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Summary 
Voltage source converter-based (VSC) high-voltage direct-current (HVDC) 

system is emerging as an important technology for transmitting bulk power over 

long distances and integrating large-scale renewable energy. However, there are 

still a number of technical challenges. One of the critical aspects is the fault 

protection. This thesis focuses on the fault behaviours of the VSC HVDC systems 

and the connected ac systems when the HVDC system subject to ac or dc faults.  

In relation to the dc side faults, the operating characteristics of dc circuit breakers 

(DCCBs) and the application of DCCBs in dc grids were studied. The factors, such 

as the current limiting reactor and the surge arrester, which affect the performance 

of a DCCB to interrupt dc fault currents were investigated through simulations. In 

order to test the effectiveness of utilising DCCBs to isolate dc faults, experimental 

validation was carried out by applying DCCB prototypes in a three-terminal VSC 

HVDC test-rig.  

Different dc fault protection approaches were applied in a meshed dc grid which 

connects to an ac transmission system with two connection points. This aims to 

investigate the impact of different dc protection approaches on the stability of the 

integrated ac/dc system. The dynamic interactions between the ac and dc systems 

were studied further. 

In terms of converter ac side fault, single-phase faults which occur in the area 

between the valve and the interface transformer were studied. The fault 

characteristics of the valve-side single-phase fault in three converter station 

configurations were analysed in detail. Fault protection strategies based on the 

theoretical analysis were proposed and validated through simulations.   

The study of this research work is expected to contribute to the design of ac and 

dc fault protection of HVDC systems. 
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1.1 Background 

Power generation plants, transmission grids and distribution networks are 

constantly expanding to cope with growing demand. At the same time, the 

environmental impact due to the burning of fossil fuels needs to be minimised. 

Renewable energy has a key role to play in this effort. High-voltage direct-current 

(HVDC), a technology which has been used more than 70 years [1], is suited to 

transport large amounts of power over long distances with minimum losses. 

Renewable energy sources, such as wind, solar and hydro, are often located great 

distances from the end-users. Deployment of HVDC is leading to an increasing 

number of point-to-point connections in different parts of the world. Fig. 1. 1 shows 

the existing and future HVDC links in North Europe [2]. Those HVDC links 

contribute to bringing power to the customers efficiently and in line with demand. 

This improves power supply security and mitigates the intermittence of renewable 

energy. 

 

Fig. 1. 1. North Europe HVDC links [2]. 

The logical next step is to interconnect the links and improve the reliability of 

the network and balance the power loads. A multi-terminal HVDC (MTDC) grid 

may reduce the number of converter stations and transmission lines compared to 

point-to-point configurations. Additionally, the flexible controllability for 
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integrating multiple power sources and loads makes the MTDC grid a highly 

competitive solution to achieve transnational exchange of electricity. Fig. 1. 2 

shows a European dc grid vision [3]. This dc grid brings solar power from the desert 

of Africa to Europe and connects the offshore wind power and hydro power in 

European countries. Such a large-scale dc grid will provide reliable and cost-

effective power transmission services and optimise the value of existing ac 

infrastructures by utilising state-of-the-art technologies. 

In HVDC systems, the voltage source converter (VSC) technology is becoming 

an attractive alternative to conventional line commutated converters (LCCs) for its 

features. These include: 1) compact and flexible station layouts, with low space 

requirements, and a scalable system design; 2) a high dynamic performance and 

stable operation with ac networks; 3) capability of supplying power to passive 

networks and black-start; 4) an independent control of active and reactive power; 

and 5) no voltage polarity reversal during power flow reversal [4]-[7]. Therefore, 

VSC-based HVDC is more suitable for large-scale renewable energy integration 

and the deployment of MTDC grids. In particular, modular multilevel converters 

(MMCs), a type of VSCs, have been implemented in many commercial HVDC 

projects (e.g. INELFE project, Nan’ao three-terminal project and Zhoushan five-

 

Fig. 1. 2. An European dc grid vision [3]. 

 



 

Chapter 1│Introduction 

 

4 

 

terminal project [9]-[11]) due to their excellent steady-state performance and fault 

tolerant operation [12].  

Although VSC-based MTDC grids complement the existing ac grids by making 

them more functional and controllable, their large-scale development still faces a 

number of challenges. One of the major obstacles is the lack of fast and reliable dc 

grid protections. The absence of current zero-crossings in a dc system inherently 

makes dc current interrupting more difficult than in ac systems. Even though some 

manufacturers have produced several fast HVDC circuit-breakers, their high capital 

costs limit their applications [13]-[14]. The application issues associated with dc 

circuit-breakers (DCCBs) in dc grids need to be investigated. For instance, the 

impact of DCCB operation on the dc system and the dc system connected ac 

systems. 

Compared to ac systems, due to the small inductance of the dc circuits, the rate-

of-change of the dc voltage and current during a dc short-circuit event can be very 

high. A dc network is unable to prevent the voltage collapse that occurs in the event 

of a dc fault from propagating rapidly throughout the network. The converters are 

not capable to provide voltage support during a dc fault, as they might be blocked 

immediately to protect themselves from large dc fault currents. The currents from 

the ac side will keep infeeding to the dc fault if the faulted circuits cannot be isolated 

quickly and in a reliable manner. From the viewpoint of the dc grid connected ac 

grid, a fault within the dc grid can be seen as “multiple faults” on the ac system [15]. 

This may lead to instability of the overall ac/dc system. With the continuously 

increasing of the HVDC market, more attention is required to be paid to the 

transient behaviours of the ac and dc grids subject to a dc fault. In addition, the 

impact of different dc fault isolation and post-fault restoration approaches on the 

stability of ac/dc systems should be investigated as well. 

Apart from dc faults, converter ac fault-tolerant operation is another important 

aspect of the operation of VSC HVDC systems. As asymmetrical faults are most 

common in ac systems, the control and operation of VSCs under unbalanced grid 

conditions has received a significant attention in the literature [16]-[23]. However, 

converter valve-side ac faults remain an under-researched topic.  
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Converter transformers are typically installed outside the halls housing the 

converters. The valve-side winding bushings of these transformers protrude through 

the hall wall to connect to converter ac buses [24]-[25]. Insulation failure and/or 

flashover of wall bushings may cause a station internal single-phase-to-ground 

(SPG) fault between the converter and the transformer [26]. The SPG faults may 

also occur on switchgears and converter grounding systems which are deployed in 

the area between the converter hall and the outside transformers. This area, which 

is in the overlapping protective zones of the converter and the transformer, needs 

high insulation and to withstand high voltages and large currents. A valve-side SPG 

fault in this area will lead to severe consequences, such as commutation failures in 

LCCs, dc voltage oscillations in symmetrical monopole MMCs, and non-zero-

crossing fault currents in asymmetrical monopole and bipole MMCs [25]-[30]. The 

existing analysis of this type of faults in LCCs and two-level VSCs are not 

applicable to MMCs. Although the probability of the occurrence of station internal 

ac grounding faults is low, this type of faults is still conditions the future MMC 

stations have to cope with. 

1.2 Research objectives 

This thesis focuses on the analysis and protection approaches of VSC HVDC 

systems subject to ac and dc faults. The main research objectives of this work 

include: 

▪ To investigate the voltage and current characteristics and response time 

of DCCBs. 

▪ To validate the application of DCCBs on protecting a dc grid against dc 

faults through experiment. 

▪ To investigate the impact of different dc grid protection approaches on 

the stability of integrated ac/dc systems subject to dc faults. 

▪ To analyse the fault characteristics of symmetrical, asymmetrical and 

bipole MMC HVDC systems subject to valve-side SPG fault. 

▪ To develop protection strategies for symmetrical, asymmetrical and 

bipole MMC HVDC systems subject to valve-side SPG fault. 
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1.3 Thesis structure 

The structure of the thesis is as follows: 

Chapter 2 – Literature Review 

In this chapter, the state-of-the-art of the VSC HVDC technologies is overviewed. 

The challenges in achieving MTDC grids are discussed. Different dc fault handling 

devices and approaches for MTDC grids are summarised and critically reviewed. 

The existing research on analysing the stability of ac/dc grids subject to dc faults 

and converter ac side faults is presented. The problems caused by converter ac side 

faults, especially the valve-side single-phase faults, are described.   

Chapter 3 – Application of DCCB in DC grid 

In this chapter, the voltage and current characteristics and response time of 

DCCBs are firstly investigated in simulations. Then the operation and control of 

using DCCBs to protect dc grids are validated in a VSC HVDC test-rig. 

Chapter 4 – Dynamic Interactions of AC and DC Grids Subject to DC Faults 

In this chapter, using different dc fault protection approaches, the dynamic 

interactions of ac and dc grids under the same dc fault are investigated and assessed. 

Simulations are conducted in an integrated ac/dc transmission system which 

contains a 4-terminal meshed dc grid and a 4-machine two-area ac grid.  

Chapter 5 – Symmetrical Monopole MMCs under Valve-side Single-phase Faults 

This chapter presents the theoretical analysis of symmetrical monopole MMCs 

under valve-side SPG fault conditions, with a special focus on the investigation of 

its fault characteristics. The fault responses are broken down into individual 

contributions from different network components. The influence of key factors, 

such as converter grounding schemes, dc lines and fault resistance, on fault 

characteristics are illustrated. A protection strategy based on the theoretical analysis 

and fault characteristics has been proposed for a point-to-point MMC HVDC 

transmission system. The analysis and proposed protection strategy are validated 

through time domain simulations.  
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Chapter 6 – Asymmetrical Monopole and Bipole MMCs under Valve-side Single-

phase Faults 

This chapter analyses the characteristics of valve-side SPG faults in 

asymmetrical monopole and bipole MMCs. Upper arm overvoltage and ac side non-

zero-crossing currents arising from SPG faults in the two MMC configurations are 

investigated. An LR parallel circuit is employed to create zero-crossing currents 

which will enable the operation of grid-side ac circuit breakers. Protection strategies 

based on the LR parallel circuit for asymmetrical monopole and bipole MMCs are 

proposed to relieve the aforementioned issues. The solutions are verified through 

time domain simulations.  

Chapter 7 – Conclusions  

This chapter concludes and summarises the thesis. Contributions of the research 

work and recommendations for future work are presented.   
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2.1 Introduction 

The world’s first commercial voltage source converter-based (VSC) high-voltage 

direct-current (HVDC) project was put into operation in 1999 on the island of 

Gotland [31]. This project is based on the two-level VSC technology with a dc 

voltage of ± 80 kV and a power rating of 50 MW. Since then, the dc voltage, power 

rating and transmission distance of VSC HVDC technology have been continuously 

improving. By the end of 2017, there have been more than 30 system operational 

VSC HVDC projects worldwide [2]. The highest dc voltage of the modular 

multilevel converter (MMC) has been developed to ± 800 kV and its rating has been 

increased to 5000MW [32]. Moreover, there are a number of VSC HVDC projects 

under construction or being planned.  

