

## ORCA - Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:https://orca.cardiff.ac.uk/id/eprint/110078/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Du, Jonathan J., Hanrahan, Jane R., Solomon, V. Raja, Williams, Peter A., Groundwater, Paul W., Overgaard, Jacob, Platts, James A. and Hibbs, David E. 2018. Exploring the binding of barbital to a synthetic macrocyclic receptor. A charge density study. Journal of Physical Chemistry A 122 (11) , pp. 3031-3044. 10.1021/acs.jpca.7b11674

Publishers page: http://dx.doi.org/10.1021/acs.jpca.7b11674

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.



Exploring the Binding of Barbital to a Synthetic Macrocyclic Receptor; a Charge Density Study<sup>†</sup>

Jonathan J. Du,<sup>1</sup> Jane R. Hanrahan,<sup>1</sup> V. Raja Solomon,<sup>1</sup> Peter A. Williams,<sup>1,4</sup> Paul W. Groundwater,<sup>1</sup> Jacob Overgaard,<sup>3</sup> James A. Platts<sup>2</sup> and David E. Hibbs<sup>1\*</sup>

<sup>1</sup>Faculty of Pharmacy, University of Sydney, NSW 2006 Australia
<sup>2</sup>School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK.
<sup>3</sup>Department of Chemistry, Center for Materials Crystallography, Aarhus University, Langelandsgade 140, Aarhus C, 8000, Denmark
<sup>4</sup>School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751

\*Corresponding author: David E. Hibbs, <u>david.hibbs@sydney.edu.au</u>

Spectroscopic Details of 14,16-dioxa-2,6,8,22-tetraaza-1,7(2,6)-dipyridina-15(2,7)-naphthalena-4(1,3)-benzenacyclodocosaphane-3,5,9,21-tetraone (**1**)

<sup>1</sup>H-NMR (d<sup>6</sup>-DMSO)  $\delta$  ppm 10.28 (s, 2H, NH isophthal), 10.06 (s, 2H, pyr-NHCO), 8.50 (s, 1H, isophthal C(2)-H), 8.10 (dd, J = 1.5, 7.7, 2H, isophthal C(4)-H and C(6)-H), 7.83 (m, 4H, pyr C(3)-H and C(5)-H), 7.77 (d, J=1.9, 7, 2H, pyr C(4)-H) 7.69 (d, J=7.7, 1H, isophth-5H) 7.65 (d, J=9, 2H, naph-C(4)-H and naph-C(5)-H), 7.19 (d, J= 2.3, 2H naph-C(1)-H and naph-C(8)-H), 6.95 (dd, J = 2.3, 8.8, 2H, naph-C(3)-H and C(6)-H), 4.05 (t, J= 6.3, 4H, OC<u>H</u><sub>2</sub>), 2.30 (t, J=6.2, 4H, COC<u>H</u><sub>2</sub>), 1.67-1.85 (8H, m, OCH<sub>2</sub>C<u>H</u><sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>)

<sup>13</sup>C-NMR (d<sup>6</sup>-DMSO) δ ppm 172.30 (pyr-NH<u>C</u>O), 165.79 (isophthal-<u>C</u>O), 157.31 (napth-<u>C</u>O), 150.90 and 150.47 (pyr C2 & C6), 140.55 (pyr C4), 136.20 (napth C9), 134.26 (napth C4 & C5), 132.33 (napth C4 & C5), 129.46 (isophthal C5), 129.38 (napth C10), 124.08 (isophthal C2), 116.36 (napth C1 & C8), 110.29 and 109.99 (pyr C), 106.50 (napth C3 & C5), 67.50 (O<u>C</u>H<sub>2</sub>), 33.73 (<u>C</u>H<sub>2</sub>CO), 28.52 (OCH<sub>2</sub><u>C</u>H<sub>2</sub>CH<sub>2</sub>), 21.70 (<u>C</u>H<sub>2</sub>CH<sub>2</sub>CO).

## Anisotropic Temperature Refinement of Hydrogen Atoms

An alternative multipole refinement was carried out using anisotropic temperature factors for the hydrogen atoms as well as the heavy atoms, as discussed by Hoser *et al.*<sup>1</sup> regarding the increased accuracy of the multipole model obtained from multipole refinement involving the use of anisotropic temperature factors for hydrogen.<sup>1-2</sup> Anisotropic temperature factors for the hydrogen atoms were calculated using the SHADE3 server developed by Madsen<sup>3</sup>. Multipole analyses with anisotropic temperature factors for hydrogen were truncated at the same level as above ( $l_{max} = 3$ ) for heavy atoms and up to the ( $l_{max} = 1$ ) for hydrogen atoms). The multipole refinement for hydrogen atoms was stopped at the dipolar expansion as the observations reported by Nguyen *et al.*<sup>4</sup> illustrated that refinement of hydrogen atoms in the multipole model past the dipolar to the quadrupolar level was generally unnecessary and would not lead to improved modelling of the electron density. However, it should be noted that the decision to refine hydrogen atoms anisotropically should be made on a per case basis.

| Atom | U11      | U22      | U33      | U12       | U13       | U23       |
|------|----------|----------|----------|-----------|-----------|-----------|
| H1   | 0.016809 | 0.01007  | 0.012283 | -0.001387 | -0.006679 | -0.00228  |
| H3   | 0.013246 | 0.014243 | 0.015196 | 0.003922  | -0.007011 | 0.004152  |
| H4   | 0.016506 | 0.010328 | 0.012314 | -0.001364 | -0.006771 | -0.002263 |
| H5   | 0.018448 | 0.00582  | 0.017293 | 0.004041  | -0.002877 | 0.001126  |
| H9   | 0.017596 | 0.015216 | 0.006662 | 0.004804  | 0.000121  | -0.002916 |
| H10  | 0.012206 | 0.015184 | 0.014651 | 0.009057  | 0.000482  | 0.002048  |
| H11  | 0.015168 | 0.019252 | 0.008285 | 0.004872  | -0.004434 | 0.003702  |
| H14A | 0.019162 | 0.013014 | 0.013779 | -0.004888 | 0.004167  | 0.005955  |
| H14B | 0.015661 | 0.014525 | 0.015284 | 0.006867  | -0.004154 | 0.004361  |
| H15A | 0.014939 | 0.014658 | 0.012491 | 0.001149  | 0.006864  | -0.00169  |
| H15B | 0.012    | 0.013046 | 0.021931 | 0.003361  | -0.004046 | 0.008124  |
| H16A | 0.012647 | 0.015079 | 0.016611 | -0.004431 | -0.007948 | 0.004278  |
| H16B | 0.02109  | 0.013754 | 0.009319 | 0.00463   | 0.006512  | 0.000976  |
| H17A | 0.018661 | 0.013907 | 0.015124 | 0.000614  | 0.00713   | 0.008434  |
| H17B | 0.008333 | 0.014694 | 0.018978 | -0.002358 | -0.004203 | 0.000001  |
| H19  | 0.017339 | 0.015432 | 0.010218 | 0.00416   | -0.006115 | 0.004118  |
| H20  | 0.019995 | 0.010088 | 0.009003 | 0.002222  | -0.003196 | -0.003474 |
| H22  | 0.019833 | 0.009802 | 0.009413 | 0.001662  | -0.00374  | -0.003426 |
| H23  | 0.01811  | 0.008289 | 0.016122 | 0.006496  | -0.002489 | 0.002643  |
| H25  | 0.019922 | 0.010275 | 0.008887 | 0.002127  | -0.003339 | -0.003448 |
| H27  | 0.020014 | 0.010824 | 0.008327 | 0.002434  | -0.003069 | -0.003361 |
| H28A | 0.020486 | 0.009101 | 0.017136 | -0.003381 | -0.002791 | 0.007355  |
| H28B | 0.009136 | 0.022984 | 0.012416 | -0.000289 | 0.004623  | 0.003988  |
| H29A | 0.021005 | 0.007456 | 0.017566 | -0.002144 | -0.003236 | 0.005831  |
| H29B | 0.008887 | 0.023279 | 0.012744 | -0.000489 | 0.004408  | 0.004761  |
| H30A | 0.011387 | 0.022637 | 0.011706 | -0.00264  | 0.004158  | 0.00627   |
| H30B | 0.019989 | 0.00694  | 0.018867 | 0.000211  | -0.003775 | 0.005247  |
| H31A | 0.012331 | 0.021544 | 0.012394 | -0.00411  | 0.003377  | 0.00739   |
| H31B | 0.01934  | 0.006797 | 0.018546 | 0.003196  | -0.003328 | 0.002823  |
| H34  | 0.0181   | 0.009945 | 0.014761 | 0.008267  | -0.000465 | 0.002857  |
| H35  | 0.018749 | 0.016544 | 0.008008 | 0.004734  | -0.004236 | 0.004359  |
| H36  | 0.020153 | 0.012119 | 0.007443 | 0.004919  | 0.000055  | -0.002814 |
| H01  | 0.014102 | 0.014057 | 0.011315 | 0.008647  | 0.000864  | -0.000202 |
| H03  | 0.010013 | 0.018139 | 0.012303 | 0.007694  | -0.001135 | 0.002407  |
| H04  | 0.013188 | 0.01623  | 0.011029 | 0.006456  | -0.004425 | 0.002293  |
| H06  | 0.019223 | 0.012912 | 0.00656  | 0.005329  | -0.001299 | -0.001801 |
| H01A | 0.008799 | 0.03308  | 0.017571 | 0.007539  | -0.002861 | 0.004005  |

Table S1: Calculated hydrogen anisotropic displacement parameters for (1)

| H01B | 0.031467 | 0.018534 | 0.015361 | 0.010938  | 0.002636  | 0.011443  |
|------|----------|----------|----------|-----------|-----------|-----------|
| H01C | 0.018809 | 0.018422 | 0.017363 | -0.011171 | 0.000105  | -0.004174 |
| H001 | 0.011954 | 0.00945  | 0.008901 | 0.002248  | -0.000755 | -0.002112 |
| H00A | 0.012861 | 0.00922  | 0.023745 | 0.004639  | 0.000811  | 0.00544   |
| H00B | 0.017394 | 0.019071 | 0.006167 | -0.002403 | 0.001654  | -0.000264 |
| H00C | 0.016744 | 0.014863 | 0.02668  | 0.004811  | 0.013052  | 0.00034   |
| H00D | 0.019691 | 0.029318 | 0.011425 | -0.009287 | -0.008795 | 0.00691   |
| H00E | 0.017552 | 0.011333 | 0.035817 | 0.005688  | 0.003592  | 0.012641  |

Table S2: Calculated hydrogen anisotropic displacement parameters for (2)

| Atom | U11      | U22      | U33      | U12       | U13       | U23       |
|------|----------|----------|----------|-----------|-----------|-----------|
| H1   | 0.018321 | 0.010368 | 0.012587 | -0.001799 | 0.00809   | 0.002454  |
| H4A  | 0.014539 | 0.018292 | 0.012156 | -0.005286 | 0.002126  | 0.006208  |
| H4B  | 0.013429 | 0.01722  | 0.01433  | 0.00516   | 0.001954  | -0.006789 |
| H5A  | 0.015936 | 0.024879 | 0.019996 | -0.002332 | 0.004773  | 0.014026  |
| H5B  | 0.020176 | 0.013352 | 0.026455 | -0.005258 | -0.012097 | -0.003288 |
| H5C  | 0.023566 | 0.021792 | 0.015295 | 0.01315   | 0.001551  | -0.006759 |

Table S3: Calculated hydrogen anisotropic displacement parameters for (3)

| Atom | U11      | U22      | U33      | U12       | U13       | U23       |
|------|----------|----------|----------|-----------|-----------|-----------|
| H1   | 0.018167 | 0.014545 | 0.010935 | -0.005255 | -0.006292 | 0.007441  |
| H3   | 0.014305 | 0.013499 | 0.016933 | -0.009752 | -0.004717 | 0.004007  |
| H4   | 0.018287 | 0.01378  | 0.011568 | -0.00522  | -0.006377 | 0.007559  |
| H5   | 0.014213 | 0.01777  | 0.014374 | -0.006016 | -0.010029 | 0.001859  |
| H9   | 0.013706 | 0.007865 | 0.021016 | 0.001111  | -0.007079 | 0.004496  |
| H10  | 0.006702 | 0.015272 | 0.022008 | -0.002066 | -0.006714 | 0.001674  |
| H11  | 0.013979 | 0.008233 | 0.021893 | -0.006299 | -0.005294 | 0.002761  |
| H14A | 0.010651 | 0.015885 | 0.020805 | -0.007052 | -0.006456 | 0.002582  |
| H14B | 0.022831 | 0.012031 | 0.010608 | 0.000316  | -0.00444  | -0.005553 |
| H15A | 0.008793 | 0.017198 | 0.020703 | -0.00586  | -0.005665 | 0.002942  |
| H15B | 0.022992 | 0.012155 | 0.009833 | 0.000115  | -0.003228 | -0.005268 |
| H16A | 0.013375 | 0.016482 | 0.014043 | -0.005691 | -0.000762 | 0.007271  |
| H16B | 0.015934 | 0.017497 | 0.011333 | 0.002382  | -0.002566 | -0.008287 |
| H17A | 0.012493 | 0.017708 | 0.013313 | -0.005326 | 0.000227  | 0.006715  |
| H17B | 0.016663 | 0.016619 | 0.011603 | 0.002637  | -0.003134 | -0.008189 |
| H19  | 0.015237 | 0.008166 | 0.022014 | -0.005183 | -0.007658 | -0.001637 |
| H20  | 0.014299 | 0.007087 | 0.02172  | 0.002543  | -0.008217 | 0.001375  |
| H22  | 0.01347  | 0.007277 | 0.022169 | 0.002937  | -0.007765 | 0.000799  |

| H23  | 0.0089   | 0.014599 | 0.02172  | -0.001681 | -0.009199 | -0.000728 |
|------|----------|----------|----------|-----------|-----------|-----------|
| H25  | 0.013322 | 0.007062 | 0.022407 | 0.002958  | -0.007397 | 0.000547  |
| H27  | 0.014278 | 0.006854 | 0.021908 | 0.002777  | -0.007986 | 0.000732  |
| H28A | 0.008206 | 0.014322 | 0.019153 | 0.000954  | 0.003669  | -0.002163 |
| H28B | 0.023479 | 0.015985 | 0.007061 | -0.00447  | -0.005239 | -0.001132 |
| H29A | 0.008117 | 0.014064 | 0.01972  | 0.001128  | 0.003269  | -0.002883 |
| H29B | 0.02325  | 0.016441 | 0.006487 | -0.004923 | -0.004214 | -0.000738 |
| H30A | 0.016516 | 0.014673 | 0.01741  | -0.009108 | -0.007755 | 0.000732  |
| H30B | 0.00824  | 0.018775 | 0.014459 | 0.003451  | 0.002034  | 0.000012  |
| H31A | 0.010151 | 0.015985 | 0.014954 | 0.004827  | 0.002104  | -0.000722 |
| H31B | 0.014792 | 0.016991 | 0.016843 | -0.008787 | -0.007913 | 0.000947  |
| H34  | 0.011188 | 0.014569 | 0.019645 | -0.001285 | -0.010764 | 0.001495  |
| H35  | 0.015909 | 0.00835  | 0.021344 | -0.005826 | -0.00803  | -0.00071  |
| H36  | 0.016163 | 0.006839 | 0.020415 | 0.000553  | -0.008555 | 0.003666  |
| H5'A | 0.011875 | 0.01211  | 0.020216 | -0.006649 | 0.001673  | -0.000452 |
| H5'B | 0.014595 | 0.018975 | 0.01375  | 0.001153  | -0.009363 | -0.003913 |
| H6'A | 0.012594 | 0.013218 | 0.034233 | -0.007646 | -0.001098 | 0.003545  |
| H6'B | 0.026434 | 0.019859 | 0.008624 | 0.00428   | 0.005454  | -0.001981 |
| H6'C | 0.025786 | 0.019079 | 0.020723 | 0.001993  | -0.018497 | -0.002896 |
| H7'A | 0.015382 | 0.018162 | 0.014027 | 0.000817  | -0.009761 | -0.004087 |
| H7'B | 0.01153  | 0.012356 | 0.019779 | -0.006141 | 0.002305  | 0.000548  |
| H8'A | 0.014995 | 0.033806 | 0.014762 | 0.000092  | -0.009434 | -0.00777  |
| H8'B | 0.025174 | 0.012945 | 0.017909 | 0.009735  | -0.00298  | 0.003192  |
| H8'C | 0.0178   | 0.019432 | 0.0224   | -0.012984 | 0.006167  | -0.003744 |
| H01  | 0.007415 | 0.012486 | 0.022168 | -0.000824 | -0.007044 | 0.002412  |
| H03  | 0.005254 | 0.01392  | 0.020642 | -0.001318 | -0.001429 | 0.003232  |
| H04  | 0.009352 | 0.011758 | 0.020909 | -0.005855 | -0.004423 | 0.004276  |
| H06  | 0.017407 | 0.006957 | 0.01967  | -0.00451  | -0.009232 | 0.00017   |
| HB1  | 0.014559 | 0.016567 | 0.013323 | -0.006265 | -0.009612 | 0.003479  |
| HB2  | 0.014826 | 0.012955 | 0.015565 | -0.009222 | -0.005749 | 0.004862  |
| HOS1 | 0.013387 | 0.006172 | 0.011547 | 0.001565  | -0.000336 | -0.000511 |
| H1SA | 0.011028 | 0.010675 | 0.0207   | 0.003996  | -0.001881 | 0.002123  |
| H1SB | 0.019854 | 0.016277 | 0.010253 | -0.006268 | -0.001847 | -0.006054 |
| H2SA | 0.019042 | 0.026794 | 0.016212 | -0.005057 | -0.000453 | -0.014853 |
| H2SB | 0.020893 | 0.026022 | 0.014471 | -0.011078 | -0.004778 | 0.012438  |
| H2SC | 0.013378 | 0.009864 | 0.036697 | 0.004783  | -0.007151 | -0.002034 |

|       | х    | у            | Z       | U(eq)   |       |
|-------|------|--------------|---------|---------|-------|
| <br>  |      |              |         |         |       |
| C(1)  | 2908 | (1)          | 1643(1) | 2364(1) | 18(1) |
| C(2)  | 1762 | (1)          | 1900(1) | 1854(1) | 18(1) |
| C(3)  | 1075 | (1)          | 1200(1) | 1161(1) | 22(1) |
| C(4)  | 1530 | (1)          | 256(1)  | 979(1)  | 25(1) |
| C(5)  | 2668 | (1)          | 2(1)    | 1485(1) | 23(1) |
| C(6)  | 3359 | (1)          | 695(1)  | 2184(1) | 18(1) |
| C(7)  | 4582 | (1)          | 368(1)  | 2698(1) | 19(1) |
| C(8)  | 5776 | (1)          | 743(1)  | 4189(1) | 20(1) |
| C(9)  | 6957 | (1)          | 96(1)   | 4015(1) | 24(1) |
| C(10) | 7881 | l(1)         | 47(1)   | 4719(1) | 26(1) |
| C(11) | 7631 | <b>l</b> (1) | 611(1)  | 5553(1) | 24(1) |
| C(12) | 6399 | 9(1)         | 1229(1) | 5653(1) | 20(1) |
| C(13) | 6682 | 2(1)         | 1943(1) | 7247(1) | 22(1) |
| C(14) | 585( | D(1)         | 2566(1) | 8009(1) | 21(1) |
| C(15) | 6972 | 2(1)         | 3229(1) | 8664(1) | 23(1) |
| C(16) | 7822 | 2(1)         | 3960(1) | 8280(1) | 27(1) |
| C(17) | 6823 | 3(1)         | 4746(1) | 8141(1) | 27(1) |
| C(18) | 5888 | 8(1)         | 6233(1) | 8983(1) | 24(1) |
| C(19) | 6074 | 4(1)         | 6976(1) | 9767(1) | 27(1) |
| C(20) | 5376 | 5(1)         | 7829(1) | 9849(1) | 26(1) |
| C(21) | 4439 | 9(1)         | 7977(1) | 9162(1) | 22(1) |
| C(22) | 3689 | 9(1)         | 8849(1) | 9228(1) | 25(1) |
| C(23) | 2769 | 9(1)         | 8964(1) | 8561(1) | 25(1) |
| C(24) | 2563 | 3(1)         | 8209(1) | 7785(1) | 23(1) |
| C(25) | 3309 | 9(1)         | 7363(1) | 7688(1) | 23(1) |
| C(26) | 4251 | 1(1)         | 7229(1) | 8381(1) | 21(1) |
| C(27) | 5008 | 8(1)         | 6358(1) | 8298(1) | 24(1) |
| C(28) | 1345 | 5(1)         | 7678(1) | 6375(1) | 27(1) |
| C(29) | -220 | (1)          | 7943(1) | 5902(1) | 27(1) |

Table S4: Atomic coordinates (x 10<sup>4</sup>) and equivalent isotropic displacement parameters ( $Å^2x$  10<sup>3</sup>) for (1). U(eq) is defined as one third of the trace of the orthogonalized U<sup>ij</sup> tensor.

