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Park Place, Cardiff, CF10 3AT, United Kingdom. 

 

Abstract 

The stepwise synthesis of imidazo[4,5-f]-1,10-phenanthroline-based ligands that 

incorporate conjugated benzotriazole units are described. Corresponding 

cyclometalated Ir(III) complexes of the type [Ir(C^N)2(L)]BF4 (where C^N = 

cyclometalating ligand; L = phenanthroline type ligand) are reported. The complexes 

were characterized using a variety of techniques, including IR, NMR, UV-vis. 

spectroscopies, mass spectrometry and cyclic voltammetry. The [Ir(ppy)2(L)]BF4 

complexes display luminescence in the visible region with the benzotriazole variants 

showing long-lived blue shifted emission around 495 nm. Supporting TD-DFT 

calculations predict that a mixture of MLCT and LLCT character may contribute to 

the HOMO-LUMO transition of the benzotriazole derivatives. 
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Introduction 

Cyclometalated Ir(III) complexes that possess luminescent properties have attracted 

significant attention [1] 1  since their initial discovery. Ir(III) complexes can be 

developed for a range of optoelectronic applications, such as OLEDs,[2] 2  light 

emitting electrochemical cells (LECs),[3]3 photoredox catalysts,[4]4 photovoltaics[5]5 

and luminescence biomaging.[6]6 More recently, further applications of this class of 

compound have included piezochromics[7] 7  and responsive materials for data 

recording.[8]8 In all cases an understanding and control of the electronic properties of 

the complex are a prerequisite to its effective application. The aims of this work were 

to consider the use of substituted imidazo[4,5-f]-1,10-phenanthroline[9]9 species in 

the synthesis of conjugated benzotriazole-based Ir(III) species and to investigate the 

resultant luminescence properties.  

 Benzotriazoles are a very well-known class of aromatic heterocycle that contain 

three adjacently bonded nitrogen atoms. From a synthetic perspective, they are of 

interest because of their broad applicability, for example, in anti-corrosion[10] 10 

products and for their diverse biological activity[11]11 (benzotriazoles are important 

drug precursors in the pharmaceutical industry). Interestingly, benzotriazoles can 

exhibit fluorescence emission and can also participate in coordination of metal ions 

via one or more of the nitrogen atoms making them attractive candidates in the design 

of larger polymetallic structures and coordination polymers.[12]12 The synthesis of 

benzotriazoles commonly (although myriad variants on the general approach are 

known)13 relies upon the cycloaddition of potentially hazardous azide species with 

functionalized alkynes, often requiring metal-catalysed mediation.[14]14 

 There are few examples of phosphorescent transition metal complexes that 
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incorporate the benzotriazole moiety.[15]15 Recently Choi et al. described a Re(I)-

based species that incorporates a 1H-[1,2,3]triazolo[4,5-c]pyridine ligand (obtained 

via a 4,5-diaminopyridine ligand) which resulted in luminescence from the 

complex.[16]16 An Ir(III) complex that incorporates a benzotriazole moiety following 

reactivity with nitric oxide.[17]17 

 Herein we describe the development of new N-alkyl-4-(1-phenyl-1H-

imidazo[4,5-f][1,10]phenanthrolin-2-yl)benzene-1,2-diamine ligand scaffolds together 

with the synthesis and characterization of the corresponding [Ir(N^C)2(N^N)]BF4 

complexes. Reaction with nitric oxide in solution allows facile formation of 

functionalized, conjugated benzotriazole derivatives that give modulated 

luminescence properties when incorporated into organometallic Ir(III) complexes.  
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Results and Discussion 

Synthesis and Characterisation of L1 – L4 

The adopted general synthetic route to the target benzotriazoles is shown in Scheme 1, 

where the addition of the -NHR’ group provides control over the solubility properties. 

 

 

 
 
Scheme 1. General scheme showing the synthetic route to the benzotriazole species. 
 
 

The nitro-substituted ligands (L1, L2) were synthesized from 1,10-phenanthroline-5,6-

dione (Scheme 2) using 4-chloro-3-nitrobenzaldehyde, aniline and ammonium acetate 

in acetic acid to give the pro-ligand (top right, Scheme 2).[18,19] 18 , 19  Further 

functionalization was achieved by heating the pro-ligand with either 2-(2-

aminoethyl)ethanol or 3-aminopropanol in DMSO,[20]20  to give the nitro-derived 

ligands, L1 and L2, respectively. These species were soluble in a range of common 

organic solvents. 
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Scheme 2. Molecular structures and synthetic pathway to the ligands: (i) 4-chloro-3-

nitrobenzaldehyde, NH4OAc, glacial acetic acid; (ii) 2-(2-aminoethyl)ethanol or 3-

aminopropanol, DMSO; (iii) H2, Pd/C, methanol. 

 

The completion of the aromatic substitution reaction was indicated through 1H NMR 

spectroscopy by an upfield chemical shift (to 6.6–6.8 ppm) of the proton resonance 

(doublet) adjacent to the new aromatic amine substituent (Fig. S1). 13C{1H} NMR 

spectra were also consistent with the proposed structures for L1 and L2 and HRMS 

(ES+) showed the presence of [M+H]+ in both cases. Furthermore, the IR spectra 

revealed NH (ca. 3360 and 2920 cm-1) and -NO2 (ca. 1560 and 1360 cm-1) vibrations 

consistent with the mixed amine/nitro aromatic substituents. Reduction of the nitro 

derivatives using standard conditions (H2/Pd/C) correspondingly gave the diamino- 

adducts L3 and L4. Again, 1H (Fig. S1), 13C{1H} NMR and IR spectroscopies, 
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together with mass spectrometry, were used to confirm the formation of these new 

ligands.  

 

Synthesis and Characterisation of Ir(III) complexes based on L1 – L4 

 

 

Scheme 3. Molecular structures of the isolated Ir(III) complexes based on L1 – L4. 

 

For the initial series of Ir(III) complexes, the well-known [Ir(ppy)2(N^N)]BF4 (where 

ppy = 2-phenylpyridine; N^N = a diimine ligand) motif [21] 21 was targeted. The 

synthesis employed the intermediate bis–acetonitrile complex 

[Ir(ppy)2(MeCN)2]BF4,[22] 22  which was then reacted with L1-L4 to give the 

corresponding complexes (Scheme 3) [Ir(ppy)2(L1-4)]BF4. For comparison, an 

alternative cyclometalating unit (emptz = ethyl-4-methyl-2-phenylthiazole-5-
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carboxylate) [23] 23  was also utilized and thus [Ir(emptz)2(L4)]BF4 was also 

synthesized using the same method described above for the ppy analogue. 

All new complexes were characterized using a range of spectroscopic 

techniques and the data are collected in the Experimental section. The 1H NMR 

spectra of the complexes show aromatic regions with overlapping resonances 

associated with the cyclometalated and diimine ligands (e.g. Fig. S2, SI). For 

[Ir(emptz)2(L4)]BF4, the retention of the ethyl ester functionality was clearly observed 

in the aliphatic region of the spectrum. IR spectroscopy also highlighted the ester 

functionality of the emptz species (ca. 1710 cm-1) and the BF4
– counter ion stretches 

at ca. 1160 and 1030 cm-1. High resolution mass spectra were obtained for all 

complexes revealing the parent cations of [M − BF4]+ with the appropriate isotopic 

distribution for iridium in each case (Fig. S3, SI). 

 

Synthesis and characterisation of benzotriazole derivatives 

The benzotriazole derivatives of selected ligands and complexes were synthesized 

using the 1,2-diamine derivatives L3/4, [Ir(ppy)2(L3/4)]BF4 and [Ir(emptz)2(L4)]BF4 

(Scheme 3). The diamino derivative was dissolved in de-aerated chloroform and NO 

gas was bubbled into the reaction vessel. An indication of reaction was immediate, 

with a rapid color change of the reaction medium. The solution was then exposed to 

air and after work-up (see Experimental section for details) the benzotriazole products 

L5/6 (Scheme 4), [Ir(ppy)2(L5/6)]BF4 and [Ir(emptz)2(L6)]BF4, were isolated in 

moderate-to-high yields and fully characterized.  
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Scheme 4. Structures of the benzotriazole derived ligands L5 and L6. 

