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Abstract 

This paper examines the compression and strength characteristics of soils in relation to the presence of isolated 

solid inclusions such as colluvium and glacial till. Investigations were carried out on samples of kaolin with 

solid inclusions of angular crushed basalt and steel ball bearings (to represent rounded particles). It was 

observed that the presence of solid inclusions has a significant effect on the compression and strength 

characteristics of these composite soils and it is postulated that this behaviour is related to the formation of 

strong arches between the individual solid inclusions. This phenomenon was found to be subdued when the 

surface of the solid inclusion is smooth, suggesting that particle shape has also considerable influence on the 

mechanical behaviour of composite materials. 

Keywords: Clay, strength, compressibility 
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INTRODUCTION 

The engineering behaviour of natural soils is dependent on the constituent particles shape, size, 

arrangement, bonding and mineralogy as well as interactions at the particulate level (Olson and Mesri, 

1970; Clemence and Finbarrm, 1981; Georgiannou et.al. 1991; Ruggeri, 2008; Clayton et.al. 2009; 

Clayton et.al. 2009; Goktepe and Sezer, 2010; Carrera et al. 2011; Ruggeri et.al. 2016). The level of 

participation in the transfer of inter-particle contact stresses by different particle types and sizes within 

the soil matrix dictates the stress�±strain behaviour and the resistance it can offer under different 

loading conditions (Thevanayagam et.al. 2002; Cabalar and Hasan, 2013; Ruggeri  et.al. 2016). 

 

Although a significant portion of natural soils are poorly graded, consisting of particles of a range of 

different sizes ranging from clay ���”�����������P�P�� to boulders (>630mm), geotechnical practice broadly 

classifies soils as being either fine grained or coarse grained. Morainal deposits (e.g. tills), hillwash 

deposits (e.g. colluvium) and submarine mass flow deposits (e.g. diamictite) are just some examples 

of broadly graded composite (i.e. clay-gravel mix) materials. A number of researchers have 

investigated the influence of granular content on the engineering behaviour of composite soils (e.g. 

Holtz and Willard, 1956; Muir-Wood and Kumar, 2000; Vallejo and Mawby, 2000; Ni et.al. 2004; 

Jafari and Shafiee, 2004; Prakasha and Chandrasekaran, 2005; Long and Menkiti, 2007; Cabalar and 

Hasan, 2013; Ruggeri et.al. 2016). It is generally assumed that the overall behaviour of these soils is 

controlled by the predominant material�����E�U�R�D�G�O�\���G�H�V�F�U�L�E�H�G���D�V���³�P�D�W�U�L�[���G�R�P�L�Q�D�W�H�G�´���Z�K�H�U�H���W�K�H���J�U�D�Q�X�O�D�U��

�L�Q�F�O�X�V�L�R�Q�V�� �D�U�H�� �L�Q�� �V�X�V�S�H�Q�V�L�R�Q�� �D�Q�G�� �³�J�U�D�L�Q�� �G�R�P�L�Q�D�W�H�G�´�� �Z�K�H�U�H�� �W�K�H��grains are physically in contact. The 

percentage of granular inclusions required for a composite soil to behave like a grain dominated 

material is variable and depends upon the grading (Ruggeri et.al. 2016). One of the key aspects of the 

behaviour of composite soils is the interaction between the clay matrix and the solid inclusions, with 

respect to the volumetric responses and consequently the strength and deformation characteristics. 

Muir-Wood and Kumar, 2000 examined the impact of granular inclusions by varying the volumetric 

percentage of the two components (i.e. clay and sand). They suggested that externally measured 

volumetric responses were indicative of overall sample response, however �³different things were 
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happening in the f�L�O�O�H�U���P�D�W�H�U�L�D�O�´��(i.e. clay matrix). Influence of granular inclusions in compacted fine 

soils was also investigated by Jafari and Shafiee (2004), who concluded a heterogeneous void 

distribution in clay matrix. The purpose of this article is to investigate the aspect of heterogeneous 

void distribution through a series of consolidated undrained compression tests on reconstituted 

composite materials with varying percentages of solid inclusions. The effect of grain shape is also 

investigated, through comparison of responses from kaolin samples included with either uniformly 

graded angular basalt or smooth stainless steel ball bearings. 

