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A characteristic feature of differential-algebraic equations is that one needs to find derivatives of some of
their equations with respect to time, as part of the so-called index reduction or regularization, to prepare
them for numerical solution. This is often done with the help of a computer algebra system. We show
in two significant cases that it can be done efficiently by pure algorithmic differentiation. The first is the
Dummy Derivatives method; here we give a mainly theoretical description, with tutorial examples. The
second is the solution of a mechanical system directly from its Lagrangian formulation. Here, we outline
the theory and show several non-trivial examples of using the ‘Lagrangian facility’ of the Nedialkov–
Pryce initial-value solver DAETS, namely a spring-mass-multi-pendulum system; a prescribed-trajectory
control problem; and long-time integration of a model of the outer planets of the solar system, taken from
the DETEST testing package for ODE solvers.

Keywords: algorithmic differentiation; differential-algebraic equations; dummy derivatives; Lagrangians

1. Introduction

1.1 DAE formulation and basic ideas

In industrial engineering, the modelling of systems to simulate their time evolution is increas-

ingly done by methods that lead to a differential-algebraic equation (DAE) system as the

underlying mathematical form. Such DAEs often come from equation-based modelling (EBM),

which describes system components by the basic physical laws they obey and supports ‘multi-

physics’ models that combine several scientific disciplines, as for instance mechanical, electrical,

chemical, and thermodynamic behaviour in a car engine.

Facilities created to support EBM include gPROMS, which is both a language and a graphical

modelling environment (GME) built on it; the Modelica language and GMEs such as OpenMod-

elica, Dymola and MapleSim that are built on it. Simulink, built on Matlab, is a GME of similar

scope but less in tune with the general DAE concept.

A DAE is just a set of n equations connecting a vector x = x(t) of n state variables x1, . . . , xn

and some derivatives of them with respect to time t. One can always reduce it to a first-order

form F(t, x, ẋ) = 0—as accepted by the DASSL solver and its relatives [1,7]—in the same way
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2 N.S. Nedialkov et al.

as one does for an ODE system. Here ẋ means dx/ dt. However we use a more flexible form

allowing arbitrary higher derivatives:

fi(t, the xj and derivatives of them) = 0, i = 1, . . . , n. (1)

This often lets one formulate problems to our Daets initial-value code [11,12] more concisely,

e.g. Lagrange’s equations for a mechanical system with nq coordinates and nc constraints need

nq + nc variables, compared to 2nq + nc in the first-order form.

1.2 Aim

In general, differentiating some of DAE’s equations fi = 0 with respect to t is an essential step in

solving a DAE. This article is about two significant and rather different uses of this. The first is

the widely used dummy derivatives (DDs) method of Mattsson and Söderlind [8] that prepares

a higher index DAE for numerical solution by a classical index-1 DAE code, or by an explicit

ODE code such as a Runge–Kutta method.

The second is the task of solving a, possibly constrained, mechanical system directly from

a Lagrangian formulation. Conceptually it has several phases. The motion is defined by a

Lagrangian function L(t, q, q̇) where q is a vector of generalized coordinates qi, plus possibly

a vector of nc constraints C(t, q) = 0. To set up (phase 1), the equations of motion from L and

C one applies partial differentiation ∂/∂q and ∂/∂ q̇, as well as straight d/dt, to L and C. When

nc > 0 the result is an index 3 DAE, which must (phase 2) be readied for numerical solution and

(phase 3) solved.

Either use case at first sight seems to need symbolic differentiation, e.g. in a computer algebra

system. We show pure AD suffices in either case. This insight may not be new but we believe

the method is: for DDs it is new to combine index and order reduction in one simple framework;

for Lagrangian calculations it is new to combine all phases seamlessly by AD, giving a simple

user interface and efficient numerical solution.

2. Structural analysis

In an ODE ẋ = f(t, x), causality is obvious: in differential language, it explicitly specifies the

state x + dx at the next instant t + dt to be x + f(t, x) dt.

In a DAE, causality is not obvious. For instance, these size 2 DAEs are quite different, where

u(t) is a given driving function:

x1 − u(t) = 0, x1 − ẋ2 = 0, (2)

and x2 − u(t) = 0, x1 − ẋ2 = 0. (3)

To solve (2), make ẋ2 the subject of its second equation (x1 causes x2) and integrate the result;

it is really an ODE, with one degree of freedom. To solve (3), make x1 the subject of its second

equation (x2 causes x1) and differentiate. DAE (3) has no degrees of freedom—it has the unique

solution x1 = u̇(t), x2 = u(t) and does not look like an ODE at all; such behaviour is common in

control problems.

A solvable DAE has a chain of causality that must be found in order to prepare for numerical

solution. Knowing which equations fi = 0 to differentiate, and how often, is crucial to finding this

causal chain. When correctly done, the original DAE augmented by the differentiated equations
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can be solved to produce an ODE in some (possibly not all) of the original variables—the ODE

part. Once this ODE is solved, the remaining variables forming the algebraic part can be found

by algebraic manipulations combined with differentiations.

Let ci be the number of differentiations of equation i needed by the ‘most economical’ way

of doing this. For reasons to do with the Taylor series method used by Daets we call them the

equation-offsets.

For instance the equations of (2) do not need differentiating: (c1, c2) = (0, 0). We solve to

produce the ODE part ẋ2 = u(t) in just x2. By contrast, (3) has (c1, c2) = (1, 0) meaning the first

equation must be differentiated, after which we solve to get x1 = u̇(t), x2 = u(t). The ODE part

is empty.

In the DAE (2), it happens we can solve for the algebraic variable x1 to get x1 = u(t),

independently of solving the ODE, but this need not be so: if we change it to

x1 − x2 − u(t) = 0, x1 − ẋ2 = 0, (4)

then the ODE part, namely ẋ2 − x2 − u(t) = 0, must be solved before we know x1.

Unlike a well-behaved ODE ẋ = f(t, x), which has a solution path through each point of the

region R of (t, x) space where it is defined, the union of a typical DAE’s solution paths is a

proper subset of R, the consistent manifold M or set of consistent points. The dimension of its

intersection with any time t = t0 is dof, the number of degrees of freedom, equivalently the size

of its ODE part (here assumed independent of t0).

