
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/110083/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Chaffey, Dawn R., Davies, Thomas, Taylor, Stuart H. and Graham, Andrew E. 2018. Etherification reactions
of furfuryl alcohol in the presence of orthoesters and ketals: application to the synthesis of furfuryl ether

biofuels. ACS Sustainable Chemistry & Engineering 6 (4) , pp. 4996-5002.
10.1021/acssuschemeng.7b04636 

Publishers page: http://dx.doi.org/10.1021/acssuschemeng.7b04636 

Please note: 
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See 
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.



 1 

Etherification Reactions of Furfuryl Alcohol in the 

Presence of Orthoesters and Ketals: Application to 

the Synthesis Furfuryl Ether Bio-Fuels 

Dawn R. Chaffeya, Thomas E. Daviesb, Stuart H. Taylorb and Andrew E. Grahama* 

a School of Applied Sciences, University of South Wales, Upper Glyntaff, CF37 4AT, UK:  

b Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, 

Cardiff, CF10 3AT, UK; 

*Corresponding author. Email: andrew.graham@southwales.ac.uk 

KEYWORDS: etherification: heterogeneous catalysis: furfuryl ethers: telescoped reaction 

protocols: bio-renewable fuel additives: 

 

ABSTRACT: Strategies for the efficient transformation of abundant and sustainable bio-derived 

molecules, such as furfuryl alcohol (FAlc), into higher value products is currently a vibrant 

research area. Herein, we demonstrate that furfuryl ethers, which are of significant interest as bio-

renewable fuel additives, are efficiently produced employing an etherification reaction of furfuryl 

alcohol and short chain alkyl alcohols in the presence of a recyclable ZSM-5 catalyst and an 

orthoester, such as trimethyl orthoformate (TMOF) or triethyl orthoformate (TEOF), used as a 

sacrificial reagent. These etherification reactions proceed at significantly low temperatures than 

previous etherification procedures, and provide the furfuryl ether products in high yield. 

mailto:andrew.graham@southwales.ac.uk
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Importantly, the low temperature employed improves selectivity by minimizing the formation of 

hydrolysis products, and the competing polymerization reactions leading to humin by-products. 

By carrying out the reaction in higher alcohol solvents, such as ethanol, 1-propanol and 1-butanol, 

it is possible to capitalize on the ability of ZSM-5 to catalyze the orthoester exchange reaction of 

TMOF or TEOF to produce the corresponding furfuyl ethers in a novel, telescoped orthoester 

exchange-etherification reaction sequence. Finally, we also demonstrate that the etherification 

reaction proceeds efficiently in the presence of acetals and ketals, such as dimethoxy propane 

(DMOP) and diethoxypropane (DEOP). This latter development is highly significant given the 

greater scope for the regeneration of acetal and ketal reagents. 
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INTRODUCTION 

The increasing demand for fossil fuel resources, particularly for the transportation market, 

comes at a time of diminishing reserves of these non-renewable resources, and an increasing 

awareness of the influence of greenhouse gases on global climate change which has highlighted 

the need to develop fuels sources derived from sustainable and renewable carbon sources. These 

factors have led to considerable interest in alternative strategies for energy production which have 

reduced environmental impact, and which also support local agricultural economies. Biomass 

valorization, in particular, has attracted considerable interest as a sustainable and renewable source 

of both energy and feedstock chemicals for the chemical industry.1–3 The valorization of inedible 

lignocellulose residues, sustainably sourced from agriculture and forestry activities, is attracting 

significant current interest as a low cost and abundant source of materials for the production of a 

range of chemical entities which can be subsequently converted into useful consumer products.4,5 

One of the best studied and commercially viable approaches to lignocellulosic-fractionating 

technologies developed to date involves the acid catalyzed hydrolysis of polysaccharides to their 

monomeric constituents, which are then in turn converted to furfural 1 and 5-hydroxymethyl 

furfural (HMF) 2 (Scheme 1).6  

 