This chapter gives an overview of the VSC HVDC technology. The key 

components of VSC HVDC systems are described, including converters, dc circuit 

breakers (DCCBs), dc transmission lines and converter grounding schemes. DC 

grid protection approaches are summarised and discussed. The stability analysis of 

integrated ac/dc grids subject to ac and dc faults in the literature are reviewed. 

Finally, the converter ac side faults are described and discussed.  

2.2 Overview of VSC HVDC technologies 

VSC HVDC technology has experienced rapid development in the last two 

decades. This section aims to provide an overview of this technology and its 

worldwide development.  

2.2.1 Converter topologies  

Converter is one of the core elements of HVDC systems, playing a key role in 

power conversion between ac and dc systems. The requirements of VSC design 

include converting power with minimum losses, low harmonic, compact dimension, 

flexible operation and control, high reliability, and fault-tolerant operation [4]-[6].  

Three types of converter topologies have been utilised for VSC HVDC systems: 

two-level converter, three-level neutral-point-clamped (NPC) converter, and 

modular multilevel converter (MMC). 
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2.2.1.1 Two-level VSC 

Two-level VSCs generate rectangular waveforms of high and steep voltage steps. 

The down and rise of the output voltages stress the components (e.g. converter 

transformer) and produce harmonics and noise. Extensive filtering and smoothing 

measurements need to be taken to obtain sinusoidal ac waveforms at the ac terminal. 

Although the switching frequency can be increased to obtain smoother output 

waveforms, the power losses will be increased at the same time. 

Fig. 2. 1 shows the topology and pulse-width-modulation (PWM) of a two-level 

converter. The converter consists of six arms which use series connected insulated-

gate bipole transistors (IGBTs) as the switching components. The comparison 

between the modulation signal (Vm) and the carrier (triangle) signal (Vtri) produces 

the PWM signals which are sent to the switches [5]. The output voltages alternate 

at high frequency between the positive and negative polarities of the charged dc 

capacitors. The output voltage has the same magnitude but different widths, as 

shown in Fig. 2. 1(b). A better sinusoidal waveform can be achieved by increasing 

L
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(a) Converter topology

(b) Modulation and output ac voltage.
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Fig. 2. 1. Two-level VSC. 
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the switching frequency. Moreover, reactors and filters are needed to smooth the 

waveforms and reduce harmonics.  

The PWM enables the independent control of the magnitude and phase angle of 

the output voltage which, therefore, achieves the independent control of the active 

and reactive power. However, there are some inherent disadvantages of this 

converter: difficulty in turning on/off all IGBTs in the same string simultaneously; 

high switching losses; large ac filters (note that the filters are still much smaller 

than LCC HVDC); high insulation requirements on converter transformer to 

withstand high output voltage stress and electromagnetic interference [5]-[7].  

2.2.1.2 Three-level VSC 

There are different types of three-level VSCs: NPC, T-type, active NPC and 

hybrid NPC [33]. Fig. 2. 2 shows the topology and PWM of a three-level NPC. Due 

to the NPC diodes, the three-level converter is able to generate three voltage levels: 

½Vdc, 0 and -½Vdc. Therefore, this converter reduces the harmonic distortion of the 

output voltages and lowers the switching frequency compared to the two-level 

converter. However, this type of converters increases the system complexity and 

capital costs by involving more power electronic devices. Moreover, large dc 

capacitors and capacitor voltage balancing controller are needed to avoid the 

fluctuation of the neutral-point voltage and to reduce the distortion of the output 

voltage [34]. These disadvantages limit the application of this type of converters in 

HVDC applications.  

2.2.1.3 Modular multilevel converters 

Modular multilevel converter (MMC) opens the prospect of significantly 

increased ratings of VSC HVDC technologies at acceptable losses/size and a 

number of new converter functions/roles in dc systems. MMC has lower switching 

frequency, reduced switching power losses, reduced harmonic components and 

occupies much smaller passive ac filters than the two-level and three-level VSCs 

[12].  

MMC was firstly proposed by R. Marquardt and A. Lesnicar in 2003 [35]. Its 

first commercial application was in the Trans Bay Cable project in San Francisco 
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[36]. Fig. 2. 3 shows the topology and modulation of an MMC. The converter 

consists of three-phase units. Each phase consists of one upper and one lower arm. 

Each arm has N series-connected sub-modules (SMs) and one inductor L. The 

equivalent circuit resistance is represented by resistor R. In steady-state operation, 

the voltage of each SM is Vdc/N. By switching on different numbers of SMs in each 

arm, a multi-level waveform can be achieved, as shown in Fig. 2. 3(b). There are 

redundant SMs to ensure the proper operation of the system in case of component 

failures. 

The two main configurations of the SMs are half-bridge (HB) and full-bridge 

(FB). The HB SM contains two IGBTs as the switching elements, two anti-parallel 

diodes and a dc storage capacitor, as shown in Fig. 2. 3. The output voltage of the 

HB SM is either 0 or the dc capacitor voltage (Vc). As for the FB SM, there are four 

IGBTs and its output voltage can be +Vc, 0 and –Vc. During normal operation, its 

L
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(a) Converter topology

(b) Modulation and output ac voltage.  

Fig. 2. 2. Three-level NPC. 
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operating states are the same with HB SM. As shown in Fig. 2. 4, T3 is off and T4 

is on, the switching of T1 and T2 will produce the output voltage +Vc and 0. Although 

the capital costs and power losses of an FB MMC are nearly twice of an HB MMC, 

the FB MMC has some important benefits compared to HB MMC: the capabilities 

of blocking dc fault currents and reversing dc terminal voltage [4]. 

(a) SM topology (b) Equivalent circuit during normal operation.

T1

T2

Vc

T1

T2

Vc

T3

T4

 

Fig. 2. 4. Schematic diagram of an FB SM.  
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Fig. 2. 3. Schematic diagram of an MMC.  
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2.2.1.4 Converters after being blocked 

The performance of a converter under fault conditions is an important aspect in 

the stage of project planning and design. Fig. 2. 5 illustrates the equivalent circuits 

of three types of VSCs after being blocked due to dc faults. As shown in Fig. 2. 

5(a), the two-level VSC becomes an uncontrollable bridge once it is blocked. The 

dc capacitors start to discharge firstly after the fault. Then, the currents from ac side 

start to infeed to the fault once the voltage on the dc side is lower than the valve-

side line voltages.  

GND

(a) Two-level VSC

VdcP

VdcN

VdcP

VdcN

Vc

Vc

Vc Vc Vc

Vc Vc Vc

(c) FB MMC

(b) HB MMC

Vc Vc Vc

VdcP

VdcN

Vc Vc Vc

Vc

Vc

Blocked SM

Blocked SM

 

Fig. 2. 5. Equivalent circuits of the blocked converters. 

As for the HB MMC shown in Fig. 2. 5(b), its SM capacitors stop discharging 

due to the upper diode in the SM. However, the capacitor can be charged through 
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the upper diode if the dc voltage experiences transient oscillations and is higher 

than the arm voltage. At the same time, the infeeding currents from converter ac 

side will keep flowing through the lower diode.  

In comparison with two-level VSC and HB MMC, FB MMC has the capability 

of blocking ac side infeeding currents. Fig. 2. 5(c) illustrates current paths of a 

blocked FB SM. It can be seen that the SM capacitor will be charged regardless of 

the directions of arm currents. The ac infeeding currents will be blocked 

immediately once the sum voltage of all SM capacitors in the arms is higher than 

the valve-side line voltage.  

In order to achieve the fault blocking capability and to reduce the power losses 

during normal operation, different topologies of MMCs have been proposed [1], 

[12] such as the clamp-double MMC (CD MMC) [37] and alternate arm converter 

(AAC) [38], as shown in Fig. 2. 6.  

(a) CD SM

Vc Vc

P

SM1

SMN

SM1

SMN

SM1

SMN

SM1

SMN

SM1

SMN

SM1

SMN

N
(b) AAC

Vc

 

Fig. 2. 6. MMCs with dc fault blocking capability. 

The SM of the CD MMC consists of two HBs connected in series through two 

diodes and one IGBT with its anti-parallel diode. The two capacitors in the CDSM 

will be in parallel and provide opposing voltage once all the IGBTs are blocked and 

therefore the fault current will be blocked. With the same number of voltage levels, 

the power losses of CD MMC are higher than HB MMC and lower than FB MMC. 

Moreover, additional design considerations are required to be considered to solve 

the problem that the two capacitors in the CD SM may have different voltages 

before they are connected in parallel [1].   
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The so-called AAC, as shown in Fig. 2. 6(b), combines FB SMs and series 

connected IGBTs to achieve fault blocking capability. In particular, the number of 

power electronic components are reduced and hence reduces the capital costs and 

overall power losses. However, the fixed ratio between direct and alternating 

voltages (an ideal operating condition) restricts the operation of the converter [4], 

[38]. Moreover, the AAC requires dc side filters to eliminate dc side harmonics.  

More MMC topologies with dc fault blocking capability can be found in the 

literature [1], [4], [12]. 

2.2.2 Converter station configurations  

 The converter station is the place hosting the converter valve hall, transformers, 

converter grounding devices, switchgears and other equipment. Converter stations 

can be built with configurations according to the operating requirements, such as 

symmetrical monopole, asymmetrical monopole and bipole [5]-[7]. Fig. 2. 7 depicts 

possible configurations for VSC and hybrid LCC/VSC HVDC systems.  

(a) Symmetrical monopole

+ Vdc/2

- Vdc/2
C2C1

(b) Asymmetrical monopole

+ Vdc

C2C1 GND GND

+ Vdc

C2C1

GND GND

- Vdc
(d) Hybrid LCC/VSC bipole

LCC1 LCC2

+ Vdc

C2PC1P

GND

(c) Bipole

C2NC1N

GND

- Vdc

 

Fig. 2. 7. VSC and hybrid LCC/VSC HVDC systems. 
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A symmetrical monopole is shown Fig. 2. 7(a), which features two poles with 

opposite voltage potential. Both poles need to be fully insulated. Conversely, only 

one polarity is present in the asymmetrical monopole shown in Fig. 2. 7(b). The dc 

current returns through the ground or a metallic return path and thus low-voltage 

insulation is required for the metallic return line. The drawbacks of this 

configuration include a lack of redundancy during faults, corrosion on the metallic 

pipes in the ground and potential negative environmental effects [8].  