The index of a DAE used in this paper is simply

ν = max
i

ci. (5)

The classical differentiation index νd of Brenan et al. [1] assigns index 1 to DAE (2) and 2 to

DAE (3). In summary for the examples above

DAE ODE part dof algebraic part offsets ν νd

Equation (2) x2 1 x1 (found independently of ODE part) (0, 0) 0 1

Equation (3) empty 0 x1, x2 (1, 0) 1 2

Equation (4) x2 1 x1 (found using x2 in ODE part) (0, 0) 0 1

The structural analysis (SA) approach aims to derive a DAE’s causal chain by studying its

sparsity, namely what derivatives of variables occur in what equations. The method is: seek a

number ci of times to differentiate the ith equation that gives a structurally nonsingular (SNS)

set of equations for the resulting highest, djth, derivatives of the xj—then c = (c1, . . . , cn),

d = (d1, . . . , dn) are the vectors of equation-offsets and corresponding variable-offsets. SNS

means one can make a matching of variables to equations—equivalently a transversal, a set

T of n positions (i, j) in an n × n matrix with just one in each row and in each column—such

that derivative x
(dj)

j occurs in the differentiated equation f
(ci)

i = 0 for each (i, j) ∈ T . There exist

unique element-wise smallest non-negative c, d, the canonical offsets, which we assume chosen

henceforth. They define the ‘most economical’ differentiations mentioned above.
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An SA-friendly DAE by definition is one for which these equations are actually (not just

structurally) nonsingular at some consistent point, that is, the n × n system Jacobian

J =
(

∂f
(ci)

i /∂x
(dj)

j

)

i,j=1,...,n
. (6)

is nonsingular there. Assuming suitable smoothness of the fi, a unique solution then exists locally

through this point, and through any nearby consistent points.

Experience shows most DAEs in practice are SA-friendly. This fact underlies the wide use

of the DDs method, which uses the results of SA and succeeds if and only if the DAE is SA-

friendly. The SA can be done by the graph-based Pantelides method [14], or the Pryce �-method

[15] based on the signature matrix � = (σij), where

σij =

{

order of highest derivative of xj in fi if xj occurs in fi,

−∞ if not.
(7)

The methods are equivalent except that the latter handles higher order DAEs without reduction

to first order, while the former as described in [14] does not.

The DAE (with index νd = 3) derived from a constrained Lagrangian of a mechanical system

as in Section 4, is always SA-friendly when posed as an initial value problem. Posed otherwise,

e.g. as a prescribed-trajectory control problem, it need not be. The occurrence of non-SA-friendly

but solvable DAEs in applications is studied in [16,18]. For systematic ways of converting such

a DAE to an equivalent SA-friendly one see [20].

SA leads to a notion of structural index νs, defined as the ν in (5), plus 1 if any offset dj is

zero. For an SA-friendly DAE νs is always ≥ νd , and usually equals it in practice, see [15].

3. Dummy derivatives

3.1 The DDs construction

Many numerical methods for higher index DAEs start with index reduction: augmenting the

DAE by time-derivatives of some of its equations to produce a DAE of larger size and smaller

index. Various index reduction methods have been used that convert the DAE to an ODE with

more degrees of freedom than the DAE. Then the DAE’s solution paths form a proper subset

of those of the ODE. This tends to be bad numerically, as errors cause drift from the consistent

manifold that can be exponential once it starts.

Dummy derivatives (DDs) by contrast are a systematic way to form an equivalent ODE with

exactly as many DOF as the (SA-friendly) DAE. If one views the DAE as a flow on the consistent

manifoldM, DDs describe the flow in a local coordinate system forM. Thus numerical drift

can only be within M, where it is less harmful. However if the path leaves the patch of M

where the coordinate system is nonsingular, one must choose new coordinates. This need for DD

switching, or pivoting, complicates a numerical algorithm.

The following description of the DDs process is equivalent to that in [8]. The set of possible

matrix sequences (Gk) whenever one selects a state vector, below, is the same in either method,

but we find Gk from smallest up (each is a sub-matrix of the next), while [8] finds them in the

opposite order.
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Assume ci and dj are the canonical offsets. First form the derivatives of each fi = 0 up to the

cith, forming the augmented system of Nf = n +
∑

i ci equations:

f
(l)

i = 0, l = 0, . . . , ci, i = 1, . . . , n. (8)

Its unknowns are the Nx = n +
∑

j dj derivatives of the state variables xj up to the djth. View

them for now as unrelated algebraic unknowns that we call items, and to emphasise this denote

them xjl:

xjl renames x
(l)
j , l = 0, . . . , dj, j = 1, . . . , n. (9)

The system has fewer equations than variables by the amount
∑

j dj −
∑

i ci, which equals the

number dof of degrees of freedom. To balance this, the DDs method finds a number dof of items

xjl to be state items, for (j, l) in a suitable set S of index pairs, chosen such that all the other items

can locally be solved for as functions of these. The state vector xS formed by the state items is

the associated local coordinate system of the manifoldM.

One requires l < dj for each (j, l) ∈ S, so that xj,l+1 is also an item. Then the differential

relations between each state item and its next higher derivative:

ẋjl = xj,l+1 (10)

can be interpreted as an ODE system for the state items.

State vector selection—initially or at a DD-switching point—may be done as follows. The

n × n system Jacobian J in Equation (6) is nonsingular there. For k = kd, kd + 1, . . . , −1 where

kd is minus the largest dj, the ‘standard solution scheme’ of the �-method constructs sub-matrices

Jk of J by selecting those rows i where k + ci ≥ 0 and columns j where k + dj ≥ 0. Then: Jk is

of full row rank; it has size mk × nk where mk ≤ nk; the sum of the differences
∑

k(nk − mk)

equals dof. For each k, select mk columns of Jk that form a nonsingular matrix Gk . This can and

must be done in such a way that the set of selected columns increases with k, so that each Gk is

a sub-matrix of the next. For each of the (nk−mk) unselected columns j consider the item x
(k+dj)

j .

The set of all these is a valid state vector xS since, briefly, non-singularity of Gk ensures that

at stage k, ‘selected’ items x
(k+dj)

j belonging to selected columns can, by the Implicit Function

Theorem, be found locally as functions of the unselected items.

As said, (10) thus becomes a size- dof ODE system,

ẋS = F(t, xS). (11)

This is locally equivalent to the size-Nx DAE (8), (10) and hence to the original DAE. Though

‘index-1’ is the usual term used, the stronger property holds that

(8), (10) form an implicit ODE,

defined as an SA-friendly DAE whose offsets ci are all zero.

