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Summary 

 

The gut microbiota has come to be viewed as an extrasomatic organ influencing 
human health. Obesity is a major global public health challenge urgently requiring 
development of new treatments. Reports of weight gain after faecal microbial 
transplant have spurred interest in the potential role of the microbiota in obesity in 
man. Lab4 and Lab4b are commercially available probiotic products that have 
recently been shown to be associated with decreased weight gain in high-fat diet 
mice, and have recently been used to investigate in vitro adipogenesis. Brown 
adipose tissue is highly metabolically active, and is inversely associated with BMI. 
Bacterial metabolites such as lactate have been shown to induce “browning” of 
adipose tissue.  

The effects of Lab4 and Lab4b cell free supernatant were assessed on in vitro 
adipogenesis using the 3T3-L1 cell line and human primary preadipocytes. 
Transcriptional markers of adipose phenotype were assessed in 3T3-L1 cells 
maintained in culture media containing cell free supernatant of the constituent 
strains of the Lab4/Lab4b consortia. 

Lab4 and Lab4b were found to significantly reduce lipid accumulation in late 
adipogenesis in 3T3-L1 cells, though cell morphology suggested paradoxical 
acceleration of adipogenesis. Reduced lipid accumulation was likely related to a 
significant reduction in cell viability. Transcriptional markers of adipogenesis were 
not significantly altered by treatment, nor were markers of adipose phenotype, but 
transcripts of UCP1 (the functional protein of brown adipose tissue) were significantly 
higher in non-differentiating cells maintained in cell free supernatant of two L. 
acidophilus strains (p=0.008). 

Assessment of effects in human primary preadipocytes were inconclusive due to 
cytotoxicity, though treatment with Lab4b appears to dramatically alter cellular 
morphology and increase what appears morphologically to be lipid accumulation in 
surviving cells. 

Further study and more robust data is needed to determine the effects of Lab4/Lab4b 
and their constituent strains on in vitro adipogenesis.
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Chapter 1: Introduction 

1.1 – Adipose biology 

Excess adiposity in man is a risk factor for many disease states, including leading 

causes of death and disability such as cancers (Coe et al., 2014), cardiovascular 

disease (particularly associated with visceral adiposity) (Bastien et al., 2014), and type 

2 diabetes mellitus (T2DM) (Day and Bailey, 2011). Overweight and obesity (defined 

by the World Health Organisation as a body mass index (BMI) of ≥ 25 kg/m2 and ≥ 30 

kg/m2 respectively) (World Health Organization, 2017) can lead to ectopic fat 

deposition and adverse effects on markers of metabolic health, namely elevated 

fasting blood glucose, blood pressure, cholesterol, and triglycerides, and reduced 

high density lipoprotein levels (Snel et al., 2012; Wang and Peng, 2011). These 

metabolic aberrations are part of an interlinked constellation of symptoms termed 

the “metabolic syndrome”, comprising any of the three clinical features (Kaur, 2014). 

The burden of disease imposed by obesity resultantly places a significant burden on 

health resources in the UK. Costs borne by the UK economy due to obesity were 

estimated in 2007 at £15.8 billion, including £4.2 billion in costs to the NHS 

(Department of Health, 2011). T2DM is also a significant public health challenge in 

the UK, and prevention has been a major focus of public health campaigns. Thus, 

there is an urgent need for new treatments and public health interventions to 

address overweight and obesity.  

 

Adipose Tissue 

Adipose tissue is a fibrous, loose matrix of adipocyte cells serving multiple mechanical 

and metabolic functions. Foremost adipose tissue is specialised for energy storage; 

however, it is also involved in insulation and mechanical protection of vital organs, 

secretion of hormones (usually ectopically in states of excess adiposity) (Trayhurn 

and Beattie, 2001), and temperature regulation in neonates (Gilsanz et al., 2013). Fat 

mass is maintained by the coordinated processes of lipolysis, lipogenesis, and 

adipogenesis, facilitating the storage of energy in triglyceride form and its 
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subsequent mobilisation according to metabolic demand (Rutkowski et al., 2015). 

While it was once thought that adipose tissue was a metabolically inert store of 

energy in the form of triglycerides, there is now an appreciation that adipose tissue 

can be seen as an endocrine organ (Coelho et al., 2013). Adipose tissue can exhibit 

secretory capabilities, expressing “adipokine” hormones, notably leptin and 

adiponectin. However, in states of excess adiposity, these tissues can also ectopically 

secrete cytokines such as tumour necrosis factor alpha (TNF-α) and interleukin 6 

(Kwon and Pessin, 2013). TNF-α has been implicated in the development of obesity 

related insulin resistance. In obesity, a persistent level of low grade inflammation is 

often present, resulting in chronically elevated levels of circulating TNF-α (Nieto-

Vazquez et al., 2008). TNF-α impairs glucose uptake both in muscle tissue and adipose 

tissue, inhibiting insulin signalling by activating the inhibitor κB kinase complex, 

resulting in serine phosphorylation of insulin receptor substrate proteins (Gao et al., 

2002). As a result, adipose depots have the potential to influence glucose metabolism 

not only within their own tissues, but systemically. Reduction in the size or adverse 

metabolic activity of adipose tissue may therefore positively impact metabolic 

disease, or prevent its development.  

Adipose tissues are not phenotypically homogenous. Adipose tissue is often 

characterised into three distinct groupings; white adipose tissue (WAT), brown 

adipose tissue (BAT), and an intermediate “beige” phenotype, also interchangeably 

called induced brown adipose tissue or “brite” (brown-in-white) (Harms and Seale, 

2013). BAT is highly metabolically active and exhibits thermogenic capacity. This is 

functionally important in maintaining body temperature in neonates, and thus is 

located in anatomically distinct sites associated with vasculature and critical organs 

(Sacks and Symonds, 2013). The mitochondria of BAT cells express uncoupling protein 

1 (UCP1), which upon activation induces permeability in the inner mitochondrial 

membrane, permitting protons pumped into the intermembrane space to leak back 

into the mitochondrial matrix (Nedergaard et al., 2001), this process is summarised 

in Figure 1.1. This results in an uncoupling of oxidative phosphorylation from ATP 

production; substrates are oxidised but result in a relatively low production of ATP, 

and energy is dissipated as heat. Uncoupling is of particular interest in the prevention 
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and treatment of metabolic disorders, and is seen as a potential therapeutic target 

as “inefficient” mitochondrial function due to induced uncoupling of oxidative 

phosphorylation leads to increased substrate utilisation without typically consequent 

levels of ATP. 

BAT deposits appear to be inversely correlated with BMI and fat mass (Cypess et al., 

2009). In adults with detectable BAT, exposure to mild cold leads to better blood 

glucose control, higher insulin sensitivity, and greater energy expenditure than 

control (Chondronikola et al., 2014). However, despite a strong mechanistic rationale 

it is not yet established whether BAT activity is a causative factor in the prevention of 

such diseases on a population level. 

While beige adipose tissue exhibits many similarities to BAT, including expression of 

UCP1 and multilocular lipid droplet morphology, they also maintain distinguishing 

characteristics. BAT is thermogenically competent in its basal state, whereas beige 

adipocytes require activation through cold challenge or β-adrenergic stimulation 

(Harms and Seale, 2013). Further, brown and white adipocytes in mice develop from 

different embryonic precursors. BAT derives predominantly from myogenic factor 5 

(MYF5) expressing cells, engendering the hypothesis that resultant tissues are 

metabolically favourable due to a skeletal muscle related lineage (Rowland et al., 

2015). Conversely, WAT derives predominantly from MYF5 negative cells. At present, 

whether beige adipocytes arise from mature WAT or are of a distinct lineage remains 

a matter of debate, though experimental evidence suggests that a majority of beige 

adipocytes are formed through de novo adipogenesis rather than transdifferentiation 

(Wang et al., 2013). Also, despite the dogmatic MYF5+/- model, certain subsets of 

WAT in mice derive from MYF5+ cells (Sanchez-Gurmaches et al., 2012). Despite much 

study, as lineage tracing is the only technique which can definitively define a cell’s 

developmental origin, such studies have only occurred in mice and it remains unclear 

whether the proposed MYF5 dichotomy is true in humans. 
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Figure 1.1 – Representative diagram of the location and function of UCP1. Akin to 

the function of ATP synthase, UCP1 facilitates the re-entry of hydrogen protons into 

the mitochondrial matrix, however it does so without the concomitant generation of 

ATP, resulting in high substrate utilisation and low ATP production. This “inefficiency” 

generates heat. ADP – Adenosine Diphosphate, ATP – Adenosine Triphosphate, UCP1 

– Uncoupling protein 1 

 

Though it is not possible to definitively trace the lineage of human adipose cells, 

indirect methods have been utilised. Important data regarding adipocyte turnover 

has been generated from the study of 14C incorporation from nuclear weapons 

testing. Adipocytes experience an annual turnover rate of approximately 10% in adult 
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humans, across all ages and BMI categories (Spalding et al., 2008), and that total 

adipocyte numbers become “fixed” in childhood or early adulthood. This work has 

important implications for the treatment of obesity, but also elegantly demonstrates 

the plasticity of adipose tissue. Perhaps due to the intricacies of the technique and 

identifying potential study populations, it has not yet been applied to the study of 

BAT. Tangential anecdotal data may be gleaned from hibernomas, a rare benign 

tumour of BAT origin typically occurring in adults in the 4th decade of life, which is not 

reported to metastasise and rarely recurs following resection (Kim and Lee, 2012). 

Though far from definitive, this suggests that in addition to BAT typically decreasing 

with age, their precursors may also be scarce in adulthood in contrast to those of 

WAT. 

 

Adipogenesis 

Adipogenesis entails the cellular differentiation of preadipocytes into adipocytes. 

Expansion of adipose depots is facilitated either by hypertrophy of existing 

adipocytes or the process of adipogenesis (Jo et al., 2009), which gives rise to new 

adipocytes from a population of precursor cells. In mammalian adipose vascular 

stroma, these precursors take two forms: pluripotent fibroblasts or unipotent 

preadipocytes (Cawthorn et al., 2012). The differentiation of preadipocyte cells into 

adipocytes relies on a complex and coordinated network of genetic factors, which 

may exhibit differing expression patterns temporally, resulting in functional and 

morphological changes. There exists a complex array of signals influencing 

preadipocytes, with both inhibitory and stimulatory properties from a variety of 

sources from within the cell itself, from other adipocytes, and signals of systemic 

endocrine origin (MacDougald and Mandrup, 2002). Factors influencing preadipocyte 

cellular fate thus exist in an intricate network, the balance of which ultimately 

regulates progression of the adipogenic cascade. By measuring gene expression along 

the time course of differentiation, several markers of adipogenesis have been 

discovered (Gaillard et al., 1989). Glycerol-3-phosphate dehydrogenase (GPDH) 

expression has been employed as a marker of terminal differentiation for decades, 
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showing not only an increase in expression over the time course, but robust detection 

specifically in triglyceride-accumulating cells (Cook and Kozak, 1982). However, 

further complicating the characterisation of the regulatory network in adipogenesis 

is the simultaneous function of gene expression regulation and protein-protein 

interactions. 

The central roles of PPARγ and C/EBPα 

Central to this adipogenic cascade are Peroxisome Proliferator-Activated Receptor γ 

(PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα). The peroxisome, a 

membrane-bound organelle, performs a variety of metabolic functions, but perhaps 

most notably regarding adipose biology breaks down long chain fatty acids via beta 

oxidation and are closely associated with lipid droplets (Lodhi and Semenkovich, 

2014). The ligand-binding cavity of PPARs are uncharacteristically large for nuclear 

receptors, which confers capacity to utilise a wide range of ligands of varying lengths 

(Grygiel-Górniak, 2014). These PPARγ ligands include endogenous ligands such as free 

fatty acids, and fatty acid derived eicosanoids, as well as synthetic ligands such as the 

thiazolidinedione drug pioglitazone, which is often used for in vitro study of 

adipogenesis. To date, a definitive ligand for PPARγ has not been identified, and 

synthetic ligands show superior affinity to endogenous ligands which are typically 

present in tissues in insufficient concentrations for activation in vivo (Villacorta et al., 

2009). Ectopic expression of PPARγ in otherwise non-adipogenic fibroblasts results in 

adipogenic differentiation (Tontonoz et al., 1994), whereas there are no known 

methods to induce adipogenesis in the absence of PPARγ. This data implicates PPARγ 

as the single most important determinant of adipogenesis, but in order to bind DNA 

and be transcriptionally active, it must heterodimerise with the retinoid X receptor 

(Chawla et al., 2001). 

At least four isoforms of PPARγ occur in man via alternative splicing, however these 

result in only two encoded protein isoforms (Fajas et al., 1997; Fajas et al., 1998; 

Sundvold and Lien, 2001). Despite differing expression patterns (isoform 1 is localised 

to adipose tissue as well as other tissue sites such as liver and skeletal muscle, while 

isoform 2 is exclusively localised to adipose tissue) both are involved in adipogenesis, 
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however their relative contributions to the process remain a subject of research 

(Aprile et al., 2014). Some research points toward a more adipogenic effect of the 

second isoform; in a knockdown study utilising 3T3-L1 cells (a murine embryonic 

fibroblast cell line used frequently to model adipogenesis), overexpression of isoform 

2 rescued adipogenesis, whereas isoform 1 had no effect (Ren et al., 2002). However, 

studies of this nature may be compromised as ectopic expression of PPARγ2 in 

fibroblasts appears to result in expression of the endogenous PPARγ gene (Tontonoz 

et al., 1994), and treatment of 3T3-L1 cells sufficient to induce PPARγ1 expression in 

differentiation-compromised cells leads to expression of PPARγ2 and adipocyte 

programming (Farmer et al., 2002). In vivo experiments also reveal a confusing 

picture, different groups have generated PPARγ2-/- mice, in two of these cases both 

cohorts exhibited impairments of insulin sensitivity, but one reported decreased 

adipose mass compared to control (Zhang et al., 2004) and another normal adipose 

morphology and body weight (Medina-Gomez et al., 2005). Thus, while the 

importance of PPARγ to adipogenesis is clear, the differential function of its isoforms 

is not. 

The other central factor in adipogenesis is C/EBPα. C/EBPs are a family of 

transcription factors characterised by a highly conserved basic-leucine zipper 

domain, facilitating DNA binding, but also display a variety of protein-protein 

interactions within and outside of the C/EBP family (Ramji and Foka, 2002). They are 

involved in differentiation of a variety of different cell types, and several C/EBPs 

participate in adipogenesis. Typically, this is by inducing expression of C/EBPα, as is 

the case with C/EBPβ and C/EBPδ (Yeh et al., 1995). C/EBPα strongly induces 

transcription of many adipocyte genes, including PPARγ, which in turn activates 

promotion of the gene encoding C/EBPα resulting in a positive feedback loop (Wu et 

al., 1999). 

C/EBPα and PPARγ induce the expression of a suite of genes involved in the regulation 

of lipolysis, lipogenesis, and insulin sensitivity, including glucose transporter GLUT4, 

fatty acid binding protein FABP4, lipoprotein lipase, and the adipokines adiponectin 

and leptin (Lowe et al., 2011). These gene products mediate the metabolic and 

functional properties of the resultant adipocyte. A representative diagram of some 
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of the internal and external network of factors regulating adipogenesis and the 

resultant expression of these functional genes is shown in Figure 1.2. 

 

Figure 1.2. – Diagrammatic representation of the regulation of adipogenesis by a 

network of intra and extracellular factors. Blue ellipses represent pro-adipogenic 

factors, red ellipses represent anti-adipogenic factors. Arrows represent stimulatory 

effects, flat-ended arrows represent inhibitory effects. PPARγ is central to the 

adipogenic cascade, and can be inhibited or stimulated directly or indirectly by a 

range of factors, inside and outside of the cell. Families of proteins and transcription 

factors do not exhibit uniform effects; Krüppel Like Factors and C/EBP proteins may 

both enhance or inhibit adipogenesis. External stimuli such as JAK activation or short 

chain fatty acid (SCFA) activation of GPR43 can influence adipogenesis. Some cell wall 

components of lactic acid bacteria have been shown to impact adipose gene 

regulation; lipoteichoic acid increases adiponectin transcription but decreases 

resistin transcription, but research in this area remains limited. C/EBP - 

CCAAT/enhancer-binding protein, CHOP – C/EBP homologous protein, GPR43 – G-

protein coupled receptor 43, HDAC – Histone Deacetylase, JAK2 – Janus kinase 2, KLF 



9 

 

- Krüppel Like Factor, LAB – lactic acid bacteria, PPARγ – peroxisome proliferator-

activated receptor γ, SCFAs – short chain fatty acids, SREBP1 – sterol regulatory 

element binding protein 1, STAT3 – signal transducer and activator of transcription 3. 

Other factors regulating adipogenesis 

While a complete review of signalling factors regulating adipogenesis is beyond the 

scope of this study, several are conceptually important and potentially directly 

relevant. Further detail on bacterial components or metabolic products mentioned 

here is located in chapter 4. As depicted in Figure 1.2, there are a variety of factors 

capable of influencing adipogenesis both within and outside of the cell, which are 

mediated by key pathways. The Janus kinase (JAK) family and associated signal 

transducer and activator of transcription (STAT) are heavily involved in cytokine 

signalling (Schindler et al., 2007). The JAK2/STAT3 pathway has been reported as a 

regulator of C/EBPβ transcription (Zhang et al., 2011), leading to a clear rationale for 

immune stimulating components such as bacterial cell walls to impact adipogenesis. 

Further, short chain fatty acids (SCFAs) are produced in the human colon by resident 

bacteria, and have been shown to stimulate adipogenesis in brown adipocytes via 

GPR43 (Hu et al., 2016). 

As shown in Figure 1.2, several C/EBPs participate in regulating adipogenesis. C/EBPα 

is one of the central transcriptional players in adipogenesis, but is transcriptionally 

activated by other C/EBP proteins, notably C/EBPβ and C/EBPδ. However, other 

members such as C/EBP homologous protein (CHOP) show evidence of an inhibitory 

role, forming heterodimers with C/EBPβ and preventing its transcriptional activity 

(Darlington et al., 1998). 

The Krüppel like factors (KLFs) are a family of zinc finger proteins characterised by 

three highly conserved C2H2 zinc finger motifs at the C-terminus, resulting in similar 

DNA binding patterns (McConnell and Yang, 2010). As they bind similar regions of 

DNA, but can associate with different proteins and are subject to various post-

translational modifications, as with the C/EBP family they display the potential to 

either stimulate or inhibit gene transcription, and are important regulatory factors in 

adipogenesis. 
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Sterol regulatory element binding protein 1 (SREBP1) is a basic helix-loop-helix 

transcription factor shown to enhance adipogenesis. Though a simplistic relationship 

to adipogenesis in which it is induced by C/EBPβ/δ (Payne et al., 2009) and activates 

adipocyte genes (Kim et al., 1998a) is shown in Figure 1.2, there is evidence of a more 

complicated relationship. Further work by Kim et al. in the same year (1998b) 

suggested that SREBP1 activates PPARγ through the production of a PPARγ ligand. 

However, experiments in mice show that contrary to results in 3T3-L1 cells, 

overexpression of SREBP1c in adipose tissue results in severe lipodystrophy 

(Shimomura et al., 1998). The reason for the discordance of in vitro and in vivo data 

remains obscure but SREBP1 is widely held to be a pro-adipogenic factor. 

Histone deacetylases (HDACs) are a family of enzymes involved in epigenetic 

regulation by facilitating the removal of acetyl groups from lysine residues in the N-

terminus of histones, thus compacting chromatin structures (Seto and Yoshida, 

2014). As adipogenesis encompasses the transcription of a large amount of genetic 

material, it logically follows that HDACs inhibit adipogenesis. However, evidence does 

not uniformly accord with the basic hypothesis; Yoo et al. (2006) reported that 

HDAC1 knockdown in 3T3-L1 cells promoted adipogenesis, while overexpression 

inhibited differentiation, but chemical HDAC inhibition shows mixed results that 

appear to be dependent upon class (Lagace and Nachtigal, 2004; Kim et al., 2009) and 

there is evidence in murine embryonic fibroblasts that HDAC gene deletion blocks 

adipogenesis (Haberland et al., 2010). The findings of Kim et al. that sodium butyrate 

can enhance adipogenesis is particularly relevant, as other SCFAs (which are explored 

in greater detail in chapter 4) also exhibit HDAC inhibitor activity (Latham et al., 2012).  

 

Temporal regulation of adipogenesis 

The progression of differentiation begins with arrest in the G1 phase of the cell cycle 

(Scott et al., 1982). While in vitro cells are cultured to confluency to achieve growth 

arrest, it is worth noting that confluent 3T3-F442A grown in suspension also retain 

differentiation capacity, suggestive of a functional cellular change outside of contact 

inhibition (Pairault and Green, 1979). Thus, while this is an integral step for common 
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in vitro models, confluence may not be a determining step in vivo. Following growth 

arrest, dependent upon hormonal stimulation, preadipocytes re-enter the cell cycle 

and undergo mitotic clonal expansion (MCE) (MacDougald and Lane, 1995). Blockade 

of progression into the S1 phase of the cell cycle during MCE results in complete 

prevention of adipogenic programming (Tang et al., 2003), though the status of MCE 

as an obligatory process in adipogenesis had previously been challenged (Qiu et al., 

2001). Several rounds of MCE may occur, which ceases upon expression of PPARγ and 

C/EBPα (Shao and Lazar, 1997), signalling the onset of early differentiation. In 

addition to its role in the transcription of adipocyte genes, C/EBPα exerts anti-mitotic 

effects, facilitating the cessation of MCE (Umek et al., 1991). The expression of PPARγ 

and C/EBPα marks a subsequent and final period of growth arrest, during which 

fibroblasts acquire a rounded morphology and begin to accumulate lipid droplets and 

express proteins mediating functions such as lipid transport, synthesis, and insulin 

sensitivity (Gregoire et al., 1998). This period of terminal differentiation takes several 

days using in vitro models such as the 3T3-L1 cell line (Zebisch et al., 2012).  

Though these stages are often presented as discrete, linear and chronological stages, 

there is often disagreement about the classification of transcriptional events. For 

example, lipoprotein lipase is often considered a sign of early differentiation, 

however reports indicate its expression occurs at growth arrest (Ailhaud et al., 1989). 

Despite complexities in discretely classifying these events, differentiation of 

adipocytes broadly results in marked temporal changes in gene expression, reflecting 

an initial multipotent state which is transcriptionally driven towards a specialised 

function. Resultantly, several genes have been identified and utilised as biomarkers 

of broad stages of adipocyte development: commitment, early, and terminal 

differentiation.  

As previously mentioned and indicated in Figure 1.2, the Krüppel like factors exhibit 

inhibitory and stimulatory effects on adipocyte differentiation. KLF2 is robustly 

expressed in both human and 3T3-L1 preadipocytes, but expression is markedly lower 

in differentiated cells (Banerjee et al., 2003), which see greater expression of KLF5 

and KLF15. KLF5 has been associated with early differentiation but is downregulated 

in mature adipocytes, whereas KLF15 is associated with terminal differentiation. Each 
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of these KLFs shows evidence of binding to the PPARγ promoter, engendering the 

hypothesis that KLF2 is sequentially replaced with KLF5, which in turn is replaced with 

KLF15 (Oishi et al., 2005), and that their differing capacity to interact with specific 

proteins mediates functional changes in the stages of differentiation. 

 

Regulation of thermogenic programming of adipocytes 

The regulation of thermogenic programming is less well understood than 

adipogenesis, however several key components have been identified. PRDM16, a 

zinc-finger protein, has been shown to strongly induce thermogenic programming 

when ectopically expressed in WAT (Seale et al., 2007). However, PRDM16 does not 

appear to be essential for the formation of BAT; selective knockout of PRDM16 in BAT 

progenitors of mice showed no morphological changes in BAT depots on birth, but by 

6 months of age BAT associated genes were markedly decreased and adipose depots 

had physically expanded (Harms et al., 2014). Thus, while PRDM16 appears critical to 

the maintenance of BAT identity, and its expression is sufficient to drive a BAT-like 

transcriptional programme, it is not a master regulator of BAT development. The full 

suite of genetic redundancy in BAT development has yet to be elucidated. Early B Cell 

Factor 2 and Zinc Finger Protein 516 have recently been identified, knockout of the 

former results in neonatal lethality with dramatically reduced embryonic BAT 

development (Rajakumari et al., 2013), while knockout of the latter results in 

embryonic lethality with similarly reduced embryonic BAT development 

(Dempersmier et al., 2015). Both of these knockout models display morphologically 

impaired BAT as well as significant reductions in transcripts of BAT associated genes, 

but not complete ablation. Ultimately, BAT development still relies on the general 

adipogenic network (Seale, 2015), but a host of extra factors which are incompletely 

understood drive development towards a specialised fate. 

While ectopic expression of genes such as PRDM16 in WAT can drive a thermogenic 

transcriptional programme, they do not appear to be involved in the activation of 

BAT. Cold exposure, the classical activator of BAT, results in secretion of 

catecholamines that stimulate β-adrenergic receptors in brown adipocytes, which 
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both acutely activates UCP1 and increases its transcription, enhancing thermogenic 

capacity of the cell (Seale, 2015). The gene network involved in activation of 

thermogenesis appears to be distinct from the network regulating BAT development. 

The best-known gene related to BAT activity is PPARγ coactivator-1α (PGC1-α). PGC1-

α is the master regulator of mitochondrial biogenesis, and is thus regulated by a 

variety of signals related to cellular energy status and demands (Fernandez-Marcos 

and Auwerx, 2011). Ectopic expression of PGC1-α induces transcription of UCP1 in 

human WAT (Tiraby et al., 2003) and murine 3T3-F442A preadipocytes (Puigserver et 

al., 1998), but knockdown impairs induction of thermogenic genes without altering 

differentiation in an immortalised cell line generated from murine BAT (Uldry et al., 

2006). 

Activation of the Toll-like receptor (TLR) family of pattern recognition receptors 

appears to suppress transcription and protein expression of UCP1 in brown 

adipocytes assessed under basal and isoproterenol-stimulated conditions (Bae et al., 

2014). Intriguingly TLR activation appears to only suppress PGC1-α transcription 

under basal conditions, with no significant effect in conjunction with isoproterenol-

stimulated uncoupling, and no differences in protein expression of PGC1-α were 

apparent in either condition. This study utilised both LPS and a synthetic TLR2 ligand. 