 

In all cases, 1H NMR spectroscopy showed the loss of the key NH resonance in all 

cases, and significant downfield shifts [24] 24  (ca. 0.4–1.0 ppm) of the aromatic 

resonances, which are attributed to transformation to the benzotriazole group. Both 

low and high resolution mass spectra showed the presence of [M–BF4]+ for 

[Ir(ppy)2(L5/6)]BF4 and [Ir(emptz)2(L6)]BF4. IR spectroscopic studies on L5/6 and the 

corresponding complexes showed a new peak ca. 1330 cm-1, which was assigned to 

the presence of the triazole moiety. 

 

Electrochemistry of the complexes 

The electrochemical characteristics of the complexes were studied in de-oxygenated 

acetonitrile (Table 1). The cyclic voltammograms were measured at a platinum disc 

electrode (scan rate υ = 200 mVs−1, 10−3 M solutions, 0.1 M [NBu4][PF6] as a 

supporting electrolyte) using the couple of [Fe(η-C5H5)2]0/1+ as an internal reference.  
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Table 1. Electrochemical properties of the complexes. 

Complex  Eox / Va Ered / Va HOMO / eV c 

[Ir(ppy)2(L1)]BF4 +1.35b –1.13,b –1.42b -5.69 

[Ir(ppy)2(L2)]BF4 +1.36b –1.23,b –1.47b -5.70 

[Ir(ppy)2(L3)]BF4 +1.36b –1.42 -5.70 

[Ir(ppy)2(L4)]BF4 +1.40b –1.38 -5.74 

[Ir(ppy)2(L5)]BF4 +1.35b –1.42b -5.69 

[Ir(ppy)2(L6)]BF4 +1.78b –1.30,b –1.46b -6.12 

[Ir(emptz)2(L4)]BF4 +1.51b –1.37,b –1.65b -5.85 

[Ir(emptz)2(L6)]BF4 +1.42b –1.40b -5.76 

a measured as dichloromethane solutions at 200 mVs–1 with 0.1 M [NBu4][PF6] as 

supporting electrolyte calibrated with Fc/Fc+; b irreversible oxidations and reductions 

are reported as anodic and cathodic peak potentials, respectively; c the HOMO energy 

level was calculated using the equation –EHOMO (eV) = Eox – EFc/Fc+ + 4.8. 

 

Each complex showed one non–fully reversible oxidation, generally over the range 

+1.35 to +1.51 V, assigned to the Ir3+/4+ couple.[25]25 The oxidation potential of the 

complexes containing the glycol appended ligands (L1, L3 and L5) was invariant 

across the series. On the other hand, for the [Ir(ppy)2(L2/4/6)]BF4 group of complexes 

the benzotriazole derivative gave the highest Eox value. Comparison of ppy and emptz 

derivatives also showed subtle changes in the value of the Ir3+/4+ oxidative couple. 

Each complex generally showed irreversible features on the reduction wave, with one 

or two features –1.37 to –1.47 V. Only the diamino-derived complexes 

[Ir(ppy)2(L3)]BF4 and [Ir(ppy)2(L3)]BF4 showed reversible reductions. These were 

assigned as ligand–centred processes involving both the diimine and/or the 
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cyclometalating ligands. Related imidazo[4,5-f]-1,10-phenanthroline examples in the 

literature by Jayabharathi et al [26]26 have shown reversible reduction waves at ca. –

1.76 and –2.00 V, respectively. The complexes [Ir(ppy)2(L1)]BF4 and 

[Ir(ppy)2(L1)]BF4 show two irreversible reduction features, one of which is attributed 

to the presence of the nitro-functionalised phenyl group appended to the imidazo[4,5-

f]-1,10-phenanthroline, the other is likely due to the ppy ligands. 

 

DFT calculations 

To probe the predicted nature of the electronic transitions involved in these systems, 

calculated representative ligand and complex structures and modelled excited state 

energies using DFT and TD-DFT respectively.  To reduce the computational 

complexity, the calculations made use of a simplified model compound that 

incorporated a methylamine substituent, (LMe1) and the corresponding N-methyl 

substituted benzotriazole (LMe2) (Scheme 5); these simplifications are expected to 

have a relatively minor effect on the excited state energies, which are likely to be 

dominated by significant π-π* and charge transfer transitions.  Solvation (using 

MeCN) was included in all calculations to imitate the experimental conditions as 

closely as possible.  

 

 

Scheme 5. Model ligands used for the DFT and TD-DFT calculations. 
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In each case, the first 50 excited states were modelled to ensure all transitions down to 

ca. 200 nm were considered; details of the excitation energies are provided in the SI.  

Simulated absorption spectra of LMe1 and LMe2 are provided in Fig. 1, along with 

isosurfaces depicting the HOMOs and LUMOs obtained from the calculations.  In 

these studies, TD–DFT calculations employing the B3LYP[27] 27  or M06[28] 28 

functionals substantially overestimated the excitation wavelengths by an additional 

ca. 50 nm;[29]29  the long range corrected hybrid exchange correlation functional 

CAM-B3LYP [29]36 was therefore employed to give an improved description of 

excited states in systems where there is a significant charge transfer component.  The 

use of CAM-B3LYP gave excited state energies that were in closer agreement with 

the experimental data. The electronic properties of the corresponding iridium(III) 

complexes bearing these model ligands (LMe1/2) were also probed using the same level 

of theory as the uncoordinated ligands. 

For both LMe1 and LMe2, TD–DFT studies predict a π–π* assignment of the 

lowest lying absorption bands involving a HOMO to LUMO transition with predicted 

maxima at 305 and 300 nm, respectively. The HOMO for LMe1 is associated with the 

majority of the π-system (all except for the out-of-plane phenyl ring), whereas the 

LUMO was predominantly associated with the imidazo–phenanthroline core. This 

contrasts with the benzotriazole variant, LMe2, where the LUMO was mostly situated 

on the N-phenylimidazo and benzotriazole moieties. For both LMe1 and LMe2 a set of 

stronger bands between 240–290 nm, were also predicted to have both π–π* 

transitions and intramolecular charge transfer (ICT) contributions. The calculations 

predicted a hypsochromic shift upon formation of the benzotriazole (Fig. 1). 
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Figure 1. Simulated UV-vis absorption spectra[30]30 (centre) of LMe1 (solid) and LMe2 

(dotted), alongside depictions of the calculated frontier orbitals (LUMO, top; HOMO, 

bottom) for LMe1 (left) and LMe2 (right). Hydrogen atoms omitted for clarity.  

 

TD–DFT calculations on [Ir(ppy)2(LMe1/2)]+ (Fig. 2) suggest a substantial mixing of 

MLCT and LLCT/ILCT character to the lowest lying absorption bands.[31]31 Figure 2 

shows very clear differences in the predicted nature of the HOMO and HOMO–1 for 

each complex, both of which are involved in these bands. For the diamino derivative 

[Ir(ppy)2(LMe1)]+, the lowest energy band of substantial intensity (339 nm) 

corresponds to the HOMO→LUMO transition; the HOMO is localized exclusively 

over the terminal diaminophenylene moiety thus predicting a much stronger ILCT 

character to the HOMO-LUMO band.  

	



	 13	

 

 

 

Figure 2. Calculated frontier orbitals (LUMO, top; HOMO, middle; HOMO–1, 

bottom) of the model complexes [Ir(ppy)2(LMe1)]+ (left) and [Ir(ppy)2(LMe2)]+ (right). 

Hydrogen atoms omitted for clarity. 

