blaCTX-M containing 

plasmids may also carry multiple resistance genes against other antibiotics. For 

example, in the UK, an E. coli ST131 strain containing blaCTX-M-15, also carries 

resistance to other antibiotics such as aminoglycosides (aac6’-Ib-cr, aadA5), 

macrolides (mph(A)), chloroamphenicol (catB4), tetracycline (tet(A)), trimethoprim 

(dfrA7) and sulfonamide (sul1) resistance and other b-lactamases such as blaOXA-1 

and blaTEM-1 (Woodford et al. 2011; Zhao and Hu 2013).  A study in Sweden on 198 

E. coli showed that 68% percent of the blaCTX-M  isolates were resistant to several 

other non-b-lactam antibiotics such as trimethoprim, trimethoprim–sulfamethoxazole, 

ciprofloxacin, gentamicin, and tobramycin (Balkhed et al. 2013). Therefore, due to 

the possibility of therapeutic failure, carbapenems, and more specifically 

meropenem, is regarded as the treatment of choice. As a result, an increase use of 

carbapenem antibiotics is observed which in turn is giving rise to the widespread 

dissemination of carbapenemases (Laxminarayan et al. 2013). 
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1.3. Carbapenemases 

 

1.3.1. Carbapenamases: An Introduction  

Carbapenem antibiotics retained good activity against all ESBLs for over 20 years 

and, even now, most ESBL-associated infections rely on carbapenem for their 

treatment. However, the extensive use and abuse of carbapenem is fuelling the 

spread of carbapenem resistance in the form of drug inactivating carbapenemases. 

Currently, carbapenemases are distributed worldwide and KPC, NDM MBL, OXA-48 

and Verona integron-encoded (VIM) MBL remains to be the most common types 

(Kitchel et al. 2009; Kumarasamy et al. 2010). Although, all carbapenemases can 

hydrolyse penicillin, 1st and 2nd generation cephalosporin and carbapenem, their 

activity differs by the variable hydrolysis profile to the 3rd and 4th generation 

cephalosporin and inhibition by b-lactam inhibitors. For example, class B MBLs such 

as NDM and VIM type enzymes can generally hydrolyse all b-lactam antibiotics, 

except aztreonam; class A KPCs can hydrolyse all b-lactam antibiotics but are 

inhibited by clavulanic acid; class D oxacillinases of OXA-48 type can hydrolyse all 

b-lactam antibiotics except 3rd and 4th generation cephalosporin and show partial 

activity against carbapenem and no inhibition by b-lactamase inhibitors 

(Kumarasamy et al. 2010; Nordmann 2014). However, the differential antibiotic 

profiles may be represented by a minority of resistant strains in vivo as they are 

usually accompanied by other genes such as blaCTX-M and AMpc-type b-lactamases 

providing resistance to the otherwise sensitive strain. Additionally, like CTX-M, 

carbapenemases are also commonly associated with other non-β-lactams antibiotic 
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resistance such as quinolones and aminoglycosides and, hence, the treatment 

options are very limited (Livermore 2012; Nordmann 2014).  

 

1.3.2. General Characteristics and Properties of OXA Type Carbapenemases  

The first carbapenem-hydrolysing oxacillinase gene, blaOXA-23, was reported from 

Edinburgh in the United Kingdom in 1985. This was soon followed by scattered 

reports of other carbapenem hydrolysing OXA enzymes from Europe (Scaife et al. 

1995). Based on sequence homology alone, class D carbapenemase genes can be 

divided into different clusters with, blaOXA-48 -like genes being the most significant 

(Evans and Amyes 2014). The blaOXA-48 gene was initially identified from a K. 

pneumoniae isolate recovered from a patient in Istanbul, Turkey (Poirel et al. 2004). 

The resistance gene was carried on a plasmid and showed greater amino acid and 

structural homology with other non-carbapenem hydrolysing oxacillinase genes 

(Laurent et al. 2004). Structural crystallography of the OXA-48 enzyme revealed that 

the carbapenemase activity is a result of minor conformational changes in the active 

site region causing changes in the tertiary structure and thus creating a favourable 

hydrophilic environment for the hydrolysis of carbapenems  (Docquier et al. 2009). 

However, very little carbapenem resistance is observed when only blaOXA-48 is 

responsible and a preferential greater activity against imipenem is recorded (Poirel et 

al. 2004). Over the years, other variants of blaOXA-48 have been reported such as 

blaOXA-162, blaOXA-163, blaOXA-181, blaOXA-199, blaOXA-204, blaOXA-232, blaOXA-245 and blaOXA-

247. Usually, the variations involve only a few amino acid substitutions and the 

enzymes have similar hydrolytic profiles which also includes blaOXA-181 However, 

blaOXA-163  shows very weak carbapenem hydrolysis (Docquier et al. 2009; Poirel et 
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al. 2011) and shows a more similar hydrolytic profile to ESBLs which is usually 

represented by greater activity against ceftazidime, aztreonam, cefotaxime and 

cefepime (Poirel et al. 2004). Among all variants of OXA-48 type carbapenemases, 

blaOXA-48 and blaOXA-181 have been distributed worldwide and commonly isolated from 

Acinetobacter and Enterobacteriaceae species, mainly K. pneumoniae and E. coli 

(Evans and Amyes 2014). 

 

1.3.2.1. Epidemiology and Genetics 

Like blaCTX-M , blaOXA-48 variants also show geographical associations,for example 

blaOXA-48 is frequently isolated in European countries especially France, UK, 

Germany, Belgium and Turkey, the Middle East and North African countries 

whereas, blaOXA-181 is more prevalent in Asia specifically India, China Pakistan and 

Bangladesh (Figure 7) (Lee et al. 2016). The acquisition of blaOXA-48 and blaOXA-181 by 

a single plasmid may have contributed to its worldwide spread, predominantly in 

Enterobacteriaceae (Scaife et al. 2012). Usually, blaOXA-48 and blaOXA-181 are carried 

by a 62.3 kb IncL/M-type plasmid, pOXA-48a. The gene itself sits on a composite 

transposon and can be flanked by various types and combinations of insertion 

sequences which might aid in its mobilization and may also provide a promoter for 

stronger gene expression (Poirel et al. 2004; Aubert et al. 2006). For blaOXA-48, three 

different combinations are identified such as Tn199 (flanking of blaOXA-48 by IS99 on 

both sides), Tn199.2 (IS1R inserted upstream of IS1999 or Tn199.3 (IS1R flanking 

IS1999 upstream and downstream of blaOXA-48 (Laurent et al. 2004; Aubert et al. 

2006; Giani et al. 2012). The chimeric IS1R/IS1999 element provides a hybrid 

promoter believed to be responsible for a slightly stronger hydrolysis of imipenem 
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compared to the other variants (Carrër et al. 2008). On the other hand, other blaOXA-

48 variants have shown an association with additional insertion sequences, for 

example, blaOXA-163 gene is commonly associated with ISEcl4 element whereas 

blaOXA-181, blaOXA-204 and blaOXA-232 genes are associated with different arrangements 

of ISEcp1 elements (Potron et al. 2011; Potron et al. 2013).   
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Figure 7. The prevalence of OXA-48 like carbapenemases around the world. The Map shows the countries where OXA-48 like 
enzymes are more prevalent. It is most commonly spread in India, Turkey, Morocco and Tunisia. Frequent outbreaks occur in 
Senegal, Spain, France, Netherland, Germany and Russia whereas sporadic appearances have been reported in Algeria, Libya, 
Switzerland, UK, Ireland, Oman, Greece, Israel, Jordan and Kuwait. Map created with Mapchart.net and the data derived from 
(Nordmann 2014).
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1.3.2.2. Clinical Significance 

The past few years have seen a gradual increase in the occurrence of OXA-48-like 

enzymes. There has been multiple outbreaks of blaOXA-48 and blaOXA-181 mostly in 

European countries such as Turkey, United Kingdom, France Spain, Netherland, 

Belgium and Germany (Poirel, Potron, et al. 2012; Evans and Amyes 2014; Lee et 

al. 2016). Perhaps one of the reasons for this could be the difficulty in detection of 

these enzymes due to the reduced susceptibility to carbapenem and, in some cases, 

greater resistance to carbapenem and broad spectrum cephalosporin due to the co-

existence of OXA-48 enzymes with other ESBLs (Evans and Amyes 2014). This 

phenomenon of blaOXA-48 carrying bacteria presents a complicated scenario where its 

detection becomes difficult. It is also believed that the variable carbapenemase’ 

activity could lead to underestimating the actual prevalence rate of these enzymes 

and the genes may be present at a higher frequency than anticipated. This also 

makes treatment very difficult and appropriate therapy would demand a much more 

thorough analysis on case-by-case basis. For treatment of blaOXA-48 associated 

infections, carbapenem is not regarded as a suitable therapy but rather a 

combination therapy of non-carbapenem antibiotics and 3rd or 4th generation 

cephalosporin is advised. However, since blaOXA-48 is commonly co-expressed with 

other ESBLs, the treatment options are very limited and a different combination of 

antibiotics in addition to β-lactam inhibitors is advised (Dautzenberg et al. 2014; 

Bakthavatchalam et al. 2016).   
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1.3.3. General Characteristics and Properties of KPC-type Carbapenamases  

The first report of KPC-1 enzymes emerged from North Carolina, USA in 1996 from 

a K. pneumoniae isolate (Yigit et al. 2001). These enzymes were carried on plasmids 

and were always associated with K. pneumoniae. However, by 2005, the spread of 

blaKPC extended throughout North America and started to appear in the other regions 

of the world (Bratu et al. 2005). Additionally, KPC did not remain limited to K. 

pneumoniae but also disseminated into other Enterobacteriaceae such as 

Citrobacter freundii, E. coli, Enterobacter aerogenes, Enterobacter cloacae, 

Enterobacter gergoviae, Klebsiella oxytoca, Proteus mirabilis, Salmonella enterica, 

Serratia marcescens and non-Enterobacteriaceae such as P. aeruginosa, 

Pseudomonas putida and Acinetobacter spp. (Arnold et al. 2011). However, K. 

pneumoniae and E. coli remain the most commonly isolated blaKPC carriers. 

Currently, there are 24 variants of KPC enzymes which differ by a few amino acids in 

the sequences (blaKPC-1 and blaKPC-2 are identical) (www.lahey.org). The antibiotic 

hydrolysis profiles of different variants are similar and are generally characterized 

based on their ability to hydrolyse penicillin, cephalosporin, aztreonam, carbapenem 

and inhibition by clavulanic acid (Pitout et al. 2015). The structure of KPC enzymes 

also shows similarities to SHV-1 and very subtle changes in the active site are 

responsible for generating carbapenemase activity (Nguyen et al. 2016). Although, 

blaKPC variants are not very strong contenders of carbapenem hydrolysis, they are 

still considered a major health risk because they can often go undetected by routine 

screening, have a potential to spread and might also co-exist with other resistance 

mechanisms. Furthermore, they are often associated with nosocomial spread and 

outbreaks (Lee and Burgess 2012; Lee et al. 2016). 
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1.3.3.1. Epidemiology and Genetics 

Among all the variants of KPC, blaKPC-2 and blaKPC-3 are the most prevalent types. 

The first 10 years of the 21st century saw a rapid increase in KPC enzymes, at least 

in America. According to a report by CDC, the prevalence of KPC associated 

nosocomial infection in a New York, USA based medical centre increased from 9% 

in 2002 to 18% in 2004 and 38% in 2008 (Bratu et al. 2005; Kitchel et al. 2009). They 

have spread across multiple geographical locations; with endemicity in USA, 

Columbia, Brazil, Greece, Argentina, Italy and Chia (Figure 8) (Albiger et al. 2015). 

More recently, the highest prevalence rate is recorded in Greece where, according to 

the Greek surveillance system, the occurrence of KPC associated bacteraemia is at 

40% on a national level.  However, certain cities may represent a lower or higher 

prevalence rate depending on the population (Munoz-Price et al. 2013). For 

example, higher frequencies of up to 65% were recorded in the two larger teaching 

hospitals of Athens and Patras, Greece where the predominant strain was identified 

as ST258 (Giakkoupi et al. 2011; Albiger et al. 2015). Indeed, ST258 is associated 

with the successful spread of KPC enzymes and is usually the most dominant strain 

type frequently isolated in outbreaks (Pitout et al. 2015). A study report published in 

2009 by CDC analysed the molecular epidemiology of KPC-producing K. 

pneumoniae isolates that were received in a period of 12 years (1996-2008) from 18 

states of America, Israel and India. Their results suggest 70% of the KPC K. 

pneumoniae belonged to ST258 lineage and were carried on a variety of plasmids 

which were transferrable to E. coli (Kitchel et al. 2009; Livermore 2012). 

Furthermore, the gene is usually carried on a Tn4401, which has been shown to be 

capable of transposition at higher frequencies (Cuzon et al. 2011). The KPC gene is 

sandwiched between the two insertion sequences, ISKpn6 and ISKpn7, which are 
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flanked by target site duplications on both sides (Diene and Rolain 2014). This 

genetic scaffold structure of blaKPC is generally conserved and considered to have 

played an important role in its dissemination (Naas et al. 2008; Nordmann 2014). 

Moreover, the blaKPC plasmids can be easily transferred to other Gram-negative 

organisms and may carry genes responsible for providing resistance to other non-b-

lactam antibiotics such as quinolone (QnrA and QnrB) and aminoglycoside (rmtB) 

and, therefore, challenging antibiotic therapy (Lee and Burgess 2012; Zhou et al. 

2015). 
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Figure 8. Distribution of KPC carbapenemases around the world. KPC-producing K. pneumoniae are endemic in USA, 
Colombia, Brazil, Argentina, Italy, Greece, Poland and Israel. Sporadic spread is observed in China, Taiwan, Canada, Spain, 
France, Belgium and Netherlands. All other regions, highlighted in yellow, have reported individual cases of KPC. Map created with 
Mapchart.net and the data derived from (Lee et al. 2016).
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1.3.3.2. Clinical Significance 

blaKPC is associated with a high mortality rate and presents a very serious health 

problem which is on the rise globally (Albiger et al. 2015; Lee et al. 2016). KPC 

enzymes are difficult to detect due to the heterogeneous antibiotic hydrolysis profile 

either caused by KPC or the presence of other resistance mechanisms or genes. 

Additionally, the routine automatic detection systems are reported to be problematic 

which further complicates the issue. Any misinterpretation or delay in the therapy can 

contribute to increased chances of treatment failure (Lee et al. 2016).  A surveillance 

study in 2005, analysing outbreaks in two hospitals in Brooklyn, USA, observed a 

mortality rate of 47% with blaKPC associated bacteraemia (Bratu et al. 2005). Further 

studies have shown similar mortality rates such as 41.6 % in Italy, 65% in Greece, 

42.9% in Brazil and 50% in Israel (Borer et al. 2009; Tumbarello et al. 2012; 

Fraenkel-Wandel et al. 2016; Rossi Gonçalves et al. 2016). Although it is evident 

that certain factors contribute to the increased mortality rate such as being immuno- 

compromised or having underlying medical conditions, long medical stay, 

transplantation, mechanical ventilation and previous antibiotic treatment (Lee and 

Burgess 2012). However, prompt actions to properly diagnose and treat blaKPC 

associated infections are essential to reduce mortality and morbidity (Munoz-Price et 

al. 2013). A comparison of different cases in the literature by Lee and Burges 

showed that combination therapy may be the treatment of choice for blaKPC 

associated infections since increased treatment failures were observed with 

monotherapy of carbapenem (60%) and polymyxin (73%) and comparatively good 

results (25% treatment failure) were achieved with a combination therapy regime 

with carbapenem (carbapenem with polymyxin/aminoglycosides/+b-lactam inhibitor) 
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or polymyxin (polymyxin with carbapenem/aminoglycosides or combination 

tigecycline and colistin (Lee and Burgess 2012). 

 

1.3.4. General Characteristics and Properties of NDM-type Carbapenamases 

NDM-1 enzyme was described for the first time in 2009 from a Swedish patient of 

Indian origin who was hospitalized in Sweden returning from New Delhi, India. (Yong 

et al. 2009). Shortly after, it was detected from different sites in India, Pakistan, 

Bangladesh and 17 hospitals in the UK and the region was termed as an epicentre 

for blaNDM-1 (Al. 2010; Timothy R. Walsh et al. 2011), although there has been some 

controversy over the origin of the gene, as Balkan states also reported cases of 

blaNDM-1 at the same time (Livermore et al. 2011). Initially identified in K. 

pneumoniae, blaNDM has spread to many other bacterial species. However, K. 

pneumoniae, E. coli and Acinetobacter spp. remain the most frequently isolated 

organisms (Livermore et al. 2011; Dortet et al. 2014). Different studies have also 

identified blaNDM in Acinetobacter spp. from clinical samples isolated from India 

collected in 2005 suggesting Acinetobacter as the origin of the gene. The enzymes 

do not share high similarity with other carbapenemases genes and only show ~32% 

amino acid similarity with VIM-1 and VIM-2 enzymes (Yong et al. 2009). So far, 16 

variants of NDM gene have been identified, with only a few amino acid differences 

and similar antibiotic hydrolysis profiles (www.lahey.org) (Diene and Rolain 2014; 

Zmarlicka et al. 2015). NDM enzymes are active against a broad spectrum of 

substrates and resistant to all b-lactam antibiotics except monobactams. In addition, 

like other carbapenemases,  blaNDM-positive bacteria almost always carry blaCTX-M-15 

and are commonly associated with other b-lactam and non-b-lactam antibiotic 
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resistance mechanisms and close association with 16s methylase genes giving pan 

aminoglycoside resistance and hence complicating detection and therapy regime 

(Zmarlicka et al. 2015).  

1.3.4.1. Epidemiology and Genetics 

The spread of blaNDM can be regarded the most rapid ever seen for any 

carbapenemases. India, Pakistan and Bangladesh remain the hotspot regions and 

the increased distribution and spread in those regions is attributed to poor sanitation 

and waste treatment, in addition to increased carbapenem use (Dortet et al. 2014; 

Voulgari et al. 2014; Zmarlicka et al. 2015). Similarly, European countries with strong 

ties to the south Asian countries are also presented with higher incidences of blaNDM. 

For example, Just a year after their first description, blaNDM was the predominant 

carbapenemase-producing Enterobacteriaceae accounting for 44 % of the 

carbapenemase producers (Figure 9) (Kumarasamy et al. 2010). A global systemic 

case review identified the majority (63%) of reports with blaNDM-1 had exposure or 

links with south Asia (Lee et al. 2016). In China, blaNDM was only limited to 

Acinetobacter spp. until 2013 at a very low incidence rate of less than 1.5% (Chen et 

al. 2011; Yang et al. 2012). However, in 2013 the first E. coli and K. pneumoniae 

containing blaNDM was isolated and since then the prevalence seems to have 

escalated. A more recent study, in 2014 from China, reported the carriage of blaNDM 

in 14.8% of clinical faecal samples (Hu et al. 2013; Liu et al. 2013; Wang et al. 

2014). In Hennai province, China, blaNDM accounted for 33.3% of all the carbapenem 

resistance observed (Qin et al. 2014).  Moreover, blaNDM has increasingly been 

isolated from the environment and animal sources (Wang et al. 2017). Unlike blaKPC, 

the spread of blaNDM cannot be attributed to a specific species, rather its ability to 
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colonize a wide variety of host organisms including many different environmental 

bacteria which may have no clinical relevance. It is generally perceived that the gene 

originated from an environmental bacterium, presumably Acinetobacter baumanii, by 

a fusion event between a progenitor MBL gene and aminoglycoside resistance gene 

aphA6. An alignment of blaNDM-1 and aphA6 genes shows that ISAba125 is inserted 

at a point upstream of aphA6 and exhibits complete identity to the upstream region 

of blaNDM-1 continuing to the first 19 bp within the blaNDM-1 gene.  

Some STs are more commonly associated with blaNDM than others, for example E. 

coli ST101 and K. pneumoniae ST11 or ST14 and, to a lesser extent, ST149, ST231 

and ST147 (Giske et al. 2012; Toleman et al. 2015). Nonetheless, in all species and 

STs the immediate genetic background of blaNDM is generally highly conserved with 

ISAba125 at the 5′-end providing promoter for blaNDM and a gene encoding 

resistance to the anticancer drug bleomycin (bleMBL) at the 3′-end (Diene and Rolain 

2014; Dortet et al. 2014). In A. baumannii, blaNDM is placed in the middle of the 

ISAba125 and bleMBL composing a Tn125 composite transposon. In 

Enterobacteriaceae and P. aeruginosa, two different versions of a truncated form of 

this composite transposon also exist where either ISAba125 or bleMBL is presented 

as full or truncated gene  (Dortet et al. 2014). However, in all known variants of 

blaNDM, ISAba125 provides a strong promotor which is highly conserved. 

Furthermore, blaNDM has been linked with multiple plasmids of broad-host-range 

such as IncA/C, IncFII, IncN, IncH, and IncL/M types but IncA/C remains the most 

common type (Giske et al. 2012; Pitout et al. 2015). IncA/C has shown to carry other 

genes conferring resistance to multiple non-b-lactam antibiotics such as 

aminoglycodes (RmtA and RmtC) and quinolones (QnrA) and b-lactam antibiotic 

cephalosporin (CMY-type β-lactamases) (Pitout et al. 2015). 
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Figure 9. Worldwide distribution of NDM enzymes. The Map shows that the NDM gene is highly prevalent in India, Pakistan, 
Bangladesh, Sri Lanka, Vietnam and China. It has also been associated with outbreaks in the UK, the Balkan region, Saudi Arabia, 
Kenya, Columbia, Egypt, Oman and Jordan. Sporadic spread has been reported elsewhere (highlighted in pink). Map created with 
Mapchart.net and the data derived from (Zmarlicka et al. 2015). 
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1.3.4.2. Clinical significance 

As explained earlier, blaNDM is commonly associated with other resistance genes 

conferring resistance to b-lactam and non-b-lactam antibiotics. Among them include; 

b-lactamases genes such as AmpC cephalosporinases, ESBLs especially CTX-M-15 

and other carbapenemases such as OXA-48, whereas resistance against non-b-

lactam antibiotics includes aminoglycosides, quinolones and macrolides. Therefore, 

the treatment options with blaNDM associated infections becomes very limited. 

Colistin, fosfomycin and tigecycline are used as a treatment of last resort (Nordmann 

and Poirel 2013; Lee et al. 2016). Generally, the strain types, for example ST101, 

usually regarded as typical for blaNDM do not shown association with significant 

virulence factors (Peirano et al. 2011; Fuursted et al. 2012; Peirano et al. 2013; 

Esterly et al. 2014). However, it should be noted that reports of virulent STs such as 

E. coli ST131 from clinical cases are emerging (Peirano et al. 2013).   

 

1.3.5. General Characteristics and Properties of VIM Type Carbapenamases  

Another type of MBL, VIM, has spread worldwide. So far, 46 variants of this enzyme 

have been identified with 0.4 to 27.1% amino acid difference (Zhao and Hu 2011; 

Dortet et al. 2014). The general fold structure of VIM enzyme variants are very 

similar. However, subtle changes in the active site architecture between them can 

initiate changes in their binding ability and, as a result, produce alternative 

carbapenem hydrolysis profiles (Meini et al. 2014). VIM-1 enzymes have been 

identified in P. aeruginosa and species of Enterobacteriaceae, especially K. 

pneumoniae, whereas VIM-2 is almost exclusively associated with P. aeruginosa. 
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Furthermore, blaVIM-1 and particularly blaVIM-2 are the most prevalent among all VIM 

gene variants and are commonly isolated from outbreaks and nosocomial infections 

(Sánchez-Romero et al. 2012; Gaibani et al. 2013; Jeannot et al. 2013; Douka et al. 

2015). 

 

1.3.5.1. Epidemiology and Genetics 

Probably the most interesting feature of blaVIM is the association with class 1 integron 

coded on a transposon, especially Tn402, making them proficient expressers and 

distributors of the resistance genes (Tato et al. 2010). Furthermore, multiple gene 

cassettes are usually co-expressed on a single integron and, until 2011, at least 110 

different structures of class1 integrons harbouring blaVIM, in association with other 

antibiotic resistance genes, had been identified (Zhao and Hu 2011). blaVIM-2 is also 

found to be carried on the chromosome rather than a plasmid but still mobilized 

either by ISCR elements or inserted as a ene cassette into class 1 integrons (Tato et 

al. 2010; Zhao and Hu 2011; Meini et al. 2014). Perhaps, due to this feature of 

blaVIM, they have been reported all over the world, although certain geographical 

locations have higher prevalence than others (Nordmann and Poirel 2013; Lai et al. 

2014; Spyropoulou et al. 2016). There are no specific STs related to the spread of 

VIM enzymes but in P. aeruginosa they have shown a strong association with 

serotype O11 and O12 (Woodford et al. 2011). Furthermore, the origin of VIM is also 

debatable. However, it is almost certain that the initial enzyme appeared in P. 

aeruginosa and likely to have spread from one region to another through population 

dynamics (Nordmann 2014). 
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1.3.5.2. Clinical Significance 

Like other MBLs, co-resistance of blaVIM with other resistance genes presents a 

problematic scenario for clinicians. In addition to other resistance mechanisms, 

blaVIM containing integrons are frequently isolated from cassette arrays in 

combination with other antibiotic resistance determinants such as aminoglycoside 

modifying enzymes (aacA4, aadA1, and/or aadB), other carbapenamases especially 

blaOXA-48 and the chloramphenicol resistance, catB (Meini et al. 2014; Garneau-

Tsodikova and Labby 2015); thus making the therapy regime complicated and 

introducing a high chance of treatment failure. The strain specific virulence 

characteristics may also be important factors in determining the choice of treatment 

and consequently influence the outcomes. A study observed the impact of such 

variations on the treatment outcomes when the mortality rate increased from 13.3% 

to 53.8% with an increase in strain specific MICs of bloodstream blaVIM-1 harbouring 

K. pneumoniae isolates (Daikos et al. 2007). Generally, combination therapies of 

carbapenem and colistin or tigecycline or an active aminoglycoside have shown 

good results. However, tigecycline is not active against P. aeruginosa per se and, 

hence, colistin is often regarded as the ultimate treatment despite its unfavourable 

pharmacokinetics and toxic effects (Pitout et al. 2015). 
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1.4. Overcoming AMR 

 

1.4.1. Drivers of AMR  

To combat the threat of the emerging antibiotic resistance, it is essential to 

understand the factors and features of bacteria and their association with society and 

the environment that are considered the driving forces for the observed AMR. 

Although AMR is a natural phenomenon and presents as a biological defence 

mechanism in some bacteria, it can be propagated by the multiple driving forces 

related to human activities.  The complex interaction of bacteria and their 

surroundings, and stimulation of different multifaceted mechanisms under different 

conditions, means that these driving forces could be different depending on the 

bacterial species and the class of drugs involved (Turnidge and Christiansen 2005). 

Nevertheless, it can be argued that the extensive use of antibiotics in livestock, 

agriculture, aquaculture and human and veterinary medicine has given bacteria the 

opportunity to evolve and survive by becoming resistant. The onward transmission 

and spread is attributed to several socio-demographic and population dynamic 

factors such as travel, sanitation, quality of food and living standards, inadequate 

infection control and surveillance and, more importantly, misdiagnosis and 

unnecessary antibiotic use (Turnidge and Christiansen 2005; Holmes et al. 2016c).  

Antibiotic consumption has increased over the years (Figure 10). Although some 

sectors are using more than others, all have a collective role in driving AMR 

(Laxminarayan et al. 2013; Boeckel et al. 2014). There have been increased efforts 

in high income countries to reduce the consumption rate and tight regulations are 

imposed for prescription of antibiotics. However, the system is not flawless and there 
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are still reports of unnecessary use. The situation is much worse in developing 

countries where there are efforts to implement proper guidelines and non-prescribed 

over-the-counter sale is commonplace. Even if prescription drugs are needed, the 

lack of onward testing to ensure the appropriate therapy is often neglected 

(Laxminarayan et al. 2013; Laxminarayan and Chaudhury 2016). However, currently 

the food production industry accounts for the highest antibiotic consumption and 

pollutes the environment with antibiotics if waste products are not treated 

accordingly, which is the true for most developing countries. LMICs lack proper 

sewage, sanitation and waste treatment facilities (Andremont and Walsh 2015). In 

addition, there is a general increase in population densities and the sanitation and 

waste disposal systems have not been developed sufficiently to accommodate for 

the increasing waste (Quintela-Baluja et al. 2015). More than 36% of the world’s 

population lack adequate sanitation and 1.1 billion are practising open defecation 

(Morgan et al. 2012). Generally, wastewater and animal and human waste is 

recognized as major sources of AMR where genes are excreted in the environment. 

Due to lack of proper disposal and sewage systems, resistance genes may find their 

way to spread to distinct environments and become a part of a continuous cycle, with 

the transfer of genes between bacteria, humans, animals and the environment 

(Andremont and Walsh 2015).   
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Figure 10.  The increasing retail sales of carbapenems. The figure shows that an 

increasing sale trend is observed in developing countries of Pakistan, India and 

Egypt. Reproduced with permission from (Laxminarayan et al. 2013). 