TLR2 can be activated by lipoteichoic acid (Long et al., 2009), a component of gram-

positive bacterial cell walls and thus these results may have implications for probiotic 

bacteria. The role of TNF-α is more ambiguous however. Early research efforts 

involved administration of recombinant human TNF-α in rats, showing upregulation 

of BAT activity and UCP1 transcription (Coombes et al., 1987; Masaki et al., 1999), 

however in vitro administration of TNF-α to rat foetal brown adipocytes inhibits 

transcription (Valladares et al., 2001), though the latter study makes no mention of 

whether rat or human TNF-α was used, and differences may be reflections of 

experimental platforms used. 

In summary, separate gene networks are responsible for BAT development and 

activity, though ectopic expression of genes from either network in WAT may induce 

thermogenic programming. Several crucial though not obligatory factors have been 

identified, and the networks in both development and activity circuits are being 
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gradually elucidated. PGC1-α, one of the central genes regulating BAT activity, is 

strongly influenced by a wide variety of signals and is thus seen as a promising target 

for the treatment of obesity. 

 

Models used for the study of adipogenesis 

The 3T3-L1 cell line is a longstanding in vitro model of the differentiation of 

preadipocytes to adipocytes. 3T3-L1 cells are unipotent murine preadipocytes which 

display fibroblast-like morphology, however under specific culture conditions these 

cells accumulate lipid and adopt an adipocyte-like phenotype (Farmer, 2006). This 

process involves mitosis, growth arrest, and the coordinated expression of specific 

genes, enhancing expression of those related to triglyceride synthesis/storage, and 

altering expression of structural proteins to facilitate the round phenotype (Rosen 

and MacDougald, 2006). The process of differentiation requires an adipogenic 

medium, with maximal differentiation achieved using a combination of 

glucocorticoids, insulin, a treatment to elevate cAMP intracellularly, and foetal 

bovine serum (Cristancho and Lazar, 2011). Frequently in the study of adipogenesis 

using 3T3-L1 cells, treatment groups are cultured in an adipogenic “differentiation 

medium” (DM) while control groups are cultured in a basal medium containing 

factors necessary only for the maintenance of growth, termed “complete medium” 

(CM).  

Several investigatory tools are routinely used to quantify adipogenesis to allow 

statistical comparison between control and treatment groups. The quickest and most 

practical of these is Oil Red O (ORO) staining. ORO is a lipophilic dye that has been 

used for the quantification of lipids in in vitro models of adipogenesis for several 

decades (Ramirez-Zacarias et al., 1992) and is widely used in histopathology for the 

investigation of hepatic steatosis (Levene et al., 2012). In brief, lipid-soluble ORO is 

dissolved in a solvent, which is diluted with water prior to use. Owing to the 

hydrophobic nature of ORO, incubation of tissues with the solution results in the dye 

associating with lipids, which can then be extracted in alcohol and optical absorbance 

measured to enable lipid quantification. ORO staining can encounter problems with 



15 

 

nonspecific staining, as fine particulate matter can be difficult to completely wash 

from cells and will carry over to the final extraction. There have also been reports of 

non-adipogenic cell staining dependent upon solvents used (Kinkel et al., 2004). In 

summation ORO is a hugely useful tool in the quantification of adipogenesis, but 

encounters issues with sensitivity. As mentioned previously, several genes have been 

identified which are involved in the transcriptional regulation of adipogenesis; 

quantitative polymerase chain reaction (qPCR) is another method frequently used to 

assess adipogenesis via measurement of transcripts of markers of terminal 

differentiation. qPCR allows for extremely sensitive measurements in biological 

samples, but is also more versatile than ORO staining as it allows for the 

quantification of markers of adipose phenotype and function. 

Much of the knowledge of the cellular and genetic processes of adipogenesis has 

been derived from 3T3-L1 studies. As an in vitro model it appears highly 

physiologically representative; cultured 3T3-L1 adipocytes have been implanted into 

mice and maintained function (Fischbach et al., 2004) and these implantation 

methods have also been used to study the differences observed in the function of 

visceral and subcutaneous adipose tissue with regards to inflammation (Shibasaki et 

al., 2002). While the 3T3-L1 model is held to be an excellent model of white adipose 

tissue, it is less clear how it applies to the study of thermogenically active adipose 

phenotypes. 3T3-L1 adipocytes appear to display mixed features of brown and white 

adipocytes, responding to catecholamines in a manner more representative of beige 

or BAT, and are capable of significant enrichment of BAT associated genes without 

increases in UCP1 expression (Morrison and McGee, 2015). Previous studies have 

tangentially reported the presence of BAT associated genes such as Zinc in 

Cerebellum 1 (ZIC1) in 3T3-L1 cells (Seale et al., 2007), but it remains unclear whether 

they possess any functional role. In recent years, protocols have been reported 

allowing the induction of beige-like characteristics, including robust expression of 

UCP1 (Asano et al., 2014), however the expression of beige associated genes was 

largely unchanged from control adipocytes. Within the past 2 decades, the PAZ6 cell 

line has been developed for use as a model of human brown preadipocytes (Kazantzis 

et al., 2012), however its usefulness has been questioned owing to differences 
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observed in function between PAZ6 and primary cultures (van Beek et al., 2008) and 

work continues in this area of research. Until validated protocols or new models of 

adipose “browning” appear, 3T3-L1 cells still represent a useful investigatory tool, 

but caution is required in interpreting results. 

 

Treatment of obesity 

Expansion of adipose depots occurs through either hypertrophy of adipocytes or de 

novo adipogenesis. Broadly, there are two phenotypic patterns of obesity, 

hypertrophic and hyperplasic, though some degree of hypertrophy is characteristic 

of all obesity (Hirsch and Batchelor, 1976). Hyperplasic obesity is associated with 

severity of obesity (Hirsch and Batchelor, 1976), however hypertrophic obesity 

appears to be more metabolically deleterious (Weyer et al., 2000; Tchoukalova et al., 

2008). This difference in metabolic features of adipose tissue may also affect 

response to treatment; limited data exists on the cellular response of adipose tissue 

in obesity to treatment, but a suggestion exists that weight loss reduces adipocyte 

size in large adipocytes, with little effect on smaller adipocytes (Rossmeislová et al., 

2012). 

However, classification and screening of obesity relies on measures applicable at a 

population level, chiefly BMI, and few patients are examined on a cellular basis. At 

present, the treatment algorithm for obesity in the United Kingdom is governed by 

different bodies in different jurisdictions but is broadly similar in England and Wales, 

employing a tiered approach (NHS England, 2014; Welsh Government, 2016). Tier 1 

consists of behavioural change facilitated by public health campaigns such as 

“Change4Life”, tier 2 consists of weight management services delivered in the 

community, tier 3 consists of clinician led services that may involve pharmacological 

intervention, and tier 4 consists of bariatric surgery (NHS England, 2014). 

Public health campaigns encounter criticism of ineffectiveness and governmental 

reticence for legislative intervention in environmental factors contributing to obesity 

(Walls et al., 2011; Hafekost et al., 2013). Health technology assessment of the clinical 

effectiveness of weight management services shows that weight reduction tends to 



17 

 

be modest, and regaining weight is common (Loveman et al., 2011). Orlistat 

(tetrahydrolipstatin) therapy is the only pharmacological intervention approved in 

the UK at present, as sibutramine was withdrawn following concerns about adverse 

cardiovascular events (European Medicines Agency, 2010). Orlistat is a pancreatic 

lipase inhibitor, which in a study investigating effectiveness of dosage timing found 

an increase of 20-27g of faecal fat per day compared to placebo (Hartmann et al., 

1993). This can result in gastrointestinal discomfort and steatorrhea, and faecal 

urgency (Jain et al., 2011) making it an unattractive treatment for many patients. 

Bariatric surgery is reserved for the most severely obese patients and appears to be 

the most effective intervention (Chang et al., 2014). However, in addition to 

attendant risks of surgical procedures such as mortality, there are potential metabolic 

complications associated with the disruption of normal gastrointestinal physiology. 

These include micronutrient deficiencies, hypoglycaemia, and metabolic bone 

disease (Jammah, 2015). 

Given the estimated cost of obesity, the significant contribution to ill health, and the 

ineffectiveness of present treatments, new treatments are desperately needed. 

Development and licensing of new medications takes significant time and monetary 

investment, and so existing medications or non-pharmacological interventions are an 

attractive avenue of research.  
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1.2 – The gut microbiota and probiotic bacteria 

The gut microbiota 

The human body is host to a variety of microbial communities inhabiting areas such 

as skin, eyes, and the intestinal tract. Total bacterial cell numbers inhabiting the 

human body are estimated to be in the same order as the total somatic cells in an 

average 70kg man (Sender et al., 2016). Of these communities the “gut microbiome” 

of the large intestine is the largest and most extensively studied. The term 

microbiome refers to the entire ecological “habitat” and its contents, i.e. the “gut 

microbiome” would account for the entire bacterial population of the large intestine, 

as well as components such as viruses and fungi, their genomes, and other abiotic 

factors. The terms “microbiota” and “microbiome” are often used interchangeably, 

recent attempts to standardise the language in research propose that “microbiota” 

be used to refer to “assemblage of microorganisms present in a defined 

environment”, the composition of which is analysed by means such as 16S rRNA 

sequencing (Marchesi and Ravel, 2015).  

Evidence suggests that colonisation of the human gastrointestinal tract may begin in 

utero, as meconium of neonates shares microbiota features of amniotic fluid and 

placental tissue (Collado et al., 2016). It is believed that an increase in foetal 

swallowing of amniotic fluid increases in the third trimester (Mann et al., 1996), 

which may allow the foetal gut to become colonised, and may explain links between 

gestational age and faecal microbiota (Hill et al., 2017). Mode of delivery appears to 

exert effects on infant microbiota signatures over at least the first 3 months of life, 

with Caesarean section notably associated with greater colonisation of Clostridium 

and Lactobacillus, whereas Bifidobacterium and Bacteroides colonisation seems 

associated with vaginal delivery (Rutayisire et al., 2016). Composition of the infant 

microbiota also varies according to nutritional status. Breast feeding affects 

development of the infant microbiota not only through the composition of the 

nutritional milieu, but there is also evidence of a bacterial entero-mammary pathway 

(Rodríguez, 2014). Immunoglobulins in breast milk are also believed to affect 

immunoregulation in the infant, promoting tolerance to the endogenous microbiota 
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(Maynard et al., 2012). The establishment of the microbiota and exposure to 

microorganisms is intrinsically linked to development of the immune system (Renz et 

al., 2011), and development of the microbiota occurs also, with the relatively simple 

infant microbiota giving way to the more complex adult microbiota by the end of the 

first year of life (Palmer et al., 2007). 

The gut microbiome has received considerable research interest in the last decade 

and has come to be viewed as an extrasomatic organ, representing an abundance of 

genetic material capable of mediating functions that human genes cannot (Bäckhed 

et al., 2005). Metagenomic analysis of stool samples reveals that a significant amount 

of total genetic material is related to the fermentation of carbohydrates (Gill et al., 

2006), producing abundant quantities of SCFAs from undigested material from the 

host diet, which are estimated to account for between 5-10% of daily energy intake 

in man (McNeil, 1984). As SCFAs are highly energetic molecules, this is often cited as 

the most important bacterial contribution to human metabolism, however there is 

also evidence of processes as diverse as vitamin synthesis, drug metabolism, and bile 

acid deconjugation (Jandhyala et al., 2015). Outside of metabolic processes, the gut 

microbiota is involved in pathogen exclusion both through competition for resources 

and production of bacteriocins (Buffie and Pamer, 2013) and is proposed to be a 

regulatory factor in epithelial homeostasis, affecting transport protein expression 

through hypoxia (Ward et al., 2014). 

Modern techniques such as 16S rRNA sequencing allow for far more sensitive analysis 

of the microbial composition of a sample than traditional culture techniques 

(Clarridge III, 2004), which were often limited to measuring the growth of aerobic or 

anaerobic populations (Krook, 1981). These techniques have facilitated the 

publishing of many studies investigating the association between composition of the 

gut microbiota and human health, particularly in inflammatory bowel diseases 

(Prosberg et al., 2016). This work builds on an unexpected role of bacteria in human 

health proposed in the last few decades. The TLR family of pattern recognition 

receptors which regulate response to pathogenic bacteria, are highly conserved in 

both vertebrates and invertebrates, and are of distinct evolutionary importance 

(Roach et al., 2005). The “old friends” hypothesis proposed by Rook et al. (2004) 
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builds on the hygiene hypothesis based on the work of Strachan (1989) and accounts 

for discordant evidence surrounding the contemporary T-helper 1/2 paradigm 

(Yazdanbakhsh et al., 2002). This proposed that a shared evolutionary history with 

microbial organisms such as certain helminths and species of bacteria primed 

immunoregulation rather than aggressive inflammatory responses that may be 

detrimental to the health of the host. This suggestion neatly accounted for the then 

recent discovery of regulatory T cells (Rook and Brunet, 2005) and links between 

microbial richness and diversity in the large intestine and human health. The hygiene 

hypothesis has been proposed to be involved in the growing incidence of 

autoimmune diseases such as type 1 diabetes mellitus, multiple sclerosis, and 

inflammatory bowel diseases, which experienced rises of up to 300% between 1950-

2000 in some developed nations (Bach, 2002). Various epidemiological studies 

appear to support the hypothesis, such as the findings of Leibowitz et al. (1959) that 

risk of developing multiple sclerosis in an Israeli population may be related to level of 

sanitation during childhood, and that early life exposure to siblings is also associated 

with a reduced risk of multiple sclerosis (Ponsonby et al., 2005). While results such as 

these present interesting hypotheses, they do not establish a causal link. There is 

however strong evidence of causality in animal models. In both bio-breeding 

diabetes-prone rats and non-obese diabetic mice the incidence of spontaneous type 

1 diabetes mellitus is directly correlated to the infectious burden of the environment 

(Bach, 2002). 

Recently, there has also been considerable interest in the potential role of gut 

microbiota composition in obesity, T2DM, and metabolic syndrome (Hartstra et al., 

2015). The high fat diet (HFD) model of obesity in mice results in decreased colonic 

epithelial integrity (Murakami et al., 2016). HFD feeding also disrupts microbial 

composition of the intestines, increasing lipopolysaccharide content while permitting 

increased bacterial translocation from the intestinal lumen resulting in “metabolic 

endotoxemia” (Cani et al., 2007). However, colonic bacteria may also affect other 

adipose depots via systemic effects, synthesising SCFAs and other metabolic products 

that may be absorbed within the colon and enter systemic circulation via the liver 

(den Besten et al., 2013). The application of techniques for assessing the composition 
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of the gut microbiota remains a matter of debate; results have proven difficult to 

reproduce and no standard reference material exists (Sinha et al., 2015), in addition 

to unresolved questions surrounding the effect factors such as intestinal transit time 

have on results derived from faecal samples (Vandeputte et al., 2016). 

Intriguingly, a recent meta-analysis into the possible effect of probiotic 

supplementation on microbiome composition reported no significant effects 

(Kristensen et al., 2016). While techniques for the robust study of the gut microbiome 

remain in their infancy, this may be reflective of factors governing ecological niches 

within the intestines. Some of these are likely to be relatively fixed host factors, such 

as internal anatomical dimensions and immunological function. However, owing to 

the microbial richness of the gut microbiota and the abundance of genes facilitating 

metabolism of remnant dietary material, it is believed that there is a complex 

network of interdependent microbes and the application of ecological theory to the 

gut microbiome is an expanding area of research (Pepper and Rosenfeld, 2012). The 

competitive exclusion principle proposes that species occupying the same ecological 

niche within the same geographic region cannot coexist, as the slightest imbalance 

of reproductive rate will cause one species to dominate said niche (Hardin, 1960). 

Natural selection favours species specialised for niches constructed within the 

intestine, influenced by host and ecological factors, and it is therefore unsurprising 

that introduction of exogenous species appears to have little impact.  

The ecological view of the gut microbiota is supported by evidence surrounding 

recurrent Clostridium difficile infection. Antibiotics have pronounced effects on the 

composition and abundance of intestinal bacteria, and alterations can persist after 

the cessation of treatment, which may prime the environment for C. difficile 

colonisation (Vincent and Manges, 2015). Faecal microbial transplantation appears 

to be a highly successful strategy for treating recurrent C. difficile infection, which at 

present appears to be superior to probiotic therapy (Crow et al., 2015), though there 

are attendant caveats regarding strains, doses, and methods used. It had been 

proposed that restoration of an intact microbial community confers resistance to 

colonisation through niche exclusion, but recent research suggests multiple 

mechanisms including bile acid metabolism are involved (Mullish et al., 2017). The 
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issue therefore arises of reconciling effects of probiotic supplementation on clinical 

features such as reduction of serum CRP (Mazidi et al., 2017) or prevention of 

necrotising enterocolitis (Lau and Chamberlain, 2015) with no apparent change in 

microbiota structure. Evidence suggests that supplementation with probiotic 

bacteria can induce significant changes in the transcriptional activity of the gut 

microbiota without apparent effects on richness or diversity. A recent study of 12 

elderly Finnish individuals receiving daily doses of a Lactobacillus rhamnosus strain 

for 28 days found no evidence of significant structural changes in subjects’ 

microbiota, however did find significant enrichment of genes of commensal bacteria 

(Eloe-Fadrosh et al., 2015). These gene sets were primarily related to adhesion and 

motility of the butyrate producing species Roseburia and Eubacterium. A separate 

study in both mice and humans also showed limited evidence of change in microbial 

community structure with fermented milk supplementation, but significant changes 

in the faecal metatranscriptome related primarily to carbohydrate metabolism 

(McNulty et al., 2011). It is therefore plausible that probiotic supplementation can 

induce a change in the function of the gut microbiota without changing its population 

level structure. It is impossible to delineate whether this is due to effects of probiotics 

on the host, the bacterial community, or both and further research is required. One 

of the most widely researched aspects of probiotic bacteria is the assessment of anti-

inflammatory activity. In vitro study of Lactobacillus strains suggests that anti-

inflammatory effects on human cells are mediated largely by soluble metabolites 

(Ladda et al., 2015), but data relating to effects on adipogenesis (discussed in greater 

detail later in this chapter) is constrained by methodological oversights.  

If the resident bacteria of the colon can account for up to 10% of daily energy intake, 

and the composition of the gut microbiome is implicated in the “diseases of 

civilisation”, it follows that an increased microbial capacity for energy salvage could 

contribute towards obesity. Bäckhed et al. (2004) showed that a cohort of germ free 

mice had significantly lower body fat than conventionally raised littermates despite 

greater food consumption, and that transplantation of caecal material from 

conventional mice resulted in a 61% increase in body fat despite a reduction in food 

consumption. Sporadic reports of weight gain in human patients treated for C. 
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difficile infection by faecal transplant occur (Alang and Kelly, 2015), and conversely 

small randomised controlled trials of faecal transplants from lean donors in patients 

with metabolic syndrome have shown increases in peripheral insulin sensitivity 

(Vrieze et al., 2012), but definitive evidence of causative microbial shifts in humans 

remains obscure.  

 

Potential impact of bacteria on adipogenesis 

The modern history of utilising lactic acid bacteria (LAB) for effects on human health 

dates to 1907. Metchnikoff (1907) proposed that as with fermented milk, ingestion 

of LAB would “arrest intestinal putrefaction”. The ongoing association with ingestible 

bacterial products and potential health effects led to the creation of the term 

“probiotic”, defined by the World Health Organization in 2001 as "live micro-

organisms which, when administered in adequate amounts, confer a health benefit 

on the host" (Food and Agriculture Organization and World Health Organization, 

2001). Lab4 is a commercial probiotic product comprised of a mixture of Lactobacillus 

and Bifidobacteria strains. The composition of both Lab4 and Lab4b products is given 

in Table 1.1. Lab4 has been studied for potential effects in prevention of upper 

respiratory infections in children (Garaiova et al., 2015), prevention of C. difficile-

associated diarrhoea (Plummer et al., 2004), on symptoms of irritable bowel 

syndrome (Williams et al., 2009), on cholesterol metabolism in mice (Michael et al., 

2017), and other conditions. 
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Table 1.1. – Composition of Lab4 and Lab4b products 

Product Bacterial strains 

Lab4 Lactobacillus acidophilus CUL21 (NCIMB 

30156) 

Lactobacillus acidophilus CUL60 (NCIMB 

30157) 

Bifidobacterium bifidum CUL20 (NCIMB 

30153) Bifidobacterium animalis subsp. lactis 

CUL34 (NCIMB 30172) 

Lab4b Lactobacillus salivarius CUL61 (NCIMB 30211) 

Lactobacillus paracasei CUL08 (NCIMB 30154) 

Bifidobacterium bifidum CUL20 (NCIMB 

30153)  

Bifidobacterium animalis subsp. lactis CUL34 

(NCIMB 30172) 

 NCIMB - National Collection of Industrial, Food and Marine Bacteria 

 

Probiotic bacteria have been assessed for potential ability to ameliorate diet induced 

obesity in animal models, and for weight loss in humans (Park and Bae, 2015). While 

results from animal studies indicate the structure of the gut microbiome may 

modulate obesity, results in human trials remain mixed and multiple recent meta-

analyses reach varying conclusions (Park and Bae, 2015; Zhang et al., 2016; Borgeraas 

et al., 2017). Borgeraas et al. notably found a modest reduction in BMI but 

insignificant results in fat mass. As probiotic bacteria show species and strain specific 

effects, attempting to reconcile data for meta-analysis is problematic, and results 

may be artefacts of inclusion criteria, data availability, or both. Data from animal 

models is more robust, and notably the Lab4 consortium supplemented with L. 

plantarum CUL66 has already been studied in the context of cholesterol metabolism, 

with HFD mice gaining significantly less weight after 14 days when supplemented 

with Lab4 plus L. plantarum CUL66 (Michael et al., 2017). 
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Another recent study found that two Lactobacillus strains ameliorated weight gain in 

HFD mice, but also led to statistically significant increases of PGC1-α and decreases 

of leptin mRNA in mesenteric adipose tissue (Park et al., 2017). While these tissues 

were seemingly not assessed for UCP1 transcription, these findings are suggestive of 

a potential “browning” effect on adipose tissue following administration of a 

probiotic, as leptin and BAT genes are reciprocally regulated (Cancello et al., 1998), 

and PGC1-α induces transcription of thermogenic genes such as UCP1 (Harms and 

Seale, 2013).  

The 3T3-L1 model provides an excellent experimental platform to investigate the 

effects of soluble factors of probiotic bacteria on adipocyte biology and has been 

frequently used for the study of adipogenesis in relation to obesity (Ruiz-Ojeda et al., 

2016). Several in vitro studies have investigated the effect of probiotic bacteria on 

adipogenesis, and methods used vary. Lee et al. (2015) treated differentiated 3T3-L1 

cells for 24 hours with lyophilised kimchi (a fermented cabbage dish) powder 

dissolved in culture medium, finding reduced mRNA expression of PPARγ, C/EBPα, 

and fatty acid synthase, as well as what appeared to be reductions in lipid droplet 

size assessed subjectively by ORO staining. However, this study did not report on cell 

viability and utilised glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a 

reference gene, which is unsuitable in 3T3-L1 cells (Zhang et al., 2014). Park et al. 

(2011) found similar results treating 3T3-L1 cells with a probiotic cell extract, 

reporting reduced mRNA and protein expression of PPARγ2, C/EBPα, fatty acid 

synthase, and adipocyte-fatty acid binding protein. Ilavenil et al. (2015) studied the 

effect of phenyllactic acid extracted from the supernatant of cultured Lactobacillus 

spp. KCC-10 on 3T3-L1 cells and reported increases in mRNA and protein expression 

of PPARγ 2, C/EBP-α, adiponectin, fatty acid synthase, and SREBP-1 compared to 

control. However, this study also used GAPDH as a reference gene and protein, and 

while it did report data on cell proliferation, this was using a tetrazolium salt based 

assay which may not be suitable for use with treatments that may increase 

mitochondrial respiration (discussed further in chapter 3). Park et al. (2013) studied 

the effects of supernatant of a LAB extracted from gajami sik-hae (a fermented fish 

dish), reporting dose dependent reductions in ORO staining, in addition to dose 
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dependent reductions in mRNA expression of PPARγ 2, C/EBPα, leptin, adipocyte-

fatty acid binding protein, glycerol-3-phosphate dehydrogenase (GPDH), and fatty 

acid translocase. This study utilised a more suitable reference gene in β-actin, but did 

not report on cell viability. A 3T3-L1 study utilising both the spent broth and a cell 

extract of cultures of L. rhamnosus isolated from amabere amaruranu, a Kenyan milk 

product, reported increased protein expression of PPARγ 1, 2, C/EBPα, and adipose 

tissue triglyceride lipase from spent broth treatment but not cell extract (Kotala, 

2015). This study also did not report cell viability. While there are differing 

methodologies and results, in vitro evidence largely suggests potential inhibition of 

adipogenesis in 3T3-L1 cells with probiotic treatment. 

Similar to results seen in other in vitro studies mentioned, unpublished data 

generated in our laboratory by Erika Galgóczi (discussed in further detail in chapter 

4.3) suggests that culturing 3T3-L1 cells with Lab4 and Lab4b cell free supernatant 

(CFS) may influence adipogenesis. ORO staining of 3T3-L1 cells was performed during 

late adipogenesis, as well as qPCR quantification of markers of terminal 

differentiation. ORO staining suggested potential enhancement of adipogenesis in 

cells treated with CFS, with visual features of lipid droplets suggestive of a more 

advanced stage. However, qPCR data suggested the opposite, with a marker of 

terminal differentiation appearing lower in cells treated with Lab4 and Lab4b CFS 

than control in a single experiment. 

In sum, there is a scientific rationale behind the potential of bacteria to influence 

adipogenesis. Further, there is an unmet need in the literature to assess viability of 

adipocytes treated with bacterial CFS and resultant phenotype, which the present 

study seeks to address. 
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1.3 – Hypothesis and aims 

Following on from results seen in preliminary data, it is hypothesised that treatment 

of 3T3-L1 cells with the Lab4 consortium of probiotics will inhibit adipogenesis, with 

inhibition differing in a strain and time specific manner. It is further hypothesised that 

culturing 3T3-L1 cells in cell free supernatant of the Lab4 consortia will enrich 

expression of genes associated with BAT or beige adipose tissue and enhance 

thermogenic activity. 

