Supporting Information

Elucidating the role of CO$_2$ in the soft oxidative dehydrogenation of propane over ceria-based catalysts

Ewa Nowicka,a,b,* Christian Reece,a Sultan M. Althahban,c Khaled Mohammedd,e,f Simon A. Kondrat,a,g David J. Morgan,a Qian He,a David J. Willock,a Stanislaw Golunski,a Christopher J. Kielya,c and Graham J. Hutchingsa,*

a School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK

b Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany

c Department of Materials Science and Engineering, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195, USA

d Chemistry Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt

e UK Catalysis Hub, Research Complex at Harwell, RAL, Harwell, OX110FA, Oxfordshire, UK.

f Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK

g Department of Chemistry, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK

*Correspondence to Graham J. Hutchings, e-mail: hutch@cardiff.ac.uk and Ewa Nowicka, e-mail: nowickae@cardiff.ac.uk
List of sections, tables and figures:

Catalytic performance calculations.

Temperature programmed reduction: simulation of experimental data.

Tables

Table S1. Propane conversion and selectivity of Pd over various Ce-based catalyst formulations.

Table S2. Zr K-edge derived k3-weighted EXAFS fitting parameters.

Figures

Figure S1. Comparison of conversion (filled symbols) and selectivity (empty symbols) between Pd/CeZrAlOₓ (■) and CeZrAlOₓ (●). Reaction conditions: GHSV=6000 h⁻¹, T=500 °C, 37% C₃H₈, 37% CO₂, 26% He.

Figure S2. Selectivity of products in the thermal dehydrogenation reaction. Reaction conditions: 37% C₃H₈, 67% He; GHSV=6000 h⁻¹, T=500 °C. Legend: ■:C₅H₆, ▲:CH₄, ▼:C₂H₄, ●: COₓ, □: carbon balance

Figure S3. Conversion of C₃H₈ (■) and CO₂ (●) during subsequent oxidative dehydrogenation (37% C₃H₈, 37% CO₂, 26% He) along with CO₂: CO balance. Reaction conditions: GHSV=6000 h⁻¹, T=500 °C.

Figure S4. Zr K-edge derived k3-weighted EXAFS data (left column) and magnitudes of Fourier-transformed data (right column) from A) CeZrAlOₓ, B) fresh Pd-CeZrAlOₓ and C) 4 h used Pd-CeZrAlOₓ, D) tetragonal ZrO₂ and E) monoclinic ZrO₂.

Figure S5. Zr K-edge XANES of CeZrAlOₓ support compared with a tetragonal ZrO₂ standard

Figure S6. Pd K-edge derived k3-weighted EXAFS data (left column) and magnitudes of Fourier-transformed data (right column) for a, b) fresh 5%Pd/CeZrAlOₓ; c, d) 4 h used 5%Pd/CeZrAlOₓ; e, f) 140 h used 5%Pd/CeZrAlOₓ.

Figure S7. XPS spectra for the Ce(3d) region for the various 5%Pd/CeZrAlOₓ catalysts, fitted with line-shapes for Ce(IV) and Ce(III) species.

Figure S8. TPD profiles of 5%Pd/CeZrAlOₓ material using different gases: A) NH₃ and B) CO₂.

Figure S9. SEM-XEDS mapping data obtained on the 5%Pd/CeZrAlOₓ catalyst showing the excellent homogeneity of Ce, Zr and Al distribution compared to that of Pd.

Figure S10. Raman analysis of the CeZrAlOₓ support. The and at 620 cm⁻¹ is clear evidence of the presence of a pseudo-cubic, tetragonal Ce–Zr phase.
Figure S11. DRIFT analysis of the calcined CeZrAlO$_x$ support a) when fresh, b) under N$_2$ flow and c) under CO$_2$ flow.

Figure S12. TGA analysis of the fresh and used 5wt\%Pd/CeZrAlO$_x$ catalysts.
Catalytic performance calculations:

Propane conversion X, was calculated as follows

$$X = \left(1 - \frac{F_{\text{C}_3\text{H}_8\text{out}}}{F_{\text{C}_3\text{H}_8\text{in}}}\right) \times 100\%$$

Where: $F_{\text{C}_3\text{H}_8\text{out}} = \text{flow of propane out of the reactor}$

$F_{\text{C}_3\text{H}_8\text{in}} = \text{flow of propane into the reactor}$

$$S = \left(\frac{F_{A,\text{out}}}{\sum F_{\text{carbon prod}}}\right) \times 100\%$$

Where: $F_{A,\text{out}} = \text{flow of carbon in product A out of reactor }^*$

$F_{\text{carbon prod}} = \text{flow of all carbon from products }^* \text{ out of reactor}$

*products excluding carbon oxides
Table S1. Propane conversion and selectivity of Pd over various Ce based catalyst formulations.