 

1.4.2. Global Efforts Against AMR  

Efforts are being made to reduce MDR rate and humanitarian organisations are 

encouraging governments to prepare policies concerning prevention and spread of 

MDR. Increased funding has been allocated by organisations such as the Bill and 

Melinda Gates foundation and improved surveillance by organizations such as 

centres for disease control and prevention (CDC) provide more information about the 

current status of AMR (Marston et al. 2016). Initiatives by the UK government, such 

as the Newton and Fleming funds, are providing a platform for other countries to join 

forces against AMR and support community engagement and control implementation 
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policies. AMR has been discussed on high profile forums and some of them include 

the G7 summit in 2015, and G20 in 2017, where AMR was one of the top agendas 

for G20 health ministers, the United Nations agenda and political declaration on 

AMR in 2016 and the WHO Global Action Plan on AMR in 2015 (WHO 2015a; 

Marston et al. 2016). In all those gatherings, AMR has been recognised as a major 

public health concern with detrimental consequences on the global health and 

economy.  Tackling AMR is declared as an urgent aim to avoid a post-antibiotic era 

(O ’Neill 2015; WHO 2015a; Marston et al. 2016; European Comission 2017). To 

achieve this goal, collaborations of multiple governing bodies, research centres, 

policy makers and, to a much greater extent, public coordination are also 

acknowledged. In addition, a more global approach is necessary to effectively 

monitor and initiate appropriate responses to the emerging unprecedented threat of 

AMR.  The global action plan on antimicrobial resistance was also supported by the 

Food and Agriculture Organization of the United Nations (FAO) and the World 

Organisation for Animal Health (OIE). An increased collaboration between animal 

and human medicine is suggested to provide the essential information required to 

monitor the AMR situation in all sectors (WHO 2013a; WHO 2015a). The major goal 

of the global action plan is ensuring the accessibility of required medication to where 

it’s needed most whilst still maintaining the efficiency by preventing the spread of 

infectious diseases.  The plan also focuses on initiating a coordination on the 

emergence and spread of AMR between humans and animals and increasing 

surveillance on a global scale. The five strategic objectives were; 

a) To increase awareness through education and training 

b) Increase AMR surveillance globally 

c) Optimise the use of antibiotics in humans and animals 
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d) Reduce the incidence of infection by introducing effective hygiene and 

implementing sanitation 

e) Increase investment in new medicines, diagnostic and other intervention 

There are challenges to following the strategies presented by global action plans 

especially in LMIC. The main problem lies in the education, or behaviour change, 

which would be required to achieve any successful results. In addition, the state of 

the health system presents challenges in improvising effective treatment due to lack 

of diagnosis, funding staff and resources (O’Neill 2016a). Furthermore, the hospitals 

usually lack basic hygiene and there is limited knowledge of infection control 

procedures among healthcare workers (Timilshina et al. 2011b). Effective infection 

control measures can help control the spread of MDRB between patients, healthcare 

workers and visitors and the community, whereas interventions like antibiotic 

stewardship can help to deliver the necessary antibiotic therapy to where it’s needed 

most and limit the excessive use of antibiotics. Merging these strategies can also 

reduce the increasing selective pressure associated with the emergence of new 

resistance mechanisms (Carling and Polk 2011). 

Currently, a major information lapse in AMR is the surveillance of MDRB in the 

environment. A comprehensive national surveillance and essential laboratory 

capacity to detect, analyse and track resistant microorganisms in clinical and 

environmental settings is an essential component of the “One Health” approach. 

Effective surveillance systems can identify the trends and patterns of AMR and 

outbreaks and facilitate the development of future strategies. Establishing an 

effective national surveillance system would also help to identify the scope of the 

problem (WHO 2015a), especially when there is no other existing or new treatment 
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option in the near future. However, there are increasing investments in the new or 

alternative therapies against AMR but, for now, surveillance and prevention is the 

best strategy.   

1.4.3. Alternative or Pipeline Antimicrobials Therapeutics  

Currently, antibiotic resistance is on the ris and no new class of antibiotic has been 

brought to the market for over 30 years (WHO 2013a). Big pharmaceutical 

companies have lost interest in investing in AMR drug development research. The 

loss of interest is somewhat attributed to the continued failure in new antibiotic 

discovery in addition to the extensive use or rather abuse of antibiotics resulting in 

generating resistance rapidly giving companies a short window for profit (Boeckel et 

al. 2014).  In retrospect, as antibiotic resistance emerged, different analogues of the 

existing antibiotics were introduced and, for several years, infectious diseases were 

thought to have been conquered. However, genetic plasticity has equipped bacteria 

with enhanced adaptive systems which are perfected by the application of constant 

selective pressure through human antibiotic use and the continuum of which results 

in generating pathogens with the ability to evade all existing antibiotics. To stay 

ahead of this arms race against antibiotic resistance, new or alternative therapeutics 

are absolute essential. 

At the end of 20th century, the genomic revolution unravelled a magnitude of 

information about bacteria. The traditional drug discovery strategies of screening 

natural compounds have been improved with the help of genomics, proteomics and 

high throughput screening. Genomics and proteomics have provided valuable insight 

in to the pathogenesis, virulence and regulatory mechanisms and metabolic 

pathways and potential new targets have been identified (Clatworthy et al. 2007; 
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Coates and Hu 2007; Tillotson and Theriault 2013; Allen et al. 2014). High 

throughput screening, combined with natural and synthetic libraries of compounds, is 

used to evaluated the novel compounds for antimicrobial properties (Tillotson and 

Theriault 2013). More specific targeted inhibition of virulence or pathogenesis, 

targeting pathogenic bacteria by bacteriophages, inhibiting bacterial growth by 

surplus nanoparticles and natural or synthetic antimicrobial peptides (AMPs) are 

some antimicrobial strategies currently being investigated (Clatworthy et al. 2007; 

Coates and Hu 2007; Azam et al. 2012; Tillotson and Theriault 2013; Allen et al. 

2014). Metal oxide nanoparticles, specifically ZnO, have shown bactericidal activity 

against E. coli and S. aureus. The activity of nanoparticles greatly depends on the 

size and stability of the compound.  The current advancements in nano-

biotechnology has equipped the scientist with manipulation technologies to generate 

an ideal nano-particle with antimicrobial properties (Azam et al. 2012). A smaller size 

nano-particle is preferred due to its increased antibacterial properties and ease of 

entry across the cell membrane; however, it also presents a stability problem and 

generating a nanoparticle to be stable enough and restrict bacterial growth 

significantly is challenging (Azam et al. 2012; Tillotson and Theriault 2013).  

A different approach is to target the virulence factors or the pathogenesis pathway 

such as quorum sensing in Pseudomonas and FimH in E. coli. Uropathogenic E. coli 

uses FimH to adhere to the mannose receptors in the epithelial cells of the urinary 

tract system and cause chronic urinary tract infection (UTI). Extracellular FimH 

inhibitor derived from mannosides were used to inhibit bacterial binding to the 

epithelial cells and reduce the virulence (Han et al. 2012). Quorum sensing in 

Pseudomonas spp. is a population density-dependent stimulatory response for 

regulating pathogenesis pathways through multiple virulence factor regulator (MvfR). 
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Inhibiting quorum sensing by inhibition of intracellular MvfR signals can break the 

pathogenesis cycle and limit the colonization and hence the associated infection 

(Lesic et al. 2007; Tillotson and Theriault 2013).   

1.4.3.1. Bacteriophage Therapy  

Bacteriophages are viruses of bacteria able to infect and induce cell death as it 

replicates in the bacterial host cells. In the early 1900s, phage therapy received 

much attention and some early trials generated impressive results; however, the 

following studies were controversial and the unreliable outcomes resulted in creating 

an uncertainty for the therapeutic potential of bacteriophages (Lin et al. 2017). 

Furthermore, the discovery of antibiotics such as penicillin shifted the attention from 

phage therapy until the discovery of AMR and the need for alternative treatment 

methods to antibiotics. However, the Soviet Union, Eastern Europe, and France 

continued to invest in phage therapies and still use lytic phages to target pathogens 

and are being used in poultry, cattle, agriculture, aquaculture and sewage in the 

United States (Międzybrodzki et al. 2012; Tillotson and Theriault 2013; Allen et al. 

2014). In some Eastern European countries, they have also been used to treat 

chronic infection in humans but haven’t been approved for clinical use elsewhere. 

There have been several, small-scale, clinical trials; however, no rigorous studies 

have been performed (Andremont and Walsh 2015). However, in recent years new 

research is increasing the background information available for bacteriophages and 

their therapeutic potential is increasingly being investigated (Doss et al. 2017). 

Phage therapy offers a few advantages and disadvantage over traditional antibiotic 

therapy when used to treat infections. They are increasingly abundant and present 

almost everywhere where bacteria are normally found to maintain the natural 
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balance of bacterial population (Loc-Carrillo and Abedon 2011). Their ability to 

eliminate MDR bacteria is particularly interesting due to increasing number of 

treatment failures through traditional antibiotics. Most phages exhibit a high 

specificity to their host and hence can only be effective against a certain species of 

bacteria, limiting their spectrum of activity, but could be useful in the elimination of a 

targeted species and save on the unnecessary disruption to normal microbiota. 

Nevertheless, an immune response could be initiated if the human defence system 

recognizes phages as foreign antigens and respond by producing phage-neutralizing 

antibodies whereas toxic effects could also be generated by the release of cellular 

components or endotoxins during phage mediated bacterial cell lysis. However, a 

lysin-deficient phage, or lysin on its own, is under investigated for its antibacterial 

properties to circumvent the immunogenic response (Andremont and Walsh 2015). 

Phage protein may also be preferred due to avoidance of other drawbacks 

associated with the phage’s life cycle (Międzybrodzki et al. 2012; Doss et al. 2017; 

Lin et al. 2017), for example, horizontal gene transfer and environmental 

containment issues. Genetic material gained through horizontal gene transfer may 

increase the bacterial host’s virulence especially when an antibiotic-resistance gene 

is involved.  Similarly, environmental contamination of phages may occur since it 

reproduces constantly as long as the host is present. Hence, the introduction of a 

phage protein could be beneficial in conserving the natural ecosystems (Doss et al. 

2017). 

Another factor which has limited the use of phage therapy is the development of 

resistance (Międzybrodzki et al. 2012; Allen et al. 2014). Bacteria have developed 

multiple mechanisms of defence against bacteriophage infection by either 

intercepting phage life cycle or through cell death as a scarifier to limit further 
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infections (Seed 2015). However, phages have evolved to overcome these 

resistance mechanisms and, therefore, new phages can be re-isolated from the 

environment. Additionally, a cocktail of phages could be used to reduce the 

development of resistance with ease and also to target a broad host range (Janis 

Doss, 2017). 

 

1.4.3.2. Antimicrobial Peptides and Antisense Oligonucleotides (AOs) 

AMPs are found naturally in all organisms with a role in the innate immunity. They 

are generally positively charged and interact with the lipopolysaccharide layer of 

microbial cell membranes. AMPs are extensively evaluated for their role as a 

potential antimicrobial agent and have shown a broad spectrum of activities against 

bacteria, fungi, viruses and parasites (Bahar and Ren 2013; Mohamed et al. 2016). 

Example of AMPs include bacteriocins, such as nisin, which is produced by lactic 

acid bacteria and been approved for commercial use in food preservation. Similarly, 

Polymyxin is an old class of cyclic AMPs that were discovered in 1947. However, the 

clinical use was limited due to the associated nephrotoxicity and neurotoxicity (Gupta 

et al. 2014). Though the issues with safety still remain, the two major cationic 

polypeptides, namely Colistin and polymyxin B, have been used now as last resort 

antibiotics due to the wide spread of carbapenem resistance. They are bacteriocidal 

against all Gram-negative bacteria with the exception of a few intrinsically resistant 

species of Burkholderia, Proteus, Providencia, Morganella morganii, Serratia spp,, 

Brucella spp., Neisseria ssp., and Chromobacterium spp.. (Falagas and Kasiakou 

2006; Garg et al. 2017). Bacterial growth is inhibited by interacting with the anionic 

lipopolysaccharide in the cell membrane leading to displacement of calcium (Ca2+) 



 
 

58 

and magnesium (Mg2+) ions causing increased cell permeability followed by leakage 

of cell contents and, subsequently, cell death (Falagas and Kasiakou 2006; Gupta et 

al. 2014). Recently, resistance to colistin has also been emerging and plasmid 

mediated mcr gene variants (mcr-1.1 to mcr-1.7, mcr-2 and mcr-3) have been 

identified from more than 18 countries over the world in a short period of two years 

(Mammina et al. 2012; Gao et al. 2016; Liu et al. 2016; Yin et al. 2017). The spread 

of mcr is pushing the need for research to identify other AMPs’ antimicrobial 

properties like polymixin. However, naturally-derived AMPs are usually present 

similar issues of toxicity in addition to other drawbacks such as degradation by 

proteases, sensitivity to salt and pH and high cost of production. Therefore, synthetic 

derivatives are currently being investigated as possible alternatives to natural AMPs 

(Mohamed et al. 2016).   

Like AMPs, antisense RNAs are also naturally produced by bacteria, but regulate the 

gene expression of the producer rather than inhibiting the competitors. Based on the 

concept of antisense RNA, synthetic antisense oligonucleotides (AO), that mimic the 

structure of DNA or RNA, are constructed and used to regulate gene expression 

(Madani et al. 2011). AOs can potentially be used as antimicrobial agents by 

inhibiting gene expression through binding with complementary mRNA (Woodford et 

al. 2009). In nature, antisense RNA exists both in eukaryotes and prokaryotes to 

regulate or silence gene expression; for example, RNA interference (RNAi) in 

eukaryotes is the process of inhibiting gene expression by neutralizing targeted 

mRNA. A similar task is carried out by small, non-coding RNA’s (sRNA) of 100-

500bp in bacteria. sRNA can be trans-encoded or sis-encoded based on their 

genomic location. Trans-encoded sRNAs are located at a distant from the mRNAs 

they regulate and are not a complete match to the target sequences, whereas cis-
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encoded sRNAs are located on the opposite DNA strand of another gene and have 

perfect complementarity with the target mRNA sequences (Good and Stach 2011; 

Lundin et al. 2015). Another bacterial RNA based gene-editing mechanism is 

clustered regularly inter-spaced short palindromic repeats (CRISPR) which is 

naturally used as a defence system against bacteriophages (Good and Stach 2011). 

All these systems have been evolved and used as gene editing tools in both 

eukaryotes and prokaryotes.  

With the development in genomics, multiple AO targets can be identified according 

to the disease or pathogen to generate a more specific response, although, initially, 

the technology suffered a drawback due to issues with the target affinity, stability and 

the delivery of compounds in the cells. However, due to advancements in synthetic 

chemistry and genomics, different structures with multiple alterations were 

introduced to eliminate these problems (Lundin et al. 2015). It is generally accepted 

that, based on the genomic sizes of the species, the optimum length of antisense 

sequence to initiate an inhibitory effect is 11bp for bacteria and more than 15 for 

mammalian cells (Good et al., 2001). Naturally occurring antisense RNAs also share 

12–30bp similarity with the target mRNA but can also be longer; however, the 

presence of mismatches and secondary structures within the genome limit their 

binding capacity. Synthetic AOs have the benefit of being more stable with desired 

sequences to provide exact matches and initiate the maximum response within 

target mRNA. Certain AOs, such as  locked nucleic acids (LNA), 

phosphorodiamidate morpholino-oligomers (PMO) and peptide nucleic acids (PNA), 

have gained greater attention due to improvements in stability and target 

hybridization affinities (Sully and Geller 2016).   
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1.4.4. Antisense PNA as an Alternative Therapy?  

Peptide nucleic acid (PNA) was developed by Nielsen et al (1991) as a ligand for 

DNA (Nielsen et al. 1991). The structure of PNA is unique, consisting of 

oligonucleotide bases and a neutral pseudo-peptide N-(2-aminoethyl)-glycine 

backbone; hence a hybrid between DNA and protein (Figure 11) (Sugiyama and 

Kittaka 2012). PNA molecules mimic DNA and are capable of binding to the 

complementary sequence of DNA or RNA, through Watson Crick base pairing, to 

inhibit gene synthesis at transcription or translational level (Geary et al. 2015). PNA 

shows increased thermal stability, higher affinity and specificity due to their neutral 

backbone. These properties of PNA, together with resistance to degradation by 

protease and nucleases, makes PNA ideal for antisense activity (Sugiyama and 

Kittaka 2012). The only known limitation is entry into the cell. PNA, being a large 

hydrophobic molecule, cannot enter the cell on its own and is dependent on a 

delivery system for its transport across the membrane. Recently though, this issue 

has been resolved by conjugating PNA with a cationic peptide (Good et al. 2001; 

Lehto et al. 2016).  
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Figure 11.  Comparison between the chemical structure of PNA and DNA. The 

above diagram represents the structure of PNA in comparison to the structure of 

DNA. Image copied with permission from (Good et al., 2001). 

 

1.4.4.1. Conjugated Peptide Assisted PNA Cell Entry  

Synthetic CPPs were originally derived from naturally occurring AMPs and were 

investigated for their antimicrobial potential in several studies. Initially, cationic lysine 

Lysine (K) and hydrophobic Phenylalanine (F) based synthetic peptide motif, 

KFFKFFKFFK, was used in synergy with other antibiotics to decrease the MIC 

(Vaara and Porro 1996; Good et al. 2001). Good et al. (2001) attached the same 

peptide motif to 9-12-mer PNAs targeting the essential acyl carrier protein (acpP), 

which is involved in fatty acid biosynthesis, to facilitate the transport across the cell 

membrane. The antisense peptide PNA conjugates (AP- PNA-C) resulted in 

improved antimicrobial potency in E. coli when compared to the naked PNA and no 
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apparent toxicity to the human cells was observed (Good et al. 2001; Hansen et al. 

2016). 

Shortly after, the role of arginine in certain naturally occurring AMPs led to the 

development of arginine rich CPPs that were not only effective in Enterobacteriaceae 

but also Pseudomonas (Strøm et al. 2002). It was also observed that changes in the 

chain length and the sequence motifs can alter the properties of the CPPs and 

hence opening up new potentials for a better design (Liu et al. 2007). It was also 

observed that the addition of 6-aminohexanoic acid (X) and β-alanine (B) residues 

increase the potency and the serum-binding profile of the attached antisense 

peptides (Wu et al. 2007). Furthermore, the incorporation of repeating cationic and 

non-polar residues in arginine based CPP motif, (RXR)4-XB was found to be a more 

effective strategy that could cargo PNAs across the cell membrane (Mellbye et al. 

2009). However, the mechanism of entry is still controversial and several theories 

are proposed such as transport via endosomal compartmentalization or direct cell 

membrane penetration. A concentration dependent mechanism is also suggested 

where low concentration of CPP enters the cell through endocytosis and, upon 

increasing the concentration (more than 20 μMa), a rapid cytoplasmic entry is 

achieved (Brock 2014). Nevertheless, further research in this field would assist in 

optimizing CPPs for their potential use as ideal transporters for antisense peptides 

therapies.  

 

1.4.4.2. Antisense Activity of PNA Conjugates  

Several studies have shown the bactericidal activities of AP- PNA-C by targeting the 

mRNA of essential bacterial genes. So far, the antisense activities of AP-PNA-C 
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have been observed in multiple Gram-negative and Gram-positive bacteria when 

used at micro-molar quantities (Table 1). However, only limited studies have 

reported in vivo analysis and mostly limited to using either lysine and phenylalanine 

or arginine based CPPs. Very recently, Hansen et al. (2016) reported successful 

PNA transmembrane entry and potent antibacterial activity with anti-acpP PNA 

conjugated to AMPs (Hansen et al. 2016).  

Although the exact mechanism of AP-PNA-C is not known, it is believed to bind to 

the complementary mRNA sequence blocking ribosome assembly on the target site. 

Short AP-PNA-C of 9-12 units complementary to the 5' terminus UTR region of 

mRNA has shown potent antisense activities compared to AP-PNA-C targeted 

towards the coding sites within mRNA (Dryselius et al. 2003; Ghosal and Nielsen 

2012; Mohamed et al. 2016). Since PNA is synthetic, it’s unlikely that a resistance 

enzyme may already exist within the environment. Resistance could arise by 

bacteria producing enzymes to modify or degrade AP-PNA-C or possibly by mutation 

of the mRNA sequence. Up till now, no target mutation or modification resistance 

has been identified against antisense PNA and the possibility of efflux pumps is also 

reported to be minimal (Nikravesh et al. 2007; Ghosal et al. 2013).  Furthermore, 

good activity against MDRB is also observed. A study evaluating the antibacterial 

effects of PNA on bacteria possessing ESBLs  and MDR showed minimum inhibitory 

concentrations (MIC) of more than 512 µg/ml to b-lactam antibiotics and anti-acpP 

PNA of 5 µMol and 25 µMol to ESBLs and MDR, respectively (Bai et al. 2012). 

Furthermore, no resistance was developed after 5 serial passages for PNA, whereas 

all b-lactam antibiotics (ampicillin, ceftazidime, cefoperazone) developed resistance. 

Synergy of antibacterial PNA with other antibiotics is also reported. In 2007, Xue-

Wen et al. observed synergetic bacterial inhibitory effects of PNA targeting 23S 
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rRNA domain II and tetracycline, although the activity of PNA was comparable to 

tetracycline but initiated a slightly slower inhibitory response than tetracycline (Xue-

Wen et al. 2007). 
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Table 1. Studies reporting the application of AP-PNA-C as a potential 

antibacterial agent. 

Target CPP Organism Study type Reference 

23S rRNA 
domain ii 

(KFF)3 E. coli DH5a vitro (Xue-Wen et 
al. 2007) 

rpoD (RXR)4XB E. coli MG1655, 25922, 
MDR Salmonella enterica, 
Shigella flexneri, ESBL and 

MDR E. coli 

vitro/vivo (Bai et al. 
2012) 

Ftsz, acpP (RXR)4XB ESBL K. pneumoniae, E. 
coli and P. aeruginosa 

vitro (Ghosal and 
Nielsen 
2012) 

rpoA, 
rpoD 

(KFF)3 Intracellular Listeria 
monocytogenes 

vitro/vivo (Alajlouni and 
Seleem 
2013) 

acpP, Ftsz (KFF)3 E. coli MG1655 vitro (Ghosal et al. 
2013) 

gyrA (KFF)3 Streptococcus pyogenes 
 

vitro (Patenge et 
al. 2013) 

polA, asd, 
dnaG 

(KFF)3 Brucella suis vitro (Rajasekaran 
et al. 2013) 

MecA, 
Ftsz 

(KFF)3 
 

Methicillin resistant 
staphylococcus aureus 

(MRSA), Methicillin 
resistant staphylococcus 

pseudintermedius (MRSP) 
 

vitro (Goh et al. 
2015) 

ftsz (RXR)4XB MRSA vitro (Liang et al. 
2015) 

rpoA (KFF)3, 
(RXR)4XB 

Intracellular L. 
monocytogenes 

vitro/vivo (Abushahba 
et al. 2016) 

acpP AMPs E. coli MG1655 vitro (Hansen et 
al. 2016) 

blaCTX-M-15 (KFF)3 
 

E. coli AS19(cell wall 
permeable mutant) blaCTX-M 

clone 

vitro (Readman et 
al. 2016) 

The case studies were selected based on search results of Scopus limited by 

keywords; Peptide nucleic acid, antisense and antibacterial for year 2007-2017. 
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1.5. Concluding Remarks  

It is established that the increased consumption of un-prescribed antibiotics, lack of 

effective sanitation and sewage systems, environmental contamination and 

substandard infection control strategies have detrimental effects on the spread and 

dissemination of antibiotic resistance, and predominantly β-lactamase 

resistance, has spread worldwide threatening the potency of carbapenems when 

there is no substitute drug available. Therefore, to avoid slipping into the post-

antibiotic era, new or alternative therapies against MDR are desperately needed. 

Concurrently, epidemiological studies to identify the extent of the problem, both in 

clinical and non-clinical settings, are crucial to acknowledge the extent of the 

problem. Hence, this study is designed to focus on the two main goals of tracking 

and treating the resistance genes carried by MDRB both in patients and their 

associated environment.  

Pakistan has been chosen as a sample collection region as AMR has increased in 

developing countries and, additionally, no extensive studies have been performed to 

evaluate the effects it may have on the health and the environment. Initially, the 

prevalence of MDRB in clinical samples will be determined. The contamination of 

environmental samples will be evaluated by analysing different sectors of the 

environment for the presence of ESBLs and carbapenemases. It will be followed by 

a more in-depth analysis of antibiotic resistance in clinical (patients) and non-clinical 

(environmental) settings and the effects of region-specific basic infection control 

strategies and seasonal variations on the prevalence of MDRB. Lastly, PNA is 

examined as an alternative therapy to sensitize resistance strains to carbapenems. 

Collectively, the work of this thesis will provide a more focused overview on the 

environmental burden of MDR in developing countries and will highlight the 
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importance of infection control strategies in controlling their spread and 

dissemination. Furthermore, it is also hoped that my project will help provide an 

alternative approach towards the treatment of AMR and highlight the potential of 

PNA therapies in the conservation of carbapenem antibiotics. 
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2. Materials and Methods 
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2.1. Collection of samples 

All samples evaluated in this thesis were collected from Pakistan. In the first results 

chapter 3, the samples were collected from Karachi whereas the samples in the 

second and third result chapters (chapter 4 and 5) were collected from Peshawar. 

Aimes charcoal swabs (Liofilchemâ) were used for all samples except insects which 

were transported in sealed sterile Eppendorfs (Sigma-Aldrich, St. Louis, USA). 

Samples were sent to Cardiff University (CU), UK, in UN3373 containers, in 

accordance with the guidelines and regulations for packaging and shipment of 

biological and infectious substances (FedEx 2010). 

 

2.1.1. Karachi Samples 

2.1.1.1. Clinical Samples 

The prospective cohort clinical study was conducted between February and October 

2012. Clinical (rectal and site of infection) samples were obtained from patients 

visiting Civil Hospital, Karachi (CHK) which is the largest public tertiary-care hospital 

of Pakistan with 1900 beds and represents a diverse socio-economic background. 

Patients admitted to the hospital for two or more days at any of the medical, surgical, 

gynaecologic/obstetric, paediatric, psychiatric and allied units of CHK giving written 

consent were enrolled. Exclusion criteria included all forms of gastroenteritis and 

patients with active rectal bleeding and anal fissures. Ethical approval was granted 

by the Institutional Review Board of the Dow University of Health Sciences, Karachi, 

Pakistan (IRB-318/DUHS-12) and by the CHK ethics committee. 
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All patients were explained the purpose of the study at the time of admission and, 

upon their consent and fulfilment of inclusion criteria, a rectal swab (termed FSA) 

was obtained within 24 hours. In case of minors, consent was taken from a parent or 

guardian and, for critically ill patients, consent was taken from next-of-kin. The 

majority of the patients were illiterate and, thus, the consent form was verbalised in 

Urdu. Information on patients including socio-demographic data, hospital related 

information, living and sanitary conditions, and patient history were recorded onto a 

questionnaire. Patients were followed up to discharge where a second rectal swab 

was taken (termed FDA).  If, during the hospital stay, the patient developed an 

infection, samples of the site of infection (SoI) were also taken. Bacterial isolates 

from SoI were identified at CHK by in-house methods. 

2.1.1.2. Non-Clinical or Environmental Samples  

A total of 729 samples were collected randomly over the course of the patient 

enrolment and included 193 insects, 92 birds’ faeces, 97 samples of drinking water 

and 347 hospital surface swabs in the major wards e.g. ICU, paediatric, burns etc. 

All insects and surface and equipment swabs were collected from the CHK, whereas 

the birds and animal’s faeces and drinking water samples were collected from the 

areas close to the hospital. Most of the faeces samples were derived from caged 

animals.  

 

 

 

 



 
 

71 

Insects samples included: 

130-House Flies: Musca domestica: 

20-Cockroaches: Blattella asahinai 

20-Ants: Lasius niger 

1-Honey bee: Apis cerana 

12-Moths- Identified as Aglossa aglossalis 

10-Mosquitoes- species of Culex 

 

Birds or other small animals’ faeces included;  

 

 

 

 

 

 

 

All locations of surface samples and drinking water swabs are provided in the 

appendix (Table 27 and 28).  

 

 

4-Canary 10-Fowl 5-Peacock 

5-Crow 3-Hawk 4-Pigeon 

4-Deer 3-Koel 4-Rabbit 

3-Dove 3-Ostrich 4-Rat Hamster 

3-Duck 4-Owl 5-Sparrow 

5-Eagle 20-Parrot 3-Turkey 
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Figure 12. Karachi study design. The diagram shows the number of, and origin of, 

samples analysed in the Karachi study. FSA (rectal swabs at admission), FDA (rectal 

swabs at discharge).  

 

2.1.2. Peshawar Samples 

The Peshawar samples included surgical patients’ wounds, hospital surfaces and 

insects, collected between January 2015 and August 2016. Two post-surgical wards 

were selected for the sample collection including all insects. Each ward had two 

separate areas and, for the purpose of this study, one of those areas was cleaned 

with cleaning agent containing white Phenyl (Finis S.C Jhonsons, Karachi, Pakistan) 

whereas the other area was left un-touched. The floors were mopped with the 

cleaning agent and the touch surfaces were wiped clean with damp clothes using the 

same cleaning agent. The Peshawar samples (surgical patients’ wound swabs, 

touch surface and insects) were collected from these wards and the study was 

followed for a duration of three weeks in the Winter month of January 2015. The 

Clinical
Samples

3065
Rectal 
swabs

285 Infection samples

1547 FSA

1518 FDA

Environmental

346 Hospital Surface

285 Animal Origin

123 Drinking water

193 Insects
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same procedure was repeated in Summer and the samples were collected in July-

August 2016. Ethical approval was obtained from the ethical committee of the 

Khyber Teaching Hospital, Peshawar.  

 

 

Figure 13. Peshawer study design. The diagram shows the number of and origin 

of samples analysed in the Peshawer study. The blue box shows the number of 

samples collected from cleaned wards and samples collected from un-cleaned wards 

are shown by orange coloured boxes.  