 

Calculations on the benzotriazole derivative [Ir(ppy)2(LMe2)]+ predict a very different 

nature to the corresponding lowest energy transition of appreciable intensity at 329 

nm, which arises from a HOMO–1→LUMO transition.  Although this is a different 

transition to that for [Ir(ppy)2(LMe1)]+, the nature of the transition is comparable, 

being predominantly π→π* in character; the HOMO–1 has a comparable set of orbital 

coefficients over the benzotriazole moiety, but is now much more delocalized, 

compared to that in [Ir(ppy)2(LMe1)]+, thereby corresponding to a lower energy 

orbital.  A further transition, dominated by excitation from the (Ir-5d + ppy-π) orbitals 
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(HOMO–1 in [Ir(ppy)2(LMe1)]+ and HOMO in [Ir(ppy)2(LMe2)]+) to LUMO 

(phenanthroline-π*), is effectively unchanged at 326 nm. The simulated (MeCN) UV-

vis. spectra of Ir(ppy)2(LMe1/2)]+ are shown in the SI (Fig. S4) and predict ca. 15 nm 

hypsochromic shift upon formation of the benzotriazole species.  An analysis of the 

orbital energies of interest to this study shows that the LUMO energies are largely 

unaltered between [Ir(ppy)2(LMe1)]+ (–1.33 eV) and [Ir(ppy)2(LMe2)]+ (–1.34 eV), 

whereas the HOMO energies show a substantial difference (–6.86 eV for 

[Ir(ppy)2(LMe1)]+ and –7.14 eV for [Ir(ppy)2(LMe2)]+); the difference in HOMO 

energies is in good agreement with those obtained in the electrochemical analyses, 

above. Further analysis indicates that the HOMO–1 in [Ir(ppy)2(LMe1)]+ has an almost 

identical energy to the HOMO in [Ir(ppy)2(LMe2)]+ (–7.14 eV for each); these orbitals 

are moreover essentially identical in appearance.  It therefore appears that the HOMO 

in [Ir(ppy)2(LMe1)]+, which is based primarily over the terminal diaminophenylene, is 

lowered in energy upon reaction with NO, presumably as a result of greater 

delocalization, so that is lies below the (Ir-5d + ppy-π) orbital; this HOMO–1 orbital 

therefore becomes the HOMO in [Ir(ppy)2(LMe2)]+, even though its energy is 

unaffected.  The orbital in [Ir(ppy)2(LMe2)]+ that most closely resembles the HOMO 

from [Ir(ppy)2(LMe1)]+ is the HOMO-1 (e.g. in terms of orbital phases and the location 

of the nodes over the benzotriazole component); this correlates well with the expected 

transitions calculated in the TD-DFT studies above. 

Electronic properties of the ligands and Ir(III) complexes 

The UV-vis. absorption spectra of the ligands were recorded in aerated MeCN (2.5 × 

10−5 M) (Fig. 3).  All ligands possessed strong absorption bands <400 nm, assigned to 

overlapping spin-allowed π–π* and imidazole–based n–π* transitions. The 

wavelength positioning of the lowest energy bands for L3/4 are in quite good 
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agreement with the TD-DFT calculations. The spectra of the nitro derivatives (L1/2) 

also showed a weak, broad band ca. 450 nm that is tentatively assigned to an 

intramolecular charge transfer (ICT) transition localized on the ligand.  

 

 

Figure 3. UV-vis absorption profiles of the ligands (MeCN,  2.5 × 10-5 M). 

 

The UV-vis. spectra of the iridium(III) complexes (e.g. Fig. 4) can largely be 

described as comprising metal–perturbed, ligand–centred[32] 32  absorption bands 

between 200–380 nm, and a set of weaker bands in the visible region at 350–500 nm. 

These latter bands were assigned to overlapping spin-allowed 1MLCT (Ir(d)–π*) and 

1ILCT (πphenyl–π*imidazo) transitions,[33] 33  with the possibility of spin–forbidden 

3MLCT transitions contributing to the weaker, low-energy shoulder towards 500 nm. 

Variation of the coordinated diimine ligand resulted in minor tuning of the absorption 

bands, whilst changing the cyclometalating unit from ppy to emptz resulted in a more 

pronounced MLCT feature ca. 450 nm for the latter. 
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 The electronic properties of the benzotriazole-derived ligands (L5/6) showed a 

5–20 nm hypsochromic shift of the absorption bands relative to their diamino 

precursors, consistent with the predictions from TD-DFT (10 nm shift of the lowest 

energy band of significant intensity). Figure 5 shows that formation of the 

benzotriazole complex derivative induced shifts in both 1MLCT and ligand-centered 

transitions throughout the UV-vis regions. The observed trend was a hypsochromic 

shift in the lowest lying absorption band of the complexes after formation of the 

benzotriazole species.  

 

 

Figure 4. UV-vis absorption spectra of L4, [Ir(ppy)2(L4)]BF4 and [Ir(emptz)2(L4)]BF4 

in MeCN at 2.5 × 10-5 M. 

 

The luminescence properties of all ligands and complexes were measured in aerated 

MeCN (Table 2).  
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Figure 5. UV-vis absorption spectra of L3, L5, [Ir(ppy)2(L3)]BF4 and 

[Ir(ppy)2(L5)]BF4 in MeCN at 2.5 × 10-5 M. 

 

Table 2. Absorption and emission properties of the complexes. 

Compound λabs / nma λem / nma,b,c τ / nsa,d Φa,e 

[Ir(ppy)2(L1)]BF4 455 sh, 412, 318 sh, 290 sh, 269 522 (433) 7, 17 (80 %) 0.01 

[Ir(ppy)2(L2)]BF4 456 sh, 414 sh, 316 sh, 293 sh, 269 517 (427) 21 0.01 

[Ir(ppy)2(L3)]BF4 433 sh, 403, 315 sh, 292, 268 579 (431) 5, 65 (92 %) 0.02 

[Ir(ppy)2(L4)]BF4 466 sh, 410 sh, 344, 288 sh 579 (435) 63  0.02 

[Ir(ppy)2(L5)]BF4 463 sh, 382, 341 sh, 293 sh, 266 510 (418) 9, 70 (78 %) 0.05 

[Ir(ppy)2(L6)]BF4 392 sh, 342 sh, 287 sh, 263 496 (416) 320 0.02 

[Ir(emptz)2(L4)]BF4 418 sh, 355 sh, 316 sh, 294, 262 548 (435) 239 0.01 

[Ir(emptz)2(L6)]BF4 403 sh, 355 sh, 313 sh, 293, 268 546 (416) 322 0.11 

a recorded in aerated MeCN solution; b free ligand values in parentheses; cλexc = 355 nm; dλexc = 372 

nm; e using [Ru(bpy)3](PF6)2 in aerated MeCN as a standard (Φem = 0.016) 

 

Room temperature solution state (aerated MeCN) luminescence data showed that all 

ligands were emissive. Upon irradiation at 355 nm ligands produced a broad emission 
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band between 416-435 nm, which is characteristic of phenylimidazo–phenanthroline 

ligands of this type.[39]39 The emission lifetimes (Table 2) of the ligands were 

indicative of a fluorescence (1π–π*) in all cases, with lifetimes <5 ns. It is notable that 

in the series, the pair of benzotriazole derivatives (L5/6) have the shortest wavelength 

emission, revealing a clear distinction from their diamino counterparts (L3/4).  

Room temperature luminescence measurements on aerated MeCN solutions of 

the complexes (Table 2 and Fig. 6) showed visible green or orange emission in the 

range 490–580 nm. For the ppy complexes, highly tuneable emission wavelengths 

were observed between the nitro- (lem ~ 520 nm), diamino- (lem ~ 580 nm) and 

benzotriazole-functionalized (lem ~ 495 nm) complexes. The comparison of 

[Ir(ppy)2(L4)]BF4 and [Ir(emptz)2(L4)]BF4 revealed a much stronger vibronic 

component to the emission band of the latter, as observed previously.[23]  

 

 

 

 

 

 

 

 

 

Figure 6. Comparison of the emission spectra of selected complexes recorded in 

aerated MeCN. 
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Time–resolved emission measurements revealed that the lifetimes varied across the 

series of complexes. Lifetimes for [Ir(ppy)2(L)]BF4 species were observed between 

20–65 ns, which are significantly shorter than generally observed for cyclometalated 

Ir(III) complexes.[34]34 This suggests that some degree of excited state quenching is 

operative in these complexes, possibly due to the presence of both amine and nitro 

groups. Further support for this was indicated by the relatively low quantum yield 

values (typically between 0.5–5%). The shortest lifetime values (ca. 20 ns) were 

observed for complexes of the nitro-functionalized ligands, suggesting that the nitro 

group acts as an effective excited state quencher in these systems. Again, the nitro-

derived species showed the lowest quantum yield values consistent with a quenching 

phenomenon. In comparison, the recorded lifetime for [Ir(emptz)2(L4)]BF4 was 239 ns 

and much more comparable to previous studies,[23] indicating much less sensitivity 

to quenching for this structural variant. 