The aims of this study are to assess the effects of the Lab4 consortium of probiotics 

on the molecular events of adipogenesis by measuring lipid accumulation and 

markers of adipose phenotype in the presence or absence of the Lab4 consortia and 

their constituent strains. 
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Chapter 2: Standardisation and production of bacterial cell free 

supernatant 

2.1 – Introduction 

Probiotic bacteria are studied in a wide variety of contexts, such as research into 

immunomodulatory capabilities (Chon et al., 2009) or mucosal adhesion (Piatek et 

al., 2012). In certain biological contexts such as mucosal adhesion, investigating the 

effects of viable bacterial cells on in vitro cell models can be physiologically relevant. 

However, in the context of investigating potential effects of bacteria on in vitro 

adipogenesis, different methodology is required. As mentioned in the previous 

chapter, a large amount of genetic material in the gut microbiota is related to the 

metabolism of carbon sources, and the gut microbiota can synthesise large amounts 

of SCFAs from remnant material of the host’s diet. This demonstrates a secretory 

capacity of bacteria resident within the gastrointestinal tract, and though as 

mentioned bacterial translocation can occur, and probiotic administration in mice has 

shown effects on mesenteric fat, most adipose depots in an organism will not interact 

directly with bacteria. Harvesting bacterial metabolites suspended in culture medium 

for use with in vitro cell models of adipogenesis is a simple method to maintain 

physiological relevance. 

In the absence of data on the effects of oral administration of the Lab4 consortium 

of probiotics on the genetic and molecular events of adipogenesis in previous mouse 

studies, it is important to standardise any materials used for in vitro study to obtain 

consistent, accurate results, and enable future study. Due to the extremely fast 

growth rate of many bacteria there are inherent difficulties to standardising either 

populations or their products. The present study represents the early stages of 

establishing in vitro models of the effects of such probiotic bacteria on adipogenesis 

and as such there are attendant concerns. 

Previous studies investigating the effect of probiotic bacteria on in vitro adipogenesis 

mentioned in chapter 1 have utilised standardisation methods that include 

lyophilisation and reconstitution of product to a specific weight per given volume of 
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media. This has advantages such as greater ease of studying dose dependent effects, 

but as the composition of products remains uncertain, it is unknown what effect the 

lyophilisation process may have. In order to provide a quantifiable measure for 

standardisation of CFS without introducing further processing, culture methods 

developed at Cultech to normalise to number of microorganisms in the starting 

inoculum were used. As might be expected, bacterial strains within the same species 

can exhibit significant differences in measures such as cell diameter (Kokkinosa et al., 

1998), and strains within the same genus can display different rates of production of 

metabolic products (Liguori et al., 2015). As the metabolic products of the bacterial 

strains used in the present study remain unknown, it was necessary to standardise to 

a broad measure such as cell number, however this is also advantageous as doses of 

probiotic products used by humans are routinely given in colony forming units (CFU). 

Various techniques have been applied for the enumeration of microorganisms in 

culture. A classical method still widely used today is the “Miles and Misra method” 

(Miles et al., 1938), which though labour intensive, uses bacterial suspensions plated 

on the surface of agar plates rather than more laborious methods using bacteria 

incorporated within molten agar. 

Time is a necessary variable to control for when culturing bacteria, as bacterial 

growth is characterised by distinct phases. A “lag” phase in which bacteria acclimate 

to growth conditions (Rolfe et al., 2012), a “log” phase of exponential growth seldom 

encountered naturally, a stationary phase in which growth plateaus, often restricted 

by environmental factors such as nutrient availability, followed eventually by a death 

phase (Navarro Llorens et al., 2010). It is necessary to be able to determine that 

growth has plateaued at the timepoint which the starting inoculum is used for further 

experiments in order to standardise bacterial content. There are numerous methods 

to quantify bacteria, however as with the Miles and Misra method they can be labour 

intensive and unsuitable for longitudinal determination. A practical method that 

allows for collection of large amounts of granular, longitudinal data is 

spectrophotometry. Unlike typical applications of spectrophotometry, the 

measurement taken is not directly of absorption of light at a specific wavelength as 

with a dye, but by bacterial suspension scattering light and reducing the amount that 
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ultimately reaches the photoelectric cell. The measurement obtained therefore is 

turbidity, and an indirect though semi-quantifiable measure of the number of 

bacteria in suspension. Measuring optical density of suspensions at 600nm is a 

common practice in the field of enumeration of microorganisms (Smetnakova et al., 

2012) but does not itself give direct quantification. 

 

2.2 – Materials and methods 

A list of reagents used and their suppliers is given in Appendix 1, Table 1. 

 

Miles and Misra counts 

Lyophilised Lab4, Lab4b, L. paracasei CUL08, L. salivarius CUL61, a Lactobacillus 

acidophilus mixture comprised of L. acidophilus CUL21 and L. acidophilus CUL60, and 

a Bifidobacterium mixture comprised of B. animalis subsp. lactis CUL34, B. bifidum 

CUL20 were obtained from Cultech Limited (Port Talbot, UK). The strains comprising 

the various bacterial cultures are summarised in Table 2.1. 
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Table 2.1. – Constituent strains of lyophilised bacterial mixtures used 

Condition Constituent strains 

1 – Lab4 Lactobacillus acidophilus CUL21 (NCIMB 30156) 

Lactobacillus acidophilus CUL60 (NCIMB 30157) 

Bifidobacterium bifidum CUL20 (NCIMB 30153) 

Bifidobacterium animalis subsp. lactis CUL34 (NCIMB 

30172) 

2 – Lab4b Lactobacillus salivarius CUL61 (NCIMB 30211) 

Lactobacillus paracasei CUL08 (NCIMB 30154) 

Bifidobacterium bifidum CUL20 (NCIMB 30153)  

Bifidobacterium animalis subsp. lactis CUL34 (NCIMB 

30172) 

3 – Lactobacilli Lactobacillus acidophilus CUL21 (NCIMB 30156) 

Lactobacillus acidophilus CUL60 (NCIMB 30157) 

4 – Bifidobacteria Bifidobacterium bifidum CUL20 (NCIMB 30153)  

Bifidobacterium animalis subsp. lactis CUL34 (NCIMB 

30172) 

5 – L. salivarius Lactobacillus salivarius CUL61 (NCIMB 30211) 

6 – L. paracasei Lactobacillus paracasei CUL08 (NCIMB 30154) 

NCIMB - National Collection of Industrial, Food and Marine Bacteria 

 

Approximately 10µg of lyophilised bacteria per condition was suspended in 30ml 

universal containers (Greiner Bio-One, Belgium) containing 10ml MRS broth 

(reconstituted per manufacturer’s instructions), which was then incubated statically 

for 18 hours inside an Electrotek 400sg anaerobic cabinet (Electrotek, Shipley) at 

37˚C. To determine numbers of viable bacteria, serial dilutions were prepared by 

pipetting 4.5ml of phosphate buffered saline (PBS) into bijou containers (Greiner, 

Belgium) and transferring 500µl of the prior culture stock sequentially, up to dilutions 

of 10-7, as summarised in Figure 2.1. 
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Figure 2.1. – Representative diagram of the Miles and Misra technique. A. Serial 

dilutions were prepared from a starting inoculum of lyophilised bacteria up to a final 

concentration of 10-7 with the stepwise addition of 500µl of prior suspension to 4.5ml 

PBS. B. 5 individual 10µl droplets of the final 3 dilutions were added to demarcated 

segments of agar plates. 

 

Droplets (5 x 10µl) from dilutions 10-5, 10-6, and 10-7 were plated on each of 3 

demarcated segments of 5 individual MRS agar plates per dilution. Droplets were air 

dried inside a class 1 biological safety cabinet and then incubated anaerobically for 

48 hours. Following this, numbers of visible colonies per segment were counted at 

10-7, and the equivalent number of colony forming units at 10-1 calculated using the 

formula: 

CFU of 50µl at 10-7 x 20 = CFU of 1ml at 10-7 

CFU of 1ml at 10-7 x 1,000,000 = CFU of 1ml at 10-1 
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A mean average of the 15 results per condition was then used to calculate a dilution 

factor to achieve a 1x108 concentration. 

 

Longitudinal evaluation of bacterial growth by spectrophotometry 

Lyophilised bacteria were obtained from Cultech Ltd utilising the same strains and 

culture combinations as in Table 2.1. Cultures were prepared in triplicate by 

suspending approximately 10µg of lyophilised bacteria in 30ml universal containers 

containing 10ml MRS broth, then diluted to 1:100 and 1:1000 in MRS within separate 

universal containers. 100µl of both 1:100 and 1:1000 dilution samples with MRS as 

negative control were plated in duplicate on 96-well, flat bottomed, untreated plates 

(Corning, UK). Growth curves were generated by measuring optical density at 600nm 

every hour for 70 hours using a TECAN infinite 200 pro plate reader (TECAN, 

Männedorf) housed within an Electrotek SG 400sg anaerobic cabinet. Cultures were 

shaken with an orbital amplitude of 1mm for 5 seconds before measurement each 

hour. 

 

Production of bacterial cell free supernatant 

Approximately 10µg of lyophilised bacteria per condition (as in Table 2.1) were 

suspended in 10ml MRS broth within 30ml universal containers for 18 hours inside 

an Electrotek 400sg anaerobic cabinet at 37˚C. 

Following initial incubation, cultures were centrifuged at 3000 rpm for 10 minutes, 

supernatant discarded, and pellets resuspended in 10ml sterile PBS. PBS suspensions 

were subsequently centrifuged at 3000 rpm for a further 10 minutes, supernatant 

discarded, and resuspended in DMEM:F12 tissue culture media (see chapter 3.2 for 

details), diluted to 1x108 CFU per ml if necessary. Dilutions were performed according 

to dilution factors derived from Miles and Misra counts (with the exception of 

Bifidobacteria) and are shown in Table 2.2. Dilutions for Bifidobacteria were 

performed according to previous counts generated at Cultech as the 5.8x108 CFU per 

ml result was deemed to be a statistical outlier. Following adjustment to 1x108 CFU 
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per ml, DMEM:F12 suspensions were then incubated anaerobically at 37°C for a 

further 5 hours. 

Following final incubation, the DMEM:F12 bacterial suspensions were centrifuged at 

3000 rpm for 10 minutes, and supernatant decanted into new universal containers. 

Supernatants were adjusted to an approximate pH of 7.4 with drop wise addition of 

NaOH, determined by subjectively matching colour to unadulterated DMEM:F12 

(unpublished data generated at Cultech suggests phenol red indicator is accurate for 

this purpose). 1000µl of penicillin/streptomycin mixture was then pipetted into pH 

adjusted supernatants, which were then filter sterilised using 0.22 micron filters 

(Merck-Millipore, UK), collected into labelled 15ml Falcon tubes (Corning, UK) and 

stored at -20°C.  

 

Table 2.2 – Volumes of DMEM:F12 bacterial suspension and DMEM:F12 used to 

make 10ml aliquots of cell free supernatant containing 1x108 microorganisms 

Condition Mean CFU 

per ml at 10-1 

Volume of suspension Volume of DMEM:F12 

Lab4 2.5x108 4ml 6ml 

Lab4b 1x108 10ml 0ml 

L. salivarius 1.6x108 6.25ml 3.75ml 

L. paracasei 1.8x108 5.5ml 4.5ml 

Lactobacilli† 5x107 10ml 0ml 

Bifidobacteria* 5.8x108 6ml 4ml 

*Supplemented with 0.05% cysteine, †undiluted, grows to 50% of desired CFU/ml 

 

2.3 – Results 

Miles and Misra counts 

The Miles and Misra method was applied to quantify the growth of selected probiotic 

bacteria. All strains showed good viability, with visible colonies formed at 48 hours, 
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with the exception of Bifidobacteria. For assessment of Bifidobacteria growth, culture 

broths are frequently supplemented with 0.05% cysteine (Shah, 2000), and 

Bifidobacteria in the present study displayed visible colonies when MRS was 

supplemented with 0.05% cysteine. Results of colony counts in each condition 

assessed are presented in Table 2.3. 

 

Table 2.3. – Colony counts at 48 hours using the Miles and Misra technique 

Condition Mean CFU per ml at 10-1 

L. salivarius 1.6x108 

L. paracasei 1.8x108 

Lactobacilli 5x107 

Bifidobacteria* 5.8x108 

*Supplemented with 0.05% cysteine 

 

Longitudinal evaluation of bacterial growth by spectrophotometry 

Longitudinal spectrophotometric measurements of solutions containing bacteria 

used in this study were performed for 70 hours to assess growth. With the exception 

of the Bifidobacteria condition, all strains displayed approximately plateaued growth 

within 24 hours. However, Lab4 displayed a long, slow period of growth that 

continued after the cessation of linear growth. As linear growth had ceased before 

24 hours, cell number was deemed to be relatively stable and usable at this time 

point. A representative growth curve is shown in Figure 2.2, comprehensive growth 

curve data can be found in appendix Figures A1-A8. MRS control wells showed no 

evidence of bacterial growth, indicating that environmental contamination was not a 

major issue. 
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Figure 2.2. – 70-hour growth curve of L. salivarius CUL61 diluted to 1:100 and 1:1000 

in MRS from starting inoculum. Optical density at 600nm is plotted on the Y axis in 

arbitrary units. Time is plotted on the X axis in hours. Each coloured line represents 

readings from 3 wells, 3 biological replicates were plated in technical duplicates. Blue 

lines represent 1:100 dilutions, red lines represent 1:1000 dilutions. Linear growth of 

bacteria appears to cease before 24 hours, and appears to reach a stationary phase. 

Growth reaches the same endpoint despite a 10-fold difference in starting material. 

 

2.4 – Discussion 

The Miles and Misra technique has been widely used to enumerate bacteria for 

decades, and was performed at Cultech’s laboratories using established quality 

control methodology. However, there are potential critiques of the method. Firstly, 

pipetting error in the large number of required serial dilutions is a potential source 

of error, however 5 experimental replicates were performed to improve accuracy and 

should mitigate any potential errors. It is also unclear whether the growth of droplets 

on MRS agar is necessarily representative of growth in suspension, though the 

original report of the technique notes that results do not differ significantly from roll-

tube agar techniques, and modern validation studies (albeit using different strains to 

the present study) do not find significant differences between other enumeration 
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methods (Naghili et al., 2013). The technique was used to determine a dilution factor 

in order to standardise each starting inoculum, but due to time constraints it was not 

possible to assess any potential impact on organism growth or viability when 

subsequently cultured in DMEM:F12 for 5 hours. Unpublished data generated 

previously at Cultech using these methods shows that numbers of viable Lab4 and 

Lab4b bacteria suspended in RPMI culture medium do not significantly differ after 5 

hours of incubation. Future work is needed to ascertain whether the same is true of 

bacteria cultured in DMEM:F12, and whether individually cultured strains show the 

same viability. Further, it would be desirable to attempt to perform direct 

enumeration of bacteria longitudinally rather than turbidimetric measures, as 

turbidity does not distinguish between live and dead bacteria. However, this would 

be extremely labour intensive. 

The dilution factors derived from enumeration via the Miles and Misra method 

presented a further issue. Lactobacilli grew to only half of the CFU per ml used for 

standardisation (standardised to growth of Lab4, 1x108 CFU per ml). As it is uncertain 

what the magnitude of any effects on adipogenesis in vitro may be, it was decided 

not to dilute other conditions down to this level, but to leave the Lactobacilli CFS as 

the only condition below the level of standardisation and be mindful of this when 

analysing any potential results. As this work represents the early stages of 

establishing methods to analyse the effects of these probiotic bacteria on in vitro 

adipogenesis, it is reasonable to attempt to standardise materials on the basis of 

broad measures such as total cell number. It is however possible that bacterial factors 

which impact adipogenesis are regulated by conditions not accounted for by this 

simple method, and results should be interpreted cautiously. 

There were also unexpected issues that arose from longitudinal growth data. 

Bifidobacteria cultured in the absence of other bacterial strains demonstrated poor 

growth, and data did not support the assumption that growth had plateaued by 24 

hours. As a result, Bifidobacteria CFS was not subsequently used to investigate effects 

on in vitro adipogenesis. Despite frequent use, calibration of microplate readers for 

the purposes of enumerating bacteria is an area of frequent methodological 

oversight in the literature (Stevenson et al., 2016) and variables such as aperture 
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dimensions and cell diameter can have significant effects. Growth curve data in the 

present study was used to determine that linear growth ceases before or around 18 

hours of incubation, and that variable volumes of starting inoculum have minimal 

impact on longitudinal growth, suggesting the method is robust enough to mitigate 

human error. 

Bifidobacteria are obligate anaerobes and are routinely supplemented with cysteine, 

which is not a component of traditional MRS broth, to improve yields, as they are 

notoriously sensitive to oxygen. It is believed that cysteine acts as a reducing agent 

aiding recovery of oxygen-stressed bacteria (Nebra et al., 2002). As it was not possible 

to culture Bifidobacteria without at some point exposing them to oxygen, this may 

have had an impact on their viability. Further, should future work seek to incorporate 

Bifidobacteria, it may be necessary to culture each condition both in the presence 

and absence of cysteine to ensure cysteine supplementation does not have a 

subsequent effect on variables measured in 3T3-L1 cells. This would have greatly 

increased the complexity of the present study and contributed to the decision not to 

investigate the effects of Bifidobacteria on adipogenesis. 

The data generated from the application of these techniques established dilution 

factors necessary to standardise the CFU/ml of CFS for all strains utilised in 

investigating in vitro adipogenesis subsequently (with the exception of L. 

acidophilus), allowing direct comparison to be made between treatment groups.  
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Chapter 3: Effects of bacterial cell free supernatant on viability of 3T3-

L1 cells 

3.1 – Introduction 

As noted in the introductory chapter, numerous studies on the effects of LAB on in 

vitro adipogenesis have been published, though data on cell viability in these studies 

appears to be a recurrent oversight. To properly assess the impact of a treatment on 

adipogenesis, especially when using techniques such as ORO staining, it is necessary 

to show that any potential reduction observed is not simply a result of cell death. 

Preliminary data reported in the introductory chapter suggests that Lab4 and Lab4b 

CFS may be able to affect in vitro adipogenesis, and that the relative composition of 

constituent bacteria may alter the magnitude of the effect. In order to determine 

whether this may be an artefact of reduced viability, viability of 3T3-L1 cells cultured 

in CFS of Lab4, Lab4b, or their constituent bacterial strains was investigated. 

A variety of methods are used for the purposes of assessing viability in cultured cells. 

Trypan blue staining is a longstanding traditional method that requires manual or 

semi-automated counting. As a result, it can be a laborious and time-consuming 

process which can make it unsuitable for use with a large number of experimental 

conditions. Tetrazolium salt based assays such as 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) and (3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) MTS give an indirect 

measure of cellular viability and are considered far more convenient than traditional 

methods. While the mechanism is not definitively understood, it is believed that in 

the case of MTT, reducing molecules chiefly ascribed in the literature to NADH within 

the mitochondria, reduce the tetrazolium compound to formazan crystals. However, 

certain cell free experiments have yielded results (Lim et al., 2015), and it is no longer 

believed that MTT is only reduced in the mitochondria. In the case of MTS, an 

intermediate electron acceptor with the capacity to penetrate viable cells, becomes 

reduced either within the cytoplasm or at the cell surface, and exits the cell, 

subsequently converting the tetrazolium compound to soluble formazan (Riss et al., 
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2013). Evidence suggests that MTS may have a limited capacity to enter cells without 

the presence of an intermediate electron acceptor, and has some capacity to be 

reduced at the cell surface (Berridge et al., 2005).  

 

3.2 – Materials and methods 

A list of reagents used, and their suppliers is given in Appendix 1, Table 1. 3T3-L1 cells 

were a generous gift from Dr. Lei Zhang and were originally obtained from the 

American Type Culture Collection (Atlanta, USA). 

 

Media preparation 

For preparation of complete medium, DMEM:F12 was supplemented with 10% foetal 

calf serum (FCS), 2% penicillin/streptomycin, 1% pyruvate, and 1.5% bicarbonate, and 

stored in sterile universal bottles at 4˚C. 

Differentiation medium was prepared with some modifications to the classical 

method (Student, et al. 1980) more similar to Zhang et al. (2009). Differentiation 

medium was routinely prepared in a 2x concentration according to Table 3.1. Initially, 

9ml of DMEM:F12 was pipetted into a universal container. 80ml of DMEM:F12 was 

pipetted into a sterile universal bottle, and penicillin/streptomycin, pyruvate, 

bicarbonate, and FCS were added via pipette in the volumes given in Table 3.1. Biotin, 

pantothenate, tri-iodothyronine, hydrocortisone, pioglitazone, and insulin were 

added via Gilson pipette to the 9ml volume of DMEM:F12 in the volumes given in 

table 3.1. The contents of the universal container were then passed through a 0.22 

micron filter into the universal bottle to produce the 2x concentrated differentiation 

media. 

Complete or differentiation media were diluted 1:1 with either DMEM:F12 or CFS 

(produced as described in chapter 2.2) and warmed to 37˚C in a heated water bath 

before use. 
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Table 3.1 – Composition of standard 2x concentration differentiation media 

Component Volume 

DMEM 44.5 mls 

Ham`s F12 44.5 mls 

Biotin (33µM) 64 µl 

Pantothenate (17µM) 200 µl 

Tri-iodothyronine (1nM) 1.4 µl 

Hydrocortisone (1µM) 20 µl 

Pioglitazone (1µM) 20 µl 

Insulin (500nM) 570 µl 

Penicillin/Streptomycin 4 mls 

Pyruvate 2 mls 

Bicarbonate 3 mls 

FCS 10 mls 

 

 

Routine cell culture 

All cells were routinely incubated in conditions of 37˚C, 5% CO2 in air. 

Trypsinisation of cells 

Trypsin IX and complete media were warmed to 37˚C in a heated water bath. Media 

was aspirated via suction from sub-confluent cells within tissue flasks. Trypsin was 

added to culture flasks via pipette at the appropriate volume (3ml for T25 flasks, 5ml 

for T75 flasks) and cells incubated and periodically agitated by gently tapping the 

sides of the flask and visually assessed by light microscopy to determine when cells 

had fully detached. Trypsin was then quenched in an equal volume of complete 

media, cell suspensions pipetted into a universal container, and centrifuged at 

1000RPM for 5 minutes. Following centrifugation, media was aspirated without 

disturbing cell pellets, and gently resuspended by pipette in complete media at the 
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desired volume (4ml for T25 flasks, 8ml for T75) before being seeded into culture 

flasks. 

Cryopreservation of cells 

A “freezing mix” comprised of 90% FCS and 10% dimethyl sulfoxide was prepared and 

passed through a 0.22 micron filter into a universal container. Cells were trypsinised 

as above, but cell pellets resuspended in 1ml aliquots of freezing mix via Gilson 

pipette. Cell suspensions in freezing mix were pipetted into Nalgene cryovials (Fisher 

Scientific, UK), and stored in a “Mr. Frosty” freezing container (Fisher Scientific, UK) 

containing 100% isopropyl alcohol at -80˚ for 48 hours before being transferred to 

liquid nitrogen storage. 

Thawing of cryopreserved cells 

Cryovials were immersed in a water bath heated to 37˚C such that cell suspensions 

were just below the water line. Cryovials were checked visually until all ice crystals 

had nearly thawed. Cryovials were then introduced to a class 2 laminar flow hood 

and contents poured into a pre-prepared 10ml aliquot of complete media. Cryovials 

were then washed out with complete media via pipette to ensure maximal cell 

recovery, and centrifuged at 10000 RPM for 5 minutes. Media was aspirated via 

suction without disturbing cell pellets, and pellets were gently resuspended by 

pipette in complete media at the desired volume (4ml for T25 flasks, 8ml for T75) 

before being seeded into culture flasks.  

 

Cell culture – trypan blue staining 

Cryopreserved 3T3-L1 cells at passage 14 were thawed and seeded into a T25 flask as 

previously described and maintained in undiluted CM until approximately 70% 

confluent. Cells were trypsinised as previously described and seeded at 

approximately 100,000 cells per well in 12-well plates and maintained in 1ml 

undiluted CM per well until 80-90% confluent. Media was replaced in post-confluent 

cells in triplicate wells in treatment conditions listed in Table 3.2. 



43 

 

CFS was prepared as described in chapter 2.2. Initiation of treatment was designated 

as day 0, media was changed every 48 hours or sooner if subjective assessment of 

phenol red indicator was deemed acidic. Trypan blue staining was performed on day 

10. 

 

Table 3.2 – Assessment of viability of 3T3-L1 cells in various culture conditions using 

trypan blue exclusion. 

Condition Composition 

CM Complete media diluted 1:1 with DMEM:F12 

DM Differentiation media diluted 1:1 with DMEM:F12 

DM + Lab4 Differentiation media diluted 1:1 with Lab4 CFS 

DM+ Lab4b Differentiation media diluted 1:1 with Lab4b CFS 

 

Cell culture – MTS assay 

Cryopreserved 3T3-L1 cells at passage 14 were seeded into a T25 flask and 

maintained in CM until approximately 70% confluent. Cells were trypsinised and 

seeded at approximately 50,000 cells per well in 24-well plates and maintained in 

0.5ml CM per well until 80-90% confluent. Media was replaced in post-confluent cells 

in triplicate wells in treatment conditions listed in Table 3.3. 

CFS was prepared as previously. Initiation of treatment was designated as day 0, 

media was changed every 48 hours or sooner if subjective assessment of phenol red 

indicator was deemed acidic. MTS assay was performed at 72 hours. 
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Table 3.3 – Assessment of viability of 3T3-L1 cells in various culture conditions using 

MTS assay. 

Condition Composition 

CM Complete media diluted 1:1 with DMEM:F12 

CM + Lab4 Complete media diluted 1:1 with Lab4 CFS 

CM + Lab4b Complete media diluted 1:1 with Lab4b CFS 

CM + L. salivarius Complete media diluted 1:1 with Lactobacillus salivarius 

CUL61 CFS 

CM + L. paracasei Complete media diluted 1:1 with Lactobacillus 

paracasei CUL08 CFS 

CM + L. acidophilus Complete media diluted 1:1 with Lactobacillus 

acidophilus CUL21 and CUL60 CFS 

 

Trypan blue staining and cell counting 

Cells were cultured as described previously. Media was aspirated and 0.5ml trypsin 

pipetted into each well. Plates were incubated at 37˚C and gently agitated 

periodically to ensure cells fully detached. Trypsinised cells were stained with 1 part 

trypan blue 0.4% (Sigma-Aldrich) to 1 part trypsin, and 20µl of suspension pipetted 

into the counting chamber of a Cellometer PD100 slide (Cellometer, UK). Slides were 

imaged in a Cellometer Auto T4 (Cellometer, UK). Automatic counts were generated 

and manually adjusted to give correct numbers of stained and unstained cells for all 

optic fields. 