 

2.1.3. Patient’s Wound Swabs 

The wound swabs were collected from patients from the selected wards with consent 

often verbalised in Urdu. Patients admitted to the hospital for surgery were asked to 

complete a questionnaire containing elementary patient information such as name, 

1981 
Insects

726 collected in 
Winter

1255 collected 
in Summer

510 745 322 404

342 
Surgical 
wound 

samples

152 collected in 
Winter

190 collected in 
Summer

130 59 65 87

624 
Hospital 
surface 
swabs

316 collected in 
Summer

308 collected in 
Summer

153 154 158 158



 
 

74 

age, sex, place of residence, sample site,  patient history and surgery type. 

Subsequent information such as length of hospital stay and prescribed antibiotic 

therapy was also collected. An example questionnaire is supplied in appendix 

(Figure 60).  

 

2.1.4. Insects 

For the Winter collection of insects, most the flies were picked dead from the floor 

whereas the other insects, mostly cockroaches, were caught alive. However, due to 

the increased abundance of flies during the summer, most of them were caught alive 

by trapping on sticky paper.  

Insects samples included; 

1076-House Flies: Musca domestica 

533-Cockroaches: Blattella asahinai 

110-Ants: Lasius niger 

2-Honey bee: Apis cerana 

194-Moths- identified as Aglossa aglossalis 

66-Spiders- Possibly Stegodyphus pacificus 

 

2.1.5. Touch Surface 

The locations of where the surface swabs were taken were kept constant throughout 

the study period i.e. the same area was swabbed during the course of the study. The 

table below list all swabbed sites and the wards (Table 2).  
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Table 2. The locations of the collected swabs from cleaned and un-cleaned 

wards. 

 

 

Ward Un-cleaned Surface Sites 

M1-1 Exit door 

Entry door 

Entry wash room 

Wash basin sink knob 

M2-1 Right sink knob 

Exit door knob 

Dustbin base 

Wash room button right 

F1-1 Door exit 

Bed20 cupboard handle 

Dustbin/pillar base 

F2-1 Bed13 drip hanger 

Bed14 cupboard handle 

Washroom handle 

pillar base bed 16* 

Ward Cleaned wards 

M1-2 Entry Door knob 

Entry Door Washroom 

Window Surface 

Wash basin sink knob 

M2-2 Right sink knob 

Exit door knob 

Red Dustbin 

Right wash button 

F1-2 Right windows surface 

Door exit part 

Bed 2 cupboard handle 

F2-2 Bed EX-7 drip hanger 

Bed 11 cupboard handle 

Surface under dustbin 

Two sites from the list, highlighted with (*), were not selected for sampling in 

Summer and are excluded from result analysis. All other sampling sites were kept 

constant. 
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2.2. Other Bacterial Strains, Plasmids and Cloning Vectors 

Below is the list of commercially available laboratory strains and antibiotic resistant 

strains used in this study (Table 3). The details of plasmid vectors are supplied in the 

methods where applicable. 
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Table 3. List of all bacterial strains used in this study. 

NA (Not Applicable) . 

Isolate Origin Specie Resistance Year 

MG1655 Lab Strain E. coli NA NA 

ATCC 25922 Lab Strain E. coli NA NA 

DH5ALPHA Lab Strain E. coli NA NA 

J53 Lab Strain E. coli Sodium Azide NA 

ATCC 13883 Lab Strain K. pneumoniae NA NA 

CH3490(NMI 5184/09) EN-Secondary Panel E. coli NA NA 

CH3491(NMI 1844/06) EN-Secondary Panel E. coli NA NA 

CH3493(NMI 7268/10) EN-Secondary Panel E. coli NA NA 

CH3496(RYC 13053433) EN-Secondary Panel K. pneumoniae NA NA 

NMI 1831/06 EN-Secondary Panel K. pneumoniae NA NA 

09C44 Spain K. pneumoniae KPC-3 2009 

09D16 Spain K. pneumoniae KPC-3 2009 

10E29 Spain E. coli KPC-3 2010 

86198 Pakistan P. aeruginosa NDM 2014 

86217 Pakistan K. pneumoniae NDM 2014 

83092 Pakistan E. coli NDM 2014 

86190 Pakistan P. aeruginosa NDM 2014 

83100 Pakistan E. coli NDM 2014 

KP506 Sweden E. coli NDM 2009 

76207 Pakistan A. baumannii NDM 2014 

12F14 Spain K. pneumoniae OXA-48 2012 

12F48 Spain K. pneumoniae OXA-48 2012 

12F65 Spain E. coli OXA-48/VIM-1 2012 

08Y70 Spain K. pneumoniae INT-VIM-1 2008 

09A69 Spain K. pneumoniae INT-VIM-1 2009 

09Y79 Spain E. coli INT-VIM-1 2008 

1-47 Spain E. coli INT-VIM-1 2010 

RES-2074  P. aeruginosa INT-VIM  

TC-NDM Pakistan E. coli J53 NDM 2014 

TC-KPC Spain E. coli J53 KPC 2014 

TC-OXA-48 Spain E. coli J53 OXA-48 2014 

ACP-P CLONE Lab Strain E. coli DH5alpha ACP-P 2014 
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2.3. Peptide Nucleic Acids 

All AP-PNA-C used in this study was manufactured by Copenhagen University. acpP 

PNA were designed by Copenhagen University whereas all other anti-resistance 

PNA sequences were selected using Geneious® (version 8.1.8). The variants of 

target enzymes sequences available in the NCBI database were aligned by the 

pairwise multiple alignment feature. Conserved ATG start site sequences were 

selected as targets and complementary PNAs of 9-12 PNA residues were 

constructed. For entry into the cytoplasm, the PNAs were attached to the two most 

commonly used, Lysine and Phenylalanine or Arginine based, CPPs. Below are the 

lists of all PNAs used in this study (Table 4 and 5).  

 

Table 4. List of acp-P PNAs used in this study. 
 

PNA Experiment 

EBL 183 Passage assay 

EBL 264 Passage assay 

EBL 110 FoR assay 

EBL 111 FoR assay 

EBL 232 FoR assay 

EBL 237 FoR assay 

EBL 366 Target validation 

EBL 392 Target validation 

EBL 506 Target validation 

EBL 183 Target validation 

EBL 264 Target validation 
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Table 5. List of all anti-resistant PNAs used in this study. 

 

Label Target PNA 
4703 INT Antisense H-KFF KFF KFF K-eg1-CAT GAA AAC CGC-NH2  

4704 VIM Antisense H-KFF KFF KFF K-eg1-CAT CAA AAC TCC-NH2  

4706 INT Antisense H-(R-Ahx-R)4-Ahx-(β-Ala)-CAT GAA AAC CGC-NH2 

4707 VIM Antisense H-(R-Ahx-R)4-Ahx-(β-Ala)-CAT CAA AAC TCC-NH2  

4708 VIM-2 Antisense H-(R-Ahx-R)4-Ahx-(β-Ala)-CAT CAA GAC TCC-NH2  

4709 INT Antisense H-KFF KFF KFF K-eg1-AGC CAT GAA AAC-NH2  

4710 VIM Antisense H-KFF KFF KFF K-eg1-GAA CAT CAA AAC-NH2  

4712 INT Antisense H-(R-Ahx-R)4-Ahx-(β-Ala)-AGC CAT GAA AAC-NH2  

4713 VIM Antisense H-(R-Ahx-R)4-Ahx-(β-Ala)-GAA CAT CAA AAC-NH2  

4714 VIM-2 Antisense H-(R-Ahx-R)4-Ahx-(β-Ala)-TAA CAT CAA GAC-NH2  

4640 KPC Mismatch H-(R-Ahx-R)4-Ahx-(β-Ala)-TGA AAT CAC CGA-NH2  

4641 OXA Mismatch H-(R-Ahx-R)4-Ahx-(β-Ala)-ACG GAT AAC CTC-NH2  

4642 INT Mismatch H-(R-Ahx-R)4-Ahx-(β-Ala)-GCG GAT ACC CTA-NH2  

4644 KPC Antisense H-KFF KFF KFF K-eg1-TGA CAT CAA CGA-NH2  

4645 OXA Antisense H-KFF KFF KFF K-eg1-ACG CAT AAC GCT-NH2  

4646 INT Antisense H-KFF KFF KFF K-eg1-GCG CAT ACG CTA-NH2  

4648 KPC Mismatch H-KFF KFF KFF K-eg1- TGA AAT CAC CGA-NH2  

4649 OXA Mismatch H-KFF KFF KFF K-eg1- ACG GAT AAC CTC-NH2  

4650 INT Mismatch H-KFF KFF KFF K-eg1- GCG GAT ACC CTA-NH2  

4476 NDM Antisense H-(R-Ahx-R)4-Ahx-(β-Ala)-TTCCATCAAGTT-NH2  

4476 NDM Antisense H-(R-Ahx-R)4-Ahx-(β-Ala)-TTCCATCAAGTT-NH2  

4476 NDM Antisense H-(R-Ahx-R)4-Ahx-(β-Ala)-TTCCATCAAGTT-NH2  

4476 NDM Antisense H-(R-Ahx-R)4-Ahx-(β-Ala)-TTCCATCAAGTT-NH2  

4477 KPC Antisense H-(R-Ahx-R)4-Ahx-(β-Ala)-TGA CAT CAA CGA-NH2 

4478 OXA Antisense H-(R-Ahx-R)4-Ahx-(β-Ala)-ACG CAT AAC GTC-NH2  

4479 INT Antisense H-(R-Ahx-R)4-Ahx-(β-Ala)-GCG CAT ACG CTA-NH2  

4639 NDM Mismatch H-(R-Ahx-R)4-Ahx-(β-Ala)-TTC AAT CAC GTT-NH2   

4643 NDM Antisense H-KFF KFF KFF K-eg1-TTC CAT CAA GTT-NH2  

4647 NDM Mismatch H-KFF KFF KFF K-eg1- TTC AAT CAC GTT-NH2  
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2.4. General Antibiotics, Chemicals Reagents and Growth Medium  

Throughout the study, custom ready-made chromogenic plates with antibiotics were 

purchased from Liofilchem®, Roseto degli Abruzzi, Italy. The details of which are 

listed below: 

Chromogenic with 10mg/L Vancomycin (V plates)  

Chromogenic with 10mg/L Vancomycin and 1mg/L Cefotaxime (VC plates) 

Chromogenic with 10mg/L Vancomycin and 2mg/L Ertapenem (VE plates) 

 

Cefotaxime and ertapenem were used at 2mg/L for the Karachi study whereas the 

concentration was reduced to 1mg/L for Peshawar samples (to capture all 

carbapenemases including the weakly expressed blaOXA181 and blaOXA323). All other 

ready-made reagents, supplied directly from the manufacturers, are given in the 

main text of this chapter where applicable. Recipes for common reagents made up 

locally and a full list of media used is included in Appendix (Section 7.2). 

 

2.5. Culturing clinical and non-clinical samples 

The clinical (patient samples) and non-clinical (environmental samples) such as 

hospital surface, birds’ droppings, sewage and drinking water samples were 

collected on charcoal swabs. The swabs were dipped in sterile water before 

sampling and were transported at room temperature where, on arrival, they were 

stored at 4°C.  The swabs were directly plated on V, VC and VE selective plates and 

incubated overnight at 37°C. Incubation time was extended by another day where no 

growth was observed.  



 
 

81 

2.5.1. Culturing Insects Samples  

All insects’ samples in this study were collected from Karachi civil hospital or Khyber 

teaching hospital, Peshawar. Transportation was arranged in sterile eppendorfs 

without medium and the samples from both sites were processed as described 

below:  

From Karachi, the insects were macerated with a loop and incubated in 2ml of LB at 

37°C for 18hrs. The overnight broth culture was plated on V, VC and VE plates.  Any 

growth on the plates were screened by PCR for the presence of blaNDM and blaCTX-M-

15 and, in case of no growth, the incubation time was extended by another day. The 

original broth was also subject to PCR.  

The Peshawar insects’ samples were macerated in 1ml of water and screened for 

the presence of blaNDM, blaOXA48 like, blaKPC and blaCTX-M-15 by PCR. 500µl of water 

was used to inoculate 2ml of MHB and 500µl was saved in -80°C for future genome 

sequence analysis. After overnight incubation at 37°C, a 10µl loop-full culture was 

plated on V, VC and VE plates and was grown at 37°C for 18hrs. Growth on 

selective agar media was processed by PCR for blaNDM, blaOXA48 like, blaKPC and 

blaCTX-M-15. The incubation period was extended for another day if no growth was 

observed after 18hrs.   

 

2.6. Species Identification  

Isolated bacterial strains were identified by matrix-assisted laser desorption/ 

ionization time of flight mass spectrometry (MALDI-TOF, Bruker, Billerica, USA) in 
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the Specialist Antimicrobial Chemotherapy Unit, University Hospital Wales, Cardiff, 

UK.   

Single isolated colonies from overnight VE or VC plates were directly applied to a 

Bruker MSP 96 well steel plate. One microliter of α-cyano-4-hydroxycinnamic acid 

(HCCA) matrix solution (Bruker) was added to each sample and allowed to air-dry. 

The plates were then loaded onto the MALDI biotyper. Reliability scores of ≥2.0 for 

clinical bacteria and ≥ 1.70 for bacteria from insect samples were required for 

species level identification. For those samples which yielded lower reliability scores, 

the MALDI-TOF was repeated. If no possible identification was recorded after two 

MALDI-TOF repeats, 16s ribosomal RNA sequencing was undertaken.  

 

2.7. Antimicrobial Susceptibility Testing  

Antibiotic resistance profiles were established for NDM-positive isolates from Karachi 

hospital surface and drinking water samples using antibiotic discs and E-Test strips. 

Bacterial cultures were prepared to 0.5% McFarland standard in 0.85 % saline and 

spread on MH plates with a sterile cotton swab. Antibiotic discs (Oxoid Limited) or E-

test strips (Liofilchem®, Roseto degli Abruzzi, Italy) were placed on the plate and 

results were recorded after incubation at 37°C for 18hrs.The results were interpreted 

according to European Committee on Antimicrobial Susceptibility Testing (EUCAST) 

breakpoints (version 5.0) or CLSI (Clinical and Laboratory Standards Institute 2015). 

Where no breakpoint guidelines for specific antibiotics/bacterial species were found 

(for both EUCAST and CLSI) then EUCAST guidelines for Enterobacteriaceae were 

used.  
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2.8. Micro-broth Minimum Inhibitory Concentration 

All isolates used in the PNA study were assessed for antibiotic MIC levels using 

micro-broth dilution method in 96-well plates. For optimum PNA activity,  defined 

plates (260895, Fisher Scientific - Arendalsvägen Göteborg, Sweden) were used to 

reduce PNAs attachment to the 96-well plate. MICs were determined using EUCAST 

guidelines. Stock antibiotic solution was prepared at two times the required 

concentration whereas PNA stock solution was prepared at 20 times the required 

concentration. The inoculum was prepared to McFarland standard 0.5 

(Approximately 1.0-2.0 x108 cells/ml) in MHB and diluted to approximately 1x106 

cells/ml.  

2.8.1. MIC Meropenem  

To prepare meropenem MIC plates, 100 µl of MHB was pipetted in all columns 

except the first, followed by pipetting 100 µl of the prepared antibiotic solution in the 

first two columns and serially diluting across the rest of the columns until the desired 

antibiotic concentration had been reached. 100 µl of prepared bacterial culture were 

added to each well giving a final inoculum density of 1-5x105 cells per well. The plate 

was incubated at 37°C for 18hrs, shaking at 150rpm.  

 

2.8.2. MIC PNA 

To prepare a MIC plate with PNA, 90µl of MHB was mixed with 100µl of bacterial 

suspension and 10µl of PNA. The plate was incubated at 37°C for 18hrs, shaking at 

150rpm.  



 
 

84 

2.8.3. PNA and Meropenem MICs 

To prepare PNA and meropenem MIC plates, 100µl of MHB was pipetted in all 

columns except the first, followed by pipetting 100µl of the prepared antibiotic 

solution in the first two columns and serially diluting across the rest of the columns 

until the desired antibiotic concentration had been reached.  

Each well was inoculated with 90µl of the corresponding bacterial culture and 10µl of 

the prepared PNA suspension to make a final volume of 200µl per well; 

approximately 5x105 cells per well. The plate was incubated at 37°C for 18hrs, 

shaking at 150rpm, and results were recorded by visual observation of growth. 

Optical density at 595 was also measured for some experiments. 

 

2.8.4. MIC of the cleaning agent 

 

MIC to the cleaning agent was performed using the same method in section 2.8.1 

except different concentration of cleaning solution was added instead of antibiotics. 

Selected isolates of E. coli, E. cloacae and K. pneumoniae from cleaned wards were 

choosen for the experiment. To obtain a contaminant-free cleaning agent, the 

solution was filtered through 0.45µm syringe membrane filter (Sigma-Aldrich, St. 

Louis, USA) and MICs repeated. The growth was measured by measurimg the 

optical density at 595 using EZ microplate reader 400 (Biochrom Ltd, Cambridge, 

UK).  
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2.9. Polymerase Chain Reaction  

In this study, PCR experiments were used to detect the presence of MDR genes. All 

Karachi samples were assessed by PCR to detect blaNDM and blaCTX-M-15, whereas 

the Peshawar samples were assessed by a multiplex PCR method to detect blaNDM, 

blaKPC and blaOXA48 like genes; additionally, blaCTX-M-15 was detection by standard 

PCR. Standard primers were used for the Karachi study; however, primers for the 

multiplex were designed by myself using PrimerPlex software (Premier Biosoft 

California, USA). Furthermore, PCRs were used for other applications such as 

cloning, target validation, sequence typing, confirmation of resistance genes before 

experiments and 16s gene amplification for identification. Optimising conditions for 

all new primers were determined by gradient PCR to refine  annealing and extension 

temperature which varied accordingly with the primers and the amplicon length. 

PCRs were run on a G-Storm thermal cycler (G-STORM, Somerset, UK). The list of 

primers, their target and conditions are supplied in appendix (Table 28).  

 

2.9.1. Classic PCR  

Standard PCRs were performed using Extensor Hi-Fidelity PCR Master Mix (AB-

0794/B, Thermo Fisher Scientific, Waltham, USA) or puReTaq Ready-To-Go PCR 

Beads (Illustra 27-9557-02, GE Healthcare Life Sciences, Buckinghamshire, UK). 

Template DNA was prepared by suspending a 10µl loop of bacteria (grown overnight 

at 37⁰C) in 200 µl of water. For PCR beads, the loading dye was prepared by mixing 

1000µl of 20mg/ml of Orange G (Sigma-Aldrich, St. Louis, USA) with 200µl of 0.5% 

xylene cyanol (Sigma-Aldrich, St. Louis, USA) prepared in 40% sucrose solution 

(Sigma-Aldrich, St. Louis, USA).  
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Each reaction mix contained 12.5µl ready master-mix, 0.5µl of each primer, 10.5µl of 

molecular grade water and 1µl of template when using Extensor Hi-Fidelity PCR 

Master Mix or 18µl molecular grade water, 0.5µl of each primer, 1µl of loading dye 

and 1µl of template when using puReTaq Ready-To-Go PCR Beads.  

The general PCR conditions used are listed below: 

 

                     Initial Denaturation   95°C        5 Minutes 

                     Denaturation            95°C        1 Minute 

Annealing                50-60°C   1 Minutes          30-40 Cycles 

Extension                72°C        1-2 Minutes  

Final extension       72°C         5 Minutes 

Store 4°C 

 

2.9.2. Multiplex PCR reaction for blaOXA-48-like, blaNDM and blaKPC 

A multiplex PCR method was used to detect the presence of blaNDM, blaKPC and 

blaOXA48 like in clinical and non-clinical samples.  

Overnight grown bacterial colonies were suspended in 200ul of water and 1µl was 

added to the 18µl of puReTaq Ready-To-Go PCR Beads (Illustra 27-9557-02) mixed 

with 1µl of dye. The PCR conditions used are listed below: 

Initial Denaturation   95°C        5   Minutes 

                     Denaturation             95°C        30 Seconds 

Annealing                 61°C        30 Seconds     30 Cycles 

Extension                 72°C        1   Minutes  
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Final extension         72°C        5   Minutes 

Store 4°C 

 

2.10. Gel electrophoresis  

The PCR amplicons were run on an agarose gel (1.5% DNA, 0.8% RNA) to separate 

the amplified bands. Two-grams of HiRes standard agarose (AGTC Bio products 

Ltd., Hull, England) was added to 200ml of 1% TBE (recipe in Appendix Section 7.2) 

and boiled in the microwave for 2-3 minutes at 900 volts until completely dissolved. 

Gel was casted in the mould after addition of 30µl of 100% ethidium bromide 

(Thermo Fisher Scientific, Waltham, USA). The samples were injected in the wells of 

the agarose gel and separated using 260 Volts for 30 minutes.  

RNA samples were also analysed on agarose gels to check integrity and purity. The 

gels and buffers were prepared by the same method explained above but DEPC-

treated water was used; instead of autoclaved sterile water as used for DNA gels. 

Pure RNA samples were heated to 65°C for 5 minutes before being loaded onto the 

gels. RNA bands were separated at between 50 and 90v for 50 minutes. Both DNA 

and RNA gels were visualized under UV using a G-BOX (Syngene, Cambridge, UK). 

 

2.11. TOPO cloning and transformation  

blaNDM, blaKPC, blaOXA-48 and acpP  constructs were prepared using topo TOPO™ TA 

Cloning™ Kit (Thermo Fisher Scientific, Waltham, USA). For acpP, the full gene 

was synthesized with DNA StringsTM from Invitrogen, Thermofisher (Thermo Fisher 
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Scientific, Waltham, USA). Initially, PCR was performed using Mastermix and the 

instruction described in Section 2.9.1.  A total volume of 6µl of cloning reaction mix 

was prepared by mixing 2µl of the PCR product with 1 µl of salt containing 1.2 M 

NaCl and 0.06 M MgCl2, 1µl of TOPO vector (pCR™2.1-TOPO®) and 2µl of water. 

After incubating at room temperature for 5 minutes the salt was filtered by placing 

the cloning mixture on 0.2µM Millipore filter discs (Merck, Nottingham, UK) placed on 

a petri dish filled with water for 10 minutes. Concurrently, competent cells were 

prepared by spinning down 2 ml of overnight grown DH5α in MHB at 13,000 rpm for 

1 minute. The cells were washed by removing the supernatant and suspending the 

pellet in 1ml of ice-cold MG water. The process was repeated twice and the final 

pellet re-suspend in 80µl of water and immediately added to the filtered TOPO 

cloning mixture. The cells were transferred to a gene pulsar cuvette and exposed to 

pulse under bacteria Ec3 setting (3.00 KV for 5.90 miliseconds) using a MicroPulser 

electroporator (Bio-Rad, California , USA). Pre-warmed 400 ml LB medium was 

immediately added to the cuvette and the cells were allowed to recover for 60 

minutes at 37°C. Various volumes (50µl, 100µl and 200µl) were plated on LB Agar 

plates containing 65µg/ml ampicillin, 100mM IPTG and 40mg/ml Xgal (Sigma-

Aldrich, St. Louis, USA).  Approximatly 10 single colonies per reaction were 

propagated by re-plating and the cloning frequency confirmed by PCR and 

sequencing.  

 

2.12. Qiagen DNA extraction and sequencing  

The PCR amplified DNA was extracted using Qiagen DNA extraction kits (Qiagen, 

Limburg, Netherlands). The desired band was cut from the agarose gel and placed in 
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a bijou and immersed in QG buffer of an equivalent volume to approximately 3x the 

volume of the agarose gel containing the amplicon. The agarose and buffer were 

incubated for 30 minutes in QG buffer and 700µl was transferred to QIAquick 

columns placed in 2ml collection tubes. After centrifugation for 1 minute at 

13,000rpm, the flow-through was discarded and the process repeated by adding the 

remaining QG buffer. The columns were washed by adding 750μl of Buffer PE, with 

resting for 2 minutes at room temperature and centrifuging for 1 minute at 13,000 

rpm. The columns were washed/centrifuged again and the cartridge transferred to a 

sterile 1.5 ml Eppendorf. The DNA was eluted from the cartridge by applying 50μl of 

molecular grade water (pH 7.0) to the column and centrifuging for 2 minutes at 

13,000rpm. The concentration of purified DNA was determined using a 

spectrophotometer (Jenway, Staffordshire, UK) and sent to Eurofins MWG operon 

(Eurofins, Ebersberg, Germany) following submission guidelines. The DNA was 

diluted to concentrations of 2ng/μl for amplicons of length 150-300bp, 5ng/μl for 

amplicons 300-1000bp and 10ng/μl for amplicons of over 1000 bp). 15µl of the 

purified DNA was mixed with 2μl of the primer at concentration (10μM) and sent to 

Eurofins for sequencing.  The quality of the sequences was analysed by the supplied 

Chromatograms and further analysed using NCBI and Geneious (version 8.0).  

 

2.13. RNA isolation  

For acpP expression analysis, an overnight culture was grown in MHB, diluted 10-

fold, and treated with a sub-inhibitory concentration of PNA.  The cells were 

harvested after an additional growth period of 4 hours at 37°C, shaking 200 rpm and 

the RNA was extracted using the RNeasy Mini Kit (Qiagen, Limburg, Netherlands). 
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Two ml of cell culture was vortexed briefly and centrifuged for 5 minutes at 

13,000rpm. The supernatant was discarded and the pellet was re-suspended in 600 

µl of buffer RLT with 1% (V/V) of β-mercaptoethanol. After adding 600µl of 70% 

ethanol, the suspension was mixed by gently pipetting up and down and up to 700 µl 

was transferred to an RNeasy spin column which was placed in 2 ml collection tube. 

The columns were centrifuged for 15 seconds at 8000g and the flow-through was 

discarded. The process was repeated by adding the remaining suspension to the 

columns, centrifuging and discarding the supernatant. Another round of 

centrifugation for 15 seconds at 8000g was followed by the addition of 350µl buffer 

RW1.DNase incubation mix, which was prepared by mixing 10µl of DNase stock 

solution with 70µl buffer RDD, was added to the columns. After incubation at 

ambient temperature for 30 minutes, 350µl of buffer RW1 was added and 

centrifuged for 15 seconds at 8000g. Three rounds of centrifugations were 

performed with 500µl RPE to remove the residual RPE.  The RNA was eluted by 

adding 50µl MG water (pH 7.0) and centrifuging the spin columns for 2 minutes at 

8000g. The purified RNA concentration was determined using a spectrophotometer 

(Jenway, Staffordshire, UK) and the integrity was assessed by running the RNA on 

an agarose gel. The samples were kept at -80.  

 

2.14. Reverse Transcription and cDNA synthesis  

The purified RNA was reverse transcribed to cDNA using the High Capacity RNA to 

cDNA kit (Applied Biosystems, California, United States). The concentration of all 

samples was adjusted prior to the reverse transcription reaction. For each sample, a 

20µl reverse transcription reaction mix was prepared in 200µl PCR tubes by adding 
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10µl of 2 x RT buffer, 1µl of 20 x enzyme mix, up to 2µg of RNA sample and 

adjusting the remaining volume with water. A negative control (-RT) reaction was 

also prepared by the addition of enzyme mix. All samples were incubated at 37°C for 

60 minutes and the reaction was stopped by heating to 95°C for 5 minutes. The 

resultant cDNA was saved at -20°C for long term storage.  

 

2.15.  Quantitative Real-Time PCR 

Real-Time Quantitative Reverse Transcription PCR (RT-qRT-PCR) was used to 

evaluate the differential expression levels between the clone and wild-type acpP 

strain.The 16s RNA housekeeping gene was used as an internal control in all 

experiments. Primers, probes and assays were designed by primer express software 

(full list provided in Appendices). “Dual-labelled” probes with quencher and 

fluorescence dye FAM-MGB probes (Applied Biosystems, Carlsbad, CA) were used 

in all experiments. The optimum concentration of cDNA was determined by 

amplifying different dilutions and 2-10µg was found to be the ideal concentration. 

with the supplied condition of Taqman fast advanced mastermix. The reaction mix 

was prepared by adding 10µl of 20 x Taqman fast advanced mastermix (Applied 

Biosystems, Carlsbad, USA) to one-microliter of 20x Custom TaqMan® Gene 

Expression Assay and adjusting the remaining 9 ul with 2-10µg of DNA and 

DNase/RNase free water. The experiments were performed in ViiA™ 7 (Applied 

Biosystems, Carlsbad, CA) by initially holding at 50°C for 2 minutes and then 95°C 

for 20 seconds, followed by 40 cycles at 95°C (denaturing) for 1 second and 60 °C 

annealing and extension for 20 seconds. Each reading was measured in triplicates 

and the average cycle threshold (Ct) values were calculated for each gene 
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expression system and normalised by subtracting the Ct values of 16s RNA.  The 

relative mRNA difference between treated and untreated or cloned and-wild type 

was calculated by 2-Δct method using Microsoft Excel 2015-16 (Microsoft, 

Redmond, USA). 

 

2.16. Conjugation experiments 

Conjugation experiments were performed using E. coli 83092 (blaNDM) E. coli 12F65  

(blaOXA) and E. coli 10E29 (blaKPC) as donors and E. coli J53  (azideR) as a recipient. 