 

 

 

 

 

 

 

 

 

Figure 7. Comparison of the emission spectra of selected diamino-derived complexes 

and the related benzotriazole species (recorded in aerated MeCN). 
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The corresponding luminescence properties of the benzotriazole complexes 

[Ir(ppy)2(L5/6)]BF4 showed a large hypsochromic shift relative to the corresponding 

diamino-analogues (Fig. 7). In contrast, whilst little shift of the emission wavelength 

was observed between [Ir(emptz)2(L4/6)]BF4, analysis of the integrated emission 

intensity showed a 10–fold enhancement upon formation of the benzotriazole 

derivative (Fig. 8). This luminescence enhancement was further supported by 

quantum yield measurements that showed an increase to 11%, and a lengthening of 

the phosphorescence lifetime from 239 to 322 ns. Taken together this suggests that 

formation of the benzotriazole derivative reduces quenching pathways from the triplet 

emitting state. Previous studies on organic fluorophores have suggested that this 

enhancement is due to the removal of a o–phenylenediamine unit that can act as an 

efficient quencher of excited states via photoinduced electron transfer.[15]15 

 

 

 

 

 

 

 

 

 

Figure 8. Comparison of emission spectra of [Ir(emptz)2(L4)]BF4 (solid) and 

[Ir(emptz)2(L6)]BF4 (dashed) (recorded in aerated MeCN). 
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In summary, diimine type ligands based on substituted imidazo[4,5-f]-1,10-

phenanthroline can be suitably functionalized to yield conjugated new benzotriazole 

derivatives. These species can be utilized as an ancillary ligand in corresponding 

cyclometalated Ir(III) complexes of the form [Ir(C^N)2(L)]+. The complexes display 

visible luminescence in solution, which can either be modulated or enhanced by the 

presence of the benzotriazole group within the substituted imidazo[4,5-f]-1,10-

phenanthroline.  

 

 

 

Experimental 

 

DFT Studies 

Scalar relativistic DFT calculations were carried out using the Gaussian 09 package,35 

with relativistic effects incorporated via the use of appropriate effective core 

potentials (ECPs).  Geometry optimizations were performed without symmetry 

constraints at the CAM–B3LYP level,[36]36  which was developed specifically to 

improve the description of excited states involving substantial charge-transfer 

character. The D3 version of Grimme’s dispersion correction was included in all 

calculations.[37]37 The calculations were undertaken with a basis set consisting of the 

Stuttgart-Dresden basis set plus ECP on Ir, and the cc–pVDZ double–ζ basis set on all 

remaining atoms.[38]38 Stationary points were analysed using frequency calculations, 

to ascertain that they were minima on the potential energy surface. Time-dependent 

DFT (TD–DFT) calculations also employed CAM–B3LYP; the first 50 excited states 

were calculated. As shown by Vlček et al.,[39]39 solvent effects can be crucial for 
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obtaining satisfactory agreement between experiment and TD–DFT.  Solvent was 

therefore modelled using the polarizable continuum model,[40]40 with the molecular 

cavity defined by a united atom model that incorporates hydrogen into the parent 

heavy atom, and included in both geometry optimizations and TD-DFT calculations.   

 

Electrochemical studies 

Electrochemical studies were carried out using a Parstat 2273 potentiostat in 

conjunction with a three-electrode cell. The auxiliary electrode was a platinum wire 

and the working electrode a platinum (1.0 mm diameter) disc. The reference was a 

silver wire separated from the test solution by a fine porosity frit and an agar bridge 

saturated with KCl. Solutions (10 mL MeCN) were 10−3 M in the test compound and 

0.1 M in [NBuN4][PF6] as the supporting electrolyte. Under these conditions, E0′ for 

the one electron oxidation of [Fe(η-C5H5)2], added to the test solutions as an internal 

calibrant, is 0.46 V. Unless specified, all electrochemical values are at υ = 200 mV 

s−1. 

General 

1H and 13C{1H} NMR spectra were recorded on an NMR–FT Bruker 400 MHz or Jeol 

Eclipse 300 MHz spectrometer and recorded in CDCl3, CD3CN or DMSO–d6. 1H and 

13C{1H} NMR chemical shifts (δ) were determined relative to residual solvent peaks 

with digital locking and are given in ppm. Low–resolution mass spectra were obtained 

by the analytical services at Cardiff University. High–resolution mass spectra were 

carried out at the EPSRC National Mass Spectrometry Service at Swansea University. 

UV−vis studies were performed on a Jasco V–570 spectrophotometer in MeCN 

solutions (2.5 × 10−5 M). IR spectra were recorded on a Thermo Scientific Nicolet iS5 
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spectrometer fitted with an iD3 ATR attachment. Photophysical data were obtained 

on a JobinYvon−Horiba Fluorolog spectrometer fitted with a JY TBX picoseconds 

photodetection module. The pulsed source was a Nano-LED configured for 372 nm 

output operating at 1 MHz. Luminescence lifetime profiles were obtained using the 

JobinYvon−Horiba FluoroHub single photon counting module and the data fits 

yielded the lifetime values using the provided DAS6 deconvolution software. 

Quantum yield measurements were obtained on aerated MeCN solutions of the 

complexes, using [Ru(bpy)3](PF6)2 in aerated MeCN as a standard (Φem = 0.016).41  

All reactions were performed with the use of vacuum line and Schlenk 

techniques. Reagents were commercial grade and were used without further 

purification. 1,10–Phenanthroline–5,6–dione was synthesized according to the 

literature.42  

Synthesis  

Synthesis of 2–(3'–nitro–4'–chlorophenyl)–1–phenyl–1H–imidazo[4,5-f][1,10]–

phenanthroline 

1,10–phenanthroline–5,6–dione (450 mg, 2.14 mmol), aniline (0.20 mL, 2.14 mmol), 

4–chloro–3–nitrobenzaldehyde (397 mg, 2.14 mmol) and ammonium acetate (1.65 g, 

21.4 mmol) in glacial acetic acid (9 mL) were heated at reflux for 3 hours. The cooled 

solution was poured into ice cold water (200 mL) and neutralized with 10 % NH4OH 

solution. To this, one drop of 50 % hypochlorite solution was added and the yellow 

precipitate then extracted into CH2Cl2 (2 ´ 200 mL) and washed with water (2 ´ 200 

mL). The organic phase was dried over MgSO4 and the volume reduced to allow 

precipitation by the addition of Et2O. The precipitate was filtered and dried to give the 

product as a yellow powder (yield = 787 mg, 81 %). 1H NMR (400 MHz, CDCl3): δH 
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= 9.16–9.12 (m, 1H), 9.07–9.01 (m, 2H), 8.04 (s, 1H, NO2CCH), 7.74–7.62 (m, 5H, 

phenyl), 7.52 (d, 2H, 3JHH = 7.3 Hz), 7.49–7.37 (m, 2H), 7.27–7.20 (m, 1H) ppm. 