 

MTS Assay 

CellTiter 96® AQueous One Solution Cell Proliferation Assay (referred to for 

convenience as MTS) was obtained from Promega (Promega, UK). At 72 hours, 

treatment media was aspirated, each well washed once with 1ml PBS, PBS aspirated 

via suction, and replaced with complete media (diluted 1:1 with DMEM:F12) at a 

volume of 200µl per well. Equal volume of media was also pipetted into 3 cell-free 
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“blank” wells. 40µl of MTS solution was pipetted into each well and incubated for one 

hour at 37˚C, 5% CO2. Following incubation, 100µl of solution was transferred by 

pipette into a 96 well microplate, and optical density measured at 490nm in a Dynex 

Opsys microplate reader. Values for cell-free blank wells were subtracted from 

readings to obtain final optical density readings. 

 

Statistics 

Statistical analysis throughout this thesis was performed with IBM SPSS statistics 

version 23 (IBM Corporation, New York). Statistical outliers were identified using 

built-in SPSS functions and manually removed from data before analysis. Data in text 

are presented as mean ± SD, data in graphs is presented as mean ± SEM for legibility. 

 

3.3 – Results 

Trypan blue staining and cell counting 

Post-confluent 3T3-L1 cells were maintained in CM or DM diluted 1:1 with 

DMEM:F12, or DM diluted 1:1 with CFS of Lab4/Lab4b for 10 days. Trypan blue 

staining was performed, and viability expressed as unstained cells as a percentage of 

total number of cells (shown in Figure 3.1). Treatment with DM + DMEM:F12 

appeared to result in mild cytotoxic effects (78.3% ± 9.4% viability), but DM in 

conjunction with Lab4 or Lab4b had a more pronounced cytotoxic effect (57.8% ± 

6.3% And 55.2% ± 10.7% viability respectively). Data are also presented expressed as 

untransformed total viable cell counts in Figure 3.2.  
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Figure. 3.1. – Cell viability assessed by trypan blue staining in 3T3-L1 cells after 10 

days, expressed as a percentage of total cells. 3T3-L1 cells were maintained in either 

CM diluted 1:1 with DMEM:F12 (CM), DM diluted 1:1 with DMEM:F12 (DM), or DM 

diluted 1:1 with Lab4 or Lab4b CFS (DM + Lab4 and DM + Lab4b). Treatment with 

Lab4 or Lab4b resulted in significantly reduced percentage of viable cells (p=0.002 

and p=<0.001 respectively) compared to DM control. Experiments were performed 

in triplicate wells, bars represent the mean of 2 individual experiments, error bars 

represent SEM. Asterisk denotes significant difference at p=<0.05 from DM. 
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Figure. 3.2 – Cell viability assessed by trypan blue staining in 3T3-L1 cells after 10 

days, expressed as total viable cells. 3T3-L1 cells were maintained in either CM 

diluted 1:1 with DMEM:F12 (CM), DM diluted 1:1 with DMEM:F12 (DM), or DM 

diluted 1:1 with Lab4 or Lab4b CFS (DM + Lab4 and DM + Lab4b respectively). No 

treatment condition resulted in significantly different numbers of total viable cells. 

Bars represent the mean of 2 individual experiments, error bars represent SEM. 

 

One-way between subjects ANOVA tests were conducted on untransformed data of 

total viable cell counts, and no significant differences were observed between 

conditions at p=<0.05 (F (3,20) = 2.179, p=0.122). 

One-way between subjects ANOVA tests were also conducted on transformed data 

(viable cells as a percentage of total cell counts). There was a significant effect of the 

media used on the percentage of viable cells at p=<0.05 (F (3,20) = 21.822, p=<0.001). 

Post-hoc comparisons using the Tukey HSD test indicated no significant difference 

between percentage of viable cells between CM + DMEM:F12 (86.833% ± 4.579%) 
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and DM + DMEM:F12 (78.333% ± 9.374%, p=0.297), but that percentage of viable 

cells was significantly lower after treatment with DM diluted 1:1 with Lab4 (57.833% 

± 6.306%, p=0.002) or Lab4b CFS (55.167% ± 10.741%, p=<0.001) than DM + 

DMEM:F12. 

 

MTS assay 

Post-confluent 3T3-L1 cells were treated for 72 hours with CM diluted with CFS of 

several bacterial strains. At 72 hours, a spectrophotometric MTS assay was 

performed, results of which are shown in Figure 3.3. When assessed by MTS assay, 

treatment of 3T3-L1 cells with CFS did not appear to negatively impact cell viability, 

though Lab4 treatment appeared to have a more variable effect than other 

treatments. All conditions except for CM + Lab4b (96.8% ± 3.56%) reported greater 

values than control. 

One-way between subjects ANOVA tests were conducted on spectrophotometric 

data (corrected by subtracting the average value of 3 cell free blank wells), and no 

significant differences were observed between conditions at p=<0.05 (F (5,27) = 

2.029, p=0.106).  
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Figure. 3.3 – Cell viability assessed by MTS assay in 3T3-L1 cells after 72 hours, 

expressed as a percentage of control. 3T3-L1 cells were maintained in either CM 

diluted 1:1 with DMEM:F12 (CM), or CM diluted 1:1 with CFS of Lab4, Lab4b, L. 

paracasei, L. salivarius, or L. acidophilus. No treatment condition assessed by MTS 

was significantly different than control, though most showed non-significant mean 

increases. Bars represent the mean of 2 individual experiments, error bars represent 

SEM. 

 

3.4 – Discussion 

Cell viability measured via trypan blue exclusion assay is non-significantly decreased 

in DM, and further significantly reduced in the presence of Lab4 or Lab4b CFS. This 

significance is only achieved when data is expressed as viable cells as a percentage of 

total cells, which may be a result of error distortion. However, when measured 

indirectly via MTS assay results in most conditions seem to indicate an increase in cell 

number and/or activity. It should also be noted that the MTS assay utilised only 

complete media due to concerns that differentiation media may affect proliferation, 

as tetrazolium salt based assays are also used for indirect measures of proliferation. 

Acute exposure in CM may not be reflective of chronic exposure in DM. Differences 
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in data may be accounted for by a functional change in differentiating 3T3-L1 cells, 

and more study is needed to reconcile these data sets.  

A prior study using the progenitor 3T3 fibroblast cell line categorised cytotoxicity data 

(generated via MTT assay) as: non-cytotoxic (>90% of control), slightly cytotoxic (60-

90% of control), moderately cytotoxic (30-59% of control), and severely cytotoxic 

(<30% of control) (Basak et al., 2016). Though data in the present study is limited, it 

is reasonable to suggest that there is some cytotoxic effect of the use of bacterial CFS 

generated from the Lab4 consortium in 3T3-L1 cells, but that the true magnitude of 

this effect requires more investigation. Unfortunately, due to time constraints, it was 

not possible to perform trypan blue exclusion assays on all treatment conditions. 

The clearly discordant data between both viability assays used suggests either a 

striking difference between CM and DM conditions and/or exposure times, or 

potentially some alteration of the redox state of whichever cellular components 

interact with MTS and/or its intermediate electron acceptor. The “browning” of 

adipocytes has recently been proposed as a mechanism to alleviate redox pressure 

(Jeanson et al., 2015), and treatment of murine primary white adipocytes with lactate 

induces an increase in the NADH:NAD ratio (Carrière et al., 2014), which may confer 

an increased ability to reduce MTS and/or its intermediate electron acceptor. MTS 

assays were shown to be useful in the study of NADH and NADPH reducing activity in 

cell free studies shortly after its introduction for use in measuring cell viability 

(Dunigan et al., 1995). Recent data generated at Cultech (unpublished) indicates that 

CFS of certain bacterial strains may have antioxidant capacity, which is a possible 

explanation. However, cells were washed in PBS and media replaced with CM diluted 

with DMEM:F12, so carryover of significant quantities of CFS is unlikely. As the 

composition of the CFS used in the present study is as yet uncharacterised, only 

speculative hypotheses can be derived from this data, however the presence of 

lactate may explain these results and is highly likely to be present. Other strains of L. 

acidophilus have previously been shown to efficiently produce lactic acid when 

cultured in MRS broth (Juárez Tomás et al., 2003). Phenol red indicator showed CFS 

to be at a pH of approximately 7.4. Under these conditions, a majority of lactic acid 

is believed to be present in its dissociated form, lactate (Lampe et al., 2009). 
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Statistical significance is not necessarily practical significance in cell biology. Since the 

widespread adoption of formazan based assays, cytotoxicity data is typically reported 

as a percentage of control, and analysed on this basis. In the present study, 

cytotoxicity assays utilised only two individual experiments plated in triplicate, and 

data collected is therefore not particularly large or robust. Statistical significance was 

only achieved with transformation of data to a percentage, which is open to 

methodological criticism. However, the practical significance of a reduction of viable 

cells measured by trypan blue staining to between 50-60% is potentially large, and 

may impact data generated using these cells. 

Murine adipocytes and 3T3-L1 cells possess TLR9 receptors. TLR9 can be activated by 

unmethylated CpG dinucleotides (Ashkar and Rosenthal, 2002), which are abundant 

in bacterial genomes, though stimulation of TLR9 by bacterial DNA shows species 

dependent effects on activation (Dalpke et al., 2006). Batra et al. (2007) showed 

significantly increased interleukin-6 release in adipocytes from wild type mice 

stimulated with a TLR9 ligand, while no such increase was seen in 3T3-L1 adipocytes. 

Batra et al. also reported that the TLR2 ligand zymosan did not appear to significantly 

stimulate interleukin-6 production in either wild type murine or 3T3-L1 preadipocytes 

and adipocytes. It may be that the doses used in Batra et al. were not sufficient, but 

it appears to suggest that in 3T3-L1 cells, these TLRs are relatively insensitive. The 

presence of bacterial DNA and lipoteichoic acid, which could stimulate TLR9 and 2 

respectively, have not been confirmed in CFS produced using methods in the present 

study, as their composition remains unknown. However, they are potential candidate 

components that could impact cell viability. In future study it would be beneficial to 

ascertain any dose-response effect of CFS on 3T3-L1 cell viability, and determine its 

cause. 

MTS assay and potentially other assays based on the reduction of a tetrazolium salt 

to formazan may be unsuitable for assessing cytotoxicity of bacterial CFS in 3T3-L1 

cells. The effects of acute exposure in cells maintained in CM may not reflect the 

effects of chronic exposure in differentiating cells. Classical cell viability assays are 

recommended for future study as treatment may influence redox state.  
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Chapter 4: Effects of bacterial cell free supernatant on adipogenesis in 

3T3-L1 cells 

4.1 – Introduction 

Preliminary data discussed in the introductory chapter indicates a potential effect of 

Lab4 and Lab4b CFS to reduce adipogenesis in 3T3-L1 cells. However, data generated 

in the present study suggests that this effect may be at least partially accounted for 

by changes in cell viability induced by treatment with CFS. Subjective visual analysis 

of images of ORO stained 3T3-L1 cells treated with Lab4 or Lab4b CFS generated by 

Erika Galgóczi suggested that adipogenesis in cells surviving cytotoxic effects of 

treatment exhibited features of enhanced adipogenesis, in particular differentiation 

was accelerated compared with DM controls. As Lab4 and Lab4b are multi-strain 

products, further investigation was warranted to determine whether a particular 

bacterial strain mediates potential effects on adipogenesis. Investigations into effects 

of Lab4 and Lab4b CFS on adipogenesis measured via ORO staining were repeated, 

alongside additional experiments utilising CFS of the L. acidophilus strains present in 

Lab4 in an attempt to identify whether any constituent strains were responsible for 

different effects seen in Lab4 and Lab4b treatment in preliminary data.  

Various methods are routinely employed to assess adipogenesis in 3T3-L1 cells, both 

qualitative and quantitative. Qualitative methods include visual assessment by light 

microscopy to identify features such as morphologic changes characteristic of 

differentiating cells, such as “rounding off” and the accumulation of lipid droplets. 

Quantitative methods include ORO staining and dye extraction, as previously 

described, and qPCR quantification of gene transcripts whose expression is 

associated with particular temporal stages or functions of adipogenesis. Temporal 

regulation of adipogenesis is covered in chapter 1.1, but the process broadly occurs 

in 4 contiguous stages: growth arrest, MCE, early differentiation, and finally terminal 

differentiation. Induction of PPARγ and C/EBPα is considered to be a marker of early 

differentiation (Ntambi and Kim, 2000), whereas genes such as GPDH have long been 

used as markers of terminal differentiation (Darimont et al., 1993). qPCR is frequently 
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used to assess not just the presence of these markers, but their quantities. qPCR is 

frequently applied to cell biology in two different forms. Relative quantification of 

gene transcripts entails comparing the expression of a gene in an experimental 

condition relative to the expression in control. This technique allows for the fast 

generation of data and semi-quantitative analysis of the degree of change induced 

by experimental conditions, reported as “fold change”. However, application of 

relative qPCR has disadvantages, notably that by measuring only relative change, 

small changes in genes expressed at a low level appear the same as large changes in 

highly expressed genes. Absolute quantification via qPCR avoids this, but is a 

comparatively more laborious technique, requiring external standards for the 

construction of a standard curve to compare against. Quantification by qPCR also 

requires a reference gene that is stably expressed through the time course of 

differentiation. As mentioned in the introductory chapter, numerous studies of the 

effects of bacteria on in vitro adipogenesis have utilised unsuitable reference genes, 

and application of the technique requires careful consideration of many factors. Data 

previously generated in our laboratory suggests that ARP is stably expressed during 

differentiation and has been frequently used as a reference gene in 3T3-L1 cells in 

data generated by this research group (Zhang et al., 2009; Draman et al., 2013). 

 

4.2 – Materials and methods 

A list of reagents used, and their suppliers is given in Appendix 1, Table 1. Media was 

prepared as in chapter 3.2. 

 

Cell culture – 3T3-L1 adipogenesis experiments 

Cryopreserved 3T3-L1 cells at passage 14 were seeded into a T25 flask as described 

in chapter 3.2 and maintained in undiluted CM until approximately 70% confluent. 

Cells were trypsinised as described in chapter 3.2 and seeded at approximately 

100,000 cells per well in 12-well plates and maintained in 1ml undiluted CM per well 

until 80-90% confluent. Media was replaced in post-confluent cells in triplicate wells 
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using either CM or DM diluted 1:1 with CFS (as in treatment conditions listed in Table 

3.3) or diluted with DMEM:F12 for control. 

Initiation of treatment was designated as day 0, media was changed every 48 hours 

or sooner if subjective assessment of phenol red indicator was deemed acidic. RNA 

extraction was performed on day 10, ORO staining was performed on days 3, 6, and 

9. 

 

ORO staining 

ORO was prepared on the day of each experiment at the designated timepoint. 

0.125g of ORO powder was weighed and placed in a universal container containing 

25ml 100% isopropanol, then thoroughly vortexed to produce a 0.5% stock solution. 

12ml of ORO stock solution was pipetted into a separate universal container 

containing 8ml distilled water to produce a working solution, and left to stand for 15 

minutes at room temperature. ORO working solution was then filtered through 

Whatman No. 1 filter paper and protected from light. 

Media was aspirated from cells, which were subsequently washed with 1ml PBS per 

well. PBS was aspirated, cells were fixed by pipetting 500µl 60% isopropanol into each 

well and left for 10 minutes before aspirating and washing with PBS again. 100µl of 

ORO working solution was pipetted into each well and incubated for 15 minutes at 

room temperature. Following incubation, cells were rinsed in 1ml 60% isopropanol, 

followed by 1ml of water, and imaged (Nikon Diaphot Microscope, Nikon) at 10x 

magnification by light microscopy using ViewFinder software (version 3.0.1, Better 

Light Inc., California, USA). Following imaging, cells were rinsed in 1ml 60% 

isopropanol once, then 1ml distilled water 4 times. Following the final distilled water 

rinse, water was aspirated and 200µl 100% isopropanol was pipetted into each well 

and incubated at 37˚C for 10 minutes. After incubation, contents of each individual 

well were mixed gently by pipetting then transferred into 96 well microplates. Optical 

density at 490nm was read in a Dynex Opsys MR microplate reader (Aspect Scientific, 

Cheshire, UK) using Dynex Revelation 4.24 software. Blank values were subtracted 

from data before analysis. 
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RNA extraction 

Media was aspirated from all wells, cells washed in 1ml PBS, then aspirated. 1ml of 

tri-reagent was pipetted directly into each well and gently mixed by pipetting 

ensuring no bubbles formed until all cells were visibly detached from plates. Samples 

were transferred to labelled Eppendorf tubes and stored at -80˚C for 24 hours. After 

24 hours, cell lysates were incubated at room temperature until thawed, 200µl of 

chloroform pipetted into each Eppendorf tube, and vigorously hand shaken for one 

minute. Eppendorf tubes were incubated at room temperature for 3 minutes, then 

centrifuged at 13000 RPM for 15 minutes at 4˚C. 

Following centrifugation, the upper aqueous phase was transferred by pipette to a 

new Eppendorf tube, and 500µl isopropanol added by pipette. Eppendorf tubes were 

then incubated at room temperature for 10 minutes before further centrifugation at 

13000 RPM for 15 minutes at 4˚C. Liquid was decanted and Eppendorf tubes blotted 

upside down on absorbent paper. 1ml of 75% ethanol was pipetted into each 

Eppendorf and briefly agitated by vortex mixing to wash RNA pellets. Eppendorf 

tubes were then centrifuged at 8600 RPM for 5 minutes at 4˚C. 

Following final centrifugation, liquid was decanted and Eppendorf tubes air dried 

upside down on absorbent paper for 10 minutes, following which fluid droplets were 

removed by pipette ensuring not to disturb the pellet area. 6µl of molecular biology 

grade water was added to each Eppendorf tube before being briefly vortex mixed and 

pulled down by centrifuge 3 times. RNA was then stored at -80˚C until use. 

 

Reverse transcription 

RNA was thawed on ice, and then briefly vortex mixed and pulled down by centrifuge. 

1µl of RNA was then measured using a Nanodrop Lite spectrophotometer (Thermo 

Fisher, UK) and ratio of absorbance at 260nm:280nm and concentration recorded. A 

260nm:280nm absorbance ratio of ~2 was used as a measure of pure RNA. RNA 

samples were diluted with molecular biology grade water to a total of 1000ng RNA in 
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6µl water in Micro Eppendorf tubes, or undiluted if RNA yields were too low to 

achieve 1000ng. 

Micro Eppendorf tubes were placed in a heating block at 60˚C for 10 minutes then 

immediately transferred to ice for 5 minutes to prevent secondary structure 

reformation. A master mix for reverse transcription was prepared according to Table 

4.1 (multiplied as required) and was added to each Micro Eppendorf tube. Micro 

Eppendorf tubes were vortex mixed and pulled down by centrifugation twice, then 

transferred to a thermocycler programmed for incubation at 37˚C for one hour, 95˚C 

for 5 minutes, and then cooled to 4˚C before resulting cDNA was stored at -20˚C until 

use. 

 

Table 4.1. – Volumes of reagents used for reverse transcription master mix per 

single experiment 

Volume Reagent 

4µl dNTPs (2mM) 

4µl Oligo dT Primer 

4µl 5x Buffer 

1µl RNAse Inhibitor 

1µl Reverse Transcriptase 
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Production of standards for qPCR 

3T3-L1 cells were cultured as described previously for trypan blue exclusion assay in 

chapter 3.2, but using undiluted CM and DM in cells seeded on 6-well plates. Post-

confluent cells were cultured in DM for 7 days. At day 7, RNA was extracted, and 

reverse transcribed as described previously. A master mix for polymerase chain 

reaction (PCR) was prepared using cDNA generated with volumes according to Table 

4.2 (multiplied as necessary). Forward primer used for ARP used the sequence 

GAGGAATCAGATGAGGATATGGGA, reverse primer used the sequence 

AAGCAGGCTGACTTGGTTGC. Forward primer for GPDH used the sequence 

ATGCTCGCCACAGAATCCACA, reverse primer used the sequence 

AACCGGCAGCCCTTGACTTG. 

24µl of master mix was pipetted into Micro Eppendorf tubes stored on ice, 1µl cDNA 

added by pipette, and transferred to a thermocycler programmed according to Table 

4.3. 

 

Table 4.2. – Volumes of reagents used for polymerase chain reaction master mix 

per single experiment 

Volume Reagent 

0.5µl dNTPs (2mM) 

2.5l 10x Buffer 

1.5µl MgCl2 

0.5µl Forward + reverse primer mix 

0.125µl Amplitaq Gold Polymerase 

18.875µl Molecular biology grade water 
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Table 4.3. – Thermocycler settings for polymerase chain reaction. 

Step Temperature Time 

Initial denaturation 95 10 min 

PCR cycles (40) 

Denature 95 15 sec 

Anneal 60 30 sec 

Extend 72 30 sec 

Final extension 72 5 min  

Hold 4 indefinitely 

 

Agarose gel was prepared by heating 2g agarose and 5µl ethidium bromide in 100ml 

1x TAE buffer in a microwave until a clear solution was formed, then poured into 

moulds and allowed to set. PCR products were added to load dye (Promega, UK) in a 

5:1 proportion and subjected to gel electrophoresis submerged in 1x TAE buffer 

supplemented with 5µl ethidium bromide per 100ml at 100v for 30 minutes. Gels 

were assessed under UV light for expected amplicon size (72bp and 124bp for ARP 

and GPDH respectively) against 100bp molecular ladders. PCR products were excised 

from gel bands and resultant DNA purified using the Wizard SV Gel and PCR Clean-Up 

System (Promega) according to manufacturers’ instructions to remove 

unincorporated dNTPs and primers. 

DNA was measured using a Nanodrop Lite spectrophotometer and absorbance ratio 

at 260nm:280nm and concentration recorded. Using amplicon sequence length and 

the assumption of an average base pair weight of 650 Daltons, number of copies per 

µl was estimated using the calculation: 

No. of copies = (ng of DNA X (6.022 X 1023)) / (amplicon length x 1x109 x 650) 

These samples were then used to construct a standard curve for absolute qPCR 

quantification, using serial dilutions to obtain standards for x102 – x106. 
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qPCR quantification of gene transcripts in 3T3-L1 cells 

3T3-L1 cells were cultured, RNA extracted, and reverse transcribed as described 

above. A qPCR master mix was prepared according to Table 4.4 (multiplied as 

necessary). ARP was used as a reference gene and transcripts of GPDH expressed per 

1000 ARP transcripts. Primer sequences for ARP and GPDH are as given previously. 

 

Table 4.4. – Volumes of reagents used for qPCR master mix per single experiment 

Volume Reagent 

12.5µl Platinum SYBR Green qPCR SuperMix-

UDG 

0.5µl Forward + reverse primer mix 

11µl Molecular biology grade water 

 

24µl of master mix was pipetted into 96 well lidded qPCR plates and 1µl cDNA added, 

plated in technical duplicates per each biological replicate. Technical duplicates of 

standards produced as described previously were also plated between 102 and 106 

on each plate to construct standard curves. Plates were centrifuged for 3 minutes at 

1000 RPM and then ran on a Stratagene MX3000 light cycler (Stratagene, California) 

for 40 cycles, temperatures and timings programmed per Table 4.5. Results were 

analysed using MxPro version 4.10 (Stratagene, California) and dissociation curves 

examined to ensure no primer-dimer formation. Comparison against standard curves 

allowed estimation of absolute transcript numbers, ARP was utilised as a reference 

gene and results are expressed as gene transcript copy numbers per 1000 ARP 

transcripts. 
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Table 4.5. – Temperatures and duration of an individual cycle used in qPCR protocol 

Segment Temperature Duration 

Initial denaturation 95˚C 2 minutes 

Denature 95˚C 15 seconds 

Anneal 60˚C 30 seconds 

Final extension 72˚C 5 minutes 

Final hold 10˚C Indefinitely 

 

4.3 – Preliminary data 

Oil Red O data 

ORO staining of 3T3-L1 cells was performed by Erika Galgóczi during late adipogenesis 

in three independent experiments (day 7 in the first instance, day 8 in the latter two) 

in 12 well plates following the methods described prior. Dye was extracted in 

isopropanol, and optical density measured via spectrophotometry at 490nm. One-

way between subjects ANOVA tests were conducted in both complete and 

differentiation medium (CM and DM respectively) diluted 1:1 with Lab4 or Lab4b CFS, 

with results compared to CM/DM diluted 1:1 with DMEM:F12 as appropriate for 

control. 

In DM, there was not a significant effect of the use of CFS observed at p=<0.05 (F 

(2,15) = .267, p=0.769), though both Lab4 and Lab4b treatment conditions did show 

a nonsignificant mean decrease compared to DM control. However, in complete 

medium, there was a significant effect of the use of CFS observed at p=<0.05 (F (2, 

15) = 6.194, p=0.011) compared to CM control (results shown in Figure 4.1). Post hoc 

comparisons using the Tukey HSD test indicated a significant difference (p=0.021) in 

mean optical density at 490nm in cells cultured with CM diluted 1:1 with Lab4b CFS 

(0.427 ± 0.109) compared to control (0.275 ±0.772). A significant (p=0.024) difference 

was also observed in optical density at 490nm between CM + Lab4b and CM + Lab4 

(0.276, ±0.670) groups. However, CM and CM + Lab4 groups did not differ 

significantly (p=1). Despite this increase in adipogenesis in CM + Lab4b, levels of 
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adipogenesis were markedly lower than in DM conditions, indicating that 

adipogenesis was strongly induced by DM treatment. In summary, this preliminary 

data suggests that Lab4 and Lab4b CFS may affect differentiation of adipocytes, with 

increased adipogenesis shown in complete (basal) medium, and a non-significant 

decrease in adipogenesis seen in DM.  