A bipole VSC HVDC system is shown in Fig. 2. 7(c). The system consists of two 

independently controlled asymmetrical monopoles. This configuration offers a 

higher reliability and flexibility compared to monopole systems. For instance, the 

loss of any converter entails a 50% loss of the total transmission capacity only. A 

single asymmetrical monopole link can also be installed in parallel with an existing 

LCC link as a hybrid LCC-MMC bipole HVDC system, as shown in Fig. 2. 7(d). 

The VSCs in this topology can minimise the risk of commutation failures on the 

nearby LCC link and minimise the overvoltage when the LCC link is blocked [29]-

[30]. 

2.2.3 HVDC circuit breakers 

Fast and reliable DCCBs are considered by both the academia and the industry 

as key components to remove the obstacles in the development of large-scale dc 

systems [39]-[41]. DC fault current interruption is challenging due to the lack of 

natural current zero-crossings and the current’s fast rate-of-change [40]-[41].  

Research on DCCBs is a topic dating back to the 1970s. Since then a number of 

DCCB topologies have been proposed for different applications [42]-[45]. DCCBs 

are normally categorised into three main types: mechanical circuit breaker (MCB), 

solid-state circuit breaker (SSCB) and hybrid circuit breaker (HCB) [40]-[41]. 

2.2.3.1 Mechanical circuit breaker 

Fig. 2. 8 illustrates the schematic diagram and current breaking process of an 

MCB. Normal operating current flows through the primary branch which consists 

of a mechanical breaker. Little power loss is produced in this branch due to the 

small resistance of the mechanical breaker. The mechanical breaker will start to 

open once a fault is detected. The fault current will be forced into the resonant 
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branch by the arc voltage between the two contactors of the mechanical breaker. 

Then, the current in the resonant branch starts to oscillate due to the LC circuit. The 

mechanical breaker will fully open once the first current zero-crossing occurs [41].  

Surge arrester

Resonant branch

Primary branch

C L

INormal

IArrester

IResonant

  
                                  (a) Topology                                                        (b) Current breaking process [42] 

Fig. 2. 8. A classical MCB.  

In the early years, the operating time of MCBs was tens or even hundreds of 

milliseconds mainly due to the operating time of mechanical switches and the time 

to wait for current zero-crossings. In order to reduce the operating time, active 

resonant circuits [44]-[50] or electromagnetic force based fast mechanical switches 

[43], [51]-[53] have been developed recent years. For instance, the active resonant 

MCB proposed in [46] shown in Fig. 2.9 is able to interrupt a 16 kA dc fault current 

under 80 kV within 8 ms [47]. The world’s first ± 160 kV active resonant MCB 

which can interrupt 9 kA within 3.5 ms has been deployed in the Nan’ao three-

terminal HVDC network [48]-[49].  

 

Fig. 2. 9. An active resonant mechanical circuit breaker [46].  

2.2.3.2 Solid-state circuit breaker 

SSCB, as shown in Fig. 2. 10, based on power electronic devices exhibits a faster 

response compared to MCBs and can interrupt dc fault currents in a few 

microseconds. However, the high on-state losses and capital costs are the main 

drawbacks of this technology. Moreover, a cooling system might be needed due to 
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the on-state heating, which increases the complexity and dimension of the system, 

and therefore increases the capital costs [39]. 

    

Breaker current Arrester current

0  
                                     (a) Topology                                                      (b) Current breaking process 

Fig. 2. 10. A classical SSCB. 

2.2.3.3 Hybrid circuit breaker 

The long operating time of MCBs and high losses of SSCBs cannot meet the 

requirements for building MTDC grids. However, a combination of these breaking 

devices and hence of their capabilities has resulted in the HCB [13], [54]-[55], 

which has become the most common DCCB design topology. 

LCSUFS

Main breaker

Surge arrester

ITotal

INormal

IMain

IArrester  t0 t1 t2 t3 t4 t5

ITotal

INormal

IMain

IArrester

0

0

0

0

 
                                                 (a) Topology                                                     (b) Current breaking process 

Fig. 2. 11. A classical HCB. 

These devices normally have three branches as illustrated in Fig. 2. 11(a): a 

normal operation branch which contains a load commutation switch (LCS) and an 

ultra-fast switch (UFS); a main breaker branch which is formed by several power 

electronic switches (normally IGBTs); and an energy dissipation branch which 

consists of surge arresters.  

The currents in different branches during the current breaking process are 

depicted in Fig. 2. 11(b). A fault occurs at t0. The LCS turns off at t1 once fault 

discrimination ends. At the same time, the main breaker turns on. The current starts 

to commutate into the main breaker due to the large resistance of the blocked LCS. 

The UFS starts to open at t2 once the current totally commutates into the main 

breaker. The main breaker is turned off at t3 once the UFS is fully opened. After t4, 

the current is fully forced into the surge arresters where it will be totally dissipated 

at t5. 
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In recent years, HCBs have been extensively studied by both the industry and 

the academia [39], [55]-[60]. Fig. 2. 12 illustrates some of the latest proposed HCB 

topologies. A modified HCB, shown in Fig. 2. 12(a), has been proposed in [55] to 

avoid the dynamic voltage control of series-connected IGBTs and reduce the costs 

by using fewer IGBTs. The main breaker consists of multiple auxiliary branches 

and an extinction branch. There are anti-parallel thyristors and capacitors in the 

auxiliary branches. The capacitors start to be charged once the fault current 

commutates into these branches. The fault current will be interrupted in the 

extinction branch once the voltage on the capacitor exceeds the rated voltage of the 

arrester. Although this HCB topology reduces the number of semiconductor 

switches, more auxiliary branches are required to limit larger fault currents, which 

in turn may extend the commutation time and therefore, increase the magnitude of 

the fault current.  

With the aim of reducing the commutation time and on-state power losses, a 

current commutation drive circuit (CCDC) has been proposed for HCBs [44]-[45]. 

(a)

(b)

(c) (d)

Auxiliary branches

Extinction branch

CCDC

L2

L1

INormal

IMain

IArrester

1

2

3

INormal

IArrester

IMain

INormal

IArrester

IMain

INormal

IMain

IArrester

 

Fig. 2. 12. Schematic diagrams of modified HCBs.  

(a) HCB with thyristor and capacitor based main breaker; (b) HCB with CCDC; (c) HCB with FB 

SMs; (d) HCB with diode-based H-bridge. 
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Fig. 2. 12(b) depicts the circuit schematic for the CCDC. The thyristor within the 

CCDC will be turned on once fault discrimination ends. Then the pre-charged 

capacitor starts to discharge immediately which results in a loop current through L2. 

The current in the normal operation branch will be quickly forced into the main 

breaker by the generated loop current. Compared to traditional LCSs, the CCDC 

exhibits low power losses, low costs and no need for a cooling system. However, 

the transient current produced in the CCDC during the commutation process is 

extremely high, which may burn the CCDC and/or other parts of the CB in extra 

HV applications. 

The HCB shown in Fig. 2. 12(c) employs FB SMs to solve the dynamic voltage 

balancing issues of IGBTs [58]. The current interruption capability is also enhanced 

as the fault current passes through two switches in each SM. However, this topology 

needs additional capacitors and the number of power electronic devices is doubled 

compared to the HCB shown in Fig. 2. 11. Therefore, capital costs and power losses 

are more than doubled, which are the main drawbacks of this device. This HCB has 

been deployed in the Zhoushan five-terminal project [11]. 

A commutation-based HCB proposed in [61], shown in Fig. 2. 12(d), uses diode-

based H-bridges as the extinction branch. Compared to the HCB in Fig. 2. 11, this 

design can theoretically reduce the number of IGBTs by half if a unidirectional 

module (the main breaker) is employed to interrupt bidirectional fault currents. 

Moreover, the decrease of IGBTs also increases system reliability. This topology 

uses multiple medium voltage modules to achieve a modular, compact and scalable 

design. As the H-bridge contains many series connected diodes, the stray 

inductance of the circuit may result in a long current commutation time, and further 

lead to a large fault current magnitude.  The parameters of HCBs developed by the 

main technology manufacturers are shown in Table 2. 1. 

Table 2. 1. Parameters of HBCs from typical manufacturers. 

 NR [61] GEIRI [58] GE [55] ABB [13] 

Rated voltage ± 500 kV ± 200 kV 120 kV 320 kV 

Rated current 3 kA 2 kA 2 kA 2 kA 

Interruption current 25 kA 15 kA 5.2 kA 8.5 kA 

Operating time 5 ms 5 ms 5.5 ms 5 ms 
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2.2.4 HVDC overhead lines and cables 

Both dc overhead lines (OHLs) and cables are used in dc transmission. The 

choice is influenced by environmental constraints as well as an overall optimisation 

that considers total capital cost, performance, losses and transmission system 

reliability [6].  

2.2.4.1 HVDC overhead lines 

The power-carrying capability of HVDC OHL is substantially higher than ac 

systems. Gains of up to 80% in transmission capacity can be reached when 

converting existing ac transmission lines (double circuit) to dc operation [62]. In 

order to increase the power capacity of the existing ac transmission corridors, 

analysis and work have been carried out on converting ac lines into dc operation in 

[63]-[67]. 

When comparing ac and dc OHLs, dc lines are more susceptible to flashovers 

due to the dust on insulators and the constant polarisation of the air surrounding the 

wires [68]. Since OHLs are more vulnerable to lightning strikes and pollution, dc 

short-circuit occurs more in OHL-based dc systems than dc cable-based systems 

[69]. In addition, the protection of non-permanent faults in OHL-based MTDC grid 

is an important aspect that has to be solved [69]-[71].  

2.2.4.2 HVDC cables 

There are mainly three types of cables used for HVDC applications: mass-

impregnated (MI), self-contained fluid-filled, and extruded [72]-[75]. Of these, the 

MI cable and the extruded cable are most commonly used.  

A. Mass-impregnated cable 

The MI cable has been in service for more than 40 years and has been proven as 

a highly reliable technology. Voltages up to 600 kV and current ratings of 1800 A 

are available, corresponding to a maximum pole rating of 1100 MW and bipole 

rating of 2200 MW. The insulation material is paper, impregnated with a high-

viscosity compound.  

The MI cable also has some specific disadvantages: the low operating 

temperature tolerance reduces the power capacity, and the cable is expensive and 
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heavy compared to polymeric extruded cables. The cable is also very difficult to 

install as the jointing process is difficult. There are some new developments of this 

kind of cable including the using of paper polypropylene laminate (PPL) [75]. 