Scheme 1.Conversion of Biomass to Furfural and 5-Hydroxymethyl furfural (HMF) 
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While routes for the subsequent conversion of 5-hydroxymethyl furfural into levulinic acid and 

levulinate esters 3 and 2,5-dimethylfuran for use as biofuels are well established,7,8 similar routes 

for the valorization of furfural as a platform for biofuel production are less well established, 

although this oversight is being rapidly addressed.9,10 One important transformation is the 

hydrogenation of furfural to furfuryl alcohol (FAlc, 4), and its subsequent conversion into furfuyl 

ethers, such as ethyl furfuryl ether (EFE, 5a R = ethyl). These ether products are of considerable 

recent interest as they are intermediates in the acid catalyzed hydrolysis of FAlc to levulinate ester 

fuels,11-14 and have also been identified as a potential bio-fuel components in their own right.9,15 

Recent work in this area has investigated the formation of furfuryl ethers by a dehydrative 

etherification reaction of FAlc with short chain alkyl alcohols, typically ethanol, in the presence 

of either sulfuric acid or heterogeneous zeolite catalysts at temperatures between 125–150 oC.9,15 

While this approach has proved to be effective for the synthesis of EFE, the overall process is 

inefficient, both in terms of the high energy consumption due to the high temperatures and 

extended reaction times employed, and the limited overall conversion to the desired ether product 

which is typically 30–50% even at high FAlc conversions.9 The efficiency of this process is further 

limited by the conversion of FAlc to insoluble humin by-products which precludes the recycling 

of unreacted starting material, and also the hydrolysis of EFE under the high temperatures 

employed to ethyl levulinate, levulinic acid and lactone products.9,16 

As part of our ongoing studies to develop novel reaction strategies,17,18 we recently reported a 

facile protocol for the dehydrative etherification of alkyl alcohols, diols and triols with alcohols 

catalyzed by nanoporous aluminosilicate materials to give the corresponding ether products in high 

yield and with excellent selectivity.19,20 In common with related strategies, the relatively high 

reaction temperatures required limits the scope of the reaction particularly in the case of thermally 
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unstable substrates or products, and we were motivated to seek alternative strategies that might be 

more applicable to these substrates, especially at extremes of pH, such as FAlc. With this in mind, 

we were intrigued by the work of Kumar et al., who reported that orthoesters act as sacrificial 

reagents to promote the etherification reactions of alcohols under acid catalysis at room 

temperature.21 While the use of a sacrificial reagent is inherently atom inefficient, the potential 

overall savings both in terms of energy and improved selectivity warranted further investigation. 

In addition, we reasoned that it might prove possible to overcome these limitations by employing 

reagents which can be regenerated under the reaction conditions. Herein we report our studies on 

the etherification of FAlc in the presence of orthoesters and alcohols employing a commercially 

available zeolite catalyst, the subsequent development of a novel telescoped protocol to access 

ethers derived from higher alcohols, and our initial studies on the etherification reactions of FAlc 

in the presence of acetals and ketals. 

 

RESULTS AND DISCUSSION 

Our initial investigations employed the commercially available ZSM-5 zeolite (Si/Al ratio = 30:1, 

ZSM-5-(30)) catalyst in ethanol under relatively low catalyst loadings. This catalyst was chosen, 

in preference to our own nanoporous materials, as it has previously been reported as the most 

efficient catalyst to date for dehydrative etherification reactions of FAlc to EFE.9,15 Our initial 

work concentrated on two factors identified as critical for efficient EFE production, these being 

the reaction temperature and the ratio of FAlc to ethanol. In addition to these factors, we also 

required the reaction to be rapid, and to be complete within short reaction times to minimize 

subsequent reaction of EFE under the reaction conditions. 
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We initially investigated etherification reactions at 40 °C in the absence of the orthoester to 

establish the extent of EFE formation. As reported, reducing the temperature from 125 °C to 40 

°C significantly reduced the rate of reaction,9 and conversions to EFE did not exceed 10%. 

Similarly, reactions containing FAlc and triethyl orthoformate (TEOF, 6a) with no catalyst present 

provided no ether products, and starting material was recovered unchanged (Table 1, entries 1 and 

2).  