 

 

Figure 4.1. – Quantification of ORO staining of 3T3-L1 cells treated with DM diluted 

1:1 with Lab4/b cell free supernatant after 7/8 days. Y axis represents absorbance 

at 490nm (arbitrary units), with conditions grouped along the X axis. Experiments 

were performed in duplicate wells, bars represent the mean of 3 individual 

experiments. Error bars represent SEM. CM = Complete media, CM + Lab4 = Complete 

media diluted 1:1 with Lab4 CFS, CM + Lab4b = Complete media diluted 1:1 with 

Lab4b CFS. DM = Differentiation Media diluted 1:1 with DMEM:F12, DM + Lab4 = 

Differentiation media diluted 1:1 with Lab4 CFS, DM + Lab4b = Differentiation media 

diluted 1:1 with Lab4b CFS. 
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Visual assessment of 3T3-L1 cells during these experiments indicated that those 

treated with Lab4 or Lab4b appeared to be in a more advanced stage of adipogenesis 

at the same timepoints. Experiments were repeated using a timepoint of 48 hours of 

treatment to represent early adipogenesis. In DM, there was not a significant effect 

of the use of CFS observed at p=<0.05 (F (2,9) = 1.871, p=0.209), though both Lab4 

and Lab4b treatment conditions did show a nonsignificant mean increase compared 

to DM control. Similar results were yielded in CM, with no significant differences 

observed at p=<0.05 (F (2,5.547) = .794, p=0.298), these data violated the assumption 

of homogeneity of variances necessitating a Welch F test. Results are summarised in 

Figure 4.2. 

  

 

Figure 4.2. – Quantification of ORO staining of 3T3-L1 cells treated with DM diluted 

1:1 with Lab4/b cell free supernatant after 48 hours. Y axis represents absorbance 

at 490nm (arbitrary units), with conditions grouped along the X axis. Experiments 

were performed in duplicate wells, bars represent the mean of 3 individual 
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experiments. Error bars represent SEM. CM = Complete Media, CM + Lab4 = 

Complete media diluted 1:1 with Lab4 CFS, CM + Lab4b = Complete media diluted 1:1 

with Lab4b CFS. DM = Differentiation media, DM + Lab4 = Differentiation media 

diluted 1:1 with Lab4 CFS, DM + Lab4b = Differentiation media diluted 1:1 with Lab4b 

CFS. 

 

 

qPCR data 

Following the results gathered from ORO staining, the extent of adipogenesis in 3T3-

L1 cells treated with the Lab4 consortium was investigated on a transcriptional level 

using GPDH as a marker of terminal differentiation normalised to expression of acidic 

ribophosphoprotein (ARP) as previously used in our laboratory (Draman et al., 2013). 

In brief, a single experiment was performed in which 3T3-L1 cells were plated in 

duplicate on 12 well plates and maintained in CM until confluent. Post-confluent cells 

were then maintained for 7 days in CM or DM diluted 1:1 with Lab4 or Lab4b CFS, 

with CM/DM diluted 1:1 with DMEM:F12 for control as appropriate (full methods are 

given in chapter 2). RNA was extracted and reverse transcribed, and transcript copy 

numbers of target genes were measured using SYBR green and a Stratagene MX3000 

light cycler (La Jolla, California). Quantification of GPDH transcripts as a marker of 

terminal differentiation yielded a different pattern of results to ORO staining.  
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Figure 4.3. – qPCR quantification of GPDH in 3T3-L1 cells treated with DM diluted 

1:1 with Lab4/b cell free supernatant after 7 days. Y axis represents total GPDH 

transcript copy number expressed per 1000 ARP transcript copy number, with 

conditions grouped along the X axis. Experiments were performed in duplicate wells, 

bars represent a single experiment. Error bars represent SEM. DM = differentiation 

media, DM + Lab4 = DM diluted 1:1 with Lab4 CFS, DM + Lab4b = DM diluted 1:1 with 

Lab4b CFS. 

 

One-way between subjects ANOVA tests were conducted in both complete and 

differentiation medium (CM and DM respectively) diluted 1:1 with Lab4 or Lab4b CFS, 

with results compared to CM/DM (diluted 1:1 with DMEM:F12) as appropriate for 

control. In DM, there was not a significant effect of the use of CFS observed at 

p=<0.05 (F (2,3) = 3.548, p=0.162), though both Lab4 and Lab4b treatment conditions 

did show a nonsignificant mean decrease compared to control (results shown in 

Figure 4.3) as in ORO staining data at 7/8 days (results shown in Figure 4.1). In CM 
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conditions, qPCR data diverged from ORO staining data, with a non-significant 

decrease of GPDH compared to control in both treatment groups at p=<0.05 (F (2,3) 

= 7.354, p=0.70) (results shown in Figure 4.4) compared to a significant increase in 

optical density at 490nm in CM + Lab4b (results shown in Figure 4.1). Despite a similar 

pattern of results in qPCR data in CM and DM conditions, spontaneous adipogenesis 

assessed by GPDH transcription in CM occurred at minimal levels, with ~1000 times 

greater expression in DM conditions. 

Though this preliminary data is the result of a single experiment, it serves as an 

interesting investigatory starting point. Visual assessment of cells in late adipogenesis 

suggested features of enhanced adipogenesis, and ORO staining data showed 

significantly increased lipid accumulation in CM + Lab4b CFS, but not Lab4. Further, 

qPCR data appeared to suggest that treatment with CFS reduced adipogenesis in both 

CM and CM conditions, with potentially greater reductions in Lab4b treated cells. The 

difference between Lab4 and Lab4b (summarised in Table 2.1) is the substitution of 

L. acidophilus strains with L. salivarius and L. paracasei, and suggests potential strain 

specific effects of probiotic bacteria on adipogenesis in vitro.  
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Figure 4.4. – qPCR quantification of GPDH in 3T3-L1 cells treated with CM diluted 

1:1 with Lab4/b cell free supernatant after 7 days. Y axis represents total GPDH 

transcript copy number expressed per 1000 ARP transcript copy number, with 

conditions grouped along the X axis. Experiments were performed in duplicate wells, 

bars represent a single experiment. Error bars represent SEM. CM = complete media, 

CM + Lab4 = CM diluted 1:1 with Lab4 CFS, CM + Lab4b = CM diluted 1:1 with Lab4b 

CFS. 

 

4.3 – Results 

ORO staining 

Post-confluent 3T3-L1 cells were treated for up to 9 days in DM diluted with CFS of 

several bacterial strains, and ORO staining and dye extraction performed at regular 

intervals. Due to time constraints, it was not possible to perform experiments using 

the full suite of bacterial strains. CFS of Lab4, Lab4b, and the L. acidophilus strains 
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contained in Lab4 but not Lab4b were used to attempt to generate data explaining 

differences seen in preliminary ORO staining data reported in the introductory 

chapter. Appearance of ORO stained droplets increased throughout the time course 

of experiments, indicating that adipogenesis was induced by DM (images shown in 

Figure 4.5). At day 3, cells appeared similar between conditions, displaying 

morphological rounding and limited lipid accumulation. However, by day 6, visible 

differences began to appear in lipid droplet appearance.  

In DM, at day 6, most cells have accumulated lipids. Most of these lipid droplets 

remain small, with a moderate number of slightly enlarged lipid droplets. At day 9, 

again a majority of cells display lipid accumulation, but the size of individual lipid 

droplets is larger and less multilocular than at day 6. 

In cells treated with DM + Lab4 CFS, at day 6 less cells show evidence of lipid 

accumulation than DM, but a population of cells appear to have accumulated larger 

numbers of lipid, displaying enlarged lipid droplets. There is also greater evidence of 

loss of cells compared to DM. By day 9, a greater number of cells have accumulated 

lipids than at day 6, but there is evidence of further cell loss. Additionally, several of 

the large lipid droplets appear to be coalescing, possibly in the process of formation 

of a single unilocular lipid droplet characteristic of terminal differentiation. 

In cells treated with DM + Lab4b CFS, at day 6 there is pronounced evidence of cell 

loss, however remaining cells appear to have accumulated large amounts of lipid 

compared to DM, resembling cells treated with Lab4 CFS at day 9. At day 9, cells 

treated with Lab4b CFS display evidence of further cell loss, which may be a result of 

either death of cells or non-adherence upon terminal differentiation. At this stage, 

the number of cells displaying large lipid droplets is decreased, but a population of 

cells also appear to be in an earlier stage of adipogenesis, displaying several small 

lipid droplets. 

In cells treated with DM + L. acidophilus CFS, at day 6 cells appear to possibly be 

forming larger numbers of lipid droplets of a smaller diameter than in DM. There is 

also evidence of cell loss. By day 9, appearance of lipid droplets in cells appears similar 
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to DM at day 9, but with lipid droplets of a slightly larger diameter. However, there 

remain unstained patches consistent with loss of cells. 

 

Figure. 4.5 – Representative images of Oil Red O stained 3T3-L1 cells at days 6 and 

9. Post-confluent 3T3-L1 cells were maintained in either DM diluted 1:1 with 

DMEM:F12 (DM), or DM diluted 1:1 with CFS of Lab4, Lab4b, or L. acidophilus (DM + 

Lab4/Lab4b/L. acidophilus). Cells were imaged prior to dye extraction. 

 



69 

 

Throughout the time course, all conditions showed a steady increase in lipid 

accumulation measured by ORO staining, demonstrating that adipogenesis was 

induced in all conditions. One-way between subjects ANOVA tests were conducted 

on spectrophotometric data (corrected by subtracting the value of blank wells): 

ORO staining data generated at day 3 of treatment indicated that there was not a 

significant effect of the use of CFS observed at p=<0.05, data violated the assumption 

of homogeneity of variances, necessitating a Welch F test. (F (3,7.562) = 0.727, 

p=0.565) 

ORO staining data generated at day 6 of treatment indicated that there was a 

significant effect of the use of CFS observed at p=<0.05, however data also violated 

the assumption of homogeneity of variances, necessitating a Welch F test (F (3,6.412) 

= 8.062, p=0.014). A post-hoc Dunnett’s T3 test was performed and no significant 

differences were observed in optical density at 490nm between conditions, however 

differences between Lab4 (0.585 ± 0.011 AU) and Lab4b (0.460 ± 0.051 AU) treated 

conditions were perhaps trending toward significance (p=0.052). Neither Lab4, 

Lab4b, nor L. acidophilus treated conditions were significantly different from control 

(p=1, 0.889, and 0.471 respectively). 

However, in ORO staining data generated at day 9 a significant effect of the use of 

CFS was observed at p=<0.05 (F (3,16) = 14.450, p=<0.001). Post-hoc comparisons 

using the Tukey HSD test indicated no significant difference in optical density at 

490nm between DM + DMEM:F12 (0.862 ± .043 AU) and DM + Acidophilus CFS (0.774 

± 0.485 AU, p=0.205), but that optical density at 490nm was significantly lower after 

treatment with DM + Lab4 (0.694 ± 0.081, p=0.006) or Lab4b CFS (0.595 ± 0.114, 

p=<0.001) than DM + DMEM:F12. Results are shown in Figure 4.6. 
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Figure. 4.6 – Oil Red O staining of 3T3-L1 cells at day 3, 6, and 9 after treatment with 

cell free supernatant. Post-confluent 3T3-L1 cells were maintained in either DM 

diluted 1:1 with DMEM:F12 (DM), or DM diluted 1:1 with CFS of Lab4, Lab4b, or L. 

acidophilus (DM + Lab4/Lab4b/L. acidophilus). ORO staining was performed, and dye 

extracted at day 3 (diagonally striped bars), day 6 (stippled bars), and day 9 

(horizontally striped bars). No significant differences from control were observed at 

any timepoint except for day 9, where optical density at 490nm in DM + Lab4 and DM 

+ Lab4b were significantly lower than control (p=0.006 and p=<0.001 respectively). 

Asterisks represent significant differences from control. Experiments were 

performed in triplicate wells, bars represent the mean of 2 individual experiments, 

error bars represent SEM. 

 



71 

 

qPCR quantification of a marker of terminal differentiation in 3T3-L1 cells 

Post-confluent 3T3-L1 cells were treated for 10 days with CM or DM diluted with CFS 

of several bacterial strains, RNA extracted, reverse transcribed, and transcript levels 

of numerous genes measured via qPCR against standard curves for absolute 

quantification. GPDH transcripts (a terminal marker of differentiation) were 

detectable in CM conditions only at very low levels (below 0.1 transcripts per 1000 

ARP). Transcription was comparatively far greater in DM conditions, demonstrating 

induction of adipogenesis, with the lowest value observed in DM + L. acidophilus 

treated cells (10.4 ± 8.94 transcripts per 1000 ARP), and the highest in DM control 

(46.1 ± 46.6 transcripts per 1000 ARP). One-way between subjects ANOVA tests were 

conducted on transcripts of GPDH expressed per 1000 transcripts of ARP as a 

reference gene. In DM conditions, a significant effect of the use of CFS observed at 

p=<0.05, however data violated the assumption of homogeneity of variances, 

necessitating a Welch F test (F (5,12.121) = 5.814, p=0.006). A post-hoc Dunnett’s T3 

test was performed for pairwise comparison, the only significant difference observed 

was between L. salivarius (38.3 ± 4.61 transcripts per 1000 ARP) and L. acidophilus 

(10.4 ± 8.94) treated conditions (p=0.009). 

No significant differences were observed between conditions in cells maintained in 

CM conditions, data also violated the assumption of homogeneity of variances, 

necessitating a Welch F test (F (5,7.637) = 1.020, p=0.468). Results are summarised in 

Figures 4.7 and 4.8 respectively. 
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Figure. 4.7 – qPCR quantification of GPDH in 3T3-L1 cells treated with DM diluted 

with DMEM:F12 or cell free supernatant of several bacterial strains after 10 days. 

Post-confluent 3T3-L1 cells were maintained for 10 days in either DM diluted 1:1 with 

DMEM:F12 (DM), or DM diluted 1:1 with CFS of various bacterial strains (DM + 

Lab4/Lab4b/L. salivarius/L. paracasei/L. acidophilus), RNA extracted, reverse 

transcribed, and subjected to qPCR. GPDH transcripts at day 10 did not show 

significant differences to control in any condition (p=0.481). Experiments were 

performed in triplicate wells, bars represent the mean of 2 individual experiments, 

error bars represent SEM. 
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Figure. 4.8 – qPCR quantification of GPDH in 3T3-L1 cells treated with CM diluted 

with DMEM:F12 or cell free supernatant of several bacterial strains after 10 days. . 

Post-confluent 3T3-L1 cells were maintained for 10 days in either DM diluted 1:1 with 

DMEM:F12 (CM), or CM diluted 1:1 with CFS of various bacterial strains (CM + 

Lab4/Lab4b/L. salivarius/L. paracasei/L. acidophilus), RNA extracted, reverse 

transcribed, and subjected to qPCR. GPDH transcripts at day 10 did not show 

significant differences to control in any condition (p=0.635). Experiments were 

performed in triplicate wells, bars represent the mean of 2 individual experiments, 

error bars represent SEM. 
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4.4 – Discussion 

Quantification of adipogenesis 

ORO staining of differentiating 3T3-L1 cells treated with Lab4 and Lab4b CFS showed 

a significant reduction in optical density at 490nm only during late adipogenesis at 

day 9, but showed similar levels of adipogenesis to control at 3 and 6 days (Figure 

4.6) despite an apparent reduction in cell viability. It had been hypothesised on 

examining images generated in preliminary data presented in the introductory 

chapter that cells treated with CFS had morphological features of enhanced 

adipogenesis despite non-significant reductions in ORO and GPDH transcripts. Images 

of cells from the present study shown in Figure 4.5 display visibly larger lipid droplets 

at day 9 in Lab4 and Lab4b treated cells, alongside evidence of fewer cells compared 

to control. A complication of studies with 3T3-L1 cells is that while preadipocytes are 

adherent, fully mature adipocytes are not (Draman et al., 2013), and will be removed 

in culture medium when aspirated. Time can therefore be a critical variable, which 

contributed to the decision to perform ORO staining at different time points. It is 

possible that the similar optical density between conditions in ORO staining data at 

days 3 and 6 is a function of coinciding reductions in cell viability and enhancement 

of adipogenesis, however more granular data for both viability and adipogenesis is 

required to draw any conclusions. 

Data in the present study suggests an effect of treatment with Lab4 and Lab4b CFS 

on late adipogenesis when measured via ORO staining, however in conjunction with 

potential effects on viability and morphology that may oppose one another, more 

data is needed to determine effects at earlier stages. Data generated from trypan 

blue exclusion assays gives strong evidence of reduced viability of 3T3-L1 cells when 

treated with CFS of Lab4 and Lab4b, however evidence for the supposition of 

increased adipogenesis is thus far only qualitative, derived from subjective analysis 

of visual features of cells. It would therefore be useful to employ a full factorial 

experimental design accounting for both duration and concentration of exposure, but 

was not possible in the present study due to time constraints. A potential step for 

further study of the interaction between time of treatment, adipogenesis, and cell 
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viability is to culture cells used for viability assays and ORO staining on the same plate, 

and express data as a function of the number of viable cells at a given timepoint. 

Transcripts of GPDH, a marker of terminal differentiation, were also used to assess 

the effects of CFS on adipogenesis in 3T3-L1 cells. No significant differences were 

observed between any treatment condition and control. This suggests that the 

effects seen in ORO data may be a reflection of a reduction in cell viability. However, 

due to time constraints means observed result from only two experiments . 

Preliminary data reported in the introductory chapter used a different timepoint for 

extraction of RNA (7 days) compared to experiments performed in this chapter (10 

days), making comparison particularly of a marker of terminal differentiation difficult. 

GPDH transcripts reported in DM control in preliminary data displayed a mean of 

0.181 (± 0.074) transcripts per 1000 ARP, and previous data generated in our 

laboratory in 3T3-L1 cells at day 7 showing a mean of ~1.6 GPDH transcripts per 1000 

ARP (Draman et al., 2013), though this was using undiluted DM. Other data generated 

in our laboratory at day 9 in differentiating 3T3-L1 cells (again using undiluted DM) 

reported ~11 GPDH transcripts per 1000 ARP (Zhang et al., 2009). Though these 

results are taken from different timepoints from three different researchers, they 

suggest that GPDH transcription may be highly variable in 3T3-L1 cells during late 

adipogenesis. As such, the large variation in data in the present study may be a result 

of this variability, but is likely a result of inexperience when conducting the initial 

experiment, and further data is needed to draw firmer conclusions and improve 

accuracy.  

Despite aforementioned issues and a lack of statistically significant results in overall 

data, the L. acidophilus treatment group showed the lowest mean GPDH transcript 

copy number in overall data from CM and DM experiments. The L. acidophilus 

condition contained half the CFU/ml as other treatment conditions in its starting 

inoculum, and a decision was made not to dilute other conditions down to this level 

due to concern about being able to observe results. If future study were to generate 

data maintaining this pattern of results and achieve significance, it would be 

necessary to determine whether this is due to a reduction in adipogenesis or perhaps 
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a result of not being as pro-adipogenic as other conditions due to lower cell numbers 

in starting inoculum.  
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Chapter 5: Effects of bacterial cell free supernatant on markers of 

adipose phenotype in 3T3-L1 cells 

5.1 – Introduction 

Though trypan blue staining reported in chapter 3.3 seemed to indicate a significant 

impact of Lab4 and Lab4b CFS on viability in differentiating 3T3-L1 cells, data 

generated via MTS assay did not. It was hypothesised that this may be the result of 

uncoupled respiration induced by some factor in CFS. Resultantly, it was decided to 

investigate expression of gene markers of adipose phenotype and function in 3T3-L1 

cells to determine whether treatment with CFS may induce a “browning” effect. 

Since the discovery of functional BAT in adult humans there has been wide interest 

in identifying gene markers of adipose phenotype. It has previously been shown that 

it is possible to induce a beige-like phenotype in 3T3-L1 adipocyte cells in the 

presence of the β adrenergic receptor agonist isoproterenol, and that subsequent 

UCP1 expression is modulated by the hormonal environment of the culture medium 

(Asano, et al. 2014). Notably, despite the evidence of increased UCP1 transcription, 

the relative levels of putative beige adipocyte selective markers were not significantly 

different. As the capacity of the 3T3-L1 cell line to display a thermogenic phenotype 

is a relatively recent discovery, there are no markers specifically validated for 

phenotypic characteristics in 3T3-L1 cells. There are however numerous markers of 

adipose phenotype that have been proposed in mice, primers for several of these 

have already been developed in our laboratory. 

ZIC1 is used as a marker of “classical” BAT in mice (Harms and Seale, 2013), and has 

been previously identified in 3T3-L1 cells by Seale et al. (2007). Seale et al. reported 

a >5-fold greater mRNA expression in immortalised brown adipose cells compared to 

immortalised white adipose cell lines such as 3T3-L1, though data relating to 3T3-L1 

expression was not shown. 

UCP1 can be used as a marker of thermogenic capacity in adipocytes, and has 

previously been shown to be inducible in 3T3-L1 cells via treatment with the β-

adrenergic agonist isoproterenol (Miller et al., 2015). Contrary to the results of Asano 
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et al. (2014) Miller et al. found dose and time-dependent increases in certain putative 

beige-selective markers, though timepoints used were 6 and 48 hours of treatment 

compared to 4 hours in Asano et al. 

PGC1-α has also been proposed as a marker of a non-specific beige/brown adipose 

phenotype (Harms and Seale, 2013). PGC1-α is inducible in HIB1b cells (an in vitro 

model of murine BAT) upon cAMP stimulation, but expression in 3T3-L1 cells appears 

cAMP insensitive under normal conditions (Karamanlidis et al., 2007). 

Cbp/p300-interacting transactivator 1 (CITED1) has been proposed as a marker of a 

beige adipose phenotype in murine adipose tissue (Sharp et al., 2012) and its 

expression in 3T3-L1 cells has previously been shown to be responsive to the PPARγ 

agonist rosiglitazone in specific treatment conditions (Asano et al., 2014). 

Leptin is considered a classical marker of white adipose tissue (Ussar et al., 2014), 

and in murine BAT appears reciprocally regulated with UCP1 (Cancello et al., 1998). 

Gene expression of leptin in 3T3-L1 cells can notably be both inhibited and stimulated 

by the presence of triiodothyronine dependent upon dose and length of treatment 

(de Oliveira et al., 2015), though concentrations were 10-1000 times greater than in 

the present study. 

 

5.2 – Materials and methods 

A list of reagents used, and their suppliers is given in Appendix 1, Table 1. Media was 

prepared as in chapter 3.2. Cells for qPCR experiments were cultured as in chapter 

4.2. qPCR was performed as in chapter 4.3. 

 

Isolation of brown adipose tissue markers from 3T3-L1 cells 

3T3-L1 cells were cultured, RNA extracted and reverse transcribed, and PCRs 

performed as described in chapter 4.2, but using primers for genes listed in Table 5.1. 

PCR products were subjected to gel electrophoresis, gel bands excised, and DNA 

obtained as described previously for production of standards for qPCR in chapter 4.2  
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UCP1 and CITED1 were identified by the presence of appropriately sized bands on gel 

electrophoresis alone but PCR amplicons for ZIC1 and PGC1-α underwent sequence 

analysis to confirm their identity Their column purified DNA was subjected to BigDye 

Terminator V1.1 cycle sequencing according to manufacturers’ instructions and 

BigDye PCR product precipitated by sodium acetate precipitation as follows.  

A master mix was prepared containing 1.5µl sodium acetate, 31.5µl 100% ethanol, 

and 7µl molecular biology grade water per volume, mixed thoroughly by vortexing 

then 40µl pipetted into each Micro Eppendorf tube containing BigDye PCR product. 

Micro Eppendorf tubes were then incubated at room temperature for 15 minutes 

before being centrifuged at 13000 RPM for 20 minutes at 4˚C. Following 

centrifugation, supernatant was discarded and 250µl 70% ethanol was pipetted into 

each Micro Eppendorf tube. Micro Eppendorf tubes were then centrifuged at 13000 

RPM for 10 minutes at 4˚C and supernatant discarded. Following this, Micro 

Eppendorf tubes were placed in a heating block at 95˚C for one minute with lids open 

to evaporate fluid, then stored at -20˚C. 

Precipitates were sent to Cardiff University’s Central Biotechnology Services for 

Sanger sequencing. Sequence data was analysed with DNA Baser v4.36.0 software 

and high-quality sequence data trimmed. Sequence data was subsequently searched 

for in a murine database using the online Basic Local Alignment Search Tool (National 

Center for Biotechnology Information, 2017). 

 

Production of standards for qPCR 

Following positive identification by sequencing or gel electrophoresis, procedures for 

production of standards given in chapter 4.2 were repeated using primer sequences 

for genes shown in Table 5.1. PCR products were subjected to gel electrophoresis, 

and DNA retrieved using the Wizard SV Gel and PCR Clean-Up System as described 

previously.  
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Table 5.1. – Primers and exon locations used for polymerase chain reaction 

Gene (product 

size) 

Forward Primer (exon location) Reverse Primer (exon location) 

ARP (72bp) GAGGAATCAGATGAGGATATGGGA 

(exon 7) 

AAGCAGGCTGACTTGGTTGC 

(exon 7) 

GPDH (124bp) ATGCTCGCCACAGAATCCACAC 

(exon 8) 

AACCGGCAGCCCTTGACTTG 

(exon 8) 

UCP1 (84bp) GGCCTCTACGACTCAGTCCA (exon 

2) 

TAAGCCGGCTGAGATCTTGT 

(exon 3) 

PGC1-α (161bp) CCCTGCCATTGTTAAGACC (exon 

4/5) 

TGCTGCTGTTCCTGTTTTC (exon 

5) 

ZIC-1 (194bp) AGAGCAGAGCAACCACATCT (exon 

1) 

CCCCTGTGTGTGTCCTTTTG 

(exon 1/2) 

CITED1 (288bp) CCTCAGCTCCTGTGAGCTTTC (exon 

1) 

CGTTGGCTTTGGCTCCATTT 

(exon 3) 

Leptin (226bp) CCAGGATCAATGACATTTCACACA 

(exon 1) 

TTGGAGAAGGCCAGCAGATG 

(exon 2) 

ARP - acidic ribophosphoprotein, GPDH - glycerol-3-phosphate dehydrogenase, UCP1 
– Uncoupling Protein 1, PGC1-α - peroxisome proliferator-activated receptor gamma 
coactivator 1-alpha, ZIC-1 – Zinc in Cerebellum 1, CITED1 - Cbp/p300-interacting 
transactivator 1. 