Reaction conditions: 37% C\textsubscript{3}H\textsubscript{8}, 37% CO\textsubscript{2}, 26% He; GHSV=6000 h-1, T = 500 °C

<table>
<thead>
<tr>
<th>Pd loading (%)</th>
<th>Support composition</th>
<th>Conversion (%)*</th>
<th>Selectivity (%)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Ce\textsubscript{0.35}Zr\textsubscript{0.33}Al\textsubscript{0.33}O\textsubscript{x}</td>
<td>10.2</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Ce\textsubscript{0.25}Zr\textsubscript{0.25}Al\textsubscript{0.5}O\textsubscript{x}</td>
<td>9.5</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>Ce\textsubscript{0.16}Zr\textsubscript{0.33}Al\textsubscript{0.5}O\textsubscript{x}</td>
<td>9.2</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Ce\textsubscript{0.157}Zr\textsubscript{0.157}Al\textsubscript{0.66}O\textsubscript{x}</td>
<td>9.3</td>
<td>91</td>
</tr>
<tr>
<td>0.1</td>
<td></td>
<td>3.1</td>
<td>90</td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td>3.6</td>
<td>92</td>
</tr>
<tr>
<td>2.5</td>
<td>Ce\textsubscript{0.25}Zr\textsubscript{0.25}Al\textsubscript{0.5}O\textsubscript{x}</td>
<td>6.5</td>
<td>92</td>
</tr>
<tr>
<td>7.5</td>
<td></td>
<td>13.2</td>
<td>69</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>5.8</td>
<td>31</td>
</tr>
</tbody>
</table>

*Measured after 1 h of stream
Figure S1. Comparison of conversion (filled symbols) and selectivity (empty symbols) between Pd/CeZrAlO$_x$ (■) and CeZrAlO$_x$ (●) Reaction conditions: GHSV=6000 h$^{-1}$, T=500 °C, 37% C$_3$H$_8$, 37% CO$_2$, 26% He.

Figure S2. Selectivity of products in the thermal dehydrogenation reaction. Reaction conditions: 37% C$_3$H$_8$, 67% He; GHSV=6000 h$^{-1}$, T=500 °C. Legend: ■:C$_3$H$_6$, ▲:CH$_4$, ▼:C$_2$H$_4$, ●: CO$_x$, □: carbon balance.
Figure S3. Conversion of C$_3$H$_8$ (■) and CO$_2$ (●) during subsequent oxidative dehydrogenation (37% C$_3$H$_8$, 37% CO$_2$, 26% He) along with CO$_2$: CO balance. Reaction conditions: GHSV=6000 h$^{-1}$, T=500 °C.
Table S2. Zr K-edge derived k3-weighed EXAFS fitting parameters.

<table>
<thead>
<tr>
<th>Material</th>
<th>bond</th>
<th>N</th>
<th>σ^2 (Å^2)</th>
<th>r (Å)</th>
<th>ΔE_0 (eV)</th>
<th>R-factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CeZrAlO$_x$</td>
<td>Zr-O1</td>
<td>3.2 (7)</td>
<td>0.0019</td>
<td>2.121 (8)</td>
<td>2.385</td>
<td>0.0079</td>
</tr>
<tr>
<td></td>
<td>Zr-O2</td>
<td>2.3 (3)</td>
<td>0.0019</td>
<td>2.275 (14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pd-CeZrAlO$_x$</td>
<td>Zr-O1</td>
<td>2.9 (5)</td>
<td>0.0007</td>
<td>2.120 (9)</td>
<td>1.646</td>
<td>0.0155</td>
</tr>
<tr>
<td>(fresh)</td>
<td>Zr-O2</td>
<td>2.2 (2)</td>
<td>0.0007</td>
<td>2.276 (14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PdCeZrAlO$_x$4h</td>
<td>Zr-O1</td>
<td>3.1 (7)</td>
<td>0.0014</td>
<td>2.126 (10)</td>
<td>2.454</td>
<td>0.0172</td>
</tr>
<tr>
<td>(used)</td>
<td>Zr-O2</td>
<td>2.2 (3)</td>
<td>0.0014</td>
<td>2.284 (17)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetragonal ZrO$_2$</td>
<td>Zr-O1</td>
<td>3.5(8)</td>
<td>0.0041</td>
<td>2.137 (22)</td>
<td>2.802</td>
<td>0.0361</td>
</tr>
<tr>
<td></td>
<td>Zr-O2</td>
<td>2.3(7)</td>
<td>0.0041</td>
<td>2.352 (38)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monoclinic ZrO$_2$</td>
<td>Zr-O1</td>
<td>2.7(6)</td>
<td>0.0016</td>
<td>2.126 (24)</td>
<td>2.144</td>
<td>0.0217</td>
</tr>
<tr>
<td></td>
<td>Zr-O2</td>
<td>2.7(5)</td>
<td>0.0016</td>
<td>2.272 (26)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure S4. Zr K-edge derived k3-weighted EXAFS data (left column) and magnitudes of Fourier-transformed data (right column) from A) CeZrAlO₃, B) fresh Pd-CeZrAlO₃, C) 4 h used Pd-CeZrAlO₃, D) tetragonal ZrO₂ and E) monoclinic ZrO₂.
Figure S5. Zr K-edge XANES of CeZrAlOₓ support compared with a tetragonal ZrO₂ standard.