 

Synthesis of  L1
  

2–(2–aminoethyl)ethanol (0.52 mL, 5.27 mmol) was added to 2–(3'–nitro–4'–

chlorophenyl)–1–phenyl–1H–imidazo[4,5-f][1,10]–phenanthroline (426 mg, 1.05 

mmol) and stirred in DMSO (6 mL) under a dinitrogen atmosphere. The slurry was 

heated at ca. 80 ºC for 48 hours then cooled, and the product precipitated by the 

addition of water (20 mL). The reaction mixture was then neutralized with 1M HCl 

and the product isolated by filtration. Washing with copious amounts of water and 

then oven drying gave L1 as an orange-red powder (yield = 378 mg, 69 %). 1H NMR 

(400 MHz, CDCl3): δH = 9.13–9.11 (m, 1H), 9.06 (dd, 1H, JHH = 8.1, 8.3 Hz), 9.00–

8.97 (m, 1H), 8.34 (broad t, 1H, 3JHH = 4.2 Hz, NH), 8.17 (s, 1H), 7.87 (dd, 1H, JHH = 

9.0, 6.1 Hz), 7.72–7.63 (m, 4H), 7.53 (d, 1H, 3JHH = 7.6 Hz), 7.52 (d, 1H, 3JHH = 8.1 

Hz), 7.40 (dd, 1H, JHH = 8.4 Hz), 7.24 (dd, 1H, JHH = 8.4 Hz), 6.80 (d, 1H, 3JHH = 9.2 

Hz), 3.76–3.70 (m, 4H, CH2CH2), 3.58 (t, 2H, 3JHH = 4.8 Hz, OCH2CH2), 3.47 (app. 

quar., 2H, 3JHH = 5.3 Hz, OCH2CH2), 1.87 (broad s, 1H, OH) ppm. 13C{1H} NMR 

(151 MHz, CDCl3): δC = 150.3, 148.7, 148.0, 145.4, 137.8, 136.5, 135.9, 131.5, 131.0, 

130.8, 128.6, 128.1, 127.2, 127.0, 123.9, 123.6, 122.5, 119.8, 117.1, 114.0, 72.5, 68.9, 

61.9, 42.7 ppm. LRMS (AP+) found m/z 521.19 for [M+H]+; HRMS (ES+) found m/z 

521.1923, calculated at 521.1932 for [C29H24N6O4+H]+. IR (solid) νmax: 3356, 2922, 

2858, 1627, 1597, 1571, 1517, 1496, 1469, 1446, 1390, 1354, 1286, 1255, 1224, 

1184, 1151, 1118, 1060, 1028, 987, 960, 929, 887, 823, 798, 783, 736, 711, 677, 653, 

615, 529, 488, 457, 424, 416, 407 cm-1. UV-Vis (MeCN) λmax (ε/M-1cm-1): 447 

(3200), 322 (22400), 284 (35600), 245 (25400), 231 (28200) nm. 
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Synthesis of L2
   

Prepared as for L1
 but using 3–aminopropanol (0.31 mL, 3.98 mmol) and 2–(3'–nitro–

4'–chlorophenyl)–1–phenyl–1H–imidazo[4,5-f][1,10]–phenanthroline (360 mg, 0.80 

mmol) to give L2 as a red solid (yield = 349 mg, 89 %). 1H NMR (400 MHz, CDCl3): 

δH = 9.13 (d, 1H, 3JHH = 1.6 Hz), 9.05 (dd, 1H, JHH = 8.1, 8.0 Hz), 9.00–8.97 (m, 1H), 

8.18 (broad t, 1H, 3JHH = 4.6 Hz, NH), 8.15 (d, 1H, 3JHH = 2.2 Hz), 7.72–7.65 (m, 5H), 

7.62–7.58 (m, 2H), 7.37 (dd, 1H, JHH = 8.5, 8.4 Hz), 7.27 (dd, 1H, JHH = 4.3, 2.3 Hz), 

6.58 (d, 1H, 3JHH = 9.2 Hz), 3.83 (t, 2H, 3JHH = 5.7 Hz, HOCH2), 3.34 (app. quar., 2H, 

3JHH = 5.9 Hz, NHCH2), 2.22 (broad s, 1H, OH), 1.91 (app. quin., 2H, 3JHH = 6.4 Hz, 

NHCH2CH2) ppm. HRMS (ES+) found m/z 491.1821, calculated at 491.1826 for 

[C28H23N6O3]+. IR (solid) νmax: 3375, 2929, 2902, 2866, 1627, 1566, 1543, 1517, 

1498, 1462, 1444, 1425, 1413, 1390, 1367, 1342, 1298, 1255, 1234, 1209, 1166, 1002, 

912, 891, 866, 804, 83, 740, 704, 717, 671, 524, 408 cm-1. UV-Vis (MeCN) λmax 

(ε/M-1cm-1): 560 (3900), 446 (4800), 322 (10500), 282 (13400), 241 (11100), 228 

(12100) nm. 

 

Synthesis of L3
     

L1 (207 mg, 0.40 mmol) and a 10 % loaded Pd/C catalyst (42 mg, 40 µmol) were 

stirred in methanol (15 mL) with H2 gas delivered into the solvent, for 16 hrs, forming 

a green solution. The solution was filtered through Celite to remove the Pd/C and the 

methanol removed under vacuum to give L3 as a green crystalline solid (yield = 130 

mg, 67 %). 1H NMR (250 MHz, CDCl3): δH = 9.17–9.03 (m, 2H), 9.01–8.90 (m, 1H), 

7.72–7.51(m, 5H), 7.51–7.42 (m, 2H), 7.40–7.27 (m, 2H), 7.27–7.13 (m, 2H), 7.09 (s, 

1H), 6.74 (dd, 1H, JHH = 8.3, 8.2 Hz), 6.38 (d, 1H, 3JHH = 8.3 Hz), 3.66 (app. quin., 
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4H, NH2CH2CH2), 3.64 (t, 2H, 3JHH = 5.6 Hz, OCH2CH2), 3.21 (app. quar., 2H, 3JHH 

= 5.1 Hz, OCH2CH2) ppm. 13C{1H} NMR (75 MHz, CDCl3): δC  = 148.9, 139.2, 138.5, 

133.6, 130.8, 130.5, 130.2, 129.2, 129.0, 128.0, 123.5, 122.3, 122.2, 119.9, 117.9, 

110.7, 72.2, 69.2, 65.8, 61.8,43.6, 29.8, 27.4, 15.4 ppm. LRMS (AP+) found m/z 

491.22 for [M+H]+; HRMS (ES+) found m/z 491.2182, calculated at 491.2190 for 

[C29H27N6O2]+. IR (solid) νmax: 3334, 3234, 3062, 2926, 2864, 1598, 1562, 1543, 

1494, 1469, 1446, 1392, 1377, 1338, 1327, 1296, 1276, 1238, 1163, 1118, 1064, 

1033, 995, 927, 879, 802, 738, 707, 675, 621, 405 cm-1. UV-Vis (MeCN) λmax (ε/M-

1cm-1): 333 (16600), 284 (26900), 255 (30172), 232 (31400) nm. 

 

Synthesis of L4
     

Prepared as for L3 but using L2 (272 mg, 0.56 mmol) and a 10% loaded Pd/C 

 catalyst (59 mg, 56 µmol) to give L4 as a green crystalline solid (yield = 208 mg, 81 

%). 1H NMR (400 MHz, CDCl3): δH 9.11–9.03 (m, 2H), 8.97–8.92 (m, 1H), 7.69–

7.65 (m, 1H), 7.62–7.54 (m, 3H), 7.47 (d, 2H, 3JHH = 6.6 Hz), 7.33 (dd, 1H, JHH = 8.4 

, 8.1 Hz), 7.22–7.16 (m, 1H), 7.23 (s, 1H), 6.74 (dd, 1H, JHH = 8.4, 8.3 Hz), 6.35 (d, 

1H, 3JHH = 6.44 Hz), 3.74 (t, 2H, 3JHH = 5.7 Hz, HOCH2), 3.14 (t, 2H, 3JHH = 5.7 Hz, 

NHCH2), 1.91 (app quin, 2H, 3JHH = 6.0 Hz, NHCH2CH2) ppm. 13C{1H} NMR (151 

MHz, CDCl3): δC = 153.0, 148.8, 147.6, 144.6, 144.2, 139.5, 138.5, 135.9, 133.3, 

130.6, 130.4, 130.1, 129.0, 127.9, 126.6, 123.9, 123.4, 122.3, 122.1, 119.9, 119.1, 

117.7, 111.3, 61.6, 41.9, 31.7 ppm. HRMS (ES+) found m/z 461.2080, calculated at 

461.2084 for [C28H25N6O]+. IR (solid) νmax = 3242, 3051, 2947, 1637, 1593, 1564, 

1537, 1514, 1494, 1485, 1467, 1442, 1421, 1350, 1294, 1267, 1157, 1047, 908, 812, 

779, 740, 721, 711, 640, 621, 507, 405 cm-1. UV-Vis (MeCN): λmax (ε/M-1cm-1) = 334 

(29300), 281 (40000), 252 (48700), 231 (51600) nm. 
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Synthesis of L5
  

NO(g) was slowly bubbled through a deaerated CHCl3 solution of L3 (21 mg, 43.8 

µmol) for 30 seconds in a sealed vessel during which time a rapid color change 

occurred. NO(g) delivery was ceased and the solution stirred for 5 minutes. The 

vessel was then opened to air and stirred for a further 30 minutes. The solvent was 

removed in vacuo and the sticky residue dissolved in minimal acetonitrile. 