Prior to the mating experiments, the presence of resistance genes was confirmed by 

PCR analysis. Carbapenem resistant samples were grown on chromogenic media 

plates with 0.5µg/ml meropenem (AstraZeneca, London, UK) and E. coli J53 on 

chromogenic media with 100µg/ml sodium azide. Pure cultures were propagated by 

picking a single colony and inoculating in 10ml of LB broth for incubation at 37°C for 

18hrs, with shaking at 200rpm. Mating was undertaken by mixing 1.5 ml of overnight 

culture of the carbapenem resistant strain with 1ml of E. coli J53 bacterial culture 

and 2ml of LB broth. After incubation for 18hrs at 37°C, 10µl was used to inoculate  

plates containing 100µg/ml sodium azide and 0.5µg/ml meropenem to select for 

transconjugates. Single colonies were subcultured and analysed for the presence of 

resistance genes by PCR. 

 

2.17. Passage experiments 

Bacterial cultures were processed through a series of serial passages to assess for 

the development of resistance by exposing to increasing concentration of PNAs. 
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Initially, micro-broth MIC assays with MH broth were performed. Subsequently, the 

last well with growth and the first well with no growth were mixed and incubated for 3 

hours at 37°C which was then used to inoculate the next micro-titre plate. The 

culture was used to inoculate chromogenic agar after every micro-broth MIC 

experiment to check for purity. The process was repeated for 7 days or until the MIC 

reached 128µMol. The resultant resistant strains and the original starting culture 

were sent to Uppsala University, Sweden for sequencing and were analysed by 

Douglas Hughes for identification of acquired mutations and further analysed by 

myself using Geneious R8 version 8.1 (Biomatters Ltd, Auckland, New Zealand) as 

explained in section 2.21.  

 

2.18.  FoR assay 

Frequency of resistance (FOR) rate was determined in micro-well plates as an 

alternative approach to “Luria–Delbrück” experiment (the fluctuation test) due to 

PNA’s binding nature. Initially, 20 independent bacterial cell cultures of E. coli ATCC 

25922 and K. pneumoniae ATCC13883 were grown overnight without selection in 

10ml MHB. The cultures were used to inoculate a micro-well plate with 

approximately 107 cfu/well and PNAs (EBL110, EBL111, EBL232 and EBL237) were 

added at X4-8 higher concentrations than the original MICs. The results were 

recorded over a 2-day period of incubation at 37°C where an OD of >0.4 was 

considered as growth. Serial dilutions of each culture were inoculated onto drug-free 

MH media to count the number of colonies in each well and ciprofloxacin FoR 

assays were performed in parallel as a control. The mutation rate was calculated 

using equation below: 
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mutation rate = - (1/N) x Natural log of P0 

mutation rate is per cell per replication cycle (generation) 

N is the number of viable cells 

P0 is the proportion of cultures giving rise to no mutants of the type being scored (i.e. 

number of wells where no significant net growth occurs). 

 

2.19. REP PCR typing  

Selected similar isolates, recovered from Karachi and Peshawar samples, were 

analysed by REP-PCR for phylogenetic relationships. Overnight grown cultures were 

acquired by heating at 95°C for 10 minutes and centrifuging for 5 minutes at 13,000 

rpm and the supernatant used as a DNA template. The PCR reaction mix was 

prepared in ready-to go beads by adding 1µl of DNA suspension to 16µl molecular 

grade water, 1.5µl Primer 2L and primer 1R (each at 20nmol concentration) and 1µl 

loading dye. The conditions used were as described in Versalovic et al. 1991 with the 

following modifications:  

 

Initial Denaturation   95°C        5   minutes 

                      Denaturation            95°C        30 seconds 

Annealing                 40°C        1   minutes      35 Cycles 

Extension                 65°C        8   minutes  

Final extension         65°C       16 minutes 

Store 4°C 



 
 

95 

Electrophoresis gel was prepared using 2% agarose gel at 240 V and run for 140 min 

in 1xTBE buffer containing 30µL of ethidium bromide. Gels were visualised and 

photographs recorded under UV light. 

For analysis, gel images were uploaded to GelCompar II version 6.6.11 (Applied 

Maths NV [available from http://www.applied-maths.com/bionumerics]). All amplicons 

were normalised using the SmartLadder MW 1700-02 molecular weight marker 

(Eurogentec, UK). The variations in band intensity were not considered to be 

significant and DNA fragments detected by the software were carefully verified by 

visual examination. Levels of similarity between the banding patterns were calculated 

by the Dice coefficient. Dendrograms for each species were produced by the 

unweighted pair group method with arithmetic averages (UPGMA).  

 

 

 

2.20 Sequence Typing 

FumC-FimH (CH) typing was used for sequence type assignments of E. coli as 

previously described (Weissman et al. 2012). Full MLST of seven house-keeping 

genes including adk (adenylate kinase), fumC (fumarate hydratase), gyrB (DNA 

gyrase), icd (isocitrate/isopropylmalate dehydrogenase), mdh (malate 

dehydrogenase), purA (adenylosuccinate dehydrogenase) and recA (ATP/GTP 

binding motif) was performed whenever CH typing did not resolve the ST assignment 

(Wirth et al. 2006). PCR analysis was performed using Extensor Hi-Fidelity PCR 

Master Mix (Thermofisher AB-0794/B) and further processed by following the 
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protocol described in section 2.8 and 2.9 of this chapter. Purified DNA concentration 

was measured using a NanoPhotometer (IMPLEN, Germany) and products with 

concentrations above 5 ng/µL were sent to Eurofins MWG Operon (Eurofins, 

Germany) for sequencing. Geneious was used to assign a sequence number by 

comparing with FumC and FimH database which was acquired from webpage 

http://mlst.warwick.ac.uk/mlst/dbs/Ecoli/ and Veronika Tchesnokova (Evgeni 

Sokurenko lab; veronika@uw.edu). Veronika also assigned the sequence types 

based on CH typing.  

For K. pneumoniae, whole genomic DNA was sequenced following the protocol in 

section 1.19 and sequence typing was assigned using scheme defined by (Diancourt 

et al. 2005; Brisse et al. 2009). The protocol used seven housekeeping genes: 

rpoB (beta-subunit of RNA polymerase), gapA (glyceraldehyde 3-phosphate 

dehydrogenase), mdh (malate dehydrogenase), pgi (phosphoglucose isomerase), 

phoE (phosphorine E), infB (translation initiation factor 2) and tonB (periplasmic 

energy transducer). Geneious software version 8.1 (Biomatters Ltd, Auckland, New 

Zealand) was used to assign the ST by blasting against the K. pneumoniae database 

which was acquired from web page http://bigsdb.pasteur.fr. The new ST types for 

both K. pneumoniae and E. coli were added to the database following instructions 

from the curators. 

 

2.20. Whole genome sequencing and analysis 

Whole genomic sequencing was carried out by in-house sequencing facility (MiSeq). 

Total genomic DNA (gDNA) was extracted from an overnight culture (2ml) using 

commercially available column-based Qiagen DNA extraction kits. Following 
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extraction gDNA was eluted in molecular-grade water and quantified by fluorometric 

methods using a Qubit (ThermoFisher Scientific). Quality ratios of gDNA (A260/280 

and 260/230) were determined using the Nanodrop (ThermoFisher Scientific). gDNA 

libraries were prepared for whole genome sequencing using the NexteraXT kit 

(Illumina). Briefly, input gDNA was normalised (to ensure all bacterial DNA samples 

were the same concentration) and the DNA tagmented. Following tagmentation of 

the DNA, the samples were prepared for PCR amplification, whereby each bacterial 

DNA sample was allocated individual tags for downstream multiplexing. Using 

AMPure beads to allow size selection, the PCR clean-up step effectively removes 

unwanted fragments of DNA. After the remaining DNA libraries were normalised 

each individually tagged sample was pooled and a known quantity of sequencing 

control (PhiX) added. Paired end sequencing was performed using the Illumina 

MiSeq platform (MiSeq Reagent V3 Kit; 2x 300 cycles). For each E. coli isolate, at 

least 80x coverage was generated. Raw sequence reads were trimmed using Trim 

Galore and the genomes were de novo assembled into contigs using SPAdes (3.9.0) 

with pre-defined kmers set.  Further analysis was performed using Geneious R8 

software version 8.1 (Biomatters Ltd, Auckland, New Zealand). 

 

2.21. Sequence alignment and comparison  

All the bioinformatic functions required for this study were performed by Geneious 

software version 8.1 (Biomatters Ltd, Auckland, New Zealand). The contigs were 

assembled by the de-novo assembly tool using the default settings defined in 

Geneious. For PNA mutation analysis, the mutated strains were sequenced by 
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Uppsala University, Sweden, and analysed by mapping the sequences to the 

reference genes.  

The target sequence of PNA was selected by multiple alignment of all the gene 

variants and selecting a common complementary ATP start region as target for PNA 

synthesis. Though the sequences were provided by myself, the specific 12bp PNA 

sequence was selected by our collaborators in Copenhagen (Prof. Peter Nielson). 

For NDM and KPC PNA’s, all the available gene variants on Lahey web-page 

(https://www.lahey.org/studies/other.asp#table1) were aligned using the multiple 

alignment function available in Geneious R8 with default settings. For class 1 

integrons expressing VIM genes, PNA’s were synthesised by aligning VIM-1 and 

VIM-2 genes and the promotor and start site of integrases. Due to the abundance of 

OXA48-like genes, only a set of representative genes were selected and aligned to 

extract complementary regions for PNA synthesis. 

 

 

2.22. Statistical Analysis 

 

The statistical analysis for Peshawar study was performed using IBM SPSS statistics 

(Version. 23). Quantitative variables such as age, duration of hospital stay, length of 

stay in hospital were grouped based on the values obtained for each variable in the 

questionnaires. Analysis was performed on the detection of blaNDM, blaCTX-M-15 and 

blaOXA-48 like gebes. blaKPC was exclude for all analysis as no positive samples were 

detected. Crosstabulations with Pearson chi-square and Fisher’s exact test (when 
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appropriate) were used to perform univariate analysis on the distribution of the 

resistance genes and their association with different variables. Variables with 

statistically significant associations to the resistance genes were selected for 

multivariate analysis by binary logistic regression. Variables such as residence and 

type of surgery were excluded from statistical analysis since those couldn’t be 

grouped in sub-categories. P- values of <0.05 were considered as significant.  
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3. Environmental Contamination of MDR (blaNDM and  

blaCTX-M) in Karachi, Pakistan  
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3.1. Introduction 

Earlier studies on b-lactam resistance focused on the presence of MDRB in 

healthcare settings and it was generally believed that patients are the main carrier 

and distributors of AMR genes (Carmeli et al. 2010). The increasing incidence of 

MDR found in normal faecal flora is concerning as MDR can widely spread in the 

normal microbiota and has disseminated in large populations and act as reservoirs 

(Woerther et al. 2013). In addition, the increased contamination of antibiotics in the 

environment has led to AMR genes spreading in non-clinical settings with direct and 

indirect effects on the overall emergence and distribution of AMR. For example, 

besides humans, b-lactams are widely consumed in veterinary medicine and the 

resistance arising in livestock has great potential to spread to insect pests and other 

wild animals (Woodford et al. 2014). Indeed, several studies have found that wild-

birds, animals and insects carry antibiotic resistance genes and could transfer it to 

distinct environments. For example, a study on wild birds in the Netherlands found 

that 65 birds (15.7%) from 21 different species contained ESBL or AmpC-type genes 

(Veldman et al. 2013). In Bangladesh, a higher resistance rate of approximately 30% 

ESBLs was reported in wild and domestic birds (Hasan et al. 2012). 

Environmental antibiotic contamination is a global issue; however, in LMICs it is 

more concerning due to the general increase in antibiotic consumption and poor 

health infrastructure, unhygienic living conditions and lack of waste management 

which could leads to unprecedented MDR spread (Raka 2010; WHO 2014b). 

Therefore, an environmental prevalence study combined with clinical data on the 

status of MDR in LMICs is important.  Furthermore, it is also not known to what 

extend all these region-specific features influence the MDR rate and in-depth 
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analyse of these factors could be essential in determining the major risk factors 

associated with the carriage of antibiotic resistance.  A few small studies have 

reported the characterisation of AMR bacteria from LMIC non-clinical and hospital 

environmental samples, but an extensive study exploring AMR in an holistic and 

systematic manner has not been reported (Rahuma et al. 2005; Macovei and Zurek 

2006).  

In this chapter, samples are collected from Karachi which is one of the largest cities 

in Pakistan with a population of over 21 million. Besides overcrowding, Karachi faces 

additional problems with waste management, sanitation and poor infection control. 

Clinical samples were collected from patients visiting the Civil Hospital Karachi 

whereas non-clinical samples were collected from insects, hospital surfaces, drinking 

water supplies and birds or small animal droppings. CTX-M-15 genes were used as 

marker for ESBLs prevalence whereas NDM genes were used as a marker for the 

resistance rate to carbapenems. The results will provide an overview of MDR 

contamination in different environments of a representative city in LMIC. 

Furthermore, the clinical data will provide vital information about the prevalence rate 

of MDR in hospital settings and the effects of environmental contamination on the 

carriage of MDR in patients.  

The clinical samples of this chapter were processed by Ammara Mushtaq and Maria 

Carvalho and colleagues whereas the environmental samples were processed by 

myself.  
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3.2. Results  

3.2.1. Molecular detection of blaNDM and blaCTX-M in clinical samples from Civil 

Hospital Karachi, Pakistan 

Overall, 1893 patients were enrolled in this study from which 1691 patient’s rectal 

swabs and 285 site of infection samples from 191 patients were processed and 

analysed for the presence of blaNDM. Site of infection samples (SOI) were also 

analysed for the presence of blaCTX-M-15; however, as the prevalence of blaCTX-M-15 

among rectal samples in Karachi was unexpectantly high so we focused on blaNDM-1 

only for further analysis and a sub-cohort of 764 patient’s rectal swabs randomly 

selected from the total study population of 1046 swabs with 630 samples at 

admission (FSA) and 416 samples at discharge (FDA) were analysed for the 

presence of blaCTX-M-15. The results showed that 24% (n=400) FSA , 28% (n=481) 

FSD and 10% (n=31) SOI samples were positive for blaNDM whereas 69% (n=527) 

FSA , 44% (n=338) FSD and 38% (n=72) SoI samples were positive for blaCTX-M-15 

(Figure 14).  
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Figure 14. Occurrence of blaNDM and blaCTX-M-15 in patient’s samples from 
Karachi, Pakistan. The graph shows percentage of PCR positive samples. Rectal 

swabs at admission are denoted as “Faecal Samples at Admission” (FSA), at 

discharge as “Faecal Samples at Discharge” (FSD) and infection samples as “Site of 

Infection” (SOI).  

 

 

3.2.2. Molecular detection of blaNDM and blaCTX-M in non-clinical samples from 

Karachi, Pakistan 

A total of 729 environmental samples were obtained from Karachi, Pakistan in 2013. 

Among the 347 hospital surface swabs, 22.76 % (n=79) were positive for blaNDM and 

11.81 % (n=41) for blaCTX-M-15 whereas 6.34 % (n=22) samples were positive for both 

blaNDM and blaCTX-M-15 (Figure 15). The positive samples showed an association with 

a variety of places and certain wards, for example Surgery and Orthopaedics, had 
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the highest number of AMR bacteria but, no specific links between wards was 

identified (Table 6 and 7).  

Figure 15. Occurrence of blaNDM and blaCTX-M-15 in hospital surface samples 

from Karachi, Pakistan. The radar graph shows percentage of blaCTX-M-15 and 

blaNDM PCR-positive samples.  

 

 

22.76
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Table 6. Occurrence of blaNDM in surface samples from Civil Hospital, Karachi. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ENT: Ears, Nose & Throat; ICU: Intensive Care Unit; MICU, Medical ICU; O&G: 

Obstetrics & Gynaecology. 

 

 

Ward blaNDM PCR-positives Sampling Site 
Burns 

 
3 

Bedside table, fire extinguisher, 

patient file 

Emergency 

 
1 

Floor 

 

ENT 

 
1 

NG tube 

 

ICU 

 
1 Floor 

Medicine 

 
5 

Bed linen, nursing counter, 

oxygen mask 

MICU 

 
3 

Bed linen, Stairs, stretcher, lunch 

trolley 

O&G 

 
11 Dust bin, curtain 

Orthopaedics 

 
3 Bed metal, food trolley, window 

Paediatrics 

 
2 Bed linen 

Surgery 

 
11 

Floor, table, medicine counter, 

dust bin, bedside table, 

envelope, CT scan, floor, bed 

linen, stretcher 
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Table 7. Occurrence of blaCTX-M-15 in surface samples from Civil Hospital, 

Karachi. 

 ENT: Ears, Nose & Throat; ICU: Intensive Care Unit; MICU, Medical ICU; O&G: 

Obstetrics & Gynaecology. 

Ward 
blaCTX-M-15 

PCR-positive 
Sampling Site 

Burns 
 

3 Bed linen, bedside table, patient file 

Emergency 
 

2 
Table 

 

ENT 
 

1 
Pillow case 

 

ICU 
 

4 Floor, nursing counter, weighing machine 

Medicine 
 

16 

Bed linen, nursing counter, bed adjustment handle, drawer, 

medicine trolley, nursing counter, oxygen mask, pillow case, 

light during procedures, lunch trolley, storage shelf, stair railing, 

stretcher, switch board 

MICU 
 

1 
Stairs 

 

O&G 
 

8 
Corridor, dust bin, curtain, dust bin, stairs railing, visitor's chair, 

floor, nursing counter 

Orthopaedics 
 

18 

Bandage on patient's leg, bed adjustment handle, blood bag, 

curtain, door handle, drawer, envelope x-ray, foley's catheter, 

kettle, medicine trolley, o2 cylinder knob, oxygen mask, phone 

on nursing counter, plastic for patient's support, switch board, 

tape to secure cannula, tape to secure cannula, trolley 

Paediatrics 
 

7 
Bed linen, door handle, drip bag, lunch trolley, pillow case, 

switch board 

Surgery 
 

13 
Floor, lunch table, medicine counter, dust bin, lunch table, 

bedside table, patient file, door handle, iv line, patient file 

Ultrasound 6 
Chair waiting area, door handle, gel bottle, stretcher, switch 

board, window 
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Among insects (n=193), five samples (3 %) carried blaNDM and 18 (9%) were positive 

for blaCTX-M-15. blaNDM were carried by 2 ants (Lasius niger), 2 cockroaches (Blattella 

asahinai) and a fly (Musca domestica) whereas blaCTX-M-15 were detected mostly in 

flies (Table 8).  

  

Table 8. Location of blaNDM and blaCTX-M-15 in Insects from Civil Hospital, 

Karachi. 

 

 

 

 

 

O&G: Obstetrics & Gynaecology. 

 

Among the 92 small animals and bird’s faeces, a Hawk’s sample was found to be 

positive for blaNDM and 22 (20 %) other different birds’ faeces carried blaCTX-M-15 

(Table 9). 

 

 

Location of samples blaCTX-M-15 PCR-positives blaNDM PCR-positives 

Common Hospital Areas 8 4 

Medicine 3 0 

O&G 2 0 

Paediatrics 1 1 

Surgery 4 0 
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Table 9. Occurrence of blaCTX-M-15 in birds’ faeces. All birds dropping collected 

from either outside the hospital or caged birds in the markets near the hospital. 

 

 

 

 

 

 

Among the total 123 water supply units tested, eight (7 %) were found PCR-positive 

for blaCTX-M-15 and seven (6 %) for blaNDM. Two of the drinking water sites, Essa-Nagri 

and Jail-road, were both positive for blaNDM and blaCTX-M-15. Most of the contaminated 

water supply units are within proximity (approximately 6-kilometres distance) to each 

other (Figure 16). 

Species blaCTX-M-15 PCR-positives 

Crows 3 

Eagles 2 

Fowls 2 

Peacocks 2 

Pigeon 1 
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Figure 16.  Map of the areas with contaminated water supply. The above image shows the 80-kilometer radius of Karachi city 
where the drinking water samples were collected. The areas highlighted in orange are the sites where blaCTX-M-15 was detected and 
the areas in red were positive for blaNDM. 
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3.2.3. Identification of NDM- and CTX-M15-positve bacteria     

From the insects and birds, I attempted isolating bacteria carrying blaCTX-M-15 and 

blaNDM. Although there were more insects which came up positive for the carriage of 

NDM and CTX-M-15 genes by performing PCR on the overnight broth culture, no 

growth on plates were achieved and hence no MDR bacteria could be isolated. Only 

one blaCTX-M-15 carrying sample from a fly (Musca domestica), caught in the 

gynaecology ward, was grown on selective media and subsequently isolated and 

subsequently shown to be E. coli.  

A total of 13 blaCTX-M-15 positive isolates were recovered from birds’ faeces samples. 

Eight were E. coli, two K. pneumoniae and one each of E. cloacae, Pseudomonas 

fulva and Citrobacter amalonaticus.   

From drinking water, out of the seven blaNDM positive samples, only two K. 

pneumoniae were successfully isolated. However, from the hospital surface swabs, 

most of the blaNDM positive isolates belonged to the species of Acinetobacter 

johnsonii. In contrast, clinical samples revealed a wide variety of species that were 

responsible for the carriage of resistant genes. However, blaNDM from SOI and rectal 

swabs were mainly E. coli, Enterobacter and Klebsiella spp. (Figure 17) whereas 

blaCTX-M-15 from SOI was mostly recovered from Enterobacter, Klebsiella and 

Citrobacter spp. (Figure 18).  

 

 



 
 

112 

 

 

blaNDM species from rectal swabs (n=914)
Achromobacter
Acinetobacter
Aeromonas
Alcaligenes
Alishewanella
Brevundimonas
Chryseobacterium
Citrobacter
Comamonas
Delftia
Enterobacter
Escherichia
Klebsiella
Kluyvera
Leclercia
Morganella
No reliable ID
Ochrobactrum
Proteus
Pseudochrobactrum
Pseudocitrobacter
Pseudomonas
Raoultella
Rhizobium
Shewanella
Stenotrophomonas

blaNDM species from SOI 
(n=48)

Acinetobacter Citrobacter
Enterobacter Escherichia
Klebsiella No reliable ID
Providencia Pseudomonas

blaNDM species from hospital 
surface swabs (n=49)

Acinetobacter Citrobacter
Enterobacter Escherichia
Klebsiella No reliable ID
Pantoea Pseudomonas
Stenotrophomonas

Figure 17. blaNDM positive bacteria from Karachi clinical and non-clinical 

samples. SOI (site of infection).  
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Figure 18. blaCTX-M-15 positive bacterial species from Karachi clinical and non-

clinical samples. SOI (site of infection). 

 

 

blaCTX-M-15 species from animal feaces 
(n=54)

Citrobacter

Enterobacter

Escherichia

Klebsiella

Pseudomonas

blaCTX-M-15 species from SOI (n=13)

Alcaligenes

Citrobacter

Enterobacter

Escherichia

Klebsiella

No reliable ID

Ochrobactrum

Pseudomonas
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3.2.4. Antimicrobial susceptibility profiles of blaNDM bacteria   

Antimicrobial susceptibility results for blaNDM PCR-positive samples showed high-

level resistance to all β-lactams. Among the carbapenems, the bacteria isolated from 

environmental samples were least resistant to meropenem whereas bacteria from 

clinical samples were most resistant to imipenem. Slightly different percentage of 

resistance was also observed in clinical samples to meropenem; however, bacteria 

from both clinical and environmental samples were found to be most resistant to 

ertapenem.  

Isolates from all samples possessed similar resistance profiles to ciprofloxacin, 

rifampicin and all cephalosporins except cefepime. Bacteria isolated from clinical 

samples showed increased resistance cefepime, gentamicin and aztreonam 

compared to isolates of environmental origins. Among all antibiotics tested, bacterial 

isolates from both clinical and non-clinical samples were least resistant to 

fosfomycin, tigecycline and colistin the least resistance.  
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4.2%
6.1%

55.1%
52.1%

40.8%
95.9%

91.8%
91.8%
91.8%

67.3%
93.9%

100.0%
81.6%

67.3%
2.0%
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TGC
FOS
CIP
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F

RD
AMC
CTX
CAZ
FEP
IPM
ETP

MEM
ATM
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Non-clinical isolates, n= 49

S I R

7.5%
7.2%

66.5%
83.1%

29.6%
99.7%
98.6%
98.1%
97.5%
94.8%

56.3%
90.4%

61.4%
86.9%

1.4%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
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FOS
CIP
CN
F

RD
AMC
CTX
CAZ
FEP
IPM
ETP

MEM
ATM

CS

Clinical isolates, n= 365

S I R

Figure 19. Antibiotic susceptibility profiles of clinical and non-clinical isolates. 

Percentage of resistant isolates to each antibiotic tested is labelled. TGC= tygecycline (15 

µg); FOS= fosfomycin (200 µg); CIP= ciprofloxacin (5 µg); CN= gentamycin (10 µg); F= 

nitrofurantoin (100 µg); RD= rifampicin (5 µg); AMC= amycacin (30 µg); CTX= cefotaxime 

(5 µg); CAZ= ceftazidime (10 µg); FEP= cefepime (30 µg); IPM= imipenem (10 µg); 

MEM= meropenem (10 µg); ATM= aztreonam (30 µg); CS= colistin. (Bar colour 

blue=sensitive, Orange=intermediate and grey=resistant) 
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3.2.5. Phylogenetic analysis of environmental samples by REP-PCR typing 

Similar REP-PCR profiles were shown for blaCTX-M-15-positive E. coli isolates from 

faeces of a crow, a fowl, and two eagles. (Figure 20). Two blaNDM-positive K. 

pneumoniae isolates from a bed table in surgical ward-3 (S11-50) and a medical 

counter from a female surgical ward-1 (S7-23) also showed similar REP profiles. 

(Figure 21). Although more than half (11 out of 17) of the Acinetobacter isolates 

containing blaNDM had a minimum of 70% similarity, eight of the isolates were 100% 

identical and were mostly associated with either the orthopaedics male ward 2 or the 

paediatrics ward. (Figure 22). The Acinetobacter isolates were cultured from bed 

linen (S3-18), a door handle (S3-21) in paediatric ward; a drawer (S4-13), door 

handle (S4-14), bed handle (S4-19), security tape of cannula (S6-2), medicine tray 

(S9-17) from orthopaedics male ward-2, and an ultra-sound door handle (S9-19). 

From the Enterobacteriacae isolates (Figure 23), 3 samples from hospital surfaces 

had similar REP-PCR profiles with clinical samples indicating cross contamination. 

These isolates were cultured from stairs (SA-5), a dust bin in labour room (S11-49) 

and IV line in surgical ward. (S11-10).  

All samples were analysed by UPGMA cluster analysis based on the Dice coefficient 

of REP-PCR fingerprints. Similarity is indicated as a percentage. 
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Figure 20. REP-profile of E. coli 
isolated from clinical and non-
clinical samples from Karachi. The 
minimum similarity coefficient for two 
profiles being considered very similar 
if not the same was 89%. ST of the 
distinct isolates is shown 

Legend: green squares highlight non-clinical 
isolates. Blue boxes indicate blaNDM negative 
isolates of animal origin.  Black brackets 
denote discrepancies between REP typing 
and sequence typing analysis. The newly 
identified ST5003 in an E. coli isolate from 
crow faeces is in bold. 
A: Isolates with the same REP profile found 
in FSD from distinct patients admitted to 
different wards < one month. 
B: Isolates with the same REP profile found 
in FSD from distinct patients admitted to 
different wards < two months. 
C: Isolates with the same REP profile found 
in distinct types of samples (FSA and FSD) 
from distinct patients admitted to the same 
ward at the same time and < one month; and 
admitted to different wards at the same time 
and < one month. 
D: Isolates with the same REP profile found 
in the same sample of a patient, probably 
corresponding to multiple isolations of the 
same strain. 
E: Isolates with the same REP profile found in 
distinct types of samples (FSA and FSD) from 
distinct patients admitted to different wards < 
one month. 
F: Isolates with the same REP profile 
found in bird’s faeces from distinct birds. 
G: Isolates with the same REP profile found 
in distinct types of samples (FSA and FSD) 
from distinct patients admitted to the same 
ward and different wards < one month; and 
admitted to different wards < two months. 
H: Isolates with the same REP profile found 
in distinct types of samples (FSA and FSD) 
from distinct patients admitted to the same 
ward <1 month. 
I: Isolates with the same REP profile found in 
distinct types of samples (FSA and FSD) from 
distinct patients admitted to the same ward < 
two months. 
J: Isolates with the same REP profile found in 
distinct types of samples (FSA and FSD) from 
distinct patients admitted at the same time to 
the same ward; at the same time to different 
wards; to the same ward < two months. 
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Figure 21. REP-profile of K. 

pneumoniae isolated from birds’ 
droppings, drinking water and 
hospital surface samples. The 
minimum similarity coefficient for two 
profiles being considered very similar 
if not the same was 88%.  

Legend: green squares highlight non-clinical 
isolates.  
A: Isolates with the same REP profile found 
in the same type of sample (FSD or SOI) from 
distinct patients admitted to the same ward at 
the same time. 
B: Isolates with the same REP profile found 
in distinct types of samples (FSA and FSD) 
from distinct patients admitted to different 
wards < one/two months apart.  
C: Isolates with the same REP profile found 
in distinct types of samples (FSA and FSD) 
from distinct patients admitted to the same 
ward > two months; and admitted to different 
wards < two months apart. 
D: Isolates with the same REP profile found 
in the same type of sample (FSA) of distinct 
patients admitted to different wards at the 
same time. 
E: Isolates with the same REP profile found in 
the same type of sample (FSD or SOI) from 
distinct patients admitted to different wards < 
one month apart. 
F: Isolates with the same REP profile found in 
the same sample of a patient, probably 
corresponding to multiple isolations of the 
same strain; and isolates with the same REP 
profile found in the same type of sample 
(FSA) from distinct patients admitted to 
different wards < two months apart. 
G: Isolates with the same REP profile found 
in distinct types of samples (FSA and FSD) 
admitted to the same or distinct wards < one 
month apart. 
H: Isolates with the same REP profile 
found in distinct hospital surface from 
different wards. 
I: Isolates with the same REP profile found in 
the same type of samples (SOI) from distinct 
patients admitted to the same ward <1 month. 
J: Isolates with the same REP profile found in 
the same type of sample (FSD) from distinct 
patients admitted to different wards > two 
months apart. 
K: Isolates with the same REP profile found 
in distinct types of samples (FSA and FSD) 
admitted to the distinct wards at the same 
time. 
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Figure 22. REP-profile of blaNDM 
positive A. johnsonii isolates. 
The minimum similarity coefficient 
for two profiles being considered 
very similar if not the same was 
87%.  
Among 20 isolates subjected to REP-PCR, 
13 REP profiles were found.  