 

Table 1: Optimization of the Etherification reaction of FAlc in alcohol solventsa 

O
OH

4

O
OR

5a-b R = Et, Me

ZSM-5-(30), 40
o
C

CH(OR)3 (1 equiv), ROH

 

Entry Catalyst  

(mg)  

Orthoester/ 

ROH 

FAlc:ROH 

Ratio  

(mmol) 

Conversion  

(mol%)b 

Yield 5 

(mol%)c 

Humins 

(mol%) 

Mass  

Balance  

(mol%)d,e 

1 20 EtOH - 9 7 2 98 

2 - 6a/EtOH 1:15 0 0 2 98 

3 20 6a /EtOH 1:2 53 24 29 71 

4 20 6a /EtOH 1:10 59 42 17 83 

5 20 6a /EtOH 1:15 66 50 16 84 

6 20 6a /EtOH 1:15 65 48f 17 83 

7 20 6a - 77 33 44 56 

8 40 6a /EtOH 1:15 63 48 15 85 

9 40 6a /EtOH 1:15 92 73g 19 81 

10 10 6a /EtOH 1:15 55 33 22 78 

11 20 MeOH - 9 7 2 98 

12 - 6b /MeOH 1:15 0 0 2 98 

13 20 6b /MeOH 1:15 57 42 15 85 

14 10 6b /MeOH 1:15 25 18 17 93 
aExperimental conditions: The catalyst was added to a solution of furfuryl alcohol (1 mmol) and 

orthoester (1 mmol) in the specified solvent in a sealed reaction vessel and heated to 40 oC for 2 hours. 
bQuantity of FAlc consumed as determined by quantitative 1H NMR spectroscopy of the crude reaction 

mixture. cDetermined by quantitative 1H NMR spectroscopy and GC−MS analysis of the crude 

reaction mixture. dSum of soluble materials identified by quantitative 1H NMR spectroscopy and 

GC−MS analysis. eReactions contained <5% ethyl levulinate, levulinic acid and angelica lactone by 

quantitative 1H NMR spectroscopy of the crude reaction mixture. fReaction using recycled catalyst. 

gAdditional 0.5 equiv TEOF added after 1 hr. 
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Gratifyingly, the addition of one equivalent of TEOF under relatively concentrated reaction 

conditions (FAlc/EtOH ratio = 1:2) led to moderate yields of EFE (entry 3) from moderate FAlc 

conversions (~50%) in short reaction times (2 hours). As previously observed,9 carrying out the 

reaction under more dilute conditions led to significant improvements in yields of EFE, which now 

approached 50% with significantly reduced humin formation (entries 4 and 5). Importantly, the 

ZSM-5-(30) catalyst is fully recyclable, and displayed identical reactivity after isolation from the 

reaction mixture and recalcination (entry 6).22,23 Interestingly, the etherification reaction also 

proceeded in the absence of any additional ethanol under solventless reaction conditions, albeit 

with reduced yield and significant humin formation (entry 7). Doubling the amount of catalyst had 

minimal effect on the overall production of EFE, although it was noted that there was complete 

consumption of TEOF (entry 8). We reasoned that TEOF is the limiting factor under these 

conditions, and were gratified to observe that the additional of an extra 0.5 equivalent of TEOF 

after one hour led to almost complete consumption of FAlc with excellent conversions to EFE 

(entry 9). A reduction in the amount of catalyst led to only moderate yields of EFE, albeit with a 

corresponding reduction in the consumption of FAlc (entry 10). Presumably, in this case, catalyst 

deactivation due to humin formation becomes the determining factor in EFE production, as 

significant quantities of unreacted TEOF remained.16,18 The etherification reaction also proceeded 

efficiently in methanol in the presence of trimethyl orthoformate (TMOF, 6b), to provide the 

corresponding methyl ether 5b in broadly similar yields to reactions employing TEOF (entries 

13−14). In all cases, formation of lactone or hydrolysis products was <5% as determined by 

quantitative 1H NMR spectroscopy of the crude reaction mixtures. Furthermore, no mixed ethers 

products were observed, presumably due to the decreased reactivity of the unactivated alcohols 

and the low reaction temperatures employed.  



 8 

We next undertook a short study to determine the effect of changing the FAlc/orthoester ratio. 

Decreasing the quantity of TEOF led to decreased EFE formation with a corresponding decrease 

in the consumption of FAlc. The complete consumption of TEOF in this case suggests that TEOF 

is the limiting factor (Table 2, entry 1). The addition of increased quantities of TEOF gave no 

additional improvement in yields of EFE (entry 3). These reactions contained significant quantities 

of unreacted TEOF which may indicate that catalyst deactivation is also the determining factor 

here. Presumably, this arises as a consequence of the facile generation of the furfuyl cation under 

the reaction conditions, and its subsequent conversion into humin by-products.16,24,25 Indeed, the 

reaction of FAlc with TEOF in ethanol employing used catalyst which had not been recalcined 

gave less than 10% yields of EFE. 