Precipitation of the product was induced with the slow addition of diethyl ether and 

subsequent filtration and drying gave L5 as a yellow–orange solid (yield = 16 mg, 73 

%). 1H NMR (400 MHz, CD3CN): δH = 9.72 (d, 1H, 3JHH = 7.0 Hz), 9.27 (dd, 1H, 

3JHH = 5.2 Hz, 3JHH = 5.1 Hz), 9.14 (app. t, 1H), 8.41–8.36 (m, 1H), 8.14 (s, 1H), 8.01 

(dd, 1H, JHH = 8.8, 8.7 Hz), 7.95 (d, 1H, 3JHH = 9.1 Hz), 7.90–7.75 (m, 7H), 4.02 (t, 

2H, 3JHH = 5.1 Hz, NCH2), 3.66–3.31 (m, 4H, 2 ´ CH2), 1.20 (t, 2H, 3JHH = 7.0 Hz, 

CH2) ppm. LRMS (ES+) found m/z 524.2 for [M+Na]+; HRMS (ES+) found m/z 

502.1973, calculated at 502.1986 for [C29H24N7O2]+. IR (solid) νmax: 3344, 3062, 

2924, 2873, 1612, 1577, 1543, 1496, 1477, 1442, 1338, 1315, 1242, 1172, 1126, 

1060, 1041, 979, 864, 829, 806, 717, 621, 474, 412 cm-1. UV-Vis (MeCN) λmax (ε/M-

1cm-1): 393 (1100), 300 (23300), 260 (29600), 228 (24000) nm. 

 

Synthesis of L6
  

Prepared as for L5 but using L4 (28 mg, 60.8 µmol) to give L6 as a yellow–orange 

solid (yield = 27 mg, 95 %). 1H NMR (400 MHz, DMSO–d6): δH = 9.65 (d, 1H, 3JHH 

= 8.1 Hz), 9.31 (d, 1H, 3JHH = 4.9 Hz,), 9.18 (d, 1H, 3JHH = 4.2 Hz), 8.43–8.35 (m, 

1H), 8.05 (s, 1H), 8.00–7.75 (m, 8H), 7.64 (d, 1H, 3JHH = 8.6 Hz), 4.76 (t, 2H, 3JHH = 

6.8 Hz, NCH2), 2.05 (app. quin., 2H, NCH2CH2) ppm (N.B. one CH2 resonance was 
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obscured by the residual solvent peak from DMSO). 13C{1H} NMR (151 MHz, 

DMSO–d6): δC = 153.4, 147.2, 145.1, 137.1, 135.0, 133.8, 131.7, 131.5, 131.3, 129.3, 

129.0, 128.0, 126.7, 126.1, 125.2, 125.1, 121.2, 120.6, 111.6, 71.5, 65.4, 58.0, 45.4, 

45.0, 32.8, 31.2, 15.6 ppm. LRMS (ES+) found m/z 472.3 for [M+H]+ and 494.3 for 

[M+Na]+; HRMS (ES+) found m/z 472.1881, calculated at 472.1880 for 

[C28H22N7O]+. IR (solid) νmax: 3394, 3074, 1603, 1577, 1543, 1496, 1473, 1438, 1384, 

1315, 1280, 1242, 1165, 1126, 1072, 1037, 979, 945, 875, 829, 783, 717, 621, 540, 

416 cm-1. UV-Vis (MeCN) λmax (ε/M-1cm-1): 412 (500), 299 (7400), 261 (11100), 230 

(8800) nm. 

General procedure for the synthesis of Ir(III) precursors 

[(C^N)2Ir(µ–Cl)2Ir(C^N)2] where (C^N = ppy or emptz) were synthesized according 

to the Nonoyama route[43]43 and used without further purification. IrCl3·xH2O (0.200 

g, 0.68 mmol) and the appropriate ligand (2.5 eq.) in 2–methoxyethanol (6 mL) and 

distilled water (2 mL) were heated at 120 °C for 48 h. The mixture was allowed to 

cool, and the product precipitated by addition of distilled water (30 mL). The yellow 

[(ppy)2Ir(µ–Cl)2Ir(ppy)2] or red [(emptz)2Ir(µ–Cl)2Ir(emptz)2] solids were collected 

by filtration, washed with distilled water, and dried in an oven. 

[Ir(C^N)2(MeCN)2]BF4 and [Ir(C^N)2(L)]BF4 where (C^N = ppy and emptz) were 

synthesized following methods previously reported.[23] 

 

Synthesis of [Ir(ppy)2(MeCN)2]BF4  

In a foil-wrapped flask, AgBF4 (71 mg, 0.36 mmol) in MeCN (15 mL) was added to a 

stirred solution of [(ppy)2Ir(µ–Cl)2Ir(ppy)2] (195 mg, 0.18 mmol) in hot MeCN (20 

mL), under a dinitrogen atmosphere. The solution was then heated at reflux for 2 

hours and cooled. Precipitation of the product was assisted by the addition of diethyl 
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ether and was subsequently filtered and dried to give [Ir(ppy)2(MeCN)2]BF4 as a 

yellow powder (yield = 231 mg, 91 %). 1H NMR (400 MHz, CDCl3): δH = 9.02 (d, 

2H, 3JHH = 5.8 Hz), 7.87–7.83 (m, 4H), 7.48 (d, 2H, 3JHH = 6.9 Hz), 7.35 (app t, 2H, 

3JHH = 6.2 Hz), 6.84 (app t, 2H, 3JHH = 6.5 Hz), 6.69 (app t, 2H, 3JHH = 6.9 Hz), 6.02 

(d, 2H, 3JHH = 7.6 Hz), 2.30 (s, 6H, CH3CN) ppm. 

 

Synthesis of [Ir(emptz)2(MeCN)2]BF4  

Prepared as for [Ir(ppy)2(MeCN)2]BF4 but using AgBF4 (71 mg, 0.36 mmol) and 

[(emptz)2Ir(µ–Cl)2Ir(emptz)2] (149 mg, 0.11 mmol) to give [Ir(emptz)2(MeCN)2]BF4 

as a yellow powder (yield = 153 mg, 87 %). 1H NMR (400 MHz, CDCl3): δH = 7.53 

(d, 2H, 3JHH = 6.7 Hz), 6.92 (dd, 4H, 3JHH = 7.5 Hz, 3JHH = 7.4 Hz), 6.84 (dd, 2H, 3JHH 

= 7.5, 6.8 Hz), 6.23 (d, 2H, 3JHH = 7.5 Hz), 4.46 (q, 4H, 3JHH = 7.1 Hz, CO2CH2), 3.04 

(s, 6H, CH3), 2.43 (s, 6H, CH3CN), 1.47 (t, 6H, 3JHH = 6.4 Hz, CO2CH2CH3) ppm. 

 

Synthesis of [Ir(ppy)2(L1)]BF4 

L1 (33.1 mg, 63.6 µmol) and [Ir(ppy)2(MeCN)2]BF4 (42.6 mg, 63.6 µmol) were 

heated at reflux in CHCl3 (10 mL) for 48 hours. The solvent was then reduced in 

vacuo and precipitation of the product induced by the slow addition of diethyl ether. 