3.2 Example

Example 3.1 (Pendulum) Let the original DAE be the simple pendulum in cartesian coordi-

nates, shown with its signature matrix (7), with relevant transversals marked. Gravity g and
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length ℓ are constants, and x(t), y(t) and λ(t) are state variables.

0 = A = ẍ + xλ,

0 = B = ÿ + yλ − g,

0 = C = x2 + y2 − ℓ2,

� =

x y λ ci
[ ]

A 2• 0◦ 0

B 2◦ 0• 0

C 0◦ 0• 2

dj 2 2 0

(12)

The offsets ci = 0, 0, 2 imply C is to be differentiated twice, giving 5 equations in 7 unknowns.

On the left of (13), these are shown in the notation of (12); on the right they have been trans-

lated to the general xjl notation where x is called variable 1 so its derivatives x, ẋ, ẍ become

x10, x11, x12, and so on. The functions A,B,C are renamed as f ’s and a similar notation used for

their derivatives.

Augmented system

0 = A = ẍ + xλ

0 = B = ÿ + yλ − g

0 = C = x2 + y2 − ℓ2

0 = Ċ = 2(xẋ + yẏ)

0 = C̈ = 2(xẍ + ẋ2 + yÿ + ẏ2)

unknowns x, ẋ, ẍ, y, ẏ, ÿ, λ

After renaming

0 = f10 = x12 + x10x30

0 = f20 = x22 + x20x30 − g

0 = f30 = x2
10 + x2

20 − ℓ2

0 = f31 = 2(x10x11 + x20x21)

0 = f32 = 2(x10x12 + x2
11 + x20x22 + x2

21)

unknowns x10, x11, x12, x20, x21, x22, x30

(13)

One can choose any of (x, ẋ), (y, ẏ), (x, ẏ), (y, ẋ) as state vector (one must choose one undiffer-

entiated variable and one first derivative), but only the first two are ‘convenient’ for AD, as the

next section shows.

Suppose for example xS = (x, ẋ) ≡ (x10, x11). It is easily seen that provided y, i.e. x20, is

nonzero one can find all the items as functions of these two, hence the pendulum DAE is

equivalent to an ODE (11) in this xS when y 	= 0.

The description of DDs given in Section 3.1 has the advantage of combining index reduction

and order reduction into one process. For computer solution, it is probably easiest to work with

the order 1 DAE formed by the Nx = n +
∑

j dj Equations (8), (10). However ‘by hand’, one

can simplify by directly substituting the derivative relations into (8) where possible. E.g. the

right-hand set of equations of (13) becomes

0 = A0 = ẋ11 + x10x30,

0 = B0 = x22 + x20x30 − g,

0 = C0 = x2
10 + x2

20 − ℓ2,

0 = C1 = 2(x10x11 + x20x21),

0 = C2 = 2(x10ẋ11 + x2
11 + x20x22 + x2

21),

0 = ẋ10 − x11.

In the first equation, x12 has become ẋ11. The last equation, ẋ0 = x1, can not be ‘substituted

away’—in general, any Equation (10) must stay if its xjl and xj,l+1 are both state items, as this is

how order reduction occurs.

In Mattsson and Söderlind’s [8] terminology, a ‘dummy derivative’ means a differentiated

item that, in our terms, is a solved for item but is not a state variable or the derivative of one. In

this example with this state vector, that makes y1 and y2 the DDs.
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3.3 Issues with switching, and numerical solution method

At a DD-switch, the set (8) of differentiated equations does not change. Thus at the housekeeping

level, a switch merely changes the set S of index pairs (j, l) that define the state vector. We verified

that this switching method works, by a proof-of-concept Matlab implementation, as well as one

in C++ to verify the AD aspects. One example was the double pendulum (one pendulum-rod hung

off another) in x,y coordinates, where each rod independently has four DD-switching points in a

full rotation, one in each quadrant, giving 4 × 4 = 16 possible ‘DD modes’.

It remains to be seen how efficient one can make DD-switching for production code and for

larger problems. Finding the Gk at a switch is non-trivial. Ideally one wants each one to be

maximally well-conditioned, which is expensive, so one seeks heuristic methods. This makes

Scholz and Steinbrecher’s simplified method [17] interesting. Less general than full DDs but

cheaper, it uses a highest-value transversal of the signature matrix to find a state vector. One

might try it first, and if it gives ill-conditioned Gk , use full DDs.

It seems natural to solve the original DAE numerically, by giving formulation (8), (10) to a

standard index-1 DAE solver. However many models, especially mechanical ones, have many

equations but few degrees of freedom, Nx ≫ dof. Then it makes sense to convert to the explicit

ODE form (11). In many mechanical contexts (though not all) this ODE is non-stiff and thus

amenable to, say, an explicit Runge–Kutta method. Working memory for sub-problems of size

up to n is needed by the root-finding that forms (11), but is typically less than that needed by an

implicit DAE code on a problem of size Nx.

3.4 AD for DDs

How can an AD tool help automate numerical solution by DDs, as described above?

It is helpful, but not essential, if the tool supports d/ dt as a first-class operator, of equal

status with +, ×, sin(), etc., so that it can understand a representation of a DAE in the general

form (1). Tools such as ADOL-C and dcc/dco [5,9] do not have this feature, but can handle

arbitrary expressions containing derivatives by renaming the latter as algebraic items and stating

their differential relations separately. This is like the method in Section 3.1, where derivatives

are renamed as algebraic in (9) and some differential relations between them stated in (10).

Our solver Daets uses Ole Stauning’s AD package FADBAD++ [19], written in C++. It did

not originally include d/ dt but at our request in 2002, Stauning included the operator Diff

such that Diff(·, q) means dq/dtq. For instance, straightforward code for the pendulum, as in

the Daets user guide, is shown in Figure 1.

More important, for DDs and other index reduction methods, an AD tool must be able to

differentiate the fi selectively. For instance in the pendulum, A and B are to be left alone, and C

differentiated twice.

Figure 1. Code for simple pendulum problem.
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At first sight this seems to require a tool based on source code transformation, which could

generate code symbolically for the last two equations in (13), for instance. But this is not so—

the key is to treat different derivatives of a given variable, not in isolation but stored together

as a truncated power series (storage in Daets is already organized this way). For instance in the

pendulum, the unknowns form three objects

x = (x0, x1, x2) order 2 power series,

y = (y0, y1, y2) order 2 power series,

λ = (λ0) order 0 power series.