Legend: green squares highlight non-
clinical isolates. Purple bracket delimits 
isolates sharing the same REP-PCR 
profile that were found in related samples. 
These results suggest that genotypically 
closely related A. johnsonii isolates if not 
the same strain is present in distinct 
surfaces of the paediatrics, orthopaedics-2 
male wards and in the ultrasound 
department. 
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Figure 23. REP-profile of blaNDM 
positive E. cloacae isolates. The 
minimum similarity coefficient for two 
profiles being considered very similar if 
not the same was 87%.  

Legend: green squares highlight non-clinical 
isolates. �A: Isolates with the same REP 
profile found in different types of clinical 
samples (FSA and FSD) from distinct patients 
admitted to three different wards at the same 
time.�B: Isolates with the same REP profile 
found in different types of samples (FSA, 
FSD, SOI, hospital surface) in different 
wards and different sampling times/ < two 
months apart.�C: Isolates with the same REP 
profile found in the same sample of a patient, 
probably corresponding to multiple isolations of 
the same strain.�D: Isolates with the same 
REP profile found in FSD from distinct patients 
admitted to the same ward at the same time.�
E: Isolates with the same REP profile found in 
the same FSA of a patient, probably 
corresponding to multiple isolations of the 
same strain and isolate from an FSA from a 
distinct patient admitted to a different ward at 
the same time.�F: Isolates with the same REP 
profile found in FSA from distinct patients 
admitted to three different wards < two months 
apart.�G:Isolates with the same REP profile 
found in FSA from distinct patients admitted to 
different wards at the same time.�H:Isolates 
with the same REP profile found in SOI 
samples from distinct patients admitted to the 
same ward at the same time.�I:Isolates with 
the same REP profile found in SOI samples 
and FSD from distinct patients; two were 
admitted to the same ward at the same time 
and the other two were admitted to different 
wards in the same month.�J:Isolates with the 
same REP profile found in SOI samples from 
distinct patients admitted to different wards < 
one month apart.�K:Isolates with the same 
REP profile found in FSD from distinct patients 
admitted at the same time (ward unknown).�L: 
Isolates with the same REP profile found in 
FSD and FSA samples from distinct patients; 
all admitted at different wards, two at the same 
time and the other two months apart.�M: 
Isolates with the same REP profile found in 
FSD from distinct patients admitted to different 
wards at the same time.� 
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3.3. Discussion  

South Asian countries are generally associated with increased carriage of NDM and 

CTX-M type genes but their spread in the environment is rarely monitored. This is 

the first study which is primarily associated with analysing a patient’s immediate and 

distant environments that may contribute to their clinical impact. Different sectors in 

the environment may contribute differently to the dissemination of AMR but poor 

sanitation, waste management and lack of infection control are important factors in 

the increasing MDR rates that has been recently witnessed in LMICs. Based on the 

findings of this study, multiple pathways exist as possible transmission routes 

leading to the MDR bacteria transfer between patients, community and the 

environment. For example, hospitals lacking infection control could unwittingly 

augment the transfer of resistance between staff, patients and visitors. Improper 

waste management and poor infrastructure could lead to leakage and discharge of 

contaminated effluents into public drinking water supply. Animals feeding on waste 

or contaminated water could also retain and disperse the MDR bacteria further. All 

these issues are highlighted by the results of this chapter where besides patient’s 

rectal flora and bacteria isolated from the site of infection, MDR is present in drinking 

water, birds, insects and the hospital environment. Remarkably, the water supply 

units which were contaminated with MDR bacteria (East, Korangi and central areas), 

were also associated with the rectal carriage of MDR bacteria (CTX-M-15 and/or 

NDM positives) in patients from the same area. This highlights a very serious issue 

of access to clean and safe water - a problem which is not uncommon for residents 

of highly populated cities in LMICs. Different studies have identified the presence of 

increased number of bacterial pathogens and virus in LMICs causing multiple 

diseases in public health such as cholera, diarrhoea, dysentery, hepatitis A, typhoid, 
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and polio (WHO 2014a; Andremont and Walsh 2015; Quintela-Baluja et al. 2015; 

WHO 2017). Recently, a petition was filed against the quality of water and sewage 

system of Karachi which was followed by a commission enquiry by the supreme 

court of Pakistan (Muhammad and Kalhoro 2017). The commission investigated 

multiple water supply units and found the majority (75 % or 251/336 samples) were 

unsafe for human consumption under the standards specified by WHO due to 

microbiological contamination or the presence of other chemicals or metals such as 

calcium, sodium, potassium, chloride, sulfate, fluoride, nitrate and iron (Muhammad 

and Kalhoro 2017).  One of the main problem identified were old sewerage and 

drinking water supply infrastructure and the potential of mixing of sewerage and 

drinking water. Although the report resulted in the dismissal of the managing director 

for Karachi Water and Sewage Board, the city is yet to get any clean water supply 

and are unlikely to repair the old sewage infrastructure.  

There was a considerable difference among the prevalence rate of blaNDM and 

blaCTX-M-15 in the samples from the hospital surface. The NDM gene showed almost 

double the prevalence that was observed for blaCTX-M-15. This is not in consistent with 

the global trend that is generally observed with Gram-negative MDR which is almost 

always dominated by CTX-M type ESBLs (Kumarasamy et al., 2011b; Woerther et 

al. 2013). However, recently we have witnessed a considerable increase in the 

consumption of carbapenems, with a subsequent change in the pattern of Gram-

negative resistance. According to Boeckel et al. the global consumption of 

carbapenems increased by 45% between 2000 and 2010 and LMICs with large 

populations such as India and Pakistan witnessed a 6-fold increase from 2005 to 

2010 (Boeckel et al. 2014). In the same period, several species of bacteria belonging 

to the family of Enterobacteriaceae acquired blaNDM on a broad range plasmid 
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(Walsh et al., 2011) which resulted in its successful dissemination worldwide 

(Boeckel et al. 2014). This study also identified the NDM gene in a variety of 

clinically relevant and environmental bacteria. Although, it can be argued that the 

origin of the resistant genes was the environment, their dissemination to such a 

variety of species is nonetheless interesting. A large proportion of blaNDM isolates 

(37%) recovered from surface samples belonged to the species of Acinetobacter and 

predominantly A. johnsonii (Figure 17). Acinetobacter spp. are generally found in the 

environment and are common commensal organisms of the microbiota. However, 

they can cause HAIs specially in immune compromised patients and are frequently 

associated with outbreaks (Manchanda et al. 2010). The increase in antibiotic 

resistance of Acinetobacter species can be linked to the increased consumption of 

carbapenems whereas a gradual reduction is achieved when carbapenem use is 

withdrawn (Ogutlu et al. 2014; Tan et al. 2015). A study by Ogutlu et al. observed a 

2-fold reduction in Acinetobacter associated infections when carbapenem 

consumption was restricted in ICU patients for 8-months (Ogutlu et al. 2014). 

Regrettably, in this chapter we were unable to obtain each patient’s specific therapy 

or generic hospital data on carbapenem consumption, and thus it is difficult to 

determine if the increased carbapenem usage may have caused higher incidence of 

Acinetobacter resistance. One other factor that may have effected this observation is 

the possibility of an outbreak - from the total 17 blaNDM A. johnsonii recovered, eight 

had identical REP-PCR profiles. Indistinguishable A. johnsonii isolates were 

identified from paediatrics, orthopaedics and surgical wards suggesting the 

possibility of an outbreak and highlighting the issue of inadequate infection control 

practices. One reason could also be the ability of Acinetobacter spp. to survive in dry 

and moist conditions for longer periods. Studies investigating the desiccation 
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tolerance of Acinetobacter spp. revealed that they can survive on dry surfaces of up 

to 30 days and hence, increasing the possibility of cross-contamination and spread 

(Jawad et al. 1996; Jawad et al. 1998). The spread of MDR strains between birds 

and surface was also observed; however, none of the samples from different 

environments had similar REP profiles suggesting an intra- rather than inter- 

environmental spread.  

The potential of flies as a vector for MDR couldn’t be fully confirmed to its full extent 

because of complications with the growth of bacteria as most of the bacteria from 

flies failed to grow on selective media despite being tested PCR-positive for the 

carriage of blaNDM and blaCTXM-15. Similar findings were reported by Wang et al. when 

they screened samples from environmental and animal sources including hatcheries, 

commercial farms, slaughterhouse and supermarkets for blaNDM and colistin 

resistance gene (mcr-1) and direct sample testing revealed a higher number of 

resistance carriage compared to those seen in isolated species (Wang et al. 2017). 

There could be multiple reasons for this observation. Firstly, the organism carrying 

the gene could not have been grown because of its unknown nutrient requirement 

and secondly, the gene could have been unstable and the resistance might have 

been lost during culturing. Nevertheless, it won’t be completely wrong to term them 

as “phantom-resistomes” (Wang et al. 2017). The role of environmental resistomes is 

greatly underestimated even though the origin of antimicrobial resistance genes is 

invariably traced back to the environment (Hawkey 1998; Jayaraman 2009). The 

possibility of interspecies spread of clonal MDRB indicate a possible vertical 

transmission route which could be expanded across different environments providing 

a co-ordinated system for the development and transfer of new resistance 

mechanisms. 
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4. Clinical Prevalence of MDRB:The Effects of Cleaning 

and Seasonal Variations on the Carriage and 

Transmission Rates of b-lactam Resistance among 

Patient’s Surgical Wounds 
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4.1. Introduction  

Infections associated with Gram-negative bacteria are considered difficult to treat 

due to their inherited physiological resilience and acquired MDR (Walsh and 

Toleman 2012; Cox and Wright 2013). They are one of the major causes of mortality 

and morbidity in hospitals and frequently associated with outbreaks. There is also a  

considerable cost involved in treating the effected patients and controlling the spread 

of Gram-negative MDRB associated infections in hospitals (Stone 2010; Marston et 

al. 2016; O’Neill 2016a). For example, the containment of vancomycin-resistant 

Enterococcus (VRE) outbreak in a hospital in Netherland costed more than 

€2,000,000 (AMRNext 2016). The report by O’ Neil suggested that MDR associated 

infections could claim 10 million lives a year costing an estimated 100 trillion US 

dollars globally by 2050 (O’Neill 2016b). Therefore, infection control strategies are 

implemented to reduce the spread of MDRB between patients, clinicians and the 

community and to limit the distribution of resistant genes to other bacteria (Raka 

2010; Carling and Polk 2011; O’Neill 2016a). However, infection control strategies 

are practically non-existent in various parts of the LMIC and as a result there is an 

increased burden of HAI. An estimated 7% patients admitted to hospital in high-

income countries will develop a nosocomial infection which is increased to 35% in 

LMIC (Raka 2010; Stone 2010; O’Neill 2016a).  

LMICs of South Asia such as India and Pakistan are also presented with increased 

prevalence rate of AMR (Hawkey 2017). Most parts of these countries usually have 

higher average annual temperature (30°C) which is also preferred for the growth of 

bacterial pathogens (Shah et al. 2013). Warm climate together with unsatisfactory 

infection control and waste management could potentially provide the ideal 
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conditions to enhance the propagation of MDRB and potentially infectious diseases. 

However, there are very limited studies to acknowledge the effects of various 

independent co-factors that may contribute to the amplification of MDR rate for 

example; region specific ecological, environmental, climate, humidity and 

sociodemographic influence such as human activities and behaviour. To investigate  

and evaluate the role of region specific infection control strategies in an already 

compromised environment, a basic cleaning regime was implemented in a set of 

surgical wards and compared with that of an “un-touched” ward. In addition, the 

effects of seasonal variations were also monitored by sampling different seasons 

and the results were compared to evaluate their effects on the spread and 

dissemination of MDRB among surgical wound patients.  
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4.2. Results  

 

4.2.1. Molecular detection of blaNDM, blaKPC, blaOXA-48 like and blaCTX-M-15 in 

surgical wound swabs 

A total of 342 surgical wound samples were collected over three weeks of summer 

and winter. One hundred ninety samples were collected in Summer, 130 of them 

were taken from patients in clean wards and 59 from un-cleaned wards. In winter, 65 

samples were collected from cleaned wards and 87 from un-cleaned wards, making 

a total of 152 samples. The initial PCR on those samples revealed that 35.1% 

(120/342) patient’s samples were positive for the carriage of resistance either one or 

multiple resistance genes belonging to the family of blaNDM, blaOXA-48 like and blaCTX-

M-15. The samples collected in winter displayed an increase resistance rate of 46.0 % 

compared to 26.3% in summer. blaKPC was not detected in any of the samples and 

hence it has been excluded from the result tables and graphs.  

 

The distribution of individual genes according to the seasons and wards revealed an 

increased resistance prevalence rate in winter. A general increase among un-

cleaned wards for blaCTX-M-15 (29.2% cleaned: 48.2% un-cleaned) and blaNDM (16.9% 

cleaned: 24.1% un-cleaned) was observed. In contrast, the same trend was not 

observed for blaOXA-48 like PCR-positive samples and a very similar resistance 

distribution was seen in both cleaned and un-cleaned wards (20% cleaned: 19.5% 

uncleaned). However, all the resistant genes revealed a very similar prevalence rate 

for both cleaned and uncleaned wards in summer (blaCTX-M-15 21.5% cleaned: 
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22.03% un-cleaned, blaNDM 10.0% cleaned: 13.5% un-cleaned, blaOXA-48 like 7.6% 

cleaned: 10.1% un-cleaned) (Figure 24).  

Nonetheless, statistical analysis revealed that only blaCTX-M-15 was significantly 

associated with un-cleaned wards in univariate analysis whereas no association with, 

blaNDM and blaOXA-48like was seen (Table 10, 11 and 12). However, there was a 

significant association with the carriage of blaCTX-M-15, blaNDM and blaOXA-48-like with 

hospital stay of more than 7 days of stay and seasons winter (See univariate 

analysis table 10, 11, 12 and multivariate analysis table 13, 14, 15). Furthermore, 

blaCTX-M-15 and blaNDM were also associated with the development of infection in 

patients (Table 10).  
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Figure 24. Occurrence Of blaNDM, blaOXA-48 like and blaCTX-M-15 in patient’s wound 

samples isolated during winter and summer from clean and un-clean Wards. 

clean wards(SC), summer un-clean wards(SD), winter clean wards(WC) and winter 

un-clean wards (WD).  
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Table 10. Univariate statistical analysis of blaCTX-M-15 from patients’ samples.  

Ward shown as Clean (C), Un-cleaned (D), Stay in days, Age in years, Sex as Male (M), Female 

(F), Season as Summer (S), Winter (W) and development of infection and antibiotics treatment 
as No (N) and Yes (N). p- value of <0.05 is taken as significant and selected for multivariate 
analysis.  

 blaCTX-M-15 Pearson Chi-Square Fisher's Exact Test 
Neg Pos Total 

CD 
C N 148 47 195 0.007 0.008 

% 75.9% 24.1% 100.0%   

D N 91 55 146   
% 62.3% 37.7% 100.0%   

Total N 239 102 341   
% 70.1% 29.9% 100.0%   

Stay 

1-3 N 122 36 158 0.002  
% 77.2% 22.8% 100.0%   

4-7 N 86 40 126   
% 68.3% 31.7% 100.0%   

>7 
N 20 21 41   
% 48.8% 51.2% 100.0%   

Total N 228 97 325   
% 70.2% 29.8% 100.0%   

Age 

0-18 N 53 24 77 0.477  
% 68.8% 31.2% 100.0%   

19-30 
N 48 13 61   
% 78.7% 21.3% 100.0%   

31-45 
N 53 22 75   
% 70.7% 29.3% 100.0%   

>46 
N 71 34 105   
% 67.6% 32.4% 100.0%   

Total N 225 93 318   
% 70.8% 29.2% 100.0%   

Sex 
M N 107 48 155 0.598 0.632 

% 69.0% 31.0% 100.0%   

F N 129 51 180   
% 71.7% 28.3% 100.0%   

Total 
N 236 99 335   
% 70.4% 29.6% 100.0%   

Infection 
N 

N 149 46 195 0.002 0.002 
% 76.4% 23.6% 100.0%   

Y N 85 56 141   
% 60.3% 39.7% 100.0%   

Total N 234 102 336   
% 69.6% 30.4% 100.0%   

Season 
S N 149 41 190 < 0.001 < 0.001 

% 78.4% 21.6% 100.0%   

W 
N 91 61 152   
% 59.9% 40.1% 100.0%   

Total 
N 240 102 342   
% 70.2% 29.8% 100.0%   

Antibiotics 
N N 36 15 51 0.944 1.000 

% 70.6% 29.4% 100.0%   

Y N 204 87 291   
% 70.1% 29.9% 100.0%   

Total N 240 102 342   
% 70.2% 29.8% 100.0%   
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Table 11. Univariate statistical analysis of blaNDM from patients’ samples.  

Ward shown as Clean (C), Un-cleaned (D), Stay in days, Age in years, Sex as Male (M), Female 
(F), Season as Summer (S), Winter (W) and development of infection and antibiotics treatment 

as No (N) and Yes (N). p- value of <0.05 is taken as significant and selected for multivariate 
analysis. 

 
 

blaNDM Pearson Chi-Square Fisher's Exact Test Neg Pos Total 

CD 
C N 171 24 195 0.057 0.070 

% 87.7% 12.3% 100.0%     

D N 117 29 146     
% 80.1% 19.9% 100.0%     

Total N 288 53 341     
% 84.5% 15.5% 100.0%     

Stay 

1-3 N 145 13 158 <0.001   
% 91.8% 8.2% 100.0%     

4-7 N 106 20 126     
% 84.1% 15.9% 100.0%     

>7 N 25 16 41     
% 61.0% 39.0% 100.0%     

Total N 276 49 325     
% 84.9% 15.1% 100.0%     

Age 

0-18 N 67 10 77 0.638   
% 87.0% 13.0% 100.0%     

19-30 N 50 11 61     
% 82.0% 18.0% 100.0%     

31-45 N 67 8 75     
% 89.3% 10.7% 100.0%     

>45 N 89 16 105     
% 84.8% 15.2% 100.0%     

Total N 273 45 318     
% 85.8% 14.2% 100.0%     

Sex 
M N 128 27 155 0.134 0.160 

% 82.6% 17.4% 100.0%     

F N 159 21 180     
% 88.3% 11.7% 100.0%     

Total N 287 48 335     
% 85.7% 14.3% 100.0%     

Infection 
N N 174 21 195 0.003 0.004 

% 89.2% 10.8% 100.0%     

Y N 109 32 141     
% 77.3% 22.7% 100.0%     

Total N 283 53 336     
% 84.2% 15.8% 100.0%     

Season 
S N 169 21 190 0.011 0.016 

% 88.9% 11.1% 100.0%     

W N 120 32 152     
% 78.9% 21.1% 100.0%     

Total N 289 53 342     
% 84.5% 15.5% 100.0%     

Antibiotics 
N N 42 9 51 0.646 0.675 

% 82.4% 17.6% 100.0%     

Y N 247 44 291     
% 84.9% 15.1% 100.0%     

Total N 289 53 342     
% 84.5% 15.5% 100.0%     
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Table 12. Univariate statistical analysis of blaOXA-48-like from patients’ samples.  

Ward shown as Clean (C), Un-cleaned (D), Stay in days, Age in years, Sex as Male (M), Female 
(F), Season as Summer (S), Winter (W) and development of infection and antibiotics treatment 

as No (N) and Yes (N). p- value of <0.05 is taken as significant and selected for multivariate 
analysis. 

 
blaOXA-48-like 

Pearson Chi-Square Fisher's Exact Test 
Neg Pos Total 

CD 

C 
N 172 23 195 0.390 0.377 

% 88.2% 11.8% 100.0%   

D 
N 123 23 146   

% 84.2% 15.8% 100.0%   

Total 
N 295 46 341   

% 86.5% 13.5% 100.0%   

Stay 

1-3 
N 148 10 158 < 0.001  

% 93.7% 6.3% 100.0%   

4-7 
N 105 21 126   

% 83.3% 16.7% 100.0%   

>7 
N 27 14 41   

% 65.9% 34.1% 100.0%   

Total 
N 280 45 325   

% 86.2% 13.8% 100.0%   

Age 

0-18 
N 70 7 77 0.310  

% 90.9% 9.1% 100.0%   

19-30 
N 49 12 61   

% 80.3% 19.7% 100.0%   

31-45 
N 66 9 75   

% 88.0% 12.0% 100.0%   

>46 
N 89 16 105   

% 84.8% 15.2% 100.0%   

Total 
N 274 44 318   

% 86.2% 13.8% 100.0%   

Sex 

M 
N 130 25 155 0.237 0.267 

% 83.9% 16.1% 100.0%   

F 
N 159 21 180   

% 88.3% 11.7% 100.0%   

Total 
N 289 46 335   

% 86.3% 13.7% 100.0%   

Infection 

N 
N 173 22 195 0.131 0.149 

% 88.7% 11.3% 100.0%   

Y 
N 117 24 141   

% 83.0% 17.0% 100.0%   

Total 
N 290 46 336   

% 86.3% 13.7% 100.0%   

Season 

S 
N 174 16 190 0.002 0.004 

% 91.6% 8.4% 100.0%   

W 
N 122 30 152   

% 80.3% 19.7% 100.0%   

Total 
N 296 46 342   

% 86.5% 13.5% 100.0%   

Antibiotics 

N 
N 47 4 51 0.203 0.267 

% 92.2% 7.8% 100.0%   

Y 
N 249 42 291   

% 85.6% 14.4% 100.0%   

Total 
N 296 46 342   

% 86.5% 13.5% 100.0%   
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Table 13. Multiivariate statistical analysis of blaCTX-M-15 from patients’ samples 

blaCTX-M-15 variable(s) entered for analysis are Ward as Clean (C), Un-cleaned (D), Stay in 

days, Season as Summer (S), Winter (W) and development of infection as No (N) and Yes 

(N). Reference set as Stay 1-3, Infection (N), Season (S) and ward (C). P- value of <0.05 is 

taken as significant. 

 

Table 14. Multiivariate statistical analysis of blaNDM from patients’ samples 

blaNDM variable(s) entered for analysis are Stay in days, Season as Summer (S), Winter (W) 

and development of infection as No (N) and Yes (N). Reference set as Stay 1-3, Infection 

(N) and Season (S). P- value of <0.05 is taken as significant. 

 

Table 15. Multiivariate statistical analysis of blaOXA-48-like from patients’ 

samples 

blaOXA-48-like variable(s) entered for analysis are Stay in days, Season as Summer (S) and 

Winter (W). Reference set as Stay 1-3 and Season (S). P- value of <0.05 is taken as 

significant. 

 
 

B S.E. Wald df Sig. Odd 
ratio 

95% C.I. for Odd ratio 
Lower Upper 

Stay (4-7) .333 .284 1.378 1 .240 1.396 .800 2.436 
Stay (>7) 1.022 .389 6.914 1 .009 2.779 1.297 5.953 

Infection (Y) .779 .275 8.027 1 .005 2.180 1.272 3.739 
Season (W) .989 .278 12.665 1 .000 2.689 1.560 4.637 

CD (D) .343 .268 1.634 1 .201 1.409 .833 2.382 
Constant -2.087 .287 52.831 1 .000 .124   

 

 B S.E. Wald df Sig. Odd 
ratio 

95% C.I. for Odd ratio 
Lower Upper 

Stay (4-7) .636 .388 2.678 1 .102 1.888 .882 4.043 
Stay (>7) 1.764 .449 15.462 1 .000 5.836 2.423 14.062 

Infection (Y) .907 .345 6.919 1 .009 2.478 1.260 4.871 
Season (W) .919 .346 7.069 1 .008 2.507 1.273 4.937 

Constant -3.211 .397 65.419 1 .000 .040   
 

 B S.E. Wald df Sig. Odd 
ratio 

95% C.I. for Odd ratio 
Lower Upper 

Stay (4-7) 1.064 .409 6.779 1 .009 2.898 1.301 6.456 
Stay (>7) 1.967 .471 17.450 1 .000 7.150 2.841 17.993 

Season (W) .927 .345 7.222 1 .007 2.528 1.285 4.972 

Constant 
-

3.157 .388 66.129 1 .000 .043   
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4.2.2. Investigating the efficiency of the cleaning agent used in the study 

The efficacy of the cleaning was examined which resulted in producing growth in all 

wells including wells with no bacterial culture. However, the media controls wells 

were still clear. Therefore, the cleaning agent was plated onto UTI media which 

resulted in heavy growth and upon isolation, the contaminating bacteria was 

releveled to be P. aeruginosa by MALDI-Toff analysis. Accordingly, the solution was 

passed through filter membrane to get rid of the contaminating P. aeruginosa and 

the efficacy of the cleaning solution retested. All selected E. coli samples had growth 

inhibited at 50% (v/v) of the cleaning solution (0/31) and a small number at 25% (v/v) 

(6%: 2/31); whereas 48% (15/31) grew at 12.5% (28/31) and 90% at 6.25% of the 

original concentration. E. cloacae and K. pneumoniae were least effected by the 

cleaning agent and most E. cloacae (80%: 17/21) and K. pneumoniae (75%: 15/20) 

showed growth at 50% of the cleaning agent concentration (Figure 25, 26 and 27). 
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Figure 25. MIC of the cleaning agent to resistant E. coli (n=31) isolates. The line graph represents MICs of strains isolated from 

insects collected in winter (IW), insects collected in summer (IS), surface samples (PS) and patients (PP).  
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Figure 26. MIC of the cleaning agent to resistant E. cloacae (n=21) isolates. The line graph represents MICs of strains isolated 

from insects collected in winter (IW), insects collected in summer (IS), surface samples (PS) and patients (PP). 
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Figure 27. MIC of the cleaning agent to resistant K. pneumoniae (n=20) isolates. The line graph represents MICs of strains 

isolated from insects collected in winter (IW), insects collected in summer (IS), surface samples (PS) and patients (PP). 
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4.2.3. Identification of resistant gene carrying bacterial species from patients’ 
samples 

One hundred and sixty-six PCR-positive strains from patients were isolated and 

identified by MALDI-TOF and 16s RNA. Only genus level identification was achieved 

by 16s RNA whereas species were identified by MALDI-TOF. E. coli was the most 

prevalent (n=66), followed by E. cloacae (n=34) and K. pneumoniae (n=31). Other 

species included a variety of bacteria, primarily of environmental origin (Figure 28). 
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Acineobacter Haemolyticus n=2 Acinetobacter nosocomialis n=1

Candida albicans n=1 Candida parapsilosis n=1

Citrobacter spp n=5 Citrobacter braakii n=1

Citrobacter sedlakii n=3 Enterobacter spp n=8

Enterobacter cloacae n=24 Enterobacter hormaechei n=3

Enterobacter kobei n=1 Escherichia coli n=58

Escherichia-Shigella n=6 Klebsiella spp n=7

Klebsiella pneumoniae n=25 Klebsiella variicola n=1

Leclercia adecarboxylata n=1 Morganella Morganii n=3

Proteus spp n=3 Proteus mirabilis n=1

Providencia stuartii n=3 Pseudocitrobacter spp n=4

Pseudomonas aeruginosa n=9 Pseudomonas Chlororaphis n=1

Pseudomonas oryzihabitans n=1 Pseudomonas putida n=1

Pseudomonas stutzeri n=2 Raoultella spp n=1

Serratia spp n=1 Trabulsiella spp n=1

Figure 28. Bacterial species isolated from patient’s wound’s samples, Peshawar, 

Pakistan (n=179).  
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4.2.4. Antimicrobial susceptibility profiles of bacteria carrying blaNDM and 

blaOXA-48-like from patients’ wound samples 

Antimicrobial susceptibility testing of blaNDM and blaOXA-48 like PCR-positive samples 

showed increased resistance to a variety of antibiotics tested. Bacteria isolated from 

all samples (n=48) were resistant to amoxicillin-clavulanic acid and more than 70% 

of strains were resistant to cefotaxime, erthapenem, rifampicin, aztreonam and 

ciprofloxacin. Samples were least resistant to Tigecycline and fosfomycin. Among 

colistin resistant isolates, 10 out of 20 samples belonged to inherently colistin 

resistant species of Proteus and Providencia. Therefore, it can be concluded that 

acquired resistance to colistin was 10% (n=5)  which included three K. pneumoniae, 

an E. cloacae and a P. aeruginosa (Figure 29). 
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Figure 29. Antimicrobial susceptibility profile of blaNDM and blaOXA-48 like PCR-
positive samples. Table representing the percentage resistance to antibiotics 

tested. Tigecycline (TGC), Fosfomycin (FOS), Ciprofloxacin (CIP), Gentamicin (CN), 

Nitrofurantoin (F), Rifampicin (RD), Amoxicillin-clavulanic acid (AMC-AUG), 

Cefotaxime (CTX), Ceftazidime (CAZ), Cefepime (FEP), Imipenem (IPM-IMI), 

Erthapenem (ETP), Meropenem (MEM-MRP), Aztreonam (ATM), Colistin. (Bar 

colour blue=resistant, Orange=intermediate and grey=sensitive). 
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4.3. Discussion  

In this study, resistance carriage showed a significant association with the winter 

season. Perhaps the reason for increased resistance in winter could be the local 

extreme weather conditions. For example, summers in Peshawar could get 

extremely hot and temperature of up to 45°C was the average day temperature 

recorded during the study period (Figure 30). Extreme weathers are not ideal for 

bacterial growth. The optimal growth temperature of K. pneumoniae and E. coli is 

37°C where growth starts to reduce at 40°C and a considerable reduction is seen at 

45°C (Esener et al. 1981; Nguyen 2006). Hence, this might explain the increased 

resistance rate that has been observed in winters compared to summers in this 

study.  