Key: Dashed black line: tetragonal ZrO₂; black solid line: CeZrAlOₓ; red solid line: fresh Pd/CeZrAlOₓ; and green solid line: 4 h used Pd/CeZrAlOₓ. The arrow indicates the position of the 1s to 4d pre-edge transition.
Figure S6. Pd K-edge derived k3-weighted EXAFS data (left column) and magnitudes of Fourier-transformed data (right column) for a, b) fresh 5%Pd/CeZrAlO$_x$; c, d) 4 h used 5%Pd/CeZrAlO$_x$; e, f) 140 h used 5%Pd/CeZrAlO$_x$.
Figure S7. XPS spectra for the Ce(3d) region for the various 5\%Pd/CeZrAlO\textsubscript{x} catalysts, fitted with line-shapes for Ce(IV) and Ce(III) species.
Figure S8. TPD profiles of 5%Pd/CeZrAlO$_x$ material using different gases: A) NH$_3$ and B) CO$_2$.
Figure S9. Additional SEM-XEDS mapping data obtained on the 5%Pd/CeZrAlO\(_x\) catalyst showing the excellent homogeneity of Ce, Zr and Al distribution compared to that of Pd.
Figure S10. Raman analysis of CeZrAlO$_x$ support. The band at 620 cm$^{-1}$ is clear evidence of the presence of a pseudo-cubic, tetragonal Ce–Zr phase.1
Temperature programmed reduction: simulation of experimental data

Temperature programmed reduction experiments primarily characterise the rate of specific processes that can be thermally stimulated. The rate can be parameterised very simply as a function of temperature T and the extent of the process α (which varies from 0 at the beginning to 1 when completed).

$$\frac{d\alpha}{dt} = k(T)f(\alpha)$$

The pressure of the reactant gas is also a factor in this experiment, but for the purposes of our work it can be ignored as the reactant gases are kept in excess and can be assumed to be constant. The temperature dependence of the rate $k(T)$ can be parameterised using the Arrhenius equation.

$$\frac{d\alpha}{dt} = A \exp \left(\frac{-E_a}{RT} \right) f(\alpha)$$

with A being the Arrhenius pre-exponential factor, E_a the activation energy, R the gas constant and T the temperature. This expression assumes a constant activation energy over the entire process α. In order to correct for any change in E_a as the material becomes more reduced, an extra parameter γ can be included in the equation.

$$\frac{d\alpha}{dt} = A \exp \left(\frac{-E_a(1 + \gamma \alpha)}{RT} \right) f(\alpha)$$

The parameter γ describes a linear relationship between the E_a and α. A positive value of γ indicates an increase in the distance between the active site for the H_2 dissociation and reduction. The final term to be parameterised is the degree of conversion dependence of the process. It is possible to apply some simple kinetics to parameterise this dependence, but it is found for TPR experiments it is best to use a model free approach outlined by Sestak and Berggren\(^2\) which can represent a large number of reaction models through its kinetic parameters m, n, and p.

$$f(\alpha) = \alpha^m(1 - \alpha)^n[-\ln(1 - \alpha)]^p$$

The Sestak and Berggren (SB) function is often truncated so that $p = 0$ as it is found that often only m and n are required to describe the TPR reduction processes. These parameters are not
derived from any specific kinetic model and therefore have no true physical meaning, but it is possible to infer information from their values. It can be seen that the shape parameter m is dominant at higher degrees of reduction, whereas n is dominant at lower degrees of reduction. For a temperature programmed reduction experiment the relative magnitude of these two parameters can be linked to the influence of the reduced and oxidised material respectively on the shape (which described the kinetics) of the reduction profile (e.g., a higher relative m value indicates the shape is more dominated by the reduced material, and a higher relative n value indicates the shape is dominated by the oxidised material). In the past there has been some work to attempt to link these parameters to specific processes occurring during a TPR experiment with moderate success. Finally, for temperature programmed experiments, time can be directly related to the temperature through the following relationship.

$$\frac{d\alpha}{dt} = \beta \frac{d\alpha}{dT}$$

with β being the heating rate of the experiment, the final form of the function can then be expressed using

$$\frac{d\alpha}{dT} = \frac{A}{\beta} \exp \left(\frac{E_a(1 + \gamma \alpha)}{RT} \right) \alpha^m (1 - \alpha)^n$$

For a complex reduction profile such as the ones measured in this paper, it becomes pertinent to express the total reduction profile as a simple sum of individual processes, such that

$$\frac{d\alpha}{dT} = \sum_{N=1}^{N} \frac{d\alpha_N}{dT}$$

with N being the number of individual reduction processes which make up the total profile. As one can imagine as you increase N, the goodness of overall fit to the experimental thermogram will increase, therefore for this work a value of N was selected to the minimum value which would still enable us to describe the major features of the thermogram, while also making sense physically.
Figure S11. DRIFT analysis of calcined CeZrAlO$_x$ support a) when fresh, b) under N$_2$ flow and c) under CO$_2$ flow.

Figure S12. TGA analysis of the fresh and used 5wt%Pd/CeZrAlO$_x$ catalysts.
References:

