

ORCA - Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:https://orca.cardiff.ac.uk/id/eprint/110276/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Limasset, Elsa, Pizzol, Lisa, Merly, Corinne, Gatchett, Annette M., Le Guern, Cécile, Martinat, Stanislav, Klusáček, Petr and Bartke, Stephan 2018. Points of attention in designing tools for regional brownfield prioritization. Science of the Total Environment 622-3, pp. 997-1008. 10.1016/j.scitotenv.2017.11.168

Publishers page: http://dx.doi.org/10.1016/j.scitotenv.2017.11.168

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

This is a pre-publication author-version of a manuscript which has been published in Science of the Total Environment https://doi.org/10.1016/j.scitotenv.2017.11.168

The manuscript did undergo copyediting, typesetting, and review of the resulting proof before it was published in its final form. To find or request access to the final version, please see: <u>https://www.sciencedirect.com/science/article/pii/S0048969717332266</u>

Limasset, E., Pizzol, L., Merly, C., Gatchett, A. M., Le Guern, C., Martinat, S., Klusacek, P., & Bartke, S. (2018). Points of attention in designing tools for regional brownfield prioritization. Science of The Total Environment, 622, 997-1008.

Points of attention in designing tools for regional brownfield prioritization

Elsa Limasset^a Corinne Merly^d Annette M. Gatchett^e Cécile Le Guern^f Stanislav Martinát^g Petr Klusáček^h Stephan Bartkeⁱ

^a BRGM, F-45060 Orléans Cedex 2, France

^b GreenDecision S.r.l., Via delle industrie 21/8, 30175 Marghera, VE, Italy

^c University Ca' Foscari Venice, Department of Environmental Sciences, Informatics and Statistics, Via Torino 155, 30170 Mestre, VE, Italy

^d BRGM, F-69626 Villeurbanne Cedex, France

^e USEPA, 26 West Martin Luther King, Cincinnati, OH 45268, United States

^fBRGM, F-44323 Nantes Cedex 3, France

^g Institute of Geonics of the Czech Academy of Sciences, Department of Environmental Geography, Studentska 1768, 708 00 Ostrava, Czech Republic

^h Institute of Geonics of the Czech Academy of Sciences, Department of Environmental Geography, Drobneho 28, 613 00 Brno, Czech Republic

ⁱ UFZ – Helmholtz Centre for Environmental Research, Department of Economics, Permoserstr. 15, 04318 Leipzig, Germany

Abstract

The regeneration of brownfields has been increasingly recognized as a key instrument in sustainable land management, since free developable land (or so called "greenfields") has become a scare and more expensive resource, especially in densely populated areas. However, the complexity of these sites requires considerable efforts to successfully complete their revitalization projects, thus requiring the development and application of appropriate tools to support decision makers in the selection of promising sites where efficiently allocate the limited financial resources. The design of effective prioritization tools is a complex process, which requires the analysis and consideration of critical points of attention (PoAs) which has been identified considering the state of the art in literature, and lessons learned from previous developments of regional brownfield (BF) prioritization processes, frameworks and tools. Accordingly, we identified 5 PoAs, namely 1) Assessing end user needs and orientation discussions, 2) Availability and quality of the data needed for the BF prioritization tool, 3)

Communication and stakeholder engagement 4) Drivers of regeneration success, and 5) Financing and application costs. To deepen and collate the most recent knowledge on the topics from scientists and practitioners, we organized a focus group discussion within a special session at the AquaConSoil (ACS) conference 2017, where participants were asked to add their experience and thoughts to the discussion in order to identify the most significant and urgent points of attention in BF prioritization tool design. The result of this assessment is a comprehensive table (Table 2), which can support problem owners, investors, service providers, regulators, public and private land managers, decision makers etc. in the identification of the main aspects (sub-topics) to be considered and their relative influences and in the comprehension of the general patterns and challenges to be faced when dealing with the development of BF prioritization tools.

Keywords

Brownfield inventory database, Brownfield prioritization tool, Sustainable brownfield regeneration, Stakeholders, Tool designing

1 Points of Attention in Designing Tools for Regional Brownfield Prioritization

1. Introduction

2

3 Over recent decades, the reuse of brownfield (BF) sites in cities has been seen as one of the solutions to fight 4 urban sprawl. In this context, BF regeneration is understood as a means to safeguard natural ecosystems and 5 fertile soils from new urban development (cf. CEN, 2014). The reuse of the BF land that are underused or have 6 lost their original functions can fulfill redevelopment needs such as industrial or residential. Regeneration has 7 been increasingly recognized as a key instrument in sustainable land management and in the reduction of 8 environmental hazards. It can make municipalities safer and more attractive places, supports the local and 9 regional economy by creating jobs and increasing tax revenues (Krzysztofik et al. 2016). It is typically more 10 sustainable than new development on greenfields—agricultural and natural land (Bartke & Schwarze 2015; EC, 11 2012, Pediaditi et al., 2010; Stezar et al., 2013).

Despite this degree of appreciation (e.g., found on the political agendas in the form of land degradation 12 13 neutrality and soil sealing limitation goals; see EC, 2011 and SGD 15.3 of UN, 2014), more work needs to be 14 done to encourage brownfield regeneration activities. Urbanization, migration, climate change, and the 15 competition between cities and municipalities to increase tax revenues by attracting more citizens and 16 businesses to additional living areas/business parks, have led to increased and partly unnecessary use of 17 greenfield land and fertile soils. This inefficiency is particularly true if land use is assessed on a national or 18 global level, rather than on a site-specific or municipal level. Soils are a limited and important resource 19 (Amundson et al., 2015; Gardi et al., 2014); therefore, the efficient (re-)use of land with particular attention on 20 the soil resources is demanded internationally to achieve a land degradation-neutral world (Dooley et al., 21 2015). For example, in Europe the severity of the problem is striking; the extent of new land development 22 equals more than the city of Berlin each year (>1,000 km² per year), whereas about 300,000 underutilized BF 23 sites exist (EC, 2012). In Germany alone, an estimated 120,000 BF sites await reuse and cover an area sufficient 24 to meet the average land development in the country for the next 5 years (Bartke, 2013; Schiller et al., 2013).

25 The situation at the national level is different from that at a more regional level where there is still a claim for 26 soil protection, but the players (e.g., companies or municipalities) look for the most economical site for a new 27 company or residential area, as highlighted by the CABERNET A-B-C Model on funding drivers for BF 28 (CABERNET, 2006). In the direct comparison of BF regeneration options versus investing in greenfield land, the 29 obstacles to regenerate formerly used and possibly contaminated land become obvious. In many cases, BF sites 30 need considerable investigation and improvement/regeneration investments to be reused. Particular 31 challenges arise from (1) site-specific risk assessment of contaminants, which may be very costly; (2) 32 deconstruction/revitalization of existing buildings and (infra)structures; (3) the economics of the 33 redevelopment, which are mainly market driven; (4) critical environmental problems that may require 34 remediation; (5) uncertainties in terms of decontamination costs, high rehabilitation costs, and reduced real 35 estate value preventing investments; and (6) the stigma of being considered non-attractive or having no 36 market value, especially when being in competition with greenfield developments designated by municipalities 37 for attracting new businesses (Bartke, 2011; Schädler et al., 2011, CABERNET 2006). BF redevelopment, 38 especially sustainable regeneration will inevitably be the result of an economic, environmental and social 39 compromise. (RESCUE, 2005).

To overcome these obstacles, prioritization methodologies and tools have been developed based on factors determining a successful BF site regeneration (so called "success factors") (Meyer and Lyons, 2000; Thornton et al., 2007; Dixon et al., 2011; Frantal et al., 2013, 2015a, Pizzol et al. 2016). It is also vital that conflicts between 43 priorities for BF regeneration are managed (RESCUE 2005). Prioritization of BF sites is a process that supports 44 the "evaluation and classification and, where appropriate, their ranking, in order to assist the allocation of 45 limited resources (funding, staff, time and energy) to those BF sites that turn out to be the most critical, 46 practical or profitable to be revitalized" (Pizzol et al., 2016).

47 Brownfield prioritization tools help identify the most worthwhile investments in BF regeneration options for 48 efficient land recycling. The strategy is to start where the intervention results in the greatest benefit. These 49 benefits can be economical, environmental (e.g., hazard prevention), or social (e.g., crime reduction). The 50 prioritization tools that have been developed so far are directed towards decision makers (urban planners, 51 regional development agencies, state and regional authorities, grant agencies, etc.) who are responsible for wide territories (cities, regions, or states) (Chrysochoou et al., 2012; Pizzol et al., 2016). Market driven end 52 53 users are also expected (e.g. developers, site owners, service providers, ...) as information on the short-term 54 availability of BFs for future development may of strong interest to them.

The starting points are the assessment of literature on success factors for BF regeneration (e.g., Frantal et al., 2012), stakeholders engagement (Rizzo et al. 2015, Alexandrescu et al. 2017), prioritization methodologies based on MCDA that are likely to be applied for prioritization of items in portfolios (Bartke et al., 2014), and approaches to the design of BF prioritization tools for regional portfolios of sites (Chrysochoou et al., 2012; Cheng et al., 2011; Thomas, 2002; City of Colorado, 2000; Pizzol et al., 2011; Zabeo et al., 2011; Agostini et al., 2012).

Based on our previous work in this area, we identify the critical points of attention for BF evaluation and prioritization tool design. Several obvious items that tool designers need to consider more carefully are:

- Discussions to assess end-user needs and orientation, e.g. need to organize discussions with all
 relevant stakeholders as early as possible in the tool developement process;
- Availability and quality of the data used to evaluate success factors and constraints of each BF , e.g.
 are there any suitable BF inventory dataset on which the BF prioritization tool could rely;
- 67 o Communication and stakeholder engagement during the tool development, e.g. would a bottom up
 68 approach be needed in the early stage so that stakeholders can express their interest;
- 69 o Drivers of regeneration success during the tool development, e.g. may success factors be relevant to
 70 address regional expectations and concerns; and
- Financing and application costs/transaction costs to run the tool, e.g. would sufficient funding be
 available for development and/or running the tool.
- 73

74 The paper focuses on discussing critical points of attention (PoAs) for designing regional BF evaluation and 75 classification approaches towards prioritization tools. This contribution aims at a deeper understanding of 76 these critical PoAs. The goal is to identify significant PoAs that shape the design of regional BF prioritization 77 tools considering the state of the art in literature, and lessons learned from previous developments of regional 78 brownfield (BF) prioritization processes, frameworks and tools. In addition, the paper elaborates on the 79 meaning/extent/dimensions of identified PoAs and discusses how the PoAs are linked to one another to 80 determine whether general patterns exist that can be considered in future tool design. The overall approach 81 will assist in assessing the needs for a potential framework or systematic approach that identifies PoAs and the 82 key research areas designed to address PoA challenges and reduce knowledge gaps to address PoA complexity.

83 2. Methods and Materials

To identify the most critical and relevant points for designing BF prioritization tools, we applied an expertbased focus group approach, which was cross-checked with a literature review.

86 To determine and collate the most recent knowledge on the topic for scientists and practitioners, we selected a 87 deliberative method to collect materials and engaged in an exchange with experts in the BF regeneration field. 88 We organized a special session at the AquaConSoil (ACS) conference 2017. ACS addresses experts interested in 89 "beyond state-of-the-art in science, policy making and practice in the field of sustainable use and management 90 of soil, sediment and water resources" (Rijnaart et al., 2017). The conference attracts from 600 to 800 91 participants every 2 years. Here, we could expect to find leading experts in BF regeneration from academia 92 meeting policy and practice. We organized the session "Prioritization strategies & tools for regional brownfield 93 redevelopment: Perspectives & feedback on existing tools and approaches" at the event. The 90-minutes 94 session was structured to first introduce three different tools recently developed or currently in development 95 (in different European countries) and reported on the challenges their designers have faced. Against this 96 background – serving as state-of-the-art overview – a facilitated focus group discussion on specific topics in a 97 World Café style (cf. Schieffer et al., 2004) followed.

In total, 30 experts participated in the session. Although we have no exact statistics on the specific background of each participant, we assume that they well-represent the expertise of ACS delegates and, moreover as a result of self-selection, are stakeholders who have a particular interest in BF regeneration tools. From individual discussions and after-session exchange of business cards we do know that stakeholders with diverse backgrounds took part, including representatives of municipal, regional and national agencies from economic development and environmental areas. Also scientists from PhD students to full professors joint the session next to policy makers and business representatives from industry and smaller consultants.

105 The group discussions were not according to professional backgrounds, but followed a bottom-up self-selection 106 approach of delegates choosing topics of highest interest and concern. We offered 5 different groups, each 107 facilitated by a moderator. The topics of the groups (cf. section 4.2) were selected by us, prior to the 108 meetingbased on the experiences on recently or currently developed BF tools – those introduced to 109 participants as part of the state-of-the-art background. The geographical focus of the discussion was not 110 restricted specifically. The delegates were asked in each group to add their experience and thoughts to the discussion in order to identify the most significant and urgent points of attention in BF tool design. The 111 112 discussions were interrupted every 15 minutes and delegates were asked to select another group to give their input. Thus in total, each participant could contribute to 3 self-selected topics. At the end of the session, we 113 114 reported briefly back the key points of discussion to the full audience of the session and asked if any significant 115 topic was not addressed so far. No such feedback was given. The results of the discussions were documented on flip-overs and personal notes and are reported in section 4.2 below. 116

To ensure that the group discussions would not miss an important topic discussed in the topical literature, we added a review by screening the Web of Knowledge for relevant keywords. We used the following search terms to identify potentially relevant scientific papers: (1) "region*" OR "portfolio" AND (2) "priority*" OR "rank*" AND (3) "brownfield*." We add as a supplementary material an overview of the papers identified and discuss their main insights in section 4.1.

122 **3. Background**

Regional BF prioritization methodologies and tools originated from the improvement of regional risk assessment procedures aimed at providing a quantitative and systematic way to estimate and compare the 125 impacts of environmental problems that affect large geographic areas by considering multiple habitats and 126 multiple sources releasing a multiplicity of stressors impacting multiple endpoints (Pizzol et al., 2011; Zabeo et 127 al., 2011; Agostini et al., 2012; Landis, 2005; Hunsaker et al., 1990). In this context, a region is a spatially 128 extended nonhomogeneous area, defined on the basis of physical, industrial, and socioeconomic 129 characteristics, not necessarily on administrative boundaries. A region's boundaries depend on the dimension 130 of the problems to be assessed, on the potential targets that can be directly affected, on the involved physical 131 or biological processes, and on the strategic planning and management scale (Graham et al., 1991; Smith et al., 132 2000; Gheorghe et al., 2000; Hunsaker et al., 1990; Suter, 1990; Agostini et al., 2012).

The main objective of regional approaches is the classification and ranking of those BF sites (with a special interest in BFs with suspected contamination or actual contamination) on the basis of a specific objective (most critical, practical, or profitable to be revitalized), thus, implementing a relative assessment rather than an absolute estimation of their conditions(Carlon, 2007).

137 A review and analysis of the available relative risk assessment procedures for regional risk assessment of CS 138 and BF sites was published by the European Environment Agency (EEA, 2004) for developing the Preliminary 139 Risk Assessment Model (PRAMS), which identifies and assesses soil contamination problem areas in Europe 140 (EEA, 2005), in which 27 existing and documented international methodologies were analyzed (Pizzol et al., 141 2011). However, in this paper, we focus on prioritization methodologies and tools that consider not only 142 environmental aspects (i.e., human health and ecological risks) but also those that have a wider purpose and 143 apply sustainability concepts by including socioeconomic aspects, stakeholders' perspectives, and success 144 factors. The development of regional risk assessment approaches strongly depends on the availability of regional and spatial data integration methods (Smith, 2000; Locantore et al., 2004) and has been supported by 145 146 the use of GIS tools for spatial data management. However, the huge amount of spatial data for such an 147 assessment (i.e., environmental data, socioeconomic data, stakeholders' points of view, etc.) requires 148 developing tools that can integrate GIS data and models for prioritization issues and management and communication actions (Patil et al. 2001; Smith, 2000). 149

150 Only a few approaches and tools have been developed for regional prioritization of CS and BF sites. Chrysochoou et al. (2012) developed an indexing scheme that incorporates indicators for three dimensions 151 152 (socioeconomic, environmental, and livability) to scan large areas and initially identify which BF sites should be considered for further assessment and ultimately redevelopment. Cheng et al. (2011) developed a framework 153 154 for prioritizing identified potential BF sites according to a set of criteria, which were selected and weighed based on key interviews and the study of local reference cases. Thomas (2002) developed a Brownfield Site 155 156 Ranking Model to select sites for potential redevelopment that included 11 siting criteria derived from the 157 review of general siting factors that can be evaluated in locating a business on a formerly used site. Pizzol and colleagues developed two decision-support systems called SYRIADE (Pizzol et al., 2011; Zabeo et al., 2011; 158 Agostini et al., 2012) and the Timbre Brownfield Prioritization Tool (TBPT) (Pizzol et al., 2016, Bartke et al. 2016; 159 160 Frantal et al., 2015; Alexandrescu et al., 2017). SYRIADE has been developed to support regional authorities in the ranking of potentially contaminated sites and BFs for priority of investigation, when information on site-161 162 specific investigation and risk is not available. SYRIADE considers environmental impacts, economic aspects, and shareholders' perspectives. However, it does not include any reference to CS and BF site success factors. 163 164 The inclusion of these factors in prioritization tools was the main objective in developing TBPT, which includes 165 stakeholders' perspectives and success factors and provides an easily accessible web-based application.

Both SYRIADE and TBPT have been applied in different contexts, such as the City of New Haven, Connecticut;
 the Futian District in the city of Shenzhen, China; Jackson County, Michigan; the Upper Silesia region in Poland;

two large portfolios of BF sites in Germany; a local and a regional administrative body from the Czech Republic;
and a portfolio of BF sites in Romania, thus, covering different areas in Europe, two in the United States, and
one in China.

Two other tools are under development in France. The first is a BF evaluation prototype tool that aims to 171 172 systematically evaluate and classify, on a large territory, individual environmental risks for a large number of 173 potentially contaminated, industrial BFs. It is investigating how incorporating an evaluation of the best 174 regeneration potential, attractiveness for each the sites. The tool is still under development by the French 175 Bureau de Recherche Géologique et Minière (BRGM) for the Alsace territory and could ultimately be used by 176 regional authorities in allocating funding in support of regeneration processes. It is also developed to be used 177 by local authorities as an aid to better understand environmental risks and required actions in their 178 municipalities (Limasset et al. 2016). The second project deals with the development of an observatory for the 179 Auvergne-Rhône-Alpes region to accelerate and secure the redevelopment of BFs. BRGM in collaboration with 180 the region undertook a preliminary study to define the end-user needs with respect to the BF observatory and 181 to frame the future tool(s) to be developed. This work, which involved a wide range of stakeholders, identified 182 two potential options for the tool: A BF prioritization module to be integrated in a wider planning tool and a 183 methodological framework for alternative uses for off-market BFs (Merly, 2017).