B. Extruded cross-linked polyethylene cable 

The extruded cross-linked polyethylene (XLPE) cable is not well suited for LCC 

HVDC as space charges in the insulation material might cause damage to the cable 

at power reversals. XLPE cables are mainly used for VSC HVDC as there is no 

voltage polarity reversal when reversing the power flow. This technology has been 

applied at voltages up to ± 200 kV (in service with a power capacity of 500 MW), 

with several larger projects at an advanced construction stage which use voltages 

of ± 320 kV and have power ratings between 800 MW and 1000 MW per converter 

[5]. Currently, higher XLPE cables (and accessories) at higher voltages (up to 500 

kV) are being tested and expected in the near future [75].  

Compared to MI cables, XLPE cables have some advantages: lighter weight, 

smaller bending radius and lower manufacturing costs. The installations of this type 

of cable are also faster and less expensive. Furthermore, a higher conductor 

temperature can be used, giving an overall more compact cable for the same power 

rating. Table 2. 2 gives the summary of the typical HVDC cables of MI and XLPE 

[75]. 

Table 2. 2. Summary of typical MI and XLPE cables. 

Cable 

Technology 

Maximum rated 

operating voltage 

Maximum power 

(cable pair) 

Maximum continuous 

conductor temperature 

MI 

600 kV MI-PPL 

(installation) 

500 kV MI 

(installed) 

2200 MW 

(installation) 

1600 MW 

(installed) 

70-80 °C 

(MI-PPL) 

55-60 °C 

(MI) 

XLPE 

400 kV 

(awarded) 

320 kV 

(installed) 

1400 MW 

(installation) 

1000 MW 

(installed) 

70 °C 

MI – Mass Impregnated; PPL- Paper Polypropylene Laminate  

XLPE- Extruded Cross-Linked Polyethylene 

2.2.5 Converter grounding schemes 

Converter grounding scheme is an important aspect in HVDC transmission 

systems. A grounding point provides a zero-potential reference for the control and 
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protection systems. It is the reference for calculating overvoltage and insulation 

coordination in converter stations as well. The groundings can be deployed either 

on the ac side or dc side and each grounding scheme has its merits and demerits. As 

the converter grounding systems of two-level and three-level have been widely 

studied in the literature [76]-[79], only the grounding schemes of MMCs are 

presented in this section. 

2.2.5.1 Ungrounded 

Fig. 2. 13 shows the cases MMCs are ungrounded either on the ac side or dc side. 

The windings of the transformers are connected in a delta/star (∆/Y) and star/delta 

(Y/∆) configuration which can filter harmonics and prevent zero-sequence 

components flowing between the converter and its ac grid [78]-[82]. The voltage 

potential reference can be provided by other converters. This ungrounded scheme 

can be applied for MMCs which are not used to start-up charging an MTDC 

network. This ungrounded scheme is also not applicable to the MMCs which need 

to run as a static synchronous compensator (STATCOM) [83]. Moreover, if an 

unbalanced voltage between the two dc poles occurs, for example, caused by MMC 

blocking, control system errors, and unbalanced ac faults [80], the unbalanced 

voltage will continually exist in an ungrounded system which is the drawback of 

this scheme.  

M
M

C

M
M

C

(a) Transformer Δ/Y (b) Transformer Y/Δ
 

Fig. 2. 13.  Converters without grounding. 

2.2.5.2 Delta/Star and Delta/Star with Star-point reactor  

The delta/star (∆/Y) grounding schemes shown in Fig. 2. 14 are widely used in 

VSC HVDC transmission systems. The grid-side Y connection is typically arranged 

with a solid neutral grounding. The dc side zero-potential reference of the MMCs 

using the scheme shown in Fig. 2. 14(a) can be provided by other MMCs. As for 

the scheme in Fig. 2. 14(b), the star-point reactors with a grounding resistor is 
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applied to provide zero-potential reference [84]. The grounding resistor is used to 

block zero-sequence current during both normal and fault conditions.  

The parameters of the reactor and resistor are designed as a large impedance to 

reduce the consumption of reactive power. However, if the reactance is too large 

and/or the valve-side voltage is high, it will bring problems for manufacturing, 

insulation, transportation and increasing the footprint of the converter station, and 

therefore, increases capital costs [85]. The grounding resistor cannot be too large, 

otherwise, the system will be equivalent to ungrounded. Moreover, due to the 

reactive power consumption of the reactors, this scheme will affect the grid-side ac 

voltages during the start-up and converter blocking processes. Therefore, the 

scheme in Fig. 2. 14(b) is suitable for MMCs connecting to strong ac grids, which 

has been applied in Zhoushan station in the Zhoushan five-terminal project [11], 

the Trans Bay Cable project [86] and the INELFE project [87]. 

2.2.5.3 Star/Delta and Star/Star   

Fig. 2. 15 shows transformer Y connections on converter valve-side. There is a 

high-resistance grounding at the neutral point of the Y connection. The grid-side 

connection of the transformer can be either ∆ or Y connection which depends on 

the requirements of its connected ac system, transformer protection system and 

system insulation levels [10], [88]. The grid-side neutral point of Fig. 2. 15(b) can 

be grounded or ungrounded according to the requirements of the grid-side system. 

Compared to the start-point reactor grounding scheme, this arrangement does not 

need reactors, therefore, this arrangement is more economical. This scheme will not 

consume reactive power during normal operation as well. However, in normal 

M
M

C
Lg

Rg

M
M

C

(a) Transformer Δ/Yg (b) Transformer Δ/Yg with the Star-point reactor  

Fig. 2. 14.  Delta/Star grounding schemes. 
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operation, small zero-sequence current will flow through the neutral point, and 

therefore produce power losses and might affect the operation of the transformer. 

During fault conditions, the dc components of fault currents will flow through the 

neural point which might induce dc magnetic bias on the transformer, and therefore 

affect its life expectancy [85]. In order to limit unbalanced currents in both normal 

and fault conditions, the grounding resistor is required to be high. However, at the 

same time, the grounding resistor cannot be too high, otherwise, the grounding 

system will be equivalent to ungrounded. The scheme in Fig. 2. 15(a) has been 

deployed in the Nan’ao three-terminal project [10] and the scheme in Fig. 2. 15(b) 

has also been deployed in the Yangshan station Zhoushan five-terminal project [11].  

2.2.5.4 DC side high-resistance grounding 

Fig. 2. 16 shows the grounding system using two large resistors with a neutral 

point to provide dc side zero-potential reference. This arrangement is economical 

and easy to install. The main function of the two large resistors is to clamp the 

positive and negative dc pole voltages and to make them symmetric.  

Rg

M
M

C

Rg

 

Fig. 2. 16. DC side high-resistance grounding. 

The performance of this scheme is highly dependent on its resistance. A small 

resistance provides good performance on clamping the pole voltages and fast post-

fault recovery. However, the power losses will be high if the resistance is small, 

Rg
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(a) Transformer Yg/Δ (b)Transformer Yg/Y(g)

G

 

Fig. 2. 15.  AC side high-resistor.  
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especially in the case of the dc voltage is quite high, and then the insulation, heat 

dissipation and manufacturing of the grounding resistors will be issues. If the 

resistance is too large, grounding system will be equivalent to ungrounded and will 

increase the footprint of the substations. Moreover, the resistance may affect the 

sensitivity of the dc protection systems [88]. This grounding scheme has been 

employed in the Nanhui offshore wind power connection project [89].  

2.2.6 Multi-terminal VSC HVDC networks 

The successful applications of point-to-point HVDC links worldwide indicate 

that greater economic and technical advantages might be achieved by MTDC 

systems [90]. There have been several MTDC networks based on the conventional 

LCC HVDC technology, such as the tree-terminal Sardinia-Corsica-Italy network, 

the three-terminal Hydro-Québec – New-England network and the three-terminal 

North-East Agra network [91]-[93].  

Although the LCC HVDC technology is a well-proven technology that offers 

high power transmission capacity, it has limited active and reactive power control 

and the problem of reversing voltage polarity when changing power flow direction. 

VSC has independent active and reactive power control capability over LCC and 

its polarity remains unchanged when the directions of power flow change. 

Therefore, VSC becomes an attractive alternative to LCC for integrating renewable 

energy and flexible multi-terminal operation [5]-[7]. Some VSC MTDC networks 

have been constructed or under construction.  

2.2.6.1 Nan’ao three-terminal network 

The Nan’ao three-terminal HVDC network was the world’s first multi-terminal 

network based on VSC HVDC technology. The project was successfully 

commissioned on 19th December 2013 [94]. The objective of this project is to 

incorporate the existing and future wind power generation on the Nan’ao island into 

the mainland power grid [10]. 

Fig. 2. 17 shows the system configuration of the Nan’ao project. Its rated dc 

voltage is ±160 kV and the rated power of the three converter stations is 200 MW 

(SC station)-100 MW(JN station)-50 MW(QA station). The converters used in this 

project are HB MMCs. In the next stage, the Tayu (TY) offshore wind farm will be 
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built and connected to the MTDC network as the fourth terminal [10]. DCCB is not 

employed in this project and the ac circuit breakers (ACCBs) installed at the ac side 

of the converters are used to protect dc side faults.  

 

Fig. 2. 17. The configuration of the Nan’ao MTDC network [10]. 

2.2.6.2 Zhoushan five-terminal network 

The world’s second multi-terminal VSC MTDC system is the five-terminal 

Zhoushan network, which was commissioned on 4th July 2014 [95]. Fig. 2. 18 

illustrates the system configuration of the Zhoushan project. This MTDC network 

connects different islands, enhances the strength of the grid structure and improves 

the reliability of power supply. Moreover, it also allows the integration of large-

scale onshore and offshore wind power [11].  

 
Fig. 2. 18. The configuration of the Zhoushan MTDC network [11]. 
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The dc voltage is ± 200 kV. The rated power of the five converter stations is 400 

MW (Zhoushan station)- 300 MW (Daishan station)- 100 MW (Yangshan station) 

-100 MW(Sijiao station) -100 MW(Qushan station). DCCBs based on FB SM, as 

shown in Fig. 2. 12(c), have been installed in this system on 29th December 2016 

[95]. In the future, another dc line will be constructed between the Yangshan and 

Zhoushan stations to form a dc grid which will provide redundancy and reduce 

transmission losses [11].  

2.2.6.3 Zhangbei MTDC grid 

The Zhangbei project will be the first meshed MTDC grid in the world once 

completed in 2018. The project is designed to secure the power supply to Beijing 

from a variety of clean energy sources, including wind, solar and hydro power [97].  