Here and in the next two paragraphs, sanserif denotes that the series is represented by Taylor

coefficients (usually more convenient for implementation), not derivatives, thus xk relates to the

xk in (13) by xk = xk/k!, and so on.

AD by overloading, provided by many AD tools, now gives the needed values. For instance

evaluating C = x2 + y2 − ℓ2 proceeds via these intermediate steps:

input

x = (x0, x1, x2)

y = (y0, y1, y2)

compute

v1 = x2 = (x2
0, 2x0x1, 2x0x2 + x2

1)

v2 = y2 = (y2
0, 2y0y1, 2y0y2 + y2

1)

v3 = v1 + v2 = (x2
0 + y2

0, 2(x0x1 + y0y1), 2(x0x2 + y0y2) + x2
1 + y2

1)

C = v3 − const(ℓ2) = (x2
0 + y2

0 − ℓ2, 2(x0x1 + y0y1), 2(x0x2 + y0y2) + x2
1 + y2

1)

returning a degree 2 power series object C holding the needed coefficients (C0, C1, C2), that is

(C, Ċ, 1
2
C̈) in terms of derivatives.

Evaluating A = ẍ + xλ and B = ÿ + yλ − g is similar. Differentiating twice converts, e.g. the

degree 2 series x = (x0, x1, x2) to the degree 0 series (2x2). Thus A and B are returned as the

degree 0 series A = (A0) = (2x2 + x0λ0) and B = (B0) = (2y2 + y0λ0 − g).

The above method gives an explicit evaluation of the Nf functions (8) at the Nx arguments (9).

In the DDs context of reducing the DAE to an explicit ODE, one inputs state item values, say

xS = (x0, x1). The 5 items xF = (x2, y0, y1, y2, λ0) are trial values that produce 5 residual values

r = (A0, B0, C0, C1, C2). By root-finding using suitable Jacobians, see below, we find xF that

makes r = 0, thus solving for xF as a function of xS . Extract x2 from xF to form (x1, x2), which

is ẋS . This implements F in (11).

To make this work, the state items must comprise a contiguous set of derivatives of each

variable, with no gaps. (Hence, cf. the paragraph following (13), (x, ẏ) and (y, ẋ) are not useful

state vectors for the pendulum.) That is, S must have the form { (j, l) | 0 ≤ l < δj, j = 1, . . . , n },

where δ = (δ1, . . . , δn) is an integer DD-spec vector with 0 ≤ δj ≤ dj and
∑

j δj = dof, which

uniquely specifies the DD scheme currently in use. DD switching can be based on changing this

δ, and following through the consequences for various associated index sets and Jacobian-related

matrices.

3.4.1 Complexity and efficiency aspects

We assume—see Section 3.3—numerical solution is by reducing (8), (10) to explicit ODE

form (11) and using an explicit ODE solver. To use an implicit, e.g. stiff, solver and compute

exact Jacobians ∂F/∂xS for this by AD is more challenging.
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Function values (8). Denote the vector of functions fi in (1) by f, with inputs (t, x) where x

denotes relevant ‘xj and derivatives’. View f as a computational graph or code list, overloaded to

compute different things depending on the type of inputs given to it.

Let x(d) denote the vector whose jth component is a degree dj truncated Taylor Series (TS) of

xj, equivalently the list of xj’s derivatives up to the djth. E.g. for the pendulum we use x(d) =

(x, y, λ)((2,2,0)) = ((x, ẋ, ẍ), (y, ẏ, ÿ), (λ)), or the corresponding list of Taylor coefficients. Let f(c)

have the similar meaning. Then evaluating (8) can be written as follows:

f(c) = f(t, x(d)). (14)

with the rigorous interpretation that a numerical TS vector x(d) is given as input to the code list,

with each elementary operation overloaded to be a TS operation.

As the pendulum example illustrates, SA acts here as a scheduling algorithm: if one starts with

x(d), each operation receives inputs of just the right degree, so f(c) is returned as final output. (A

differentiation reduces TS degree, while for algebraic operations the output degree is the least of

the input degrees.)

Since average degrees are typically low, say at most 3, the work W(f(c)) of an evaluation of

(14) is a modest multiple of the work W(f) of a basic evaluation of the DAE (1), depending on

how the AD is implemented but independent of n.

Jacobians. The offsets give (8) a block-triangular structure. Evaluating F in (11) uses this,

solving subsystems of size mk for k = kc, . . . , 0, where kc = − maxi ci and mkc
≤ · · · ≤ m0 = n.

Block k’s Jacobian Gk is a square sub-matrix of the mk × nk system Jacobian Jk for SA stage k,

which is a sub-matrix of the overall Jacobian J = J0.

Nedialkov’s group has put in Daets a forward-AD method to compute J, taken from [10]. It

also overloads the code list, propagating compressed gradients instead of Taylor series; one can

write it as ∇f = f(t, ∇x) with an interpretation analogous to (14). By a topological sort one can

arrange that the code list for Jk is an initial segment of that for Jk+1, for each k. If dense linear

algebra is used, the work W(J) to evaluate J is of order nW(f). However we use sparse linear

algebra which, with the compressed gradients, usually gives big speedups on larger problems.

In general each block of (8) is a nonlinear system, but the quasi-linearity analysis phase of SA

(overloading f yet again) finds which blocks are linear, with further efficiency gains.

Experience with the corresponding task in Daets suggests that

• With standard methods used in stepping codes for finding a good initial guess for a nonlinear

solve, typically 1–3 evaluations of f(c) are needed for each F evaluation.

• With standard ways to re-use ‘old’ Jacobians one can average < 1 evaluation of J per time

step.

• The linear algebra cost is negligible compared with the AD cost.

Experiments by Nedialkov, using the C++ AD infrastructure of Daets, confirm this is a viable

way to implement DDs; as yet we do not have performance results to report.

4. The Lagrangian

4.1 Mechanics theory

For mechanical systems, such as in robotics, equations of motion can often be conveniently

derived from the system’s Lagrangian function L. It is assumed there are conservative (energy

preserving) forces such that one can define a potential energy V depending only on system posi-

tion. Then L = T − V , where T is the system’s total kinetic energy. Let the configuration at any
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time be described by generalized coordinates q = (q1, . . . , qnq
) such that T is a function of q̇ and

possibly q, and V is a function of q only. There may (depending on the coordinate system used)

be nc scalar constraints that are holonomic, i.e. functions of positions and possibly time but not

of velocities, namely Cj(t, q) = 0.