| C(30)  | -269(1)  | 7234(1) | 5003(1) | 32(1) |
|--------|----------|---------|---------|-------|
| C(31)  | -1858(1) | 7303(1) | 4619(1) | 30(1) |
| C(32)  | -2159(1) | 6783(1) | 3668(1) | 27(1) |
| C(33)  | -1369(1) | 5412(1) | 2473(1) | 20(1) |
| C(34)  | -2124(1) | 5626(1) | 1774(1) | 23(1) |
| C(35)  | -1997(1) | 4983(1) | 957(1)  | 26(1) |
| C(36)  | -1143(1) | 4172(1) | 861(1)  | 25(1) |
| C(37)  | -446(1)  | 4026(1) | 1611(1) | 19(1) |
| C(38)  | 1251(1)  | 2913(1) | 2123(1) | 19(1) |
| N(1)   | 4760(1)  | 891(1)  | 3550(1) | 23(1) |
| N(2)   | 5500(1)  | 1299(1) | 4984(1) | 21(1) |
| N(3)   | 5962(1)  | 1818(1) | 6452(1) | 22(1) |
| N(4)   | -1318(1) | 6007(1) | 3332(1) | 25(1) |
| N(5)   | -557(1)  | 4623(1) | 2398(1) | 20(1) |
| N(6)   | 390(1)   | 3191(1) | 1514(1) | 21(1) |
| O(1)   | 5338(1)  | -330(1) | 2370(1) | 24(1) |
| O(2)   | 7900(1)  | 1583(1) | 7348(1) | 33(1) |
| O(3)   | 6650(1)  | 5421(1) | 8976(1) | 30(1) |
| O(4)   | 1585(1)  | 8402(1) | 7180(1) | 28(1) |
| O(5)   | -3140(1) | 7067(1) | 3247(1) | 47(1) |
| O(6)   | 1590(1)  | 3426(1) | 2855(1) | 25(1) |
| C(01)  | 11226(1) | 1375(1) | 7958(1) | 44(1) |
| C(02)  | 10671(1) | 1802(1) | 8825(1) | 30(1) |
| N(01)  | 10259(1) | 2126(1) | 9517(1) | 36(1) |
| C(001) | 2393(1)  | 5173(1) | 4604(1) | 51(1) |
| C(002) | 3697(2)  | 5802(1) | 4394(1) | 77(1) |
| O(001) | 1052(1)  | 5120(1) | 4085(1) | 62(1) |

| Table S5: | Bond lengths | [Å] and | angles [°] | for (1). |
|-----------|--------------|---------|------------|----------|

| C(1)-C(6)    | 1.3941(6)  |
|--------------|------------|
| C(1)-C(2)    | 1.3967(6)  |
| C(1)-H(1)    | 1.0826(11) |
| C(2)-C(3)    | 1.3940(8)  |
| C(2)-C(38)   | 1.4970(7)  |
| C(3)-C(4)    | 1.3910(7)  |
| C(3)-H(3)    | 1.0825(10) |
| C(4)-C(5)    | 1.3861(7)  |
| C(4)-H(4)    | 1.0824(11) |
| C(5)-C(6)    | 1.3962(8)  |
| C(5)-H(5)    | 1.0824(10) |
| C(6)-C(7)    | 1.4954(7)  |
| C(7)-O(1)    | 1.2232(7)  |
| C(7)-N(1)    | 1.3690(7)  |
| C(8)-N(2)    | 1.3352(7)  |
| C(8)-C(9)    | 1.3933(7)  |
| C(8)-N(1)    | 1.4014(6)  |
| C(9)-C(10)   | 1.3871(7)  |
| C(9)-H(9)    | 1.0824(11) |
| C(10)-C(11)  | 1.3850(8)  |
| C(10)-H(10)  | 1.0827(11) |
| C(11)-C(12)  | 1.4007(7)  |
| C(11)-H(11)  | 1.0828(10) |
| C(12)-N(2)   | 1.3389(6)  |
| C(12)-N(3)   | 1.3950(7)  |
| C(13)-O(2)   | 1.2225(6)  |
| C(13)-N(3)   | 1.3676(6)  |
| C(13)-C(14)  | 1.5129(8)  |
| C(14)-C(15)  | 1.5260(9)  |
| C(14)-H(14A) | 1.0910(11) |
| C(14)-H(14B) | 1.0912(10) |
| C(15)-C(16)  | 1.5271(9)  |
| C(15)-H(15A) | 1.0916(11) |
| C(15)-H(15B) | 1.0911(10) |
| C(16)-C(17)  | 1.5126(9)  |

| C(16)-H(16A) | 1.0918(11) |
|--------------|------------|
| C(16)-H(16B) | 1.0917(11) |
| C(17)-O(3)   | 1.4364(9)  |
| C(17)-H(17A) | 1.0915(11) |
| C(17)-H(17B) | 1.0913(11) |
| C(18)-O(3)   | 1.3641(7)  |
| C(18)-C(27)  | 1.3771(8)  |
| C(18)-C(19)  | 1.4157(9)  |
| C(19)-C(20)  | 1.3690(9)  |
| C(19)-H(19)  | 1.0826(11) |
| C(20)-C(21)  | 1.4184(8)  |
| C(20)-H(20)  | 1.0826(11) |
| C(21)-C(26)  | 1.4174(8)  |
| C(21)-C(22)  | 1.4181(8)  |
| C(22)-C(23)  | 1.3685(8)  |
| C(22)-H(22)  | 1.0825(11) |
| C(23)-C(24)  | 1.4174(9)  |
| C(23)-H(23)  | 1.0827(10) |
| C(24)-O(4)   | 1.3641(7)  |
| C(24)-C(25)  | 1.3778(8)  |
| C(25)-C(26)  | 1.4220(7)  |
| C(25)-H(25)  | 1.0825(11) |
| C(26)-C(27)  | 1.4167(8)  |
| C(27)-H(27)  | 1.0825(11) |
| C(28)-O(4)   | 1.4299(8)  |
| C(28)-C(29)  | 1.5119(8)  |
| C(28)-H(28A) | 1.0915(10) |
| C(28)-H(28B) | 1.0911(11) |
| C(29)-C(30)  | 1.5280(9)  |
| C(29)-H(29A) | 1.0918(10) |
| C(29)-H(29B) | 1.0918(11) |
| C(30)-C(31)  | 1.5193(9)  |
| C(30)-H(30A) | 1.0914(11) |
| C(30)-H(30B) | 1.0917(10) |
| C(31)-C(32)  | 1.5132(8)  |
| C(31)-H(31A) | 1.0919(11) |

| 1.0916(10) |
|------------|
| 1.2248(7)  |
| 1.3521(7)  |
| 1.3407(6)  |
| 1.3924(7)  |
| 1.4079(7)  |
| 1.3911(8)  |
| 1.0824(11) |
| 1.3831(7)  |
| 1.0824(10) |
| 1.3994(7)  |
| 1.0825(11) |
| 1.3251(7)  |
| 1.4042(7)  |
| 1.2277(7)  |
| 1.3669(6)  |
| 1.0083(11) |
| 1.0082(10) |
| 1.0087(10) |
| 1.0085(11) |
| 1.4483(10) |
| 1.0586(10) |
| 1.0587(10) |
| 1.0589(11) |
| 1.1439(8)  |
| 1.4061(11) |
| 1.521(2)   |
| 1.0923(11) |
| 1.0922(10) |
| 1.0588(11) |
| 1.0596(11) |
| 1.0589(10) |
| 0.9671(11) |
| 120.47(4)  |
| 119.8(5)   |
|            |

| C(2)-C(1)-H(1)    | 119.8(5)  |
|-------------------|-----------|
| C(3)-C(2)-C(1)    | 119.36(4) |
| C(3)-C(2)-C(38)   | 122.83(4) |
| C(1)-C(2)-C(38)   | 117.67(4) |
| C(4)-C(3)-C(2)    | 120.17(4) |
| C(4)-C(3)-H(3)    | 122.3(6)  |
| C(2)-C(3)-H(3)    | 117.5(6)  |
| C(5)-C(4)-C(3)    | 120.40(5) |
| C(5)-C(4)-H(4)    | 121.0(7)  |
| C(3)-C(4)-H(4)    | 118.6(7)  |
| C(4)-C(5)-C(6)    | 119.95(4) |
| C(4)-C(5)-H(5)    | 119.2(6)  |
| C(6)-C(5)-H(5)    | 120.8(6)  |
| C(1)-C(6)-C(5)    | 119.65(4) |
| C(1)-C(6)-C(7)    | 123.44(4) |
| C(5)-C(6)-C(7)    | 116.91(4) |
| O(1)-C(7)-N(1)    | 123.47(5) |
| O(1)-C(7)-C(6)    | 121.30(4) |
| N(1)-C(7)-C(6)    | 115.22(4) |
| N(2)-C(8)-C(9)    | 123.60(4) |
| N(2)-C(8)-N(1)    | 112.59(4) |
| C(9)-C(8)-N(1)    | 123.81(4) |
| C(10)-C(9)-C(8)   | 116.69(5) |
| C(10)-C(9)-H(9)   | 122.6(6)  |
| C(8)-C(9)-H(9)    | 120.6(6)  |
| C(11)-C(10)-C(9)  | 121.41(5) |
| C(11)-C(10)-H(10) | 118.7(6)  |
| C(9)-C(10)-H(10)  | 119.9(6)  |
| C(10)-C(11)-C(12) | 116.96(5) |
| C(10)-C(11)-H(11) | 123.1(8)  |
| C(12)-C(11)-H(11) | 119.8(8)  |
| N(2)-C(12)-N(3)   | 113.06(4) |
| N(2)-C(12)-C(11)  | 122.89(4) |
| N(3)-C(12)-C(11)  | 124.04(4) |
| O(2)-C(13)-N(3)   | 123.45(5) |
| O(2)-C(13)-C(14)  | 121.67(5) |

| N(3)-C(13)-C(14)    | 114.88(4) |
|---------------------|-----------|
| C(13)-C(14)-C(15)   | 111.68(5) |
| C(13)-C(14)-H(14A)  | 108.4(6)  |
| C(15)-C(14)-H(14A)  | 109.3(6)  |
| C(13)-C(14)-H(14B)  | 109.0(6)  |
| C(15)-C(14)-H(14B)  | 111.3(6)  |
| H(14A)-C(14)-H(14B) | 107.1(9)  |
| C(14)-C(15)-C(16)   | 112.51(4) |
| C(14)-C(15)-H(15A)  | 108.2(6)  |
| C(16)-C(15)-H(15A)  | 109.3(6)  |
| C(14)-C(15)-H(15B)  | 108.1(6)  |
| C(16)-C(15)-H(15B)  | 109.3(6)  |
| H(15A)-C(15)-H(15B) | 109.3(8)  |
| C(17)-C(16)-C(15)   | 113.92(5) |
| C(17)-C(16)-H(16A)  | 109.8(6)  |
| C(15)-C(16)-H(16A)  | 108.9(6)  |
| C(17)-C(16)-H(16B)  | 109.6(7)  |
| C(15)-C(16)-H(16B)  | 108.6(7)  |
| H(16A)-C(16)-H(16B) | 105.6(9)  |
| O(3)-C(17)-C(16)    | 107.53(5) |
| O(3)-C(17)-H(17A)   | 109.0(6)  |
| C(16)-C(17)-H(17A)  | 110.9(6)  |
| O(3)-C(17)-H(17B)   | 113.0(6)  |
| C(16)-C(17)-H(17B)  | 108.3(6)  |
| H(17A)-C(17)-H(17B) | 108.1(9)  |
| O(3)-C(18)-C(27)    | 124.70(5) |
| O(3)-C(18)-C(19)    | 114.67(5) |
| C(27)-C(18)-C(19)   | 120.63(5) |
| C(20)-C(19)-C(18)   | 119.98(5) |
| C(20)-C(19)-H(19)   | 122.3(7)  |
| C(18)-C(19)-H(19)   | 117.7(7)  |
| C(19)-C(20)-C(21)   | 120.93(5) |
| C(19)-C(20)-H(20)   | 121.3(6)  |
| C(21)-C(20)-H(20)   | 117.7(6)  |
| C(26)-C(21)-C(22)   | 118.74(5) |
| C(26)-C(21)-C(20)   | 118.85(5) |

| C(22)-C(21)-C(20)   | 122.41(5) |
|---------------------|-----------|
| C(23)-C(22)-C(21)   | 121.08(5) |
| C(23)-C(22)-H(22)   | 119.6(6)  |
| C(21)-C(22)-H(22)   | 119.3(7)  |
| C(22)-C(23)-C(24)   | 120.08(5) |
| C(22)-C(23)-H(23)   | 123.4(6)  |
| C(24)-C(23)-H(23)   | 116.4(6)  |
| O(4)-C(24)-C(25)    | 125.09(5) |
| O(4)-C(24)-C(23)    | 114.41(5) |
| C(25)-C(24)-C(23)   | 120.49(5) |
| C(24)-C(25)-C(26)   | 119.94(5) |
| C(24)-C(25)-H(25)   | 120.6(7)  |
| C(26)-C(25)-H(25)   | 119.4(7)  |
| C(27)-C(26)-C(21)   | 119.59(5) |
| C(27)-C(26)-C(25)   | 120.77(5) |
| C(21)-C(26)-C(25)   | 119.63(5) |
| C(18)-C(27)-C(26)   | 119.99(5) |
| C(18)-C(27)-H(27)   | 121.8(6)  |
| C(26)-C(27)-H(27)   | 118.2(6)  |
| O(4)-C(28)-C(29)    | 108.01(5) |
| O(4)-C(28)-H(28A)   | 108.8(6)  |
| C(29)-C(28)-H(28A)  | 110.5(6)  |
| O(4)-C(28)-H(28B)   | 108.8(6)  |
| C(29)-C(28)-H(28B)  | 109.2(6)  |
| H(28A)-C(28)-H(28B) | 111.3(9)  |
| C(28)-C(29)-C(30)   | 110.61(5) |
| C(28)-C(29)-H(29A)  | 110.5(7)  |
| C(30)-C(29)-H(29A)  | 111.2(7)  |
| C(28)-C(29)-H(29B)  | 110.0(6)  |
| C(30)-C(29)-H(29B)  | 108.6(6)  |
| H(29A)-C(29)-H(29B) | 105.8(9)  |
| C(31)-C(30)-C(29)   | 111.75(5) |
| C(31)-C(30)-H(30A)  | 108.7(7)  |
| C(29)-C(30)-H(30A)  | 110.7(7)  |
| C(31)-C(30)-H(30B)  | 105.8(7)  |
| C(29)-C(30)-H(30B)  | 111.5(7)  |

| H(30A)-C(30)-H(30B) | 108.2(10) |
|---------------------|-----------|
| C(32)-C(31)-C(30)   | 117.52(5) |
| C(32)-C(31)-H(31A)  | 111.3(9)  |
| C(30)-C(31)-H(31A)  | 107.2(9)  |
| C(32)-C(31)-H(31B)  | 105.9(8)  |
| C(30)-C(31)-H(31B)  | 111.8(8)  |
| H(31A)-C(31)-H(31B) | 102.1(12) |
| O(5)-C(32)-N(4)     | 123.30(5) |
| O(5)-C(32)-C(31)    | 119.81(5) |
| N(4)-C(32)-C(31)    | 116.89(5) |
| N(5)-C(33)-C(34)    | 123.67(4) |
| N(5)-C(33)-N(4)     | 111.87(4) |
| C(34)-C(33)-N(4)    | 124.43(4) |
| C(35)-C(34)-C(33)   | 117.12(4) |
| C(35)-C(34)-H(34)   | 117.5(6)  |
| C(33)-C(34)-H(34)   | 125.4(6)  |
| C(36)-C(35)-C(34)   | 120.27(5) |
| C(36)-C(35)-H(35)   | 117.4(6)  |
| C(34)-C(35)-H(35)   | 122.3(6)  |
| C(35)-C(36)-C(37)   | 117.61(5) |
| C(35)-C(36)-H(36)   | 124.6(7)  |
| C(37)-C(36)-H(36)   | 117.8(7)  |
| N(5)-C(37)-C(36)    | 123.40(4) |
| N(5)-C(37)-N(6)     | 119.16(4) |
| C(36)-C(37)-N(6)    | 117.43(4) |
| O(6)-C(38)-N(6)     | 124.64(4) |
| O(6)-C(38)-C(2)     | 119.89(4) |
| N(6)-C(38)-C(2)     | 115.46(4) |
| C(7)-N(1)-C(8)      | 128.12(4) |
| C(7)-N(1)-H(01)     | 121.3(7)  |
| C(8)-N(1)-H(01)     | 110.1(7)  |
| C(8)-N(2)-C(12)     | 118.44(4) |
| C(13)-N(3)-C(12)    | 127.33(4) |
| C(13)-N(3)-H(03)    | 121.7(7)  |
| C(12)-N(3)-H(03)    | 110.8(7)  |
| C(32)-N(4)-C(33)    | 127.84(4) |

| C(32)-N(4)-H(04)     | 121.3(8)   |
|----------------------|------------|
| C(33)-N(4)-H(04)     | 110.7(8)   |
| C(37)-N(5)-C(33)     | 117.92(4)  |
| C(38)-N(6)-C(37)     | 128.91(4)  |
| C(38)-N(6)-H(06)     | 115.5(7)   |
| C(37)-N(6)-H(06)     | 115.5(7)   |
| C(18)-O(3)-C(17)     | 116.85(5)  |
| C(24)-O(4)-C(28)     | 117.38(5)  |
| C(02)-C(01)-H(01A)   | 100.1(10)  |
| C(02)-C(01)-H(01B)   | 107.3(10)  |
| H(01A)-C(01)-H(01B)  | 123.1(15)  |
| C(02)-C(01)-H(01C)   | 111.8(13)  |
| H(01A)-C(01)-H(01C)  | 120.0(16)  |
| H(01B)-C(01)-H(01C)  | 94.5(16)   |
| N(01)-C(02)-C(01)    | 178.30(7)  |
| O(001)-C(001)-C(002) | 114.04(10) |
| O(001)-C(001)-H(00A) | 119.2(9)   |
| C(002)-C(001)-H(00A) | 99.6(10)   |
| O(001)-C(001)-H(00B) | 117.2(10)  |
| C(002)-C(001)-H(00B) | 102.8(10)  |
| H(00A)-C(001)-H(00B) | 101.2(13)  |
| C(001)-C(002)-H(00C) | 112.7(15)  |
| C(001)-C(002)-H(00D) | 105.3(9)   |
| H(00C)-C(002)-H(00D) | 97.2(16)   |
| C(001)-C(002)-H(00E) | 111.4(13)  |
| H(00C)-C(002)-H(00E) | 124(2)     |
| H(00D)-C(002)-H(00E) | 102.1(16)  |
| C(001)-O(001)-H(001) | 107.6(15)  |
|                      |            |

|      | U11     | U22   | U33   | U23  | U13   | U12   |
|------|---------|-------|-------|------|-------|-------|
| C(1) | 20(1)   | 18(1) | 15(1) | 3(1) | -2(1) | 3(1)  |
| C(2) | 20(1)   | 17(1) | 16(1) | 3(1) | -1(1) | 4(1)  |
| C(3) | 25(1)   | 20(1) | 19(1) | 2(1) | -6(1) | 4(1)  |
| C(4) | 32(1)   | 20(1) | 21(1) | 0(1) | -9(1) | 5(1)  |
| C(5) | 30(1)   | 18(1) | 19(1) | 1(1) | -5(1) | 6(1)  |
| C(6) | 22(1)   | 18(1) | 15(1) | 3(1) | -1(1) | 5(1)  |
| C(7) | 21(1)   | 19(1) | 17(1) | 4(1) | -1(1) | 4(1)  |
| C(8) | 21(1)   | 22(1) | 16(1) | 5(1) | -1(1) | 6(1)  |
| C(9) | 23(1)   | 29(1) | 20(1) | 3(1) | -1(1) | 10(1) |
| C(10 | ) 23(1) | 30(1) | 23(1) | 3(1) | -3(1) | 11(1) |
| C(11 | ) 22(1) | 28(1) | 21(1) | 5(1) | -4(1) | 9(1)  |
| C(12 | ) 21(1) | 22(1) | 17(1) | 4(1) | -3(1) | 6(1)  |
| C(13 | ) 23(1) | 25(1) | 18(1) | 4(1) | -5(1) | 5(1)  |
| C(14 | ) 22(1) | 24(1) | 17(1) | 3(1) | -3(1) | 2(1)  |
| C(15 | ) 25(1) | 23(1) | 19(1) | 5(1) | -6(1) | 2(1)  |
| C(16 | ) 22(1) | 26(1) | 32(1) | 8(1) | -2(1) | 1(1)  |
| C(17 | ) 29(1) | 25(1) | 27(1) | 9(1) | -2(1) | 1(1)  |
| C(18 | ) 26(1) | 26(1) | 23(1) | 9(1) | -2(1) | 2(1)  |
| C(19 | ) 31(1) | 31(1) | 21(1) | 9(1) | -4(1) | 3(1)  |
| C(20 | ) 30(1) | 30(1) | 18(1) | 6(1) | -3(1) | 3(1)  |
| C(21 | ) 23(1) | 26(1) | 17(1) | 5(1) | 0(1)  | 2(1)  |
| C(22 | ) 27(1) | 27(1) | 18(1) | 3(1) | 0(1)  | 3(1)  |
| C(23 | ) 27(1) | 26(1) | 21(1) | 4(1) | -1(1) | 4(1)  |
| C(24 | ) 22(1) | 26(1) | 19(1) | 5(1) | -1(1) | 2(1)  |
| C(25 | ) 24(1) | 25(1) | 20(1) | 4(1) | -2(1) | 2(1)  |
| C(26 | ) 21(1) | 24(1) | 19(1) | 6(1) | -1(1) | 1(1)  |
| C(27 | ) 26(1) | 24(1) | 22(1) | 6(1) | -3(1) | 1(1)  |
| C(28 | ) 26(1) | 32(1) | 20(1) | 3(1) | -3(1) | 6(1)  |

Table S6: Anisotropic displacement parameters (Å  $^{2}x 10^{3}$ ) for (1). The anisotropic displacement factor exponent takes the form:  $-2\pi^{2}[h^{2}a^{*2}U^{11} + ... + 2hka^{*}b^{*}U^{12}]$ 

| C(29)  | 29(1) | 33(1) | 19(1) | 4(1)   | -3(1)  | 7(1)  |
|--------|-------|-------|-------|--------|--------|-------|
| C(30)  | 27(1) | 43(1) | 21(1) | -1(1)  | -4(1)  | 12(1) |
| C(31)  | 32(1) | 30(1) | 23(1) | -1(1)  | -6(1)  | 14(1) |
| C(32)  | 28(1) | 29(1) | 21(1) | 1(1)   | -5(1)  | 14(1) |
| C(33)  | 21(1) | 21(1) | 18(1) | 4(1)   | -3(1)  | 6(1)  |
| C(34)  | 25(1) | 25(1) | 20(1) | 5(1)   | -5(1)  | 9(1)  |
| C(35)  | 31(1) | 28(1) | 20(1) | 5(1)   | -7(1)  | 10(1) |
| C(36)  | 31(1) | 25(1) | 17(1) | 3(1)   | -6(1)  | 8(1)  |
| C(37)  | 20(1) | 19(1) | 17(1) | 4(1)   | -3(1)  | 4(1)  |
| C(38)  | 21(1) | 18(1) | 17(1) | 4(1)   | -2(1)  | 4(1)  |
| N(1)   | 26(1) | 26(1) | 16(1) | 4(1)   | -2(1)  | 11(1) |
| N(2)   | 23(1) | 23(1) | 16(1) | 4(1)   | -2(1)  | 7(1)  |
| N(3)   | 23(1) | 27(1) | 16(1) | 3(1)   | -4(1)  | 9(1)  |
| N(4)   | 29(1) | 26(1) | 18(1) | 1(1)   | -5(1)  | 13(1) |
| N(5)   | 22(1) | 20(1) | 17(1) | 4(1)   | -2(1)  | 6(1)  |
| N(6)   | 26(1) | 20(1) | 17(1) | 3(1)   | -3(1)  | 7(1)  |
| O(1)   | 27(1) | 21(1) | 23(1) | 2(1)   | -3(1)  | 9(1)  |
| O(2)   | 29(1) | 43(1) | 24(1) | 2(1)   | -9(1)  | 17(1) |
| O(3)   | 37(1) | 28(1) | 27(1) | 9(1)   | -4(1)  | 7(1)  |
| O(4)   | 30(1) | 30(1) | 21(1) | 3(1)   | -6(1)  | 7(1)  |
| O(5)   | 51(1) | 60(1) | 26(1) | -3(1)  | -12(1) | 41(1) |
| O(6)   | 34(1) | 20(1) | 20(1) | 0(1)   | -8(1)  | 7(1)  |
| C(01)  | 36(1) | 67(1) | 27(1) | 5(1)   | 3(1)   | 21(1) |
| C(02)  | 29(1) | 35(1) | 25(1) | 5(1)   | -2(1)  | 10(1) |
| N(01)  | 43(1) | 39(1) | 24(1) | 2(1)   | -2(1)  | 12(1) |
| C(001) | 60(1) | 45(1) | 44(1) | 7(1)   | -25(1) | 13(1) |
| C(002) | 67(1) | 82(1) | 82(1) | 24(1)  | -8(1)  | 12(1) |
| O(001) | 74(1) | 46(1) | 51(1) | -18(1) | -36(1) | 36(1) |
|        |       |       |       |        |        |       |

|        | x y       | Z        | U(eq)    |         |
|--------|-----------|----------|----------|---------|
|        |           |          |          |         |
| H(1)   | 3463(10)  | 2185(5)  | 2896(4)  | 27(2)   |
| H(3)   | 160(9)    | 1418(8)  | 794(6)   | 38(3)   |
| H(4)   | 960(13)   | -276(7)  | 444(5)   | 47(3)   |
| H(5)   | 2976(13)  | -742(3)  | 1346(8)  | 40(3)   |
| H(9)   | 7089(13)  | -369(6)  | 3365(3)  | 36(3)   |
| H(10)  | 8822(8)   | -439(6)  | 4620(7)  | 34(2)   |
| H(11)  | 8290(14)  | 560(10)  | 6120(6)  | 59(4)   |
| H(14A) | 5217(12)  | 2097(7)  | 8332(7)  | 41(3)   |
| H(14B) | 5001(10)  | 2974(7)  | 7763(7)  | 36(3)   |
| H(15A) | 6318(11)  | 3608(7)  | 9224(4)  | 33(2)   |
| H(15B) | 7808(9)   | 2786(6)  | 8875(6)  | 30(2)   |
| H(16A) | 8808(8)   | 4277(7)  | 8705(6)  | 34(3)   |
| H(16B) | 8309(13)  | 3579(8)  | 7660(4)  | 47(3)   |
| H(17A) | 7362(13)  | 5116(8)  | 7699(6)  | 44(3)   |
| H(17B) | 5727(6)   | 4416(7)  | 7845(7)  | 37(3)   |
| H(19)  | 6757(13)  | 6835(10) | 10290(6) | 57(4)   |
| H(20)  | 5513(13)  | 8411(5)  | 10438(4) | 36(3)   |
| H(22)  | 3874(14)  | 9438(6)  | 9808(5)  | 43(3)   |
| H(23)  | 2210(12)  | 9625(4)  | 8574(7)  | 38(3)   |
| H(25)  | 3156(15)  | 6786(6)  | 7095(4)  | 46(3)   |
| H(27)  | 4866(14)  | 5803(6)  | 7690(4)  | 40(3)   |
| H(28A) | 1119(12)  | 6987(4)  | 6516(7)  | 33(2)   |
| H(28B) | 2368(8)   | 7665(9)  | 5981(6)  | 43(3)   |
| H(29A) | 128(14)   | 8679(3)  | 5850(8)  | 46(3)   |
| H(29B) | -1064(7)  | 7929(8)  | 6276(6)  | 36(3)   |
| H(30A) | 598(11)   | 7364(10) | 4552(7)  | 57(4)   |
| H(30B) | -197(15)  | 6492(3)  | 5037(8)  | 49(3)   |
| H(31A) | -2699(14) | 7076(11) | 5036(9)  | ) 81(5) |
| H(31B) | -2148(17) | 8048(3)  | 4686(10  | ) 64(4) |