 

Fig. 2. 19. The configuration of the Zhanbei MTDC grid [90]. 

Fig. 2. 19 shows the system configuration of the Zhangbei project. The dc voltage 

is ± 500 kV. The dc transmission lines are OHLs. The DCCB shown in Fig. 2. 12(d) 

will be deployed in this project [98]. In the first phase, four stations will be built, 

including 3 sending terminals (1500 MW each) and one receiving terminal (3000 

MW). Another two terminals have been planned for the second phase, with 

commissioning expected in 2021. 
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2.2.6.4 Other installations and projects 

Apart from the above projects which are clearly MTDC systems, there are some 

installations and projects can be considered or may be used as multi-terminal 

systems.  

A. Atlantic Wind Connection Project 

The Atlantic Wind Connection Project is an offshore, undersea transmission line 

that spans the mid-Atlantic region. The VSC HVDC technology is used in this 

project. It consists of three links, as shown in Fig. 2. 20: the New Jersey Energy 

Link, the Delmarva Energy Link and the Bay Link [99].  

 

Fig. 2. 20. The Atlantic Wind Connection Project [99]. 

The project is built in phases in coordination with the development of offshore 

wind projects. When complete, it will consist of 12 converter stations and converter 

platforms [90] and support the development of up to 6000 MW of offshore wind 

energy, which is enough to power over 2 million homes [99]. Subject to the receipt 

of permits and availability of materials, components, and equipment, the entire 

system is planned to be in operation by 2021 [100]. 
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B. Tres Amigas Superstation project 

The Tres Amigas Superstation utilises the HVDC technology to link the Eastern, 

Western, and Texas interconnections at a single location in New Mexico via a multi-

node, multi-terminal interconnection [101]. The design concept of the project is 

illustrated in Fig. 2. 21. 

Although the initial project called for the development of a three-terminal HVDC 

bus with the potential use of high-temperature superconductor cable and HVDC 

power circuit breaker systems, in 2010 the concept was revised, and the present 

plan is called for a traditional power transmission node [102]. The first phase of the 

project started from November 2015 [103]. The final project will have 3×750 MW 

VSCs and 3×920 MW LCCs. The project also has the opportunity to build a 20 MW 

or more battery energy storage park at its interconnection with East and West to 

provide power balancing for the intermittent generation from the renewable energy 

sources [104]. 

 

Fig. 2. 21. The Tres Amigas Project [101]. 

2.2.7 HVDC grid code 

Whilst ac grid codes are well documented and are constantly being updated, 

HVDC grid codes are still being developed. The drafting of dc network codes of 

the European Commission relating to HVDC grid connection codes is with Agency 

for the Cooperation of Energy Regulators (ACER), European Network of 

Transmission System Operators for Electricity (ENTSO-E) and market participants. 
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The ENTSO-E represents 43 electricity transmission system operators (TSOs) 

from 36 countries across Europe. ENTSO-E members share the objective of setting 

up the internal energy market and ensuring its optimal functioning, and of 

supporting the ambitious European energy and climate agenda. One of the 

important issues on today’s agenda is the integration of a high degree of 

Renewables in Europe’s energy system, the development of consecutive flexibility, 

and a much more customer centric approach than in the past [105].  

ENTSO-E has drafted a Network Code on HVDC connections aiming at setting 

out clear and objective requirements for HVDC system owners, dc connected power 

park module owners, network operators and national regulatory authorities in order 

to contribute to non-discrimination, effective competition and the efficient 

functioning of the internal electricity market and to ensure system security [106]. 

ENTSO-E Network Code is mainly concerning the influence of HVDC system 

on its connected ac system. The HVDC system needs to fulfil the requirements 

referring the frequency and voltage stability, be capable of giving active and 

reactive power support and have the capability of fault ride through. Moreover, the 

ENTSO-E Network Code does not make a distinction between LCC and VSC 

technologies and not address dc fault level management, dc protection and control. 

Therefore, more work needs to be conducted on the development of dc grid codes. 

2.3 DC fault handling approaches in multi-terminal HVDC grids 

Fast and economical dc protection is one of the main obstacles for deployment 

of VSC MTDC grids, although a number of VSC HVDC links and multi-terminal 

MTDC networks have been commissioned or in planning [11], [107]-[109]. 

Effective dc protection methods need to be applied to minimise the impact from dc 

faults and ensure the secure operation of MTDC systems. There are three possible 

solutions to clear dc faults within MTDC networks: using ACCBs; using DCCBs 

and using fault blocking converters.  
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Fig. 2. 22. Schematic diagram of a 4-terminal dc grid equipped with ACCBs, DCCBs and fast dc 

switches. 

2.3.1 Using ac circuit breakers 

As illustrated in Fig. 2. 22, the high voltage ACCBs which are already equipped 

on the ac side of the converters can be one option to protect the dc grid. The so-

called “Handshaking” method which employs ACCBs and fast dc switches has been 

proposed in [110]. In order to extinguish the dc fault currents, all converters need 

to be blocked once a dc fault is detected. Then ACCBs will be tripped. Fast dc 

switches are available at both ends of each line and are used to isolate the faulted 

line at zero current. The healthy circuits will be restored once the faulted line is 

isolated. A progressive fault isolation and grid restoration strategy using ACCBs 

are proposed in [111]. The strategy reduces the grid outage time through the 

progressive restoration of the dc grid.  

The advantages of using ACCBs are that it is simple and economic. This greatly 

reduces the investment cost of building a large scale MTDC grid. However, the 

long fault isolation time (several hundred milliseconds) associated with this strategy 

will lead to the de-energisation of the entire dc grid [112]-[113]. This, in turn, may 

negatively impact the system operation. 

2.3.2 Using dc circuit breakers 

In a dc grid using DCCBs to provide fast clearance of a dc fault, two main 

solutions appear: one is to apply the same protection philosophy and principles used 

as the ac systems which can be called “Fully Selective Approach” [114] and the 

other is the “Open Grid” concept [115]-[116]. 
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2.3.2.1 Fully Selective Approach 

The fully selective approach considers the same philosophy and principles used 

in AC systems [114]. It means only those DCCBs associated with the faulted line 

will be tripped. Meanwhile, other breakers which are not located in range of the 

faulted line are not allowed to operate. For instance, in Fig. 2. 22, if a dc fault occurs 

in Line 1, only DCCB34 and DCCB43 will be tripped as long as the fault location is 

confirmed.  

If fast fault clearance can be achieved by only isolating the faulted line, a 

blackout of the whole MTDC system will be avoided. The post-fault restoration of 

the fully selective method consists of restarting the converters which are blocked 

during the dc fault.  

A clear advantage of the fully selective method is that only the faulted line will 

be isolated without expanding the blackout region. This way, the impact on the 

healthy circuit will be mitigated. However, this may impose a very high current 

interruption duty on those DCCBs, mainly due to the fault discrimination and 

location times.   

2.3.2.2 “Open Grid” 

 In [115], an alternative dc fault isolation method, the “Open Grid” concept, has 

been proposed for the protection of MTDC grids. The “Open Grid” method reverses 

the normal protection sequence order. Each DCCB is allowed to autonomously trip 

following the detection of a fault without any delays associated with 

communications or discrimination logic. The re-closing of healthy circuits is based 

on residual voltages and currents.  

Using this approach, the time used to discriminate and locate the fault is 

eliminated. Additionally, the current interruption duty is shared by different 

breakers. Thus, the DCCBs can open at a much lower fault current. Those DCCBs 

which cannot sense the fault will remain closed. Post-fault restoration is carried out 

by reclosing the DCCBs outside the faulted line based on the residual voltages and 

currents of the remaining circuits and by restarting the converters which have been 

blocked during the dc fault. 
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The “Open Grid” approach has the following drawbacks: the unpredictability of 

a tripping sequence and the possibility of expanding the blackout of the network. 

2.3.3 Using fault blocking converters 

As mentioned in Section 2.2.1.1, the converters, such as FB MMC, CSSM and 

AAC, have the capability of blocking ac infeeding currents by blocking the 

converters. Once all the converters within the MTDC grid are blocked, the dc fault 

currents will start to naturally decay to zero so that fast dc switches are able to 

operate to isolate the faulted circuit. The converters will be de-blocked once the 

faulted line is isolated and the dc grid will start to restore to a new steady state.  

The FB MMCs are commercially available and they are beneficial for HVDC 

systems using OHLs [117]. The fault current blocking capability of AAC is 

illustrated in [38]. Based on the “Handshaking” method proposed in [110], fault 

locating and isolating schemes are proposed in [118] for FB MMC based MTDC 

grids. Some other dc fault ride-through methods of MMCs are summarised and 

reviewed in [119]. 

The higher capital costs and power losses of using fault blocking converters are 

the main drawbacks of employing this technology. Moreover, although the fault can 

be isolated without using DCCBs, the whole dc network will suffer an interruption 

of service and the associated ac system will be impacted as well [118]-[119].   

2.4 Stability analysis of ac/dc grids subject to dc faults 

Nowadays, most of the VSC HVDC projects are point-to-point connections, 

except several MTDC networks mentioned in Section 2.2.5. However, it is widely 

believed that with the development of VSC HVDC technology, large-scale ac/dc 

grids can be realised in the future [75]. Therefore, the stability of ac/dc systems is 

one critical aspect of system secure operation and needs to be studied.    

In [120], a VSC MTDC grid is integrated with a multi-machine ac system. This 

paper provides methods of the study on the stability of an ac/dc transmission system 

and the dynamic interactions between ac and dc grids. Firstly, the modal analysis 

of this ac/dc system was performed. The root locus of the poles of the test system 

shows that the system is stable but with a poor damping capability. Secondly, the 
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dynamic interactions between the dc grid and its connected ac system were analysed. 

The influences of both ac and dc side faults on the overall ac/dc system were also 

discussed. The results show that the overall system can recover to a stable operating 

condition. However, the power angles between any two generators start to oscillate 

after the faults which shows the presence of the poorly damped but stable interarea 

modes.  

Small-signal stability analysis of MTDC grid and its connected ac system has 

been presented in [121]. A 4-terminal VSC HVDC grid with the integration of two 

offshore wind farms was built to supply a load at the point of common coupling 

(PCC) of an ac grid. The impacts of VSC control parameters on the overall stability 

of the whole system were studied. The system is divided into smaller subsystems. 

Each of the subsystems is presented in state-space model. Then, the subsystem 

state-space models are integrated into a single model in order to represent the 

overall system. The dynamic performance of the system was presented in small and 

large perturbations. With the small-signal stability model, the controller parameters 

are improved, which will improve the stability of the system operation and control. 

Damping subsynchronous resonance (SSR) in an ac system with VSC HVDC 

transmission system was performed in [122]. SSR is an electric power system 

condition where the electric network exchanges energy with a turbine generator at 

one or more of the natural frequencies of the combined system below the 

synchronous frequency of the system. A three-machine ac system representing the 

Great Britain transmission network with a VSC HVDC link is modelled in [122]. 

Primary and auxiliary controllers of the VSCs are designed. With the auxiliary 

controller, an anti-phase signal is injected into the ac system, the target resonant 

frequency will be damped. The design of the damping controller depends on the 

target resonant frequencies of different systems. The results in [122] show that the 

HVDC system will not influence the stability of the ac system. On the contrary, 

with proper design, the HVDC system improves the stability of the ac system.  

The impact of different types of ac disturbances (faults) on the operation and 

control of an integrated ac/dc system was analysed in [123]. The studies were 

conducted in PSCAD time-domain simulation. A five-terminal MMC HVDC grid 
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replaces a congested area in the IEEE 39-bus (New England) test system. The 

modified test system forms a large-scale ac/dc system. The transient responses of 

the ac/dc grid to the ac side disturbances were investigated. The investigation results 

conclude that: the adverse effects of the ac side disturbances do not considerably 

propagate between different ac systems that are separated from each other by the 

MMC HVDC grid; the fast and effective controllers of the converters can provide 

nearly constant voltage support at the ac terminal of the converters during their ac 

side unbalanced faults and therefore improve the power quality and voltage stability.  

The analysis and studies in the above literature did not consider the stability 

issues of ac/dc grids subject to dc faults. Faults in ac systems have a reduced impact 

on other parts of the network at locations far away from the fault [115]. Compared 

to ac systems, a dc network is a “low inertia” system. During a dc fault, the dc 

voltages will drop quickly in all terminals. Although IGBTs will be blocked by the 

local protection systems of the converters, currents from the ac side will feed to the 

fault through anti-parallel diodes (except for the cases where fault blocking 

converters are used). This is equivalent to a three-phase short-circuit on the ac side 

of a converter which may produce a severe impact on the ac grid.  

In [124], the power generated by a single synchronous generator was transmitted 

through a transmission corridor which consists of an HVDC link and an HVAC 

transmission line. Based on this system, the ac system stability under dc link faults 

was studied. The equal area criterion was utilised to analyse the transient processes 

of the synchronous generator when the dc link subject to dc faults. The transient 

stability characteristics of three different MMC configurations, the HB MMC, 

CDSM MMC and hybrid LCC-MMC, were studied and compared. However, it 

only considered a single machine system. The stability of an ac/dc system which 

contains an MTDC grid and ac systems with multi-machine is still under-researched.    

In an integrated ac/dc system, the dc grid may connect to ac systems at multiple 

locations (converters) and the ac system may contain multiple synchronous 

generators. From the viewpoint of the dc grid connected ac system, a fault within 

the dc grid can be seen as “multiple faults”. If the dc fault cannot be isolated quickly 

and in a reliable manner, the dc fault will be continuously penetrating the adjacent 
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ac grids. This may lead to instability of the overall ac/dc system. Therefore, the 

transient behaviour and stability of the ac and dc grids during a dc fault need to be 

studied. Moreover, the impact of different dc fault clearance approaches on the 

stability of integrated ac/dc systems also requires consideration.  

2.5 Analysis and protection of converter ac side faults 

Converter ac side faults are important aspects in the operation of MMC-HVDC 

systems and thus have received significant attention in the literature. Fig. 2. 23 

depicts the possible types of converter ac side faults. Faults F1 to F5 are between 

the converter and the transformer. Faults F6 to F10 are at grid side. The categories 

of the ac faults are summarised in Table 2. 3.  

F1
F2

F3
F4 F5

F6
F7

F8
F9 F10

+

-

DC

Grid-side faults AC gridValve-side faults

 

Fig. 2. 23. Schematic diagram of converter ac side faults. 

Table 2. 3. AC fault categories 

Faults Schematic diagrams 

Three-phase short-circuit 
 

Three-phase-to-ground  

 

Two-phase short-circuit 
 

Two-phase-to-ground 

 

Single-phase-to-ground 
 

 

It is known that, in three-phase systems, balanced faults might cause more severe 

consequences than unbalanced faults. However, unbalanced faults, especially 
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single-phase faults, are more common than three-phase faults. Therefore, there are 

a number of studies undertaken on converter grid-side unbalanced fault. 

According to the analysis in [16]-[23], converter grid-side single-phase fault (see 

F10 in Fig. 2. 23) will result in double-frequency harmonics in dc voltage, and 

therefore, cause dc voltage oscillations. The power delivered to the ac grid will be 

affected as well. Positive and negative damping controllers have been proposed in 

[21]-[23] for MMCs under grid-side unbalanced ac conditions. The proposed 

controllers performed well in solving the above issues. Although there are studies 

on converter grid-side unbalanced conditions, MMC station internal unbalanced ac 

faults remain an under-researched topic.  

In both LCC and MMC stations, the converter transformers are typically 

deployed outside the halls housing the converters. For instance, Fig. 2. 24 shows 

the MMC station of the INELFE link. There are switchgears and converter 

grounding devices (Starpoint reactors) between the wall bushings and the power 

transformers. This area is in the overlapping protective zone of the converter and 

the transformer needs high insulation to withstand high voltages and large currents. 

Therefore, valve-side SPG faults occur in this area might lead to severe 

consequences, such as commutation failures in LCCs, dc voltage oscillations in 

symmetrical monopole MMCs, and non-zero-crossing fault currents in bipole 

MMCs [29]-[30], [127]  

 

Fig. 2. 24. The schematic diagram of the VSC station of the INELFE link [125]. 
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Fig. 2. 25. LCC transformer wall bushings inside the valve hall [126]. 

Moreover, as shown in Fig. 2. 25, the LCC’s valve-side winding bushings of 

these power transformers protrude through the hall wall to connect to converter ac 

buses [24]-[25]. Insulation failure and flashover of wall bushings may cause an 

internal single-phase-to-ground (SPG) fault between the converter and the 

transformer. Both LCCs and VSCs have experienced these faults in practical 

installations [26]-[27], [128].  

In [27] and [128], the characteristics of valve-side SPG faults in LCCs were 

analysed and possible solutions using a phase selection strategy and zero-sequence 

voltage compensation were proposed. However, these cannot be applied to MMCs 

due to the differences between converter topologies. Internal ac bus faults in two-

level VSCs were investigated in [77]-[78], but their findings are not totally 

applicable to MMCs either. MMC station internal ac faults were studied in [28], 

[129], however, the work was restricted to symmetrical monopole configurations. 

In addition, the simplified lumped parameter line models used in these references 

hardly reflect real fault characteristics.  

Valve-side SPG faults also induce special fault behaviours in asymmetrical 

monopole HB-MMCs. An initial study was performed in [26], where solutions to 

the overvoltage arising in upper arm SM capacitors were proposed. However, this 

type of fault also produces high dc components in the ac side fault currents which 

may prevent grid-side ACCB from operating due to the absence of zero-crossings. 

References [29]-[30] propose installing an auxiliary ACCB on the grid side to 
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create the required current zero-crossings, but no further insight into the presence 

of the dc offsets is provided. Moreover, a shortcoming of this approach is that the 

three-phase short-circuit created by the additional ACCB will lead to severe voltage 

drops at the ac grid, and therefore may aggravate the fault impact. In addition, the 

installation of an auxiliary ACCB will increase capital costs.  

Given that an asymmetrical monopole MMC HVDC link is the building block of 

bipole systems, these will inherit its drawbacks. Although [130] analyses the non-

zero-crossing fault currents caused by valve-side SPG faults in a bipole system, the 

faulted phase reactance has been ignored and, as such, the fault current calculation 

accuracy is reduced. Additionally, the protection strategy is complex, and the three-

phase short-circuit created during the fault may burn the semiconductor devices. 

Moreover, the converter transformer and other equipment may be damaged by the 

large currents arising from closing the auxiliary arm protection switches. A hybrid 

MMC topology based on HB and FB SMs has been used in [127] to address the 

above issues. However, the adoption of such a configuration would greatly increase 

capital costs due to the additional IGBTs and hence increased power losses. 

The study of HB MMCs subject to station internal faults is currently under-

researched both in the industry and academia. To bridge this gap, theoretical 

analysis of SPG fault characteristics at the valve-side of HB MMC based 

transmission systems under various station configurations needs to be carried out. 

Protection strategies should be proposed based on the theoretical studies.  

2.6 Summary 

The state-of-the-art of VSC HVDC technologies is reviewed in this chapter. It 

can be seen that the VSC HVDC technologies are widely applied in renewable 

energy integration, long distance and bulk power transmission and grid 

interconnections. However, there are still problems that the future VSC HVDC 

systems need to cope with. For instance, the design and manufacture of fast and 

reliable DCCBs, HVDC cables, converting ac lines into dc operation and dc gird 

protections.  

Moreover, due to the low impedance of the dc network, a dc fault within a dc 

grid might severely affect the operation of the dc grid and its connected ac systems. 
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Therefore, the impact of dc grid faults and different dc fault protection approaches 

on the stability of integrated ac/dc systems need to be studied.        

The study on the protection of converter ac side fault is another important aspect. 

Particularly, more attention is necessary to be paid to converter valve-side single-

phase faults which is an under-researched topic. 

The research work in this thesis investigated the above problems and propose 

relevant solutions. 
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3.1 Introduction 

As the hybrid DCCB (HCB) possesses a fast fault current interruption speed and 

produces low steady-state power losses, HCB has been widely considered as the 

most common DCCB design topology for HVDC applications [131]. As discussed 

in Section 2.2.3, the studies in the literature were mainly focussed on the topology 

design of DCCBs. More research needs to be carried out on investigating the 

operating characteristics and system behaviour of DCCBs. The experimental 

validation of the application of DCCBs in dc grids is also necessary to verify the 

performance of DCCBs. 

In this chapter, the voltage and current characteristics and the response time of 

the HCB are first investigated in simulations. The factors, such as parameters of the 

current limiting reactor and the surge arrester, affecting the performance of the HCB 

are considered in the studies. Moreover, the design of DCCBs using metal–oxide–

semiconductor field-effect transistors (MOSFETs) to emulate the HCB is described. 

Finally, the DCCBs was deployed in a three-terminal VSC HVDC test-rig for the 

test of interrupting dc fault currents in a dc grid.  