Then the variational principle of stationary action gives the (nq+nc) Euler–Lagrange equations

(ELEs) that describe the motion:

d

dt

∂L

∂ q̇i

−
∂L

∂qi

+

nc
∑

j=1

λj

∂Cj

∂qi

= 0, i = 1, . . . , nq, (15)

Cj(t, q) = 0, j = 1, . . . , nc, (16)

where the λj are Lagrange multipliers for the constraints. For a system subject to external forces,

the zero right-hand sides of (15) are replaced by ui(t, q, q̇), i = 1, . . . , nq, which are generalized

external force components.

If nc > 0, i.e. constraints are present, (15), (16) is termed a Lagrangian system of the first

kind. It is a DAE system, of index 3 in the classical sense or index 2 as defined in (5), since two

t-differentiations of each Cj are needed. If the coordinates are chosen so that nc = 0, it is of the

second kind and is an ODE system.

E.g. for free motion of the simple pendulum, taking q = (x, y), the cartesian coordinates of the

pendulum bob (of mass m) with y downward, gives

T = 1
2

m(ẋ2 + ẏ2), V = −mgy,

L = T − V = 1
2

m(ẋ2 + ẏ2) + mgy (17)

with one constraint that we write

0 = C = 1
2
(x2 + y2 − ℓ2) (18)

(19)

Then (15), (16), on dividing through by m, lead to the pendulum DAE

0 = A = ẍ + xλ from 0 =
d

dt

∂L

∂ ẋ
−

∂L

∂x
+ λ

∂C

∂x
,

0 = B = ÿ + yλ − g from 0 =
d

dt

∂L

∂ ẏ
−

∂L

∂y
+ λ

∂C

∂y
,

0 = 2C = x2 + y2 − ℓ2.

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

(20)

On the other hand, taking q to be (θ), the angle of the pendulum from the downward ver-

tical, gives L = 1
2

m(lθ̇ )2 + mgl cos θ , with no constraints. Then (15), (16) lead to the ODE

θ̈ = −(g/l) sin θ , which is equivalent to (20).
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Figure 2. Code to describe pendulum in Lagrangian form.

4.1.1 The Lagrangian facility in Daets

As said in Section 1.2, solution apparently comprises several phases: (1) Apply ∂/∂q, ∂/∂ q̇ and

d/ dt on L and C to get the ELEs. (2) If these form a DAE, reduce index (e.g. by DDs) to prepare

it for solution. (3) Solve it numerically. By using a high index solver for SA-friendly DAEs, we

already merge phases 2 and 3. The new feature of the ‘Lagrangian facility’ is to merge phase 1

with these. We use Daets with its built-in AD by FADBAD++; another DAE code with another

AD system could do essentially the same.

The user describes a DAE system to Daets by a function fcn() in which the mathemat-

ical variables become objects of a template type T, as Figure 1 in Section 3.4 shows. Daets

instantiates T during execution with various concrete types.

The user of the Lagrangian facility writes code for L instead of for the DAE equations. The

generalized coordinates qi become variables of a reverse differentiation type B built on top of

T, that is B. In the pendulum example, these are the coordinates x,y which become x, y of

type B, see Figure 2. The partial derivatives in the right of (18), as well as the d/ dt, are com-

puted by AD to obtain the equations on the left where the variables have been converted back

to type T. The transformation, done in one direction by init_q_qp() and in the other by

setupEquations(), is invisible to the user.

4.1.2 Complexity and efficiency aspects

For current symbolic approaches, see, e.g. [22], or webinar [21] for an introduction to Lagrangian

modelling with Matlab and Simulink. Using AD as we do to transform the Lagrangian has

several advantages over these methods, besides user convenience:

• The complexity of computing a Taylor series of degree p from a code list (or computational

graph, CG) of length l, using AD, is O(p2l), but a straight symbolic approach often gives

expressions that grow exponentially in p. Further, see, e.g. [4], the recursive expression for

an ODE’s or DAE’s Taylor coefficients of degree r is jointly linear in the coefficients of

degrees > r/2. Hence a TS of degree p can be computed in around log2(p) sweeps though

the CG, rather than the p sweeps of the most natural algorithm.

• This applies to the use of FADBAD++ as the AD package. The fcn() code is actually called

only once for each instantiating type T. When T is Taylor mode, FADBAD++ converts this

at run time to a CG representing the floating-point Taylor series evaluation, to the chosen

degree (like the ‘tape’ used by the ADOL-C system).

It optimizes this using methods of common-subexpression elimination (CSE) developed by

Nedialkov’s group, often significantly shortening the CG (see Table 2). The optimized CG is

used by Daets at each evaluation of functions (1) during numerical integration.
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Figure 3. Spring-Mass-Pendulum with one rod.

This, with our efficient algorithm for System Jacobians and sparse linear algebra, mentioned

in Section 3.4, often gives speedups of > 10 compared to FADBAD++ without CSE.

4.2 Examples

We have applied the Daets Lagrangian facility to various systems, including the following

examples. Performance tests are on a 2017 MacBook Pro laptop with a 4-core 2.2 GHz Intel pro-

cessor running Mac OS X 10.11.6. The C++ compiler is clang++ version 8.0.0. All numerics

are in C++ double.

Visualisations of some results, produced in Matlab from the Daets output, can be viewed at

the YouTube channel Multi-body Lagrangian Simulations [13] (Figure 3).

Because of the perceived difficulty of solving DAEs, generalized coordinates are often cho-

sen to eliminate the constraints and give a Lagrangian of the second kind. For instance, a rigid

body’s 3D position can be described by 3 coordinates of the position of its centre of mass and

3 of its angular position relative to this. However the mathematical formulation is often simpler

in cartesian coordinates. One plus of using a code for high-index DAEs such as Daets is that it

handles resulting ‘first kind’ systems easily. Further, since Daets does not set up a local coordi-

nate system for numerical solution as the DDs method does, it does not suffer the performance

penalty of DD-switching.

Example 4.1 (Spring-Mass-Pendulum) This 2D model is taken from an article on the Acumen

mechanics modelling system by Zhu, Taha et al. [22].

We have extended their model to a chain of any number n of rods. Namely, a horizontally

sliding point-mass M is connected by a spring of stiffness k to a fixed point at the same level.

From M hangs a chain of n uniform rods, with frictionless joints between the end of one and the

start of the next. Purely to simplify the code, they all have the same mass m and length l = 2a.

We assume the setup is constructed so that all components can slide or rotate freely without

colliding.