Table 2: The Effect of Orthoester Ratio 

Entry Orthoester  

(equiv) 

Solvent Conversion  

(mol%)b 

Yield 5  

(mol%)c 

Humins 

(mol%) 

Mass  

Balance (mol%)d 

1 6a (0.5) EtOH 37 23 14 86 

2 6a (1.0) EtOH 57 44 13 87 

3 6a (1.5) EtOH 62 40 22 78 
aExperimental conditions: The catalyst (20 mg) was added to a solution of furfuryl alcohol 

(1 mmol) in ethanol (1 mL) and TEOF in a sealed reaction vessel and heated to 40 oC for 1 

hr. bQuantity of FAlc consumed as determined by quantitative 1H NMR spectroscopy of the 

crude reaction mixture. cDetermined by quantitative 1H NMR spectroscopy and GC−MS 

analysis of the crude reaction mixture. dSum of soluble materials identified by quantitative 

1H NMR spectroscopy and GC−MS analysis.  

 

We next undertook a study of the etherification reaction in dimethyl carbonate (DMC), a solvent 

which has been proposed as an alternative environmentally benign replacement for more 

traditional solvents.26 These reactions proceeded in the absence of an alcohol solvent, with the 

orthoester itself acting as a source of alcohol. As previously, reaction of FAlc with one equivalent 

of TMOF in the absence of catalyst provided no ether products (Table 3, entry 1). Low catalyst 

loadings (10 mg) provided only small quantities of the methyl furfuryl ether (MFE) (entries 2 and 
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3), while increased loadings (20 mg) provided good conversions to MFE (entry 4) which were not 

improved by changing the quantity of TMOF present (entries 5 and 6). In all of these cases, an 

additional orthoester product, tentatively identified by 1H NMR and GC-MS data as being derived 

from mono exchange of TMOF with FAlc, was present, although it did not prove possible to isolate 

this compound (Figure S6). In addition, small quantities of the symmetrical dimeric ether product 

derived from FAlc were also observed. High catalyst loadings (50 mg) provided good conversions 

to MFE but with significant humin formation in addition to small quantities of methyl levulinate, 

which were typically ~5%, (entries 7 and 8).  

 

Table 3: Etherification Reactions of FAlc and TMOF in DMCa 

O
OH

4

O
OR

5a-b R = Et, Me

ZSM-5-(30), 40
o
C

CH(OR)3, DMC

 

Entry Catalyst  

(mg) 

Time 

(h) 

Orthoester  

(equiv) 

Conversion  

(mol%)b 

Yield 5  

 (mol%)b 

1 - 2 6b (1.0) 0 0 

2 10 2 6b (1.0) 44 13 

3 10 2 6b (2.0) 64 16 

4 20 2 6b (1.0) 65 30 

5 20 2 6b (0.5) 41 16 

6 20 2 6b (1.5) 68 28 

7 50 1 6b (1.0) 97 58c 

8 50 2 6b (1.0) 95 60c,d 

9 10 2 6b (1.0) 70 21e 

10 20 2 6b (1.0) 77 39e 

11 50 1 6b (1.0) 98 48c,e 

12 50 2 6b (1.0) 98 55c,d,e 

13 10 2 6a (1.0) 66 20 

14 20 2 6a (1.0) 77 36 

15 50 2 6a (1.0) 85 52c 
aExperimental conditions: The catalyst was added to a solution of furfuryl alcohol (1 mmol) and 

othoester (1 mmol) in DMC (1 mL) in a sealed reaction vessel and heated to 40 oC. bQuantity of 

FAlc consumed as determined by quantitative 1H NMR spectroscopy of the crude reaction 

mixture. cReaction contains ~5% levulinate ester by quantitative 1H NMR spectroscopy of the 

crude reaction mixture. dCatalyst added in two 25 mg portion. eReaction at 60 oC. 
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Increasing the reaction temperature to 60 oC had little overall effect on either MFE formation or 

FAlc conversion (entries 9−12). The reactions of FAlc with TEOF in DMC displayed a similar 

trend, with good conversions to EFE only achieved at higher catalyst loadings (entries 13−15). In 

line with previous literature reports20,27, none of the corresponding methyl ether MFE, formed by 

direct reaction of FAlc with DMC or by reaction with methanol formed by DMC composition, was 

detected in these reaction mixtures. 

The observation that ZSM-5-(30) effectively catalyzes orthoester exchange reactions in the 

presence of alcohols led us to next consider the development of a novel orthoester exchange-

etherification reaction sequence, in which the required orthoesters are produced from TMOF and 

the corresponding alcohol in situ without the requirement for prior synthesis and isolation. 

Telescoped reaction protocols, where multiple synthetic transformations are achieved without the 

isolation and purification of intermediates, have been the subject of significant recent interest as 

they offer improved efficiency due to the reduction in the number of synthetic steps. In addition, 

the elimination of work-up procedures and the subsequent reduction in the quantity of solvents 

employed leads to a significant overall improvement in atom efficiency.28-30 Our own studies in 

this area have concentrated on telescoped procedures in which one catalyst is responsible for 

catalyzing two distinctly different synthetic transformations which are less common.31 

Our initial investigations envisaged two potential strategies. A sequential reaction protocol in 

which the desired orthoester is synthesized from TMOF and an alcohol followed by the addition 

of FAlc, and a tandem reaction sequence in which all of the reagents are present at the beginning 

of the reaction. In the latter case, orthoester exchange occurs in the presence of an excess of alcohol 

solvent in order to minimize the competing formation of the methyl ether by-product. Our 

sequential reaction protocols were initially carried out at 60 oC in a reaction vessel open to the 
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atmosphere in order to remove methanol produced during the exchange reaction before cooling to 

40 oC for the addition of FAlc. The tandem process was carried out as previously in a sealed 

reaction vessel at 40 oC. In both cases the catalyst loading was increased to 40 mg in order to 

minimize reaction times. We were gratified to observe that, in both cases, the sequential and 

tandem reactions proceeded rapidly to give good yields of furyl ether products derived from 

ethanol 5a, 1-propanol 5c, and 1-butanol 5d with good to high selectivity for the higher ether 

products (Table 4). While most interest in furfuyl alcohol derived ether biofuels has centered on 

EFE, the physical properties of ethers 5c and 5d have been investigated for use as biofuels32. 

 

Table 4: Telescoped Orthoester Exchange-Etherification Reaction Protocols 

4 O
OR

5a,c-d R = Et, Pr or Bu

ZSM-5-(30) (40 mg)

CH(OCH3)3
ROH, 40 

o
C

CH(OR)3

 
Entry Orthoester ROH Selectivity  

(%)a 

Conversion  

(mol%)b 

Yield 5 

(mol%)a 

Humins 

(mol%) 

Mass  

Balance  

(mol%)c 

1 6b EtOH 6:1 45 42d 3 97 

2 6b PrOH 9:1 37 30e 7 93 

3 6b PrOH 6:1 54 43d 11 89 

4 6b BuOH 5:1 44 35e 11 89 

5 6b BuOH 7:1 49 37d 12 88 
aDetermined by quantitative 1H NMR spectroscopy and GC−MS analysis of the crude reaction 

mixture. bQuantity of FAlc consumed as determined by quantitative 1H NMR spectroscopy of the 

crude reaction mixture. cSum of soluble materials identified by quantitative 1H NMR spectroscopy 

and GC−MS analysis. dTandem Reaction. eSequential reaction. 

 