3.2 Operating characteristics of hybrid dc circuit breakers 

Although various HCBs have been proposed by both industry and academia, the 

operating principles of those HCBs are similar. Therefore, the HCB proposed in 

[13] is used to investigate the operating characteristics of HCBs. The factors 

affecting the fault behaviours of the HCB are studied.  

3.2.1 Operating principles  

A test model, as shown in Fig. 3. 1, has been built in PSCAD/EMTDC. The HCB 

is built according to [13]. A dc voltage source with an internal resistor Rs is used to 

produce the dc voltage. Rdc and Ldc is the equivalent resistance and inductance (R: 

0.0192 Ω/km and L: 0.24 mH/km [5]) of a 200 km XLPE cable. RLoad is the dc load. 

The residual current breaker is to isolate the faulty line from the healthy circuits 

after fault clearance.  

The voltage Vdccb across the HCB, the total current passing through the HCB, the 

currents in each branch of the HCB and the terminal voltage Vdc are the 
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measurements. The value of the current limiting reactor and the rated voltage of the 

surge arrester are changed to investigate the influences on the fault current 

interrupting performance. Parameters of the test circuit are given in Table 3. 1.   

Main Breaker

Inormal

Imain

Iarrester

Current limiting 

reactor Rdc Ldc

Vdc

Ultrafast 

Switch Load Commutation 

Switch 

Vdccb

DC RLoad

Rs

Fault

Itotal

Residual 

Current Breaker

Surge arrester

 

Fig. 3. 1. The test circuit of a typical HCB. 

Table 3. 1. Parameters of the DCCB test circuit. 

Parameters Real value  In per unit 

DC source voltage (kV)  320 1 p.u. 

Ldc (H) 0.048 - 

Rdc (Ω) 3.84 0.012 p.u. 

DC load RLoad (Ω)  320 1 p.u. 

DC source internal resistance Rs (Ω) 0.1 0.00003 p.u. 

Surge arrester clamping voltage (kV) 384 (variable) 1.2 p.u. 

Current limiting reactor (mH) 100 (variable) - 

The algorithm of the fault discrimination is shown in Fig. 3. 2. The tripping 

signals will be generated once the current Itotal reaches 5 kA. The tripping signals 

will be directly sent to the load commutation switch (LCS) and the main breaker. 

The ultrafast switch (UFS) will open at zero current and voltage once the fault 

current totally commutates into the main breaker. Therefore, the UFS can open 

without interrupting arcs, which allows the UFS to open at a fast speed (1-2 ms) 

[13]. In this test, a time delay of 2 ms, which emulates the operating time of the 

UFS, is applied to the tripping signal sent to the UFS.   
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>5 kA

Tripping signal

to

LCS and main breaker

Delay

Tripping signal

to

UFS

Itotal

 

Fig. 3. 2. The algorithm of fault discrimination. 

The sequence of the fault current interruption process is as follows:  

(i) A solid fault is triggered at t = 0.1 s; 

(ii) The LCS will be turned off and the main breaker will be turned on 

simultaneously once their tripping signals are received;  

(iii) The fault current in the normal operation branch will start to commutate into 

the main breaker; 

(iv) The UFS will be turned off 2 ms after receiving the tripping signal; 

(v) The main breaker will be blocked once the UFS is fully opened; 

(vi) The fault current will be forced into the surge arrester where it will be totally 

dissipated; 

(vii) The residual breaker will open once the fault current decays to zero. 

It should be mentioned that the test focuses on the system level dynamic 

responses of the DCCB, thus the test does consider the time delay of turning on the 

LCS and the main breaker. Moreover, the current commutation process is not 

considered. 

The currents and voltages of the HCB during the dc fault are shown in Fig. 3. 

3(a)-Fig. 3. 3(b). Fig. 3. 3(c)-Fig. 3. 3(f) show the status (1 is on and 0 is off) of 

different switches. It can be seen from Fig. 3. 3(a) that the current before the fault 

was 1 kA and it started to increase once the fault occurred. The LCS was turned off 

and the main breaker was turned on simultaneously once the fault current reached 

5 kA. The fault current kept increasing to 9 kA until the UFS was turned off. The 

main breaker was turned off once the UFS was fully opened. Then the fault current 
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was forced into the surge arrester where the fault current was totally dissipated. In 

this test circuit, the fault current is fully interrupted within 6.9 ms. 

Fig. 3. 3(b) illustrates the voltage across the HCB and the dc voltage at the dc 

terminal. The dc voltage Vdc dropped to 102 kV immediately when the fault 

occurred. Vdc did not drop to zero because the high rate-of-change of the fault 

current led to transient voltages on both current limiting reactor and the dc line 

reactor. The voltage Vdccb over the HCB was zero before the main breaker was 

turned off. The surge arrester produced a large transient overvoltage when the main 

breaker was blocked. The overvoltage disappeared once the fault current was 

dissipated.   

 

Fig. 3. 3. The fault responses and operating status of different switches of the HCB.  

(a) Currents in the three branches; (b) Voltage over the HCB and the dc terminal voltage; (c)-(f) 

Operating status of the LCS, main breaker, the UFS and the residual current breaker. 
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3.2.2 Factors affecting the operation of hybrid dc circuit breakers 

In order to investigate the factors affecting the performance of the HCB, the 

parameters of the current limiting reactor and the surge arrester are varied. The base 

case is the test system in the above section where the current limiting reactor is 100 

mH and the rated voltage of the surge arrester is 384 kV (1.2 times of the dc voltage). 

The HCB currents with different parameter values of current limiting reactors and 

surge arrester rated voltage are shown in Fig. 3. 4. 

 

Fig. 3. 4. The current behaviours under different parameters of the current limiting reactor and the 

surge arrester.  

(a) The reactor is 100 mH and the surge arrester clamping voltage is 384 kV; (b) The reactor is 50 

mH and the surge arrester clamping voltage is 384 kV; (c) The reactor is 100 mH and the surge 

arrester clamping voltage is 480 kV. 

 It can be seen from the comparison of Fig. 3. 4(a) and Fig. 3. 4(b), a smaller 

reactor led to a larger current rate-of-change. The fault current in the case with a 
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smaller reactor reaches the threshold faster than the case with a larger reactor. 

Therefore, the LCS and the main breaker in the case with a 50 mH reactor were 

turned off earlier than the base case. The fault current has reached 11 kA in the case 

with a 50 mH reactor when the UFS was turned off. The fault current was dissipated 

by the surge arrester within 1.6 ms which is faster than the base case. It means that, 

with the same rated voltage of the surge arrester, a larger fault current will lead to 

a faster dissipation process.   

It can be found from the comparison of Fig. 3. 4(a) and Fig. 3. 4(c) that in the 

case of a higher surge arrester clamping voltage, the time of the fault current being 

dissipated in the surge arrester is 2 ms which less than the case with a lower surge 

arrestor clamping voltage. It means that, a higher surge arrestor clamping voltage 

will lead to a faster dissipation process. 

 

Fig. 3. 5. The voltage behaviours under different parameters of the current limiting reactor and the 

surge arrester.  

(a) The reactor is 100 mH and the surge arrester clamping voltage is 384 kV; (b) The reactor is 50 

mH and the surge arrester clamping voltage is 384 kV; (c) The reactor is 100 mH and the surge 

arrester clamping voltage is 480 kV. 
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Fig. 3. 5 shows the voltage across the HCB and the dc terminal voltage. The 

voltage across the HCB depends on the non-linear characteristic of the surge 

arrester. The comparison between Fig. 3. 5(a) and Fig. 3. 5 (b) shows that the same 

clamping voltage gives the same overvoltage. However, a higher current through 

the arrester gives a shorter dissipation time.  

It can be observed from the comparison of Fig. 3. 5(a) and Fig. 3. 5(c) that a 

higher surge arrester clamping voltage leads to a higher overvoltage. Moreover, the 

surge arrester with a higher clamping voltage reduces the time of the fault current 

being dissipated.  

From the simulations, it can be concluded that the current limiting reactor and 

rated voltage of the surge arrester affect the characteristics of the voltage and 

current of the HCB. The rate-of-change of the fault current was limited by the 

current limiting reactor. However, it should be highlighted that a large reactor may 

increase the time constant of a dc system; which will affect the system dynamic 

response and, in the worst case, may cause instability. A high rated voltage of the 

surge arrester can reduce the current dissipation time in the surge arrester. However, 

the overvoltage produced by the surge arrester will be high. The insulations of the 

HCB connected devices may be damaged by this overvoltage. Therefore, the design 

of HCBs requires to be assessed comprehensively both at device and system levels. 

3.3 Experimental validation of applying dc circuit breakers in 

multi-terminal dc grids 

The above studies show that the rate-of-change of dc fault currents is quite high 

(several kiloamperes per milliseconds) due to the small impedance of dc circuits. 

DCCBs are required to interrupt fault currents within several milliseconds. The 

characteristics of fault currents and voltages of the HCB have been studied through 

time-domain simulations. To investigate the performance of using DCCBs to isolate 

dc faults in a dc grid, scale-down physical models of solid-state CB have been built 

and implemented in a three-terminal VSC HVDC test-rig to isolate dc faults. The 

studies mainly focus on system behaviour instead of DCCB’s internal performance.  
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3.3.1 Small-scale dc circuit breaker design  

Solid-state circuit breakers were built and installed in a VSC HVDC test-rig to 

emulate the fault isolation process in a dc grid. The schematic diagram of the small-

scale DCCB is shown in Fig. 3. 6.  

Surge arrester

Diode

MOSFET  

Fig. 3. 6. Schematic diagram of the small-scale DCCB. 

MOSFETs are used to build the main breaker. To protect the MOSFETs, diodes 

are installed in parallel with them. In each DCCB, the MOSFETs are anti-series 

connected in order to interrupt bidirectional fault currents. The performance of the 

designed DCCBs is accurate enough to investigate the system behaviour of dc faults 

and the system dynamic responses in a dc grid. A surge arrester is equipped in 

parallel with the main breaker branch to dissipate the energy from the fault current 

once the breaker is turned off. The parameters of the DCCB are given in Table 3. 2.  

Table 3. 2. Parameters of the small-scale DCCB. 

Parameters Values 

Rated current (A)  20 

Rated dc voltage (V)  800 

Surge arrester clamping voltage (V) 170 

Fig. 3. 7 shows the printed circuit board (PCB) of the small-scale DCCB. The 

MOSFETs are individually controlled via non-bootstrapped opto-coupler based 

drivers. The state of each DCCB is set using dSPACE. 
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Fig. 3. 7. The DCCB board. 