 

DNA was measured using a Nanodrop Lite spectrophotometer and absorbance ratio 

at 260nm:280nm and concentration recorded. Using amplicon sequence length and 

the assumption of an average base pair weight of 650 Daltons, number of copies per 

µl was estimated using the calculation: 

No. of copies = (ng of DNA X (6.022 X 1023)) / (amplicon length x 1x109 x 650) 

These samples were then used to construct a standard curve for absolute qPCR 

quantification, using serial dilutions to obtain standards for x102 – x106. 
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5.3 – Results 

Presence of brown adipose tissue markers in 3T3-L1 cells 

Sanger sequencing data (shown in Appendix 2) for presumed ZIC1 and PGC1-α 

samples received from Cardiff University’s Central Biotechnology Services was 

trimmed to high-quality sequence and searched for in a murine database as 

previously described. Search results indicated query cover of 100% for both sequence 

queries. Identity scores were 98% and 95% for ZIC1 and PGC1-α samples respectively. 

E values of 2x10-63 and 7x10-42 were returned for ZIC1 and PGC1-α respectively. No 

untargeted gene matches occurred. This data appears to confirm the presence of 

these gene transcripts in 3T3-L1 cells. 

qPCR data for all genes investigated is presented in tables 5.2 and 5.3 for cells 

maintained in CM and DM conditions respectively. ARP was used as a reference gene. 

Though some conditions (such as CM + Lab4b) display a larger standard deviation 

than others, suggesting it may not have been stably transcribed, this was believed to 

be related to reduced RNA yields in certain conditions falling below the limit needed 

to use 1000ng input RNA. ARP transcription did not appear to be impacted by either 

adipogenesis or treatment. 

As would be expected, in differentiating cells GPDH was the most abundantly 

detected gene, whereas in CM conditions it appeared minimally transcribed. 

Statistical analysis of GPDH transcripts is given in chapter 4.3. 

Leptin transcription was detectable in all cells, though at low levels. In line with 

expectations, leptin was detected at higher levels in cells maintained in DM 

compared to CM, though was not robustly transcribed in either. The greatest mean 

leptin transcription was seen in cells treated with DM + L. salivarius CFS, though there 

was also a large standard deviation.  

Of the phenotypic genes investigated, UCP1 displayed the highest level of 

transcription, which again were comparatively several times greater in DM conditions 

compared to CM. Results in DM conditions were suggestive of all conditions with the 
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exception of L. acidophilus potentially decreasing UCP1 transcription, whereas L. 

acidophilus displayed a potential increase in transcription.  

PGC1-α transcription also appeared increased in DM conditions compared to CM, and 

though not as robustly induced as UCP1, transcripts were detected in greater 

quantities than leptin or CITED1. Again, the greatest level of PGC1-α transcripts were 

observed in DM + L. acidophilus, though the increase appeared less pronounced than 

that seen in UCP1 transcription. 

As with other genes, CITED1 transcription appeared greater in DM conditions 

compared to CM. However, transcription was generally low. No condition appeared 

to increase CITED1 transcription, though in DM conditions all treatment groups 

except DM + Lab4 CFS showed a lower mean than control. 

Representative images of a standard curve for PGC1-α, as well as an amplification 

plot and dissociation curve obtained from a DM well assessed for PGC1-α 

transcription are shown in Figures 5.1, 5.2, and 5.3 respectively. 
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Figure 5.1. – Representative image of a qPCR standard curve plot using MXPro 

software. Standards for PGC1-α were produced from PCR products and serial 

dilutions of known concentrations plated in duplicate alongside cDNA produced from 

experimental samples. Ct is plotted on the Y axis and number of transcripts on the X 

axis. 
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Figure 5.2. – Representative image of a qPCR amplification curve plot using MXPro 

software. cDNA produced from an experimental sample maintained in DM was 

plated in duplicate and assessed via qPCR for PGC1-α transcripts. Fluorescence is 

plotted on the Y axis and PCR cycle number on the X axis. 
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Figure 5.3. – Representative image of a qPCR dissociation curve plot using MXPro 

software. cDNA produced from an experimental sample maintained in DM was 

plated in duplicate and assessed via qPCR for PGC1-α transcripts. Fluorescence is 

plotted on the Y axis and temperature on the X axis. A single product peak was 

observed around 83˚C.
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Table 5.2. – qPCR data for all genes investigated in 3T3-L1 cells maintained in CM conditions for 10 days 

ARP - acidic ribophosphoprotein, CITED1 - Cbp/p300-interacting transactivator 1, GPDH - glycerol-3-phosphate dehydrogenase, PGC1-α - 
peroxisome proliferator-activated receptor gamma coactivator 1-alpha, TCN – Transcript Copy Number UCP1 – Uncoupling Protein 1. Transcripts 
are given per 1000 ARP transcripts, with the exception of ARP which are reported as raw values.  

Condition  ARP TCN ARP Ct Leptin TCN Leptin 
Ct 

UCP1 TCN UCP1 
Ct 

PGC1-α 
TCN 

PGC1-α 
Ct 

CITED1 TCN CITED
1 Ct 

GPDH TCN GPDH 
Ct 

CM 2.71x106 ± 
2.68x106 

17.4 ± 
1.82 

7.89x10-3 ± 
9.02x10-3 

37.8 ± 
1.31 

759x10-2 ± 
1.14x101 

32.5 ± 
2.31 

7.17x10-1 ± 
7.85x10-1 

31.3 ± 
8.1 

8.86x10-3 ± 
1.76x10-3 

33.2 ± 
0.79 

7.05x10-2 ± 
8.73x10-2 

34.7 ± 
2.35 

CM + Lab4 2.20x106 ± 
2.30x106 

18.1 ± 
2.33 

2.20x10-2 ± 
3.19x10-2 

38.4 ± 
0.80 

227x10-2 ± 
112x10-2 

33.2 ± 
0.30 

7.97x10-1 ± 
7.21x10-1 

30.4 ± 
6.8 

1.11x10-2 ± 
5.03x10-3 

33.2 ± 
1.24 

2.31x10-2 ± 
2.12x10-2 

34.3 ± 
1.95 

CM + Lab4b 2.79x106 ± 
3.01x106 

18.7 ± 
3.49 

2.81x10-2 ± 
5.93x10-2 

38.0 ± 
0.76 

636x10-2 ± 
567x10-2 

31.4 ± 
1.28 

6.21x10-1 ± 
5.07x10-1 

30.8 ± 
7.24 

1.46x10-2 ± 
7.10x10-3 

32.3 ± 
0.76 

5.57x10-2 ± 
8.02x10-2 

33.8 ± 
2.40 

CM + L. 
salivarius 

3.91x106 ± 
2.58x106 

16.9 ± 
2.03 

1.28x10-2 ± 
2.05x10-1 

37.3 ± 
0.60 

198x10-2 ± 
3.90x10-1 

32.0 ± 
0.07 

6.01x10-1 ± 
3.5x10-1 

27.9 ± 
6.24 

4.08x10-3 ± 
1.32x10-3 

34.3 ± 
0.45 

1.51x10-2 ± 
1.45x10-2 

34.9 ± 
3.10 

CM + L. 
paracasei 

3.62x106 ± 
3.94x106 

17.9 ± 
2.89 

4.36x10-2 ± 
5.94x10-2 

37.3 ± 
0.96 

190x10-2 ± 
2.71x10-1 

32.6 ± 
0.15 

9.07x10-1 ± 
1.23 x10-1 

27.6 ± 
5.1 

9.41x10-3 ± 
2.43x10-3 

33.8 ± 
2.91 

5.31x10-2 ± 
8.86x10-2 

33.9 ± 
2.49 

CM + L. 
acidophilus 

4.24x106 ± 
2.21x106 

15.9 ± 
0.49 

1.02x10-3 ± 
9.40x10-4 

37.6 ± 
1.61 

474x10-2 ± 
4.39x10-1 

31.4 ± 
0.27 

105x10-2 ± 
1.77x10-1 

26.4 ± 
3.4 

9.57x10-3 ± 
6.72x10-3 

33.2 ± 
1.54 

1.04x10-2 ± 
1.09x10-3 

34.3 ± 
2.18 
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Table 5.3. – qPCR data for all genes investigated in 3T3-L1 cells maintained in DM conditions for 10 days 

ARP - acidic ribophosphoprotein, CITED1 - Cbp/p300-interacting transactivator 1, GPDH - glycerol-3-phosphate dehydrogenase, PGC1-α - 

peroxisome proliferator-activated receptor gamma coactivator 1-alpha, TCN – Transcript Copy Number UCP1 – Uncoupling Protein 1. Transcripts 

are given per 1000 ARP transcripts, with the exception of ARP which are reported as raw values.  

Condition  ARP TCN ARP Ct Leptin TCN Leptin 
Ct 

UCP1 TCN UCP1 
Ct 

PGC1-α 
TCN 

PGC1-α 
Ct 

CITED1 TCN CITED
1 Ct 

GPDH TCN GPDH 
Ct 

DM 1.51x106 ± 
1.44x106 

18.1 ± 
1.45 

1.60x10-2 ± 
7.07x10-3 

35.9 ± 
1.82 

2.55x101 ± 
413x10-2 

29.9 ± 
2.80 

842x10-2 ± 
903x10-2 

27.6 ± 
7.2 

1.79x10-1 ± 
5.03x10-1 

31.6 ± 
5.32 

4.61x101 ± 
4.66x101 

24.2 ± 
6.25 

DM + Lab4 1.44x106 ± 
1.17x106 

17.8 ± 
0.84 

2.08x10-1 ± 
2.04x10-2 

36.1 ± 
1.17 

1.17x101 ± 
565x10-2 

31.5 ± 
0.71 

741x10-2 ± 
923x10-2 

26.9 ± 
5.6 

1.89x10-1 ± 
1.05x10-1 

29.7 ± 
0.93 

3.45x101 ± 
3.82x101 

24.2 ± 
4.6 

DM + 
Lab4b 

6.65x105 ± 
5.59x105 

19.0 ± 
0.85 

1.52x10-1 ± 
7.60x10-3 

36.8 ± 
1.30 

1.38x101 ± 
170x10-2 

32.3 ± 
0.16 

594x10-2 ± 
571x10-2 

28.3 ± 
5.9 

5.56x10-1 ± 
3.50x10-1 

33.5 ± 
1.99 

2.97x101 ± 
2.45x101 

25.5 ± 
5.20 

DM + L. 
salivarius 

2.69x106 ± 
2.33x106 

18.0 ± 
3.08 

9.54x10-2 ± 
8.56x10-2 

34.2 ± 
3.02 

1.17x101 ± 
227x10-2 

30.5 ± 
0.76 

466x10-2 ± 
296x10-2 

24.0 ± 
4.21 

5.21x10-1 ± 
3.35x10-2 

32.6 ± 
4.00 

3.83x101 ± 
461x10-2 

26.5 ± 
10.2 

DM + L. 
paracasei 

2.01x106 ± 
1.36x106 

17.4 ± 
1.60 

2.08x10-2 ± 
2.95x10-3 

35.0 ± 
2.41 

1.40x101 ± 
134x10-2 

30.8 ± 
0.07 

875x10-2 ± 
792x10-2 

25.9 ± 
6.0 

7.73x10-1 ± 
7.87x10-2 

32.5 ± 
3.60 

2.27x101 ± 
1.87x101 

24.2 ± 
5.42 

DM + L. 
acidophilus 

4.39x106 ± 
5.50x106 

16.3 ± 
1.17 

1.02x10-2 ± 
4.20x10-3 

35.0 ± 
0.96 

4.79x101 ± 
1.96x101 

28.27 
± 0.90 

1.78x101 ± 
1.67x101 

22.8 ± 
4.2 

1.22x10-1 ± 
1.19x10-1 

30.28 
± 2.34 

1.04x101 ± 
894x10-2 

23.7 ± 
1.27 
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qPCR quantification of leptin transcripts in 3T3-L1 cells 

Post-confluent 3T3-L1 cells were treated for 10 days with CM or DM diluted with CFS 

of several bacterial strains, RNA extracted, reverse transcribed, and transcript levels 

of numerous genes measured via qPCR against standard curves for absolute 

quantification. Leptin transcripts were detectable in CM conditions at very low levels, 

below 0.05 transcripts per 1000 ARP, with the lowest value observed in cells treated 

with CM + L. acidophilus (0.001 ± 0.0009) and the highest observed in cells treated 

with CM + L. paracasei (0.04 ± 0.06). Transcription in DM conditions was around ~0.01 

per 1000 ARP in all conditions except for DM + L. salivarius (0.10 ± 0.09) which was 

roughly 10-fold higher, indicating a potential effect of this treatment on leptin 

transcription. 

Leptin was used as a potential marker of a WAT-like phenotype in 3T3-L1 cells. One-

way between subjects ANOVA tests were conducted on transcripts of leptin 

expressed per 1000 transcripts of ARP as a reference gene. Data violated the 

assumption of homogeneity of variances, necessitating a Welch F test. No significant 

effect of the use of CFS was observed on leptin transcripts at p=<0.05 (F (5,11.107) = 

1.609, p=0.236) in DM conditions, though there appeared to be a large but non-

significant mean increase in DM + L. salivarius CFS, results shown in Figure 5.4.  

One-way between subjects ANOVA tests were similarly conducted In CM conditions, 

data again violated the assumption of homogeneity of variances, necessitating a 

Welch F test. No significant differences were observed between conditions at 

p=<0.05 (F (5,13.016) = 0.958, p=0.226), results shown in Figure 5.5. 
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Figure. 5.4 – qPCR quantification of leptin in 3T3-L1 cells treated with DM diluted 

with DMEM:F12 or cell free supernatant of several bacterial strains after 10 days. 

Post-confluent 3T3-L1 cells were maintained for 10 days in either DM diluted 1:1 with 

DMEM:F12 (DM), or DM diluted 1:1 with CFS of various bacterial strains (DM + 

Lab4/Lab4b/L. salivarius/L. paracasei/L. acidophilus), RNA extracted, reverse 

transcribed, and subjected to qPCR. Leptin transcripts at day 10 were not significantly 

different between any treatment condition, though L. salivarius treatment showed a 

non-significant increase compared to control (p=0.236). Experiments were 

performed in triplicate wells, bars represent the mean of 2 individual experiments, 

error bars represent SEM. 
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Figure. 5.5 – qPCR quantification of leptin in 3T3-L1 cells treated with CM diluted 

with DMEM:F12 or cell free supernatant of several bacterial strains after 10 days. 

Post-confluent 3T3-L1 cells were maintained for 10 days in either DM diluted 1:1 with 

DMEM:F12 (CM), or CM diluted 1:1 with CFS of various bacterial strains (CM + 

Lab4/Lab4b/L. salivarius/L. paracasei/L. acidophilus), RNA extracted, reverse 

transcribed, and subjected to qPCR. Leptin transcripts at day 10 did not show 

significant differences to control in any condition (p=0.226). Experiments were 

performed in triplicate wells, bars represent the mean of 2 individual experiments, 

error bars represent SEM. 

 

qPCR quantification of ZIC1 transcripts in 3T3-L1 cells 

ZIC1 was positively identified in 3T3-L1 cells in the present study through Sanger 

sequencing of PCR products obtained from cells differentiated for 7 days in undiluted 

DM for the purposes of producing standards for absolute quantification of transcripts 
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by qPCR. Despite this positive identification, ZIC1 mRNA was not found subsequently 

in either control or experimental conditions assessed via qPCR. 

 

qPCR quantification of UCP1 transcripts in 3T3-L1 cells 

UCP1 transcripts were detectable in CM conditions at lower levels than DM 

conditions, ranging from 1.04 ± 0.19 to 4.74 ± 0.44 UCP1 transcripts per 1000 ARP in 

CM control and CM + L. acidophilus respectively. Transcription in DM conditions was 

markedly higher, ranging from ~25 to ~50 UCP1 transcripts per 1000 ARP. 

Interestingly, most treatment conditions displayed a lower mean level of UCP1 

transcription than DM control (25.5 ± 4.13), whereas the DM + L. acidophilus treated 

group displayed an increased mean of 47.9 ± 19.6 UCP1 transcripts per 1000 ARP. 

One-way between subjects ANOVA tests were conducted on transcripts of UCP1 

expressed per 1000 transcripts of ARP as a reference gene. A significant effect of the 

use of CFS was observed on UCP1 transcripts in DM conditions at p=<0.05, data 

violated the assumption of homogeneity of variances, necessitating a Welch F test (F 

(5,5.385) = 4.815, p=0.049). Post-hoc comparisons were performed using the 

Dunnett’s T3 test. Post-hoc pairwise comparisons revealed that no condition was 

significantly different from any other, though treatment with DM + L. salivarius (11.7 

± 2.27) non-significantly reduced transcripts of UCP1 compared to control (25.5 ± 

4.13) (p=0.082). The only treatment condition showing a mean increase in transcripts 

of UCP1 compared to control was DM + L. acidophilus (47.9 ± 19.6), though this was 

also non-significant (p=0.645). Results are summarised in Figure 5.6. 

In CM conditions, a significant effect of the use of CFS was observed on UCP1 

transcripts at p=<0.05, data violated the assumption of homogeneity of variances, 

necessitating a Welch F test (F (5,5.337) = 13.397, p=0.005). Post-hoc comparisons 

were performed using the Dunnett’s T3 test. All conditions except CM + L. acidophilus 

displayed no significant difference to control, whereas CM + L. acidophilus treatment 

significantly increased UCP1 transcription (4.74 ± 0.44) compared to CM control (1.04 

± 0.19) (p=0.008), results shown in Figure 5.7. Caution should be applied interpreting 

results for UCP1 transcription as data are from a single experiment. 
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Figure. 5.6 – qPCR quantification of UCP1 in 3T3-L1 cells treated with DM diluted 

with DMEM:F12 or cell free supernatant of several bacterial strains after 10 days. 

Post-confluent 3T3-L1 cells were maintained for 10 days in either DM diluted 1:1 with 

DMEM:F12 (DM), or DM diluted 1:1 with CFS of various bacterial strains (DM + 

Lab4/Lab4b/L. salivarius/L. paracasei/L. acidophilus), RNA extracted, reverse 

transcribed, and subjected to qPCR. UCP1 transcripts at day 10 did not show 

significant differences to control in any condition, nor were significant differences 

observed between treatment conditions. DM + L. salivarius showed non-significantly 

decreased UCP1 transcription compared to control (p=0.082). Experiments were 

performed in triplicate wells, bars represent the mean of a single experiment, error 

bars represent SEM. 
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Figure. 5.7 – qPCR quantification of UCP1 in 3T3-L1 cells treated with CM diluted 

with DMEM:F12 or cell free supernatant of several bacterial strains after 10 days. 

Post-confluent 3T3-L1 cells were maintained for 10 days in either CM diluted 1:1 with 

DMEM:F12 (CM), or CM diluted 1:1 with CFS of various bacterial strains (CM + 

Lab4/Lab4b/L. salivarius/L. paracasei/L. acidophilus), RNA extracted, reverse 

transcribed, and subjected to qPCR. UCP1 transcripts at day 10 were significantly 

higher in CM + L. acidophilus compared to control (p=0.008). Experiments were 

performed in triplicate wells, bars represent the mean of a single experiment, error 

bars represent SEM. 

 

qPCR quantification of PGC1-α transcripts in 3T3-L1 cells 

Similar to UCP1, PGC1-α transcripts were more abundant in DM conditions than CM 

conditions. In CM conditions, transcripts ranged from 0.60 ± 0.35 per 1000 ARP in CM 

+ L. salivarius treated cells to 1.05 ± 0.18 per 1000 ARP in CM + L. acidophilus treated 

cells, though no condition seemed markedly different from another despite results in 
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UCP1. In DM conditions, transcripts ranged from 4.66 ± 2.96 per 1000 ARP in DM + L. 

salivarius treated cells to 17.8 ± 16.7 per 1000 ARP in DM + L. acidophilus treated 

cells. 

One-way between subjects ANOVA tests were conducted on transcripts of PGC1-α 

expressed per 1000 transcripts of ARP as a reference gene. In DM conditions, no 

significant effect of the use of CFS was observed on PGC1-α transcripts at p=<0.05, 

data violated the assumption of homogeneity of variances, necessitating a Welch F 

test (F (5,12.343) = 0.757, p=0.597). Results are summarised in Figure 5.8. 

Similarly, in CM conditions, no significant effect of the use of CFS was observed on 

PGC1-α transcripts at p=<0.05, data violated the assumption of homogeneity of 

variances, necessitating a Welch F test (F (5,10.257) = 1.218, p=0.367). Results 

summarised in Figure 5.9. 
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Figure. 5.8 – qPCR quantification of PGC1-α in 3T3-L1 cells treated with DM diluted 

with DMEM:F12 or cell free supernatant of several bacterial strains after 10 days. 

Post-confluent 3T3-L1 cells were maintained for 10 days in either DM diluted 1:1 with 

DMEM:F12 (DM), or DM diluted 1:1 with CFS of various bacterial strains (DM + 

Lab4/Lab4b/L. salivarius/L. paracasei/L. acidophilus), RNA extracted, reverse 

transcribed, and subjected to qPCR. PGC1-α transcripts at day 10 did not show 

significant differences to control in any condition (p=0.597). Experiments were 

performed in triplicate wells, bars represent the mean of 2 individual experiments, 

error bars represent SEM. 
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Figure. 5.9 – qPCR quantification of PGC1-α in 3T3-L1 cells treated with CM diluted 

with DMEM:F12 or cell free supernatant of several bacterial strains after 10 days. 

Post-confluent 3T3-L1 cells were maintained for 10 days in either CM diluted 1:1 with 

DMEM:F12 (CM), or CM diluted 1:1 with CFS of various bacterial strains (CM + 

Lab4/Lab4b/L. salivarius/L. paracasei/L. acidophilus), RNA extracted, reverse 

transcribed, and subjected to qPCR. PGC1-α transcripts at day 10 did not show 

significant differences to control in any condition (p=0.367). Experiments were 

performed in triplicate wells, bars represent the mean of 2 individual experiments, 

error bars represent SEM. 

 

qPCR quantification of CITED1 transcripts in 3T3-L1 cells 

As seen in UCP1 and PGC1-α data, transcripts of CITED1 were roughly 10 times more 

abundant in DM conditions compared to CM conditions. However, transcription was 

more in line with leptin data, and was not as robustly transcribed as UCP1 and PGC1-

α. In CM conditions, transcripts ranged from 0.004 ± 0.001 per 1000 ARP in CM + L. 
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salivarius treated cells to 0.015 ± 0.007 per 1000 ARP in CM + Lab4 treated cells, 

though most conditions appeared similar to control. In DM conditions, transcripts 

ranged from 0.05 ± 0.03 per 1000 ARP in DM + L. salivarius treated cells to 0.19 ± 0.10 

per 1000 ARP in DM + Lab4 treated cells. 

One-way between subjects ANOVA tests were conducted on transcripts of CITED1 

expressed per 1000 transcripts of ARP as a reference gene. In DM conditions, no 

significant effect of the use of CFS was observed on CITED1 transcripts at p=<0.05, 

data violated the assumption of homogeneity of variances, necessitating a Welch F 

test (F (5,8.744) = 1.606, p=0.255). Results are summarised in Figure 5.10. 

Similarly, in CM conditions no significant effect of the use of CFS was observed on 

CITED1 transcripts at p=<0.05, data violated the assumption of homogeneity of 

variances, necessitating a Welch F test (F (5,6.415) = 1.606, p=0.056). Due to the 

Welch F test suggesting a possible trend towards significance, post-hoc comparisons 

were performed using the Dunnett’s T3 test. Post-hoc pairwise comparisons revealed 

that no condition was significantly different from any other, though treatment with 

CM + L. salivarius (0.004 ± 0.001) non-significantly reduced transcripts of CITED1 

compared to control (0.009 ± 0.002) (p=0.150).Results are summarised in Figure 5.11. 
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Figure. 5.10 – qPCR quantification of CITED1 in 3T3-L1 cells treated with DM diluted 

with DMEM:F12 or cell free supernatant of several bacterial strains after 10 days. 

Post-confluent 3T3-L1 cells were maintained for 10 days in either DM diluted 1:1 with 

DMEM:F12 (DM), or DM diluted 1:1 with CFS of various bacterial strains (DM + 

Lab4/Lab4b/L. salivarius/L. paracasei/L. acidophilus), RNA extracted, reverse 

transcribed, and subjected to qPCR. CITED1 transcripts at day 10 did not show 

significant differences to control in any condition (p=0.255). Experiments were 

performed in triplicate wells, bars represent the mean of 2 individual experiments, 

error bars represent SEM. 
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Figure. 5.11 – qPCR quantification of CITED1 in 3T3-L1 cells treated with CM diluted 

with DMEM:F12 or cell free supernatant of several bacterial strains after 10 days. 

Post-confluent 3T3-L1 cells were maintained for 10 days in either CM diluted 1:1 with 

DMEM:F12 (CM), or CM diluted 1:1 with CFS of various bacterial strains (CM + 

Lab4/Lab4b/L. salivarius/L. paracasei/L. acidophilus), RNA extracted, reverse 

transcribed, and subjected to qPCR. CITED1 transcripts at day 10 did not show 

significant differences to control in any condition (p=0.056). Experiments were 

performed in triplicate wells, bars represent the mean of 2 individual experiments, 

error bars represent SEM. 
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5.4 – Discussion 

Leptin 

Leptin has been widely used as a marker of WAT in primary cultures, and is 

considered a classical marker of WAT (Ussar et al., 2014). However, expression of 

leptin in 3T3-L1 cells is markedly lower than in primary adipocytes; leptin mRNA is 

mostly absent in 3T3-L1 preadipocytes, but transcription increases during the course 

of differentiation (MacDougald et al., 1995). This low level of expression in 3T3-L1 

cells appears to be an accepted phenomenon (Kuroda et al., 2016), but no work in 

the literature appears to address its validity as a marker in 3T3-L1 cells. No significant 

differences were observed in the gene expression of leptin in any conditions used in 

the present study. However, there was an intriguing non-significant increase in leptin 

transcripts in the DM + L. salivarius CFS treatment condition. Leptin transcripts were 

roughly 10-fold higher in DM conditions compared to CM conditions, indicating as in 

MacDougald et al. (1995) that transcription increases during the course of 

adipogenesis. 