The observation that orthoester exchange reactions are occurring under the reaction conditions also 

led us to reconsider the mechanism of the etherification reaction. Kumar et al originally proposed 

the formation of a cationic species, produced by partial hydrolysis of the orthoester, followed by 

transfer of an alkyl group to produce the unsymmetrical ether (Scheme 2, Pathway 1).21  
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Scheme 2: Mechanism of the Orthoester Promoted Etherification Reaction 
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An alternative mechanism, in which the formation of a mixed orthoester leads to an intermediate 

susceptible to direct nucleophilic attack by alcohols (Scheme 2, Pathway 2), or more likely, 

promotes the formation of the furfuryl cation intermediate could also be proposed.33,34 Similar 

activation strategies, in which alcohol substrates are converted into more reactive intermediates, 

have been described for a number of palladium mediated allylic substitution reactions.35,36 We 

reasoned that in either case, it might prove possible to successfully realize the etherification 

reaction in the presence of structurally related activating agents, such as acetals and ketals, via a 

mixed acetal intermediate. The extension of this work to encompass a successful etherification 

procedure employing acetals or ketals would be a significant development, since a wide range of 

structurally diverse materials would be readily available for fine-tuning reactivity. Furthermore, 

while the use of orthoesters in FAlc etherification reactions provides a synthetic route with a much 

reduced energy requirement, an obvious limitation of this approach is the inability to regenerate 

the reactive species under the reaction conditions employed. Importantly, previous literature 

reports have demonstrated the facile formation of acetals and ketals directly from alcohols 
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employing zeolite and related mesoporous catalysts.31,37,38 This would potentially lead to the 

development of an etherification route not only with greatly reduced energy requirements, but that 

would also display the additional benefit of significantly improved atom efficiency. With this 

exciting possibility in mind, we next studied the reactions of FAlc with acetals and ketals to assess 

their potential as promoters of the etherification reaction.  

Initial reactions employing acetals proved encouraging, with benzaldehyde dimethyl acetal 

(BDMA, 7a) providing moderate yields of 5b under our standard reaction conditions, as did 

dimethyl acetals derived from p-tolualdehyde (p-Tol-DMA, 7b) and p-anisaldehyde (p-Anis-DMA 

7c) Table 5, entries 1–3).  

Table 5: Etherification reactions of FAlc in the presence of acetals and ketalsa 

O
OH

4

O
OR

5a-b R = Et, Me

ZSM-5-(30) (20 mg), 40
o
C

R1CR2(OCH3)2, ROH

 

Entry ROH Ketal Conversion  

(mol%)b 

Yield 5  

(mol%)c 

Humins 

(mol%) 

Levulinate 

Esters 

(mol%) 

Mass  

Balance  

(mol%)d 

1 MeOH 7a 56 33 23 <5 77 

2 MeOH 7b 28 20 8 <5 92 

3 MeOH 7c 25 19 6 <5 94 

4 MeOH 8 43 40 3 <5 97 

5 MeOH 8 52 43 9 <5 91e 

6 MeOH 8 94 68 11 15 89e,f 

7 EtOH 9 17 17 0 <5 100 

8 EtOH 9 44 36 3 5 97e 

9 EtOH 9 69 57 2 10 98e,f 

10 EtOH 8 32 24g 8 <5 92 

11 EtOH 8 40 32g 3 5 97f 
aExperimental conditions: The catalyst was added to a solution of furfuryl alcohol (1 mmol) 

and ketal (1 mmol) in the specified solvent (1 mL) in a sealed reaction vessel and heated to 40 
oC for 3 hours. bQuantity of FAlc consumed as determined by quantitative 1H NMR 

spectroscopy of the crude reaction mixture. cDetermined by quantitative 1H NMR 

Spectroscopy and GC−MS analysis of the crude reaction mixture. dSum of soluble materials 

identified by quantitative 1H NMR spectroscopy and GC−MS analysis. eReaction under 

concentrated conditions using 0.25 mL of solvent. fReaction contains 40 mg catalyst. gProduct 

is a 7:1 mixture of 5a/5b by quantitative 1H NMR analysis.  
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Presumably, the formation of the mixed acetal intermediate in these cases is slow given the relative 

stability of acetals, and further disfavoured in the presence of a large excess of methanol. We 

reasoned that switching to ketals, such as dimethoxy propane (DMOP, 8), which undergo acetal 

exchange more rapidly might be beneficial,39 and indeed in the presence of one equivalent of 

DMOP, FAlc underwent rapid etherification to produce MFE in high yield with little humin 

formation (entry 4). Carrying out the reaction under more concentrated conditions had little overall 

effect on the yield of 5b, although a small decrease in mass balance was observed due to increased 

humin formation (entry 5). Increasing catalyst loading under concentrated reaction conditions led 

to almost complete consumption of the starting material giving high yields of 5b with only 

moderate humin formation (entry 6). We next considered the reaction of FAlc with 

diethoxypropane (DEOP, 9), which proved more sensitive to concentration, and under dilute 

reaction conditions, only low yields of 5a were produced (entry 7). Carrying out the reaction under 

concentrated conditions led to significant improvements in both FAlc conversion and yields of 5a 

at both low and high catalyst loadings (entries 8 and 9). It was also proved possible to carry out 

the corresponding telescoped reaction protocol employing DMOP in the presence of an excess of 

ethanol, to provide moderate yields of 5a with good selectivity for the ethyl ester product (entries 

10 and 11).  