 

EXPERIMENTAL PROGRAMME 

In the investigations, the samples were formed from a slurry state containing solid inclusions of two 

different shapes. Two types of solid inclusion were investigated; (a) uniformly graded crushed basalt 

(Figure 1a) passing through a 3.1mm sieve and retained on 2.3mm sieve, and (b) 3mm diameter 

smooth stainless steel balls. The shape of the crushed basalt is described as angular (Barrett, 1980) 

and the ultimate angle of internal friction of the crushed basalt �I�¶ult was 37°. The measured repose 

angle of heap of ball bearing (in wet conditions) was 16°. Since the specific gravities of the basalt and 

the kaolin are generally similar (Gs(kaolin) = 2.65 and Gs(basalt) = 2.75), it was reasonable to assume that 

the percentages of solid inclusions, based on the dry masses of each component is the same as the 

volumetric percentages. The percentages of granular content, in the case of basalt, were: 0%, 20%, 

40% and 60%. The samples with and without solid inclusions were initially consolidated to various 

effective confining pressures ranging from 100kPa to 1300kPa. When using ball bearings, the 

required mass of ball bearings was calculated by correcting for the density of ball bearings in relation 

to that of the basalt. For example, in the case of basalt, 400g of kaolin dry powder was mixed with 

100g of basalt to represent 20% sold inclusions. As the density of the stainless steel (7.60Mg/m3) was 

considerably higher than basalt (2.75Mg/m3), 276g of steel was added to the kaolin of the same mass 

so that, for a given volume of kaolin, the same percentage of basalt and steel inclusions were included 

in each sample. The kaolin slurry (without granular inclusion) was mixed at 1.5×LL (Liquid Limit = 
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70%) and the required amount of solids was added to the slurry. There was a concern that the ball 

bearings could sink into the weak clay slurry under their own weight, however the strength of the 

slurry was sufficient enough to support them and prevented the ball bearings from accumulating at the 

base of the samples. This was confirmed by spreading ball bearings on the surface of slurry in a clear 

pot, covered with cling film and observing their positions over a period of three days. Figure 1b shows 

a confirmation that heavy particles (ball bearings) did not sink to the bottom of the saturated kaolin 

slurry. The thoroughly mixed slurry was then immediately consolidated one-dimensionally to a 

vertical pressure of 200 kPa in a sampling chamber of 50mm internal diameter. The slurry was 

allowed to consolidate for two days, although the subsequent triaxial testing (discussed later) 

confirmed that a consolidation time of 12 hrs was sufficient for complete dissipation of excess pore 

water pressure.  Figure 1c shows a thin section taken on a sample with 60% basalt content that was 

isotropically consolidated in the triaxial cell to 1300 kPa which confirms the gravel particles were 

generally isolated. It is possible that a granular content more than 60% may have resulted with a 

sample having gravel-gravel contacts. The sample was subsequently extruded and trimmed to a height 

of 100mm. Several trials were initially carried out (on both basalt and ball bearing at different 

percentages of inclusion) to optimise the sampling process. These trials provided information 

concerning the volume of slurry required to prepare samples of approximately 100mm in height. 

 

The void ratio of the matrix em was calculated using the following relationship: 

 

�»
�»
�»
�»
�»

�¼

�º

�«
�«
�«
�«
�«

�¬

�ª

��

�¸�¸
�¹

�·
�¨�¨
�©

�§ ��
���'

� 

s

fd

w

fdfw

m M

MM
v

e

�U
�D

�U
)1(

 

 

where �' v is the volume change during subsequent compression in triaxial cell. Mfw, Mfd, �D, �Uw, and �Us 

are final wet mass, final dry mass, percentage of clay content, density of water and density of clay 
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respectively. In the case of ball bearing, necessary corrections were made to determine the dry kaolin 

in the composite material having particles with a much higher specific gravity. As shown in the 

equation the void ratio was back calculated from the final void ratio at the end of testing. The 

variation in the initial specific volume of the samples (after the initial preparation) was ±0.03. It was 

ensured that the pore water pressure parameter (B) was greater than 0.95 prior to consolidation and 

shearing. This was achieved by increasing the cell pressure and the back pore water pressure in stages 

(the difference between them was about 15 kPa) in the triaxial cell. A B-value of 0.95 was achieved at 

back pore water pressure of 150 kPa, though as a norm the back pore water pressure was maintained 

at 200 kPa during the consolidation stage. The samples were consolidated to various mean effective 

stresses under isotropic stress conditions (100kPa, 200kPa, 400kPa, 800kPa and 1300kPa) prior to 

undrained compression using the strain control method. The undrained compression with pore water 

pressure measurements was preferred as the suitable testing option for evaluating the impact of 

granular inclusions in clay-based materials, as any breakdown of structure would lead to the 

development of excess pore water pressure which can be easily identified rather than volume change 

response in fully drained compression. The end conditions of the samples are typical of any standard 

testing procedures whereby the top condition was free to move and the bottom was fixed. 