Subsequent filtration and drying gave [Ir(ppy)2(L1)]BF4 as an orange powder (yield = 

57 mg, 80 %). 1H NMR (400 MHz, CDCl3): δH = 9.32 (d, 1H, 3JHH = 8.4 Hz), 8.45 

(broad t, 1H, 3JHH = 3.6 Hz, NH), 8.41 (d, 1H, 3JHH = 2.4 Hz), 8.26 (d, 1H, 3JHH = 3.6 

Hz), 8.15 (d, 1H, 3JHH = 4.8 Hz), 7.91–7.65 (m, 13H), 7.53–7.47 (m, 2H), 7.37 (d, 1H, 

3JHH = 6.8 Hz), 7.10–7.02 (m, 3H), 6.96 (app. t, 2H), 6.89–6.84 (m, 2H), 6.39 (d, 2H, 

3JHH = 7.6 Hz), 3.79 (app quar, 4H, 2 ´ CH2), 3.68–3.62 (m, 2H, CH2), 3.55–3.50 (m, 

2H, CH2), 0.81 (broad s, 1H, OH) ppm. 13C{1H} NMR (151 MHz, CDCl3): δC = 168.1, 
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167.3, 152.7, 150.5, 149.9, 149.5, 149.1, 148.7, 148.4, 145.8, 145.0, 144.9, 143.9, 

143.4, 138.1, 138.0, 136.8, 136.7, 136.4, 132.9, 132.1, 131.8, 131.7, 131.6, 131.4, 

131.0, 130.7, 130.6, 129.1, 128.6, 128.1, 128.0, 127.9, 126.6, 126.4, 126.2, 124.8, 

124.7, 123.9, 123.1, 122.8, 12.7, 119.6, 119.4, 116.4, 114.3, 114.1 ppm. LRMS (ES+) 

found m/z 1019.3 for [M]+; HRMS (ES+) found m/z 1019.2761, calculated at 

1019.2772 for [C51H40N8O4Ir]+. IR (solid) νmax: 3533, 3369, 3045, 2937, 2872, 1627, 

1606, 1579, 1519, 1477, 1448, 1381, 1352, 1305, 1276, 1238, 1161, 1118, 1053, 

1031, 829, 630, 759, 729, 669, 630, 540, 518, 415 cm-1. UV-Vis (MeCN) λmax (ε/M-

1cm-1): 455 (5900) sh, 412 (10300) sh, 318 (44500) sh, 290 (59000) sh, 269 (68100) 

nm. 

 

 

Synthesis of [Ir(ppy)2(L2)]BF4 

Prepared as for [Ir(ppy)2(L1)2]BF4 but using L2 (36.5 mg, 74.4 µmol) and 

[Ir(ppy)2(MeCN)2]BF4 (49.8 mg, 74.4 µmol) to give [Ir(ppy)2(L2)]BF4 as a yellow 

powder (yield = 61.7 mg, 57 %). 1H NMR (400 MHz, CDCl3): δH = 9.33 (d, 1H, 3JHH 

= 7.6 Hz), 8.14–8.10 (m, 1H), 7.91–7.12 (m, 13H), 7.52–7.44 (m, 3H), 7.35 (d, 1H, 

3JHH = 6.7 Hz), 7.06–6.78 (m, 7H), 6.37 (d, 2H, 3JHH = 8.3 Hz), 3.77 (t, 2H, 3JHH = 5.7 

Hz, NHCH2), 2.11 (t, 2H, 3JHH = 4.2 Hz, CH2OH), 1.96–1.88 (m, 2H, NHCH2CH2), 

0.81 (broad s, 1H, OH) ppm. 13C{1H} NMR (151 MHz, CDCl3): δC = 167.3, 152.8, 

149.3, 148.4, 145.7, 143.8, 143.2, 138.1, 138.0, 136.7, 136.4, 132.1, 131.8, 131.7, 

131.3, 131.2, 131.0, 129.1, 127.9, 126.4, 126.2, 124.8, 124.7, 123.9, 123.1, 122.7, 

119.6, 119.4, 116.0, 114.3, 60.3, 40.5, 31.3, 29.7 ppm. LRMS (ES+) found m/z 989.3 

for [M]+; HRMS (ES+) found m/z 989.2673, calculated at 989.2673 for 

[C50H38N8O3Ir]+. IR (solid) νmax: 3547, 3365, 3059, 2929, 2875, 1627, 1606, 1577, 
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1527, 1496, 1477, 1448, 1419, 1303, 1267, 1230, 1157, 1055, 1031, 894, 808, 758, 

711, 669, 630, 518. 417 cm-1. UV-Vis (MeCN) λmax (ε/M-1cm-1): 456 (5300) sh, 414 

(7800) sh, 316 (37300) sh, 293 (46400) sh, 269 (54900) nm. 

 

Synthesis of [Ir(ppy)2(L3)]BF4 

Prepared as for [Ir(ppy)2(L1)]BF4 but using L3 (29.4 mg, 59.9 µmol) and 

[Ir(ppy)2(MeCN)2]BF4 (40.1 mg, 59.9 µmol) to give [Ir(ppy)2(L3)]BF4 as a pale green 

powder (yield = 53 mg, 82 %). 1H NMR (400 MHz, CDCl3): δH = 9.35 (d, 1H, 3JHH = 

8.1 Hz), 8.45 (broad t, 1H, 3JHH = 3.6 Hz, NH), 8.41 (s, 1H), 8.25 (d, 1H, 3JHH = 4.3 

Hz), 8.14 (d, 1H, 3JHH = 4.1 Hz), 7.92–7.65 (m, 13H), 7.53–7.47 (m, 3H), 7.37 (d, 1H, 

3JHH = 5.1 Hz), 7.11–6.81 (m, 7H), 6.40 (d, 2H, 3JHH = 7.5 Hz), 3.76–3.69 (m, 4H, 2 ´ 

CH2), 3.60 (t, 2H, 3JHH = 4.7 Hz, CH2), 3.47 (t, 2H, 3JHH = 4.6 Hz, CH2), 0.82 (broad 

s, 1H, OH) ppm. 13C{1H} NMR (151 MHz, CD3CN): δC = 167.5, 155.6, 150.6, 150.3, 

149.5, 149.3, 148.4, 144.8, 144.7, 144.2, 139.1, 138.5, 137.7, 136.8, 134.4, 132.4, 

131.7, 130.9, 130.8, 130.7, 130.4, 129.9, 128.8, 128.7, 127.8, 127.0, 126.4, 125.9, 

124.9, 123.4, 123.3, 122.6, 122.6, 121.2, 119.8, 119.8, 117.3, 109.5, 72.368.9, 61.0, 

43.2, ppm. LRMS (ES+) found m/z 989.3 for [M]+; HRMS (ES+) found m/z 989.3051, 

calculated at 989.3037 for [C51H42N8O2Ir]+. IR (solid) νmax: 3369, 3062, 2960, 2924, 

2363, 1606, 1581, 1477, 1419, 1381, 1352, 1338, 1303, 1261, 1226, 1161, 1030, 950, 

883, 806, 758, 727, 669, 518, 415 cm-1. UV-Vis (MeCN) λmax (ε/M-1cm-1): 433 (9000) 

sh, 403 (12100), 315 (47600) sh, 292 (61400), 268 (63000) nm. 

 

Synthesis of [Ir(ppy)2(L4)]BF4 

Prepared as for [Ir(ppy)2(L1)]BF4 but using L4 (35.0 mg, 76.5 µmol) and 

[Ir(ppy)2(MeCN)2]BF4 (51.2 mg, 76.5 µmol) to give [Ir(ppy)2(L4)]BF4 as a brown 
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powder (yield = 62 mg, 77 %). 1H NMR (400 MHz, CDCl3): δH = 9.32 (d, 1H, 3JHH = 

7.6 Hz), 8.23 (d, 1H, 3JHH = 5.0 Hz), 8.11 (d, 1H, 3JHH = 4.0 Hz), 7.90 (d, 2H, 3JHH = 

8.1 Hz), 7.84–7.79 (m, 1H), 7.77–7.56 (m, 10H), 7.48–7.42 (m, 3H), 7.34 (d, 1H, 3JHH 

= 5.2 Hz), 7.10–6.84 (m, 6H), 6.38 (d, 2H, 3JHH = 7.7 Hz), 3.72 (t, 2H, 3JHH = 5.8 Hz, 

NHCH2), 3.22 (t, 2H, 3JHH = 6.4 Hz, CH2OH), 1.82–1.80 (m, 2H, NHCH2CH2), 0.84 

(broad s, 1H, OH) ppm. 13C{1H} NMR (151 MHz, CD3CN): δC = 167.5, 156.1, 150.5, 

150.2, 149.4, 149.3, 148.4, 144.8, 144.2, 139.3, 138.4, 134.2, 132.4, 131.7, 131.6, 

131.4, 130.9, 130.4, 128.9, 128.8, 128.7, 126.9, 126.5, 125.9, 124.9, 123.4, 122.6, 

121.2, 119.8, 115.9, 109.0, 59.7, 40.7, 31.7 ppm. LRMS (AP+) found m/z 959.3 for 

[M]+; HRMS (ES+) found m/z 959.2928, calculated at 959.2931 for [C50H40N8OIr]+. 