For n ≥ 2 (possibly even for n = 1), the motion can be chaotic. The figure (taken from [22])

shows the case n = 1. As the figure indicates, Zhu et al. [22] take q = (x, θ) as coordinates,

leading to a Lagrangian of the second kind, L = T − V where:

T = 1
2
(M + m)ẋ2 + maẋθ̇ cos θ + 2

3
ma2θ̇2, V = 1

2
kx2 + mga(1 − cos θ). (21)

Here the rotational kinetic energy term 2
3
ma2θ̇2 uses the moment of inertia I = 4

3
ma2 of a uniform

rod about its centre of mass.



Optimization Methods & Software 13

For the general n-rod model we use, instead, cartesian coordinates q = (x0, x1, . . . , xn; y1, . . . ,

yn). Here r0 = (x0, y0), with y0 constant equal to 0, is the position of M and the start of rod 1, and

ri = (xi, yi) for i = 1, . . . , n is the position of the joint between the end of rod i and (for i < n) the

start of rod i + 1. We avoid moments of inertia by using the following, where · denotes the dot

product of vectors.

Lemma 4.1 If the ends of a uniform rod of mass m have position vectors r0 and r1, depending

on t, then its kinetic energy at any instant is

KE = 1
6

m(ṙ0 · ṙ0 + ṙ0 · ṙ1 + ṙ1 · ṙ1).

Proof We can parameterize position along the rod as r = (1 − s)r0 + sr1, for 0 ≤ s ≤ 1. Since

the rod has total mass m, an element from s to s + ds has mass m ds. The velocity of this element

is ṙ = (1 − s)ṙ0 + sṙ1 so its kinetic energy is

1
2

m(ṙ · ṙ) ds = 1
2

m
(

(1 − s)2 ṙ0 · ṙ0 + 2(1 − s)s ṙ0 · ṙ1 + s2 ṙ1 · ṙ1

)

ds.

Integrating this from 0 to 1 gives the result. �

The potential energy of the rods comes from considering the mass of rod i to be at its centre of

mass at height 1
2
(yi−1 + yi); there is a contribution of 1

2
kx2

0 from the spring and none from mass

M. This leads to the Lagrangian L = T − V , and constraints Ci, where

T =
1

2
M ẋ2

0 +
1

6
m

n
∑

i=1

(ṙi−1 · ṙi−1 + ṙi−1 · ṙi + ṙi · ṙi)

=
1

2
M ẋ2

0 +
1

6
m

n
∑

i=1

(

(ẋ2
i−1 + ẏ2

i−1) + (ẋi−1ẋi + ẏi−1ẏi) + (ẋ2
i + ẏi2)

)

V =
1

2
kx2

0 + mg

n
∑

i=1

1

2
(yi−1 + yi) =

1

2
kx2

0 + mg

(

1

2
yn +

n−1
∑

i=1

yi

)

,

0 = Ci = (xi − xi−1)
2 + (yi − yi−1)

2 − ℓ2, (i = 1, . . . , n).

The code in Figure 4, which replaces lines 7–9 in the fcn of Figure 2, implements the above

formulas. Here n, the number n of rods, is read in as one of the physical parameters. SIZEOFC

also equals n. The arrays q and qp holding q and q̇ have length 2n + 1.

Listing line 1 uses C syntax1 to split q into a scalar holding x0, and two size-n arrays holding

x1, . . . , xn, and y1, . . . , yn; similarly qp. The variable KEsum accumulates ẋ2
0 + ẋ2

n + ẏ2
n + ẋ0ẋ1 +

∑n−1
i=1 [2(ẋ2

i + ẏ2
i ) + ẋiẋi+1 + ẏiẏi+1], which is equivalent to the sum in T, and similarly PEsum.

In the computation of L, the temporary dependent variables KEsum, PEsum, KE, and PE, are

local in the block between lines 3 and 4; FADBAD++ requires that in the reverse mode either all

intermediate dependent variables are differentiated or go out of scope, which is the case here.

In our tests, the physical parameters of the original model in [22] were used, namely assuming

SI units, g = 9.8 m s−2, l = 2a = 2 m, M = 5 Kg, m = 2 Kg, k = 10 Kg s−2.

The chosen initial conditions (ICs) are that the system is at rest with mass M at x0=4, and

the rods stretched horizontally to the left. (Thus the spring is pushing against the row of rods;

animations show it ‘folds up’ rods 1 and 2 as they start to fall.)

To confirm that we are modelling the same system as in [22], the equations of motion derived

from the Lagrangian (21) given in [22] were coded in Matlab and integrated by ode45. The

results were compared with those of the Daets version for the case n = 1. The latter was coded
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Figure 4. Code for spring-mass-multi-pendulum system.

Figure 5. Spring-mass-pendulum with n = 1. It shows, for the x coordinate of the sliding mass and the x and y

coordinates of the pendulum, the difference between the solution by our model and that by (19), over 0 ≤ t ≤ 40.

Table 1. Time (seconds) to integrate to t = 100 for various numbers n of rods, and tolerances tol.

tol n =1 2 4 6 8 10 12 14 16 18 20

1e − 04 3.6e − 02 1.2e − 01 3.5e − 017.3e − 011.3 2.1 3.1 4.2 5.6 7.2 8.8

1e − 06 4.5e − 02 1.5e − 01 3.8e − 019.3e − 011.8 2.8 4.3 5.5 7.9 9.9 12.0

1e − 08 5.8e − 02 2.3e − 01 6.3e − 011.3 2.4 3.7 5.6 7.7 10.0 13.3 16.5

1e − 10 8.0e − 02 2.7e − 01 7.5e − 011.7 3.1 4.8 7.7 10.9 13.8 17.4 22.3

1e − 12 1.1e − 01 4.3e − 01 1.1 2.4 4.5 6.9 10.1 14.0 18.2 23.6 30.2

to output q and q̇ at each of its time points ti. These data were mapped to the ti chosen by the

Matlab version by Hermite cubic interpolation between adjacent ti of Daets. Figure 5 shows

that over t = [0, 40], the differences (ode45 solution at tolerance 10−12) − ( Daets solution at

tolerance 10−8) are of order 10−6. This gives confidence that the programs are solving the same

physical model.
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Table 2. Number of nodes in the computational graph of the spring-mass-pendulum example, without and with CSE.

n 1 2 4 6 8 10 12 14 16 18 20

without CSE 154 348 964 1884 3108 4636 6468 8604 11044 13788 16836

with CSE 120 211 415 649 915 1213 1543 1905 2299 2725 3183

% reduction 24.1 42.9 62.1 71.5 76.9 80.5 83.0 84.9 86.3 87.5 88.4

For timing tests, the system was integrated by Daets over 0 ≤ t ≤ 100 for various numbers n

of rods and (mixed relative-absolute) tolerances tol. Case n = 1 is the model in [22]. The Taylor

series degree was set to 15, which works well for these problems at this range of accuracies.