Due to wide variations in gene expression data mentioned in the course of the 

present study, data has proven challenging and due to a lack of robust data it remains 

difficult to draw conclusions. The finding that treatment of differentiating 3T3-L1 cells 

with L. salivarius non-significantly increased leptin transcription (results shown in 

Figure 5.4) was particularly puzzling; it is difficult to reconcile this finding with visual 

assessment of the cells during the differentiation period. L. salivarius CFS appeared 

to dramatically impact viability of cells, with a substantial number visibly detaching 

throughout treatment. Despite 3T3-L1 cells being a unipotent and presumably 

homogeneous population, some cells appeared resistant to this effect and 

maintained attachment to tissue culture plates. In DM, by the 10th day of 

differentiation, a majority of cells display visible lipid droplets (Figure 5.12A), 

however when treated with L. salivarius CFS there are a large number of cells that do 

not display lipid accumulation, alongside a number of what were presumed to be lipid 

containing cells with enlarged cytoplasmic compartments (Figure 5.12B). However, 
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some of the spherical structures within these enlarged cells may be autophagosomes, 

and it remains to be seen whether this enlargement is a transient or stable event. 

 

Figure 5.12 – Images of 3T3-L1 adipocytes at day 10. (A) 3T3-L1 cells maintained for 

10 days post confluence in DM diluted 1:1 with DMEM:F12. A majority of cells display 

lipid droplet accumulation and rounded morphology. (B) 3T3-L cells maintained for 

10 days post confluence in DM diluted 1:1 with CFS of L. salivarius. Some cells do not 

display lipid accumulation, while many of those that do have aberrant morphology 

and enlarged cytoplasm. 

Given the typically low levels of expression in 3T3-L1 cells, any practical significance 

of an increase from 0.016 (± 0.007) transcripts per 1000 ARP transcripts to 0.095 (± 

0.086) is unclear. The large standard deviation displayed in the DM + L. salivarius 

treatment reflects the fact that one well in the experimental condition displayed 

leptin gene expression near identical to DM, while the other 5 were between ~10-50 

fold higher, but was not statistically deemed an outlier and thus not removed from 

data to prevent distortion by subjective determination of outliers. This single low 

reading may be reflective of death of cells in this well, but further data is needed. 

This finding was initially believed to be an artefact of loss of cells reducing RNA yields 

in the first experiment, however this reduction of RNA yield did not occur in the 

second experiment. In terms of absolute numbers of transcripts, in the first 

experiment leptin transcripts were broadly similar to control, while ARP was 

proportionally lower, in accord with reduced RNA yield. In the second experiment, 

total ARP transcripts were broadly similar (though surprisingly slightly higher in the L. 
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salivarius treated condition) while total transcripts of leptin were an order of 

magnitude higher than control. This data seems to indicate that the increase in leptin 

gene expression is not merely a distortion caused by the loss of cells, however the 

similar level of ARP transcripts in the second experiment remains surprising given the 

widespread cell detachment. It is possible that the unusually large morphology of 

some of the cells counteracts this loss, but treatment may also impact transcription 

of ARP. Further research is needed to determine these results are upheld with further 

experimental repeats. 

Serum leptin concentrations have been shown to correlate with BMI and adiposity in 

numerous human populations (Ruhl et al. 2007; Hu et al., 2001; Al Maskary and 

Alnaqdy, 2006). Adipocyte volume has also been shown to be associated with leptin 

secretion in human adipocytes (Skurk et al., 2007), and murine studies suggest a 

complex relationship in which adipose hypertrophy results in higher total leptin 

secretion, but lower levels of leptin secretion per volume of lipid (Guo et al., 2004). 

This raises the possibility that the possible increase in leptin mRNA in L. salivarius 

treated 3T3-L1 adipocytes is a reflection of the volume of the cell, but the reason and 

mechanisms for this expansion remains unclear. 

 

ZIC1 

Gene markers that may help distinguish between brown and beige adipocytes are an 

active area of research. One of the proposed BAT exclusive gene markers is Zinc in 

Cerebellum 1 (ZIC1), which displays robust expression in human brown adipocytes 

and is often undetectable in cultured white and beige adipocytes (Petrovic et al., 

2010; Waldén et al., 2012), and has been validated as a marker of murine BAT (de 

Jong et al., 2015). Its presence in 3T3-L1 cells has previously been obliquely 

referenced in the literature as detectable, though data was not shown (Seale et al., 

2007). In the present study, while ZIC1 was apparently detected in 3T3-L1 cells used 

initially for sequencing and the production of standards, it was not detectable by 

qPCR in any condition in subsequent experiments. Standards were prepared using 

standard PCR, so relative quantities of transcripts in 3T3-L1 cells used for production 
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of standards compared to experimental cells are unknown. The low levels of ZIC1 

expression in 3T3-L1 cells reported in the literature suggest it may be difficult to 

amplify consistently, it may still be present under experimental conditions, but below 

the limit of detection. 

Under normal differentiation conditions, 3T3-L1 cells show gene expression similar 

to WAT, but are capable of displaying phenotypic characteristics of beige/BAT tissue 

(Morrison and McGee, 2015). The results shown in Morrison and McGee are 

particularly intriguing as under normal conditions 3T3-L1 cells displayed significantly 

greater expression of PGC1-α than BAT, but also that norepinephrine treated cells 

demonstrated increased transcription of pyruvate dehydrogenase kinase 4, which 

like ZIC1 is proposed to be a BAT selective marker (Wang and Seale, 2016). It should 

be noted that many proposed beige/BAT selective markers have been subsequently 

found not to be as useful for tissue classification as believed (de Jong et al., 2015), 

but the ability of 3T3-L1 cells to adopt beige/BAT characteristics and their relevance 

remains an open question. A study investigating knockdown of fat specific protein 27 

in 3T3-L1 cells showed some morphological features consistent with beige/BAT 

(multilocular lipid droplets and increased mitochondrial number) without affecting 

expression of BAT associated genes (Keller et al., 2008). Keller et al. reported that 

ZIC1 is present in 3T3-L1 cells used in their study, but not in appreciable quantities. 

The role of ZIC1 in 3T3-L1 cells is thus uncertain and likely limited. To date no studies 

have shown conditions that enrich its expression in 3T3-L1 cells, which appears 

consistent with its use as a model of white adipocytes and ZIC1 as a marker of classical 

BAT. Difficulty detecting ZIC1 in the present study is therefore not an unexpected 

result. 

 

UCP1  

Results in the present study for UCP1 gene expression warrant extreme caution in 

interpretation. Data only represent results from a single experiment, and so results 

may simply display variation around a mean. The finding of a statistically significant 

increase of UCP1 transcripts in the CM + L. acidophilus condition is surprising and 
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intriguing. UCP1 is activated via lipolysis (Cannon and Nedergaard, 2004), but it has 

been suggested that undifferentiated 3T3-L1 cells show similar levels of lipolysis to 

differentiating cells, but that a greater proportion of fatty acids liberated through 

lipolysis become re-esterified within differentiating cells (Carnicero, 1984). UCP1 may 

therefore be present and functional in preadipocytes, however the practical 

significance of the observed increase in transcription is questionable, as transcripts 

increased from 1.04 ± 0.19 per 1000 ARP to 4.74 ± 0.44. As would be expected, 

transcription was more pronounced in DM treated conditions. Though the mean 

increase of UCP1 transcription in DM + L. acidophilus was non-significant, the broad 

effect of treatment seen in CM conditions was recapitulated, and it is possible with 

further experimental replicates that significance could be achieved. UCP1 and leptin 

transcription are reciprocally regulated in murine BAT (Cancello et al., 1998) and 

though decreases in leptin transcripts in CM + L. acidophilus treated cells were not 

statistically significant, this does suggest that there is a potential effect on adipose 

phenotype. However, there was also a non-significant increase of UCP1 transcripts in 

cells maintained in DM + L. acidophilus, but in these cells leptin transcription 

remained indistinguishable from DM control. UCP1 transcription appeared non-

significantly lower in DM + L. salivarius treated cells, which did see a striking though 

non-significant increase in leptin transcription. However, cells maintained in DM + 

Lab4, Lab4b, and L. paracasei CFS also show similar levels of UCP1 transcripts to L. 

salivarius treated cells, but do not appear to have any increase in leptin transcription. 

A possible explanation for the effect seen in L. acidophilus treated cells lies in the 

presumed content of the CFS. LAB such as L. acidophilus have been shown to 

efficiently produce lactic acid when cultured in MRS broth (Juárez Tomás et al., 2003). 

Phenol red indicator showed CFS to be at a pH of approximately 7.4. Under these 

conditions, a majority of lactic acid is believed to be present in its dissociated form, 

lactate (Lampe et al., 2009). Cold exposure, the classical activator of BAT, transiently 

raises circulating plasma lactate in mice, and lactate administration to both murine 

and human adipocytes in vivo induces thermogenic gene expression (Carrière et al., 

2014). However, oral administration of butyrate increases UCP1 and PGC1-α 

expression in mice (Gao et al., 2009), and it appears that in BAT most fatty acids 
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activate UCP1, with effect dependent upon chain length (Shabalina et al., 2008). 

Thus, there is a scientific rationale for specific metabolic products of LAB to activate 

UCP1. However, further work is required to determine whether these results are 

reproducible in more than a single experiment, and what the precise composition of 

the CFSs used is. As leptin is expressed at a markedly lower level in 3T3-L1 cells 

compared to murine tissue, it is unclear whether the reciprocal transcriptional 

relationship is maintained in 3T3-L1 cells, and these results provide conflicting 

evidence. 

 

PGC1-α 

Though used as a non-specific marker of beige/BAT, PGC1-α has previously been 

shown to be highly expressed in differentiating 3T3-L1 adipocytes (Morrison and 

McGee, 2015). This data is likely to confound the use of PGC1-α as a marker of 

phenotype in 3T3-L1 cells, and much work is still needed to validate markers used for 

the classification of murine tissues for use in 3T3-L1 studies. In the present study, no 

treatment conditions significantly affected gene expression of PGC1-α. As mentioned 

in the introductory chapter, knockdown of PGC1-α in an immortalised cell line 

generated from murine BAT impairs induction of thermogenic genes without altering 

differentiation (Uldry et al., 2006). PGC1-α appears to be dispensable for BAT 

differentiation, but has a greater link to response to cold exposure. As cells in the 

present study were maintained at 37˚C, cold exposure was an infrequent occurrence 

experienced only transiently by cultured cells during visual assessment and 

infrequent media changes. A previous study has shown that 3T3-L1 cells robustly 

express UCP1 when cultured at 31˚C, and in 3T3-F442A adipocytes both UCP1 and 

PGC1-α are inducible by temperature manipulation (Ye et al., 2013). Notably, Ye et 

al. showed that UCP1 transcription increased roughly 2-fold compared to control 

following only 1 hour of exposure to 31˚C. In vivo evidence suggests that 

paradoxically, following induction of transcription, UCP1 mRNA has a longer half-life 

in animals reintroduced to room temperature than in those maintained at 4˚C 

(Jacobsson et al., 1987). This raises the possibility that thermogenic gene 
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transcription can be induced with acute exposure to cold even in in vitro models, and 

that maintenance at physiological temperatures may prolong the period in which 

transcripts can be detected. It remains to be seen if this PGC1-α function is seen in 

3T3-L1 cells, but if PGC1-α is more linked to the functional response to cold exposure 

than BAT identity then temperature would be an interesting variable to consider in 

any future study. 

Unfortunately, the primers used in the present study target exons 4 and 5. PGC1-α in 

mice exists in multiple isoforms, often truncated due to alternative splicing 

introducing an in-frame stop codon. At least 2 isoforms (PGC1-α2 and PGC1-α3) do 

not contain exons 4 and 5, and novel isoforms are discovered with some regularity 

(Martínez-Redondo et al., 2015). While evidence suggests that the various PGC1-α 

isoforms exist at broadly similar levels in a range of murine tissues including BAT 

(Ruas et al., 2012) the same is not known in 3T3-L1 cells. Therefore, the results in the 

present study may underestimate total PGC1-α present in 3T3-L1 cells, and any future 

work seeking to quantify PGC-1α transcription should use primers specific to exon 2, 

which to the best of present knowledge is valid for all PGC1-α isoforms. It would also 

be useful to determine protein levels, which were not investigated in the present 

study due to time constraints. However, despite potential underestimation, data 

indicates that for a majority of known PGC1-α isoforms, the treatment of 3T3-L1 cells 

with CFS has no significant effect on gene expression. 

 

CITED1 

CITED1 was proposed to be a beige selective tissue marker, but has subsequently 

been shown to be less informative regarding tissue classification, though it may be 

reflective of norepinephrine response (de Jong et al., 2015). No statistically significant 

differences were observed in the present study, and levels of expression were 

uniformly low. Interestingly, though non-significant, CITED1 transcription was lowest 

in L. salivarius treated cells, which may be a reflection of the non-significant increase 

in leptin transcripts seen in CM + L. salivarius treated cells if CITED1 is valid as a 

marker of adipose phenotype in 3T3-L1 cells. As in all other genes, expression of 
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CITED1 appeared greater overall in DM conditions than CM conditions, suggesting its 

expression increases during the course of differentiation. The lack of any significant 

differences between conditions accords with its proposed functional role in 

norepinephrine response, which would not be expected in cells cultured in conditions 

as used in the present study, however the non-significant decreases seen in certain 

treatment conditions is an avenue of further research that may be worth exploring 

alongside further data on leptin transcription. 
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Chapter 6: Effects of bacterial cell free supernatant on adipogenesis in 

human primary preadipocytes 

6.1 – Introduction 

Research into the microbiota is complicated due to the complexity of the field, and 

the nascent state of many techniques. Present data indicates that Lactobacilli are 

vastly more abundant in the murine microbiota than in humans (Nguyen et al., 2015), 

and as there is a suggestion that microorganisms have evolved alongside humans and 

are involved in innate immunity, it is possible that murine and human cells possess 

different responses to certain bacteria. Further, though the 3T3-L1 cell line has been 

the source of much knowledge regarding the processes of adipogenesis, murine and 

human adipogenesis have notable differences. It has been suggested that MCE is not 

an obligatory process for the induction of adipogenesis in primary human 

preadipocytes, with reports of human preadipocytes not displaying evidence of MCE 

(Newell et al., 2006) and experiments using mitotic inhibitors not preventing 

differentiation (Entenmann and Hauner, 2006). However, similar experimental 

evidence has been shown in 3T3-L1 cells (Qiu et al., 2001) though this remains a 

matter of controversy as to whether MCE is prevented or merely delayed (Tang et al., 

2003). There are also differences between murine and human adipocytes that are 

particularly important to the study of BAT-selective gene markers in adipose tissue; 

there is evidence to suggest that BAT in adult humans is more similar to murine beige 

adipose tissue on a molecular level (Wu et al., 2012). The use of primary human 

preadipocytes also allows for a model that more closely reflects adipose depot 

specific properties (Ruiz-Ojeda et al., 2016), which is particularly valuable in the study 

of obesity. Primary cultures of human preadipocytes are therefore a valuable 

resource for research into adipogenesis. However, they are considerably more 

difficult to work with than 3T3-L1 cells, with a far longer population doubling time, 

and far lower rates of adipogenesis compared to 3T3-L1 cells (Draman et al., 2013). 

However, as Lab4 and Lab4b are fundamentally bacterial products for use in humans, 

the effects of Lab4 and Lab4b CFS were investigated in primary human preadipocytes 

to assess potential effects on in vitro adipogenesis. 
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6.2 – Materials and methods 

Human primary preadipocyte cells were a generous gift from Dr. Lei Zhang. A list of 

reagents used, and their suppliers is given in Appendix 1, Table 1. Media was 

prepared as in chapter 3.2 

 

Cell culture 

All samples were obtained with written informed consent and the approval of Wales 

REC 1 (formerly South East Wales) research ethics committee, REC reference 

12/WA/0285. Cryopreserved subcutaneous preadipocytes from 3 patients without 

metabolic disease at passage 3 were seeded in T75 flasks and maintained in CM until 

approximately 70% confluent. Cells were trypsinised and seeded in 6-well plates and 

maintained in 0.5ml CM per well until approximately 90% confluent. Media was 

replaced in post-confluent cells in triplicate wells in treatment conditions listed in 

Table 6.1. Experiments were performed at passage 4-5. 

Patient characteristics 

 

Table 6.1 – Composition of treatment conditions used for human primary 

preadipocytes 

Condition Composition 

CM Complete media diluted 1:1 with DMEM:F12 

DM Differentiation media diluted 1:1 with DMEM:F12 

DM + Lab4 Differentiation media diluted 1:1 with Lab4 CFS 

DM + Lab4b Differentiation media diluted 1:1 with Lab4b CFS 

 

CFS was prepared as previously. Initiation of treatment was designated as day 0, 

media was changed every 72 hours or sooner if subjective assessment of phenol red 

indicator was deemed acidic. ORO staining and adipogenic foci counting was 

performed at 15 days. 
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Oil Red O staining 

ORO staining was performed as in chapter 4.2. 

 

Adipogenic foci counting 

At day 15, cells were imaged (Nikon Diaphot Microscope, Nikon) at 10x magnification 

by light microscopy using ViewFinder software (version 3.0.1, Better Light Inc., 

California, USA) and images of 10 representative visual fields (determined 

subjectively) per well were saved. As in prior work in our laboratory (Rice et al., 2010; 

Draman et al., 2017) groups of cells displaying accumulation of lipid droplets were 

manually counted by a single researcher in each of the 10 visual fields per well and 

totals recorded (i.e. totals of 10 visual fields were taken as one observation). 

 

6.3 – Results  

Adipogenic foci counting 

Anticipating that ORO staining may not detect significant differences between CM 

and DM conditions in cells with low adipogenic potential (previous work in our 

laboratory suggests at maximum 10% of primary preadipocytes will differentiate 

(Draman et al., 2013)), another technique to quantify adipogenesis was employed. 

Images of 10 visual fields per well were saved prior to ORO staining. Adipogenic foci 

in these 10 visual fields were counted, data presented in Figure 6.1.  
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Figure 6.1. – Adipogenic foci counts of primary human preadipocyte cells at day 15 

after treatment with cell free supernatant. Post-confluent human primary 

preadipocyte cells were maintained in either CM/DM diluted 1:1 with DMEM:F12 

(CM and DM respectively), or DM diluted 1:1 with CFS of Lab4 or Lab4b (DM + 

Lab4/Lab4b). Adipogenic foci counting was performed at day 15. Diagonally striped 

bars represent results from patient 1, stippled bars represent results from patient 2, 

horizontally striped bars represent results from patient 3. No significant differences 

were found between DM conditions, though in two patients significant differences 

were indicated between CM and DM + Lab4. In one experiment, DM + Lab4b 

treatment appeared to result in a large increase in number of lipid accumulating cells, 

though statistical significance was not achieved. Experiments were performed in 

triplicate wells, bars for patients 1 and 2 represent the mean of 2 individual 
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experiments, bars for patient 3 represent the mean of a single experiment, error bars 

represent SEM. Asterisk denotes significant difference at p = <0.05 from CM only 

 

Foci counting was able to distinguish between CM and DM conditions, however the 

co-appearance of lipid droplets extracellular bodies (speculated to be apoptotic 

bodies) and unusual patterns of lipid accumulation in treatment conditions coupled 

with inexperience with the technique and low-resolution images made suitably 

accurate quantification extremely difficult. Further, there appeared to be far greater 

cytotoxic effects of DM + Lab4b CFS in the first experiment compared to the second. 

Though aliquots of CFS from the same batch were used, the second experiment took 

place approximately 2 weeks after the first, during which time the prepared CFS + 

appropriate culture media was stored at 4˚C and not freshly thawed and mixed. The 

initial experiment was performed at passage 4, the second at passage 5. In the second 

experiment, DM + Lab4b CFS treated cells displayed an extreme increase in the 

number of cells accumulating lipids, to the extent that nearly every cell in a given 

visual field displayed evidence of lipid accumulation. The distribution of these 

vacuoles within cells appeared different to the pattern seen in differentiating cells 

treated with DM alone. In DM, a small number of cells appear to differentiate, 

displaying numerous multilocular lipid droplets that form a distinct cluster in close 

proximity (Figure 6.2A), whereas in DM + Lab4b CFS, a large number of cells appear 

to accumulate small amounts of lipid, which are often distributed throughout the cell 

rather than in a single cluster (Figure 6.2B). Figure 6.3 shows cells differentiating at a 

low level as expected in DM (Figure 6.3A) and the relative difficulty of properly 

classifying regions of still images due to soluble bodies (Figure 6.3B) 
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Figure. 6.2 – Images of human primary preadipocytes at day 15. Representative 

image of cells cultured in DM diluted 1:1 with DMEM:F12 (A) and DM + Lab4b CFS 

(B). In cells maintained in DM diluted 1:1 with DMEM:F12, a small number of cells 

differentiate, accumulating a relatively large amount of lipid. In cells that survive DM 

+ Lab4b treatment, a large number of cells appear to accumulate a small amount of 

lipid, which is distributed differently within cells. 
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Figure. 6.3 – Images of human primary preadipocytes at day 15. (A) Cells maintained 

in DM diluted 1:1 with DMEM:F12 shows distinct adipogenic foci (arrows) and cell 

morphology (B) cells maintained in DM + Lab4 CFS show some distinct regions of 

adipogenesis, but the upper right hand of the field is difficult to interpret due to visual 

elements that may be lipid droplets or extracellular soluble bodies. Cells are from the 

same patient as those in Figure 6.2. 



115 

 

One way between subjects ANOVA was performed in data on a per-patient basis, as 

profound cytotoxicity in cells from patient 3 suggested data between patients may 

not be comparable. In patient 1 data violated the assumption of homogeneity of 

variances, necessitating a Welch F test; significant differences were observed 

between groups at p=<0.05 (F (3,7.736) = 14.566, p=0.001). A post-hoc Dunnett’s T3 

test was performed for pairwise comparisons, differences in foci counts between CM 

(0.7 ± 0.8) and DM (19 ± 12.4) were perhaps trending towards significance (p=0.067), 

though when compared to CM, DM + Lab4 CFS (19.7 ± 7.8) did significantly increase 

foci counts (p=0.009) whereas DM + Lab4b (94.2 ± 113.6) did not (p=0.465) likely due 

to large variance in data. However, when DM treatment conditions were compared 

to DM control, there were no significant differences observed in foci counts for DM 

+ Lab4 (p=1) or Lab4b (p=0.639) . 

In patient 2 data violated the assumption of homogeneity of variances, necessitating 

a Welch F test; significant differences were observed between groups at p=<0.05 (F 

(3,8.461) = 49.281, p=<0.001). A post-hoc Dunnett’s T3 test was performed for 

pairwise comparisons, a significant difference was found in foci counts between CM 

(0.3 ± 0.5) and DM (11.5 ± 6.1) (p=0.029), as well as DM + Lab4 CFS (20.3 ± 4.0) 

(p=<0.001) but not DM + Lab4b (127.3 ± 118.1) (p=0.191) again likely due to large 

variance in data. However, compared to DM control, there were no significant 

differences observed in foci counts for DM + Lab4 (p=0.081) or Lab4b (p=0.246). 

In patient 3 data violated the assumption of homogeneity of variances, necessitating 

a Welch F test; significant differences were observed between groups at p=<0.05 (F 

(3,3.479) = 11.112, p=<0.029). A post-hoc Dunnett’s T3 test was performed for 

pairwise comparisons, however no significant differences were observed using the 

Dunnett’s T3 test between pairs, likely as a result of the conservative nature of the 

test, the large variance in data, and the small number of observations. Non-significant 

differences were found in foci counts between CM (0.3 ± 0.6) and DM (12.7 ± 3.8) 

(p=0.084). Compared to DM control, no significant differences were found between 

either DM + Lab4 (12.7 ± 5.7) (p=1) or DM + Lab4b CFS (3 ± 3) (p=0.110) again likely 

due to large variance in data. Almost no adipogenic foci were observed in DM + Lab4b 

CFS treated cells due to profound cytotoxicity. 
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ORO staining 

Post-confluent human primary preadipocytes from 3 patients were maintained for 

15 days in CM or DM diluted 1:1 with DMEM:F12, or DM diluted 1:1 with CFS of Lab4 

or Lab4b. ORO staining was performed on day 15, dye extracted, and optical density 

measured at 490nm. In all three patients, ORO staining did not appear to detect 

adipogenesis, with no observable differences seen between CM and DM, though 

mean optical density at 490nm actually appeared very slightly lower in DM compared 

to CM. DM + Lab4b showed what may have been a very slight increase in optical 

density at 490nm compared to DM control in patients 1 and 2.. One-way between 

subjects ANOVA tests were conducted on spectrophotometric data (corrected by 

subtracting the value of blank wells). In patient 1 no significant differences were 

observed in any condition at p=<0.05 (F (3,20) = 1.689, p=0.201). In patient 2 a 

significant effect of the use of CFS was observed at p=<0.05 (F (3,21) = 4.833, 

p=0.011). However, post-hoc comparisons using the Tukey HSD test indicated that 

the only significant differences were between DM + Lab4 (0.638 ± 0.010 AU) and 

Lab4b conditions (0.977 ± 0.010 AU, p=0.007), with no significant differences 

observed between DM + DMEM:F12 control (0.0753 ± 0.019 AU) and DM + Lab4 

(p=0.639) or DM + Lab4b (p=0.085). In patient 3, no significant differences observed 

at p=<0.05 (F (3,8) = 3.979, p=0.053). Statistically this appeared to be trending 

towards significance, however results in samples from patient 3 are taken from a 

single experiment, as widespread cell death was apparent when treated with 

bacterial conditions and was not repeated. Data for all 3 patients is shown in Figure 

6.4. 
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Figure. 6.4 – Oil Red O staining of human primary preadipocyte cells at day 15 after 

treatment with cell free supernatant. Post-confluent human primary preadipocyte 

cells were maintained in either CM/DM diluted 1:1 with DMEM:F12 (CM and DM 

respectively), or DM diluted 1:1 with CFS of Lab4 or Lab4b (DM + Lab4/Lab4b). ORO 

staining was performed, and dye extracted at day 15. Diagonally striped bars 

represent results from patient 1, stippled bars represent results from patient 2, 

horizontally striped bars represent results from patient 3. No significant differences 

were observed between experimental conditions and control. Experiments were 

performed in triplicate wells, bars for patients 1 and 2 represent the mean of 2 

individual experiments, bars for patient 3 represent the mean of a single experiment, 

error bars represent SEM. 