Table S7: Hydrogen coordinates ( x  $10^4$ ) and isotropic displacement parameters (Å  $^2$ x  $10^3$ ) for (1).

| H(34)  | -2764(12) | 6265(5)  | 1811(8)  | 45(3)   |
|--------|-----------|----------|----------|---------|
| H(35)  | -2520(12) | 5100(8)  | 374(4)   | 39(3)   |
| H(36)  | -1001(14) | 3636(7)  | 250(4)   | 45(3)   |
| H(01)  | 4025(11)  | 1406(6)  | 3821(7)  | 41(3)   |
| H(03)  | 4966(7)   | 2133(7)  | 6387(7)  | 38(3)   |
| H(04)  | -481(11)  | 5811(10) | 3688(7)  | 56(4)   |
| H(06)  | 409(15)   | 2756(7)  | 902(3)   | 45(3)   |
| H(01A) | 12376(7)  | 1249(13) | 8114(11) | 85(5)   |
| H(01B) | 10940(20) | 1833(10) | 7565(9)  | 94(6)   |
| H(01C) | 10490(20) | 796(11)  | 7609(14) | 130(8)  |
| H(001) | 1130(30)  | 4574(11) | 3582(10) | 136(9)  |
| H(00A) | 3012(18)  | 4519(7)  | 4569(12) | 87(5)   |
| H(00B) | 2290(20)  | 5457(13) | 5308(2)  | 93(6)   |
| H(00C) | 4520(20)  | 5399(17) | 3982(14) | 159(11) |
| H(00D) | 4401(16)  | 6011(12) | 4968(6)  | 74(5)   |
| H(00E) | 3300(30)  | 6469(8)  | 4342(15) | 126(8)  |

Table S8: Torsion angles  $[^{\circ}]$  for (1).

| C(6)-C(1)-C(2)-C(3)  | -0.19(7)   |  |
|----------------------|------------|--|
| C(6)-C(1)-C(2)-C(38) | 175.57(4)  |  |
| C(1)-C(2)-C(3)-C(4)  | -0.11(7)   |  |
| C(38)-C(2)-C(3)-C(4) | -175.65(5) |  |
| C(2)-C(3)-C(4)-C(5)  | 0.05(9)    |  |
| C(3)-C(4)-C(5)-C(6)  | 0.31(9)    |  |
| C(2)-C(1)-C(6)-C(5)  | 0.56(7)    |  |
| C(2)-C(1)-C(6)-C(7)  | 179.61(4)  |  |
| C(4)-C(5)-C(6)-C(1)  | -0.62(8)   |  |
| C(4)-C(5)-C(6)-C(7)  | -179.73(5) |  |
| C(1)-C(6)-C(7)-O(1)  | -153.07(5) |  |
| C(5)-C(6)-C(7)-O(1)  | 26.01(7)   |  |
| C(1)-C(6)-C(7)-N(1)  | 28.16(7)   |  |
| C(5)-C(6)-C(7)-N(1)  | -152.76(5) |  |
| N(2)-C(8)-C(9)-C(10) | -0.38(8)   |  |

| N(1)-C(8)-C(9)-C(10)    | 178.80(5)  |
|-------------------------|------------|
| C(8)-C(9)-C(10)-C(11)   | 0.45(9)    |
| C(9)-C(10)-C(11)-C(12)  | 0.21(9)    |
| C(10)-C(11)-C(12)-N(2)  | -1.05(8)   |
| C(10)-C(11)-C(12)-N(3)  | 177.69(5)  |
| O(2)-C(13)-C(14)-C(15)  | 40.19(7)   |
| N(3)-C(13)-C(14)-C(15)  | -140.15(5) |
| C(13)-C(14)-C(15)-C(16) | 64.33(6)   |
| C(14)-C(15)-C(16)-C(17) | 72.17(6)   |
| C(15)-C(16)-C(17)-O(3)  | 77.71(6)   |
| O(3)-C(18)-C(19)-C(20)  | 179.34(5)  |
| C(27)-C(18)-C(19)-C(20) | -0.12(9)   |
| C(18)-C(19)-C(20)-C(21) | 1.22(9)    |
| C(19)-C(20)-C(21)-C(26) | -0.90(8)   |
| C(19)-C(20)-C(21)-C(22) | 179.45(5)  |
| C(26)-C(21)-C(22)-C(23) | 1.56(8)    |
| C(20)-C(21)-C(22)-C(23) | -178.79(5) |
| C(21)-C(22)-C(23)-C(24) | -0.59(8)   |
| C(22)-C(23)-C(24)-O(4)  | 178.17(5)  |
| C(22)-C(23)-C(24)-C(25) | -1.33(8)   |
| O(4)-C(24)-C(25)-C(26)  | -177.24(5) |
| C(23)-C(24)-C(25)-C(26) | 2.21(8)    |
| C(22)-C(21)-C(26)-C(27) | 179.17(5)  |
| C(20)-C(21)-C(26)-C(27) | -0.50(7)   |
| C(22)-C(21)-C(26)-C(25) | -0.66(7)   |
| C(20)-C(21)-C(26)-C(25) | 179.67(5)  |
| C(24)-C(25)-C(26)-C(27) | 178.97(5)  |
| C(24)-C(25)-C(26)-C(21) | -1.20(7)   |
| O(3)-C(18)-C(27)-C(26)  | 179.32(5)  |
| C(19)-C(18)-C(27)-C(26) | -1.28(8)   |
| C(21)-C(26)-C(27)-C(18) | 1.57(8)    |
| C(25)-C(26)-C(27)-C(18) | -178.60(5) |
| O(4)-C(28)-C(29)-C(30)  | 175.89(5)  |
| C(28)-C(29)-C(30)-C(31) | 164.02(6)  |
| C(29)-C(30)-C(31)-C(32) | 168.76(6)  |
| C(30)-C(31)-C(32)-O(5)  | -154.10(8) |

| C(30)-C(31)-C(32)-N(4)  | 26.73(9)   |
|-------------------------|------------|
| N(5)-C(33)-C(34)-C(35)  | -0.86(8)   |
| N(4)-C(33)-C(34)-C(35)  | 176.83(5)  |
| C(33)-C(34)-C(35)-C(36) | -0.27(9)   |
| C(34)-C(35)-C(36)-C(37) | 0.83(9)    |
| C(35)-C(36)-C(37)-N(5)  | -0.36(8)   |
| C(35)-C(36)-C(37)-N(6)  | 178.56(5)  |
| C(3)-C(2)-C(38)-O(6)    | 160.71(5)  |
| C(1)-C(2)-C(38)-O(6)    | -14.89(7)  |
| C(3)-C(2)-C(38)-N(6)    | -18.05(7)  |
| C(1)-C(2)-C(38)-N(6)    | 166.35(4)  |
| O(1)-C(7)-N(1)-C(8)     | -0.44(8)   |
| C(6)-C(7)-N(1)-C(8)     | 178.30(5)  |
| N(2)-C(8)-N(1)-C(7)     | -170.95(5) |
| C(9)-C(8)-N(1)-C(7)     | 9.79(9)    |
| C(9)-C(8)-N(2)-C(12)    | -0.40(8)   |
| N(1)-C(8)-N(2)-C(12)    | -179.66(4) |
| N(3)-C(12)-N(2)-C(8)    | -177.72(4) |
| C(11)-C(12)-N(2)-C(8)   | 1.14(7)    |
| O(2)-C(13)-N(3)-C(12)   | 4.74(9)    |
| C(14)-C(13)-N(3)-C(12)  | -174.92(5) |
| N(2)-C(12)-N(3)-C(13)   | -176.80(5) |
| C(11)-C(12)-N(3)-C(13)  | 4.36(9)    |
| O(5)-C(32)-N(4)-C(33)   | 1.54(11)   |
| C(31)-C(32)-N(4)-C(33)  | -179.33(6) |
| N(5)-C(33)-N(4)-C(32)   | -170.35(6) |
| C(34)-C(33)-N(4)-C(32)  | 11.72(9)   |
| C(36)-C(37)-N(5)-C(33)  | -0.71(7)   |
| N(6)-C(37)-N(5)-C(33)   | -179.61(4) |
| C(34)-C(33)-N(5)-C(37)  | 1.34(8)    |
| N(4)-C(33)-N(5)-C(37)   | -176.61(5) |
| O(6)-C(38)-N(6)-C(37)   | -9.43(8)   |
| C(2)-C(38)-N(6)-C(37)   | 169.26(5)  |
| N(5)-C(37)-N(6)-C(38)   | -5.67(8)   |
| C(36)-C(37)-N(6)-C(38)  | 175.36(5)  |
| C(27)-C(18)-O(3)-C(17)  | 14.39(8)   |

| C(19)-C(18)-O(3)-C(17) | -165.04(5) |
|------------------------|------------|
| C(16)-C(17)-O(3)-C(18) | 174.70(5)  |
| C(25)-C(24)-O(4)-C(28) | -1.58(8)   |
| C(23)-C(24)-O(4)-C(28) | 178.94(5)  |
| C(29)-C(28)-O(4)-C(24) | 167.35(5)  |
|                        |            |

Table S9: Hydrogen bonds for (1).

| D-HA              | d(D-H)  d(HA)  d(DA)  <(DHA)                |
|-------------------|---------------------------------------------|
| C(9)-H(9)O(1)     | 1.0824(11) 2.192(10) 2.8610(10) 117.8(7)    |
| C(11)-H(11)O(2)   | 1.0828(11) 2.149(13) 2.8295(11) 118.4(9)    |
| C(14)-H(14A)O(1)# | 1.0910(11) 2.525(10) 3.2513(11) 123.1(8)    |
| C(14)-H(14B)O(5)# | 2 1.0912(10) 2.252(6) 3.2149(11) 146.0(8)   |
| C(17)-H(17A)O(6)# | 43 1.0915(11) 2.630(5) 3.6619(12) 157.5(9)  |
| C(34)-H(34)O(5)   | 1.0824(10) 2.305(11) 2.8625(12) 110.1(7)    |
| C(36)-H(36)N(01)# | 4 1.0825(11) 2.484(7) 3.4298(14) 145.3(9)   |
| N(3)-H(03)O(5)#2  | 1.0081(10) 2.002(5) 2.9552(10) 156.7(9)     |
| N(4)-H(04)O(001)  | 1.0087(10) 1.890(4) 2.8713(10) 163.3(12)    |
| N(6)-H(06)N(01)#4 | 1.0085(11) 2.150(3) 3.1390(12) 166.4(10)    |
| C(01)-H(01A)O(1)# | 5 1.0586(10) 2.456(10) 3.3756(12) 144.7(13) |
| O(001)-H(001)N(5) | 0.9671(11) 2.39(2) 2.9103(11) 113.3(17)     |
| O(001)-H(001)O(6) | 0.9671(11) 1.814(7) 2.7567(12) 164(2)       |

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y,-z+1 #2 -x,-y+1,-z+1 #3 -x+1,-y+1,-z+1 #4 x-1,y,z-1 #5 -x+2,-y,-z+1

|      | х у     | Z       | U(eq)   |       |
|------|---------|---------|---------|-------|
|      |         |         |         |       |
| O(1) | 5000    | 896(1)  | 2500    | 16(1) |
| O(2) | 3053(1) | 3643(1) | 4455(1) | 18(1) |
| N(1) | 4016(1) | 2282(1) | 3457(1) | 13(1) |
| C(1) | 5000    | 1760(1) | 2500    | 11(1) |
| C(2) | 3950(1) | 3257(1) | 3545(1) | 12(1) |
| C(3) | 5000    | 3847(1) | 2500    | 11(1) |
| C(4) | 6447(1) | 4485(1) | 3285(1) | 17(1) |
| C(5) | 7889(1) | 3937(1) | 4160(1) | 29(1) |

Table S10: Atomic coordinates (x 10<sup>4</sup>) and equivalent isotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for (2). U(eq) is defined as one third of the trace of the orthogonalized U<sup>ij</sup> tensor.

Table S11: Bond lengths  $[Å^{\circ}]$  and angles  $[^{\circ}]$  for (2).

| O(1)-C(1)   | 1.2106(4) |
|-------------|-----------|
| O(2)-C(2)   | 1.2254(3) |
| N(1)-C(2)   | 1.3680(3) |
| N(1)-C(1)   | 1.3827(2) |
| N(1)-H(1)   | 0.939(9)  |
| C(1)-N(1)#1 | 1.3827(2) |
| C(2)-C(3)   | 1.5164(3) |
| C(3)-C(2)#1 | 1.5165(3) |
| C(3)-C(4)   | 1.5466(3) |
| C(3)-C(4)#1 | 1.5466(3) |
| C(4)-C(5)   | 1.5204(6) |
| C(4)-H(4A)  | 1.012(7)  |
| C(4)-H(4B)  | 1.022(8)  |
| C(5)-H(5A)  | 1.026(9)  |
| C(5)-H(5B)  | 1.017(9)  |
| C(5)-H(5C)  | 0.983(9)  |

| C(2)-N(1)-C(1)     | 126.01(2)   |
|--------------------|-------------|
| C(2)-N(1)-H(1)     | 116.6(6)    |
| C(1)-N(1)-H(1)     | 117.3(6)    |
| O(1)-C(1)-N(1)#1   | 121.925(13) |
| O(1)-C(1)-N(1)     | 121.925(13) |
| N(1)#1-C(1)-N(1)   | 116.15(3)   |
| O(2)-C(2)-N(1)     | 120.33(2)   |
| O(2)-C(2)-C(3)     | 120.71(2)   |
| N(1)-C(2)-C(3)     | 118.962(19) |
| C(2)-C(3)-C(2)#1   | 113.89(2)   |
| C(2)-C(3)-C(4)     | 108.518(14) |
| C(2)#1-C(3)-C(4)   | 108.214(15) |
| C(2)-C(3)-C(4)#1   | 108.214(15) |
| C(2)#1-C(3)-C(4)#1 | 108.520(14) |
| C(4)-C(3)-C(4)#1   | 109.42(3)   |
| C(5)-C(4)-C(3)     | 114.31(3)   |
| C(5)-C(4)-H(4A)    | 109.4(4)    |
| C(3)-C(4)-H(4A)    | 107.6(4)    |
| C(5)-C(4)-H(4B)    | 110.0(5)    |
| C(3)-C(4)-H(4B)    | 106.1(5)    |
| H(4A)-C(4)-H(4B)   | 109.3(7)    |
| C(4)-C(5)-H(5A)    | 112.1(5)    |
| C(4)-C(5)-H(5B)    | 111.0(6)    |
| H(5A)-C(5)-H(5B)   | 107.5(9)    |
| C(4)-C(5)-H(5C)    | 112.8(6)    |
| H(5A)-C(5)-H(5C)   | 103.2(8)    |
| H(5B)-C(5)-H(5C)   | 109.8(7)    |
|                    |             |

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y,-z+1/2

|      | U11   | U22   | U33   | U23   | U13   | U12   |
|------|-------|-------|-------|-------|-------|-------|
|      |       |       |       |       |       |       |
| O(1) | 20(1) | 9(1)  | 20(1) | 0     | 7(1)  | 0     |
| O(2) | 25(1) | 13(1) | 17(1) | -2(1) | 13(1) | -1(1) |
| N(1) | 16(1) | 10(1) | 13(1) | 0(1)  | 7(1)  | -1(1) |
| C(1) | 13(1) | 10(1) | 12(1) | 0     | 4(1)  | 0     |
| C(2) | 14(1) | 10(1) | 11(1) | -1(1) | 5(1)  | -1(1) |
| C(3) | 13(1) | 10(1) | 11(1) | 0     | 4(1)  | 0     |
| C(4) | 20(1) | 16(1) | 16(1) | -2(1) | 3(1)  | -6(1) |
| C(5) | 24(1) | 34(1) | 28(1) | 1(1)  | -8(1) | -7(1) |

Table S12: Anisotropic displacement parameters (Å  $^{2}x 10^{3}$ ) for (**2**). The anisotropic displacement factor exponent takes the form:  $-2 \pi^{2} [h^{2} a^{*2} U^{11} + ... + 2 h k a^{*} b^{*} U^{12}]$ 

Table S13: Hydrogen coordinates ( x  $10^4$ ) and isotropic displacement parameters (Å  $^2$ x  $10^3$ ) for (2).

\_\_\_\_\_

|       | x        | y z     | z U(eq)  |       |
|-------|----------|---------|----------|-------|
| H(1)  | 3375(12) | 1939(7) | 4134(9)  | 40(2) |
| H(4A) | 7120(11) | 4882(6) | 2578(8)  | 24(2) |
| H(4B) | 5678(11) | 4924(6) | 3899(8)  | 30(2) |
| H(5A) | 7267(14) | 3521(7) | 4892(10) | 47(3) |
| H(5B) | 8792(14) | 4390(7) | 4662(11) | 53(3) |
| H(5C) | 8605(13) | 3473(6) | 3621(10) | 44(2) |

Table S14: Torsion angles [°] for (2).

| C(2)-N(1)-C(1)-O(1)   | 179.288(19) |
|-----------------------|-------------|
| C(2)-N(1)-C(1)-N(1)#1 | -0.712(19)  |
| C(1)-N(1)-C(2)-O(2)   | -178.75(2)  |
| C(1)-N(1)-C(2)-C(3)   | 1.33(4)     |
| O(2)-C(2)-C(3)-C(2)#1 | 179.47(3)   |
| N(1)-C(2)-C(3)-C(2)#1 | -0.609(17)  |
| O(2)-C(2)-C(3)-C(4)   | 58.88(3)    |
| N(1)-C(2)-C(3)-C(4)   | -121.20(3)  |
| O(2)-C(2)-C(3)-C(4)#1 | -59.77(3)   |
| N(1)-C(2)-C(3)-C(4)#1 | 120.15(3)   |
| C(2)-C(3)-C(4)-C(5)   | 59.14(3)    |
| C(2)#1-C(3)-C(4)-C(5) | -64.91(3)   |
| C(4)#1-C(3)-C(4)-C(5) | 177.02(3)   |
|                       |             |

Symmetry transformations used to generate equivalent atoms: #1 -x+1,y,-z+1/2

Table S15: Hydrogen bonds for (2). [Å and  $^{\circ}$ ].

| D-HA            | d(D-H) | d(HA)    | d(DA)      | <(DHA)         |
|-----------------|--------|----------|------------|----------------|
| N(1)-H(1)O(2)#2 | 0.939  | (9) 1.90 | 5(9) 2.841 | 15(3) 174.4(9) |

Symmetry transformations used to generate equivalent atoms: #1 -x+1,y,-z+1/2 #2 -x+1/2,-y+1/2,-z+1

| <br>     |                    |          |          |       |  |
|----------|--------------------|----------|----------|-------|--|
|          | x y                | Z        | U(eq)    |       |  |
| <br>O(1) | 1042(1)            | 7508(1)  | 5284(1)  | 28(1) |  |
| O(1)     | -1042(1)           | 1/300(1) | 3304(1)  | 20(1) |  |
| O(2)     | -1420(1)           | 1403(1)  | 7279(1)  | 24(1) |  |
| O(3)     | 3237(1)            | -1890(1) | 0.000(1) | 19(1) |  |
| O(4)     | 8300(1)            | 1003(1)  | 9008(1)  | 18(1) |  |
| O(5)     | 9580(1)<br>4220(1) | 5812(1)  | //84(1)  | 20(1) |  |
| O(6)     | 4239(1)            | 9993(1)  | 6168(1)  | 25(1) |  |
| N(1)     | 401(1)             | 615/(1)  | 5859(1)  | 15(1) |  |
| N(2)     | 234(1)             | 4289(1)  | 6243(1)  | 14(1) |  |
| N(3)     | 285(1)             | 2398(1)  | 6612(1)  | 15(1) |  |
| N(4)     | 7423(1)            | 5781(1)  | 7662(1)  | 16(1) |  |
| N(5)     | 5995(1)            | 7017(1)  | 7087(1)  | 14(1) |  |
| N(6)     | 4468(1)            | 8108(1)  | 6488(1)  | 14(1) |  |
| C(1)     | 2008(1)            | 8066(1)  | 5868(1)  | 14(1) |  |
| C(2)     | 2886(1)            | 8889(1)  | 5702(1)  | 14(1) |  |
| C(3)     | 2821(1)            | 9656(1)  | 5096(1)  | 18(1) |  |
| C(4)     | 1893(1)            | 9601(1)  | 4654(1)  | 20(1) |  |
| C(5)     | 1015(1)            | 8789(1)  | 4821(1)  | 18(1) |  |
| C(6)     | 1072(1)            | 8018(1)  | 5424(1)  | 15(1) |  |
| C(7)     | 40(1)              | 7212(1)  | 5560(1)  | 16(1) |  |
| C(8)     | -382(1)            | 5259(1)  | 5989(1)  | 14(1) |  |
| C(9)     | -1689(1)           | 5369(1)  | 5867(1)  | 17(1) |  |
| C(10)    | -2372(1)           | 4426(1)  | 6028(1)  | 19(1) |  |
| C(11)    | -1768(1)           | 3414(1)  | 6292(1)  | 17(1) |  |
| C(12)    | -447(1)            | 3385(1)  | 6383(1)  | 14(1) |  |
| C(13)    | -227(1)            | 1522(1)  | 7052(1)  | 15(1) |  |
| C(14)    | 824(1)             | 576(1)   | 7223(1)  | 17(1) |  |
| C(15)    | 335(1)             | -96(1)   | 7940(1)  | 19(1) |  |
| C(16)    | 1295(1)            | -1143(1) | 8094(1)  | 19(1) |  |

Table S16: Atomic coordinates (x 10<sup>4</sup>) and equivalent isotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for (**3**). U(eq) is defined as one third of the trace of the orthogonalized U<sup>ij</sup> tensor.