184 4. Results: Identified Points of Attention

185 4.1. Insights based on literature review

192

Designing tools for prioritization of BF is a challenging task, whether it involves focusing on a systematic evaluation/classification of sites or going towards ultimate ranking. Existing tools address different aspects and phases of the regeneration process, including environmental and health risk assessment, remediation cost assessment, uncertainty assessment, evaluation of the sustainability of projects, and management of the negotiations and partnership among involved stakeholders. The models and tools can be divided into two groups (Chrysochoou et al., 2012):

- Tools designed to assess management options for a single BF (or "megasite") or
- Tools intended to prioritize management options for clusters of sites (portfolios) or wide areas (states, regions, cities).

195 A majority of existing tools and manuals fall within the first category and are developed for a case-by-case 196 approach. Only a few tools enable a comparison of sets (clusters) of different BF sites with the purpose of 197 prioritizing them in the context of large areas or institutional portfolios (e.g., Bartke et al., 2016, Chrysochoou et 198 al., 2012; Cheng, 2011; Thomas, 2002; Carlon et al., 2008; Pizzol et al., 2011; Pizzol et al., 2016; Agostini et al., 2012, Tonin et al. 2014). These "site prioritization and selection" tools are designed specifically for stakeholders 199 200 (urban planners, regional development agencies, state and regional authorities, grant agencies, etc.) who are 201 responsible for wider territories (cities, districts, regions, or states) and who need to identify which BF sites 202 should be preferably considered for further investigation and ultimately redevelopment (Chrysochoou et al., 203 2012).

One key problem lies in defining the aim to which the prioritization is being developed (i.e., do we prioritize BFs for urgency in cleanup, for particular reuse option, or prioritize a set of BFs that occur in a particular region/city, or just take into account a portfolio of BFs that are owned by specific owner?). The key message that seems to be repeated in various papers on designing tools for BF prioritization is that various groups of stakeholders need to be involved in all evolving stages of the tools' design (e.g., Hartig et al., 2012; Sardinha et
al., 2013; Rizzo et al., 2015; Pizzol et al., 2016).

- Various methods are used to identify people's concerns about BFs. Burger (2005) used in-depth interviews to study perception of contaminated sites by tourists in Brookhaven, Long Island. He revealed that highest among a list of concerns were rate of accidents/spills, loss of public health, and loss of ecological health. Change in property values was rated as the lowest concern. On the other hand, it seems that local populations perceive BFs differently than tourists who do not live near these sites (De Sousa, 2006). Ruelle et al. (2013) suggested the importance of quality of landscape while discussing regeneration of BFs in communities.
- Hartig et al., (2012) advise that applying practices of adaptive management could be useful in BF regeneration planning. Some authors discuss site-specific characteristics of individual BFs, which complicate assessment of multiple BF sites (e.g., McCarthy, 2002). The importance to shift to a regional scale is also highlighted as development of economically and socially feasible land-use plans of individual BF can be based on regional needs (Ishi et al. 2013, Raco 2003)
- Lee and Mohai (2013) in an environmental justice study, analyzed prioritization of BFs to be cleaned up in the Detroit metropolitan area (prioritization was done by EPA). They found that BFs located near socioeconomically disadvantaged neighborhoods tend to be cleaned up first and BFs located far from major roads also tend to receive priority in EPA funding. They claim that developmental potential of neighborhoods is one of the main factors given in determining prioritization of BFs in case of private investments. They also warn that perceived lack of safety within inner cities could well be a deterrent to BF redevelopment.
- 227 4.2. Insights from stakeholder discussions
- 228 This section introduces the PoAs identified in the AquaConSoil (ACS) special session.

229 4.2.1. End-user needs and orientation

- Despite the development of a few BF prioritization tools, hardly any of these tools are effectively and efficiently
 used for regional land redevelopment and land planning, mainly because end-user needs and expectations
 have not been properly addressed in the tools development process.
- BF regeneration inherently **involves a multi-range of stakeholders** (e.g., problem owners, investors, service providers, regulators, public and private land managers, decision makers, and—not least—the general public affected by the site and its non/redevelopment). When considering a territorial dimension to BF management, an even wider set of stakeholders and potential end users are concerned who also raise various visions and interests for regional BF redevelopment. ACS experts particularly stressed that there is a difficulty due to the market-related complexity of having to consider multiple potential stakeholders.
- Assessing end-user needs should be the first consideration to **frame the orientation of BF redevelopment** prioritization tool by setting whom the tool will be really developed and designed (i.e., its final objectives and scale; depending on the end-user needs, the desired scale for a BF tool can range from the district to the regional level [including the city and the county scale]).
- The experts agreed that assessing and defining end-user needs is a key step to collaboratively **define the functionalities** (boundaries and the characteristics) of BF prioritization tools. There will be different **tool formats and content** according to the end-user needs, and if multiple end users are foreseen, the tool will have to be **fully flexible** and modular to respond to each stakeholder's demands. In any case, the tool will need to be
- 247 **user-friendly** to ensure its accessibility to end users (e.g., GIS-based interface, graphical user interfaces [GUI]).

The shared experience has shown that assessing end-user needs and defining orientation can be done at various stages of the development process, either at a very early stage in the process, before any tool development, or following initial prototype development. In any case, this is an iterative process.

251 4.2.2. Data availability and quality

252 The development of regional risk assessment approaches strongly depends on the availability of regional data 253 and spatial data integration methods (Smith, 2000; Locantore et al., 2004). Therefore, a crucial component for 254 developing and running a prioritization tool is availability and access to a BF inventory database, ideally one in 255 which data are well georeferenced. The access to such a database will serve as input data to qualify or quantify 256 the selected BF-regeneration success factors for running a BF prioritization tool. Input data usually come from 257 data set extractions of BF-inventory databases that cover the area of interest and from complementary 258 information sources (e.g., data sets from national statistics institutes, public national database). Some 259 streamlining of the large amount of data may be necessary. In Europe, the existence or availability of these BF 260 inventory databases differs from one country to the next, and in some countries, varies from one region to 261 another. In some countries, BF databases are under strict protection and not publicly available. Therefore, the 262 willingness of BF inventory database owners to provide input data or participate in tool development is not to 263 be overlooked.

264 The expert group agreed that checking for the availability or prompting the creation of a new data set where none exists is a prerequisite to any tool development process. The experts emphasized that a BF-inventory 265 266 database may be heterogeneous, that is, have different characteristics, for example, in terms of right of access, 267 ownership (public/nonpublic), funding process, format, and update procedure, among others. This implies the 268 need to adapt the development of the tool from one area to another, but also to ensure interoperability when 269 several data sets of different construction are needed. Relying only on publicly available, easily accessible, and 270 good quality data could, in some circumstances, limit success factors to those that may not be relevant to the 271 overall objective, unless strategies are considered for collecting key complementary data (Limasset et al., 272 2016). Therefore, special attention should be given to data gaps, and complementary databases should be 273 sought to fill in these gaps. Further, the experts distinguished matters of data availability and quality for two 274 distinct phases: (1) developing and testing and (2) full operation. Rights of access to relevant data sets for 275 developers or future end users may vary from one phase to another. BF database owners may question how 276 confidentiality of the input and dissemination output data is dealt with during the full operation of a BF 277 evaluation or prioritization tool.

278 4.2.3. Effective stakeholder engagement

BF regeneration is a challenging problem, requiring the involvement of the whole range of stakeholders (Solitare, 2005). Many studies, projects, and organizations have recognized the importance of stakeholder involvement and have promoted public participation (Rizzo et al., 2015; Azadi et al., 2011; Solitare, 2005; Cundy et al., 2011).

283 The ACS experts agreed that a bottom-up approach should be put in place during the orientation stage (i.e., as 284 early as possible prior to BF prioritization tool development to ensure all stakeholders can express their 285 interest, understand what is at stake, and get effectively engaged in the discussions). This early process will 286 encourage discussions on legal, economic, social, and environmental pressures that the stakeholders' territory 287 may face, as well as expected opportunities and mechanisms for regenerating the BF (available space, 288 economic development, financial support, etc.). The importance of the leadership, capacity building 289 capabilities, and authoritative acceptance from the initiators was highlighted as key to creating a dynamic 290 engagement from interested stakeholders and initiating, when possible, co-development of the BF tool prioritization. Developing a common language is equally needed for effectively involving a wide range of stakeholders in these discussions. The experts also stressed the challenges of keeping stakeholders engaged over time beyond the development and initial operation stages. Incentives to keep them engaged can vary, from producing an initial prototype tool that could strongly develop stakeholder interest to exploring funding options. Emphasizing and identifying early the concerns (especially legal) of stakeholders may aid arguments to obtain funding for tool development.