 

Figure 30. Weather chart of Peshawar, Pakistan in 2016. Graph showing the 

temperature for study period of 18th July to 6th of August in Summer: 6th January to 

26th January in Winter (derived from webpage: worldweatheronline).  
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Furthermore, the prevalence of resistance genes obtained from cleaned and 

uncleaned wards was also rather unexpected. Apart from a small insignificant 

decrease in blaCTX-M-15 and blaNDM resistance rate in winter from clean ward, there 

was no significant difference between the resistance rate from cleaned or un-cleaned 

wards. This question whether the cleaning technique was ineffective or the cleaning 

agent itself was unsuccessful in eliminating the surface contaminant. The cleaning 

agent used in this study is commercially available solution known as “FINIS” 

manufactured by Jhonson company Karachi, Pakistan. The active ingredient is 

stated as “white phenyl”. These types of cleaning agents are commonly used in India 

and Pakistan for cleaning hospital, domestic and industrial cleaning purposes; 

however, there is very little information available about their antimicrobial or 

disinfectant efficiency (Taneja et al. 2012; Zaman and Siddiqui 2015). Two different 

studies compared the efficiency of disinfectants routinely used in hospitals of India 

and Pakistan. Their results showed that phenyl based cleaning agents were less 

effective then chloride, alcohol and quaternary ammonium compound based 

cleaning agents when tested on surfaces with similar structures to walls and floors 

(Taneja et al. 2012; Zaman and Siddiqui 2015). Similarly, our results have shown 

that the cleaning agent was ineffective and bacterial species of E. coli, K. 

pneumoniae and E. cloacae were shown to grow at high concentrations of 50%. 

Moreover, the contamination of the cleaning agent with P. aeruginosa is concerning 

since it is well adapted to survive in hospital settings and can have devastating 

effects for immune compromised patients if infected (Elias et al. 2010; CDC 2013). It 

also questions the appropriateness of the healthcare systems in LMICs.  

The actual cleaning/disinfection technique is also important to consider. Byers et al. 

investigated the efficiency of a new cleaning technique after they found that 16% of 
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the sites that were initially positive for VRE remained positive after three attempted 

cleaning and complete disinfection was only achieved after fourth session of spray 

disinfection. They introduced a ‘bucket method” which involved wiping all the 

surfaces with a cloth soaked with a solution of a quaternary ammonium compound 

(Byers et al. 1998; Talon 1999). Although, in this study the same bucket method was 

employed and the only difference was the type of cleaning agent that was used to 

disinfect the floors and other touch surfaces. Even so, irregularity with the cleaning 

procedure cannot be overruled as it is challenging to carry out such a job without 

disrupting the normal hospital proceedings. Furthermore, since the cleaning was only 

attempted once, recontamination in a busy environment is un-avoidable. Perhaps a 

more suitable approach would have been constant cleaning at multiple time points 

and using a suitable dis-infective agent with proven antimicrobial properties. 

Furthermore, introduction of intervention such educating the staff, patients and other 

health care workers about the importance of cleaning, hygiene and infection control 

procedures could have presented a more stable solution in the form of behaviour 

changes as a long term strategy (Collins 2008; Carling and Polk 2011). A similar 

study was designed by Hayden et al, where they investigated the effects of 

environmental cleaning on the carriage and transmission rate of VRE in a hospital 

ICU. The 9-month study period was divided in to four parts starting with a baseline 

period, followed by a cleaning period with education, cleaning without education and 

a hand hygiene intervention period. The results revealed that improved cleaning in 

addition to educating staff about importance of infection control contributed to a 

significant reduction in VRE environmental contamination and transmission rates 

(Hayden et al. 2006; Boyce 2007). Nevertheless, the results of this study highlight 
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the inefficiency of the current cleaning regimes in the hospital of Pakistan which 

requires urgent consideration.   
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5. Environmental Prevalence of MDRB: The Effects of 

Cleaning and Seasonal Variations on the Carriage and 

Transmission Rates of b-lactam Resistance in Insects 

and Hospital Surfaces  
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5.1. Introduction 

As described in the introduction to chapter 3 and 4, LMICs usually lack basic 

cleaning and essential waste management systems. Hospital are presented with un-

satisfactory sanitation and the waste is frequently discarded outside creating waste 

grounds which could become breeding sites for insects and animals. Hospital waste 

are often found to contain antibiotic residues which could give to rise to antibiotic 

resistance (Berglund 2015). Furthermore, this waste might already contain infectious 

agents or contaminants with AMR/MDR bacteria from the hospital sources 

(Laxminarayan et al. 2013; Munoz-Price et al. 2013; Laxminarayan and Chaudhury 

2016). Insects and animals may acquire MDRB from the contaminated grounds and 

disseminate to other areas (Wang et al. 2017). Generally, the carriage of MDRB by 

insects is associated with animal husbandry and the effects on human’s health or the 

environment are rarely considered (Zurek and Ghosh 2014). In Peshawar, Pakistan, 

the number of insects, especially flies (Musca domestica), increase considerably in 

summer months (personal observations). Their movement is not restricted and 

including the hospital. Furthermore, there are no regulation in place for pest control 

and no routine treatments are carried out resulting in increased numbers of insects in 

the hospital in close proximity to patients (discussion with collaborators in Peshawar, 

Pakistan).  

Nevertheless, a patient’s health is dependent on the immediate environment which is 

constantly being contaminated by insects, infected patients or healthcare workers if 

not disinfected routinely. Several studies have identified VRE, methicillin-resistant S. 

aureus, Clostridium difficile, A. baumannii and P. aeruginosa
 among the typical 

contaminants and locations such as the floor, furniture, mattress and pillows etc. are 
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the common sources (Talon 1999). Studies have shown that bacterial pathogens can 

survive for days or even weeks on these dry surfaces and may survive even longer 

on damp, moist and unclean surfaces (Jawad et al. 1998; Paterson and Bonomo 

2005). Therefore, cleaning and disinfection of the rooms and changing of bed-sheets 

and pillow-cases are recommended when the infected patients leave the hospital 

(Talon 1999). However, these recommendations are rarely followed especially in 

LMICs where MDR has recently increased (Raka 2010; WHO 2015c; Laxminarayan 

and Chaudhury 2016). This situation is worsened by the ambient temperature which 

supports the growth of pest and insects (Eber et al. 2011; Richet 2012). Vector-

borne diseases are common and frequent outbreaks of diseases are reported (WHO 

2014a). Recently, Pakistan has seen several outbreaks of dengue and chikungunya 

virus and experts have no hesitation in blaming the waste management for the 

existing situation (Rauf et al. 2017). Water-borne diseases such as cholera, 

dysentery and especially typhoid are very common among the community (WHO 

2014b). These infections are becoming difficult to treat due to the spread of AMR 

(WHO 2013a). 

This study aims to provide better understanding of patients’ relationship with their 

unique surrounding environment in a hospital settings. Furthermore, the introduction 

of a cleaning regime and sampling in different seasons will provide information about 

the effects of basic cleaning and seasonal variations on the spread and 

dissemination of MDRB among hospital touch surface and insects that are 

commonly found in the hospital.  
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5.2. Results  

 

5.2.1. Molecular detection of blaNDM, blaKPC, blaOXA-48 like and blaCTX-M-15 in 

insects samples 

In this study, 1981 insects were collected in summer and winter spanning over six 

different species of local abundance. Those included ants (n=110), bees (n=2), 

cockroaches (n=533), flies (1076), moths (n=194) and spiders (n=66). Their 

movement was not restricted and, besides cleaning one ward in the hospital, other 

conditions were not changed. A total of 39.6% insects carried one or multiple types 

of the target resistance genes (blaNDM, blaCTX-M-15 and blaOXA-48 like) and similar 

resistance rate was observed in summer (39.7%) and winter (39.4%).  

The distribution of genes independently revealed that blaNDM and blaOXA-48-like 

positive samples collected from uncleaned wards in winter were generally associated 

with higher resistance rate (blaNDM 13.4% cleaned wards: 27.0% un-cleaned wards, 

blaOXA-48 like 3.4% cleaned wards: 4.5% un-cleaned wards) but very little difference 

was observed in the resistance rates from the summer (blaNDM 10.9%-cleaned: 

13.2%-un-cleaned, blaOXA-48-like 2.8%-cleaned: 1.07%-un-cleaned). However, blaCTX-

M-15 showed an increased resistance rate in uncleaned wards from both seasons. In 

Summer, 32.35% (165/510) insects from cleaned wards were blaCTX-M-15 PCR-

positive compared to 39.06% (291/745) from un-cleaned wards. Similarly, winter 

samples had a prevalence rate of 21.43% (69/322) from cleaned wards and 43.32% 

(175/404) from uncleaned wards (Figure 31). 

Univariate statistical analysis showed that blaCTX-M-15, blaNDM and blaOXA-48 like were 

significantly associated with insects; blaCTX-M-15, blaNDM with un-cleaned wards and 
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blaNDM and blaOXA-48 like with winter season (Table 16, 18 and 20). However, 

multivariate analysis no significant association of blaOXA-48 like with any of the 

variants and significant association of blaNDM with insects and blaCTX-M-15 with insects 

and un-cleaned wards (Table 17, 19, 21).   

 

Figure 31. Occurrence of blaNDM, blaOXA-48 like, blaCTX-M-15 in insects’ samples 

during winter and summer from clean and un-cleaned wards. clean wards(SC), 

summer un-clean wards(SD), winter clean wards(WC) and winter unclean wards 

(WD).  

Cockroaches showed the highest resistance prevalence rate at 50.84% followed by 

flies, spiders, mosquitos and ants at 38.2%, 42.4%, 32.5% and 10.0%, respectively. 

None of the bees collected were positive for the carriage of resistance genes.  

Surprisingly, there was a very distinct difference in the proportion of the resistance 

gene carried by different species according to the season. Flies were responsible for 
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65.8% of all the resistance that was observed in the summer season. In contrast, 

cockroaches carried most of the resistance genes detected in winter (78.0%). In 

addition, in the summer, moths, spiders and ants possessed bacteria having a 

resistance rate of 12.5, 6.0% and 2.7%, respectively. Whereas in winter, moths didn’t 

possess bacteria that carried any resistance and spiders (0.5%) and ants (0.2%) 

possessed bacteria that had very low resistance rate compared to summer (Figure 

32).  

The proportion of blaNDM, blaOXA-48-like and blaCTX-M-15 were distributed among 

different species at a varying rate and species of insects such as cockroaches, flies, 

moths and spiders carried bacteria that showed a statistically significant association 

with blaNDM and blaCTX-M-15. (Figure 33). 
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Figure 32. The prevalence of resistance genes among different species of 

insects. A (ants), B (bees), C (cockroaches), F (flies), M (moths), S (spiders). 
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Figure 33. The prevalence of resistance genes among different species of 

insects. The area graph representing the proportional percentage distribution of 

blaOXA-48-like, blaCTX-M-15 and blaNDM among different species of insects; A (ants), B 

(bees), C (cockroaches), F (flies), M (moths), S (spiders). 
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Table 16. Univariate statistical analysis of blaOXA-48-like from insects samples. 

Table shows ward as clean (C), un-cleaned (D), season as summer (S), winter (W) and 

organisms/insects (ants, moths, spiders, cockroaches and flies). P- value of <0.05 is taken 

as significant and selected for multivariate analysis. 

 

Table 17. Multiivariate statistical analysis of blaOXA-48-like from insects samples 

blaOXA-48-like variables entered for analysis are organisms/insects (moths, ants, spiders, 

cockroaches and flies) and Season as summer (S) winter (W). Reference taken as organism 

(ants) and season (S). P- value of <0.05 is taken as significant. 

	

 
blaOXA-48-like 

Pearson Chi-Square Fisher's Exact Test 
Neg Pos Total 

Organism 

Ants 
N 107 3 110 < 0.001 < 0.001 
% 97.3% 2.7% 100.0%   

Moths N 191 3 194   
% 98.5% 1.5% 100.0%   

Spiders 
N 65 1 66   
% 98.5% 1.5% 100.0%   

Cockroaches N 502 31 533   
% 94.2% 5.8% 100.0%   

Flies 
N 1063 13 1076   
% 98.8% 1.2% 100.0%   

Total 
N 1928 51 1979   
% 97.4% 2.6% 100.0%   

CD 
C 

N 807 25 832 0.303 0.317 
% 97.0% 3.0% 100.0%   

D 
N 1123 26 1149   
% 97.7% 2.3% 100.0%   

Total 
N 1930 51 1981   
% 97.4% 2.6% 100.0%   

Season 
S 

N 1233 22 1255 0.002 0.003 
% 98.2% 1.8% 100.0%   

W 
N 697 29 726   
% 96.0% 4.0% 100.0%   

Total 
N 1930 51 1981   
% 97.4% 2.6% 100.0%   

 B S.E. Wald df Sig. Odd 
Ratio 

95% C.I.for Odd ratio 
Lower Upper 

Season (W) 0.106 0.363 0.085 1 0.771 1.112 0.545 2.266 
Moths -0.573 0.826 0.482 1 0.487 0.564 0.112 2.843 

Spiders -0.606 1.166 0.27 1 0.603 0.546 0.056 5.358 
Cockroaches 0.712 0.67 1.127 1 0.288 2.037 0.547 7.581 

Flies -0.854 0.654 1.703 1 0.192 0.426 0.118 1.535 
Constant -3.58 0.586 37.354 1 0 0.028   
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Table 18. Univariate statistical analysis of blaNDM from insects samples.  

Table shows ward as clean (C), un-cleaned (D), season as summer (S), winter (W) and 

organisms/insects (ants, moths, spiders, cockroaches and flies). P- value of <0.05 is taken 

as significant and selected for multivariate analysis. 

 

Table 19. Multiivariate statistical analysis of blaNDM from insects samples 

blaNDM variables entered for analysis are organisms/insects (moths, ants, spiders, 

cockroaches and flies), ward as Clean (C), un-cleaned (D) and Season as summer (S) 

winter (W). Reference taken as organism (ants), ward (C) and season (S). P- value of <0.05 

is taken as significant. 

 
blaNDM 

Pearson Chi-Square Fisher's Exact Test 
Neg Pos Total 

Organism 

Ants 
N 107 3 110 < 0.001 < 0.001 
% 97.3% 2.7% 100.0%   

Moths 
N 176 18 194   
% 90.7% 9.3% 100.0%   

Spiders N 56 10 66   
% 84.8% 15.2% 100.0%   

Cockroaches 
N 389 144 533   
% 73.0% 27.0% 100.0%   

Flies 
N 951 125 1076   
% 88.4% 11.6% 100.0%   

Total 
N 1679 300 1979   
% 84.8% 15.2% 100.0%   

CD 
C 

N 722 110 832 0.042 0.042 
% 86.8% 13.2% 100.0%   

D 
N 959 190 1149   
% 83.5% 16.5% 100.0%   

Total 
N 1681 300 1981   
% 84.9% 15.1% 100.0%   

Season 
S N 1107 148 1255 < 0.001 < 0.001 

% 88.2% 11.8% 100.0%   

W N 574 152 726   
% 79.1% 20.9% 100.0%   

Total 
N 1681 300 1981   
% 84.9% 15.1% 100.0%   

	

 B S.E. Wald df Sig. Odd 
ratio 

95% C.I. for Odd ratio 
Lower Upper 

CD (D) .246 .135 3.347 1 .067 1.279 .983 1.665 
Moths 1.387 .638 4.729 1 .030 4.001 1.147 13.961 

Spiders 1.835 .679 7.303 1 .007 6.263 1.655 23.696 
Cockroaches 2.517 .605 17.334 1 .000 12.392 3.789 40.526 

Flies 1.535 .594 6.670 1 .010 4.640 1.448 14.871 
Season (W) .109 .157 .481 1 .488 1.115 .819 1.519 

Constant -3.748 .593 39.901 1 .000 .024   
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Table 20. Univariate statistical analysis of blaCTX-M-15 from insects samples. 

Table shows ward as clean (C), un-cleaned (D), season as summer (S), winter (W) and 

organisms/insects (ants, moths, spiders, cockroaches and flies). P- value of <0.05 is taken 

as significant and selected for multivariate analysis. 

 

Table 21. Multiivariate statistical analysis of blaCTX-M from insects samples 

blaCTX-M-15 variables entered for analysis are organisms/insects (moths, ants, spiders, 

cockroaches and flies) and ward as Clean (C), un-cleaned (D). Reference taken as 

organism (ants) and ward (C). P- value of <0.05 is taken as significant. 

 
blaCTX-M-15 Pearson Chi-Square Fisher's Exact Test 

Neg Pos Total 

Organism 

Ants 
N 101 9 110 < 0.001 < 0.001 
% 91.8% 8.2% 100.0%   

Moths N 139 55 194   
% 71.6% 28.4% 100.0%   

Spiders 
N 42 24 66   
% 63.6% 36.4% 100.0%   

Cockroaches 
N 293 240 533   
% 55.0% 45.0% 100.0%   

Flies 
N 704 372 1076   
% 65.4% 34.6% 100.0%   

Total 
N 1279 700 1979   
% 64.6% 35.4% 100.0%   

CD 
C 

N 598 234 832 < 0.001 < 0.001 
% 71.9% 28.1% 100.0%   

D 
N 683 466 1149   
% 59.4% 40.6% 100.0%   

Total 
N 1281 700 1981   
% 64.7% 35.3% 100.0%   

Season 
S N 799 456 1255 0.221 0.223 

% 63.7% 36.3% 100.0%   

w N 482 244 726   
% 66.4% 33.6% 100.0%   

Total 
N 1281 700 1981   
% 64.7% 35.3% 100.0%   

	

 B S.E. Wald df Sig. 
Odd 
ratio 

95% C.I.for Odd ratio 
Lower Upper 

CD (D) .568 .101 31.743 1 .000 1.764 1.448 2.150 
Moths 1.702 .386 19.443 1 .000 5.483 2.573 11.681 

Spiders 1.845 .434 18.104 1 .000 6.326 2.705 14.798 
Cockroaches 2.274 .360 39.926 1 .000 9.715 4.799 19.667 

Flies 1.826 .355 26.488 1 .000 6.208 3.097 12.443 
Constant -2.819 .357 62.388 1 .000 .060   
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5.2.2. Molecular detection of blaNDM, blaKPC, blaOXA-4- like and blaCTX-M-15 in 

hospital surface swabs 

Six hundred and twenty-four surface samples were collected in winter and summer. 

PCR analysis on those samples revealed that 26.1% (n=163) were positive for the 

carriage of either one or multiple genes of blaOXA-48like, blaCTX-M-15 and blaNDM. Winter 

was associated with slightly more resistance rate of 28.8% (91/316) compared to 

23.4% (71/308) for the summer.  

Analysis on the surface samples revealed no significant association of blaNDM and 

blaCTX-M-15 with winter (Table 7). In some cases, a lower resistance rate was 

observed from uncleaned wards although the results were not significant. For 

example, blaCTX-M-15 prevalence rate of 20.1% from cleaned wards and 15.6% from 

uncleaned in summer compared to 28.5% from cleaned wards and 22.8% from un-

cleaned wards in winter.  

Similarly, samples containing bacteria with blaOXA-48-like genes had a prevalence rate 

of 4.6% from clean wards and 0.7% from unclean wards from the summer season. 

Whereas in winter, the cleaned wards possessed bacteria that had 5.1% of blaOXA-48-

like PCR-positives compared to 2.5% positives from uncleaned wards. In contrast, 

samples that possessed bacteria positive for blaNDM also shared similar findings to 

the summer season (16.9%-cleaned, 5.2%-uncleaned) but in the winter, a slightly 

decreased resistance rate of 14.6% in cleaned wards compared to 16.5% from 

uncleaned wards was observed (Figure 34). 
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Figure 34. Occurrence of blaNDM, blaOXA-48-like and blaCTX-M-15 among surface 

samples during winter and summer from clean and un-clean wards. clean 

wards(SC), summer un-clean wards(SD), winter clean wards(WC) and winter un-

clean wards (WD).  
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Table 22. Univariate statistical analysis of blaNDM, blaCTX-M-15 and blaOXA-48-like 

from surface samples. 

 

Table shows season as summer (S), winter (W) and ward as clean (C), un-cleaned 

(D). P- value of <0.05 is taken as significant. 

  blaNDM Pearson Chi-Square Fisher's Exact Test 
Neg Pos Total 

Season S N 274 34 308 0.100 0.125 
% 89.0% 11.0% 100.0%     

W N 267 49 316     
% 84.5% 15.5% 100.0%     

Total N 541 83 624     
% 86.7% 13.3% 100.0%     

CD C N 263 49 312 0.077 0.098 
% 84.3% 15.7% 100.0%     

D N 278 34 312     
% 89.1% 10.9% 100.0%     

Total N 541 83 624     
% 86.7% 13.3% 100.0%     

	

	
	
 
 
 
 
 
 
 
 
 
 
 
 
 
 
	

  blaCTX-M-15 Pearson Chi-Square Fisher's Exact Test 
Neg Pos Total 

Season S N 253 55 308 0.019 0.020 
% 82.1% 17.9% 100.0%     

w N 235 81 316     
% 74.4% 25.6% 100.0%     

Total N 488 136 624     
% 78.2% 21.8% 100.0%     

CD C N 236 76 312 0.121 0.146 
% 75.6% 24.4% 100.0%     

D N 252 60 312     
% 80.8% 19.2% 100.0%     

Total N 488 136 624     
% 78.2% 21.8% 100.0%     

  blaOXA-48-like Pearson Chi-Square Fisher's Exact Test 
Neg Pos Total   

Season S N 300 8 308 0.395 0.497 
% 97.4% 2.6% 100.0%    

W N 304 12 316    
% 96.2% 3.8% 100.0%    

Total N 604 20 624    
% 96.8% 3.2% 100.0%    

CD C N 297 15 312 0.023 0.038 
% 95.2% 4.8% 100.0%    

D N 307 5 312    
% 98.4% 1.6% 100.0%    

Total N 604 20 624    
% 96.8% 3.2% 100.0%    
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5.2.3. Antibiotic susceptibility profiles of bacteria from blaNDM and blaOXA-48 like 

PCR-positive samples from insects and hospital surface swabs 

Antimicrobial susceptibility testing results for bacteria from blaNDM and blaOXA-48 like 

positive samples from insects and hospital surface swabs showed resistance to a 

variety of antibiotics. Bacteria from all samples from insects and surface showed 

maximum resistance (>85 %-100 %) to rifampicin, amoxicillin-clavulanic acid, 

cefotaxime and ceftazidime and maximum sensitivity (>80 %-100 %) to tigecycline, 

fosfomycin and colistin. Among insect’s, 24 samples produced bacteria that 

displayed resistance to colistin from which, nine samples were belonging to the 

species of Proteus and Providencia, known to be inherently resistant. Therefore, it 

can be concluded that the insects’ samples possessed bacteria that had acquired 

colistin resistance was at 8 % (n=15) which included 10 species of Citrobacter, three 

K. pneumoniae, an E. coli and a specie of Raoultella (Figure 35).  
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Figure 35. Antimicrobial susceptibility profiles of blaNDM and blaOXA-48-like PCR-
positives from insects and hospital surface samples. Tigecycline (TGC), 

Fosfomycin (FOS), Ciprofloxacin (CIP), Gentamicin (CN), Nitrofurantoin (F), 

Rifampicin (RD), Amoxicillin-clavulanic acid (AMC), Cefotaxime (CTX), Ceftazidime 

(CAZ), Cefepime (FEP), Imipenem (IMI), Ertapenem (ETP), Meropenem (MRP), 

Aztreonam (ATM), Colistin (CS). (Bar colour blue=resistant, Orange=intermediate 

and grey=sensitive). 

 

5.2.4. Identification of bacteria carrying resistant genes from surface and 
insects, Peshawer.  

In both surface and insect’s samples, the maximum number of bacterial resistant 

isolates were identified to be E. cloacae and K. pneumoniae. The insects samples 

also had an increased number of C. freundii, Pseudocitrobacter spp and E. coli. 
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Additionally, a large variety of bacteria carrying resistant genes were isolated from 

samples of both origins of surface and insects (Figure 36 and 37).  

 

Figure 36. Bacterial species isolated from hospital surface samples, Peshawar, 

Pakistan (n=107). MALDI-TOFF results shown as species whereas 16s RNA 

identifications are shown at genus level. 

Citrobacter amalonaticus n= 1 Citrobacter braakii n=1

Citrobacter sedlakii n=1 Enterobacter aerogenes n=1

Enterobacter asburiae n=1 Shewanella putrefaciens n=1

Citrobacter freundii n=2 Pantoea calida n=2

Acinetobacter baumanii n= 3 Escherichia hermannii n=3

Enterobacter Kobei n=4 Leclercia adecarboxylata n=4

Pseudomonas putida n=4 Pseudomonas stutzeri n=4

Escherichia coli n=6 Klebsiella oxytoca n=19

Raoultella ornithinolytica n=9 Klebsiella pneumoniae n=18

Enterobacter Cloacae n=23
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Figure 37. Bacterial species isolated from insects samples, Peshawar, 

Pakistan (n=552). MALDI-TOFF results shown as species whereas 16s RNA 

identifications are shown at genus level. 

 

 

Acinetobacter baumanii n= 1 Alcaligenes faecalis n= 4 Candida galbrata n= 2

Chronobacter sakazakii n= 1 Cirtobacter Koseri n= 1 Citrobacter amalonaticus n= 12

Citrobacter braakii n= 5 Citrobacter farmeri  n= 21 Citrobacter freundii n= 45

Citrobacter koseri n= 9 Citrobacter sedlakii n= 19 Citrobacter spp n= 18

Enterobacter aerogenes n= 5 Enterobacter asburiae n= 2 Enterobacter Cloacae n= 90

Enterobacter hormaechei n= 11 Enterobacter Kobei n= 11 Enterobacter spp n= 24

Escherichia coli n= 56 Escherichia hermannii  n= 1 Escherichia-Shigella n= 23

Escherichia-Shigella n= 3 Klebsiella n= 3 Klebsiella oxytoca n= 4

Klebsiella pneumoniae n= 49 Klebsiella spp n= 21 Kluyvera ascorbata n= 1

Leclercia adecarboxylata n= 5 Lodderomyces elongisporus n= 1 Morganella morganii n= 9

Morganella spp n= 2 Ochrobactrum spp n= 1 Proteus hauseri n= 1

proteus mirabilis n= 2 Proteus spp n= 2 Proteus vulgaris  n= 2

Providencia rettgeri n= 3 Providencia spp n= 1 Pseudocitrobacter spp n= 49

Pseudomonas aeruginosa n= 1 Pseudomonas koreensis n= 1 Pseudomonas spp n= 2

Ralstonia pickettii n= 1 Raoultella ornithinolytica n= 2 Raoultella planticola n= 1

Raoultella spp n= 3 Seratia marcescens n= 13 Serratia rubidaea n= 1

Serratia spp n= 3 Serratia ureilytica n=2 Shinella spp n= 1

Stenotrophomonas maltophilia n= 1
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5.2.5. Sequence typing and phylogenetic analysis of hospital surface, insects 

and patients’ wound samples by REP-PCR typing  

REP-PCR results showed that the same or similar bacterial strains were isolated 

from insects, patients and hospital surface samples. This included seven sets of K. 

pneumoniae, 12 sets of E. cloacae and 12 sets of E. coli (Figure 38, 39 and 40). The 

minimum similarity coefficient for the two profiles being considered very similar, if not 

the same, was 84% for E. coli, 91% for K. pneumoniae and 87% for E. cloacae. 

Furthermore, similar ST groups were also shared between bacteria from samples of 

different environments (Figure 41, 42, 43, 44, 45 and 46).  New ST groups and 

alleles were also identified and listed below (Table 23).  
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Table 23. New K. pneumonia ST and alleles.  
 

Table showing new alleles (Red font) and details about samples with new ST 

IW=Insects Winter, KB= Karachi Birds’ droppings, DW= Drinking Water, PP= 

Peshawar Patients, PSS= Peshawar Surface Summer, PPW= Peshawar Surface 

Winter.  