| C(17) | 2502(1) | -853(1)  | 8360(1) | 17(1) |
|-------|---------|----------|---------|-------|
| C(18) | 4359(1) | -1830(1) | 8832(1) | 15(1) |
| C(19) | 5041(1) | -2890(1) | 9020(1) | 18(1) |
| C(20) | 6208(1) | -2936(1) | 9274(1) | 17(1) |
| C(21) | 6756(1) | -1935(1) | 9359(1) | 15(1) |
| C(22) | 7986(1) | -1954(1) | 9597(1) | 17(1) |
| C(23) | 8479(1) | -972(1)  | 9683(1) | 17(1) |
| C(24) | 7765(1) | 84(1)    | 9515(1) | 15(1) |
| C(25) | 6579(1) | 136(1)   | 9271(1) | 15(1) |
| C(26) | 6050(1) | -875(1)  | 9190(1) | 14(1) |
| C(27) | 4840(1) | -840(1)  | 8927(1) | 16(1) |
| C(28) | 7866(1) | 2067(1)  | 9291(1) | 16(1) |
| C(29) | 8831(1) | 2890(1)  | 9360(1) | 19(1) |
| C(30) | 8446(1) | 4080(1)  | 9039(1) | 19(1) |
| C(31) | 8577(1) | 4119(1)  | 8194(1) | 17(1) |
| C(32) | 8594(1) | 5318(1)  | 7863(1) | 16(1) |
| C(33) | 7090(1) | 6883(1)  | 7392(1) | 14(1) |
| C(34) | 7809(1) | 7771(1)  | 7460(1) | 17(1) |
| C(35) | 7323(1) | 8843(1)  | 7226(1) | 18(1) |
| C(36) | 6189(1) | 9010(1)  | 6911(1) | 17(1) |
| C(37) | 5573(1) | 8062(1)  | 6841(1) | 13(1) |
| C(38) | 3905(1) | 9045(1)  | 6145(1) | 15(1) |
| O(1') | 3206(1) | 5793(1)  | 6403(1) | 19(1) |
| O(2') | 1681(1) | 2814(1)  | 7833(1) | 18(1) |
| O(3') | 5317(1) | 4504(1)  | 8272(1) | 21(1) |
| N(1') | 2434(1) | 4307(1)  | 7126(1) | 15(1) |
| N(2') | 4248(1) | 5137(1)  | 7344(1) | 17(1) |
| C(1') | 3278(1) | 5116(1)  | 6931(1) | 15(1) |
| C(2') | 2446(1) | 3528(1)  | 7716(1) | 14(1) |
| C(3') | 3392(1) | 3624(1)  | 8233(1) | 14(1) |
| C(4') | 4404(1) | 4438(1)  | 7952(1) | 15(1) |
| C(5') | 2519(1) | 4093(1)  | 8965(1) | 20(1) |
| C(6') | 1835(1) | 5302(1)  | 8897(1) | 24(1) |
| C(7') | 4128(1) | 2446(1)  | 8387(1) | 18(1) |
| C(8') | 5042(1) | 1947(1)  | 7698(1) | 24(1) |
| O(1S) | 3127(1) | 12217(1) | 6134(1) | 21(1) |

| C(1S) | 3608(1) | 12823(1) | 5464(1) | 24(1) |
|-------|---------|----------|---------|-------|
| C(2S) | 4950(1) | 13186(1) | 5465(1) | 40(1) |

Table S17: Bond lengths [Å] and angles [°] for (**3**)

| O(1)-C(7)  | 1.2231(5)  |
|------------|------------|
| O(2)-C(13) | 1.2244(5)  |
| O(3)-C(18) | 1.3658(5)  |
| O(3)-C(17) | 1.4305(4)  |
| O(4)-C(24) | 1.3649(5)  |
| O(4)-C(28) | 1.4312(5)  |
| O(5)-C(32) | 1.2250(5)  |
| O(6)-C(38) | 1.2318(5)  |
| N(1)-C(7)  | 1.3712(5)  |
| N(1)-C(8)  | 1.4044(5)  |
| N(1)-H(01) | 1.00900(2) |
| N(2)-C(8)  | 1.3432(5)  |
| N(2)-C(12) | 1.3466(5)  |
| N(3)-C(13) | 1.3707(5)  |
| N(3)-C(12) | 1.3962(5)  |
| N(3)-H(03) | 1.00900(6) |
| N(4)-C(32) | 1.3669(5)  |
| N(4)-C(33) | 1.3948(4)  |
| N(4)-H(04) | 1.00900(2) |
| N(5)-C(37) | 1.3420(4)  |
| N(5)-C(33) | 1.3465(5)  |
| N(6)-C(38) | 1.3629(4)  |
| N(6)-C(37) | 1.4161(5)  |
| N(6)-H(06) | 1.00900(3) |
| C(1)-C(6)  | 1.3969(5)  |
| C(1)-C(2)  | 1.3992(5)  |
| C(1)-H(1)  | 1.08300(3) |
| C(2)-C(3)  | 1.3982(5)  |
| C(2)-C(38) | 1.4954(5)  |
| C(3)-C(4)  | 1.3898(6)  |

| C(3)-H(3)    | 1.08300(4)   |
|--------------|--------------|
| C(4)-C(5)    | 1.3888(6)    |
| C(4)-H(4)    | 1.082999(18) |
| C(5)-C(6)    | 1.3964(5)    |
| C(5)-H(5)    | 1.083001(19) |
| C(6)-C(7)    | 1.4996(6)    |
| C(8)-C(9)    | 1.3965(5)    |
| C(9)-C(10)   | 1.3882(5)    |
| C(9)-H(9)    | 1.083000(16) |
| C(10)-C(11)  | 1.3847(5)    |
| C(10)-H(10)  | 1.083000(18) |
| C(11)-C(12)  | 1.3994(5)    |
| C(11)-H(11)  | 1.08300(2)   |
| C(13)-C(14)  | 1.5177(5)    |
| C(14)-C(15)  | 1.5252(4)    |
| C(14)-H(14A) | 1.092000(17) |
| C(14)-H(14B) | 1.09200(2)   |
| C(15)-C(16)  | 1.5323(5)    |
| C(15)-H(15A) | 1.092000(18) |
| C(15)-H(15B) | 1.09200(3)   |
| C(16)-C(17)  | 1.5167(5)    |
| C(16)-H(16A) | 1.092000(17) |
| C(16)-H(16B) | 1.092001(15) |
| C(17)-H(17A) | 1.092000(16) |
| C(17)-H(17B) | 1.09200(2)   |
| C(18)-C(27)  | 1.3778(5)    |
| C(18)-C(19)  | 1.4179(5)    |
| C(19)-C(20)  | 1.3697(5)    |
| C(19)-H(19)  | 1.083001(15) |
| C(20)-C(21)  | 1.4195(5)    |
| C(20)-H(20)  | 1.08300(2)   |
| C(21)-C(26)  | 1.4189(5)    |
| C(21)-C(22)  | 1.4204(5)    |
| C(22)-C(23)  | 1.3711(5)    |
| C(22)-H(22)  | 1.083000(16) |
| C(23)-C(24)  | 1.4174(5)    |

| C(23)-H(23)  | 1.08300(2)   |
|--------------|--------------|
| C(24)-C(25)  | 1.3773(5)    |
| C(25)-C(26)  | 1.4197(5)    |
| C(25)-H(25)  | 1.083000(18) |
| C(26)-C(27)  | 1.4213(5)    |
| C(27)-H(27)  | 1.083000(17) |
| C(28)-C(29)  | 1.5174(5)    |
| C(28)-H(28A) | 1.09200(3)   |
| C(28)-H(28B) | 1.092001(15) |
| C(29)-C(30)  | 1.5309(5)    |
| C(29)-H(29A) | 1.09200(2)   |
| C(29)-H(29B) | 1.09200(3)   |
| C(30)-C(31)  | 1.5358(5)    |
| C(30)-H(30A) | 1.09200(3)   |
| C(30)-H(30B) | 1.09200(2)   |
| C(31)-C(32)  | 1.5153(5)    |
| C(31)-H(31A) | 1.09200(2)   |
| C(31)-H(31B) | 1.09200(3)   |
| C(33)-C(34)  | 1.4004(5)    |
| C(34)-C(35)  | 1.3816(5)    |
| C(34)-H(34)  | 1.08300(5)   |
| C(35)-C(36)  | 1.3919(5)    |
| C(35)-H(35)  | 1.08300(4)   |
| C(36)-C(37)  | 1.3957(5)    |
| C(36)-H(36)  | 1.08300(3)   |
| O(1')-C(1')  | 1.2263(5)    |
| O(2')-C(2')  | 1.2151(5)    |
| O(3')-C(4')  | 1.2222(5)    |
| N(1')-C(1')  | 1.3656(5)    |
| N(1')-C(2')  | 1.3808(5)    |
| N(1')-HB1    | 1.009000(17) |
| N(2')-C(4')  | 1.3713(5)    |
| N(2')-C(1')  | 1.3795(5)    |
| N(2')-HB2    | 1.00900(3)   |
| C(2')-C(3')  | 1.5170(5)    |
| C(3')-C(4')  | 1.5076(5)    |

| C(3')-C(7')      | 1.5406(5)    |  |
|------------------|--------------|--|
| C(3')-C(5')      | 1.5568(5)    |  |
| C(5')-C(6')      | 1.5256(5)    |  |
| C(5')-H(5'A)     | 1.09200(3)   |  |
| C(5')-H(5'B)     | 1.09200(3)   |  |
| C(6')-H(6'A)     | 1.05900(3)   |  |
| C(6')-H(6'B)     | 1.058999(15) |  |
| C(6')-H(6'C)     | 1.05900(2)   |  |
| C(7')-C(8')      | 1.5250(4)    |  |
| C(7')-H(7'A)     | 1.09200(2)   |  |
| C(7')-H(7'B)     | 1.09200(2)   |  |
| C(8')-H(8'A)     | 1.05900(2)   |  |
| C(8')-H(8'B)     | 1.059000(15) |  |
| C(8')-H(8'C)     | 1.05900(2)   |  |
| O(1S)-C(1S)      | 1.4181(5)    |  |
| O(1S)-HOS1       | 0.96700(3)   |  |
| C(1S)-C(2S)      | 1.5026(6)    |  |
| C(1S)-H(1SA)     | 1.09200(2)   |  |
| C(1S)-H(1SB)     | 1.092001(15) |  |
| C(2S)-H(2SA)     | 1.05900(3)   |  |
| C(2S)-H(2SB)     | 1.05900(3)   |  |
| C(2S)-H(2SC)     | 1.05900(6)   |  |
|                  |              |  |
| C(18)-O(3)-C(17) | 117.23(3)    |  |
| C(24)-O(4)-C(28) | 117.07(3)    |  |
| C(7)-N(1)-C(8)   | 125.80(3)    |  |
| C(7)-N(1)-H(01)  | 119.75(16)   |  |
| C(8)-N(1)-H(01)  | 114.15(16)   |  |
| C(8)-N(2)-C(12)  | 118.07(3)    |  |
| C(13)-N(3)-C(12) | 126.22(3)    |  |
| C(13)-N(3)-H(03) | 115.7(4)     |  |
| C(12)-N(3)-H(03) | 117.6(3)     |  |
| C(32)-N(4)-C(33) | 128.14(3)    |  |
| C(32)-N(4)-H(04) | 116.1(3)     |  |
| C(33)-N(4)-H(04) | 115.3(3)     |  |
| C(37)-N(5)-C(33) | 117.77(3)    |  |

| C(38)-N(6)-C(37)  | 125.70(3)  |
|-------------------|------------|
| C(38)-N(6)-H(06)  | 118.21(6)  |
| C(37)-N(6)-H(06)  | 115.43(6)  |
| C(6)-C(1)-C(2)    | 119.46(3)  |
| C(6)-C(1)-H(1)    | 121.43(14) |
| C(2)-C(1)-H(1)    | 119.02(13) |
| C(3)-C(2)-C(1)    | 120.01(3)  |
| C(3)-C(2)-C(38)   | 115.52(3)  |
| C(1)-C(2)-C(38)   | 124.45(3)  |
| C(4)-C(3)-C(2)    | 120.31(3)  |
| C(4)-C(3)-H(3)    | 119.4(3)   |
| C(2)-C(3)-H(3)    | 120.3(3)   |
| C(5)-C(4)-C(3)    | 119.73(3)  |
| C(5)-C(4)-H(4)    | 121.55(16) |
| C(3)-C(4)-H(4)    | 118.72(16) |
| C(4)-C(5)-C(6)    | 120.44(3)  |
| C(4)-C(5)-H(5)    | 122.02(7)  |
| C(6)-C(5)-H(5)    | 117.50(7)  |
| C(5)-C(6)-C(1)    | 120.04(3)  |
| C(5)-C(6)-C(7)    | 115.20(3)  |
| C(1)-C(6)-C(7)    | 124.70(3)  |
| O(1)-C(7)-N(1)    | 123.94(4)  |
| O(1)-C(7)-C(6)    | 119.29(4)  |
| N(1)-C(7)-C(6)    | 116.73(3)  |
| N(2)-C(8)-C(9)    | 123.02(3)  |
| N(2)-C(8)-N(1)    | 114.20(3)  |
| C(9)-C(8)-N(1)    | 122.77(3)  |
| C(10)-C(9)-C(8)   | 117.53(3)  |
| C(10)-C(9)-H(9)   | 121.03(5)  |
| C(8)-C(9)-H(9)    | 121.44(6)  |
| C(11)-C(10)-C(9)  | 120.93(3)  |
| C(11)-C(10)-H(10) | 119.2(2)   |
| C(9)-C(10)-H(10)  | 119.9(2)   |
| C(10)-C(11)-C(12) | 117.18(3)  |
| C(10)-C(11)-H(11) | 123.4(2)   |
| C(12)-C(11)-H(11) | 119.34(19) |

| N(2)-C(12)-N(3)     | 114.40(3)  |
|---------------------|------------|
| N(2)-C(12)-C(11)    | 123.25(3)  |
| N(3)-C(12)-C(11)    | 122.34(3)  |
| O(2)-C(13)-N(3)     | 123.66(4)  |
| O(2)-C(13)-C(14)    | 122.22(3)  |
| N(3)-C(13)-C(14)    | 114.11(3)  |
| C(13)-C(14)-C(15)   | 112.12(2)  |
| C(13)-C(14)-H(14A)  | 109.56(5)  |
| C(15)-C(14)-H(14A)  | 111.68(7)  |
| C(13)-C(14)-H(14B)  | 104.09(12) |
| C(15)-C(14)-H(14B)  | 108.56(5)  |
| H(14A)-C(14)-H(14B) | 110.57(17) |
| C(14)-C(15)-C(16)   | 114.21(2)  |
| C(14)-C(15)-H(15A)  | 109.73(8)  |
| C(16)-C(15)-H(15A)  | 110.05(5)  |
| C(14)-C(15)-H(15B)  | 109.49(7)  |
| C(16)-C(15)-H(15B)  | 109.24(15) |
| H(15A)-C(15)-H(15B) | 103.6(2)   |
| C(17)-C(16)-C(15)   | 112.87(2)  |
| C(17)-C(16)-H(16A)  | 107.43(5)  |
| C(15)-C(16)-H(16A)  | 109.37(5)  |
| C(17)-C(16)-H(16B)  | 109.6(2)   |
| C(15)-C(16)-H(16B)  | 110.48(14) |
| H(16A)-C(16)-H(16B) | 106.84(12) |
| O(3)-C(17)-C(16)    | 107.35(3)  |
| O(3)-C(17)-H(17A)   | 110.70(5)  |
| C(16)-C(17)-H(17A)  | 109.84(5)  |
| O(3)-C(17)-H(17B)   | 108.89(15) |
| C(16)-C(17)-H(17B)  | 111.0(3)   |
| H(17A)-C(17)-H(17B) | 109.07(18) |
| O(3)-C(18)-C(27)    | 125.09(3)  |
| O(3)-C(18)-C(19)    | 114.63(3)  |
| C(27)-C(18)-C(19)   | 120.27(3)  |
| C(20)-C(19)-C(18)   | 120.04(3)  |
| C(20)-C(19)-H(19)   | 123.45(5)  |
| C(18)-C(19)-H(19)   | 116.48(4)  |

| C(19)-C(20)-C(21)   | 121.31(3)  |
|---------------------|------------|
| C(19)-C(20)-H(20)   | 121.04(5)  |
| C(21)-C(20)-H(20)   | 117.65(5)  |
| C(26)-C(21)-C(20)   | 118.44(3)  |
| C(26)-C(21)-C(22)   | 118.81(3)  |
| C(20)-C(21)-C(22)   | 122.75(3)  |
| C(23)-C(22)-C(21)   | 121.32(3)  |
| C(23)-C(22)-H(22)   | 118.37(5)  |
| C(21)-C(22)-H(22)   | 120.30(6)  |
| C(22)-C(23)-C(24)   | 119.47(3)  |
| C(22)-C(23)-H(23)   | 122.03(12) |
| C(24)-C(23)-H(23)   | 118.49(12) |
| O(4)-C(24)-C(25)    | 124.65(3)  |
| O(4)-C(24)-C(23)    | 114.45(3)  |
| C(25)-C(24)-C(23)   | 120.90(3)  |
| C(24)-C(25)-C(26)   | 120.14(3)  |
| C(24)-C(25)-H(25)   | 120.93(6)  |
| C(26)-C(25)-H(25)   | 118.84(5)  |
| C(21)-C(26)-C(25)   | 119.35(3)  |
| C(21)-C(26)-C(27)   | 119.67(3)  |
| C(25)-C(26)-C(27)   | 120.97(3)  |
| C(18)-C(27)-C(26)   | 120.21(3)  |
| C(18)-C(27)-H(27)   | 120.91(5)  |
| C(26)-C(27)-H(27)   | 118.86(6)  |
| O(4)-C(28)-C(29)    | 106.29(3)  |
| O(4)-C(28)-H(28A)   | 110.50(8)  |
| C(29)-C(28)-H(28A)  | 110.21(7)  |
| O(4)-C(28)-H(28B)   | 109.49(9)  |
| C(29)-C(28)-H(28B)  | 111.95(7)  |
| H(28A)-C(28)-H(28B) | 108.40(9)  |
| C(28)-C(29)-C(30)   | 112.89(2)  |
| C(28)-C(29)-H(29A)  | 108.16(6)  |
| C(30)-C(29)-H(29A)  | 110.53(7)  |
| C(28)-C(29)-H(29B)  | 107.55(10) |
| C(30)-C(29)-H(29B)  | 108.87(13) |
| H(29A)-C(29)-H(29B) | 108.71(11) |
| C(29)-C(30)-C(31)   | 112.63(3)  |
|---------------------|------------|
| C(29)-C(30)-H(30A)  | 107.98(4)  |
| C(31)-C(30)-H(30A)  | 107.20(5)  |
| C(29)-C(30)-H(30B)  | 109.87(8)  |
| C(31)-C(30)-H(30B)  | 110.40(7)  |
| H(30A)-C(30)-H(30B) | 108.62(6)  |
| C(32)-C(31)-C(30)   | 111.64(3)  |
| C(32)-C(31)-H(31A)  | 105.79(6)  |
| C(30)-C(31)-H(31A)  | 109.96(7)  |
| C(32)-C(31)-H(31B)  | 111.67(4)  |
| C(30)-C(31)-H(31B)  | 112.17(5)  |
| H(31A)-C(31)-H(31B) | 105.21(5)  |
| O(5)-C(32)-N(4)     | 123.93(4)  |
| O(5)-C(32)-C(31)    | 121.86(3)  |
| N(4)-C(32)-C(31)    | 114.21(3)  |
| N(5)-C(33)-N(4)     | 113.99(3)  |
| N(5)-C(33)-C(34)    | 123.47(3)  |
| N(4)-C(33)-C(34)    | 122.50(3)  |
| C(35)-C(34)-C(33)   | 117.29(3)  |
| C(35)-C(34)-H(34)   | 122.9(4)   |
| C(33)-C(34)-H(34)   | 119.7(4)   |
| C(34)-C(35)-C(36)   | 120.54(3)  |
| C(34)-C(35)-H(35)   | 121.40(5)  |
| C(36)-C(35)-H(35)   | 118.04(5)  |
| C(35)-C(36)-C(37)   | 117.76(3)  |
| C(35)-C(36)-H(36)   | 122.36(6)  |
| C(37)-C(36)-H(36)   | 119.86(6)  |
| N(5)-C(37)-C(36)    | 123.09(3)  |
| N(5)-C(37)-N(6)     | 113.72(3)  |
| C(36)-C(37)-N(6)    | 123.17(3)  |
| O(6)-C(38)-N(6)     | 122.57(4)  |
| O(6)-C(38)-C(2)     | 119.62(3)  |
| N(6)-C(38)-C(2)     | 117.77(3)  |
| C(1')-N(1')-C(2')   | 125.28(3)  |
| C(1')-N(1')-HB1     | 113.78(11) |
| C(2')-N(1')-HB1     | 120.91(10) |

| C(4')-N(2')-C(1')   | 125.30(3)  |
|---------------------|------------|
| C(4')-N(2')-HB2     | 118.69(19) |
| C(1')-N(2')-HB2     | 115.85(18) |
| O(1')-C(1')-N(1')   | 122.12(4)  |
| O(1')-C(1')-N(2')   | 120.40(3)  |
| N(1')-C(1')-N(2')   | 117.46(3)  |
| O(2')-C(2')-N(1')   | 120.65(3)  |
| O(2')-C(2')-C(3')   | 121.13(3)  |
| N(1')-C(2')-C(3')   | 118.17(3)  |
| C(4')-C(3')-C(2')   | 114.25(3)  |
| C(4')-C(3')-C(7')   | 109.34(3)  |
| C(2')-C(3')-C(7')   | 109.53(3)  |
| C(4')-C(3')-C(5')   | 106.59(3)  |
| C(2')-C(3')-C(5')   | 106.87(3)  |
| C(7')-C(3')-C(5')   | 110.17(3)  |
| O(3')-C(4')-N(2')   | 120.44(3)  |
| O(3')-C(4')-C(3')   | 121.01(3)  |
| N(2')-C(4')-C(3')   | 118.51(3)  |
| C(6')-C(5')-C(3')   | 115.17(2)  |
| C(6')-C(5')-H(5'A)  | 109.83(4)  |
| C(3')-C(5')-H(5'A)  | 106.65(11) |
| C(6')-C(5')-H(5'B)  | 106.99(14) |
| C(3')-C(5')-H(5'B)  | 109.79(6)  |
| H(5'A)-C(5')-H(5'B) | 108.26(16) |
| C(5')-C(6')-H(6'A)  | 112.09(4)  |
| C(5')-C(6')-H(6'B)  | 107.44(7)  |
| H(6'A)-C(6')-H(6'B) | 108.05(19) |
| C(5')-C(6')-H(6'C)  | 111.8(5)   |
| H(6'A)-C(6')-H(6'C) | 105.0(4)   |
| H(6'B)-C(6')-H(6'C) | 112.46(14) |
| C(8')-C(7')-C(3')   | 113.23(3)  |
| C(8')-C(7')-H(7'A)  | 109.60(5)  |
| C(3')-C(7')-H(7'A)  | 109.84(9)  |
| C(8')-C(7')-H(7'B)  | 112.86(7)  |
| C(3')-C(7')-H(7'B)  | 105.04(4)  |
| H(7'A)-C(7')-H(7'B) | 105.94(10) |

| C(7')-C(8')-H(8'A)  | 109.93(4)  |
|---------------------|------------|
| C(7')-C(8')-H(8'B)  | 109.69(6)  |
| H(8'A)-C(8')-H(8'B) | 112.70(10) |
| C(7')-C(8')-H(8'C)  | 111.80(8)  |
| H(8'A)-C(8')-H(8'C) | 108.64(11) |
| H(8'B)-C(8')-H(8'C) | 103.97(6)  |
| C(1S)-O(1S)-HOS1    | 108.0(2)   |
| O(1S)-C(1S)-C(2S)   | 111.11(3)  |
| O(1S)-C(1S)-H(1SA)  | 106.47(6)  |
| C(2S)-C(1S)-H(1SA)  | 110.40(4)  |
| O(1S)-C(1S)-H(1SB)  | 108.07(4)  |
| C(2S)-C(1S)-H(1SB)  | 116.23(6)  |
| H(1SA)-C(1S)-H(1SB) | 103.914(9) |
| C(1S)-C(2S)-H(2SA)  | 108.44(11) |
| C(1S)-C(2S)-H(2SB)  | 110.15(10) |
| H(2SA)-C(2S)-H(2SB) | 106.44(5)  |
| C(1S)-C(2S)-H(2SC)  | 108.53(6)  |
| H(2SA)-C(2S)-H(2SC) | 113.5(2)   |
| H(2SB)-C(2S)-H(2SC) | 109.76(19) |
|                     |            |

|              | U11     | U22   | U33   | U23   | U13    | U12   |
|--------------|---------|-------|-------|-------|--------|-------|
|              |         |       |       |       |        |       |
| <b>O</b> (1) | 25(1)   | 17(1) | 49(1) | 11(1) | -23(1) | -5(1) |
| O(2)         | 15(1)   | 21(1) | 33(1) | 10(1) | -3(1)  | -5(1) |
| O(3)         | 19(1)   | 13(1) | 26(1) | 2(1)  | -10(1) | -2(1) |
| O(4)         | 20(1)   | 13(1) | 23(1) | 4(1)  | -9(1)  | -3(1) |
| O(5)         | 16(1)   | 22(1) | 41(1) | 8(1)  | -12(1) | -5(1) |
| O(6)         | 25(1)   | 10(1) | 45(1) | 5(1)  | -18(1) | -4(1) |
| N(1)         | 16(1)   | 11(1) | 19(1) | 4(1)  | -7(1)  | -2(1) |
| N(2)         | 15(1)   | 11(1) | 16(1) | 2(1)  | -5(1)  | -2(1) |
| N(3)         | 14(1)   | 11(1) | 19(1) | 3(1)  | -4(1)  | -3(1) |
| N(4)         | 15(1)   | 12(1) | 22(1) | 4(1)  | -7(1)  | -2(1) |
| N(5)         | 14(1)   | 10(1) | 17(1) | 3(1)  | -5(1)  | -2(1) |
| N(6)         | 16(1)   | 10(1) | 19(1) | 3(1)  | -6(1)  | -2(1) |
| C(1)         | 16(1)   | 10(1) | 15(1) | 3(1)  | -5(1)  | -1(1) |
| C(2)         | 15(1)   | 10(1) | 17(1) | 3(1)  | -4(1)  | -1(1) |
| C(3)         | 19(1)   | 14(1) | 20(1) | 6(1)  | -4(1)  | -3(1) |
| C(4)         | 24(1)   | 17(1) | 18(1) | 7(1)  | -7(1)  | -3(1) |
| C(5)         | 24(1)   | 14(1) | 17(1) | 4(1)  | -9(1)  | -2(1) |
| C(6)         | 18(1)   | 10(1) | 16(1) | 2(1)  | -6(1)  | -1(1) |
| C(7)         | 19(1)   | 11(1) | 20(1) | 3(1)  | -9(1)  | -2(1) |
| C(8)         | 15(1)   | 12(1) | 15(1) | 2(1)  | -5(1)  | -2(1) |
| C(9)         | 16(1)   | 16(1) | 22(1) | 3(1)  | -8(1)  | -2(1) |
| C(10         | ) 16(1) | 18(1) | 25(1) | 3(1)  | -9(1)  | -3(1) |
| C(11         | ) 16(1) | 15(1) | 21(1) | 2(1)  | -6(1)  | -4(1) |
| C(12         | ) 14(1) | 12(1) | 16(1) | 1(1)  | -4(1)  | -3(1) |
| C(13         | ) 16(1) | 12(1) | 18(1) | 2(1)  | -3(1)  | -3(1) |
| C(14         | ) 18(1) | 12(1) | 19(1) | 2(1)  | -1(1)  | -1(1) |
| C(15         | ) 15(1) | 20(1) | 20(1) | 6(1)  | -4(1)  | -3(1) |
| C(16         | ) 18(1) | 16(1) | 23(1) | 6(1)  | -7(1)  | -5(1) |
| C(17         | ) 17(1) | 14(1) | 22(1) | 3(1)  | -7(1)  | -2(1) |
| C(18         | ) 17(1) | 12(1) | 17(1) | 2(1)  | -5(1)  | -1(1) |