297 4.2.4. Drivers of regeneration success during the tool development

298 The main objective of BF prioritization tools is to identify those BF sites that need to be revitalized first, either 299 because they are the most critical or most profitable for a regeneration operation. Accordingly, the two main drivers for regeneration are environmental impacts (i.e., unacceptable risks for human health and ecosystems 300 301 due to contamination) and economic drivers (i.e., the land value after regeneration, and the liability related to 302 remediation of hazardous environmental impacts). However, these two aspects alone cannot predict whether 303 the selected BF sites will undergo a successful regeneration process and allow a fruitful and permanent reuse 304 of the derelict land. Thus, the identification of success factors for BF regeneration is a key aspect for 305 prioritization. A list of success factors (i.e., conditions, circumstances, actors, and agencies that are 306 determinants and contributors to successful BF regeneration) have been provided by Frantal et al. (2012) and 307 include regeneration costs, specific localization, transport links, and price of the land and property, among 308 others. These factors may be perceived and assessed differently based on stakeholders' personal or collective concerns, experiences, or values (Frantal et al., 2012), thus, requiring that the importance (weight) of each 309 310 success factor be assessed case by case. Moreover, stakeholders' attitudes can influence or can be influenced 311 by policies and planning strategies developed at the city or regional level.

312

320

During the ACS session, the experts differentiated the drivers of regeneration success acting at BF site level (i.e., specific location, proximity to road network, railway, airport, physical conditions of the area, economic status of the locality, etc.) from drivers of regeneration success acting at a wider scale, such as policies and planning strategies for (re)developing the city or region under assessment. The first class of drivers influence the ranking of BF sites within the same requalification objective (e.g., identifying the most suitable set of BF sites for building a shopping center), while the latter influence the objectives of the prioritization process (e.g., building a new shopping center, a new solar power plant, a new recreational area, etc.).

4.2.5. Financing and application costs

321 The expert group discussing financing and application costs agreed that this domain is of critical importance. However, the experts also stressed that political willingness is a major driver, which in turn depends on public 322 323 and media awareness for the topic (cf. Bartke et al., unpublished). Furthermore, some key issues were pointed 324 out that ought to be considered as a PoA in creating regional BF regeneration tools. In particular, it must be 325 clarified from the beginning what the specific focus of the instrument is and what the specific added value will 326 be. The benefits of using the tool need to be, as far as possible, expressed in tangible outcomes. This will help 327 decision makers understand that the resources needed to create a BF prioritization tool actually translate into 328 an investment and business opportunity. It was highlighted, that a designed BF tool can be a selling product for 329 consultants. At the same time, it can be a selling point for a region to demonstrate to land investors that their 330 potential sites have been evaluated in an overall regional assessment based on which the potential investor is 331 provided with a shortlist of sites that best suit the requirements.

332

The experts also mentioned the ability of BF prioritization tools to inform about the costs of land use and property development to support more informed decisions of stakeholders, including planners, policy makers, or classic investors. For municipalities and regional authorities, such tools can support the efficient allocation of scarce tax dollars. Authorities, some experts argued, need to understand the public's need for such tools and, therefore, should support the design and application of these tools through sufficient funding. 338

Regarding the quality of the tools, it was critically emphasized that sufficient (financial) resources are needed also for tool application to get topical, precise, and reliable results. See the above discussions on sufficient data input as one example. The "communication" with stakeholders during the development phase, which is also resource demanding.

343

Finally, the expert group stressed that on designing and creating BF prioritization tools, an early-on and high-level involvement of the foreseen users of the tool is critical. In this regard, co-funding of tool development by the prospective "user" and the creator/researcher is recommended. This makes clear the investment character of the project and **enables co-ownership of the product**. From the start, scientists/developers should think about collaborating closely with consultants to bring their expertise and provide the basis for later usage of the tool.

350 5. Discussion: Linking the PoAs

351 5.1 Assessing the relevance and links of the different PoAs

This section aims at putting the PoAs into context by discussing the individual links among the five categories of 352 353 PoAs presented in the previous section. The strength of the impact of one PoA on another is crucial to 354 understanding whether certain PoAs need higher attention prior to a BF prioritization tool development (e.g., 355 this is the case when solving one issue helps to alleviate or minimize a future issue). Following the ACS session, 356 we assessed how these PoAs were linked to one another to see whether general patterns exist that can be 357 considered in future tool design. For each of the PoAs we, as authors, identified what we perceived as the most 358 relevant subtopics following the expert discussions (PoAs that were either highly stressed or most intensely 359 discussed). These subtopics are presented in Table 1.

360 Table 1. Most relevant subtopics for each of the five proposed PoAs following the ACS expert discussions

РоА	Subtopics of the PoA										
End-user needs	 Involvement of a wide range of stakeholders and potential end users Orientation and framing of a BF prioritization tool Expected BF tool functionalities and data outputs (i.e., format?) to ensure product is user-friendly and accessibility 										
Data availability and quality	 Existence of BF inventory data set (understanding its characteristics/scale coverage) Willingness of BF inventory data set owners to provide input data/participate to tool development (conditions for confidentiality/dissemination of output data) Interoperability requirements to be considered for BF prioritization tool development (with BF inventory data sets and complementary data sets) 										
Effective stakeholder engagement	 Early stakeholder engagement towards a bottom-up approach/incentive for tool development Recognition of initiators' leadership, authority, and capacity building Common language among stakeholders 										
Drivers of regeneration	• Environmental drivers to be assessed by the tool (current environmental issues at a site/territory pushing for the BF regeneration process, i.e., aiming at reducing										

success during the tool development	 risks to acceptable levels with new intended use) Economic drivers to be assessed by the tool (pushing for the BF-regeneration process, e.g., land value) Allocating weight to each success factor within the BF tool (once in operation)
Financing and application costs	 Assessing specific added value of the tool (define tangible outcome) Having financial resources for tool application Co-funding of tool development to create ownership of the product

361

The assessment of whether one PoA influences another PoA is presented in Table 2. For each PoA subtopic, we assessed the relevance/linkage using a specific categorization following the approach used by Bartke et al. (unpublished) and Gausemeier et al. (1998), which is presented below:

- (0) = Negligible relevance—the PoA is not an important driver or inhibitor of the other PoA.
 - (1) = Minor relevance—the PoA might have a limited but not very important effect.
 - (2) = Considerable relevance—the PoA is likely to have a notable (indirect) effect.
 - (3) = Key relevance—the PoA is of utmost importance for the other PoA.
- 368 369

366

367

A matrix highlighting the influence/relevance of the PoA has been developed as support to this mapping exercise. The influence matrix (based on Gausemeier et al., 1998) helps identify overall dominant PoAs that are "active" in influencing many other PoAs (most critical) and those that are more "passive" (i.e., being influenced by the other PoAs and, therefore, should be considered toward the end of the process/assessment because knowledge of the activePoAs before the passive is beneficial. We apply an overall scoring proposed by the categorization system to highlight the most influential or less influential PoA or subtopic. The overall matrix therefore reflects on the author's opinion on one PoA influence against another one.

According to Table 2, the PoA that has the higher influence is "effective stakeholder engagement," which 377 378 accounts for the higher score (62 as sum of the scores allocated to each subtopic), followed by "end-user 379 needs" (61). The PoA that seems to have the lower influence is "data availability and quality." The most 380 influential subtopics are "orientation and framing of the BF prioritization tool" (30), "early stakeholder 381 engagement towards a bottom-up approach" (28). "Involvement of a wide range of stakeholders and potential 382 end users and "environmental and economic drivers" play and intermediate influence, each having scores of 383 24. The lower influence is posed by "expected BF tool functionalities" and "allocating weight to the success 384 factors." This analysis underscores the strong influence that end users and stakeholders should play in 385 developing prioritization tools able to provide tailored results according to the identified needs and 386 expectations. More technical aspects, such as tool functionalities, attribution of weights to success factors, 387 interoperability aspects, and common language do not strongly affect the prioritization tool development 388 process, but are seen as aspects that can be included/evaluated in a second stage of the tool development. The 389 "financing and application costs" PoA has an intermediate influence, which is also reflected in its subtopics.

390 5.2 Discussion over the most relevant influence/linkages

391 5.2.1 End-user needs and orientation influence on the other PoAs

As illustrated in the PoA matrix, all the subtopics of the PoA "end-user needs and orientation" are very closely linked. Defining the end-user needs and orientation is crucial because it involves a wide range of stakeholders and enables all involved to frame and describe the functionality of the tools to ensure that sustainable human and financial resources are allocated for the BF prioritization tool and to maximize the use of the tool. Two categories of end users can be clearly distinguished, leading to different choices in framing and defining tool functionalities and serving two distinct objectives:

398 Market-driven end users include developers, site owners, service providers, and others. Their overall 399 aims are, at the site scale, to minimize risks and liabilities associated with the site while maximizing site 400 value and best use. Their needs could be met by developing a tool such as a brownfield bank, which 401 would enable access to information on the short-term availability of BFs for future development and 402 would support the development of a BF by giving the best match between the BF characteristics and its 403 future desired land use (site-by-site adequation and approach). In this case, the tool would have to be 404 largely supported by private parties and might be run by consultants (the prioritization tool would then 405 be seen as a selling product). Drivers of success will need to be designed according to the different 406 types of activities/future land uses of interest to the market-driven end users. The challenges of 407 designing and running such a tool lie in the availability (confidentiality) and the interpretation of the 408 public data to economic and private ends. Moreover, the added value of such a tool with respect to 409 site-by-site assessment needs to be clearly identified to attract private funders.