Origin Isolate gapA infB mdh pgi phoE rpoB tonB ST 

IW 206B 17 19 39 20 156 21 52 2660 

IW 254B 4 7 2 1 9 4 25 2661 

IW 454B 2 3 2 26 9 4 386 2662 

IW 58G 17 19 28 39 51 21 385 2663 

KB CROW2 145 19 175 20 297 21 310 2664 

IS IS_1031G 2 1 145 1 1 1 6 2665 

DW JODIABAZAR 38 63 82 20 138 18 148 2666 

PP PP_231G 3 3 1 1 1 1 10 2667 

PP PP_287G 7 1 2 2 1 1 25 2668 

PP PP_422B 2 1 5 1 4 4 388 2669 

PSS PS_421G 4 1 5 1 7 11 24 2670 

PSS PS_465B 38 19 53 58 73 21 53 2671 

PSS PS_474G 17 19 28 20 117 18 148 2672 

PSS PS_556G2 18 22 26 22 94 20 51 2673 

IS IS_1103G 2 1 2 4 1 1 4 2674 

IS IS_823B 50 19 112 39 272 63 162 2675 

IS IS_1144B 17 55 96 20 138 18 277 2676 

IW 609G 4 3 1 1 296 4 61 2677 

IW 822G 50 19 122 39 272 63 162 2678 

IS IS_291B 154 1 11 1 298 1 13 2679 

IS IS_294B 2 1 2 37 8 1 387 2680 

KS S7_23 18 15 18 61 93 37 389 2681 

PSS PS_510G 17 19 39 20 299 18 52 2682 

PSW PS_253G2 4 7 2 1 9 4 25 2661 

PSW PS_310G 4 7 2 1 9 4 25 2661 

IS IS_809B 2 1 145 1 1 1 6 2665 

IS IS_463G 2 1 145 1 1 1 6 2665 

IS IS_1006G 50 19 112 39 272 63 162 2678 
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Figure 38. REP-profile of K. 
pneumoniae isolated from clinical 
and non-clinical samples of 
Peshawar. The minimum similarity 
coefficient for two profiles being 
considered very similar if not the same 
was 91%.  
 
Legend: Green squares highlight non-
clinical isolates. Blue boxes indicate 
blaNDM Positive isolates where as 
blaOXA-48 Like samples are shown in 
pink boxes. All other samples are 
blaCTX-M-15 positives except the ones 
highlighted in blue.  
 
A: Isolates with the same REP profile 
found in patients from same cleaned 
or un-cleaned wards within three 
weeks period.  
B: Isolates with the same REP profile 
found in patients and insects from 
cleaned or un-cleaned wards > six 
months. 
 
C: Isolates with the same REP profile 
found in Insects from same cleaned or 
un-cleaned wards within three weeks 
period. 
D: Isolates with the same REP profile 
found in insects from different clean 
and un-cleaned wards within three 
weeks period.  
E: Isolates with the same REP profile 
found in surface and insects from 
different cleaned or un-cleaned wards 
> six month. 
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Figure 39. REP-profile of E. coli 
isolated from clinical and non-
clinical samples of Peshawar. The 
minimum similarity coefficient for two 
profiles being considered very similar if 
not the same was 84%.  
 
Legend: Green squares highlight non-
clinical isolates. Blue boxes indicate 
blaNDM Positive isolates where as 
blaOXA-48 Like samples are shown in 
pink boxes. All samples are blaCTX-M-15 
positives except the ones with blue 
colour. 
 
A: Isolates with the same REP profile 
found in surface and insects from same 
cleaned or un-cleaned wards > six 
month. 
 
B: Isolates with the same REP profile 
found in from distinct patients admitted 
to different clean and un-cleaned wards 
within three weeks period. 
 
C: Isolates with the same REP profile 
found in Insects from cleaned or un-
cleaned wards within three weeks 
period. 
 
D: Isolates with the same REP profile 
found in distinct patients admitted to 
same clean and un-cleaned wards 
within three weeks period. 
 
E: Isolates with the same REP profile 
found in surface and insects from 
different cleaned or un-cleaned wards > 
six month. 
 
F: Isolates with the same REP profile 
found in Patients and insects from 
different cleaned or un-cleaned wards 
within 3 weeks period. 
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Figure 40. REP-profile of E. cloacae 
isolated from clinical and non-
clinical samples of Peshawar. The 
minimum similarity coefficient for two 
profiles being considered very similar 
if not the same was 87%.  
 
Legend: Blue boxes indicate blaNDM 
Positive isolates where as blaOXA-48 
Like samples are shown in pink boxes. 
All other samples are blaCTX-M-15 
positives except the ones highlighted 
in blue.  
 
A: Isolates with the same REP profile 
found in surface and insects from 
same cleaned or un-cleaned wards 
within three weeks period.  
 
B: Isolates with the same REP profile 
found in surface and insects from 
different cleaned or un-cleaned wards 
within three weeks period. 
 
C: Isolates with the same REP profile 
found in Insects from same cleaned or 
un-cleaned wards within three weeks 
period. 
 
D: Isolates with the same REP profile 
found in insects from different clean 
and un-cleaned within three weeks 
period.  
 
E: Isolates with the same REP profile 
found in surface and insects from 
different cleaned or un-cleaned wards 
> six month. 
 
F: Isolates with the same REP profile 
found in insects from different cleaned 
or un-cleaned wards > six months 
period. 
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Figure 41. E. coli ST groups among insects, patients and surface samples. 

Colour is representing the types of resistance and the size of the circle is 

corresponding to the number of isolates (Blue: blaNDM, Grey: blaCTX-M-15 and Red: 

blaOXA-48-like).  
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Figure 42. E. coli ST groups among insects, patients and surface samples. 

Colour is representing the ward of the sample and the size of the circle is 

corresponding to the number of isolates (Blue: clean wards, Red: uncleaned wards, 

Grey: not available). 
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Figure 43. E. coli ST groups among insects, patients and surface samples. 

Colour is representing the origin of the sample and the size of the circle is 

corresponding to the number of isolates (Red: Peshawar insects, Sea-green: 

Peshawar hospital surface, Pink: Peshawar patients, Blue: Karachi hospital surface, 

Green: Karachi Insects, Grey: Karachi animal faeces). 
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Figure 44. K. pneumoniae ST groups among insects, patients and surface 

samples. Colour is representing the types of resistance and the size of the circle is 

corresponding to the number of isolates (Blue: blaNDM, Red: blaCTX-M-15 and Grey: 

blaOXA-48 like). 
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Figure 45. K. pneumoniae ST groups among insects, patients and surface 

samples. Colour is representing the ward of the sample and the size of the circle is 

corresponding to the number of isolates (Blue: clean wards, Red: uncleaned wards, 

Grey: not available) 
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Figure 46. K. pneumoniae ST groups among insects, patients and surface 

samples. Colour is representing the origin of the sample and the size of the circle is 

corresponding to the number of isolates (Red: Peshawar Insects, Sea-green: 

Peshawar hospital surface, Pink: Peshawar patients, Blue: Karachi hospital surface, 

Green: Karachi drinking water, Grey: Karachi animal faeces).  
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5.3. Discussion 

This study reports the high rate of carbapenem resistance reported in insects to 

date. The results indicate the spread of AMR to distinct environmental sectors  

previously ignored. Although there have been reports of blaCTX-M resistance from 

flies, other insects and animals the carriage of blaNDM has been rarely reported 

(Rahuma et al. 2005; Veldman et al. 2013; Woodford et al. 2014; Zurek and Ghosh 

2014; Doosti et al. 2015; Moges et al. 2016).  

Antibiotic resistant is more prevalent in South Asian countries where the 

unsatisfactory waste management and infection control, together with overcrowding 

and extensive use of antibiotics is believed to be the driving force (WHO 2014b; 

Quintela-Baluja et al. 2015; Laxminarayan and Chaudhury 2016).  The hospital in 

this study is based in a congested area with broken roads, leakage prone sewage 

infrastructure and inadequate waste management. In fact, waste grounds can be 

seen just outside the hospital where used blood bags, syringes, plasters and other 

medical waste is disposed regularly. Hence, it is anticipated that the actual location 

of the hospital may contribute to the high resistance prevalence rate that is observed 

in this study (Figure 47, 48, 49 and 50). 
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Drinking Water Supply  

Figure 47. The state of hospital waste management 1. A drinking water supply just 
outside the hospital  

Hospital  

 

 

 

 

Figure 48. The state of hospital waste management 2. Dumping Ground 

Outside the Hospital  
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Figure 49. The state of hospital waste management 3. Birds can be seen (red 

circles) feeding on the waste 

 

 

Figure 50. The state of hospital waste management 4. The pictures shows used 
glove, syringes, cast of plaster leg and other hospital waste in the dump nearby.  
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Peshawar also has a warmer climate which favour the growth of small insects. 

Various species of insects such as houseflies and moths are very common and 

found everywhere, especially in summers. Hot climate together with open infected 

waste can serve as reservoirs for insects where they can share and transmit different 

diseases including MDRB (Raka 2010; WHO 2014b).  

In this study, proportionally more resistant bacteria were carried by cockroaches in 

winter and by flies in summer. Furthermore, blaCTX-M-15 -positive bacteria were carried 

by flies and blaNDM and blaOXA-4-like positive bacteria were mostly associate with 

cockroaches.  Although, it was clear that the maximum number of insects collected 

in summer were flies and in winter were cockroaches but this doesn’t align with the 

percentage of preferential carriage of one gene by one insect species over the 

another and should be subject to further investigation. Nevertheless, insects can 

become a vector for MDRB carriage and could disseminate to distinct environments 

or patients (Wang et al. 2017). In fact, it has been shown that bacteria can not only 

survive in the digestive tract of houseflies but also able to carry out genetic exchange 

between strains through frequent conjugation in the mouthparts and digestive tract of 

insects (Zurek and Ghosh 2014). In addition, the average annual temperature of 

Peshawar is approx. 30°C which is generally preferred for the growth of numerous 

key Gram-negative bacterial pathogens such as E. coli, K. pneumoniae, 

Acinetobacter spp., Aeromonas spp., Burkholderia spp., Pseudomonas spp. and E. 

cloacae. (Shah et al. 2013). Some studies also suggest higher conjugation transfer 

rates at conditions that are typical to this part of the world. Walsh et al. reported 

higher transfer rates by conjugation at 30°C rather than at 25 °C or 37°C (Boyce 

2007; Timothy R. Walsh et al. 2011; Andremont and Walsh 2015). It has also been 

shown that HGT is possible on dry surfaces and MDRB can survive on contaminated 
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environmental surfaces for a long time ranging from days to months depending on 

the nature of the surface (Yang et al. 2013). For example, survival of more than 3 

months is achieved on plastic surfaces and cloths, one week to two months on 

countertops, seven days to four months on dry polyvinyl chloride surfaces and more 

than a month on steel surface (Boyce 2007; Yang et al. 2013). Hence, it can be 

speculated that there is a greater possibility that the MDRB can persist in the 

environment and can be transferred to individuals and other animals via 

contamination route and to other bacteria via HGT. This is evident by the finding of 

this study where MDRB from insects, patients and surfaces shows distinct 

similarities including similar antibiotic sensitivity profiles, REP-PCR profiles and 

identical ST types for samples that were isolated from different environmental 

sectors (Boyce 2007). Regrettably, the plasmid of the resistant gene carrying 

bacteria were not analysed which would have provide more information about the 

possibility of HGT between different strains or species.  

It is a common observation that E. coli is perhaps one of the most common producer 

of CTX-M-type ESBLs and carbapenemases whereas K. pneumoniae is more often 

associated with the carriage of carbapenemases (Ewers et al. 2012; Munoz-Price et 

al. 2013; Vasoo et al. 2015). Similarly, in this study E. coli and K. pneumoniae were 

found to be the major resistance gene carriers. Both MDR E. coli and K. pneumoniae 

are commonly associated with the development of infection  (Ewers et al. 2012; 

Epson et al. 2014) and hence, their presence in high numbers in samples from 

patients, insects and surface is of concern. E. coli ST131 has been reported widely 

as the most dominated ST type carrying blaCTX-M-15 not only limited to clinical but also 

isolated from multiple animal species (Woodford et al. 2011). However, in this study 

E. coli was dominated by ST410 and to a lesser extend ST10 and ST131 and only 
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one blaCTX-M-15 expressing ST131 from an insect sample was identified. A recent 

study from Germany also had the similar findings when they analysed the ST of E. 

coli and found ST410 shared between wildlife, humans, companion animals and the 

environment (Schaufler et al. 2016). In contrast, ST10 is usually classed as low 

virulence strains but have also been associated with human infections occasionally 

(Day et al. 2016). However, the identification of E. coli ST10 in the other environment 

is not uncommon and have been isolated from poultry, retail meat and animal faeces 

(Day et al. 2016; Seni et al. 2016). 

 K. pneumoniae ST11 and ST147 and ST231 are known successful pathogenic 

strains of humans (Woodford et al. 2011) but have also been isolated from Peshawar 

insects and the hospital surface swabs from Peshawar and Karachi in this study. 

Another pathogen strain “ST15”, which was previously associated with human but 

has been recently identified as a dominant K. pneumoniae  ST from animals, has 

also been recovered from several samples in this study carrying blaNDM and blaCTX-M-

15 from insects, patients and hospital surface in Peshawar (Damjanova et al. 2008; 

Ewers et al. 2014; Melegh et al. 2015). Nevertheless, it cannot be suggested that a 

certain ST was a dominant carrier or was responsible for the spread of MDR but 

rather a multi-clonal spread, including the acquisition of resistant genes in new ST, 

could be associated with the increased resistance rates. Multiple ST groups 

circulating in the environment with the ability to acquire any resistance genes or 

plasmids that are locally prevalent might be the one last push to widely distribute 

MDR across different environmental niches (Ewers et al. 2012).  
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6. PNA as an Alternative Therapy to Neutralize b-lactam 

Antibiotic Resistance  
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6.1. Introduction 

Antisense PNA therapy is one of the revolutionary technologies with the potential to  

develop a novel antimicrobial agent. Advancement in genomic, synthetic chemistry 

and more recently the development of cell delivery system has opened further 

ventures that could be investigated for antimicrobial therapies (Lehto et al. 2016).  

PNA was constructed to mimic the behaviour of DNA and act as a ligand but has 

gained a lot of attention since the discovery of its gene editing capacity at an mRNA 

level (Patenge et al. 2013).  Antisense PNA attached to CPP for delivery into the cell 

can bind to the complementary mRNA and inhibit gene expression leading to altering 

the activity of the genes of interest (Ghosal et al. 2013). 

Traditionally, drug companies have mostly favoured broad-spectrum antibiotics as 

they advantageously provide rapid treatment of multiple pathogens without the need 

of time-consuming diagnostics (Casadevall, 2009). Antisense therapies tend to be 

more specific due to variations between different species’ specific genomics. 

However, some may consider this as a drawback but it also provides a distinctive 

advantage over other therapies by inhibiting one target organism or gene and 

potentially avoiding the unnecessary off-target effects. Similarly, acquired resistance 

is usually encoded by one or few genes which can be easily transferred through 

HGT rendering antibiotics useless (Ramsay et al. 2016). Theoretically, antisense 

therapy could also be used to inhibit the expression of resistance genes and restore 

the sensitivity of resistant strains. Several studies have used this approach and 

successfully inhibited the expression of resistance genes including outer-membrane 

efflux protein (oprM) in P. aeruginosa, aminoglycoside N- acetyltransferase (aac(6')-

Ib), chloromycetin acetyl transferase (act) and multiple antibiotic resistance operon 
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(marORAB) in E. coli, glycopeptide- resistant related protein (vanA) in Enterococcus 

faecalis, CmeABC multidrug efflux transporter (cmeA) in Campylobacter jejun, 

penicillin-binding protein (mecA) in Staphylococcus aureus and methionyl-tRNA 

synthetase /UDP-N-acetylenolpyruvoyl glucosamine reductase (metS/murB) in 

Bacillus anthracis (Bai and Luo 2012). In this chapter, antisense PNA will be 

designed to inhibit dominant b-lactamase genes such as blaNDM, blaOXA-48 like, blaKPC, 

blaVIM and class 1 integron. It is hypothesized that the treatment with anti-resistant 

PNA will result in initiating a synergetic response in combination with carbapenem 

antibiotics and result in conservation of the therapeutic potential of clinically 

important drugs. 
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6.2. Results  

 

6.2.1. Minimum Inhibitory concentrations of anti-resistance PNA against blaKPC, 

blaOXA-48 like, blaNDM, blaVIM and integrase of class 1 integron 

All PNA’s, except antisense-peptide PNA conjugate (AP-PNA-C) to blaNDM, were 

ineffective in reducing the MICs of MDRB when tested up to 16µMol of highest 

concentration except PNA4476 against blaNDM. Anti-NDM AP-PNA-C reduced MIC to 

a sensitive level by treatment of PNA at concentrations of 8µMol, 4µMol, 2µMol and 

1µMol against K. pneumoniae, A. baumannii, E. coli and P. aeruginosa, respectively 

(Table 24). 
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Table 24. MIC of anti-NDM-PNA and meropenem against resistant strains 

carrying blaNDM. 

Strain PNA (µMol) 
Meropenem (µg/ml) 
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K. pneumoniae (blue), A. baumannii (orange), P. aeruginosa (green) and E. coli 

(yellow).  
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Unfortunately, further testing of anti-NDM AP-PNA-C also revealed some off-target 

or toxic effects on the cells and resulted in the inhibition of blaNDM deficient cells at 

16, 8 and 4 µMol PNA in all bacterial species tested (K. pneumoniae, A. baumannii, 

E. coli and P. aeruginosa). The second batch of AP-PNA-C against blaNDM, blaOXA-48 

like, blaKPC and Class 1 integron precipitated upon dissolving in water presumably 

due to an error in the synthesis and the third and fourth batch of PNA’s against 

blaNDM, blaOXA-48 like, blaKPC and Class 1 integron also didn’t generate any inhibitory 

effects, except PNA 4703 against class 1 integron start-site which visibly inhibited 

the growth at concentration of 16µMol. Cloudiness was seen at higher 

concentrations (16 and 32µMol) of PNA however, this disappeared at lower 

concentrations (8, 4, 2, 1µMol) and hence suggested precipitation of the product 

rather than actual growth of bacteria. Therefore, a cut off OD measurement of 0.2 

was considered as no growth. The growth of P. aeruginosa strain expressing blaVIM-2 

was reduced by 5-fold and the MIC was reduced from >64 to 1µg/ml in a P. 

aeruginosa strain with integron class 1 expressing blaVIM-2 (Figure 51). 
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Figure 51. The effects of class 1 integron PNA 4703 on the growth of P. 

aeruginosa carrying blaVIM-2. The graph shows the effects of PNA4703 on the 

growth of blaVIM-2 carrying P. aeruginosa strain RES-2074 by measuring the optical 

density of the culture. The concentration of PNA is displayed by coloured lines. The 

maximum growth reduction is seen by 16µMol PNA(light blue) where the 

meropenem MIC was reduced to 1µg/ml.  

 

6.2.2. AcpP PNA target validation   

Upon analysis of the acpP DH5alpha clones, it was revealed that the clone had 

almost double the MIC compared to the wildtype strains. The clone MIC to anti-acp-

PNA EBL 366, 392 and 596 was increased by 1-fold and a 2-fold increase was seen 

by EBL183 and EBL264. All other antibiotics which were used as control included 

ciprofloxacin, streptomycin, nalidixic acid, tetracycline and ampicillin. Both the clone 

and wild-type showed similar MICs to those conventional antibiotics (Table 25).   
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Table 25. acpP clone and wild-type MIC to anti-acpP-PNA and conventional 

antibiotics. 

Antibiotic/PNA MIC Wildtype MIC acpP clone 

EBL366 32 64 

EBL392 8 16 

EBL506 64 128 

EBL183 32 128 

EBL264 16 64 

Ciprofloxacin  0.12 0.12 

Streptomicin 4 4 

Nalidixic acid >32 >32 

Tetracyclin 1 1 

Ampicillin 8-16 32 

Data collected from three replicates and E. coli ATCC25922 was used as control in 

all experiments.  

 

Similarly, there was a significant difference (P-value <0.0001) between the 

expression levels of mRNA corresponding to acpP gene of the clone and the 

wildtype strain. The mRNA expression level of the clone increased by 3-fold when 

compared to the wildtype strain (Figure 52).  
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Figure 52. Expression analysis of acpP. The graphs show relative acpP mRNA 

quantification of the clone (grey) and wildtype (black) strain (P-value <0.0001-

Statistical analysis was performed using Prism Software: Two-tailed unpaired T-Test.  

 

6.2.3. Resistance analysis  

The FoR assays to PNA EBL110, EBL111, EBL232, EBL237 were carried out to 

analyse the rate of mutant development. K. pneumoniae ATCC13883 displayed a 

mutation rate of 1.38625 x 10-8 to PNA 110 and 5.8591 x 10-9 to PNA 111. However, 

no growth was observed in cells treated with anti-acpP-PNA EBL232 and EBL237. 

On the other hand, E. coli ATCC25922 did not show any growth when tested against 

four and eight times the MIC concentration of the PNAs and hence mutation rate was 

not established.  
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Selected strains were also processed through a series of serial passages to analyse 

the genetic makeup of the mutation that could arise against selected anti-acpP-PNAs 

(EBL183 and EBL264). Analysis of the whole genome sequencing results revealed 

that all the cultures resistant to the compound EBL183 had acquired either a 

frameshift mutation in the sbmA gene or a deletion of the region containing it. All the 

cultures with these deletions had a MIC of >128µg/mL compared to the MIC of the 

parental strains of 4 and 8µg/ml. Similarly, cultures selected for resistance to the 

compound EBL264 contained a single amino acid substitution in sbmA that resulted 

in an increased MIC to 64 µg/ml compared to the parental MIC of 4 and 2µg/ml.   

MG1655 Mutants strains CH5095, CH5096 and CH5097 raised to PNA183 all 

revealed a 5-12Kb deletion in the genome. The changes were always observed in 

the same regions and were always identified with the deletion of all sbmA gene in all 

cases and differing nearby deletion by sizes. All these mutated strains adapted to a 

higher MIC range of 128µMol. CH5095 had a 12.7kb deletion whereas CH5096 and 

CH5097 exhibited a similar deletion of 5.4 kb (Figure 53 and 54). Another 

ATCC25922 mutant raised to a different anti-acpP-PNA, EBL264, also had very 

similar 5kb sbmA deletion mutation which resulted in increasing MIC from 8 to 128 

µMol.  
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Figure 53. Mutation analysis of CH5095. The figure shows the coting alignment of 

sequenced mutant strain to the extracted reference region (NZ_CP009685). The 

12.7kb deletion (2998-15,756bp) is highlighted in black on the consensus 

sequences.  

 

 

Figure 54. Mutation analysis of CH5096. The figure shows alignment of the 

sequences derived from mutant strain CH5096 in comparison to extraction of the 

reference strain (NZ_CP009685). The 5.4kb deletion (2962-8425) is highlighted in 

black on the consensus sequences. The same deletion was also seen in CH5097 

(2954-8430) and Lineage #7 ATCC25922 (1556-6675). 

 

All other evolved strain of MG1655 origin (CH5098, CH5099 and CH50100) raised to 

PNA 264 revealed a mismatch in sbmA gene (V106G) (Figure 55). For these strains, 

the mutant always had MIC of 64µM compared to the original MIC of 4 and 8µg/mL.  
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A multidrug resistant strain of E. coli (EN136:CH3490) which had MIC raised from 4 

to 128µMol against PNA 264 also revealed the same mutation. However, the 

sequences of both evolved (mutant) and un-evolved strain (Control) revealed more 

than 6700 differences to the reference strain (E. coli IHE3034). Comparing the 

differences, the evolved strain has approximately 400 mutations that didn’t appear in 

the un-evolved strain. Similarly, another MDR resistant strain of K. pneumoniae 

(EN141: CH3493) which had MIC increased from 2µMol to 64µMol tp PNA264 

displayed 1,850 differences between evolved and un-evolved strains when 

compared to the reference genome (PittNDM01). The evolved strain had 69 

mutations that didn’t appear in the un-evolved strain and among them the same 

mutation in sbmA (sbmA V106G) was also present. The other resistances could be 

responsible for the observed resistance to PNA’s. Though, it is difficult to determine 

this due to the MDR nature of the strains and hence those mutations were not further 

investigated.  

 

Figure 55. Mutation analysis of CH5098. The figure shows a representation of 

sbmA gene mutation (V106G: T to G) by alimenting of CH5098 mutant’s contig to the 

reference gene (MG1655 strain NZ_CP009685). The mismatched in sbmA gene 

(V106G) is highlighted in black in the consensus sequences. 
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Another E. coli evolved strain (CH5101:EN1) of ATCC25922 origin was selected for 

resistance to PNA183. In this strain, the MIC was raised to from 4 to >128µM and a 

frameshift mutation in sbmA region was identified which could have contributed to 

the elevated resistance (Figure 56). 

 

Figure 56. Mutation analysis of CH5098. The figure shows the frameshift mutation 

of sbmA (A188fs: GCG>Alanine to GGC>Glycine by deletion of amino acid C:63) in 

strain sequences of evolved strain CH501 compared to the reference gene 

(CP009072).  

 

MDR E. coli strain (CH3493) evolved to PNA264 had MIC raised from 2 to 64 µMol. 

The un-evolved strain has 6,600 differences and the evolved displayed 7,400 

differences from the closely matched reference sequence of E. coli ECONIH1. This 

discrepancy is probably due to low read depth in the un-evolved strain. Filtering the 

variants in the evolved strain with the variants in the un-evolved strain does not 

reduce the number of mutations down to a level that can reasonably be interpreted. 

However, a 3-nucleotide deletion in sbmA gene (∆L407) seemed genuine and more 

likely a reaction to PNA treatment. (Figure 57). 
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Figure 57. Mutation analysis of CH3493. The figure shows a 3 nt deletion in sbmA 

gene (∆L407). 

 

Further MDR resistant strain of E. coli (EN137: CH3491) and K. pneumoniae 

(EN142: CH3493) had MIC raised from 2 and 4 to 64µMol against PNA 264. 

Analysis revealed an insertion in sbmA which looks like a transposon hopped into 

the gene. Other mutations included three silent mutations in EN142 and a 

conservative mutation (change amino acids to same properties) in EN137 but their 

role in the resistance is difficult to assume. (Figure 58). 
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Figure 58. Mutation analysis of CH3493. Mutation in EN142: (L180G>T) Leucine 

CTG-CTT= Both Leucine: (G254G>T) Glycine GGG-GGT=Both Glycine: (T356T>C) 

Threonine ACT-ACC= Both Threonine. Mutation in EN137: (A293C>T Alanine GCG-

GTG Valine. Reference genomes used were K. pneumoniae CG43 and E. coli 

MNCRE44. 
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6.3. Discussion 

Most of the anti-resistant PNA’s tested in this study were ineffective in generating a 

satisfactory response when tested in bacteria expressing carbapenem resistance. All 

AP-PNA-C tested in this study, except PNA4703 directed towards the start site of 

integron class 1, were found to be either toxic to the cells or have no inhibitory 

effects at all. No activity could have been caused by insufficient entry of AP-PNA-C 

in the cell or the ability to generate a stringent response even if the entry is achieved. 

However, the CPPs used in this study displayed good activity in the acpP PNA 

overexpressed mutant indicating no apparent issue with the capability of CPP to 

cargo PNA across the cell membrane. This is in accordance with several other 

published studies who have reported successful results with these CPPs (Patenge et 

al. 2013). Furthermore, they are also tolerated by bacterial cells and have shown no 

toxic activity at higher concentration of up to 60µMol (Good et al. 2001; Tan et al. 

2005; Xue-Wen et al. 2007; Madani et al. 2011; Patenge et al. 2013). It is also 

unlikely that PNA sequence alone would have caused any toxicity as naked PNA or 

the conjugated peptide sequence used in this study was tested alone and have not 

revealed any toxicity on the bacterial cells (un-published results-Peter Nielson). 

Hence it is suggested that the combination of CPP and PNA sequence might have 

generated a toxic compound which could be responsible for the observed results.  

Nevertheless, restricted cell uptake of oligomer-based antibiotics is an obvious 

difficulty in antisense therapy and would require further investigation (Good and 

Stach 2011). It can also be a weak link in relation to the development of resistance. 

The low or comparable to ciprofloxacin frequency of mutation rate indicated no 

apparent vulnerability to the development of resistance mechanisms in nature. 
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However, almost all mutated strains generated through resistant passages 

corresponded to a change in sbmA gene. SbmA is an inner-membrane transport 

protein associated with the transport of glycopeptides and antimicrobial peptides 

including AP-PNA-C across the cell membrane through electrochemical gradient 

(Runti et al. 2013). The deletion or mutation of sbmA is associated with altered 

transport and hence reduced sensitivity to AP-PNA-Cs (Ghosal et al. 2013). Similar 

findings were also reported when the deletion of SbmA gene resulted in generating 

an E. coli strain resistant to AP-acpP-C and the sensitivity was restored upon 

complementation with sbmA (Ghosal et al. 2013; Runti et al. 2013). However, it is 

important to note that no mutations were seen in the mRNA target region in this 

study or any published studies looking at the resistance mechanisms of AP-PNA-C. 

Therefore, it can be anticipated that resistance is more likely to arise due to the 

delivery system rather than mutation in the gene target sequence.  

The findings report some of the challenges that could arise whilst trying to 

investigate potential new or alternative therapeutics. Such studies are essential in 

providing valuable information and generating a “lead” product for further 

investigation or establishing small scale “proof of concept” studies. AOs or PNA 

technology could generate ideal candidates for antimicrobial therapies, providing an 

appropriate delivery system is achieved. Therefore, further investigation into the 

development of an efficient delivery system is required.  
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7. General Discussion 
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7.1. Factors contributing to the environmental spread of AMR 

The spread of AMR is one of the most important issues faced by humans in the 21st 

century (O ’Neill 2015; WHO 2015a). Resistance can arise due to the selection 

pressure exerted on bacteria by the overuse/abuse of antibiotics in several socio- 

sectors including human and veterinary medicine, livestock, aquaculture and 

agriculture (Henriques Normark and Normark 2002; Boyce 2007; WHO 2014b). They 

may transfer between environments, animals or humans through lack of hygiene, 

improper sanitation and waste management and could also spread to other bacteria 

by HGT (WHO 2014b). Contaminated environments may become reservoirs of 

resistance genes and further disseminate these to distinct socio-sectors such as 

farms and communities  (Talon 1999). However, despite the obvious link of 

environmental contamination to increasing AMR rates, there, globally, appears to be 

little attention given by governments to rectify the situation.  