Table S18: Anisotropic displacement parameters (Å  $^{2}x 10^{3}$ ) for (**3**). The anisotropic displacement factor exponent takes the form:  $-2 \pi ^{2}$ [ h<sup>2</sup> a\*<sup>2</sup>U<sup>11</sup> + ... + 2 h k a\* b\* U<sup>12</sup> ]

| C(19) | 22(1) | 11(1) | 21(1) | 2(1)   | -8(1)  | -2(1)  |
|-------|-------|-------|-------|--------|--------|--------|
| C(20) | 23(1) | 10(1) | 20(1) | 2(1)   | -8(1)  | 0(1)   |
| C(21) | 18(1) | 11(1) | 16(1) | 3(1)   | -5(1)  | 0(1)   |
| C(22) | 19(1) | 12(1) | 20(1) | 4(1)   | -7(1)  | 0(1)   |
| C(23) | 17(1) | 14(1) | 20(1) | 4(1)   | -7(1)  | -1(1)  |
| C(24) | 16(1) | 12(1) | 16(1) | 3(1)   | -5(1)  | -2(1)  |
| C(25) | 16(1) | 11(1) | 19(1) | 2(1)   | -5(1)  | -1(1)  |
| C(26) | 15(1) | 11(1) | 15(1) | 2(1)   | -4(1)  | 0(1)   |
| C(27) | 16(1) | 11(1) | 20(1) | 2(1)   | -6(1)  | -1(1)  |
| C(28) | 18(1) | 12(1) | 20(1) | 2(1)   | -5(1)  | -2(1)  |
| C(29) | 25(1) | 14(1) | 20(1) | 2(1)   | -10(1) | -5(1)  |
| C(30) | 27(1) | 12(1) | 19(1) | 0(1)   | -6(1)  | -3(1)  |
| C(31) | 18(1) | 13(1) | 20(1) | 1(1)   | -7(1)  | 1(1)   |
| C(32) | 15(1) | 15(1) | 19(1) | 2(1)   | -6(1)  | -1(1)  |
| C(33) | 14(1) | 12(1) | 16(1) | 3(1)   | -5(1)  | -3(1)  |
| C(34) | 18(1) | 14(1) | 20(1) | 4(1)   | -8(1)  | -6(1)  |
| C(35) | 22(1) | 14(1) | 22(1) | 4(1)   | -9(1)  | -7(1)  |
| C(36) | 21(1) | 11(1) | 21(1) | 3(1)   | -9(1)  | -5(1)  |
| C(37) | 14(1) | 10(1) | 15(1) | 2(1)   | -4(1)  | -2(1)  |
| C(38) | 14(1) | 10(1) | 21(1) | 3(1)   | -5(1)  | -1(1)  |
| O(1') | 23(1) | 15(1) | 22(1) | 8(1)   | -9(1)  | -3(1)  |
| O(2') | 18(1) | 17(1) | 21(1) | 4(1)   | -6(1)  | -8(1)  |
| O(3') | 21(1) | 20(1) | 28(1) | 8(1)   | -13(1) | -9(1)  |
| N(1') | 15(1) | 13(1) | 17(1) | 3(1)   | -6(1)  | -3(1)  |
| N(2') | 16(1) | 13(1) | 21(1) | 7(1)   | -8(1)  | -5(1)  |
| C(1') | 16(1) | 11(1) | 17(1) | 4(1)   | -5(1)  | -2(1)  |
| C(2') | 14(1) | 12(1) | 16(1) | 2(1)   | -4(1)  | -3(1)  |
| C(3') | 15(1) | 12(1) | 16(1) | 3(1)   | -5(1)  | -4(1)  |
| C(4') | 15(1) | 12(1) | 19(1) | 4(1)   | -7(1)  | -4(1)  |
| C(5') | 21(1) | 22(1) | 16(1) | 0(1)   | -4(1)  | -5(1)  |
| C(6') | 22(1) | 23(1) | 26(1) | -7(1)  | -6(1)  | 0(1)   |
| C(7') | 19(1) | 13(1) | 22(1) | 5(1)   | -7(1)  | -3(1)  |
| C(8') | 24(1) | 18(1) | 29(1) | 1(1)   | -6(1)  | 3(1)   |
| O(1S) | 21(1) | 15(1) | 24(1) | 4(1)   | -1(1)  | -1(1)  |
| C(1S) | 26(1) | 23(1) | 23(1) | 6(1)   | -5(1)  | -7(1)  |
| C(2S) | 31(1) | 39(1) | 48(1) | -17(1) | 12(1)  | -18(1) |

|        | x y      | Z        | U(eq)   |       |
|--------|----------|----------|---------|-------|
|        |          |          |         |       |
| H(1)   | 2035(3)  | 7509(1)  | 6356(1) | 28(2) |
| H(3)   | 3504(1)  | 10290(1) | 4962(3) | 30(3) |
| H(4)   | 1869(3)  | 10203(1) | 4186(1) | 36(3) |
| H(5)   | 291(1)   | 8707(1)  | 4484(1) | 32(3) |
| H(9)   | -2159(1) | 6161(1)  | 5660(1) | 33(3) |
| H(10)  | -3400(1) | 4484(3)  | 5961(1) | 29(3) |
| H(11)  | -2244(1) | 2646(1)  | 6396(5) | 34(3) |
| H(14A) | 1747(1)  | 925(1)   | 7236(1) | 33(3) |
| H(14B) | 975(3)   | 20(1)    | 6762(1) | 42(3) |
| H(15A) | -650(1)  | -338(1)  | 7938(1) | 34(3) |
| H(15B) | 149(4)   | 456(1)   | 8406(1) | 32(3) |
| H(16A) | 770(1)   | -1690(1) | 8525(1) | 28(2) |
| H(16B) | 1627(4)  | -1637(1) | 7600(1) | 25(2) |
| H(17A) | 3119(1)  | -384(1)  | 7920(1) | 27(2) |
| H(17B) | 2195(6)  | -341(1)  | 8847(1) | 25(2) |
| H(19)  | 4604(1)  | -3635(1) | 8937(1) | 32(3) |
| H(20)  | 6754(1)  | -3739(1) | 9410(1) | 25(2) |
| H(22)  | 8567(1)  | -2752(1) | 9707(1) | 29(3) |
| H(23)  | 9413(1)  | -974(2)  | 9867(1) | 35(3) |
| H(25)  | 6008(1)  | 942(1)   | 9169(1) | 31(3) |
| H(27)  | 4297(1)  | -25(1)   | 8815(1) | 23(2) |
| H(28A) | 6862(1)  | 2360(1)  | 9592(1) | 32(3) |
| H(28B) | 7817(1)  | 1970(1)  | 8715(1) | 33(3) |
| H(29A) | 9832(1)  | 2547(1)  | 9081(1) | 47(3) |
| H(29B) | 8827(2)  | 2938(2)  | 9948(1) | 28(2) |
| H(30A) | 9132(1)  | 4631(1)  | 9157(1) | 38(3) |
| H(30B) | 7429(1)  | 4401(1)  | 9305(1) | 36(3) |
| H(31A) | 9529(1)  | 3654(1)  | 7939(1) | 25(2) |

Table S19: Hydrogen coordinates ( x  $10^4$ ) and isotropic displacement parameters (Å  $^2$ x  $10^3$ ) for (**3**).

| H(31B) | 7811(1) | 3699(1)  | 8029(1) | 28(2) |
|--------|---------|----------|---------|-------|
| H(34)  | 8672(1) | 7608(6)  | 7721(1) | 36(3) |
| H(35)  | 7786(1) | 9579(1)  | 7297(1) | 30(3) |
| H(36)  | 5797(1) | 9835(1)  | 6709(1) | 26(2) |
| H(5'A) | 1767(1) | 3518(1)  | 9160(1) | 42(3) |
| H(5'B) | 3136(1) | 4078(2)  | 9381(1) | 27(2) |
| H(6'A) | 2535(1) | 5892(1)  | 8737(2) | 36(3) |
| H(6'B) | 1262(1) | 5507(1)  | 9426(1) | 40(3) |
| H(6'C) | 1251(1) | 5399(8)  | 8482(1) | 37(3) |
| H(7'A) | 4708(1) | 2490(2)  | 8814(1) | 34(3) |
| H(7'B) | 3337(1) | 1928(1)  | 8632(1) | 29(3) |
| H(8'A) | 4478(1) | 1879(1)  | 7288(1) | 42(3) |
| H(8'B) | 5559(1) | 1161(1)  | 7844(1) | 37(3) |
| H(8'C) | 5814(1) | 2451(1)  | 7475(1) | 43(3) |
| H(01)  | 1337(1) | 5949(3)  | 5954(1) | 34(3) |
| H(03)  | 1292(1) | 2361(3)  | 6501(7) | 37(3) |
| H(04)  | 6666(1) | 5299(1)  | 7778(6) | 44(3) |
| H(06)  | 4177(1) | 7353(1)  | 6426(1) | 32(3) |
| HB1    | 1788(1) | 4300(2)  | 6783(1) | 40(3) |
| HB2    | 4838(1) | 5760(1)  | 7200(2) | 37(3) |
| HOS1   | 3523(1) | 11437(1) | 6089(2) | 44(3) |
| H(1SA) | 2869(1) | 13561(1) | 5424(1) | 48(4) |
| H(1SB) | 3553(1) | 12319(1) | 5004(1) | 40(3) |
| H(2SA) | 4857(2) | 13682(1) | 5929(1) | 68(5) |
| H(2SB) | 5243(2) | 13717(1) | 4990(1) | 57(4) |
| H(2SC) | 5658(1) | 12454(1) | 5463(2) | 58(4) |

Table S20: Torsion angles  $[^{\circ}]$  for (3).

| C(6)-C(1)-C(2)-C(3)  | 0.06(6)    |
|----------------------|------------|
| C(6)-C(1)-C(2)-C(38) | 178.32(4)  |
| C(1)-C(2)-C(3)-C(4)  | -0.39(6)   |
| C(38)-C(2)-C(3)-C(4) | -178.80(4) |
| C(2)-C(3)-C(4)-C(5)  | 0.76(6)    |
| C(3)-C(4)-C(5)-C(6)  | -0.81(6)   |

| C(4)-C(5)-C(6)-C(1)     | 0.49(6)    |
|-------------------------|------------|
| C(4)-C(5)-C(6)-C(7)     | 177.96(4)  |
| C(2)-C(1)-C(6)-C(5)     | -0.11(6)   |
| C(2)-C(1)-C(6)-C(7)     | -177.33(4) |
| C(8)-N(1)-C(7)-O(1)     | 1.74(8)    |
| C(8)-N(1)-C(7)-C(6)     | -176.06(4) |
| C(5)-C(6)-C(7)-O(1)     | -29.36(7)  |
| C(1)-C(6)-C(7)-O(1)     | 147.98(5)  |
| C(5)-C(6)-C(7)-N(1)     | 148.55(4)  |
| C(1)-C(6)-C(7)-N(1)     | -34.11(6)  |
| C(12)-N(2)-C(8)-C(9)    | 0.26(6)    |
| C(12)-N(2)-C(8)-N(1)    | 179.92(4)  |
| C(7)-N(1)-C(8)-N(2)     | 176.01(4)  |
| C(7)-N(1)-C(8)-C(9)     | -4.33(6)   |
| N(2)-C(8)-C(9)-C(10)    | 0.72(6)    |
| N(1)-C(8)-C(9)-C(10)    | -178.91(4) |
| C(8)-C(9)-C(10)-C(11)   | -0.61(7)   |
| C(9)-C(10)-C(11)-C(12)  | -0.40(7)   |
| C(8)-N(2)-C(12)-N(3)    | 177.11(4)  |
| C(8)-N(2)-C(12)-C(11)   | -1.39(6)   |
| C(13)-N(3)-C(12)-N(2)   | 152.64(4)  |
| C(13)-N(3)-C(12)-C(11)  | -28.85(7)  |
| C(10)-C(11)-C(12)-N(2)  | 1.46(7)    |
| C(10)-C(11)-C(12)-N(3)  | -176.92(4) |
| C(12)-N(3)-C(13)-O(2)   | 2.97(7)    |
| C(12)-N(3)-C(13)-C(14)  | -178.43(4) |
| O(2)-C(13)-C(14)-C(15)  | -25.96(5)  |
| N(3)-C(13)-C(14)-C(15)  | 155.41(3)  |
| C(13)-C(14)-C(15)-C(16) | 173.38(3)  |
| C(14)-C(15)-C(16)-C(17) | 75.52(3)   |
| C(18)-O(3)-C(17)-C(16)  | -178.51(3) |
| C(15)-C(16)-C(17)-O(3)  | 173.91(3)  |
| C(17)-O(3)-C(18)-C(27)  | -0.48(6)   |
| C(17)-O(3)-C(18)-C(19)  | 179.85(4)  |
| O(3)-C(18)-C(19)-C(20)  | 177.54(4)  |
| C(27)-C(18)-C(19)-C(20) | -2.15(7)   |

| C(18)-C(19)-C(20)-C(21) | 0.36(7)    |
|-------------------------|------------|
| C(19)-C(20)-C(21)-C(26) | 1.37(6)    |
| C(19)-C(20)-C(21)-C(22) | -177.83(4) |
| C(26)-C(21)-C(22)-C(23) | 1.70(6)    |
| C(20)-C(21)-C(22)-C(23) | -179.10(4) |
| C(21)-C(22)-C(23)-C(24) | -1.52(6)   |
| C(28)-O(4)-C(24)-C(25)  | -13.11(6)  |
| C(28)-O(4)-C(24)-C(23)  | 166.07(3)  |
| C(22)-C(23)-C(24)-O(4)  | -178.80(4) |
| C(22)-C(23)-C(24)-C(25) | 0.42(6)    |
| O(4)-C(24)-C(25)-C(26)  | 179.60(4)  |
| C(23)-C(24)-C(25)-C(26) | 0.46(6)    |
| C(20)-C(21)-C(26)-C(25) | 179.98(4)  |
| C(22)-C(21)-C(26)-C(25) | -0.79(6)   |
| C(20)-C(21)-C(26)-C(27) | -1.35(6)   |
| C(22)-C(21)-C(26)-C(27) | 177.88(4)  |
| C(24)-C(25)-C(26)-C(21) | -0.26(6)   |
| C(24)-C(25)-C(26)-C(27) | -178.92(4) |
| O(3)-C(18)-C(27)-C(26)  | -177.50(4) |
| C(19)-C(18)-C(27)-C(26) | 2.15(6)    |
| C(21)-C(26)-C(27)-C(18) | -0.40(6)   |
| C(25)-C(26)-C(27)-C(18) | 178.26(4)  |
| C(24)-O(4)-C(28)-C(29)  | -170.82(3) |
| O(4)-C(28)-C(29)-C(30)  | 179.62(3)  |
| C(28)-C(29)-C(30)-C(31) | -67.08(3)  |
| C(29)-C(30)-C(31)-C(32) | -163.21(3) |
| C(33)-N(4)-C(32)-O(5)   | -5.15(8)   |
| C(33)-N(4)-C(32)-C(31)  | 175.14(4)  |
| C(30)-C(31)-C(32)-O(5)  | 76.01(5)   |
| C(30)-C(31)-C(32)-N(4)  | -104.27(4) |
| C(37)-N(5)-C(33)-N(4)   | 177.30(4)  |
| C(37)-N(5)-C(33)-C(34)  | -0.50(6)   |
| C(32)-N(4)-C(33)-N(5)   | 165.67(4)  |
| C(32)-N(4)-C(33)-C(34)  | -16.51(7)  |
| N(5)-C(33)-C(34)-C(35)  | 2.67(6)    |
| N(4)-C(33)-C(34)-C(35)  | -174.94(4) |

| C(33)-C(34)-C(35)-C(36) | -2.26(6)   |
|-------------------------|------------|
| C(34)-C(35)-C(36)-C(37) | -0.13(6)   |
| C(33)-N(5)-C(37)-C(36)  | -2.16(6)   |
| C(33)-N(5)-C(37)-N(6)   | 176.29(4)  |
| C(35)-C(36)-C(37)-N(5)  | 2.47(6)    |
| C(35)-C(36)-C(37)-N(6)  | -175.82(4) |
| C(38)-N(6)-C(37)-N(5)   | -175.18(4) |
| C(38)-N(6)-C(37)-C(36)  | 3.26(6)    |
| C(37)-N(6)-C(38)-O(6)   | -6.85(7)   |
| C(37)-N(6)-C(38)-C(2)   | 170.53(4)  |
| C(3)-C(2)-C(38)-O(6)    | 27.89(6)   |
| C(1)-C(2)-C(38)-O(6)    | -150.44(5) |
| C(3)-C(2)-C(38)-N(6)    | -149.57(4) |
| C(1)-C(2)-C(38)-N(6)    | 32.10(6)   |
| C(2')-N(1')-C(1')-O(1') | -179.19(4) |
| C(2')-N(1')-C(1')-N(2') | 2.06(6)    |
| C(4')-N(2')-C(1')-O(1') | 178.65(4)  |
| C(4')-N(2')-C(1')-N(1') | -2.57(6)   |
| C(1')-N(1')-C(2')-O(2') | -177.61(4) |
| C(1')-N(1')-C(2')-C(3') | 5.14(6)    |
| O(2')-C(2')-C(3')-C(4') | 171.68(4)  |
| N(1')-C(2')-C(3')-C(4') | -11.09(5)  |
| O(2')-C(2')-C(3')-C(7') | 48.64(5)   |
| N(1')-C(2')-C(3')-C(7') | -134.13(3) |
| O(2')-C(2')-C(3')-C(5') | -70.70(5)  |
| N(1')-C(2')-C(3')-C(5') | 106.54(4)  |
| C(1')-N(2')-C(4')-O(3') | 178.26(4)  |
| C(1')-N(2')-C(4')-C(3') | -4.25(6)   |
| C(2')-C(3')-C(4')-O(3') | -171.84(4) |
| C(7')-C(3')-C(4')-O(3') | -48.70(6)  |
| C(5')-C(3')-C(4')-O(3') | 70.37(5)   |
| C(2')-C(3')-C(4')-N(2') | 10.69(6)   |
| C(7')-C(3')-C(4')-N(2') | 133.83(4)  |
| C(5')-C(3')-C(4')-N(2') | -107.10(4) |
| C(4')-C(3')-C(5')-C(6') | 56.28(3)   |
| C(2')-C(3')-C(5')-C(6') | -66.28(3)  |

| C(7')-C(3')-C(5')-C(6') | 174.80(2)  |
|-------------------------|------------|
| C(4')-C(3')-C(7')-C(8') | -61.26(4)  |
| C(2')-C(3')-C(7')-C(8') | 64.64(4)   |
| C(5')-C(3')-C(7')-C(8') | -178.08(2) |
|                         |            |

Table S21: Hydrogen bonds for (3). [Å and  $^{\circ}$ ].

| D-HA              | d(D-H) d(I  | HA) d(D     | A) <(D    | OHA)         |
|-------------------|-------------|-------------|-----------|--------------|
| C(9)-H(9)O(1)     | 1.0830(1    | ) 2.0751(8) | 2.7636(5  | 5) 118.70(6) |
| C(11)-H(11)O(2)   | 1.0830(1    | ) 2.281(7)  | 2.8595(5  | ) 111.4(5)   |
| C(14)-H(14A)O(2') | 1.0920(1    | ) 2.5707(8) | 3.2685(4  | ) 120.88(5)  |
| C(19)-H(19)O(3')# | 1 1.0830(1  | ) 2.5653(7) | 3.4514(5  | 5) 138.45(6) |
| C(31)-H(31A)O(2') | #2 1.0920(1 | ) 2.2802(6) | 3.3181(4  | ) 158.02(9)  |
| C(31)-H(31B)O(3') | 1.0920(1)   | ) 2.5758(6) | 3.2985(4  | ) 122.87(4)  |
| C(34)-H(34)O(5)   | 1.0830(1)   | 2.227(7)    | 2.8734(5) | 116.1(5)     |
| C(36)-H(36)O(6)   | 1.0830(1)   | 2.0386(9)   | 2.7471(5  | ) 120.15(6)  |
| N(1)-H(01)O(1')   | 1.0090(1)   | 2.2282(7)   | 3.2137(4  | ) 165.10(19) |
| N(3)-H(03)O(1S)#1 | 1 1.0090(1) | 1.860(2)    | 2.8591(4) | 169.9(10)    |
| N(4)-H(04)O(3')   | 1.0090(1)   | 1.835(4)    | 2.8153(4) | 163.0(10)    |
| N(6)-H(06)O(1')   | 1.0090(1)   | 2.2370(5)   | 3.2365(4) | 170.50(8)    |
| N(1')-HB1N(2)     | 1.0090(1)   | 2.0537(4)   | 3.0534(4) | 170.51(4)    |
| N(2')-HB2N(5)     | 1.0090(1)   | 2.0116(7)   | 3.0121(4) | 170.9(3)     |
| O(1S)-HOS1O(6)    | 0.9670(1)   | 1.7887(8)   | 2.7470(4) | 170.5(4)     |

Symmetry transformations used to generate equivalent atoms:

#1 x,y-1,z #2 x+1,y,z

### **Data quality**

#### **Residual density analysis**

The residual density analysis introduced by Meindl *et al.*<sup>5-6</sup> was also performed on the data for (1), (2) and (3). The results of the analysis for all structures show that the residual density can be fitted to a gaussian distribution implying the remaining residual density can be attributed to noise. The parabolic shape of the curve with the absence of "shoulders" in the data explains that the electron density has been modelled well, which can be expected as the structures contain C, H, N and O. The smaller number of points on the fractal curve for (2) can be attributed to a smaller number of atoms in the asymmetric unit. Fractal plots and residual density histograms can be found in Figures S1-S3 for (1), (2) and (3) respectively.