118 

 

6.4 – Discussion 

No significant differences were observed in any of the three patients between CM + 

DMEM:F12 and DM + DMEM:F12 conditions when measured by ORO staining. Under 

standard conditions, cultured primary preadipocytes exhibit relatively low adipogenic 

potential (Lee et al., 2012). Compounding this, in human primary preadipocytes, FCS 

can inhibit adipogenesis in a dose-dependent fashion (Lee et al., 2012). Experiments 

in the present study were conducted with 5% FCS after dilution of media with CFS, 

and FCS used in our laboratory is tested to minimise any effect on adipogenesis, so is 

unlikely to cause this. However, subculturing of human primary preadipocytes is 

known to be associated with increased population doubling time and decreased 

capacity to differentiate (Skurk et al., 2007). As cells were ultimately at passage 4 for 

experiments, it is likely that this had an impact on the ability of cells to differentiate. 

Further, though patients were known not to have metabolic disease, factors such as 

BMI can impact adipogenic potential (van Harmelen et al., 2003), and thus a number 

of unknown patient factors may have affected adipogenic capacity of primary 

preadipocytes. 

Though ORO staining was inconclusive, perhaps the most intriguing results came 

from visual analysis. Quantitative visual analysis is heavily compounded by 

methodological problems which must be considered when assessing data. 

Concomitant appearance of what appeared to be enhanced lipid accumulation 

alongside large amounts of apoptosis, which appeared to vary in a subject-dependent 

manner, also hampered this analysis. In those samples which appeared to survive and 

undergo enhanced adipogenesis, counting adipogenic foci in low resolution images 

was an extremely difficult task, as lipid droplets were numerous, cell boundaries 

often difficult to distinguish, and what appeared to be apoptotic bodies presented 

similarly to lipid droplets in still images. Despite this, a distinct morphological 

difference is seen in surviving human primary preadipocyte cells treated with DM + 

Lab4b CFS. Due to extreme variation in the data caused by more pronounced 

cytotoxic effects in the first experiment than the second, Lab4b CFS treated 

conditions were not found to be statistically significantly different from any other, 
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but the magnitude of the effect observed is striking compared to the minimal 

amounts of lipid accumulation seen under normal conditions. It is unclear why the 

effects of the same aliquots of CFS had such markedly different results, and may be 

a result of the longer storage period a 4˚C, or may be related to the incremental 

passaging of cells. 

To date, no study appears to have addressed the reproducibility of the adipogenic 

foci counting method between researchers. Though this kind of analysis is often used 

in conjunction with other data such as qPCR quantification of relevant gene 

transcripts and ORO staining, there is a need to address this issue. One suggestion is 

to have images assessed by multiple observers. Another issue of this method is that 

it provides a broad measure of the number of cells accumulating lipid, but does not 

account for features of those lipid droplets. This kind of analysis is already time and 

labour intensive, and the kinds of computer aided image analysis of lipid droplet 

features such as diameter previously reported use an extremely small number of cells 

(Rizzatti et al., 2013). Quantification of these observations therefore encounters 

many issues; however, it is reasonable to assert that treatment of human primary 

preadipocytes with DM + Lab4b CFS can have a profound morphological effect on 

surviving cells. Further work is needed to investigate the precise nature of these 

morphological effects and any potential effects on adipogenesis, and investigation of 

gene markers via qPCR is a suggested first step. 

The large number of intracellular vacuoles shown in the lower image in Figure 6.2 

presents unanswered questions. Most importantly, are these visual features actually 

lipid vacuoles? ORO staining was not able to distinguish between any condition, and 

accurate visual analysis was confounded by soluble bodies that were visually similar 

to lipid droplets in still images, but not during live light microscopy. The distribution 

of these vacuoles is different to traditional lipid accumulation, which may be a result 

of some functional cellular change or may reflect that they are not lipid droplets. 

Visual analysis of ORO stains showed faint staining of these vacuoles, however there 

was a large amount of background staining and unfortunately, images of stained cells 

have been lost to a storage failure. Prior usage of the foci counting technique has 

been used alongside qPCR quantification of LPL transcripts, which was not possible 
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in the present study due to time constraints. Further work should seek first to 

determine optimal culture conditions, particularly a dosage of CFS to ensure both 

survival and adipogenesis in human primary preadipocytes, and then if effects on 

morphology seen in the present study can be recapitulated utilise a qPCR based 

approach as visual determination becomes difficult. Unlike 3T3-L1 cells, human 

primary preadipocytes are comprised of a heterogeneous and pluripotent population 

of cells. Given the typically low adipogenic potential of human primary preadipocyte 

cells and a time course of differentiation consistent with control cells, it may be that 

some factor of the Lab4b CFS influences these cells towards adipogenic commitment. 

The induction of reactive oxygen species as a result of lactate administration has been 

shown in cultured rat myocytes (Brooks, 2009), and there is evidence to suggest that 

non-pathogenic levels of reactive oxygen species are involved in adipose 

commitment (Liu et al., 2012). As CFS composition remains unknown, this is a 

speculative hypothesis, however there is a strong rationale for the presence of lactate 

in CFS as discussed in chapter 5.4 which warrants further investigation. 
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Chapter 7: Discussion 

The link between the gut microbiota and obesity in humans is incompletely 

understood. There is good evidence to support the basic rationale that bacteria in the 

gastrointestinal tract metabolise undigested material from the host diet and 

synthesise substrates which can be utilised by the host (McNeil, 1984). However, the 

intricacies of such a system are exceedingly difficult to model in vitro. The nutritional 

milieu of the colon is affected by both host diet and the energy salvage capacity of 

the resident microbiota (Ríos-Covián et al., 2016). The substrates available to 

mesenteric adipose depots are likely affected by the status of butyrate as the 

preferred substrate of colonocytes (Clausen and Mortensen, 1994); conversely, 

adipose depots elsewhere in the body are likely affected by hepatic uptake of SCFAs 

and peripheral SCFA concentrations are far lower than in the colon (Cummings et al., 

1987). As such it is difficult to draw conclusions about the potential of probiotic 

bacteria to impact adipogenesis in vivo from in vitro data, as it is extremely difficult 

to both identify and represent myriad environmental variables of a given adipose 

depot in an in vitro model. The model used in the present study therefore is quite 

broad and represents early steps in investigating the effects of bacterial metabolites 

upon adipose tissue. The issue of how to model either subcutaneous or mesenteric 

fat requires an understanding of the relative concentrations of colonic metabolic 

products both within the colon and within systemic circulation, as well as an 

understanding of the composition of the CFS used. This would appear to be a distant 

goal in modelling effects of bacteria on adipogenesis in vitro, but would potentially 

aid greatly in the applicability of any results. Other suggestions to improve 

physiological representativeness are to use serum from probiotic treated mice, 

though yields would likely be very small and may necessitate much smaller numbers 

of cells be used. Though not performed in the same research context as the present 

study, coculture of Caco-2 cells (a model of the mature enterocyte often used as a 

general model of intestinal epithelium) with human primary preadipocytes 

stimulates leptin secretion and expression (Ishihara et al., 2015). The low levels of 

leptin transcription seen in 3T3-L1 cells is an interesting phenomenon, and if the 
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intestinal epithelium plays a stimulatory role, it is an intriguing avenue of research 

given that it is the primary interface with probiotic bacteria. 

There is a notable gap in the literature regarding viability testing in cell models of in 

vitro adipogenesis investigating the effects of bacteria. The present study shows that 

Lab4 and Lab4b both reduce lipid accumulation when measured by ORO staining, 

however it is uncertain to what degree that is a reflection of a reduction in cell 

viability. A 1:1 dilution of CFS and culture media was used to maintain consistency 

with preliminary data. In the course of generating preliminary data, varying 

concentrations were trialled to assess cytotoxicity and it was believed that a 1:1 

dilution did not affect viability. However, data shown herein displayed a clear effect 

on viability in Lab4 and Lab4b treated cells at 10 days. Unfortunately, reliable viability 

data was not able to be generated for all strains used. Effects of CFS for these strains 

remains an important question to be answered in future work, however culture 

conditions may also need to be optimised. MTS assay does not appear to be valid for 

the assessment of cell viability in 3T3-L1 cells treated with bacterial CFS, however the 

overestimation of viability seen in this data may be indicative of an altered redox 

state compared to control, which may in turn influence adipose phenotype (Carrière 

et al., 2014). Further research is needed to determine both the cause of this 

overestimation and whether it has any relation to adipose phenotype. Unpublished 

data recently generated at Cultech suggests that CFS of certain probiotic strains may 

have antioxidant effects. However, as the methods employed for MTS assay in the 

present study required aspirating media containing CFS, washing cells, and replacing 

with standard culture media, it would seem to suggest a cellular effect. 

Quantitative measurements of GPDH transcripts did not show any significant 

reductions in adipogenesis in any condition, however due to time constraints these 

results were obtained from only two experiments. Though not significant, 

differentiating 3T3-L1 cells treated with CFS of L. acidophilus showed the lowest level 

of GPDH transcription alongside the highest levels of UCP1 and PGC1-α transcription, 

despite bacteria growing to only half the CFU/ml of other conditions. This suggests 

that L. acidophilus CUL21 and CUL60 may influence 3T3-L1 cells towards a 

thermogenic phenotype, and that it is comparatively more effective than other 
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bacterial strains. However, an alternative explanation for the lower levels of 

adipogenesis in these cells is that due to the lower CFU/ml, fewer carbon sources (i.e. 

lactate) are secreted into the culture media to drive adipogenesis. Further evidence 

suggesting CFS of L. acidophilus may impact adipose phenotype was seen in 3T3-L1 

cells in CM conditions. Treatment of 3T3-L1 cells with CM + L. acidophilus resulted in 

a significant increase of UCP1 transcripts compared to control. This was mirrored by 

a non-significant reduction in leptin transcripts. However, while there was a non-

significant increase in UCP1 transcripts in DM + L. acidophilus treated 3T3-L1 cells, 

evidence of a reciprocal relationship with leptin was lacking. 

However, oversights in the application of qPCR technique may distort data presented 

in this work. Though all primers developed and used specifically for this study were 

designed to span exon junctions, pre-existing primers for ARP and GPDH target 

sequences within the same exon. This introduces the possibility that results may be 

distorted by genomic DNA contamination of extracted RNA. Unfortunately, due to 

inexperience neither DNAse digests were performed on isolated RNA, nor no reverse 

transcriptase controls included on qPCR plates. Data presented herein therefore 

comes with the caveat that quantification of the housekeeping gene may potentially 

be affected by genomic DNA contamination, and as such affect data relating to any 

of the genes investigated. 

Further compounding interpretation of data on effects on adipose phenotype is the 

uncertain role or relevance of markers in 3T3-L1 cells. Leptin has been used as a 

marker of classical WAT for many years, and yet its abundance in 3T3-L1 cells is 

drastically lower than murine adipocytes in vivo. 3T3-L1 cells have long been used as 

a model of WAT, and yet data in the present study indicates that UCP1 and PGC1-α 

are present in greater quantities than one of the hallmark genes of the adipogenic 

programme. The capacity of 3T3-L1 cells to display thermogenic capacity has been 

shown in a number of studies in recent years, however it is less clear to what extent 

beige or BAT selective genes are involved, with discordant results in the literature. 

Though the only significant difference observed in any of the BAT-associated genes 

following treatment was an increase of UCP1 transcription in cells maintained in CM 

+ L. acidophilus, there were other notable potential trends. Treatment with DM + L. 
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salivarius non-significantly increased leptin transcription. Leptin and UCP1 are 

reciprocally regulated in murine BAT (Cancello et al., 1998), thus with an increase in 

leptin transcription there may be a concomitant decrease in transcription of BAT-

associated genes. Indeed, L. salivarius did show non-significant reductions compared 

to control of UCP1, PGC1-α, and CITED1. However, patterns were less clear in other 

conditions, and the degree to which this reciprocal relationship exists in 3T3-L1 cells 

is an area for future research. 

A major weakness of the present work is the lack of a positive control for assessment 

of a thermogenic phenotype in 3T3-L1 cells. Reports of the ability to induce a “beige 

like” phenotype in 3T3-L1 cells via treatment with the β-adrenergic agonist 

isoproterenol have featured in the literature in recent years (Miller et al., 2015). 

However, it remains unclear which of the putative beige phenotype markers are 

enriched under this protocol, and much work is still needed to investigate the extent 

to which adipose thermogenic gene networks are present or active in 3T3-L1 cells. 

Further, due to developmental methods it remains unclear which tissue or tissues the 

NIH-3T3 cell line is derived from (Dastagir et al., 2014), and thus what adipose depots 

and phenotypes the 3T3-L1 cell line may be most physiologically reflective of. Future 

work should incorporate a positive control for these purposes. 

Performing robust statistical testing on much of the data in the present study has 

been a particularly challenging issue. Almost all of the data generated violates the 

assumption of homogeneity for ANOVA, further, removal of outliers or loss of wells 

due to infection results in different sample numbers between groups. These features 

of the data required different post-hoc tests to data sets with homogeneous 

variances. However, there are a limited number of post-hoc strategies for pairwise 

comparison in data with heterogeneous variances. One of the traditional post-hoc 

tests under these conditions, the Games-Howell test, requires at least 6 observations 

per group and can return results considered too liberal with small sample sizes 

(Shingala et al., 2015). Thus, the Dunnett’s T3 test, which is relatively conservative, 

was used. As conservative statistical methods were used, and data showed wide 

variability, it is particularly important to emphasise the need for further data 

generation in order to interpret any findings from the present study.  
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Though the difficulties encountered in this study may be a reflection of attempting 

to generate a broad range of experimental data in a short period of study, it would 

be advantageous to try and more tightly control variables in any future work. In the 

present study, individual 10ml aliquots of CFS were thawed when needed, diluted in 

culture medium, and stored at 4˚C for use in single experiments to prevent any 

potential effect of freeze-thaw cycles. However, it was clear upon storing CFS at -20˚C 

that not all aliquots were equal. Unusually, some aliquots within a batch would 

remain liquid at -20˚C, while others froze. The cause for this is unclear, and so aliquots 

which remained liquid at -20˚C were not used, however this may be a reflection of 

some unaccounted for variable which could affect data generated herein. It was 

decided not to pool aliquots of CFS as one potentially cytotoxic aliquot could 

potentially prevent a whole batch from being used. However, homogenisation of CFS 

may yield more consistent results. Additionally, evidence in 3T3-F442a cells that 

shows a capacity in vitro to sense temperature and induce UCP1 transcription means 

that any handling of cells outside of an incubator may have an impact on adipose 

phenotype (Ye et al., 2013). Future work should seek to tightly regulate and normalise 

time spent at room temperature between conditions. 

Though some work was done in assessing adipogenesis in 3T3-L1 cells throughout the 

time course of adipogenesis through ORO staining, it is clear that time is an important 

factor to consider. As fully mature 3T3-L1 cells are non-adherent in culture, it is 

possible for enhanced adipogenesis to present as a reduction in lipid accumulation or 

expression of genes used as markers of differentiation. Gene expression data in the 

present study was collected at a single timepoint reflective of late adipogenesis. 

Given the small number of repetitions and the apparent variability of GPDH 

expression, it is difficult to determine changes in adipogenesis based on a single 

timepoint. Also, the visual features of cells treated with CFS of Lab4 and Lab4b are 

suggestive of enhanced adipogenesis, thus when measuring a single timepoint it may 

not be possible to delineate between enhancement or inhibition of gene expression 

data. More granular data on both lipid accumulation and gene expression is needed 

throughout the time course of adipogenesis, and any further work should include 



126 

 

such longitudinal experiments in order to give a proper account of the effect of time 

on these features of 3T3-L1 cells cultured in CFS. 

Despite these issues, there are interesting avenues for further study indicated by 

results in the present study. The two strains that have showed the most striking 

differences to control are L. salivarius and L. acidophilus. Interestingly, these strains 

display potential opposing effects as L. salivarius was shown to non-significantly 

increase leptin transcription, whereas L. acidophilus was shown to significantly 

increase UCP1 transcription depending on culture conditions. Each are constituent 

strains exclusive to either Lab4 or Lab4b and represent a good opportunity for further 

research. Preliminary data reported in the introductory chapter raised the possibility 

that Lab4b but not Lab4 increased spontaneous adipogenesis when adipogenesis was 

assessed in cells treated with CM + Lab4/Lab4b. Data in the present study indicates 

that these strains may be involved, as treatment of human primary preadipocytes 

(which have a typically low adipogenic potential) appeared to robustly accumulate 

lipids when treated with DM + Lab4b. However, this must be interpreted with caution 

as data from human primary preadipocytes was not able to determine adipogenesis 

by ORO staining, nor was qPCR able to be employed due to time constraints. It is 

uncertain therefore whether the presumed lipid vacuoles seen in human primary 

preadipocytes contained lipids, or were morphological signs of other cellular 

processes such as autophagy. The most striking morphological changes seen in the 

present study were in 3T3-L1 cells treated with DM + L. salivarius, and human primary 

preadipocytes treated with DM + Lab4b. L. salivarius is a constituent strain of Lab4b, 

which raises the possibility that the unusual morphological effects seen in human 

primary preadipocytes may be related to the enlargement of 3T3-L1 cells. 

Unfortunately, ORO data from experiments in human primary preadipocytes did not 

appear to be able to signify adipogenesis in DM treated conditions. As qPCR 

experiments were unable to be performed in these cells due to time constraints, it is 

not certain what the vacuoles that appeared to be induced by treatment with Lab4b 

CFS actually are. On the assumption that these are indeed lipid vacuoles, the 

hypothesis posited that these cells are influenced to commit to an adipogenic fate 
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through the influence of lactate is an attractive one, but remains highly speculative 

and requires further investigation.  

One of the major themes of the present study was investigating potential effects of 

treatment of 3T3-L1 cells with CFS on markers of adipose phenotype. It is not possible 

to extrapolate this data beyond this model as it is uncertain how relevant these 

markers are in 3T3-L1 cells, and there is evidence to show that murine BAT appears 

to be more enriched with genes considered beige-selective in humans (Wu et al., 

2012). Investigating potential effects of bacterial CFS on markers of adipose 

phenotype in human primary preadipocytes is a logical further step, however the 

variable cytotoxicity between patient samples, and the variable cytotoxicity within 

patient samples when exposed to CFS that had been stored longer suggests that 

culture conditions need to be optimised. As human primary preadipocytes are a 

valuable resource which can be difficult to culture, determining conditions to 

maximise viability of CFS treated cells would be extremely useful data. 

Though the focus of this work was on adipogenesis, there is a suggestion from prior 

work on in vitro adipogenesis with regards to probiotic bacteria that there may be 

effects on lipolysis (Lee et al., 2015). Supplementation of HFD in rats with an L. 

plantarum strain has been shown to impact transcription of genes related to lipolysis 

and lipid metabolism in the liver (Li et al., 2014). It is plausible that similar effects may 

have occurred in a recent study of mice fed HFD supplemented with Lab4 plus an L. 

plantarum strain which appeared to ameliorate weight gain (Michael et al., 2017). 

Differences observed between human cohorts in lipolytic capacity using radiolabelled 

glycerol have been implicated in relative susceptibility to obesity (Danadian et al., 

2001). Any potential impact of probiotic bacteria on lipolysis would therefore be of 

great interest in relation to obesity, and assessing lipolysis in 3T3-L1 cells treated with 

probiotic CFS may be a useful avenue for further research.  

In summation, while firm conclusions about the effects of probiotic bacteria on in 

vitro adipogenesis cannot be drawn from the present data, there are signs that 

treatment of 3T3-L1 cells with CFS may impact transcription of genes associated with 

adipose phenotype in mice. It is uncertain whether the same is true in human cells, 
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but Lab4b CFS appeared to induce vacuole formation which may have been indicative 

of greater commitment of preadipocytes towards an adipocyte lineage. More work 

is needed to properly determine CFS doses which do not adversely impact cell 

viability, and CFS treatment may interfere with some viability assays. Further data 

generation and further optimised culture conditions will hopefully more definitively 

illuminate the cellular and molecular effects of probiotic bacteria on in vitro 

adipogenesis. 
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Appendix 

Appendix 1. 

Table 1. – List of reagents and suppliers 

Reagent Supplier 

Agarose 

Fisher Scientific, UK 

Chloroform 

DMEM (4.5g/L glucose, with L-

glutamine) 

Ethanol 

Foetal Calf Serum 

Ham’s F12 

Isopropanol 

Molecular Biology grade water 

Dehydrated MRS broth Oxoid, UK 

10x Buffer 

Promega 

5x Buffer 

dNTPs (2mM) 

MgCl2 

M-MLV reverse transcriptase 

OligoDT 

RNAse inhibitor 

Bicarbonate 

Sigma-Aldrich, UK 

Biotin (33µM) 

Hydrocortisone (1µM) 

Insulin (500nM) 

Oil Red O 

Pantothenate (17µM) 

Penicillin/Streptomycin 

Phosphate Buffered Saline 
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Pioglitazone (1µM) 

Pyruvate 

Tri reagent 

Triiodothyronine (1nM) 

Trypan Blue 

Trypsin IX 

Amplitaq Gold DNA polymerase 

Thermo Fisher, UK 

BigDye Terminator v1.1 

Ethidium Bromide 

Platinum SYBR Green qPCR SuperMix-

UDG 

Sodium Acetate 

TAE buffer 

 

Appendix 2. 

Sanger sequencing data for ZIC1 sample. Bolded, underlined bases represent high 

quality sequence data. 

CTTCGCAGCCATAAAGTCAGCGAGGGCAAGCCCTTCAAGCCAAATACAAACTGGGTC

AACCACATCCGTAGTGCACACAGGCGAAAAGCCTTTTCCCTGCCCGTTTCCTGGCTG

CGGCAAGGTTTTCGCGCGTTCAGAGAACCTCAAGATCCACAAAAGGACACACACAGG

GGA 

 

Sanger sequencing data for PGC1-α sample. Bolded, underlined bases represent high 

quality sequence data. 

TATCCTAGCGTTGGTTCGACGAATACATTTGTCACAGCAAAAGCCACAAAGACGTCC

CTAGGCTCAGTAGCTTCTCAAGTATCTTGTACCACAAACGATGACCCTCCTCACACC

AAACCCACAGAAAACAGGAACAGCAGCAA 
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Figure A1. – 70-hour growth curve of Lab4 diluted to 1:100 (above) and 1:1000 

(below) in MRS from starting inoculum. Optical density at 600nm is plotted on the Y 

axis in arbitrary units. Time is plotted on the X axis in hours. Each coloured line 

represents readings from a single well, each condition was plated in triplicate from 3 

separate inocula. Linear growth of bacteria appears to cease before 24 hours. The 

lower plateau in the grey line in both experiments may reflect some issue with the 

starting inoculum or pipetting error. 
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Figure A2. – 70-hour growth curve of Lab4b diluted to 1:100 (above) and 1:1000 

(below) in MRS from starting inoculum. Optical density at 600nm is plotted on the Y 

axis in arbitrary units. Time is plotted on the X axis in hours. Each coloured line 

represents readings from a single well, each condition was plated in triplicate from 3 

separate inocula. Linear growth of bacteria appears to cease before 24 hours. The 

well represented by the blue line in the 1:100 dilution appears to reach the death 

phase at around 60 hours. 
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Figure A3. – 70-hour growth curve of L. paracasei diluted to 1:100 (above) and 

1:1000 (below) in MRS from starting inoculum. Optical density at 600nm is plotted 

on the Y axis in arbitrary units. Time is plotted on the X axis in hours. Each coloured 

line represents readings from a single well, each condition was plated in triplicate 

from 3 separate inocula. Linear growth of bacteria appears to cease before 24 hours 

in the 1:100 dilution and at around 24 hours in the 1:1000 dilution. 
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Figure A4. – 70-hour growth curve of L. salivarius diluted to 1:100 (above) and 

1:1000 (below) in MRS from starting inoculum. Optical density at 600nm is plotted 

on the Y axis in arbitrary units. Time is plotted on the X axis in hours. Each coloured 

line represents readings from a single well, each condition was plated in triplicate 

from 3 separate inocula. Linear growth of bacteria appears to cease before 24 hours. 
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Figure A5. – 70-hour growth curve of L. acidophilus diluted to 1:100 (above) and 

1:1000 (below) in MRS from starting inoculum. Optical density at 600nm is plotted 

on the Y axis in arbitrary units. Time is plotted on the X axis in hours. Each coloured 

line represents readings from a single well, each condition was plated in triplicate 

from 3 separate inocula. Linear growth of bacteria appears to cease before 24 hours. 

The well represented by the grey line in the 1:1000 dilution appears to grow to a 

lower optical density, this may reflect pipetting error. 
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Figure A7. – 70-hour growth curve of Bifidobacteria diluted to 1:100 (above) and 

1:1000 (below) in MRS from starting inoculum. Optical density at 600nm is plotted 

on the Y axis in arbitrary units. Time is plotted on the X axis in hours. Each coloured 

line represents readings from a single well, each condition was plated in triplicate 

from 3 separate inocula. A long, extremely slow period of minimal growth throughout 

the time course, which is relatively even between replicates is seen in the 1:100 

dilution. However, there is essentially no detectable growth in the 1:1000 dilution. 

Neither appears to show good growth despite anaerobic conditions. 
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Figure A8. – 70-hour growth curve of Bifidobacteria diluted to 1:100 (above) and 

1:1000 (below) in MRS supplemented with 0.05% cysteine from starting inoculum. 

Optical density at 600nm is plotted on the Y axis in arbitrary units. Time is plotted on 

the X axis in hours. Each coloured line represents readings from a single well, each 

condition was plated in triplicate from 3 separate inocula. A long, slow period of 

growth that is relatively even between replicates is seen in the 1:100 dilution, 

however there is a larger degree of variance in the 1:1000 dilution and the well 

represented by the grey line appears to reach the death phase. Growth appears to 

be improved by addition of cysteine to MRS broth, but neither dilution displays a 

distinct period of linear growth. 
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Figure A9. – 70-hour growth curve of MRS control wells. Optical density at 600nm is 

plotted on the Y axis in arbitrary units. Time is plotted on the X axis in hours. Each 

coloured line represents readings from a single well. No growth was apparent in 

control wells. 
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