IR (solid) νmax: 3354, 3041, 2937, 2875, 1606, 1581, 1477, 1419, 1381, 1303, 1269, 

1157, 1051, 1030, 808, 758, 727, 669, 630, 524, 403 cm-1. UV-Vis (MeCN) λmax 

(ε/M-1cm-1): 466 (2900), 410 (11800), 344 (24900), 288 (49000), 264 (69600) nm. 

 

Synthesis of [Ir(emptz)2(L4)]BF4 

Prepared as for [Ir(ppy)2(L1)]BF4 but using L4 (36.2 mg, 78.6 µmol) and 

[Ir(emptz)2(MeCN)2]BF4 (67.1 mg, 78.6 µmol) to give [Ir(emptz)2(L4)]BF4 as an 

orange powder (yield = 86 mg, 89 %). 1H NMR (400 MHz, CDCl3): δH = 9.40 (d, 1H, 

3JHH = 8.3 Hz), 8.19 (d, 1H, 3JHH = 4.9 Hz), 8.07 (d, 1H, 3JHH = 4.9 Hz), 7.97–7.90 

(m, 1H), 7.80–7.51 (m, 9H), 7.14 (app quar, 2H), 7.08 (app quar, 2H), 6.92 (d, 1H, 

3JHH = 9.9 Hz), 6.52 (app t, 2H), 6.43 (d, 1H, 3JHH = 8.6 Hz), 4.29–4.21 (m, 4H, 2 ´ 

CO2CH2), 3.70 (t, 2H, 3JHH = 5.5 Hz, NHCH2), 3.15 (t, 2H, CH2OH), 1.79 (app t, 2H, 

NHCH2CH2), 1.58 (s, 6H, CH3), 1.29 (t, 6H, 3JHH = 7.1 Hz, CO2CH2CH3) ppm. 

13C{1H} NMR (151 MHz, CDCl3): δC = 182.5, 160.3, 160.2, 158.5, 158.4, 156.2, 

149.2, 149.1, 140.0, 144.7, 140.1, 140.0, 139.9, 136.9, 136.7, 133.4, 133.2, 132.5, 
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132.4, 131.3, 131.2, 130.8, 128.5, 128.5, 126.6, 126.4, 126.2, 123.8, 123.7, 120.2, 

120.0, 62.3, 62.2, 61.2, 53.4, 41.7, 31.3, 14.6, 14.5, 14.1 ppm. LRMS (AP+) found m/z 

1143.3 for [M]+; HRMS (ES+) found m/z 1143.2815, calculated at 1143.2795 for 

[C54H48N8O5S2Ir]+. IR (solid) νmax: 3379, 3061, 2931, 1710, 1598, 1583, 1552, 1496, 

1440, 1373, 1327, 1288, 1257, 1159, 1128, 1097, 1055, 1004, 810, 761, 671, 543, 428 

cm-1. UV-Vis (MeCN) λmax (ε/M-1cm-1): 418 (13600), 355 (31800), 316 (50700), 294 

(61100), 263 (56800) nm. 

 

Synthesis of [Ir(ppy)2(L5)]BF4  

Prepared as for L5 but using [Ir(ppy)2(L3)]BF4 (25.1 mg, 23.2 µmol) to give 

[Ir(ppy)2(L5)]BF4 as a brown solid (yield = 24.2 mg, 96 %). 1H NMR (400 MHz, 

CD3CN): δH = 9.29 (d, 1H, 3JHH = 7.6 Hz), 8.33 (d, 1H, 3JHH = 5.6 Hz), 8.19 (d, 1H, 

3JHH = 4.8 Hz), 8.10–7.64 (m, 16H), 7.53–7.47 (m, 3H), 7.13–7.07 (m, 2H), 7.01–6.87 

(m, 4H), 6.93 (app t, 2H), 4.84 (t, 2H, 3JHH = 4.8 Hz, NCH2), 3.96 (t, 2H, 3JHH = 4.8 

Hz, CH2), 3.47–3.42 (m, 4H, 2 ´ CH2) ppm. HRMS (ES+) found m/z 1000.2834, 

calculated at 1000.2827 for [C51H39N9O2Ir]+. IR (solid) νmax: 3395, 3064, 1606, 1583, 

1496, 1477, 1438, 1417, 1305, 1226, 1053, 1031, 885, 810, 759, 727, 669, 630, 460, 

416, 408 cm-1. UV-Vis (MeCN) λmax (ε/M-1cm-1): 463 (2000) sh, 382 (9300), 341 

(16700), 293 (46200), 267 (68500) nm. 

 

Synthesis of [Ir(ppy)2(L6)]BF4 

Prepared as for L5 but using [Ir(ppy)2(L4)]BF4 (21.5 mg, 20.5 µmol) to give 

[Ir(ppy)2(L6)]BF4 as a yellow–brown solid (yield = 17.5 mg, 81 %). 1H NMR (400 

MHz, CD3CN): δH = 9.33 (d, 2H, 3JHH = 8.0 Hz), 8.71 (dd, 2H, JHH = 13.0, 12.9 Hz), 

8.34 (app t, 2H), 8.27 (d, 1H, 3JHH = 5.3 Hz), 8.06–7.92 (m, 10H), 7.84–7.67 (m, 4H), 
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7.09–7.03 (m, 2H), 6.66 (dd, 1H, 3JHH = 8.5, 8.4 Hz), 4.76 (t, 2H, 3JHH = 7.3 Hz, 

NHCH2), 3.51 (t, 2H, 3JHH = 6.0 Hz, CH2OH), 2.46–2.37 (m, 2H, NCH2CH2) ppm. 

LRMS (ES+) found m/z 973.4 for [M]+; HRMS (ES+) found m/z 973.1699, calculated 

at 973.2828 for [C50H38N9OIr]+. IR (solid) νmax: 3456, 3114, 1612, 1589, 1573, 1504, 

1481, 1454, 1334, 1284, 1226, 1165, 1107, 1056, 1034, 883, 783, 756, 740, 725, 648, 

420 cm-1. UV-Vis (MeCN) λmax (ε/M-1cm-1): 392 (9100), 342 (15500) sh, 287 (35800) 

sh, 263 (44200) nm. 

 

Synthesis of [Ir(emptz)2(L6)]BF4 

Prepared as for L5 but using [Ir(emptz)2(L4)]BF4 (34.5 mg, 28.0 µmol) to give 

[Ir(emptz)2(L6)]BF4 as a yellow solid (yield = 29.4 mg, 84 %). 1H NMR (400 MHz, 

CDCl3): δH = 9.48–9.39 (m, 1H), 8.59 (d, 1H, 3JHH = 11.0 Hz), 8.27–7.52 (m, 15H), 

7.23–7.10 (m, 2H), 7.10–6.99 (m, 2H), 6.52 (app t, 1H), 4.82–4.79 (m, 2H, NHCH2), 

4.33–4.19 (m, 4H, CO2CH2), 3.60 (t, 2H, 3JHH = 5.2 Hz, CH2OH), 2.26–2.16 (m, 2H, 

NCH2CH2), 1.60 (s, 6H, CH3), 1.29 (t, 6H, 3JHH = 6.8 Hz, CO2CH2CH3) ppm. LRMS 

(ES+) found m/z 1154.3 for [M]+; HRMS (ES+) found m/z 1154.2594, calculated at 

1154.2585 for [C54H45N9O5S2Ir]+. IR (solid) νmax: 3400, 3059, 2980, 1714, 1697, 

1618, 1583, 1554, 1498, 1440, 1388, 1327, 1288, 1253, 1163, 1129, 1004, 875, 812, 

761, 727, 547, 415 cm-1. UV-Vis (MeCN) λmax (ε/M-1cm-1): 403 (12000) sh, 355 

(19300) sh, 313 (49200) sh, 293 (61400), 268 (63000) nm. 
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