Residual density maps of the complexes of (1), (2) and (3) can be found in Figures S4 – S6 respectively. All the maps are largely featureless with no significant regions of positive or negative electron density indicating a good fit of the multipole model with the collected data.





(a) fractal plot for (1); residual density vs. fractal dimension



(b) histogram showing residual density of multipole refinement for (1)



Normalized  $(I_{obs}-I_{calc})/sig(I_{obs})$  ranking

(c) structure factor residuals vs. standard uncertainties for (1)

Figure S1: Results of the residual density analysis on the data sets for (1)

# fractal dimension (d<sup>f</sup>) vs. residual density ( $\rho_0$ )



(a) fractal plot for (2); residual density vs. fractal dimension



(b) histogram showing residual density of multipole refinement for (2)



(c) structure factor residuals vs. standard uncertainties for (2)

Figure S2: Results of the residual density analysis on the data sets for (2)

fractal dimension (d<sup>f</sup>) vs. residual density ( $\rho_{\scriptscriptstyle 0})$ 



(a) fractal plot for (3); residual density vs. fractal dimension



(b) histogram showing residual density of multipole refinement for (3)



Figure (c) structure factor residuals vs. standard uncertaintes for (3).





Figure S4: Residual density maps of (1). Contours are shown at 0.1 eÅ<sup>-3</sup>. Solid lines indicate regions of positive electron density and dashed lines indicate regions of negative electron density.



Figure S5: Residual density maps of (2). Contours are shown at 0.1 eÅ<sup>-3</sup>. Solid lines indicate regions of positive electron density and dashed lines indicate regions of negative electron density.



Figure S6: Residual density maps of (**3**). Contours are shown at 0.1 eÅ<sup>-3</sup>. Solid lines indicate regions of positive electron density and dashed lines indicate regions of negative electron density.

## **Topological Analysis**

|                | ρ(    | eÅ-3) | $\nabla^2  ho$ | (eÅ-5) |      | 6    |
|----------------|-------|-------|----------------|--------|------|------|
| Bond           | Exp   | SP    | Exp            | SP     | Exp  | SP   |
| O(1)-C(7)      | 2.993 | 2.743 | -37.54         | -1.66  | 0.07 | 0.10 |
| O(2)-C(13)     | 2.929 | 2.734 | -33.60         | -0.51  | 0.06 | 0.07 |
| O(3)-C(17)     | 1.692 | 1.643 | -8.13          | -9.91  | 0.11 | 0.02 |
| O(3)-C(18)     | 1.988 | 1.940 | -16.11         | -8.65  | 0.03 | 0.02 |
| O(4)-C(24)     | 2.010 | 1.939 | -14.03         | -8.66  | 0.08 | 0.02 |
| O(4)-C(28)     | 1.738 | 1.661 | -6.48          | -9.15  | 0.09 | 0.03 |
| O(5) -C(32)    | 2.781 | 2.735 | -26.85         | -1.81  | 0.21 | 0.09 |
| O(6) -C(38)    | 3.016 | 2.705 | -37.99         | -1.88  | 0.08 | 0.09 |
| O(001)-C(001)  | 1.311 | 1.784 | -2.26          | -11.66 | 1.12 | 0.02 |
| O(001) -H(001) | 2.971 | 2.289 | -43.84         | -46.99 | 0.04 | 0.02 |
| N(1) -C(7)     | 2.221 | 2.142 | -19.04         | -23.63 | 0.27 | 0.10 |
| N(1) -C(8)     | 1.981 | 2.016 | -16.20         | -23.23 | 0.20 | 0.09 |
| N(1) -H(01)    | 2.118 | 2.246 | -32.01         | -40.88 | 0.03 | 0.04 |
| N(2) -C(8)     | 2.469 | 2.367 | -22.30         | -28.15 | 0.14 | 0.17 |
| N(2) -C(12)    | 2.406 | 2.349 | -20.96         | -28.11 | 0.13 | 0.17 |
| N(3) -C(12)    | 2.144 | 2.051 | -17.40         | -23.96 | 0.20 | 0.09 |
| N(3) -C(13)    | 2.197 | 2.140 | -18.76         | -22.88 | 0.13 | 0.08 |
| N(3) -H(03)    | 2.068 | 2.245 | -26.80         | -40.88 | 0.04 | 0.04 |
| N(4) -C(32)    | 2.276 | 2.212 | -21.47         | -23.05 | 0.15 | 0.08 |
| N(4) -C(33)    | 2.089 | 2.017 | -14.16         | -23.91 | 0.16 | 0.11 |
| N(4) -H(04)    | 2.076 | 2.225 | -22.44         | -40.84 | 0.05 | 0.03 |
| N(5) -C(33)    | 2.362 | 2.341 | -18.85         | -28.22 | 0.07 | 0.15 |
| N(5) -C(37)    | 2.540 | 2.422 | -22.32         | -29.36 | 0.12 | 0.19 |
| N(6) -C(37)    | 1.956 | 1.977 | -16.77         | -21.70 | 0.12 | 0.08 |
| N(6) -C(38)    | 2.155 | 2.161 | -21.16         | -24.41 | 0.15 | 0.11 |
| N(6) -H(06)    | 2.107 | 2.260 | -25.29         | -40.91 | 0.06 | 0.04 |
| N(01) -C(02)   | 3.578 | 3.250 | -41.72         | 10.66  | 0.05 | 0.00 |
| C(1) -C(2)     | 2.086 | 2.107 | -17.24         | -20.60 | 0.17 | 0.19 |
| C(1) -C(6)     | 2.064 | 2.113 | -16.82         | -20.55 | 0.18 | 0.20 |
| C(1) -H(1)     | 1.759 | 1.900 | -15.79         | -24.77 | 0.06 | 0.01 |
| C(2) -C(3)     | 2.108 | 2.119 | -16.87         | -20.73 | 0.22 | 0.20 |
| C(2) -C(38)    | 1.754 | 1.812 | -11.49         | -16.51 | 0.15 | 0.10 |
| C(3) -C(4)     | 2.128 | 2.126 | -16.95         | -21.10 | 0.18 | 0.20 |

Table S22: List of bond critical points (BCP's) found from topological analysis of experimental and theoretical models for (1).

| C(3) -H(3)    | 1.773 | 1.890 | -16.37 | -23.95 | 0.03 | 0.01 |
|---------------|-------|-------|--------|--------|------|------|
| C(4) - C(5)   | 2.167 | 2.151 | -18.96 | -21.56 | 0.16 | 0.20 |
| C(4) -H(4)    | 1.788 | 1.893 | -15.90 | -24.37 | 0.05 | 0.01 |
| C(5) -C(6)    | 2.067 | 2.114 | -16.85 | -20.81 | 0.16 | 0.18 |
| C(5) -H(5)    | 1.740 | 1.905 | -16.55 | -25.13 | 0.02 | 0.01 |
| C(6) -C(7)    | 1.773 | 1.821 | -11.32 | -16.73 | 0.13 | 0.09 |
| C(8) -C(9)    | 2.138 | 2.126 | -19.04 | -21.40 | 0.25 | 0.24 |
| C(9) -C(10)   | 2.127 | 2.141 | -19.01 | -21.34 | 0.19 | 0.20 |
| C(9) -H(9)    | 1.834 | 1.897 | -17.98 | -25.17 | 0.08 | 0.02 |
| C(10) -C(11)  | 2.136 | 2.151 | -18.55 | -21.53 | 0.21 | 0.20 |
| C(10) -H(10)  | 1.783 | 1.899 | -16.56 | -24.62 | 0.05 | 0.00 |
| C(11) -C(12)  | 2.051 | 2.097 | -17.78 | -20.77 | 0.15 | 0.23 |
| C(11) -H(11)  | 1.813 | 1.895 | -16.89 | -24.99 | 0.05 | 0.02 |
| C(13) -C(14)  | 1.760 | 1.760 | -10.91 | -15.68 | 0.15 | 0.06 |
| C(14) -C(15)  | 1.650 | 1.657 | -9.66  | -13.59 | 0.01 | 0.01 |
| C(14) -H(14A) | 1.722 | 1.838 | -13.55 | -22.34 | 0.04 | 0.01 |
| C(14) -H(14B) | 1.774 | 1.844 | -13.62 | -21.94 | 0.03 | 0.01 |
| C(15) -C(16)  | 1.620 | 1.670 | -9.33  | -13.80 | 0.06 | 0.01 |
| C(15) -H(15A) | 1.729 | 1.852 | -14.24 | -22.51 | 0.04 | 0.01 |
| C(15) -H(15B) | 1.729 | 1.872 | -13.97 | -23.42 | 0.05 | 0.01 |
| C(16) -C(17)  | 1.689 | 1.748 | -10.66 | -15.36 | 0.06 | 0.03 |
| C(16) -H(16A) | 1.754 | 1.851 | -13.94 | -22.55 | 0.06 | 0.01 |
| C(16) -H(16B) | 1.753 | 1.840 | -12.85 | -21.95 | 0.06 | 0.01 |
| C(17) -H(17A) | 1.779 | 1.896 | -15.17 | -23.97 | 0.05 | 0.04 |
| C(17) -H(17B) | 1.712 | 1.890 | -13.94 | -23.57 | 0.03 | 0.04 |
| C(18) -C(19)  | 2.069 | 2.067 | -16.71 | -20.52 | 0.25 | 0.19 |
| C(18) -C(27)  | 2.146 | 2.185 | -19.37 | -21.91 | 0.23 | 0.31 |
| C(19) -C(20)  | 2.196 | 2.200 | -20.25 | -22.08 | 0.16 | 0.27 |
| C(19) -H(19)  | 1.822 | 1.879 | -16.92 | -23.97 | 0.03 | 0.02 |
| C(20) -C(21)  | 2.014 | 2.031 | -16.15 | -19.45 | 0.18 | 0.16 |
| C(20) -H(20)  | 1.861 | 1.886 | -17.70 | -24.02 | 0.07 | 0.01 |
| C(21) -C(22)  | 2.027 | 2.030 | -16.64 | -19.46 | 0.15 | 0.15 |
| C(21) -C(26)  | 2.052 | 2.044 | -17.16 | -19.51 | 0.18 | 0.17 |
| C(22) -C(23)  | 2.207 | 2.203 | -19.96 | -22.12 | 0.25 | 0.27 |
| C(22) -H(22)  | 1.777 | 1.885 | -16.39 | -24.01 | 0.05 | 0.01 |
| C(23) -C(24)  | 2.037 | 2.064 | -17.70 | -20.49 | 0.28 | 0.19 |
| C(23) -H(23)  | 1.823 | 1.878 | -17.87 | -23.93 | 0.07 | 0.02 |
| C(24) -C(25)  | 2.177 | 2.181 | -20.89 | -21.83 | 0.25 | 0.31 |
| C(25) -C(26)  | 1.992 | 2.004 | -16.84 | -18.87 | 0.18 | 0.17 |
| C(25) -H(25)  | 1.768 | 1.869 | -17.12 | -23.21 | 0.11 | 0.03 |
| C(26) -C(27)  | 2.024 | 2.026 | -16.60 | -19.28 | 0.16 | 0.17 |

| C(27) -H(27)   | 1.813 | 1.868 | -17.03 | -23.22 | 0.06 | 0.02 |
|----------------|-------|-------|--------|--------|------|------|
| C(28) -C(29)   | 1.657 | 1.751 | -10.26 | -15.44 | 0.15 | 0.05 |
| C(28) -H(28A)  | 1.700 | 1.899 | -13.05 | -24.01 | 0.09 | 0.04 |
| C(28) -H(28B)  | 1.733 | 1.896 | -13.94 | -23.97 | 0.08 | 0.04 |
| C(29) -C(30)   | 1.563 | 1.658 | -7.65  | -13.61 | 0.20 | 0.01 |
| C(29) -H(29A)  | 1.731 | 1.848 | -15.21 | -22.42 | 0.03 | 0.01 |
| C(29) -H(29B)  | 1.634 | 1.850 | -12.63 | -22.30 | 0.03 | 0.01 |
| C(30) -C(31)   | 1.495 | 1.685 | -5.02  | -13.95 | 0.56 | 0.02 |
| C(30) -H(30A)  | 1.610 | 1.849 | -9.21  | -22.21 | 0.26 | 0.01 |
| C(30) -H(30B)  | 1.358 | 1.860 | -4.21  | -22.57 | 0.20 | 0.00 |
| C(31) -C(32)   | 1.559 | 1.755 | -7.31  | -15.64 | 0.63 | 0.07 |
| C(31) -H(31A)  | 1.299 | 1.831 | -2.87  | -21.93 | 0.12 | 0.01 |
| C(31) -H(31B)  | 1.742 | 1.852 | -9.33  | -22.57 | 0.81 | 0.02 |
| C(33) -C(34)   | 2.114 | 2.132 | -17.55 | -21.43 | 0.23 | 0.24 |
| C(34) -C(35)   | 2.158 | 2.124 | -19.71 | -21.00 | 0.16 | 0.20 |
| C(34) -H(34)   | 1.817 | 1.896 | -16.82 | -25.15 | 0.07 | 0.02 |
| C(35) -C(36)   | 2.152 | 2.154 | -18.54 | -21.52 | 0.21 | 0.21 |
| C(35) -H(35)   | 1.899 | 1.898 | -18.94 | -24.62 | 0.07 | 0.00 |
| C(36) -C(37)   | 2.115 | 2.118 | -17.69 | -21.02 | 0.23 | 0.25 |
| C(36) -H(36)   | 1.678 | 1.867 | -15.97 | -23.24 | 0.06 | 0.02 |
| C(01) -C(02)   | 1.901 | 1.821 | -15.49 | -17.16 | 0.20 | 0.01 |
| C(01) -H(01A)  | 1.754 | 1.961 | -13.64 | -26.34 | 0.67 | 0.01 |
| C(01) -H(01B)  | 1.942 | 1.959 | -20.29 | -26.19 | 0.16 | 0.03 |
| C(01) -H(01C)  | 1.890 | 1.960 | -16.55 | -26.22 | 0.73 | 0.03 |
| C(001) -C(002) | 0.978 | 1.712 | 3.59   | -14.46 | 0.49 | 0.05 |
| C(001) -H(00A) | 1.402 | 1.877 | -8.35  | -23.11 | 0.29 | 0.05 |
| C(001) -H(00B) | 1.410 | 1.882 | -6.61  | -23.28 | 0.19 | 0.05 |
| C(002) -H(00C) | 1.883 | 1.951 | -7.92  | -25.14 | 0.70 | 0.03 |
| C(002) -H(00D) | 1.361 | 1.951 | -0.98  | -24.49 | 0.17 | 0.02 |
| C(002) -H(00E) | 1.652 | 1.947 | -9.01  | -25.24 | 0.37 | 0.02 |

|                                                                                                  | ho (eÅ <sup>-3</sup> ) |          | $\nabla^2 \rho (\mathrm{e}\mathrm{\AA}^{-5})$ |          |
|--------------------------------------------------------------------------------------------------|------------------------|----------|-----------------------------------------------|----------|
| Bond                                                                                             | Exp                    | SP       | Exp                                           | SP       |
| RCP                                                                                              |                        |          |                                               |          |
| C(1)-C(6)-C(5)-C(4)-C(3)-C(2)                                                                    | 0.175                  | 0.14     | 3.300                                         | 3.97     |
| O(2)-C(13)-N(3)-C(12)-C(11)-H(11)                                                                | 0.111                  | 0.09     | 1.600                                         | 1.75     |
| C(21)-C(20)-C(19)-C(18)-C(27)-C(26)                                                              | 0.159                  | 0.13     | 3.200                                         | 3.73     |
| C(24)-C(23)-C(22)-C(21)-C(26)-C(25)                                                              | 0.142                  | 0.13     | 3.100                                         | 3.71     |
| H(25)-C(25)-C(26)-O(4)-C(28)-H(28A)                                                              |                        | 0.09     |                                               | 1.75     |
| N(5)-C(37)-C(36)-C(35)-C(34)-C(33)                                                               | 0.196                  | 0.16     | 3.700                                         | 4.24     |
| N(6)-H(06)-H(3)-C(3)-C(2)-C(38)                                                                  |                        | 0.09     |                                               | 1.88     |
| O(1)-C(7)-N(1)-C(8)-C(9)-H(9)                                                                    | 0.098                  | 0.08     | 1.500                                         | 1.65     |
| N(2)-C(12)-C(11)-C(10)-C(9)-C(8)                                                                 | 0.185                  | 0.16     | 3.600                                         | 4.22     |
| C(8)-N(1))-C(13)-C(14)-C(17)-C(18)-C(25)-C(26)-<br>C(27) C(12) N(2) N(2) O(2)U(14P) U(17P) U(25) | 0.000                  | 0.00     | 0.000                                         | 0.00     |
| H(28A)-C(001)                                                                                    |                        |          |                                               |          |
| C(01)-C(02)-O(2)-C(13)-C(14)-C(15)                                                               | 0.021                  | 0.06     | 0.300                                         | 0.93     |
| H(34)-C(34)-C(33)-N(4)-C(32)-O(5)                                                                | 0.104                  | 0.08     | 1.500                                         | 1.54     |
| N(5)-O(6)-H(001)                                                                                 |                        | 0.08     |                                               | 1.07     |
| C(30)-H(30B)-O(001)-C(001)-C(002)-H(001E)-<br>H(30A)                                             | 0.021                  | 0.02     | 0.200                                         | 0.23     |
| H(001B)-H(28A)-C(28)-C(29)-C(30)-H(30B)-<br>O(001)-C(001)                                        | 0.021                  | 0.02     | 0.200                                         | 0.17     |
| H(28A)-C(28)-H(28B)-H(001E)-C(002)-C(001)-<br>H(001B)                                            | 0.021                  | 0.01     | 0.200                                         | 0.16     |
| O(001)-H(001)-N(5)-C(33)-N(4)-H(04)                                                              | 0.080                  | 0.07     | 0.900                                         | 0.98     |
| C(38)-N(6)-C(37)-N(5)-O(6)                                                                       |                        | 0.09     |                                               | 1.60     |
| C(13)-C(14)-C(15)-H(15)-N(01)-C(01)-C(02)-O(2)                                                   | 0.021                  | 0.02     | 0.300                                         | 0.30     |
| H(14A)-C(14)-C(15)-C(16)-C(17)-H(17A)                                                            |                        | 0.07     |                                               | 1.09     |
| H(30A)-H(001E)-C(30)-C929)-C(28)-H(26B)                                                          | 0.021                  | 0.01     | 0.200                                         | 0.14     |
| ССР                                                                                              |                        |          |                                               |          |
| C(28)- C(29)-C(30)-H(28A)-H(28B)-H(30A0<br>H(30B)-C(001)-C(002)-O(001)-H(001B)-H(001E)           | 0.053                  | 0.011432 | 0.700                                         | 0.142785 |

Table S23: List of ring and cage critical points (RCP, CCP) found from topological analysis of experimental and theoretical models for (1).

|             | $\rho$ (eÅ <sup>-3</sup> ) |       | $ abla^2 ho$ ( | (eÅ-5) | 3    |      |
|-------------|----------------------------|-------|----------------|--------|------|------|
| Bond        | Exp                        | SP    | Exp            | SP     | Exp  | SP   |
| O(1) -C(1)  | 3.133                      | 2.840 | -46.97         | -9.41  | 0.13 | 0.11 |
| O(2) -C(2)  | 3.055                      | 2.726 | -43.15         | -8.48  | 0.18 | 0.08 |
| N(1) -C(1)  | 2.159                      | 2.101 | -22.71         | -23.11 | 0.25 | 0.12 |
| N(1) -C(2)  | 2.246                      | 2.115 | -24.15         | -21.43 | 0.27 | 0.04 |
| N(1) -H(1)  | 1.899                      | 2.745 | -27.83         | -63.65 | 0.05 | 0.04 |
| C(2) -C(3)  | 1.820                      | 1.728 | -18.73         | -15.04 | 0.22 | 0.06 |
| C(3) -C(4)  | 1.630                      | 1.562 | -10.92         | -11.96 | 0.36 | 0.01 |
| C(4) -C(5)  | 1.650                      | 1.638 | -10.23         | -13.38 | 0.14 | 0.02 |
| C(4) -H(4A) | 1.805                      | 2.219 | -15.81         | -31.27 | 0.06 | 0.02 |
| C(4) -H(4B) | 1.752                      | 2.157 | -14.63         | -29.57 | 0.05 | 0.01 |
| C(5) -H(5A) | 1.843                      | 2.161 | -14.34         | -29.62 | 0.06 | 0.02 |
| C(5) -H(5B) | 1.865                      | 2.302 | -18.86         | -33.26 | 0.17 | 0.02 |
| C(5) -H(5C) | 1.792                      | 2.054 | -12.70         | -26.71 | 0.06 | 0.02 |

Table S24: List of bond critical points (BCP's) found from topological analysis of experimental and theoretical models for (2).