 

A limited number of additional tests were carried out on the composite materials. In these tests: (a) 

kaolin (prepared at 55% water content) was mixed with 20%, 40% and 60% uniformly graded basalt 

inclusions and directly consolidated, in stages, in standard one-dimensional consolidation cells (70 

mm diameter and 46 mm high) to 800kPa, and (b) the kaolin slurry prepared at 1.5×LL was mixed 

with approximately 40% inclusions and consolidated, in stages, in a Rowe cell (254 mm diameter and 

300 mm high) to 800kPa. In case of the latter test (i.e. (b)), the granular inclusion was not basalt, but a 

foam (BS3 type foam, stiffness 25MPa, unit weight 0.13Mg/m3), broken into angular pieces 

having sizes between 28mm and 50mm. The intention of this investigation was to assess directly the 

heterogeneous voids distributions in the composite material. 
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RESULTS AND DISCUSSION 

Compression 

The samples, prepared for the main investigations were progressively compressed under isotropic 

stress conditions (in a standard triaxial cell) from 100kPa to 1300kPa and the relevant observations 

are shown in Figure 2 in semi-log plots. It is common practice to use the global void ratio as a tool to 

understand the pressure-void ratio relationships and the shear strength. However, this method may not 

be sufficient to fully explain the response of composite materials, as different behaviour may occur at 

a micro level (Muir-Wood and Kumar, 2000; Ni et.al. 2004, Thevanayagam et.al. 2002; Cabalar et.al, 

2013; Ruggeri et.al. 2016). In this study, the void ratio was calculated based on the volume of voids in 

the clay matrix (represented by em) and the solid volume of clay alone, assuming the water to be 

entirely contained within the clay matrix. 

 

The pressure-void ratio (em) relationship for samples with uniformly graded basalt inclusions was 

significantly affected by the presence of granular inclusions (Figure 2a). The clay sample with 60% 

inclusions subjected to approximately 1300kPa, for example, achieved a similar matrix void ratio to 

the sample without any inclusions, but subjected to 200kPa of mean effective stress (see 0% Gravel 

plot). The slope of the normal compression line �O����based on natural logarithm) marginally varied from 

0.2 to 0.22 when the granular inclusion was varied from 0% to 60%. The first loading point (i.e. under 

100 kPa) was not included in the determination of �O��as the early stages of the compression curves 

were affected by the stress history that the samples have had during the initial formation in the one-

dimensional consolidation chamber. The specific volume of the clay matrix (at 60% granular content), 

at a consolidation pressure of 1300kPa was about 2.26. However, the maximum void ratio of the 

basalt (under loose state at 100% granular content) would be around was 1.20, which confirms that 

the granular inclusions were not in contact and this was also confirmed by an examination of the thin 

section (Figure 1c). The thin sections of this material (after isotropic consolidation to 1300 kPa) have, 
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however, shown some isolated contacts between the particles. The volumetric responses of the 

composite material containing steel ball bearings were distinctively different. The positions and the 

slopes of the normal compression lines were not significantly affected by the presence of up to 40% 

ball bearings (Figure 2b). A possible reason for this is explained later in this article. A significant 

change in the position of the normal compression line was, however, observed with 60% inclusions. 

 

There was a concern that the observed phenomena were only prevailing under isotropic loading and or 

that they occurred from the start of one-dimensional consolidation during the sampling process. In 

order to assess this, three one-dimensional consolidation tests were carried out on samples having 

20%, 40% and 60% granular content. In these tests, samples were loaded from 50 kPa to 800 kPa in 

one-dimensional consolidation cells. The observed performances are shown in Figure 3 where the 

solid data points refer to the observations from one-dimensional consolidation tests and the open data 

points refer to the information presented in Figure 2a. It should be noted that the data presented for the 

one-dimensional loading tests in Figure 3 are based on vertical stresses (�V�¶v) and not based on mean 

effective stress p�¶ whereas the comparable data extracted from Figure 2a are based on the isotropic 

stresses. The information gathered from the one-dimensional consolidation tests also intuitively 

confirms that the addition of granular inclusions leads to increased void ratio of the clay matrix when 

compared to clay without granular inclusions, at a given pressure. There appears to be some 

differences between the positions of the normal compression lines between the two different types of 

loading, however this can be attributed to the nature of the loadings (i.e. isotropic in triaxial cell and 

anisotropic in one-dimensional consolidation cell). Additionally, a small amount of side friction 

would be expected in the one-dimensional consolidation tests, between the sample and the rigid 

container. This effect is not taken into consideration in the present investigations. The observed 

differences in the matrix void ratios in the presence of granular inclusions are attributed to: (a) 

physico-chemical forces and (b) fabric and structural changes. These two aspects are further discussed 

below. 

Downloaded by [ Cardiff University] on [20/03/18]. Copyright © ICE Publishing, all rights reserved.



Accepted manuscript doi: 
10.1680/jgeen.17.00131 

 

 

Physico-chemical forces : Clay particles carry net negative charges at their surfaces due to 

the isomorphous substitution in the crystal lattice (van Olphen 1977). The specific surface 

area of kaolinite is in the order of 10-20 m2/g and the cation exchange capacity is about 3 

meq/100g (Lambe and Whitman 1969). The magnitude of the electrical charge is directly 

related to the specific surface area. In the kaolinite mineral there is a very small amount of 

isomorphous substitution (Lambe and Whitman 1969). The interaction between the 

negatively charged surfaces of the clay particles, metal ions and water is responsible for the 

formation of electrical double layer surrounding the clay particles. The magnitudes of 

attractive forces arising from the van der Waals and Coulombic attraction and the repulsive 

force stemming from the electrical double layer interaction between clay particles depend 

upon the specific surface area, the pore fluid characteristics and the properties of the fluid 

(dielectric constant, concentration and pH) in contact with the clay (Sridharan and Jayadeva, 

1982; Mitchell and Soga 2005). In case of the mineral kaolinite, the thickness of the diffuse 

double layer is relatively thin as compared to that of other minerals, such as montomorillonite 

and illite (Lambe and Whitman 1969). In the absence of an appreciable repulsive force, the 

factors determining the volume change behaviour of kaolinite are the frictional resistance, 

the fabric and magnitude of the attractive force (Sridharan and Rao 1973). An increase in the 

cation valence and decrease in the dielectric constant and pH of the pore fluid tend to 

increase the interparticle attractive forces and favour higher flocculation in case of kaolinite. 

However, these effects did not appear to have any significant influence on the physico-

chemical forces in the clay composite systems considered in this study. Therefore, the 

factors determining the volume change behaviour of kaolin/basalt and kaolin/ball bearing are 

primarily attributed to the frictional resistance and the fabric of the clay which is further 

explored below. 
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Fabric and structural changes: The clay matrix and the isolated granular inclusions are illustrated in 

Figure 4. In the absence of inclusions, the clay matrix does not experience significant shear strain 

under isotropic stress conditions, assuming that the clay matrix possesses isotropic stiffness 

properties. Although isotropic stress conditions are maintained on the boundary of the samples, the 

presence of angular inclusions creates an intense shear zone in the clay surrounding the inclusion due 

to the variation in stiffness between the individual materials and the mobility of the granular 

inclusions. Since the clay matrix is normally consolidated, the clay surrounding the solid inclusions 

undergoes strain hardening, resulting in a reduction in void ratio. If the inclusions are close enough, 

this hardening process forms strong bridges between the inclusions (Figure 4b). This phenomenon 

was also postulated by Jafari and Shafiee (2004); however, in their studies the samples were 

compacted prior to further investigations. The formation of bridges is also affected by concentration 

of stresses in the clay between the solid inclusions. The development of such bridging is progressive 

with increasing consolidation pressure. As this arching/bridging mechanism develops, the clay matrix 

enclosed by the solid inclusions does not experience the full extent of the externally applied pressure 

and it becomes consolidated under a lower pressure. The void ratio of the material in this region could 

therefore be significantly higher than in the bridge. Such bridge formation is significantly influenced 

by the particle shape and can be considered to be very intensive in angular particles. If the particles 

are smooth and rounded (such as ball bearings), the intensity of the shear strain surrounding the 

particles and concentration of the stresses between the particles are significantly reduced and therefore 

the impact of such granular inclusions in the matrix void ratio can be limited as observed in Figure 2b. 

It should be also pointed out that the inclusion of granular contents will reduce the overall void ratio 

(e) and the compressibility of the composite material, but the contrasting observation is that the 

compressibility of the clay matrix (�O�� generally remained unchanged. This would have a significant 

impact on excess pore water pressure development if such materials are loaded under undrained 

conditions. This is further discussed later in the article. 
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Direct evidence of heterogeneous pore void distribution was obtained by measuring the distribution of 

void ratio in the sample. Due to the difficulties in assessing the water content distribution in 50mm 

diameter samples with basalt inclusions of smaller particles, two separate tests were carried out in a 

Rowe Cell (sample diameter = 254mm). The samples without and with granular inclusions (40% foam 

by volume of solids) were consolidated to 800kPa of vertical stress and the pressure-volume 

relationships for these two tests are illustrated in Figure 3. It is again remarkable that the position of 

the NCL for the sample included with 40% foam falls above the NCL for 0% granular inclusions. The 

position of this line remained close to the normal compression lines obtained for isotropically or one-

dimensionally compressed samples having 40% granular inclusions. At the end of the tests, both 

samples (with and without granular inclusions) were extruded from the Rowe Cell and cut by band-

saw at mid height to assess the void ratio distributions. The relevant observations are shown in Figure 

5a (re-drawn illustration based on a digital image of the cut-surface). Figure 5a illustrates the 

locations of the granular inclusions (Foam) within the clay matrix following the test. Figure 5b shows 

the distributions of void ratio at various locations. Once again the observations have confirmed a 

strong heterogeneous void distribution in the sample with granular inclusions was also postulated by 

Jafari and Shafiee (2004). 

 

In order to further confirm the above observations, several SEM images were acquired (5000x 

magnification) on the sample having 60% basalt inclusions, isotropically consolidated in the triaxial 

cell to a pressure of 1300kPa (Figure 6). Based on visual observations marked by boundaries, the 

packing of clay particles was tight and close together at location 2 (i.e. between the granular 

inclusions), whereas at locations 1 and 3 (i.e. away from the inclusions), the clay particles were 

relatively loose, supporting the hypothesis. However, it is agreeable that the evidences shown in 

Figure 6 are only qualitative and a quantification of the varying pore size distribution would require 

further investigation in the form of 3D SEM images. In addition, discrete element modelling (DEM) 

could numerically validate the hypothesis presented above. 
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Stress-strain behaviour 

The presence of granular inclusions generates heterogeneous pore void distributions and therefore the 

�P�H�D�Q�L�Q�J���R�I���³�X�Q�G�U�D�L�Q�H�G���F�R�P�S�U�H�V�V�L�R�Q�´���L�V���T�X�H�V�W�L�R�Q�D�E�O�H��as there can be re-distribution of pore water in 

the voids, even though the overall volume of the sample is maintained constant. This can make the 

stress-strain behavior complex, and identifying the critical state can be difficult. Muir-Wood and 

Kumar (2000) carried out an extensive investigation on kaolin-sand mix at various proportions and 

the samples were sheared under drained and undrained conditions. They used the maximum q/p�¶ ratio 

as an indication of critical state, although there was no evidence presented in the article to confirm if 

an actual critical state was obtained.  Carrera et.al. (2011) carried out investigation on Stava tailing in 

which the samples were reconstituted with different percentage of sand and fine particles in order to 

examine the liquefaction potential of composite materials. These authors also assumed that conditions 

at the maximum q/p�¶ ratio can be an indication of the critical state. In a recent study, Ruggeri et.al. 

(2016) carried out a large number of tests on composite materials prepared at different percentages of 

granular inclusion and used the same technique to identify the critical state. In this study, it was 

therefore assumed that the critical state was reached at maximum stress ratio (�V�¶1/�V�¶3), which also 

corresponds to the maximum q/p�¶. 