Table 1 shows the times taken.

Daets has a ‘maximum step size’ feature but this was not used so it chooses the step sizes

h freely. For the ‘hardest’ problem n = 20 at tolerance 10−12, they ranged from h = 0.00061 to

h = 0.09. For the ‘easiest’, n = 1 at tolerance 10−4, they ranged from h = 0.09 to h = 0.83.

In Table 2, we report the number of nodes in the CGs for the above number of rods: without

CSE, with CSE, and the percentage of reduction in the number of nodes. Here it varies from

24.1% for n = 1 to 88.4% for n = 20.

Example 4.2 (Controlled simple pendulum) We show one can solve a prescribed-trajectory con-

trol problem for a Lagrangian-described system. Namely, for the simple pendulum we introduce

a horizontal external force on the bob, modelled as a system input u = u(t) such that the equation

ẍ + λx = 0 becomes

ẍ + λx − u = 0. (22)

The aim is to find u(t) (plus suitable consistent ICs) so that the x position performs simple har-

monic motion x(t) = a sin(ωt) exactly, where the constants a and ω are a given amplitude and

frequency, respectively.

Comparing the pendulum as initial-value problem in Figure 2 and as control problem in

Figure 6 shows the implementation changes little. One passes a and ω as extra parameters that

become a and w. After the setupEquations line, the first equation f[0] is modified in line

12, and a new fourth equation f[3] is at line 13 (in which the x at line 7 in Figure 2 cannot be

used as it has the wrong type, B instead of T).

But the revision has changed the DAE’s mathematical nature greatly. Now with 4 variables

and equations, it is shown below with its signature matrix � (a blank means −∞, and the unique

transversal is marked by ◦).

0 = A = x′′ + xλ − u

0 = B = y′′ + yλ − g

0 = C = x2 + y2 − ℓ2

0 = D = x − a sin(ωt)

� =

x y λ u ci
⎡

⎢

⎣

⎤

⎥

⎦

A 2 0 0◦ 0

B 2 0◦ 0

C 0 0◦ 2

D 0◦ 2

dj 2 2 0 0

(23)

While (20) has 2 degrees of freedom, (23) has none—specifying the desired x(t) determines the

system input u(t), as well as y and λ, uniquely.

With the physical parameters g = 9.8 and ℓ = 10, the problem was solved by Daets with ω

equal to the pendulum’s natural frequency
√

g/l of small oscillations, and for various a; and

again with ω changed by 20%, for the same a values. Some examples of resulting u’s are plotted

over several cycles in Figure 7. As expected, u is very small when ω is the natural frequency and
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Figure 6. The fcn for the controlled pendulum problem: new lines 12 and 13 are inserted.

Figure 7. Solution by Daets of system input u(t) for controlled pendulum with g = 9.8, l = 10. Required response
x = a sin(ωt). For ω equal to natural angular frequency (left column) and 20% larger (right column), and three a values.

a is small. It becomes large as a approaches ℓ, or as the frequency moves away from the natural

one. Daets took less than 0.1 seconds for each of the runs.

Example 4.3 (DETEST Non-stiff Problem C5) This problem from the non-stiff part of the

DETEST testing package for ODE solvers [2], and originally2 from Zonneveld [23], is titled

‘Five Body Problem: Motion of five outer planets about the Sun’. It is a order 2 ODE of size 15

(so size 30 when reduced to order 1), the variables being the positions of Jupiter, Saturn, Uranus,

Neptune and Pluto relative to the Sun, in x,y,z coordinates such that the ecliptic plane, in which

the orbits approximately lie, is not close to any of the three axes.
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Figure 8. Log–log plot of divergence vs time. The planet model was integrated at two tolerances 1e-13 and 1e-15.
The norm of the difference between these solutions is plotted at 10n TU, n = 1, . . . , 8, showing no sign of chaotic
behaviour for this set of ICs.

To set up the Lagrangian formulation, q comprising the 5 relative positions (̺1(t), . . . , ̺5(t))

(each ̺ being a 3-vector) is converted to 6 positions (r0(t), . . . , r5(t)) of Sun and planets relative

to their common centre of mass, which may be considered to be at rest in a Newtonian absolute

frame. Namely let m0 be the mass of the Sun and m1, . . . , m5 the masses of the planets and

subtract

rc =
m00 + (m1̺1 + · · · + m5̺5)

m0 + (m1 + · · · + m5)

from each component of (0, ̺1, . . . , ̺5) to get (r0, . . . , r5). Then

T =
1

2

5
∑

i=0

mi|ṙi|
2, V = −

5
∑

i=0

5
∑

j=i+1

Gmimj

|ri − rj|
, L = T − V , (24)

where G is the gravitational constant. The code, shown in the appendix, was made particularly

compact using a C++ 3-vector class from [3].

In the DETEST model the time unit (TU) is 100 days. Distance is measured in astronomical

units (AU), where 1 AU is the mean radius of the earth’s orbit. The task is to integrate from given

initial values up to t = 20 TU; at tolerance 10−13 we get agreement with DETEST’s reference

solution to around 12 decimal places.

To see how fast the solution is, the problem was integrated to t = 200,000 TU (about 55,000

earth years), with Taylor degree 20, at tolerances 10−13 and 10−14. The two sets of results agree
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to five decimal places, and some Daets integration statistics are

Integration of Sun and 5 planets to t = 200, 000 TU

tol CPU secs no. of steps smallest step largest step

1e-13 24.6 40855 2.66 8.32

1e-14 27.5 45619 2.39 7.65

The number of CG nodes is 1002 without CSE and 880 with CSE, or 13.9% reduction.

It is known that Pluto is locked in a, currently stable, 3:2 resonance with Neptune. This was

easy to verify over short periods from our results. For the subtleties of solar system behaviour,

see [6] and references therein. This article cites evidence that over very long times the system

switches between regular and chaotic behaviour in an irregular way that depends critically on

ICs. Hence numerical results showing linear (regular) divergence of neighbouring solutions up

to some large time T—rather than exponential (chaotic) divergence — are no evidence that such

behaviour will continue up to, say, time 2 T .