In conclusion, we have demonstrated that high yields of furfuryl ether bio-fuels are obtained in 

significantly improved yields to previously reported procedures by carrying out the etherification 

reaction in the presence of the commercially available ZSM-5 catalyst and an orthoester, such as 

TMOF and TEOF which is used as sacrificial reagent to aid formation of the intermediate furfuryl 

cation. These reactions proceed rapidly and efficiently at 40 oC with minimal formation of humins 

or products derived from hydrolysis. The observation that orthoester exchange occurs under the 
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reaction conditions led to the development of novel telescoped reaction procedures, employing 

TMOF in the presence of an excess of an alcohol solvent to provide the higher ether products 5a, 

5c and 5d in good yield and with good selectivity. Finally, we have extended this work to 

demonstrate that a novel etherification process can be developed employing acetals, and in 

particular ketals such as DMOP and DEOP, which are also efficient promoters of the etherification 

reaction, producing high yields of ether products in short reaction times with minimal humin 

formation. The use of acetals and ketals in place of orthoesters is particularly attractive given the 

wider range of structurally diverse acetals available, their ease of synthesis and the wider scope to 

regenerate the acetal species under the reaction conditions. Furthermore, we have also 

demonstrated that our telescoped reaction protocol can also be extended to encompass the reactions 

of DMOP with FAlc employing an excess of ethanol as solvent, to provide the corresponding ethyl 

ether product 5b with high selectivity.  

 

EXPERIMENTAL SECTION 

General Procedure for the Etherification of Furfuryl Alcohol with Ethanol in the Presence 

of TEOF 

The ZSM-5-(30) catalyst (20 mg) was added to a solution of furfuryl alcohol (98 mg, 1 mmol) and 

triethyl orthoformate (148 mg, 1 mmol) in ethanol (1 mL) in a sealed reaction vessel and heated 

to 40 oC for 2 hours. On completion of the reaction, the catalyst and insoluble polymeric products 

were removed by filtration through a Celite plug which was washed with deuterated chloroform 

(2 × 0.5 mL). Careful removal of the combined solvents under reduced pressure afforded the crude 

product as a colorless oil that was purified by column chromatography (hexane) gave the final 

product as a clear solution.13 
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General Procedure for the Sequential Orthoester Exchange-Etherification Reaction  

The ZSM-5-(30) catalyst (20 mg) was added to a solution of trimethyl orthoformate (104 mg, 1 

mmol) in butanol (1 mL) in an open reaction vessel and heated to 60 oC for 90 minutes. The 

reaction was then cooled to room temperature and furfuryl alcohol (98 mg, 1 mmol) and an 

additional portion of catalyst (20 mg) were added. The reaction was then sealed, and heated to 40 

oC for 2 hours. On completion of the reaction, the catalyst and insoluble polymeric products were 

removed by filtration through a Celite plug which was washed with deuterated chloroform (2 × 

0.5 mL) and the crude reaction mixture was analysed by quantitative 1H NMR analysis employing 

para-xylene as an internal standard. 

 

General Procedure for the Tandem Orthoester Exchange-Etherification Reaction 

The ZSM-5-(30) catalyst (40 mg) was added to a solution of furfuryl alcohol (98 mg, 1 mmol) and 

trimethyl orthoformate (104 mg, 1 mmol) in butanol (1 mL) in a sealed reaction vessel and heated 

to 40 oC for 2 hours. On completion of the reaction, the catalyst and insoluble polymeric products 

were removed by filtration through a Celite plug which was washed with deuterated chloroform 

(2 × 0.5 mL) and the crude reaction mixture was analysed by quantitative 1H NMR analysis 

employing para-xylene as an internal standard. 
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