MDRB are universally disseminated; however, the problem is augmented in LMICs 

of South Asia such as Pakistan and India. There is also a lack of research and no 

national surveillance system to monitor the changing prevalence rates of MDR 

(WHO 2013a; Albiger et al. 2015). The initial identification of blaNDM in New Delhi 

environment succeed in highlighting this issue internationally. However, instead of 

encouraging such studies, the finding became a target for diplomatic debate and 

received unjustified criticism from Indian authorities and resulted in initiating a 

blockade for further studies. Although Indian authorities are slowly opening to 

collaborations, however, it is generally difficult to establish such studies with lengthy 

“set-up” periods and access to data and samples/strains. Nevertheless, since these 

countries have no national surveillance system, it becomes extremely difficult to 

determine the true burden of AMR in the environment (i.e. its impact on agriculture), 
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clinical settings and community or primary care patients (Toleman and Walsh, 

unpublished data). Currently, India, Pakistan and Bangladesh are regarded as 

hotspots for carbapenemase genes such as blaNDM and blaOXA181/232 (Dortet et al. 

2014; Woodford et al. 2014). The environment in South Asia is rapidly becoming a 

gene pool for the acquisition and dissemination of AMR.  Factors such as poor 

sanitation, waste management and overuse and misuse of antibiotics are regard as 

drivers of AMR; however, the hospital environment and its associated co-factors are 

rarely investigated. As explained in the general introduction, in countries like India 

and Pakistan there is no proper waste management. Household or even hospital 

waste is often discarded in some inappropriate places creating ad-hoc rubbish tips – 

often close to poor communities. Stray animals (particularly dogs), birds and insects 

are often seen feeding on these rubbish tips which might potentially contain un-

degraded antibiotics and almost certainly MDRB. Furthermore, in South Asia, the 

sewage infrastructure is very old and gutters/pipes are often exposed; the water 

supply is also often contaminated by effluents from other sources (Picão et al. 2013). 

This was evident by our data when we recovered resistant bacteria from drinking 

water, insects and bird’s droppings.  All these factors contribute to the cycling of 

AMR in the community, patients and the environment (Figure 59). 
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Figure 59. AMR transmission cycle. The figure shows a schematic representation 

of the possible transmission routes of AMR between patients, environment and the 

community. 

 

7.2. The status of Healthcare in LIMCs  

In addition to the detrimental situation outside the hospital, the conditions inside 

hospitals are generally suboptimal and lack basic commodities which may include 

essential lifesaving equipment and medication. The hospital infrastructure is often 

outdated, with limited or no maintenance and inadequate waste management (WHO 

2014a; Quintela-Baluja et al. 2015). According to WHO, 58 % of hospitals in 
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developing countries have no adequate safe disposal system. There is also a lack of 

cleaning and hygiene and 67% of hospitals lack basic infection control policies 

(WHO 2014b). Consequently, contamination of immediate hospital environment 

could occur easily, which in turn can have detrimental effects on the patients’ health, 

community and healthcare workers. Additionally, despite being heavily populated the 

expenditure on health-care systems is proportionately very low. Pakistan is the one 

of the emerging economies of South-East Asia but only spends a fraction, 0.5%, of 

its gross domestic product on health. Very limited, and below standard, facilities are 

provided by governmental health-care institutes and approximately 80% of the 

health-care expenditure is covered by individuals using own resources (WHO 2014b; 

WHO 2015b). The health care system is divided into private and public sectors with 

a striking difference in the quality and quantity of facilities. The public sector is run by 

the Pakistani government with very basic and inefficient amenities. In contrast, the 

private sector hospitals are comparable to that of developed countries; however, 

they are almost entirely restricted to the upper or upper/middle-class who make up 

the minority of the population. Consequently, most of the population is dependent on 

the governmental- run public hospitals with limited recourses and limited or no 

access to fundamental necessities (Raka 2010). These institutes struggle to provide 

essential care for the patients and have very limited financial resources for cleaning 

and disinfectants etc. Generally, the staff lack knowledge about infection control 

prevention strategies and effectiveness of cleaning and hygiene products, which can 

lead to the frequent use of contaminated equipment and utilities spreading MDR 

bacteria (Collins 2008; Carling and Polk 2011). Additionally, there is also a shortage 

of staff and basic facilities including beds, medications and equipment. It is not 

unusual to see patients or even babies sharing beds. Food in hospitals is generally 
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eaten in beds with hands, bedsheets and other hospital wear rarely washed and 

often found dirty (personal observations). Poor hygiene, infection control and 

sanitation lead to increased MDR contamination (Andremont and Walsh 2015), as is 

evident from our study where the resistance was frequently isolated from common-

touch surfaces such as beds, windows, door handles and sink knobs to specialised 

equipment such as oxygen masks, IV, catheter and cannula lines. Moreover, it is a 

general observation that the majority of HAIs develop at surgical sites or invasive 

medical devices such as catheters, giving rise to central-line-associated bloodstream 

infections, ventilator-associated pneumonia and catheter-associated urinary tract 

infections (NHS 2010; Stone 2010). Findings of this study show that the conditions in 

LMIC hospitals may be facilitating the development of HAIs.  

MDRB can be either transferred through direct or indirect contact. Direct transfer can 

occur between patients, healthcare workers or other hospital personnel. Indirect 

transfer can occur with the aid of an intermediate medium; for example, indirect 

transfer of a MDRB from one patient to another using a fly or insect as a medium, 

transfer of a MDRB from an infected patient to healthcare worker by contaminating a 

touch-surface or the transfer of a contaminant from one patient to another via contact 

with a healthcare worker (Collins 2008). However, this spread is not limited to the 

hospital setting and resistance genes can equally spread to the community due to 

close contact between visitors – and vice versa.  
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7.3. The global implication of increased MDR in LMIC 

There is increasing evidence for the transfer of MDR from one location to another. 

MDRB can become part of normal microbiota which can open the opportunity for 

establishing dissemination on a global scale due to population dynamics. The spread 

of a resistance gene from its origin to distinct environments has been identified on 

several occasions: for example, in Europe, most of the initial blaNDM cases, if not all, 

reported travel to South Asia or the Balkans (Walsh 2010; Livermore et al. 2011; 

Walsh and Toleman 2011; Dortet et al. 2014; Voulgari et al. 2014); blaKPC may have 

been imported from USA as the first case in Europe was identified from a patient in 

France who had undergone medical treatment in New York (Munoz-Price et al. 2013; 

Nordmann 2014) and the introduction of blaVIM-4 in Sweden, Hungry and Norway via 

patients previously hospitalised in Mediterranean hospitals (Walsh et al. 2005; 

Carmeli et al. 2010; Cornaglia et al. 2011; Giske et al. 2012). Similarly, the P. 

aeruginosa strain belonging to serotype O:12, which is generally associated with the 

carriage of blaVIM, has shown very similar characteristics across all of Europe 

suggesting a common origin for the gene, at least in Europe (Pitt et al. 1989; Tsakris 

et al. 2000). Although MDR has dispersed across the globe, there are geographical 

hotspots for the carriage of resistance genes e.g. blaCTX-M and blaNDM in India, 

Pakistan and Bangladesh. AMR is highly prevalent in the environment in South Asia 

including in drinking water and food, which is probably the most significant factor in 

influencing the composition of the gut microbiota. Hence, it’s not surprising that in 

countries like Pakistan and India, more than 70% of the gut Enterbacteriaceae have 

blaCTX-M type ESβL and, represented with a massive reservoir and in India alone, 

more than 1.1 billion individuals are carry blaCTX-M (Woerther et al. 2013). Travelling 

to these regions has been acknowledged as an independent risk factor for antibiotic 
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resistance acquisition (Livermore 2012; Woerther et al. 2013). A study from the 

Netherlands found that 8·6% of individuals were colonized with ESβL-producing 

Enterobacteriaceae before travel to South and Southeast Asia but, after travel, the 

colonization rate increased to 30·5% (Paltansing et al. 2013). Predictably, this study 

confirms that MDR is not restricted to one region and the emergence of AMR in one 

region of the world will rapidly disseminated to other countries/continents. Therefore, 

a global collaborative approach is essential in tackling the spread of MDR.  

Surveillance programmes by organisations, such as CDC, WHO and food and 

agriculture organisation (FAO), provide the necessary information to keep updated 

with the current state of AMR across the world and take action by generating policies 

accordingly.  

 

7.4. Preventative Strategies to Control the Spread Of MDRB  

One possible solution is to eliminate the MDR reservoir which exists in the 

environment and/or clinical settings. Environmental reservoirs of MDR can enhance 

the spread of resistance to different ecological niches, whereas clinical 

contamination can often lead to the development of HAIs (Carling and Polk 2011; 

WHO 2013b). Appropriate infection prevention control strategies and 

decontamination of patient wards and the adjacent environment is advised (O’Neill 

2016a), although the routine disinfection of surfaces is debatable and has initiated 

some arguments, especially for MRSA (Taneja et al. 2012; Munoz-Price and Quinn 

2013; Zaman and Siddiqui 2015). Some researchers also dispute that surface 

disinfection is only beneficial in high risk areas and there is not enough evidence that 

a healthcare facility with increased cleanliness has reduced the risk of infections. 
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Furthermore, the increasing biocide associated selection pressure on bacteria and 

its potential toxic side-effects towards patients, healthcare workers and the 

environment may outweigh the benefits (Cookson 2005; Quintela-Baluja et al. 2015). 

However, it should be noted that providing evidence for the role of cleanliness and 

hygiene in a hospital setting is challenging as it is dependent on a lot of factors with 

limited control, most importantly: the behaviour and collaboration of staff, patients 

and visitors, the efficiency of locally used cleaning products and techniques and 

routine or frequency of cleaning. In this study, for example, the cleaning agent itself 

was contaminated with P. aeruginosa. Furthermore, it was also observed that there 

was a lack of routine cleaning and all individuals responsible for the cleaning, or the 

ones monitoring the process, had no knowledge about disinfection techniques. 

Nonetheless, there is a general agreement over the benefits of other infection control 

strategies for reducing HAI and the spread of MDR such as hand hygiene, contact 

precaution and appropriate contaminated waste disposal (Carling and Polk 2011; 

Timilshina et al. 2011a; WHO 2013b; O’Neill 2016a). Introduction of other 

interventions and strategies have also shown good results, for example antibiotic 

stewardship and educating staff and the general public on appropriate antibiotics use 

(Raka 2010; Laxminarayan et al. 2013). Although many European countries have 

introduced intervention platforms, the development in LMICs is tardy (Laxminarayan 

et al. 2013). AMR is universally recognized as a global threat by humanitarian 

organizations and efforts are being made to provide on-the-ground support to 

introduce surveillance, prevention control and education programs. An example is 

“National Action Plan” a WHO approach to encourage countries to produce a 

comprehensive document as to how each country will tackle AMR under the one-

health approach. The NAP will dovetail with initiatives such as GLASS (a 
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comprehensive surveillance tool) proposed by the WHO (WHO 2015a). Another 

such program is the ‘Global Antibiotic Resistance Partnership’ which is focused on 

developing policies for antimicrobial resistance in selected low and middle income 

countries of Africa and Asia (Hellen 2015). In addition, a comprehensive national 

plan to tackle antibiotic resistance, with consideration to the local requirements, 

would be the way forward in reducing antibiotic resistance. An example of such 

programme is the Fleming fund which was proposed following Jim O’Neil’s report in 

2015 commissioned by UK prime minister David Cameron. The report analysed the 

economic and health burden of AMR and acknowledged the need for a global 

collaborative response to tackle MDR. The Fleming fund is increasing local 

collaborations and working with local health-care providers in LMICs to provide 

support with AMR surveillance and encourage rational antibiotic use by improving 

diagnosis capacity.  

 

7.5. Alternative or New therapeutics to Control the Spread Of MDRB  

The other solution to control the spread of MDR could be the development of new 

therapies. Irrefutably, the inevitable spread of antibiotic resistance means new 

therapies are absolutely essential. Small scale studies are required in providing the 

basis for further investigation into a test compound, for example CARB-X 

(Combating Antibiotic Resistant Bacteria Biopharmaceutical Accelerator), JPI-AMR 

(Joint Programming Initiative on Antimicrobial Resistance) and ND4BB (New Drugs 

For Bad Bugs) (IMI 2015; JPIAMR 2015; CARB-X 2017). CARB-X is a global 

partnership aimed at bringing pharmaceutical industries and scientist together to 

accelerate the developing of therapeutics and diagnosis of AMR (CARB-X 2017). 
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Innovative medicine initiatives’ “new drugs for bad bugs” are encouraging small scale 

studies in generating new drugs specifically for Gram-negative bacteria into the 

research pipeline (IMI 2015) and JPI-AMR is supporting research of new antibiotics 

in addition to stewardship of existing antibiotics (JPIAMR 2015).  

Although the PNA’s used in this study haven’t generated satisfactory results in 

targeted antibiotic resistance inhibition,  it provides an alternative approach to 

conventional antibiotics which could be investigated. The primary problem with AP-

PNA-C therapy still seems to be entry into the cells or the conjugated carrier protein. 

However, new advancements in the delivery system might be able to overcome 

these hurdles (Sang and Blecha 2008; Woodford et al. 2009) though, it goes without 

saying that targeting a specific pathogen will eventually select for resistance (Coates 

and Hu 2007; Sang and Blecha 2008). However, the rise of MDR and the dearth in 

the development of new antibiotics require urgent attention. The strict approval 

regulations mean that any drug under-progress will take at least a decade before 

being approved for clinical use assuming timely progress to TC phase III and beyond 

(Projan and Shlaes 2004; Tillotson and Theriault 2013; Allen et al. 2014).  

In retrospect, the decline in new drug development could be attributed to multiple 

reasons such as lack of profit, compliance with guidelines for clinical trials, increased 

competition in the marketplace and increased failure in the development of new 

drugs, leading to several large companies exiting the field (Projan and Shlaes 2004; 

Tillotson and Theriault 2013; Allen et al. 2014). Currently, there is an increased 

pressure on initiating new cutting-edge research in drug development technology 

aiming at their unmet medical needs and increasing commercial value (Tillotson and 

Theriault 2013). The therapeutic development of antisense technologies is still at 
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early investigation stage. A lot of research is still undergoing to understand the 

mechanisms and cellular pathways of different AO and explore their full potential as  

antimicrobial agents. Advancements in genomics and proteomics are providing 

different areas to explore and new potential target genes and pathways are 

identified. Further understandings into the intracellular trafficking of AO will 

significantly accelerate the development of an upgraded design with enhanced 

delivery systems for enhanced drug discovery (Peng et al. 2015).   

Lastly, it should not be forgotten bacteria have shown incredibly amendable 

genomes which have been exposed to constant selection pressure from synthetic or 

natural antibiotics, biocides and other toxic substances and, subsequently, have 

evolved a very sophisticated bacterial machinery capable of overwriting all the 

antibiotics in use today. Furthermore, there is a discovery void and the finite changes 

to an existing antimicrobial compound is becoming exhausted. Novel antibiotics or 

alternative therapeutics strategies are essential to defeat bacteria in the “arm race” 

against time (Allen et al. 2014). Failure to do so will result in pushing humans back to 

pre-antibiotic era and, consequently, will bring an end to modern medicine.  
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8. Appendices  
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8.1. Tables and Figures  

Table 26. Location of Drinking Water samples from Karachi, Pakistan 
Bhains Colony Abid Colony Fb Area Clifton 

Bohrapir Airport Ghanchipara Dastagir 

Bottle Goli Allahwala  Gulberg Dharmala 

Dha Phase 7 Bhitta Gulshan E Hadeed Hawkes Bay 

Essa Nagri Bin Qasim Gulshan-E-Maymar Hazara Colony 

Garden Buffer Zone Hanifia Road Hub Chowki 

Gold Town Golmar Jodia Bazaar Jinnah Abad 

Haji Sheedi Goth Gulshan-E-Jahan Karsaz Junaijo Town 

Ibrahim Haidri Jail Road Kharadar Khayaban-E-Jami 

Kachi Colony Jam Goth Kumharwara Kiamari 

Kalakot Jehangir Road Millat Nagar Malirpur Road 

Kashmir Colony Liaquat Abad Paf Chata Malir Manghopir  

Kathiawar Society Mianwali Colony Razzaqabad Mehmood Abad 

Khuda Ki Basti Nafees Colony Sarafa Bazaar Mehran Town 

Korangi 5 No. Narayan Pur Sarjan Town Memon Sociaty 

Malir Cantt Nawa Lane Shah Baig Line Nahak Wara 

Miran Naka Nusrat Bhutto Colony Sharifabad National Stadium 

New Karachi Ramswamy Shershah Colony Nice Town 

Pakistan Chowk Saadi Colony Singo Cane Parsi Compound 

Pechs Society Shah Faisal Colony Sultanabad Patel Road 

Pib Colony Azam Basti Usmanabad Punjab Colony 

Railway Colony Baghdadi Zia Colony Qayyam Abad 

Shah Latif Town Dehwan Goth Akhtat Colony Sorab Goth 

Sherpao Basti Dhobighat Azam Town Dhoraji Society 

Bhangipara 
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Table 27. Location of Surface and Equipment samples from Karachi, Pakistan 

The numbers of samples are shown as (n). 

 

Location n Location n Location n 

Bed Handle 13 Dust bin 6 Lithotomy table 1 

Air pump 1 Elevator 1 Lunch table 11 

Bandage 2 Entrance door 8 Main entrance 2 

Bed linen 32 Envelope CT scan 2 Mattress 4 

Bedside table 5 Excercise Cycle 1 Medical supply table 1 

Blood bag 1 Fire extinguisher 2 Medicine counter 3 

Board for foot rest 1 Floor 13 Medicine trolley 3 

BP cuff 1 Foley's catheter 2 Nebulizer 1 

Cannula of patient 7 Food tray 2 Nasogastric tube 4 

Waiting Chair 5 Fridge 1 Nursing counter 14 

Corridor 2 Gel bottle 1 Nursing trolley 1 

Cot Mattress 1 Gloves box 1 Oxygen cylinder 4 

Nursing Cupboard 1 Grill railing 1 Oxygen mask 5 

Curtain 3 Hand dispenser 4 Patient file 10 

Cutter machine 1 Hand sanitizer 7 Phone 2 

Doctor's table 2 Infusion tube 1 Pillar 1 

Door 15 Instrument table 1 Pillow case 13 

Drawer 5 IV line 2 Plaster board 1 

Drip bag 18 Kettle 1 Patient's support plastic 1 

Rods skeletal traction 1 Procedures Light 1 Potable water 1 

Round wheel 1 Steel rod 9 Table 11 

Skeletal traction stand 5 String to turn on the fan 1 Tape to secure cannula 3 

Stair railing 5 Switch board 16 Tracheostome tube 1 

Stairs 2 Syringe 1 Trolley 1 

Ultrasound probe 1 Waiting area 1 Weighing machine 1 

Visitor's chair 7 Wall 3 Wheel chair 3 

Vitals monitor 1 Water purifier 1 Window 7 

X-ray 4 
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Figure 60. An example questionnaire that was filled for every patient enrolled 

in Peshawar study 

 

 

 

 

 

 

 

 

 

Patients Data collection questionnaire 

Patients Name:                                    Ward: 
 
Personal Information:  
Age: Sex: Place of residence: 

 
 

Clinical Information: 
Clinical symptoms/diagnosis: Surgery Type: 

 

Infection Developed:  
 

Sample site: 
 

Antibiotic Therapy: Length of hospital stay 

Additional Information: 
 

Yes 
 

No 
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Table 28. Primers List 

Primers pair Target Sequence (5’-3’) 
An 
°C 

Size 
(bp) 

Reference/ 
Source  

NDM-F 

blaNDM 

GGTTTGGCGATCTGGTTTTC 
55 ~700 

Nordmann et 

al. 2011 NDM-R CGGAATGGCTCATCACGATC 

CTX-M-15-F 

blaCTX-M-15 
ATGCGCAAACGGCGGACGTA 

55 ~600 AWARE 
CTX-M-15-R CCCGTTGGCTGTCGCCCAAT 

KPC-F 

blaKPC 

ATGTCACTGTATCGCCGTCT 
60 ~890 SACU 

KPC-R TTTTCAGAGCCTTACTGCCC 

OXA-48 LIKE-F blaOXA-48-

like 

TTGGTGGCATCGATTATCGG 
53 ~744 SACU 

OXA-48 LIKE-R GAGCACTTCTTTTGTGATGGC 

VIM-F 

blaVIM 

CCGACAGTCARCGAAATTCCG 
55 ~400 SACU 

VIM-R CTACTCRRCGACTGAGCGATT 

AcpP-R4 

acpP 

GACGCTTAGACACGTTTGTCC 
54 ~340  This Study  

AcpP-F4 ATCGCGAAAGCGAGTTTTGA 

INTL1-QAC-F Class 1 

integron 

ACAGCACCTTGCCGTAGAAG 
54 Varies  This Study  

INTL1-QAC-R GCGATAACAAGAAAAAGCCAGC 

KPC-F-PNA 

blaKPC 

AAGGAATATCGTTGATGTCACTG 
54 ~900  

This 

Study/SACU  KPC-R TTTTCAGAGCCTTACTGCCC 

OXA-48 F-PNA blaOXA-48-

like 

GGGGACGTTATGCGTGTATT 
54 ~780 

 This 

Study/SACU  OXA-48 LIKE-R GAGCACTTCTTTTGTGATGGC 

NDM-F-PNA 

blaNDM 

AAAAGGAAAACTTGATGGAATTG 
54 ~760  

This 

Study/SACU  NDM-R CGGAATGGCTCATCACGATC 

27F 

16S rRNA 

AGAGTTTGATCCTGGCTCAG 
54 ~1500 Lane, 1991 

1492R GGTTACCTTGTTACGACTT 

REP2I 

REP 

ICGICTTATCIGGCCTAC 
40 Varies 

Versalovic et 

al. 1991 REP1R IIIICGICGICATCIGGC 

63F 

16S rRNA  

CAG GCC TAA CAC ATG CAA GTC 
  ~1600 

Marchesi et 

al. 1998 1387R GGG CGG WGT GTA CAA GGC 

OXA-48 181-M-R 

blaNDM, 

blaKPC and 

blaOXA-48-

like 

Multiplex 

AAGACTTGGTGTTCATCCTT 

61 

163 

This Study   

OXA-48 like48-

181-M-F 

GGCGTAGTTGTGCTCTG 

NDM-M-R CTCAGTGTCGGCATCAC 
655 

NDM-M-F AGCTGAGCACCGCATT 

KPC-M-R CCGTCATGCCTGTTGTC 
333 

KPC-M-F TAGTTCTGCTGTCTTGTCTC 
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CTX-M-15-R 

blaCTX-M-15 

CCGAGGTGAAGTGGTATC 
  ~500 This Study   

CTX-M-15-F AAGTGTGCCGCTGTATG 

AcpP-3-F 

acpP qRT 

assay 

TGGTAATGGCTCTGGAAGAA 
59 

88  This Study  AcpP-3-R TAATCAATGGCAGCCTGAAC 

AcpP-Probe-R TCAGCTTCTTCGTCCGGAATCTCA 69 

Some primers were acquired from SACU (Specialist Antimicrobial Chemotherapy 

Unit) with permission. An °C (Annealing temperature). 
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Table 29. K. pneumoniae Isolates details with similar REP-PCR profiles. 

The minimum similarity coefficient for two profiles being considered very similar if not 

the same was 91%.  

 

 

K. pneumonia Sample Pair Gene 1 Gene 2 CD Organism/Location 

IS 894 1 CTX-M-15 NDM C C 

PSW 292 1 CTX-M-15 NDM D Dustbin/pillar base 

IS 299G 2 CTX-M-15  D F 

IW 409G 2 CTX-M-15  D F 

IW 473G 2 CTX-M-15  D C 

IS 1018W 3 CTX-M-15  C F 

IS 262B 3 CTX-M-15  D F 

IW 428B 4 CTX-M-15  C C 

IW 254B 4 CTX-M-15  D C 

PPS 331G 5 CTX-M-15 OXA-48 LIKE D NA 

PPW 231G 5 NDM CTX-M-15 D NA 

IS 299B 5 CTX-M-15 OXA-48 LIKE D F 

PPW 111G 6 NDM CTX-M-15 D NA 

PPW 249G 6 NDM  D NA 

PPW 111B 6 NDM CTX-M-15 D NA 

IS 1139B 7 CTX-M-15  D F 

PPS 356B 7 
OXA-48 

LIKE 
 C NA 
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Table 30. E. coli Isolates details with similar REP-PCR profiles 

The minimum similarity coefficient for two profiles being considered very similar if not 

the same was 84%. 

 

E. coli Sample Pair Gene 1 Gene 2 CD Organism/Location 

PSS 435 1 CTX-M-15  D Dustbin/pillar base 

IW 535 1 CTX-M-15  D F 

PSW 128 2 CTX-M-15  D Washroom handle 

PSW 161 2 CTX-M-15  C Bed EX-7 drip hanger 

PPS 395 3 CTX-M-15  C NA 

PPS 412 3 CTX-M-15  C NA 

IW 222 4 CTX-M-15 NDM D NA 

PPS 390 4 CTX-M-15  C NA 

IS 299 5 CTX-M-15 OXA-48 LIKE D F 

IS 421 5 CTX-M-15  D F 

IS 474 5 CTX-M-15  D M 

PPW 131 6 CTX-M-15  C NA 

PPW A 6 CTX-M-15 NDM D NA 

IW 343 7 CTX-M-15  D NA 

IW 526 7 CTX-M-15  D NA 

IW 218 8 CTX-M-15 NDM D C 

PPS 354 8 NDM OXA-48 LIKE C NA 

PPW 110 9 CTX-M-15  D NA 

PPW 239 9 CTX-M-15  D NA 

PPW 105 10 CTX-M-15  D NA 

PPS 435 10 CTX-M-15  C NA 

IW 77 11 CTX-M-15 OXA-48 LIKE D C 

IW 442 11 CTX-M-15  D NA 

PPW 130 12 CTX-M-15  C NA 

IW 266 12 CTX-M-15 NDM D NA 

PPS 435 13 OXA-48 LIKE  C NA 

PPS 461 13 CTX-M-15 NDM C NA 
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Table 31. E. cloacae Isolates details with similar REP-PCR profiles 

The minimum similarity coefficient for two profiles being considered very similar if not 

the same was 87.5%.

E. cloacae Sample Pair Gene 1 Gene 2 CD Organism/Location 

IS 647 1 NDM  D S 

IS 1006 1 CTX-M-15 NDM C F 

IS 260 2 CTX-M-15  D F 

IS 1155 2 NDM  D F 

IS 273 3 CTX-M-15  D F 

IS 273 3 NDM  D F 

IS 355 3 CTX-M-15  C F 

IS 470 3 NDM  D F 

IW 472 3 NDM CTX-M-15 D C 

IS 650 3 CTX-M-15  D F 

IW 133G 3 CTX-M-15  C C 

IS 471 4 CTX-M-15  D F 

IS 576 4 CTX-M-15  C F 

PSS 415 5 NDM  C 
Surface under 

dustbin 

IS 489 5 NDM  C F 

IS 259 6 CTX-M-15  D F 

IS 655 6 CTX-M-15  D C 

PSS 388 7 NDM  C Window surface 

PSS 397 7 NDM  C Window surface 

IS 459 7 CTX-M-15  D C 

PSS 415 8 CTX-M-15  C 
Surface under 

dustbin 

IW 555 8 CTX-M-15  C F 

IS 489 9 NDM  C F 

IS 1078 9 CTX-M-15 NDM C F 

IS 454 10 CTX-M-15  D F 

IS 830 10 CTX-M-15  C F 

IS 275 11 CTX-M-15  D F 

IW 473 11 NDM CTX-M-15 D C 

IW 407 12 NDM CTX-M-15 C C 

IW 412 12 NDM CTX-M-15 C C 
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8.2. Recipes for reagent and stock solutions prepared locally 

All reagents purchased from one Thermo Fisher Scientific, Waltham, USA and Sigma 

Aldrich, St. Louis, USA. Buffers used in the study were prepared as following;  

TBE Buffer (10×)  

Tris (Fisher)�Boric Acid (Sigma)�Na2EDTA (Fisher)�Made up to 1 L with sterile distilled 

water. Autoclaved before use.  

TE Buffer (10×)  

Tris (Fisher)�Na2EDTA (Fisher)�HCl (Fisher)�Made up to 1 L with sterile distilled water. 

Autoclaved before use.  

0.1M Tris HCl Buffer, pH 7.5  

Tris (Fisher)�HCl (Fisher)�Made up to 100mls in sterile distilled water.  

 

8.3. List of Culture Media  

Columbia Blood Agar (CBA, E&O Laboratories Ltd, Bonnybridge, Scotland)  

Used for primary culture and subculture of all isolates, and for plate mating assays.  

Luria Bertani (LB) Agar, Miller (Thermo Fisher Scientific, Waltham, USA)  

Supplemented with antimicrobials for subculture and passage experiment.  

LB Broth, Miller (Thermo Fisher Scientific)  

Used for subculture, mating supplemented with antimicrobials for passage experiment.  
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Mueller Hinton (MH) Agar (E&O Laboratories Ltd)  

Used for disc and gradient strip susceptibility testing.  

BrillianceTM UTI Clarity Agar (Oxoid Ltd, Basingstoke, UK)  

Supplemented with antimicrobials for selective isolation in mating experiments.  
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