 

Figure 7 (a,b,c) illustrates the stress-strain behaviour of clay containing various percentages of 

uniformly graded basalt, subjected to 1300kPa of initial consolidation pressure. The strain is based on 

the axial displacement in relation to original height of the sample. The behaviour observed in the test 

without inclusions is typical of normally consolidated clay, with the sample reaching critical state at 

about 14% axial strain. However, the behaviour changed as the percentage of granular content was 

increased. The samples without inclusions failed in shear plane (physically observed and indicated on 

Figure 7a) and the deviator stress gradually approached the residual state. The sample with 20% 

granular content also failed on shear plane; however, the samples with 40% and 60% granular content 

continued to bulge, while the deviator stress gradually reduced post-peak. This indicates that the 
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alignment of particles under large strain is affected by the presence of inclusions. The development of 

pore water pressure during undrained compression is also affected. The pore water pressure was found 

to increase post-peak in the sample with 40 and 60% inclusions. 

 

Thin sections obtained on samples with 60% inclusions (isotropically compressed to 1300kPa), 

demonstrated that the inclusions were generally isolated with only marginal interactions. It is 

therefore likely that inter-particle friction does not significantly contribute to the overall strength. The 

sample with 60% granular content consolidated to 1300kPa reached a maximum deviator stress of 

620kPa, which is only 40kPa less than the sample without inclusions (Figure 7a). In the samples with 

20% and 40% inclusions, the peak stresses were 590kPa and 550kPa respectively. There are two 

aspects that require further explanation: (a) overall, the peak deviator stresses of the samples 

containing granular inclusions are high if it is assumed that the strength is only provided by the clay 

matrix and (b) if the poorly compressed clay were to be responsible for the reduced strength, then the 

peak stress of the sample with 60% inclusions should be lower than that of the samples containing 

fewer inclusions. The arching effect, as discussed above, could have contributed to the high strength 

observed in samples with inclusions. It is possible that continued shearing of the samples beyond their 

peak strengths destroyed these arches and exposed the enclosed clay to the externally applied 

pressures. If this were to be the case, the pore water pressure should continue to increase as shearing 

progressed, which was actually observed in the samples with inclusions (Figure 7b). The relatively 

high deviator stress measured in the sample with 60% granular content can be explained by isolated 

shearing between the aggregates. Figure 7c shows the stress ratio (�V�¶1/�V�¶3) during the shearing process 

at initial consolidation pressure of 1300 kPa. 

 

Figure 7d shows the stress paths for the CIU tests carried out on the samples with and without the 

inclusions. In samples with granular contents of 20% and 40%, the peak state (also assumed to be the 

critical state, based on the maximum stress ratio and indicated by closed data points) correlates 
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reasonably well with the critical state line, identified from tests without inclusions, indicating that 

shearing was taking place in the clay matrix. However, in the case of 60% gravel, the critical state line 

(indicated by open circular data points) lies above the same identified from 0, 20% and 40% granular 

inclusion, implying the possibility of isolated shearing between the granular inclusions. In the case of 

0% granular inclusion, the slope of the post-peak stress path (i.e. approaching the residual state) is 

approximately 3. Similar observations have been reported by Georgiannou and Hight (1994).  

However, as the percentage of granular inclusions increases, the slope of the stress path reduces. For 

example, the post-peak stress path of the composite material with 20% granular content is 

approximately 2.9 and that for 40% and 60% granular contents are 2.05 and 1.85 respectively. These 

observations also agree with Carrera et.al. (2011). A reduction in the post-peak slope is largely 

attributed to continued development of pore water pressure as the shearing progressed through post 

peak state. 

 

Figure 8 shows the void ratio (em) plotted against the mean effective stress at critical state. For clarity, 

the data are presented in two separate figures: Figure 8a shows the NCL and CSL for 0% and 40% 

granular inclusions and Figure 8b shows the same for 20% and 60% granular inclusions. It is 

remarkable that the NCL are parallel to CSL at all percentages of granular inclusions and that, in 

general, the spacing between them remained unchanged. Muir-Wood and Kumar (2000), presented 

data obtained on composite material subjected to fully drained shearing. In their studies the 

volumetric strains were generally unaffected by the percentage of granular inclusions. Although they 

did not present the NCL and CSL directly, their data also implies that the NCL may be parallel to the 