What about the given ICs? We integrated the problem at two tolerances 1e-13 and 1e-15,

recording the solutions at successive powers of 10 up to 108 TU (≈ 4.2 hours CPU time for

each to reach 108) and computing the relative error in the 2-norm at these times. The results, see

Figure 8, show non-chaotic behaviour up to that point.

5. Conclusions and further work

For two significant applications to do with DAEs, we have shown that differentiation of expres-

sions, commonly done symbolically with the help of a computer algebra system, can be done

efficiently and simply by AD.

First, for the Dummy Derivatives index reduction method a theoretical scheme is given that

applies in principle to preparing a DAE for solution by any standard DAE or ODE initial value

code. DD-switching, which moves from one mode (local coordinate system) to another, is at the

housekeeping level just a change of the size- dof set S of indices (j, l) that define the state vector.

The scheme reduces order and index together, so one need not pre-reduce to first-order form.

Finally, following this paper’s theme, differentiating DAE components fi selectively (some more

than others) does not need symbolic algebra; it can be done by standard AD methods of treating

them as truncated power series.

We have proof-of-concept implementations in Matlab and C++. It remains to be seen whether

the scheme can be made efficient as a practical tool. For DAEs from industrial applications that

may need to switch among very many modes, it may (as in the more general case of hybrid

systems) be worth keeping a run time data base of modes used, if this can speed up re-entry to a

mode that has been met before.

Second, we have shown that for a DAE, all or part of whose equations fi = 0 derive from the

Lagrangian L of a mechanical system, producing the fi from L can be done by pure AD without

symbolic algebra. The theory was illustrated by simulation examples: a constrained mechani-

cal system, a forced pendulum as a prescribed-path control problem, and an ODE of planetary

motion.

The method of directly solving from a Lagrangian by overlaying one AD type on another

might be used with other DAE solvers and AD tools. However our infrastructure, of Daets with

FADBAD++ and the Lagrangian facility has several advantages:

• For any SA-friendly DAE, the user leaves both conversion of L to equations of motion, and

index/order reduction of the resulting DAE, to be done by Daets automatically.
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• It avoids large symbolic expressions that a computer algebra system typically generates when

converting to a form suitable for integration by a standard ODE/DAE solver.

• Constrained ‘first kind’ Lagrangians in cartesian coordinates are often simpler to formulate

than unconstrained ‘second kind’ ones in other coordinates. For a high-index DAE solver

such as Daets, possible obstacles posed by index reduction and DD-switching are absent,

and constrained systems are as easy to solve as unconstrained, which makes ‘first kind’ forms

more attractive.

• It can be programmed in a way that is intuitive and close to the mathematics, which using

cartesian coordinates is itself more readable and accessible.

• It gives remarkably fast code in the cases we have tried (which can be seen from the Daets

statistics of the animations at [13]).

Current work is exploring our Lagrangian approach on a variety of research and engineer-

ing problems, and in particular rigid-body mechanics simulations and control problems. We are

particularly interested in hybrid systems, because of their importance in industrial engineering.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

We acknowledge with thanks the support given to JDP by The Leverhulme Trust of the UK; and NN, GT, and XL by the
Natural Sciences and Engineering Research Council of Canada (NSERC).

Notes

1. For instance q+ 1 references a sub-array of q starting at q[1].
2. Enright and Pryce [2] cite nonexistent reference ‘11’ which should be ‘10’ and is the Zonneveld work.
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Appendix. Extract from code for planetary problem

This is the fcn() code for 3D motion of n + 1 gravitating bodies, where body 0 is the Sun and the x,y,z positions of the
other bodies are relative to it. It was specialized to the problem in Example 4.3 by providing suitable input to the main
program, not shown. Note this function is not restricted to 5 bodies: their number and masses are passed as parameters.

1 template <typename T>

2 void fcn( T t, const T *z, T *f, void *pp ) {

3 const double *param = (double *)pp;

4 const int nMASS = param[0],

5 n = nMASS-1;

6 const double G = param[1];

7 const double *m = param + 2,

8 *mplanet = m+1; // the masses EXCLUDING the Sun

9 const double Mtotal = (m + nMASS)[0]; // total mass, calculated in main program

10

11 typedef Vector3D< B<T> > vec3;

12 vector< B<T> > q(3*n), qp(3*n); // independent variables

13 B<T> L; // for storing Lagrangian

14 // { ... } ensures all intermediate variables go out of scope

15 {

16 init_q_qp(z,q,qp); // setup q, qp

17

18 // Convert to a vector of 3D vectors.

19 vector< vec3 > Q(n), Qp(n);

20 for (int imass=0; imass<n; imass++) {

21 Q[imass] = vec3( q [3*imass], q[3*imass+1], q [3*imass+2] );

22 Qp[imass] = vec3( qp[3*imass], qp[3*imass+1], qp[3*imass+2] );

23 }

24

25 vector< vec3 > R(nMASS), Rp(nMASS);

26 R[0] = Rp[0] = vec3(0,0,0);

27 for (int imass=0; imass<n; imass++) {
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28 R [0] -= mplanet[imass]*Q [imass]; Rp[0] -= mplanet[imass]*Qp[imass];

29 }

30 R [0] /= Mtotal; Rp[0] /= Mtotal;

31

32 // then set r_1, ..., r_n and their derivatives:

33 for (int imass=1; imass<nMASS; imass++) {

34 R [imass] = Q [imass-1]+R [0]; Rp[imass] = Qp[imass-1]+Rp[0];

35 }

36

37 // Compute KE and PE in terms of r and rp arrays

38 B<T> KE = 0;

39 for (int imass=0; imass<nMASS; imass++)

40 KE += m[imass] * Rp[imass]*Rp[imass];

41 KE *= 0.5;

42

43 // Potential Energy (sum of all mass-to-mass PEs, -> -oo as bodies

44 // become close)

45 B<T> PE = 0;

46 for (int imass=0; imass<nMASS; imass++)

47 for (int jmass=imass+1; jmass<nMASS; jmass++)

48 PE -= m[imass] * m[jmass] / norm(R[imass]-R[jmass]);

49 PE = G*PE; // bring in gravitational constant

50

51 L = KE-PE;

52 }

53 vector<B<T> > C; // dummy constraint variable

54 setupEquations(L,z,q,qp,C,f);

55 }
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