Table S25: List of ring and cage critical points (RCP, CCP) found from topological analysis of experimental and theoretical models for (2).

|                                         | <i>ρ</i> (e | Å-3)  | $\nabla^2  ho (\mathrm{e}\mathrm{\AA}^{-5})$ |      |
|-----------------------------------------|-------------|-------|----------------------------------------------|------|
| Bond                                    | Exp         | SP    | Exp                                          | SP   |
| C(2) - C(3) - C(2) - N(1) - C(1) - N(1) |             | 0.127 |                                              | 3.29 |

|               | $\rho(\mathbf{e})$ | Å-3)   | $ abla^2  ho$ ( | (eÅ-5) | ٤    | 3    |
|---------------|--------------------|--------|-----------------|--------|------|------|
| Bond          | Exp                | SP     | Exp             | SP     | Exp  | SP   |
| O(1) -C(7)    | 2.722              | 2.734  | -14.54          | -1.76  | 0.18 | 0.09 |
| O(2) -C(13)   | 2.906              | 2.719  | -27.74          | -2.23  | 0.18 | 0.08 |
| O(3) -C(17)   | 1.703              | 1.665  | -9.77           | -9.16  | 0.12 | 0.03 |
| O(3) -C(18)   | 2.016              | 1.940  | -14.48          | -8.74  | 0.17 | 0.02 |
| O(4) -C(24)   | 2.055              | 1.947  | -17.81          | -8.63  | 0.07 | 0.02 |
| O(4) -C(28)   | 1.650              | 1.663  | -9.57           | -9.40  | 0.12 | 0.02 |
| O(5) -C(32)   | 2.969              | 2.729  | -32.70          | -1.75  | 0.16 | 0.09 |
| O(6) -C(38)   | 2.771              | 2.678  | -24.97          | -2.67  | 0.09 | 0.08 |
| O(6) -H(OS1)  | 0.157              | 0.232  | 4.99            | 3.06   | 0.06 | 0.02 |
| O(1') -C(1')  | 2.943              | 2.752  | -33.15          | -5.75  | 0.16 | 0.12 |
| O(2') -C(2')  | 3.014              | 2.790  | -37.74          | 0.44   | 0.17 | 0.09 |
| O(3') -C(4')  | 3.061              | 2.740  | -32.79          | -0.78  | 0.12 | 0.08 |
| O(3') -H(04)  | 0.185              | 0.238  | 3.08            | 2.84   | 0.01 | 0.02 |
| O(1S) -C(1S)  | 1.766              | 1.765  | -10.72          | -12.39 | 0.11 | 0.01 |
| O(1S) -H(OS1) | 2.422              | 2.319  | -22.44          | -45.64 | 0.04 | 0.02 |
| N(1) -C(7)    | 2.146              | 2.145  | -19.18          | -24.18 | 0.13 | 0.10 |
| N(1) -C(8)    | 2.091              | 2.009  | -19.56          | -23.33 | 0.07 |      |
| N(1) -H(01)   | 1.921              | 2.233  | -24.09          | -40.73 | 0.06 | 0.03 |
| N(2) -C(8)    | 2.341              | 2.327  | -23.38          | -27.84 | 0.19 | 0.17 |
| N(2) -C(12)   | 2.349              | 2.309  | -21.36          | -27.37 | 0.12 | 0.18 |
| N(3) -C(12)   | 2.062              | 2.048  | -16.35          | -24.02 | 0.18 | 0.09 |
| N(3) -C(13)   | 2.226              | 2.141  | -21.53          | -23.39 | 0.12 | 0.08 |
| N(3) -H(03)   | 1.825              | 2.245  | -23.11          | -40.67 | 0.05 | 0.04 |
| N(4) -C(32)   | 2.151              | 2.163  | -20.89          | -23.90 | 0.12 | 0.09 |
| N(4) -C(33)   | 2.124              | 2.064  | -19.32          | -24.68 | 0.15 | 0.10 |
| N(4) -H(04)   | 1.887              | 2.233  | -26.42          | -40.66 | 0.05 | 0.03 |
| N(5) -C(33)   | 2.263              | 2.311  | -21.67          | -27.20 | 0.23 | 0.17 |
| N(5) -C(37)   | 2.337              | 2.335  | -21.30          | -28.00 | 0.24 | 0.18 |
| N(6) -C(37)   | 1.923              | 1.961  | -15.79          | -22.45 | 0.21 | 0.10 |
| N(6) -C(38)   | 2.185              | 2.183  | -20.71          | -24.47 | 0.14 | 0.11 |
| N(6) -H(06)   | 1.917              | 2.235  | -23.61          | -40.79 | 0.07 | 0.03 |
| N(1') -C(1')  | 2.173              | -8.015 | -20.04          | 3.19   | 0.14 | 0.13 |
| N(1') -C(2')  | 2.074              | 2.104  | -19.22          | 24.02  | 0.19 | 0.05 |
| N(1') -H(B1)  | 1.942              | 2.190  | -22.17          | -40.17 | 0.04 | 0.03 |
| N(2') -C(1')  | 2.055              | 2.176  | -19.31          | -27.63 | 0.10 | 0.13 |
| N(2') -C(4')  | 2.200              | 2.150  | -20.17          | -24.58 | 0.19 | 0.05 |
| N(2') -H(B2)  | 1.921              | 2.189  | -26.17          | -40.16 | 0.03 | 0.03 |

Table S26: List of bond critical points (BCP's) found from topological analysis of experimental and theoretical models for (**3**).

| C(1) -C(2)    | 2.142 | 2.083 | -17.93 | -19.94 | 0.18 | 0.20 |
|---------------|-------|-------|--------|--------|------|------|
| C(1) -C(6)    | 2.124 | 2.091 | -17.46 | -20.11 | 0.25 | 0.20 |
| C(1) -H(1)    | 1.820 | 1.898 | -17.43 | -24.50 | 0.02 | 0.01 |
| C(2) -C(3)    | 2.137 | 2.102 | -18.13 | -20.50 | 0.20 | 0.19 |
| C(2) -C(38)   | 1.771 | 1.818 | -11.49 | -16.66 | 0.13 | 0.09 |
| C(3) -C(4)    | 2.184 | 2.138 | -18.90 | -21.32 | 0.23 | 0.19 |
| C(3) -H(3)    | 1.775 | 1.901 | -15.59 | -24.81 | 0.06 | 0.01 |
| C(4) -C(5)    | 2.224 | 2.136 | -19.31 | -21.29 | 0.26 | 0.19 |
| C(4) -H(4)    | 1.879 | 1.890 | -19.38 | -24.29 | 0.04 | 0.01 |
| C(5) -C(6)    | 2.169 | 2.111 | -18.30 | -20.69 | 0.25 | 0.19 |
| C(5) -H(5)    | 1.901 | 1.904 | -18.33 | -25.05 | 0.04 | 0.01 |
| C(6) -C(7)    | 1.830 | 1.805 | -12.71 | -16.42 | 0.09 | 0.09 |
| C(8) -C(9)    | 2.207 | 2.110 | -20.35 | -21.08 | 0.24 | 0.24 |
| C(9) -C(10)   | 2.295 | 2.137 | -23.10 | -21.28 | 0.22 | 0.19 |
| C(9) -H(9)    | 1.854 | 1.901 | -19.30 | -25.46 | 0.10 | 0.02 |
| C(10) -C(11)  | 2.255 | 2.148 | -22.32 | -21.47 | 0.23 | 0.20 |
| C(10) -H(10)  | 1.884 | 1.899 | -19.51 | -24.70 | 0.12 | 0.00 |
| C(11) -C(12)  | 2.205 | 2.108 | -19.23 | -21.01 | 0.22 | 0.24 |
| C(11) -H(11)  | 1.849 | 1.894 | -18.46 | -24.98 | 0.08 | 0.02 |
| C(13) -C(14)  | 1.817 | 1.742 | -13.86 | -15.36 | 0.03 | 0.06 |
| C(14) -C(15)  | 1.700 | 1.668 | -11.77 | -13.80 | 0.12 | 0.02 |
| C(14) -H(14A) | 1.849 | 1.843 | -17.30 | -22.12 | 0.10 | 0.01 |
| C(14) -H(14B) | 1.693 | 1.831 | -15.09 | -21.89 | 0.05 | 0.01 |
| C(15) -C(16)  | 1.687 | 1.646 | -11.58 | -13.41 | 0.03 | 0.01 |
| C(15) -H(15A) | 1.782 | 1.861 | -17.00 | -22.93 | 0.20 | 0.01 |
| C(15) -H(15B) | 1.710 | 1.850 | -14.60 | -22.31 | 0.01 | 0.01 |
| C(16) -C(17)  | 1.783 | 1.736 | -12.80 | -15.17 | 0.07 | 0.05 |
| C(16) -H(16A) | 1.724 | 1.853 | -16.57 | -22.50 | 0.03 | 0.01 |
| C(16) -H(16B) | 1.799 | 1.844 | -18.15 | -22.22 | 0.03 | 0.01 |
| C(17) -H(17A) | 1.760 | 1.889 | -15.59 | -23.66 | 0.09 | 0.04 |
| C(17) -H(17B) | 1.699 | 1.894 | -13.98 | -23.85 | 0.06 | 0.04 |
| C(18) -C(19)  | 2.101 | 2.060 | -17.35 | -20.39 | 0.27 | 0.19 |
| C(18) -C(27)  | 2.267 | 2.175 | -21.71 | -21.69 | 0.26 | 0.31 |
| C(19) -C(20)  | 2.233 | 2.187 | -20.06 | -21.78 | 0.31 | 0.27 |
| C(19) -H(19)  | 1.753 | 1.877 | -15.52 | -23.94 | 0.08 | 0.02 |
| C(20) -C(21)  | 2.108 | 2.026 | -18.63 | -19.37 | 0.18 | 0.15 |
| C(20) -H(20)  | 1.816 | 1.885 | -17.51 | -24.02 | 0.10 | 0.01 |
| C(21) -C(22)  | 2.027 | 2.020 | -15.76 | -19.25 | 0.24 | 0.15 |
| C(21) -C(26)  | 2.056 | 2.041 | -16.80 | -19.44 | 0.19 | 0.17 |
| C(22) -C(23)  | 2.218 | 2.185 | -21.01 | -21.76 | 0.24 | 0.27 |
| C(22) -H(22)  | 1.811 | 1.885 | -16.06 | -24.01 | 0.13 | 0.01 |

| C(23) -C(24)  | 2.102 | 2.059 | -18.54 | -20.38 | 0.25 | 0.19 |
|---------------|-------|-------|--------|--------|------|------|
| C(23) -H(23)  | 1.827 | 1.877 | -18.51 | -23.95 | 0.19 | 0.02 |
| C(24) -C(25)  | 2.262 | 2.179 | -21.30 | -21.79 | 0.30 | 0.31 |
| C(25) -C(26)  | 2.059 | 2.010 | -17.92 | -18.96 | 0.19 | 0.17 |
| C(25) -H(25)  | 1.797 | 1.865 | -17.41 | -23.06 | 0.09 | 0.03 |
| C(26) -C(27)  | 2.091 | 2.005 | -17.94 | -18.86 | 0.20 | 0.17 |
| C(27) -H(27)  | 1.845 | 1.867 | -18.46 | -23.11 | 0.12 | 0.03 |
| C(28) -C(29)  | 1.762 | 1.736 | -11.76 | -15.13 | 0.13 | 0.05 |
| C(28) -H(28A) | 1.862 | 1.891 | -15.89 | -23.71 | 0.06 | 0.04 |
| C(28) -H(28B) | 1.729 | 1.891 | -16.42 | -23.77 | 0.05 | 0.04 |
| C(29) -C(30)  | 1.701 | 1.653 | -11.69 | -13.54 | 0.08 | 0.01 |
| C(29) -H(29A) | 1.747 | 1.850 | -15.49 | -22.41 | 0.05 | 0.01 |
| C(29) -H(29B) | 1.779 | 1.851 | -15.78 | -22.48 | 0.06 | 0.01 |
| C(30) -C(31)  | 1.609 | 1.622 | -8.96  | -12.98 | 0.10 | 0.01 |
| C(30) -H(30A) | 1.728 | 1.859 | -15.78 | -22.74 | 0.02 | 0.01 |
| C(30) -H(30B) | 1.839 | 1.848 | -16.22 | -22.30 | 0.06 | 0.01 |
| C(31) -C(32)  | 1.727 | 1.751 | -11.68 | -15.56 | 0.10 | 0.05 |
| C(31) -H(31A) | 1.809 | 1.848 | -16.74 | -22.48 | 0.04 | 0.01 |
| C(31) -H(31B) | 1.827 | 1.847 | -17.16 | -22.21 | 0.08 | 0.01 |
| C(33) -C(34)  | 2.257 | 2.104 | -22.14 | -20.94 | 0.23 | 0.23 |
| C(34) -C(35)  | 2.218 | 2.156 | -21.54 | -21.62 | 0.25 | 0.20 |
| C(34) -H(34)  | 1.834 | 1.896 | -20.51 | -25.17 | 0.10 | 0.02 |
| C(35) -C(36)  | 2.192 | 2.126 | -20.06 | -21.05 | 0.20 | 0.19 |
| C(35) -H(35)  | 1.831 | 1.899 | -18.00 | -24.74 | 0.05 | 0.00 |
| C(36) -C(37)  | 2.206 | 2.113 | -19.60 | -21.14 | 0.25 | 0.24 |
| C(36) -H(36)  | 1.847 | 1.903 | -18.67 | -25.48 | 0.09 | 0.02 |
| C(2') -C(3')  | 1.628 | 1.755 | -10.07 | -15.44 | 0.12 | 0.07 |
| C(3') -C(4')  | 1.764 | 1.788 | -12.73 | -16.04 | 0.08 | 0.07 |
| C(3') -C(5')  | 1.521 | 1.550 | -6.83  | -11.87 | 0.03 | 0.01 |
| C(3') -C(7')  | 1.532 | 1.617 | -7.17  | -12.91 | 0.07 | 0.01 |
| C(5') -C(6')  | 1.717 | 1.648 | -11.73 | -13.42 | 0.05 | 0.01 |
| C(5') -H(5'A) | 1.725 | 1.864 | -15.38 | -22.93 | 0.04 | 0.01 |
| C(5') -H(5'B) | 1.710 | 1.860 | -15.05 | -22.84 | 0.06 | 0.02 |
| C(6') -H(6'A) | 1.825 | 1.967 | -17.46 | -25.50 | 0.13 | 0.01 |
| C(6') -H(6'B) | 1.699 | 1.966 | -13.99 | -25.88 | 0.05 | 0.01 |
| C(6') -H(6'C) | 1.761 | 1.964 | -15.83 | -25.47 | 0.19 | 0.01 |
| C(7') -C(8')  | 1.733 | 1.661 | -11.08 | -13.63 | 0.03 | 0.01 |
| C(7') -H(7'A) | 1.663 | 1.859 | -13.78 | -22.74 | 0.03 | 0.01 |
| C(7') -H(7'B) | 1.845 | 1.861 | -17.53 | -22.80 | 0.03 | 0.01 |
| C(8') -H(8'A) | 1.693 | 1.961 | -11.65 | -25.39 | 0.15 | 0.01 |
| C(8') -H(8'B) | 1.800 | 1.970 | -16.34 | -25.98 | 0.11 | 0.01 |

| C(8') -H(8'C) | 2.005 | 1.965 | -19.07 | -25.43 | 0.11 | 0.01 |
|---------------|-------|-------|--------|--------|------|------|
| C(1S) -C(2S)  | 1.562 | 1.729 | -4.71  | -14.89 | 0.59 | 0.04 |
| C(1S) -H(1SA) | 1.370 | 1.892 | -5.51  | -23.80 | 0.15 | 0.04 |
| C(1S) -H(1SB) | 1.967 | 1.878 | -16.95 | -23.07 | 0.09 | 0.04 |
| C(2S) -H(2SA) | 1.042 | 1.964 | 2.91   | -25.66 | 0.67 | 0.00 |
| C(2S) -H(2SB) | 1.382 | 1.951 | 0.54   | -25.17 | 0.31 | 0.01 |
| C(2S) -H(2SC) | 1.138 | 1.958 | 0.67   | -25.51 | 0.67 | 0.00 |

Table S27: List of ring and cage critical points (RCP, CCP) found from topological analysis of experimental and theoretical models for (**3**).

|                                            | $\rho(e$ | Å-3)  | $\nabla^2  ho$ | (eÅ-5) |
|--------------------------------------------|----------|-------|----------------|--------|
| Bond                                       | Exp      | SP    | Exp            | SP     |
| O(1')-C(1')-N(1')-H(B1)-N(2)-C(8)-N(1)-    | 0.036    | 0.029 | 0.40           | 0.45   |
| H(01)                                      |          |       |                |        |
| O(1)-C(7)-N(1)-C(8)-C(9)-H(9)              | 0.127    | 0.092 | 1.80           | 1.92   |
| O(2')-N(3)-C(12)-N(2)-H(B1)-N(1')-C(2')    | 0.038    | 0.028 | 0.40           | 0.43   |
| O(2)-C(13)-N(3)-C(12)-C(11)-H(11)          | 0.115    | 0.085 | 1.50           | 1.63   |
| O(3')-C(4')-N(2')-H(B2)-N(5)-C(33)-N(4)-   | 0.049    | 0.037 | 0.60           | 0.61   |
| H(04)                                      |          |       |                |        |
| O(5)-C32)-N(4)-C(33)-C(34)-H(34)           | 0.107    | 0.082 | 1.40           | 1.64   |
| O(6)-C(38)-N(6)-C(37)-C(36)-H(36)          | 0.131    | 0.094 | 1.80           | 2.00   |
| O(1')-C(1')-N(2')-H(B2)-N(5)-C(37)-N(6)-   | 0.036    | 0.031 | 0.50           | 0.52   |
| H(06)                                      |          |       |                |        |
| N(1')-C(1')-N(2')-C(4')-C(3')-C(2')        | 0.188    | 0.125 | 2.60           | 3.22   |
| C(1)-C(2)-C(3)-C(4)-C(5)-C(6)              | 0.194    | 0.141 | 3.30           | 3.92   |
| N(2)-C(8)-C(9)-C(10)-C(11)-C(12)           | 0.205    | 0.152 | 3.50           | 4.15   |
| C(18)-C(19)-C(20)-C(21)-C(26)-C(27)        | 0.181    | 0.134 | 3.00           | 3.69   |
| C(21)-C(22)-C(23)-C(24)-C(25)-C(26)        | 0.179    | 0.133 | 3.10           | 3.68   |
| O(3')-H(31B)OC(31)-C(32)-N(4)-H(04)        | 0.008    | 0.052 | 0.10           | 0.80   |
| N(5)-C(33)-C(24)-C(35)-C(36)-C(37)         | 0.049    | 0.153 | 0.60           | 4.15   |
| C(25)-C(26)-C(27)-H(27)-H(8'B)-H(25)       | 0.030    | 0.023 | 0.30           | 0.29   |
| O(2')-N(3)-C(13)-C(14)-H(14A)              | 0.052    | 0.041 | 0.60           | 0.60   |
| O(1')-H(1)-C(1)-C(6)-C(7)-N(1)-H01)        | 0.053    | 0.045 | 0.70           | 0.73   |
| O(1')-H(1)-C(1)-C(2)-C(38)-N(6)-H(06)      | 0.052    | 0.048 | 0.70           | 0.78   |
| C(7')-C(8')-H(8'B)-H(27)-H(7'B)            | 0.030    | 0.029 | 0.30           | 0.39   |
| C(7')-C(8')-H(8'B)-H(25)-H(7'A)            | 0.030    | 0.026 | 0.30           | 0.35   |
| O(4)-C(24)-C(25)-H(25)-H(7'A)-C(7')-C(3')- | 0.008    | 0.007 | 0.10           | 0.10   |
| C(4')-O(3')-H(31B)-C(31)-C(30)-C(29)-C(28) |          |       |                |        |

| O(3)-C(17)-C(16)-C(15)-C(14)-H(14A)-        | 0.007 | 0.006 | 0.10  | 0.08 |
|---------------------------------------------|-------|-------|-------|------|
| O(2')-C(2')-C(3')-C(7')-H(7'B)-H(27)-C(27)- |       |       |       |      |
| C(18)                                       |       |       |       |      |
| O(3)-C(17)-C(16)-C(15)-C(14)-H(14A)-        | 1.703 | 0.006 | -9.80 | 0.07 |
| O(2')-C(2')-C(3')-C(7')-C(8')-H(8'B)-H(27)- |       |       |       |      |
| C(27)-C(18)                                 |       |       |       |      |
| O(4)-C(24)-C(25)-H(25)-H(7'A)-C(7')-C(8')-  | 0.008 | 0.006 | 0.10  | 0.07 |
| C(31)-C(3')-C(4')-C(29)-C(30)-O(3')-H(31B)- |       |       |       |      |
| C(28)                                       |       |       |       |      |
| O(6)-C(38)-C(2)-C(3)-H(3)-H(1SB)-C(1S)-     | 0.157 | 0.020 | 5.00  | 0.32 |
| O(1S)-H(OS1)                                |       |       |       |      |
| O(4)-O(3')-C(24)-C(25)-C(28)-C(29)-C(30)-   | 0.008 | 0.006 | 0.10  | 0.08 |
| C(31)-C(3')-C(4')-C97')-C(8')-H(25)-H(31B)- |       |       |       |      |
| H(7'A)                                      |       |       |       |      |
| O(3)-O(2')-C(14)-C(15)-C(16)-C(17)-C(18)-   | 0.000 | 0.006 | 0.00  | 0.08 |
| C(27)-C(2')-C(3')-C(7')-C(8')-H(14A)-H(27)- |       |       |       |      |
| H(7'B)-H(8'B)                               |       |       |       |      |

## Hydrogen bond geometry

Table S28: Geometrical details for hydrogen bonds and short contacts found in (1).

| Bond                                  | <b>dHA</b> (Å) | <b>dDA</b> (Å) | <( <b>DHA</b> ) (°) |  |  |  |  |
|---------------------------------------|----------------|----------------|---------------------|--|--|--|--|
| Intramolecular                        |                |                |                     |  |  |  |  |
| Macrocycle – macrocycle interactions* |                |                |                     |  |  |  |  |
| $C(9)-H(9)\cdots O(1)$                | 2.192          | 2.861          | 117.8               |  |  |  |  |
| $C(11)-H(11)\cdots O(2)$              | 2.149          | 2.830          | 118.4               |  |  |  |  |
| $C(34)-H(34)\cdots O(5)$              | 2.305          | 2.863          | 110.1               |  |  |  |  |
|                                       |                |                |                     |  |  |  |  |
|                                       | Intermolec     | ular           |                     |  |  |  |  |
| Macrocycle – ethanol int              | eractions      |                |                     |  |  |  |  |
| $N(4)-H(04)\cdots O(001)$             | 1.890          | 2.871          | 163.3               |  |  |  |  |
| O(001)-H(001)····N(5)                 | 2.390          | 2.910          | 113.3               |  |  |  |  |
| O(001)-H(001)····O(6)                 | 1.814          | 2.757          | 164.0               |  |  |  |  |
| C(30)-H(30B)···O(001)                 | 2.452          | 3.272          | 130.8               |  |  |  |  |
| Macrocycle – acetonitril              | e interactions |                |                     |  |  |  |  |
| C(15)-H(15B)···N(01)                  | 2.662          | 3.727          | 165.1               |  |  |  |  |
|                                       |                |                |                     |  |  |  |  |
| $C(01)-H(01A)\cdots O(1)^{a}$         | 2.456          | 3.376          | 144.7               |  |  |  |  |
| C(14)-H(14A)···O(1) <sup>b</sup>      | 2.525          | 3.251          | 123.1               |  |  |  |  |
| $C(14)-H(14B)\cdots O(5)^{c}$         | 2.252          | 3.215          | 146.0               |  |  |  |  |
| $C(17)-H(17A)\cdots O(6)^{d}$         | 2.630          | 3.662          | 157.5               |  |  |  |  |
| $C(3)-H(3)\cdots N(01)^{e}$           | 2.503          | 3.307          | 131.1               |  |  |  |  |
| $C(36)-H(36)\cdots N(01)^{e}$         | 2.484          | 3.430          | 145.3               |  |  |  |  |

| $N(3)-H(03)\cdots O(5)^{c}$  | 2.002 | 2.955 | 156.7 |
|------------------------------|-------|-------|-------|
| $N(6)-H(06)\cdots N(01)^{e}$ | 2.150 | 3.139 | 166.4 |

Symmetry operators used to define atoms: a-x+2, -y, -z+1; b-x+1, -y, -z+1; c-x, -y+1, -z+1; d-x+1, -y+1, -z+1; ex-1, y, z-1

\*Bonds located *via* topological search.

Table S29: Geometrical details for hydrogen bonds and short contacts found in (2).

| Bond                       | dHA (Å) | dDA(Å) | <(DHA) (°) |
|----------------------------|---------|--------|------------|
| Intramolecular             |         |        |            |
| $N(1)-H(1)\cdots O(2)^{1}$ | 1.904   | 2.842  | 174.5      |

Symmetry operators used to define atoms: <sup>1</sup>1/2-x,1/2-y,-z

Table S30: Geometrical details for hydrogen bonds and short contacts found in (3).

| Bond                                  | <b>dHA</b> (Å) | <b>dDA</b> (Å) | <(DHA) (°) |  |  |  |  |
|---------------------------------------|----------------|----------------|------------|--|--|--|--|
| Intramolecular                        |                |                |            |  |  |  |  |
| Macrocycle – macrocycle interactions* |                |                |            |  |  |  |  |
| C(9)-H(9)····O(1)                     | 2.074          | 2.764          | 118.8      |  |  |  |  |
| C(11)-H(11)····O(2)                   | 2.286          | 2.860          | 111.0      |  |  |  |  |
| C(34)-H(34)····O(5)                   | 2.223          | 2.873          | 116.4      |  |  |  |  |
| C(36)-H(36)····O(6)                   | 2.039          | 2.747          | 120.2      |  |  |  |  |
| Macrocycle – barbital interactions    | 5              |                |            |  |  |  |  |
| N(1')-H(B1)····N(2)                   | 2.055          | 3.054          | 170.0      |  |  |  |  |
| N(2')-H(B2)····N(5)                   | 2.013          | 3.012          | 170.5      |  |  |  |  |
| N(4)-H(04)····O(3')                   | 1.835          | 2.816          | 163.1      |  |  |  |  |
| N(1)-H(01)····O(1')                   | 2.228          | 3.214          | 165.3      |  |  |  |  |
| N(6)-H(06)····O(1')                   | 2.236          | 3.237          | 171.3      |  |  |  |  |
| $C(1)-H(1)\cdots O(1')$               | 2.224          | 3.010          | 127.7      |  |  |  |  |
| N(3)-H(03)····O(2')                   | 2.677          | 3.016          | 99.7       |  |  |  |  |
| C(14)-H(14A)····O(2')                 | 2.558          | 3.268          | 121.8      |  |  |  |  |
| Macrocycle – ethanol interactions     |                | ·              | ·          |  |  |  |  |
| O(1S)-H(OS1)···O(6)                   | 1.789          | 2.747          | 170.6      |  |  |  |  |
|                                       |                |                |            |  |  |  |  |
| Intermolecular                        |                |                |            |  |  |  |  |
| $C(19)-H(19)\cdots O(3')^{a}$         | 2.569          | 3.451          | 138.0      |  |  |  |  |
| C(31)-H(31A)····O(2') <sup>b</sup>    | 2.281          | 3.318          | 158.0      |  |  |  |  |
| N(3)-H(03)····O(1S) <sup>a</sup>      | 1.860          | 2.859          | 169.9      |  |  |  |  |

Symmetry operators used to define atoms: <sup>a</sup>x, y-1, z; <sup>b</sup>x+1, y, z ; <sup>\*</sup>Bonds located *via* topological search.

| Table S31: Topological analysis of hydrogen bonding in (1). Standard uncertainties have been                                                       |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| omitted for clarity. They are closely scattered around 0.02 eÅ <sup>-3</sup> ( $\rho_{bcp}$ ) and 0.05 eÅ <sup>-5</sup> ( $\nabla^2 \rho_{bcp}$ ). |  |

|                                      | ρ                 | $ abla^2 ho$      | 3    | <i>d</i> н…ьср | <i>d</i> А…ьср | G                                | V                    | H                                | Енв                   |
|--------------------------------------|-------------------|-------------------|------|----------------|----------------|----------------------------------|----------------------|----------------------------------|-----------------------|
|                                      | /eÅ <sup>-3</sup> | /eÅ <sup>-5</sup> | -    | (Å)            | (Å)            | ∕E <sub>h</sub> eÅ <sup>-3</sup> | ∕E <sub>h</sub> eÅ⁻³ | ∕E <sub>h</sub> eÅ <sup>-3</sup> | /kJ mol <sup>-1</sup> |
| Intramolecular                       |                   |                   |      |                |                |                                  |                      |                                  |                       |
| Macrocycle – macrocycle interactions |                   |                   |      |                |                |                                  |                      |                                  |                       |
| C(9)-H(9)····O(1)                    | 0.123             | 1.66              | 0.07 | 0.936          | 1.314          | 0.10                             | -0.09                | 0.01                             | 35.02                 |
| C(11)-H(11)····O(2)                  | 0.134             | 1.80              | 0.05 | 0.919          | 1.300          | 0.11                             | -0.10                | 0.01                             | 38.91                 |
| C(34)-H(34)····O(5)                  | 0.120             | 1.55              | 0.18 | 1.023          | 1.337          | 0.10                             | -0.08                | 0.01                             | 31.12                 |
|                                      |                   |                   |      |                |                |                                  |                      |                                  |                       |
|                                      |                   |                   | Int  | ermolecu       | ılar           |                                  |                      |                                  |                       |
| Macrocycle – ethanol inte            | eractions         |                   |      |                |                |                                  |                      |                                  |                       |
| N(4)-H(04)····O(001)                 | 0.108             | 2.20              | 0.43 | 0.755          | 1.198          | 0.12                             | -0.09                | 0.03                             | 35.02                 |
| O(001)-H(001)····N(5)                | 0.100             | 1.23              | 0.22 | 1.049          | 1.415          | 0.07                             | -0.06                | 0.01                             | 23.34                 |
| O(001)-H(001)····O(6)                | 0.113             | 4.16              | 0.47 | 0.682          | 1.210          | 0.22                             | -0.14                | 0.08                             | 54.47                 |
| C(30)-H(30B)····O(001)               | 0.053             | 0.707             | 0.64 | 1.156          | 1.441          | 0.04                             | -0.03                | 0.01                             | 11.67                 |
| Macrocycle – acetonitrile            | interacti         | ons               |      |                |                |                                  |                      |                                  |                       |
| C(15)-H(15B)····N(01)                | 0.027             | 0.521             | 1.21 | 1.037          | 1.717          | 0.03                             | -0.02                | 0.01                             | 7.78                  |
|                                      |                   |                   |      |                |                |                                  |                      |                                  |                       |
| $C(01)-H(01A)\cdots O(1)^{a}$        | 0.028             | 0.48              | 1.81 | 1.186          | 1.554          | 0.02                             | -0.02                | 0.01                             | 7.78                  |
| $C(14)-H(14A)\cdots O(1)^{b}$        | 0.060             | 0.75              | 0.49 | 1.192          | 1.448          | 0.04                             | -0.03                | 0.01                             | 11.67                 |
| $C(14)-H(14B)\cdots O(5)^{c}$        | 0.094             | 1.44              | 0.19 | 0.912          | 1.356          | 0.08                             | -0.06                | 0.02                             | 23.34                 |
| C(17)-H(17A)····O(6) <sup>d</sup>    | 0.030             | 0.51              | 0.10 | 1.088          | 1.569          | 0.03                             | -0.02                | 0.01                             | 7.78                  |
| C(3)-H(3)····N(01) <sup>e</sup>      | 0.054             | 0.71              | 0.14 | 1.082          | 1.486          | 0.04                             | -0.03                | 0.01                             | 11.67                 |
| C(36)-H(36)····N(01) <sup>e</sup>    | 0.047             | 0.70              | 0.19 | 1.020          | 1.534          | 0.04                             | -0.03                | 0.01                             | 11.67                 |
| $N(3)-H(03)\cdots O(5)^{c}$          | 0.105             | 2.28              | 0.05 | 0.736          | 1.296          | 0.13                             | -0.09                | 0.03                             | 35.02                 |
| N(6)-H(06)····N(01) <sup>e</sup>     | 0.072             | 1.75              | 0.08 | 0.775          | 1.395          | 0.09                             | -0.06                | 0.03                             | 23.34                 |
Table S32: Topological analysis of hydrogen bonding in (2). Standard uncertainties have been omitted for clarity. They are closely scattered around 0.02 eÅ<sup>-3</sup> ( $\rho_{bcp}$ ) and 0.05 eÅ<sup>-5</sup> ( $\nabla^2 \rho_{bcp}$ ).

|                            | ρ                 | $ abla^2 ho$      | 3    | <i>d</i> н…ьср | <i>d</i> А…ьср | G               | V                                | Н               | Енв                   |
|----------------------------|-------------------|-------------------|------|----------------|----------------|-----------------|----------------------------------|-----------------|-----------------------|
|                            | /eÅ <sup>-3</sup> | /eÅ <sup>-5</sup> |      | (Å)            | (Å)            | $/E_h e Å^{-3}$ | ∕E <sub>h</sub> eÅ <sup>-3</sup> | $/E_h e Å^{-3}$ | /kJ mol <sup>-1</sup> |
| Intermolecular             |                   |                   |      |                |                |                 |                                  |                 |                       |
| $N(1)-H(1)\cdots O(2)^{a}$ | 0.133             | 3.34              | 0.02 | 0.622          | 1.217          | 0.18            | -0.13                            | 0.05            | 50.58                 |

Symmetry operators used to define atoms: <sup>a</sup>3/2-x, 1/2-y, -z



Figure S7: Hirshfeld surface for (2).



Figure S8: 2-dimensional fingerprint plots of (2); (a) all interactions, (b)  $O \cdots H$  interactions, (c)  $N \cdots H$  interactions, (d)  $C \cdots H$  interactions and (e)  $H \cdots H$  interactions.

| ATOM             | <b>PV</b> $(Exp)$ | $\Omega(Exp)$ | $\Omega$ ( <b>DFT</b> ) |
|------------------|-------------------|---------------|-------------------------|
| <b>O</b> (1) (1) | 6.32              | -1.12         | -1.20                   |
| (3)              | 6.47              | -1.26         | -1.21                   |
| <b>O</b> (2)     | 6.28              | -1.00         | -1.23                   |
|                  | 6.36              | -1.23         | -1.22                   |
| <b>O</b> (3)     | 6.38              | -1.08         | -1.13                   |
| - (- )           | 6.36              | -1.12         | -1.13                   |
| <b>O</b> (4)     | 6.34              | -1.04         | -1.13                   |
|                  | 6.35              | -1.12         | -1.13                   |
| <b>O</b> (5)     | 6.41              | -1.12         | -1.23                   |
|                  | 6.32              | -1.17         | -1.23                   |
| <b>O</b> (6)     | 6.31              | -1.01         | -1.22                   |
|                  | 6.43              | -1.17         | -1.22                   |
| N(1)             | 5.26              | -1.22         | -1.29                   |
|                  | 5.54              | -1.41         | -1.29                   |
| N(2)             | 5.15              | -0.86         | -1.29                   |
|                  | 5.42              | -1.14         | -1.29                   |
| N(3)             | 5.27              | -1.19         | -1.31                   |
|                  | 5.54              | -1.36         | -1.29                   |
| N(4)             | 5.32              | -1.22         | -1.31                   |
|                  | 5.48              | -1.41         | -1.33                   |
| N(5)             | 5.16              | -0.83         | -1.23                   |
|                  | 5.43              | -1.13         | -1.29                   |
| N(6)             | 5.23              | -1.15         | -1.31                   |
|                  | 5.56              | -1.43         | -1.29                   |
| C(1)             | 4.04              | -0.05         | -0.04                   |
|                  | 4.16              | -0.22         | -0.05                   |
| C(2)             | 4.01              | -0.02         | -0.01                   |
|                  | 4.20              | -0.16         | -0.01                   |
| C(3)             | 4.10              | -0.16         | -0.03                   |
|                  | 4.22              | -0.28         | -0.02                   |
| C(4)             | 4.04              | -0.08         | -0.04                   |
|                  | 4.15              | -0.19         | -0.03                   |
| C(5)             | 3.95              | 0.02          | -0.05                   |
|                  | 4.17              | -0.22         | -0.02                   |
| C(6)             | 3.99              | -0.01         | -0.01                   |

Table S33: Atomic charges (e) from multipole refinement for the macrocycle. Standard uncertainties have been omitted for clarity.

|               | 1.20 | 0.05  | 0.01  |
|---------------|------|-------|-------|
|               | 4.28 | -0.25 | -0.01 |
| <b>C</b> (7)  | 4.05 | 1.06  | 1.52  |
|               | 4.05 | 1.07  | 1.51  |
| <b>C(8</b> )  | 3.97 | 0.65  | 1.02  |
|               | 4.03 | 0.63  | 0.95  |
| <b>C</b> (9)  | 3.87 | 0.10  | -0.06 |
|               | 4.15 | -0.21 | -0.03 |
| C(10)         | 3.92 | 0.05  | -0.03 |
|               | 4.12 | -0.22 | -0.02 |
| C(11)         | 3.89 | 0.04  | -0.03 |
|               | 4.17 | -0.21 | -0.02 |
| C(12)         | 4.03 | 0.59  | 0.95  |
|               | 4.10 | 0.55  | 0.97  |
| C(13)         | 4.10 | 0.96  | 1.54  |
|               | 4.05 | 1.13  | 1.51  |
| C(14)         | 4.00 | -0.07 | -0.01 |
|               | 4.10 | -0.21 | -0.02 |
| C(15)         | 4.01 | -0.07 | 0.00  |
|               | 3.99 | -0.09 | 0.02  |
| C(16)         | 4.02 | -0.03 | 0.03  |
|               | 4.14 | -0.25 | 0.02  |
| <b>C</b> (17) | 4.02 | 0.23  | 0.46  |
|               | 4.15 | 0.11  | 0.45  |
| C(18)         | 3.89 | 0.48  | 0.52  |
|               | 4.13 | 0.28  | 0.52  |
| C(19)         | 3.96 | -0.03 | -0.04 |
|               | 4.11 | -0.13 | -0.04 |
| C(20)         | 3.95 | -0.02 | -0.04 |
|               | 4.09 | -0.14 | -0.04 |
| C(21)         | 3.93 | 0.11  | 0.01  |
|               | 4.19 | -0.18 | 0.01  |
| C(22)         | 3.90 | 0.08  | -0.04 |
|               | 3.96 | 0.04  | -0.04 |
| C(23)         | 3.99 | -0.06 | -0.04 |
|               | 4.07 | -0.12 | -0.04 |
| C(24)         | 3.84 | 0.53  | 0.53  |
|               | 4.05 | 0.33  | 0.52  |
| C(25)         | 3.95 | -0.04 | -0.06 |
|               | 4.17 | -0.21 | -0.07 |
| C(26)         | 3.95 | 0.05  | 0.03  |
|               | 4.08 | -0.07 | 0.02  |

| C(27)                 | 3.89 | 0.07  | -0.07 |
|-----------------------|------|-------|-------|
|                       | 4.12 | -0.18 | -0.07 |
| C(28)                 | 3.95 | 0.25  | 0.44  |
|                       | 4.19 | 0.05  | 0.45  |
| C(29)                 | 4.03 | -0.05 | 0.02  |
|                       | 4.22 | -0.31 | 0.03  |
| C(30)                 | 3.82 | -0.16 | 0.02  |
|                       | 4.10 | -0.21 | 0.01  |
| C(31)                 | 3.49 | 0.10  | -0.01 |
|                       | 4.07 | -0.19 | -0.02 |
| C(32)                 | 4.14 | 0.93  | 1.51  |
|                       | 4.04 | 1.16  | 1.51  |
| C(33)                 | 4.12 | 0.46  | 0.98  |
|                       | 3.95 | 0.72  | 0.98  |
| C(34)                 | 4.02 | -0.07 | -0.04 |
|                       | 4.22 | -0.32 | -0.03 |
| C(35)                 | 3.89 | 0.04  | -0.03 |
|                       | 4.02 | -0.10 | -0.02 |
| C(36)                 | 4.05 | -0.13 | -0.04 |
|                       | 4.21 | -0.27 | -0.04 |
| C(37)                 | 3.99 | 0.65  | 0.98  |
|                       | 4.05 | 0.58  | 0.93  |
| C(38)                 | 3.92 | 1.18  | 1.53  |
|                       | 4.08 | 1.04  | 1.50  |
| <b>H</b> (1)          | 0.88 | 0.17  | 0.09  |
|                       | 0.87 | 0.21  | 0.08  |
| <b>H</b> ( <b>3</b> ) | 0.89 | 0.18  | 0.10  |
|                       | 0.92 | 0.13  | 0.09  |
| H(4)                  | 0.98 | 0.06  | 0.05  |
|                       | 0.93 | 0.11  | 0.07  |
| H(5)                  | 0.87 | 0.17  | 0.07  |
|                       | 0.98 | 0.09  | 0.10  |
| <b>H</b> (9)          | 0.93 | 0.14  | 0.08  |
|                       | 0.85 | 0.25  | 0.15  |
| H(10)                 | 0.97 | 0.04  | 0.06  |
|                       | 0.93 | 0.15  | 0.07  |
| H(11)                 | 0.90 | 0.21  | 0.13  |
|                       | 0.88 | 0.20  | 0.13  |
| $H(14\overline{A})$   | 1.02 | 0.05  | 0.06  |
|                       | 0.96 | 0.10  | 0.02  |
| H(14B)                | 1.04 | -0.02 | 0.04  |

|        | 0.84 | 0.23  | 0.03 |
|--------|------|-------|------|
| H(15A) | 0.90 | 0.14  | 0.01 |
|        | 0.97 | 0.09  | 0.05 |
| H(15B) | 1.02 | 0.01  | 0.00 |
|        | 0.85 | 0.21  | 0.02 |
| H(16A) | 1.12 | -0.11 | 0.02 |
|        | 0.83 | 0.23  | 0.03 |
| H(16B) | 1.00 | 0.01  | 0.04 |
|        | 0.83 | 0.23  | 0.02 |
| H(17A) | 0.96 | 0.07  | 0.03 |
|        | 0.93 | 0.11  | 0.02 |
| H(17B) | 0.91 | 0.11  | 0.03 |
|        | 0.85 | 0.19  | 0.03 |
| H(19)  | 1.01 | 0.04  | 0.07 |
|        | 0.96 | 0.10  | 0.07 |
| H(20)  | 1.01 | 0.04  | 0.05 |
|        | 0.96 | 0.08  | 0.05 |
| H(22)  | 0.91 | 0.15  | 0.05 |
|        | 1.10 | -0.07 | 0.05 |
| H(23)  | 0.92 | 0.16  | 0.07 |
|        | 0.94 | 0.13  | 0.08 |
| H(25)  | 0.86 | 0.23  | 0.04 |
|        | 0.88 | 0.18  | 0.04 |
| H(27)  | 0.93 | 0.13  | 0.04 |
|        | 0.92 | 0.13  | 0.04 |
| H(28A) | 1.03 | 0.02  | 0.01 |
|        | 1.01 | 0.01  | 0.02 |
| H(28B) | 0.98 | 0.07  | 0.04 |
|        | 0.78 | 0.29  | 0.03 |
| H(29A) | 0.81 | 0.22  | 0.02 |
|        | 0.87 | 0.17  | 0.03 |
| H(29B) | 0.97 | 0.07  | 0.03 |
|        | 0.94 | 0.12  | 0.03 |
| H(30A) | 0.89 | 0.26  | 0.05 |
|        | 0.89 | 0.16  | 0.04 |
| H(30B) | 1.13 | 0.09  | 0.03 |
|        | 0.99 | 0.07  | 0.01 |
| H(31A) | 1.07 | 0.12  | 0.00 |
|        | 0.89 | 0.18  | 0.05 |
| H(31B) | 1.17 | 0.00  | 0.05 |
|        | 0.96 | 0.11  | 0.02 |

| H(34) | 0.90 | 0.19 | 0.14 |
|-------|------|------|------|
|       | 0.77 | 0.34 | 0.14 |
| H(35) | 1.04 | 0.02 | 0.07 |
|       | 0.91 | 0.17 | 0.08 |
| H(36) | 0.78 | 0.30 | 0.14 |
|       | 0.86 | 0.23 | 0.15 |
| H(01) | 0.73 | 0.62 | 0.46 |
|       | 0.68 | 0.54 | 0.47 |
| H(03) | 0.76 | 0.56 | 0.46 |
|       | 0.62 | 0.57 | 0.44 |
| H(04) | 0.82 | 0.45 | 0.45 |
|       | 0.64 | 0.61 | 0.49 |
| H(06) | 0.81 | 0.49 | 0.45 |
|       | 0.69 | 0.54 | 0.47 |

Table S34: Atomic charges (e) from multipole refinement for barbital. Standard uncertainties

have been omitted for clarity.

| ATOM      | $\mathbf{PV}(\mathbf{Exp})$ | $\Omega(Exp)$ | $\Omega$ ( <b>DFT</b> ) |
|-----------|-----------------------------|---------------|-------------------------|
| O(1) (2)  | 5.99                        | -0.84         | -1.14                   |
| (3)       | 6.19                        | -0.91         | -1.24                   |
| O(2) (2)  | 6.04                        | -0.84         | -1.12                   |
| (3)       | 6.02                        | -0.83         | -1.21                   |
|           | 6.07                        | -0.79         | -1.22                   |
| (3)(SYMM) |                             |               |                         |
| N(1)      | 5.10                        | -1.11         | -1.20                   |
|           | 5.18                        | -1.11         | -1.33                   |
|           | 5.14                        | -1.11         | -1.32                   |
| C(1)      | 3.89                        | 1.29          | 1.83                    |
|           | 3.94                        | 1.44          | 1.95                    |
| C(2)      | 3.99                        | 1.11          | 1.38                    |
|           | 4.04                        | 1.11          | 1.49                    |
|           | 4.00                        | 0.05          | 0.03                    |
| C(3)      | 3.93                        | 0.12          | 0.01                    |
|           | 4.24                        | 0.81          | 1.48                    |
| C(4)      | 4.10                        | -0.17         | 0.13                    |
|           | 3.85                        | 0.07          | 0.00                    |
|           | 3.88                        | 0.10          | 0.01                    |
| C(5)      | 4.02                        | 0.06          | 0.15                    |
|           | 3.85                        | 0.07          | 0.00                    |

| 3.80 | 0.09                                                                                                                                                                                                                              | 0.00                                                   |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| 0.98 | 0.08                                                                                                                                                                                                                              | -0.01                                                  |
| 0.96 | 0.09                                                                                                                                                                                                                              | 0.05                                                   |
| 0.91 | 0.14                                                                                                                                                                                                                              | 0.04                                                   |
| 0.94 | 0.11                                                                                                                                                                                                                              | -0.01                                                  |
| 0.94 | 0.13                                                                                                                                                                                                                              | 0.05                                                   |
| 1.13 | -0.12                                                                                                                                                                                                                             | 0.04                                                   |
| 1.12 | -0.18                                                                                                                                                                                                                             | -0.03                                                  |
| 1.10 | -0.11                                                                                                                                                                                                                             | 0.01                                                   |
| 1.14 | -0.10                                                                                                                                                                                                                             | 0.00                                                   |
| 1.08 | -0.08                                                                                                                                                                                                                             | -0.07                                                  |
| 0.90 | 0.15                                                                                                                                                                                                                              | 0.03                                                   |
| 1.07 | -0.04                                                                                                                                                                                                                             | 0.04                                                   |
| 1.07 | -0.12                                                                                                                                                                                                                             | -0.03                                                  |
| 1.08 | -0.08                                                                                                                                                                                                                             | 0.01                                                   |
| 1.16 | -0.14                                                                                                                                                                                                                             | 0.00                                                   |
| 0.66 | 0.64                                                                                                                                                                                                                              | 0.46                                                   |
| 0.75 | 0.51                                                                                                                                                                                                                              | 0.52                                                   |
| 0.69 | 0.59                                                                                                                                                                                                                              | 0.53                                                   |
|      | 3.80         0.98         0.96         0.91         0.94         0.94         1.13         1.12         1.10         1.14         1.08         0.90         1.07         1.08         1.16         0.66         0.75         0.69 | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ |

## References

1. Hoser, A. A.; Dominiak, P. M.; Wozniak, K., Towards the best model for H atoms in experimental charge-density refinement. *Acta Crystallogr., Sect. A: Found. Crystallogr.* **2009**, *65*, 300-311.

2. Madsen, A. O.; Sorensen, H. O.; Flensburg, C.; Stewart, R. F.; Larsen, S., Modeling of the nuclear parameters for H atoms in X-ray charge-density studies. *Acta Crystallogr., Sect. A: Found. Crystallogr.* **2004**, *A60*, 550-561.

3. Madsen, A. O., SHADE web server for estimation of hydrogen anisotropic displacement parameters. *J. Appl. Crystallogr.* **2006**, *39*, 757-758.

4. Nguyen, T. H.; Howard, S. T.; Hanrahan, J. R.; Groundwater, P. W.; Platts, J. A.; Hibbs, D. E., Experimental and Theoretical Charge Density Distribution in a Host-Guest System: Synthetic Terephthaloyl Receptor Complexed to Adipic Acid. *J. Phys. Chem. A* **2012**, *116*, 5618-5628.

5. Meindl, K.; Henn, J., Foundations of residual-density analysis. *Acta Crystallogr., Sect. A: Found. Crystallogr.* **2008**, *64*, 404-418.

6. Meindl, K.; Henn, J., Residual Density Analysis. In *Electron Density and Chemical Bonding II: Theoretical Charge Density Studies*, Stalke, D., Ed. Springer Berlin Heidelberg: Berlin, Heidelberg, 2012; pp 143-192.