CSL at a given percentage of granular inclusions. Ruggeri et.al. (2016) presented em (referred to as 

specific volume, vc) for various combinations of fine-granular mix. Since all their tests were carried 

out at 400kPa of consolidation pressure, it was not possible to locate the NCL or CSL for a given 

granular inclusions. However, it is clear that the em at critical state increases with the size of the 

granular inclusions, which agrees favourably with the observations presented here. 
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Unlike the tests with basalt inclusions, the peak deviator stresses of samples with 20%, 40% and 60% 

ball bearings are similar (Figure 9). This agrees with the earlier observations where the presence of up 

to 40% ball bearings did not have any significant influence on the position of the normal compression 

lines. The pore water pressure responses are generally similar among tests containing 0, 20 and 40% 

inclusions (contrast to the observations made in basalt inclusion, Figure 7b) and significantly different 

at 60% ball bearings (Figure 9b). Unlike the test on 60% basalt (Figure 7a), the effect of localised 

shearing was substantially reduced on tests with the equivalent ball bearing content. Samples with 

20% and 40% ball bearings failed in shear as the samples continued to deform, whereas the sample 

with 60% ball bearings continued to bulge. As discussed in the case of granular inclusions, the slope 

of the post peak stress path is 3 for 0% granular inclusions and remained approximately same for 20% 

and 40% ball bearing content. This slope reduced to 2.0 as the percentage of ball bearing was 

increased to 60%. 

 

Figure 10 shows the variation of the effective angle of internal friction at the critical state (based on 

the maximum stress ratio), �I�¶cv. The �I�¶cv for kaolin is approximately 21°. The inclusion of 20% and 

40% basalt marginally reduced �I�¶cv by 0.7°; however, at 60% inclusions �I�¶cv increased by 2.3°. The 

inclusion of 20% ball bearings in place of basalt reduced the �I�¶cv by 3.2° (to 18°); however, further 

increase in the inclusion content increased �I�¶cv to 19.9° at a ball bearing content of 60%. Ruggeri et.al. 

(2016) reported a progressive increase in the angle of internal friction as the granular content was 

reduced from 100% to 0%. However, only a small increase of �I�¶cv was observed up to about 30% 

granular inclusions. The present investigation confirms this observation as �I�¶cv generally remains 

constant up to about 40% granular content. The increase in the friction angle at 60% granular content 

can be attributed to isolated granular contacts (also observed in thin section). The frictional resistance 

between basalt and kaolin can be taken as the minimum friction angle of the two individual 

components of the composite material. In the present investigation it is kaolin which controls the 

minimum friction angle. However, when the ball beings were included as the solid inclusion, the 
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interface friction angle between ball bearings and the surrounding clay is much lower than the �I�¶cv of 

kaolin. This may explain why the friction angle initially dropped as the percentage of ball bearing was 

increased. 

 

 

CONCLUSIONS 

Investigations were carried out on samples of kaolin with granular inclusions of crushed angular 

basalt and smooth ball bearings to examine their effect on the compression and strength 

characteristics of clays. Isotropic compression and one-dimensional consolidation tests revealed that 

granular inclusions have an influence on the pressure-void ratio characteristics of the clay matrix. It is 

hypothesized that the zone surrounding the solid inclusions experiences intense shear deformation, 

leading to the formation of arches between inclusions. As this arching/bridging mechanism develops, 

the clay matrix enclosed by the solid inclusions does not experience the full extent of the externally 

applied pressure and it becomes under-consolidated and consequently heterogeneous void distribution 

in the clay matrix which was independently validated using SEM and water void ratio measurements. 

This phenomenon was found to be subdued when the surface of the granular inclusion was smooth, 

which suggests that particle shape has a considerable influence on the volumetric behaviour of 

composite materials. 

 

Increasing the granular content resulted in an increase in peak strength during shear loading 

on samples with basalt inclusions. This observation could also have been a product of the 

bridging mechanism between granular inclusions. Continued shearing of samples leads to 

destruction of these bridges, possibly exposing the enclosed clay to the externally applied 

pressures. This has resulted in a continued build-up of the pore water pressure even though 

the samples appeared to have reached the critical state. In kaolin�±basalt mix, there appears 

to be no significant change in friction angle until the granular content was 60%. Particle 
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shape was also found to have a considerable influence on the behaviour of the samples 

during shearing. The critical state friction angle reduced noticeably when the ball bearing 

contents were increased up to 40%. 
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