- 410 Not strictly market-driven end users encompass public stakeholders, such as local and regional • 411 councils, policy makers, and society at large. Their overall goals are to promote sustainable land management by ensuring the protection of citizens with respect to potential human health and 412 413 environmental risks originating from the site(s) while maximizing the benefits originating from the BF's 414 regeneration at the site- and regional scale. Tools to support urban planning and operational BF redevelopment tool could be foreseen in this case. We can envisage that the prioritization tool will be a 415 strategic tool mainly owned (and supported?) by land planners (and public parties). It will aim to 416 417 compare various land uses with respect to various regional objectives (e.g., greener cities, denser cities, 418 climate change, increase of well-being). Overall regional assessment, which will aim to assess all the 419 benefits (even nonfinancial ones, using for example, an ecosystem services approach) associated with a wide range of land uses (even off-market sites that will perhaps require more public-money support). 420
- 421

422 The end-user needs and orientation PoA is also very strongly linked to the following PoAs:

- Data Availability and Quality: The involvement of a wide range of stakeholders promotes the willingness to share and provide existing data, which will be the basis for a sound BF-regeneration assessment. The expected functionalities of the BF tools set the conditions for the confidentiality of the input and output data.
- Stakeholder Engagement: ACS experts discussed that eventually uptake of the BF prioritization tool
 could be enhanced by developing legal requirements or incentive on urban development (large-scale
 vision, BF redevelopment obligation, etc.).
- Understanding Drivers and Regeneration Success: Assessment of end-user needs and orientation is of
 particular importance to define the geographical coverage of the tool and its application.
- Financing and Applications Costs: End-user needs and orientation must be sustainable and supportable
 by stakeholders and end users to guarantee appropriate construction and long-term running of the
 tool. This is why needs and orientation must be well balanced with available human and financial
 supporting resources. The end users and stakeholders must make choices according to their needs and
 their available resources.

437 5.2.2 Data availability and quality influence over the other PoAs

Table 2 indicates that the "data availability and quality" PoA is the least critical. But it is nevertheless shown as considerably influencing the end-user needs, and to a less extent, the other PoAs. Indeed, access to a BF inventory database and willingness of its owner to take part in the process are key for developing and running a BF prioritization tool.

442 Reflecting on the discrepancies in existing BF inventory coverage and characteristics that are known across 443 Europe, the influencing factors for creating such data sets obviously lie outside the scope of the PoAs being 444 discussed here. Such data sets are usually developed by authorities keen to have a better knowledge of the BF 445 sites that lie within their territories for planning purposes. Authorities are usually constrained by the need to 446 find appropriate funding for initial data set development and necessary regular updates (e.g., annual checks on 447 BF status). When discussing the data availability and quality PoAs, it is important to distinguish in particular the 448 development phase in which input data are needed to test any proposed tool framework, usually through 449 research and development partnerships between initiators/experts and the running phase, which results in 450 access to the fully developed tool for the end users. The input data are usually of a sensitive nature (i.e., 451 information on ownership of individual sites, on future plans, or on the level of contamination, etc.) and 452 require protection (usually data on privately owned sites) and avoidance of their misuse, which means that 453 they are usually not available (or just partly available). Participation by the representatives of data owners in 454 the tool development will help overcome this burden. For the full operational phase, the data owners may still 455 be reluctant to provide straightforward access unless they fully understand and agree on input data 456 confidentiality management and output dissemination data conditions.

The conducted PoA assessments focused on the tool development phase, where any **available BF inventory** data set(s) is believed by the experts to particularly influence the following items when a BF prioritization tool is considered:

- involvement of a wide range of stakeholders, especially when BF inventory do not exist yet. The development of such inventories may be considered in parallel with the discussion of the BF prioritization tool expected functionalities, leading to gathering all kinds of stakeholders with strong interest in both processes.
- 464 interoperability requirements between the BF prioritization tool to be developed and any of the BF
 465 inventory data sets and complementary data set that will be needed to provide input data. In addition,
 466 these data sets may have different updating procedures and may not all be accessible in the same way
 467 from one stakeholder to another.

The existence of BF inventory data sets will influence, to a less extent, the **environmental drivers** to be assessed within the tool because some of the fields may be particularly relevant for providing input data on environmental matters. However, we stress that finding relevant input data that is publicly and easily accessible can be a challenge.

472 **Willingness of data owners** to provide relevant input data and fully support BF prioritization tool development 473 will be highly influenced by how well they are engaged in **early discussions**; their presence in the early 474 orientation and framing of the tool is crucial. Usually, the aim is to get as much access as possible to relevant 475 and needed data sets that are of good quality (i.e., sources that can be trusted for the way the data is 476 collected, checked, stored, and revised when necessary) and that is free to use if possible. Usually, for research 477 and development purposes, data set owners of BF inventories that are financed by public funding will tend to 478 agree to provide extractions of their database for developing and testing the tool. Unfortunately, in some 479 countries like Germany or Romania, BF inventory databases are under strict protection and are not publicly480 available.

481 5.2.3 Effective stakeholders' engagement influence on the other PoAs

The "effective stakeholder engagement" PoA has the highest influence on the others, with its strongest influence on subtopics of the "end-user needs" PoA. This is particularly the case during any tool development phase. A bottom-up approach to engage stakeholders and the recognition of initiator's leadership also strongly influence the financing and application costs for a prioritization tool, and to a less extent, the willingness of BF inventory data set owners to participate to the development.

487 An early stakeholder engagement process is indeed crucial for the effective definition of needs for future tool 488 end user(s) (e.g., market vs. nonmarket driven). Early engagement will influence directly the participation of a 489 wide range of stakeholder groups in designing the prioritization tool. This demanding task is worth investing 490 time in as early as possible because it might contribute to the better visibility of the tool among experts in the 491 field. Indeed, feedback from experts outside the tool development team can, for example, help eliminate too 492 sophisticated (and hardly understandable) ideas and include perspectives that might be omitted otherwise. To 493 keep the stakeholders involved, a prototype tool may need to be developed that stakeholders can reference 494 and adjust during the development process.

495 A bottom-up approach engaging as much as possible the wide range of stakeholders will strengthen the 496 orientation and framing of the tool that is to be developed. For this end, proper communication and common 497 language are also crucial. That is why initiators with recognized authority and capacity building are needed 498 because they will be rapidly recognized among relevant stakeholders and will influence engagement. A 499 dynamic approach makes it easier to have/keep the stakeholders engaged. A dynamic leader is of course 500 needed in this iterative and long process. The overall approach that is, therefore, recommended will help 501 discussions among stakeholders as early as possible and in a constructive manner, onimportant elements such 502 as required data sets (BF inventory and/or complementary data sets), expected confidentiality conditions in 503 input and output data, scale of application [local, regional] etc...

This early process is also of importance because it will influence how to **optimize incentives for financing and application costs,** as clearly shown in the PoA matrix. The identification of pressures on stakeholders (especially if legal) will facilitate the funding of the tool development. The financial support by the stakeholders themselves will naturally make them more engaged, as will their involvement/help in finding sources of financial support. Early engagement and recognition of the advantages of tool development will also encourage co-funding and co-development.

510 5.2.4 Drivers of regeneration success during the tool development influence on the other PoAs

511 The analysis of influences between subtopics of this PoA underlines that **environmental drivers** have strong 512 influence on the other sub-topics. This is quite intuitive because the current environmental issues at a 513 site/territory pushing for the BF regeneration process are real conditions that need to be assessed and solved/remediated, and their impacts cannot be affected/influenced by the tool development process. On the 514 515 other hand, environmental drivers can affect the economic drivers, when one considers the loss in land value due to the liability of hazardous environmental impacts and the costs required to remediate unacceptable 516 517 risks. The inclusion of methodologies/functionalities for allocating weights to success factors is a subtopic that 518 cannot influence/modify the environmental and economic drivers to be assessed. However, these drivers can 519 leverage the methodologies/functionalities to be developed to properly assess the identified drivers.

520 The importance of the drivers of regeneration success on the remaining set of PoAs is moderately relevant. 521 Environmental and economic drivers can have a major influence on the orientation and framing of the tools, 522 on the **expected tool functionalities**, and on **early bottom-up stakeholders' engagement** processes, 523 considering that environmental drivers always lead the discussion among end users and decision makers who 524 are pressed by public opinion to consider these factors when deciding how to prioritize remediation actions. 525 Moreover, stakeholders are moved/involved in prioritization processes mainly to solve environmental issues 526 that can affect them directly or indirectly, or to attract and invest economic resources and evaluate possible 527 gains. Environmental drivers have considerable influence on confidentiality issues in light of the liability that 528 can come from disclosing unacceptable risks that were not properly communicated to the involved 529 stakeholders and the public. At the same time, functionalities to assess environmental impacts can grant 530 specific added value to the developed tool and serve in funding adequate financial resources for the tool 531 application. Economic drivers can have considerable influence in the involvement of a wide range of 532 stakeholders and end users, who can be attracted by possible economic benefits. Simultaneously, economically 533 attractive regeneration processes can be considerably relevant for all the subtopics under "financing and 534 application costs," fostering added value of the tool, financial resources for its application, and stakeholder 535 willingness to co-fund and co-own the product. When discussing drivers, it is always important to refer also to 536 the success factors that characterize each driver and the geographical level they refer to or represent. 537 Identifying, at the beginning of the tool development phase, the most relevant success factors and the 538 geographic level at which they are acting (e.g., at the BF site level or at city or regional level) is a major task 539 that strongly affects the orientation and framing of the tool, the spatial functionalities to be included in the 540 tool, and the process for **allocating the weights** to each success factor.

The last subtopic (i.e., allocating weight to each success factor) has a lower influence on the other subtopics, and along with existence of BF inventory data sets and environmental drivers, it is only partially influenced by the other subtopics. These subtopics represent starting conditions that cannot be modified by the tool development process (i.e., availability of data, environmental issues that needs to be assessed, and stakeholders' perceptions, concerns, and values).

546 5.2.5 Financing and application costs' influence on the other PoAs

547 Considering the links between financial factors, the following picture emerges:

- 548 1) A clear description of the **added value** of the prioritization tool will be the precondition for finding the 549 financial resources for tool development and any successful tool application. In turn, the 550 consideration and availability of **budget for application** of a tool is not a meaningful determinant of 551 the overall role a prioritization tool can gain. Even if the tool was inexpensive or even free, it would 552 not be used if it did not also promise a tangible benefit.
- 553 2) There is a clear role of understanding the potential **added value** of the tool on the **ability to attract** 554 **co-funding** for the tool development (and, thus, for enabling co-ownership of the product) because 555 clear tangible outcomes make investments attractive (for both private and public investors). 556 Conversely, a vision of co-ownership and co-funding can help identify a joint vision and derive 557 required tangible outcomes. However, the relationship between added value and the ability to attract 558 co-funding is not always obvious and may take considerable effort to resolve and explain .
- The influence from budgets availability on the ability to create co-funding is likely only minor
 assuming that if resources are available from one funder it could increase the chances that they will
 be available from a co-sponsoring funder. On the other end, co-funding is influencing more
 considerably budget availability, the link is more considerable because co-funding will as it increases
 the chances of finding resources for the application of the tool.

564 Considering the importance of the financial factors on the remaining set of PoA points yields the following 565 insights:

- 566 The role of determining the specific objective in the form of **tangible outcomes and clear added value** 567 of application is a considerable determinant for most factors and is a precondition to attract the target 568 end-user group (but will not enable a wide range of indirectly affected stakeholders). It is the key to 569 make concrete what the specific orientation and framing of the BF prioritization tool should be. Also, it 570 determines many of the BF tool functionalities that ensure achieving the added value. The influence of 571 data availability is less straightforward and likely considerable if only in increasing the willingness of BF 572 inventory data set owner/managers to provide input data and participate in tool development because 573 a specific added value can be made transparent to them. Effective stakeholder engagement will be 574 certainly improved if tangible results of BF prioritization are clear, in particular if affectedness of 575 several groups is addressed. A clearly determined outcome can also make it easier to recognize the 576 initiators' leadership, if the initiator is the end user or co-owner. Regarding the understanding of 577 drivers of regeneration success, there is a considerable link on the economic drivers to be assessed by 578 the tool because it will be often these drivers that determine the added value, and the tool provides a 579 kind of monitoring or proof for the return of investment made in the investigation.
- 580 The influence of **available budgets to thoroughly apply the tool** is less strong. It is evident that more 581 experts and stakeholders can be involved if budgets are available. The budget will also determine the 582 tool functionalities that can be implemented—even if certain functionalities were demanded (e.g., 583 high-resolution, real-time imaging of the site) but unaffordable. In the long run, the budget will determine whether the BF databases are created and provided. More significantly, whether current 584 585 database owners will make available their data will have to be clarified. Budgets are key to enable early 586 stakeholder engagement. They might also have a role in the extent of capacity building and 587 establishing a common language (ability to interpreting). Minor influence is also debatable regarding 588 the allocation of weights and the selection of the appropriate geographical scope because both 589 decisions should be reflected and updated over time, and missing resources potentially hinder this.
- 590 Finally, co-funding and in particular co-ownership of the BF prioritization tool is another rather active ٠ 591 factor. Increased co-funding will increase the involvement of stakeholders, is key for orienting and 592 framing the BF prioritization tool because it determines the "who" and "why," and consequently, 593 influences the expected BF tool functionalities, which adjust to the funders' wishes. As argued above, 594 funding will have a potential influence on the long-term establishment of databases. Moreover, if the 595 data owners are also co-funders, they can be more confident in the tool results. Co-ownership can 596 have a minor influence on all factors of effective stakeholder engagement because it demonstrates 597 willingness to collaborate.

598 6. Conclusions

599 Tools and support for land management decisions are limited. This document discusses tools to support the prioritization of BF investments or actions on a regional scale, an important level of land-use 600 601 management. Specifically, this paper focuses on discussing critical PoAs for the design, the development, 602 and the running of such regional prioritization approaches. Significant PoAs that influence the design of 603 tools are based on (1) a review of the state-of-the-art in literature and expert based focus groups, (2) the 604 stakeholders' needs, (3) available tools, and (4) lessons learned from developing regional BF prioritization 605 processes, frameworks, and tools. Our analysis yields a deeper understanding of critical PoAs, namely (1) 606 the assessment of end-user needs and orientation, (2) the availability and quality of the data used to evaluate success factors and constraints of each BF within a BF prioritization tool, (3) the communication
and stakeholder engagement during the tool development, (4) the drivers of regeneration success during
the tool development, and (5) the financing and application costs/transaction costs to run the tool. We
elaborate on each of these PoAs, discuss how the PoAs are linked to one another, and identify general
patterns and challenges that can be considered in future tool design.

612 Our analysis enables us to make conclusions on some key challenges. Considering the prioritization process 613 as the first step in a BF regeneration process, we can identify several questions that must be addressed 614 next: (1) What is the scale for consideration? (2) How are sites identified within the area? (3) How are 615 scenarios compared? and (4) What services will the regenerated sites provide? Each of these questions present many challenges for all stakeholders involved in the process. No two site redevelopment plans will 616 617 be the same because size and scale play an important role in the process and will often dictate the tools 618 needed in a decision-making process. BF site redevelopment tools can help stakeholders make informed 619 decisions and also protect and preserve greenspace. While this might appear to be straightforward, there 620 are many PoAs that must be considered and integrated to meet challenges to land revitalization. Much like 621 the initial redevelopment strategies, tool development comes with its own set of challenges. There are 622 different interests depending on the stakeholder (i.e., neighborhood community vs. technical developer) 623 yet all need to use the tool. Data format, comparability, quality, and data volume used in the tools can also 624 present a challenge. In addition, data accessibility must be considered, and sensitive data and version 625 control must be protected. Combinations of tools and interoperability of those tools need to be developed, 626 tested, and applied. Stakeholders need tools that are flexible and easy to use when evaluating different 627 reuse scenarios and comparing the benefits from each. Indicators or specific success measures need to be 628 defined early in the process so adjustments can be made as the project progresses.

- 629 The focus of the BF redevelopment tool has been to address the different aspects for site-specific cleanup 630 options. Fewer tools are either in development or in the testing phase for the broader region-wide scale. 631 Most importantly, the process of tool development should start with a proper **framing** to guarantee clarity 632 for whom and what the tool is applied. The framing will condition the attractiveness of the tool for end 633 users and stakeholders (tangible outcome and added value). Early stakeholder involvement in defining the boundaries of the project (i.e., scale, type of land use) is key, as identified in the PoAs. Such tools will 634 635 enhance political willingness to support projects by promoting legal and financial incentives. We conclude 636 that a **mutual relationship** through data sharing, stakeholder trust and engagement, and co-ownership/co-637 funding through private and public partnerships needs careful consideration. To address PoAs, research is 638 needed to expand on existing tools, develop new ones, and address operation maintenance and 639 interoperability of the tools. Examples that would be of benefit include: (1) recommendation for a 640 framework or stepwise approach on how regional prioritization tools should be applied (this would include 641 identifying the project scope and tool selection to meet objective and success measures, which is 642 particularly important for clusters of sites or wide areas such as states and regions); (2) application of the 643 framework and approach through case studies, which would allow for documentation of lessons learned 644 and assist in the tool enhancement or modification; and (3) development of tool integration and 645 interoperability at various scales.
- Additional specific challenges can be drawn depending on the orientation given for the tool framing and the type of end-user needs (i.e., market-driven or nonmarket-driven). For prioritization tools developed for market-driven end users, such as a brownfield bank, key research challenges to be tackled include (1) the transfer of the tool to commercial use, (2) the sharing and confidentiality of data, and (3) the tool and data updates for guaranteeing reliability. For prioritization tools developed for nonmarket-driven end users,

such a BF management module in a wider urban planning tool, key research challenges may encompass (1)
the scale of the tool and the amount of data, (2) a suitable financial scheme to support large-scale tool
development and operation, and (3) the promotion of the development of off-market sites (deprived and
low land-pressure BF) in providing methodological tools to assess full range of benefits from a wider panel
of potential future land uses (e.g., nature-based solutions using the ecosystem services approach as an
assessment framework).

657 Acknowledgements

The authors gratefully acknowledge the financial support backing the research for this article. This work was 658 659 supported by the European Commission's Seventh Framework Programme project TIMBRE (an integrated 660 framework of methods, technologies, tools, and policies for improvement of brownfield regeneration in Europe; www.timbre-project.eu; grant agreement 265364, 2012-2014); the Auvergne-Rhône-Alpes region 661 662 and FEDER, which support the regional brownfield initiative, ID friche; and the brownfield prioritization 663 prototype tool, Alsace territory in France supported by the DREAL Grand Est, the Observatoire des friches du 664 Haut Rhin and ADEME. We thank Glenn Sutter, Lisa Walker, Linda Tackett, Tom Schaffner for their precisious 665 time in editing the document. The sponsors did not influence the study design; collection, analysis, or 666 interpretation of the data; writing of the report; or the decision to submit the report for publication.

667 **7. References**

- Agostini, P., Pizzol, L., Critto, A., D'Alessandro, M., Zabeo, A., Marcomini, A., 2012. Regional risk assessment for
 contaminated sites part 3: spatial decision support system. Environ. Int. 48, 121-132.
 <u>http://dx.doi.org/10.1016/j.envint.2012.07.005</u>.
- Alexandrescu, F., Klusáček, P., Bartke, S., Osman, R., Frantál, B., Martinát, S., Kunc, J., Pizzol, L., Zabeo, A.,
 Giubilato, E., Critto, A., Bleicher, A. 2017. Actor networks and the construction of applicable knowledge: The
 case of the Timbre Brownfield Prioritization Tool, *Clean Technologies and Environmental Policy*, 19(5), 13231334, doi: 10.1007/s10098-016-1331-8
- Amundson, R., Berhe, A.A., Hopmans, J.W., Olson, C., Sztein, A.E., Sparks, D.L., 2015. Soil and human security in
 the 21st century. *Science*, 348 (6235), 647, http://dx.doi.org/10.1126/science.1261071
- Azadi, H., Ho, P., Hafni, E., Zarafshani, K., & Witlox, F. (2011). Multi-stakeholder involvement and urban green
 space performance. Journal of Environmental Planning and Management, 54(6), 785-811.
- Bartke, S. 2013. Urban regeneration and brownfield remediation: addressing challenges for tailored, integrated
 and sustainable urban land revitalization, in CRC CARE (ed.): 5th International Contaminated Site Remediation
 Conference: Program and Proceedings, CleanUp 2013 Conference, Melbourne, Australia, 15–18 September
 2013, Salisbury, South Australia: CRC CARE, pp. 112-113.
- 683 Bartke, S. 2011. Valuation of market uncertainties for contaminated land. *International Journal of Strategic* 684 *Property Management*, *15*(4), 356-378.
- 685 Bartke, S., Bielke, A., Homuth, A., Roselt, K., & Zill, T. (2014). Das TIMBRE Priorisierungstool: Brach 686 flächenbewertung von Grundstücksportfolien in Sachsen und Thüringen. Altlasten Spektrum 23(5), 202-210.
- Bartke, S., Hagemann, N., Harries, N., Hauck, J., Bardos, P., submitted. Market Potential of Nanoremediation in
 Europe Market Drivers and Interventions Identified in a Deliberative Scenario Approach. Submitted
 manuscript, Science of the Total Environment, SI AquaConSoil 2017.
- 690 Bartke, S., Boekhold, A.E., Brils, J., Grimski, D., Ferber, U., Gorgon, J., Guerin, V., Makeschin, F., Maring, L.,
- 691 Nathanail, C.P., Villeneuve, J., Zeyer, J., Schröter-Schlaack, C., submitted manuscript. Soil and land

- management in Europe: Lessons learned from INSPIRATION bottom-up strategic research agenda setting,
 Journal of the Total Environment. Submitted manuscript, Science of the Total Environment, SI AquaConSoil.
- 694 Bartke, S., Martinát, S., Klusáček, P., Pizzol, L., Alexandrescu, F., Frantál, B., Critto, A., Zabeo, A. 2016. Targeted
- selection of brownfields from portfolios for sustainable regeneration: User experiences from five cases
 testing the Timbre Brownfield Prioritization Tool, *Journal of Environmental Management* 184, 94–107,

697 doi:10.1016/j.jenvman.2016.07.037

- Bartke, S., Schwarze, R. 2015. No perfect tools: Trade-offs of sustainability principles and user requirements in
 designing tools supporting land-use decisions between greenfields and brownfields, *J. Environ. Manage.* 153,
 11–24, doi: 10.1016/j.jenvman.2015.01.040
- Burger, J. (2005). Assessing environmental attitudes and concerns about a contaminated site in a densely
 populated suburban environment. *Environmental monitoring and assessment*, *101*(1), 147-165.
- CEN, 2014. Glossary of Terms for Holistic Management of Brownfield Regeneration (GoT-HOMBRE). CEN
 Workshop Agreement 74. <u>https://www.cen.eu/work/areas/env/Pages/WS-74.aspx</u>.
- CABERNET, 2006. Sustainable brownfield Regeneration: CABERNET Network Report. Ferber, U., Grimski, D.,
 Millar K., Nathanail, P., Land Quality Management Group on behalf of the CABERNET Network, University of
 Nottingham. ISBN 0-9547474-5-3
- Carlon, C. (Ed.) 2007. Derivation methods of soil screening values in Europe. A review and evaluation of
 national procedures towards harmonization. European Commission, Joint Research Centre, Ispra, EUR 22805 EN, 306 pp.
- De Sousa, C. A. (2006). Urban brownfields redevelopment in Canada: the role of local government. *The Canadian Geographer/Le Géographe canadien*, *50*(3), 392-407.
- Dixon, T., Otsuka, N., & Abe, H. (2011). Critical success factors in urban brownfield regeneration: an analysis of
 'hardcore'sites in Manchester and Osaka during the economic recession (2009–10). *Environment and Planning A, 43*(4), 961-980.
- Cheng, F., Geertman, S., Kuffer, M., Zhan, Q., 2011. An integrative methodology to improve brownfield
 redevelopment planning in Chinese cities: a case study of Futian, Shenzhen. Comput. Environ. Urban 35 (5),
 388-398. http://dx.doi.org/10.1016/j.compenvurbsys.2011.05.007.
- Chrysochoou, M., Browna, K., Dahala, G., Granda-Carvajalb, K., Segersonb, K., Garricka, N., Bagtzogloua, A.,
 2012. A GIS and indexing scheme to screen brownfields for area-wide redevelopment planning. Landscape
 Urban Plan. 105 (3), 187-198. http://dx.doi.org/10.1016/j.landurbplan.2011.12.010.
- Cundy, A. B., Bardos, R. P., Church, A., Puschenreiter, M., Friesl-Hanl, W., Müller, I., ... & Vangronsveld, J.
 (2013). Developing principles of sustainability and stakeholder engagement for "gentle" remediation approaches: The European context. Journal of environmental management, 129, 283-291
- EC, 2012. Commission Staff Working Document : Guidelines on best practices to limit, mitigate or compensate
 soil sealing. SWD(2012) 101 final 12 April. European Commission, Brussels.
- EC, 2011. Roadmap to a Resource Efficient Europe. COM(2011) 571 20 September. European Commission,
 Brussels.
- Dooley, E., Roberts, E., Wunder, S. (2015). Land degradation neutrality under the SDGs: National and
 international implementation of the land degradation neutral world target. *Elni Rev*, 1(2), 2-9.
- EEA (European Environment Agency), 2005. "Towards an EEA Europe-wide assessment of areas under risk for
 soil contamination. Volume III PRA.MS: scoring model and algorithm"
 (http://eea.eionet.europa.eu/Public/irc/eionet-
- 734 circle/etcte/library?l=/2004_subvention/wp3_spatialchange/spatial_assessments/323_support_sts/risk_anal

- 735 ysis/reports&vm=detailed&sb=Title)
- Frantál, B., Klusáček, P., Kunc, J., Martinát, S., Osman, R., Bartke, S., Alexandrescu, F., Hohmuth, A., Bielke, A.,
 Pizzol, L., Rizzo, E., Krupanek, J., Sileam, T., 2012. Report on results of survey on brownfield regeneration and
 statistical analysis, TIMBRE deliverable D3.1v3, 76p. http://dx.doi.org/ 10.13140/2.1.1546.7202.
- Frantál, B., Kunc, J., Nováková, E., Klusáček, P., Martinát, S., & Osman, R. (2013). Location matters! exploring
 brownfields regeneration in a spatial context (A case study of the South Moravian Region, Czech Republic). *Moravian geographical reports*, *21*(2), 5-19.
- Frantál, B., Kunc, J., Klusácek, P., Martinát, S. (2015a) Assessing success factors of brownfields regeneration:
 international and interstakeholder perspective. *Transylv Rev Adm Sci* 44(E):91–107
- Gardi, C., Panagos, P., Van Liedekerke, M., Bosco, C., De Brogniez, D., 2015. Land take and food security:
 assessment of land take on the agricultural production in Europe. *J. Environ. Plann. Man.* 58 (5), 898-912.
 http://dx.doi.org/10.1080/09640568.2014.899490.
- Gausemeier, J., Fink, A., & Schlake, O. (1998). Scenario management: An approach to develop future potentials.
 Technological Forecasting and Social Change 59(2), 111-130, doi: 10.1016/S0040-1625(97)00166-2.
- Hartig, J. H., Krueger, A., Rice, K., Niswander, S. F., Jenkins, B., & Norwood, G. (2012). Transformation of an
 industrial brownfield into an ecological buffer for Michigan's only Ramsar Wetland of International
 Importance. *Sustainability*, 4(5), 1043-1058.
- Hunsaker, C. T., Graham, R. L., Suter, G. W., O'Neill, R. V., Barnthouse, L. W., & Gardner, R. H. (1990). Assessing
 ecological risk on a regional scale. *Environmental management*, *14*(3), 325-332.
- Ishii, K., Furuichi, T., & Nagao, Y. (2013). A needs analysis method for land-use planning of illegal dumping sites:
 A case study in Aomori–Iwate, Japan. *Waste management*, *33*(2), 445-455.
- Krzysztofik, R., Tkocz, M., Sporna, T., & Kantor-Pietraga, I. (2016). Some dilemmas of post-industrialism in a
 region of traditional industry: The case of the Katowice conurbation, Poland. Moravian Geographical Reports,
 24(1), 42-54.
- Lee, S., & Mohai, P. (2013). The socioeconomic dimensions of brownfield cleanup in the Detroit region.
 Population and Environment, *34*(3), 420-429.
- Locantore N. W., Tran L. T., O'Neill R. V., McKinnis P. W., Smith E. R. And O'Connell M., 2004. An overview of
 data integration methods for Regional assessment. Environmental Monitoring and Assessment 94: 249–261.
- Long, J., & Fischhoff, B., 2000. Setting risk priorities: A formal model. Risk Analysis, 20, 339-351.
- Limasset E., Aubert N., Scamps M. (2016). Priorisation de friches industrielles en vue de leur reconquête : état
 de l'art, méthodologie et prise en compte des enjeux environnementaux Pilote sur le territoire du Haut Rhin

766 (68). Rapport final. BRGM/RP-66498-FR, 55 p.

- McCarthy, L. (2002). The brownfield dual land-use policy challenge: reducing barriers to private redevelopment
 while connecting reuse to broader community goals. *Land Use Policy*, *19*(4), 287-296.
- Pediaditi, K., Doick, K.J., Moffat, A.J., 2010. Monitoring and evaluation practice for brownfield, regeneration to
 greenspace initiatives: A meta-evaluation of assessment and monitoring tools. *Landscape Urban Plan.* 97(1),
 22–36, doi: 10.1016/j.landurbplan.2010.04.007.
- Pizzol, L., Critto, A., Agostini, P., Marcomini, A., 2011. Regional risk assessment for contaminated sites Part 2:
 ranking of potentially contaminated sites. Environ. Int. 37, 1307-1320.
 http://dx.doi.org/10.1016/j.envint.2011.05.010.
- Pizzol, L., Zabeo, A., Klusáček, P., Giubilato, E., Critto, A., Frantál, B., Martinát, S., Kunc, J., Osman, R., Bartke, S.,
- 2016. Timbre Brownfield Prioritization Tool to support effective brownfield regeneration. *J. Environ. Manage*
- 777 116, 178-192. <u>http://dx.doi.org/10.1016/j.jenvman.2015.09.030</u>.

- Raco, M. (2003). Assessing the discourses and practices of urban regeneration in a growing region. *Geoforum*,
 34(1), 37-55.
- RESCUE. 2005. Best Practice guidance for Sustainable Brownfield Regeneration. Edwards, D., Pahlen, G.,
 Bertram, C. and Nathanail, C.P.. Land Quality press on behalf of the RESCUE consortium, Nottingham. ISBN 0 9547474-0-2
- Rijnaart, H., v. d. Meulen, S., Moinier, S. 2017 "Welcome to AquaConSoil 2017!", in: AquaConSoil 2017 14th
 International Conference on Sustainable Use and Management of Soil, Sediment and Water Resource
 Conference Programme, p. 3.
- Rizzo, E., Pesce, M., Pizzol, L., Alexandrescu, F., Giubilato, E., Critto, A., Marcomini, A., Bartke, S., 2015.
 Brownfield regeneration in Europe: identifying stakeholder perceptions, concerns, attitudes and information
 needs. *Land Use Policy* 43, 437-453. <u>http://dx.doi.org/10.1016/j.landusepol.2015.06.012</u>.
- Ruelle, C., Halleux, J. M., & Teller, J. (2013). Landscape quality and brownfield regeneration: a community
 investigation approach inspired by landscape preference studies. *Landscape research*, *38*(1), 75-99.
- Sardinha, I. D., Craveiro, D., & Milheiras, S. (2013). A sustainability framework for redevelopment of rural
 brownfields: stakeholder participation at SÃO DOMINGOS mine, Portugal. *Journal of cleaner production*, *57*,
 200-208.
- Schädler, S., Morio, M., Bartke, S., Rohr-Zänker, R., Finkel, M., 2011. Designing sustainable and economically
 attractive brownfield revitalization options using an integrated assessment model. *J. Environ. Manage.* 92(3),
 827–837, doi: 10.1016/j.jenvman.2010.10.026.
- 797 Schieffer, A., Isaacs, D., & Gyllenpalm, B. (2004). The world café: part one. World, 18(8), 1-9.
- Smith, E.R., R. V. O'Neill, J.D. Wickham, K.B. Jones, L. Jackson, J.V. Kilaru, and R. Reuter, 2000. The U.S. EPA's
 Regional Vulnerability Assessment Program: A Research Strategy for 2001 2006. U.S. Environmental
- 800 Protection Agency, Office of Research and Development, Research Triangle Park, NC.
- Stezar, I.C., Pizzol, L., Critto, A., Ozunu, A., Marcomini, A., 2013. Comparison of risk-based decision-support
 systems for brownfield site rehabilitation: DESYRE and SADA applied to a Romanian case study. *J. Environ. Manage. 131*, 383–393, doi: 10.1016/j.jenvman.2013.09.022.
- Solitare, L. (2005). Prerequisite conditions for meaningful participation in brownfields redevelopment. Journal
 of Environmental Planning and Management, 48(6), 917-935.
- Thomas, M. R. (2002). A GIS-based decision support system for brownfield redevelopment. *Landscape and Urban Planning*, *58*(1), 7-23.
- Thornton, G., Franz, M., Edwards, D., Pahlen, G., Nathanail, P., 2007. The challenge of sustainability: incentives 808 809 for brownfield regeneration Europe. Environ. Sci. Policy 10 (2), 116-134. in 810 http://dx.doi.org/10.1016/j.envsci.2006.08.008.
- Tonin (2014) should be added is mentioned in supplementary (Tonin, S. (2014). Assessing the impact of the
 remedial actions taken at a contaminated Italian site: an ex-post valuation analysis. Reviews in Environmental
 Science and Bio/Technology, 13(2), 121-137.)
- Zabeo, A., Pizzol, L., Agostini, P., Critto, A., Giove, S., Marcomini, A., 2011. Regional risk assessment for
 contaminated sites part 1: vulnerability assessment by multicriteria decision analysis. Environ. Int. 37, 12951306. <u>http://dx.doi.org/10.1016/j.envint.2011.05.005</u>.
- 817 UN, 2014. Resolution adopted by the General Assembly on 20 December 2013 [on the report of the Second 818 Committee (A/68/444)] - 68/232. World Soil Day and International Year of Soils – 819 http://www.un.org/en/ga/search/view doc.asp?symbol=A/RES/68/232&Lang=E

	End-user needs			Data availability and quality			Effective stakeholder engagement			Drivers of regeneration success during			financing and application costs			Scores		
	Involvement of a wide range of stakeholders and potential end-users	Orientation and framing of a BF prioritization tool	Expected BF tool functionalities, data outputs	Existence of BF inventory data set	Willingness of BF inventory data set owners to provide input data/participate to tool development	Interopeability requirements to be considered for BF prioritization tool developement	Early stakeholder engagement towards a bottom up approach/incentive for tool development	Recognition of initiators' leadership, authority and capacity building	Common language amongst stakeholders.	Environmental drivers to be assessed by the tool	Economic drivers to be assessed by the tool	Allocating weight to each success factor within the BF tool	assessing specific added value of the tool	Financial ressources for successful tool application	Co-Funding of tool developement and co-ownership of the product	Overall score	Number of interactions	Score for each PoA
Involvement of a wide range of stakeholders and potential end-users		3	3	n.a.	1	n.a.	2	n.a.	2	2	2	3	2	2	2	24	11	
Orientation and framing of the BF prioritization tool	3		3	1	3	2	3	1	3	1	1	0	3	3	3	30	14	61
Expected BF tool functionalities, data outputs	n.a.	n.a.		n.a.	3	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	2	n.a.	n.a.	7	3	
Existence of BF inventory data set	3	0	3		n.a.	3	1	n.a.	1	2	0	n.a.	2	2	2	19	11	
Willingness of BF inventory data set owners to provide input data/participate to tool development	3	3	2	n.a.		n.a.	1	n.a.	n.a.	1	1	n.a.	2	2	2	17	9	47
Interopeability requirements to be considered for BF prioritization tool developement	2	3	2	n.a.	1		1	n.a.	1	n.a.	n.a.	n.a.	1	n.a.	n.a.	11	7	
Early stakeholder engagement towards a bottom up approach/incentive for tool development	3	3	3	n.a.	3	1		1	3	1	1	n.a.	3	3	3	28	12	
Recognition of initiators' leadership, authority and capacity building	3	3	1	n.a.	3	n.a.	3		2	n.a.	n.a.	n.a.	2	2	2	21	9	62
Common language amongst stakeholders.	3	3	1	n.a.	1	1	2	2		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	13	7	
Environmental drivers to be assessed by the tool	1	3	3	n.a.	2	1	3	1	1		3	2	2	2	n.a.	24	12	
Economic drivers to be assessed by the tool	2	3	3	n.a.	1	1	3	1	1	n.a.		2	2	2	2	23	12	52
Allocating weight to each success factor within the BF tool	n.a.	n.a.	3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.		2	n.a.	n.a.	5	2	
Assessing specific added value of the tool	2	3	2	n.a.	2	n.a.	1	1	n.a.	n.a.	2	n.a.		3	3	19	9	
Financial resources for successful tool application	2	n.a.	2	1	2	n.a.	3	1	1	n.a.	n.a.	1	n.a.		1	14	9	51
Co-funding of tool developement and ownership of the product	1	3	2	1	2	n.a.	1	1	1	n.a.	n.a.	2	2	2		18	11	