3.3.2 VSC HVDC test-rig 

The test-rig consists of three 10 kW two-level VSCs, dc lines and a dSPACE 

controller. Fig. 3. 8 shows the setup of the test-rig. The arrangement of these devices 

in the lab is depicted in Fig. 3. 9. In the dc side, a delta connection (meshed network) 

is formed. At the ac side, the three VSCs are connected to the same ac grid. The 

four DCCBs are deployed in the two ends of the dc line between VSC1 and VSC2. 

The parameters of the test-rig are listed in Table 3. 3. 

VSC2VSC1

VSC3

L12

L13

L23R13

R12

R23

T1 T2

T3

CB12P CB21P

CB12N CB21N

dSPACE
Optic 

link 

AC 
Grid

  

Fig. 3. 8. The set-up of the VSC HVDC test-rig. 

Breaker 

Driver 

5V-0V 24V-0V dSpace 
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Fig. 3. 9. The arrangement of the test-rig in the lab. 

Table 3. 3. Specifications and parameters of the test-rig. 

Devices Specifications Equipment ratings Operating rating 

Converters 

Rated power 10 kW 2 kW 

Rated ac voltage 415 V 145 V 

Rated dc voltage  800 V 250 V 

Topology Two-level 

AC inductors Lg1, Lg2, Lg3 2.2 mH 

DC lines 

L12 2.4 mH 

L13 5.8 mH 

L23 11.8 mH 

Equivalent resistance R12 0.045 Ω 

Equivalent resistance R13 0.68 Ω 

Equivalent resistance R23 0.18 Ω 

DC capacitors Cg1, Cg2, Cg3 1020 µF 

Control system dSPACE / ControlDesk (Simulink interface) 
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The master-slave control scheme is utilised to control the VSCs. The control 

blocks of the dc voltage and reactive power (Vdc and Q) control scheme and the 

active and reactive power (P and Q) control scheme are depicted in Fig. 3. 10 and 

Fig. 3. 11. VSC1 controls the dc voltage. VSC2 and VSC3 control the power.  

 

 
Fig. 3. 10. Vdc and reactive power control scheme. 

 

 

 
Fig. 3. 11. Active and reactive power control scheme. 

Fig. 3. 12 shows the deployment of the DCCBs in the dc network cabinet. The 

DCCB board shown in Fig. 3. 7 is installed inside the cabinet. The topology of the 

dc network and locations of the DCCBs within the dc network can be changed 

outside the cabinet.  
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                                 (a) External.                                                        (b) Internal 

Fig. 3. 12. Deployment of DCCBs. 

 

Table 3. 4. Parameters of the dc fault generator. 

Parameters Values 

Rated current (A)  30 

Rated voltage (V)  900 

Resistor R (Ω) 14 

Reactor L (mH) 45 

A dc short-circuit generator (SCG) is employed to produce dc faults within the 

dc circuit. The SCG, shown in Fig. 3. 13, consists of a series connected resistor and 

an inductor. In order to ensure the safety of the devices, the fault current is limited 

by the size of the resistance and the inductance. The SCG is deployed in the dc line 

between VSC1 and VSC2. The SCG is closed to the CB21P and CB21N. A pole-to-

pole fault will be produced once the IGBT inside the SCG is triggered. The currents 

I12, I13 and I23 of the positive poles are measured, as shown in Fig. 3. 13. 
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Fig. 3. 13. Short-circuit generator. 

3.3.3 Experimental results 

A pole-to-pole fault was triggered at t = 2 s. Due to the reactor within the SCG, 

the rate-of-change of the fault current is not high. Also, in order to guarantee the 

safety of the devices and system operator, a conservative threshold of triggering the 

DCCBs is set. The DCCBs will be turned off once the magnitude of the dc current 

is above 1.2 p.u. As shown in Table 3. 3, the operating power and voltage of the 

VSC is 2 kW and 250 V. Therefore, the maximum operating current is 8 A. In this 

way, the DCCBs are set to be turned off once the current is above 9.6 A. Moreover, 

as the fault currents have been limited to safe levels, the converters will not be 

blocked during the fault test.  

The currents I12, I13 and I23 in the positive pole of the dc network are shown in 

Fig. 3. 14. The dc currents contain distortions due to the harmonics and noise 

produced by the circuit. Before the fault, the current through the CB21P was about 2 

A. The CB21P and CB21N were turned off immediately once the current I12 increased 

to 9.6 A. The fault current through the CB21P decayed from 9.6 A to zero within 6 

ms. Then, the faulted line was successfully isolated.   
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Fig. 3. 14. Positive pole dc currents. 

Fig. 3. 15 depicts the voltages across the breakers CB21P and CB21N. In normal 

operation, the voltage across a DCCB is caused by the on-state resistance which is 

a small value. The voltage over the DCCBs increased to quite high values once the 

DCCBs were turned off. At the same time, the fault current was commutated to the 

surge arrester and started to decrease. The fault current in the surge arrester 

established a counter voltage [13], and this voltage reduced the fault current to zero 

by dissipating the energy stored in the reactor of the dc line. It should be noted that 

as the measurements of the DCCB voltages were from the oscillograph, the time 

axis shown in Fig. 3. 15 is different from the time period in the control system.  

 
Fig. 3. 15. Voltages across the DCCBs. 
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The dc terminal voltages of each VSC are illustrated in Fig. 3. 16. It can be seen 

that the dc voltages dropped immediately when the fault occurred. However, the dc 

voltage started to recover once the faulted line was isolated. The voltages 

experienced oscillations during the recovery period. The system became stable 0.5 

s after isolating the fault.  

 

Fig. 3. 16. VSC dc terminal voltages. 

Fig. 3. 17 shows the grid side ac voltages of the VSCs. The grid side voltages are 

not affected seriously. The reason is that the dc fault was not severe due to the 

limitation of the fault impedance, and the fault was quickly isolated by the DCCBs. 

 

Fig. 3. 17. Converter ac side voltages. 
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3.4 Summary 

In this chapter, the principle and operating characteristics of the HCB were 

analysed through a test circuit built in PSCAD/EMTDC. The voltage, current and 

response time of the HCB were analysed.  

By changing the parameters of the current limiting reactor and the rated voltage 

of the surge arrester, the factors that affect the performance of the HCB were 

investigated. The studies show that the current limiting reactor limits the rate-of-

change of the fault current, and the surge arrester affects the overvoltage on the 

breaker and the current dissipation time once the main breaker is blocked. However, 

a large reactor increases the time constant of the system, and therefore, affects the 

system dynamic performance. Also, the energy stored in a large reactor might pose 

a burden on the surge arrester to absorb a large amount of energy. Therefore, the 

application of DCCBs needs to be properly designed based on the actual conditions. 

The studies of dc fault characteristics in time-domain were demonstrated through 

the experiment on a VSC HVDC test-rig. The system behaviour of isolating a dc 

fault in a dc grid was also studied. The experimental results show that DCCBs 

successfully interrupted the dc fault currents and isolated the faulted line.  
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4.1 Introduction 

The development of an interconnected market will facilitate cross-border 

exchanges in electricity. The role of HVDC in integrating renewable energy 

generation and cross-border electricity exchanges is widely recognised. Proposals 

of using dc grids linking the transmission systems of different countries and 

renewable generation are being promoted. As mentioned in Section 2.3, the fault 

current interruption and protection technologies are still obstacles for the 

development of MTDC grids. The impact of utilising different dc grid protection 

approaches on the dynamic interactions of integrated ac/dc grids subject to dc faults 

are still under-researched.  

In this chapter, the impact of dc faults on ac and dc grids are studied. Various dc 

grid protection approaches are compared and evaluated. Fault currents, ac voltages, 

power angles, system restoration time and interruption of power supply are key 

quantities which are used to evaluate the performance of ac grids during dc faults.  

4.2 Test system modelling  

An integrated ac/dc power transmission system, as shown in Fig. 4. 1, has been 

developed in PSCAD/EMTDC. The system consists of a 4-terminal meshed HVDC 

grid and a modified 4-machine two-area ac system. The parameters of the ac system 

have been taken from [132]. Each generator has been modelled to include an exciter, 

a turbine and a governor. The dc grid connects to the ac system via two ac buses.  
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Fig. 4. 1. The test integrated ac/dc transmission system. 
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The parameters of the synchronous generators are: Ra = 0.0025, Xl  = 0.2, Xq = 

1.7, X′q = 0.55, X″q = 0.25, Xd = 1.8, X′d = 0.3, X″d = 0.25, T′d0 = 5.0 s, T′q0 = 0.4 s, 

T″d0 = 0.03 s, T″q0 =0.4 s, H1=6s , H2=6s , H3=5s , H4= 5s. Each generator has a 

rating of 900 MVA and 20 kV and the parameters are given in per unit. The 

transformer has an impedance of 0+j0.15 per unit on 900 MVA and 20/230 kV base. 

The ac transmission system voltage is 230 kV. The parameters of the lines in the 

base of 100 MVA and 230 kV are: r = 0.0001 p.u./km,  xL = 0.001 p.u./km, bC = 

0.00175 p.u./km. The capacity of the synchronous generators is 900 MVA.  

The parameters of the dc grid are given in Table 4. 1. Both HB and FB MMCs 

will be modelled. The converter station configuration is symmetrical monopole. 

The parameter of the HVDC cable has been taken from [133]. The configuration 

and dimensions of the PSCAD cable model are illustrated in Appendix I. The cable 

lengths are indicated in Fig. 4. 1. ACCBs are equipped at the grid side of the 

converter transformers. DCCBs are deployed at the two ends of each HVDC cable. 

DC current limiting reactors are equipped with each DCCB. The MMC controllers 

are shown in Appendix II. The control modes and output power of the converters 

are given in Table 4. 2. 

Table 4. 1. Parameters of the dc grid. 

Parameters Real value In per unit 

Converter rated power (MW)  1000 1 

DC voltage (kV) ± 320 1 

AC side voltage (kV) 230 0.575 

Transformer leakage reactance (p.u.) 0.1 0.1 

Transformer ratio (kV/kV) 230/400 0.575/1 

Number of SMs in each arm 10 - 

SM capacitance (mF) 2.5 - 

Arm inductance (H) 0.05 0.09817 

Arm resistance (Ω) 0.1 0.0000625 

AC system frequency (Hz) 50 - 

DC current limiting reactor (mH) 100 - 
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Table 4. 2. The control modes and output power of the converters. 

Converters Control mode Output power 

MMC1 Vdc and reactive power Vdcref1 = ± 320 kV;   Qref1 = 40 MVAr 

MMC2 Power control Pref2 = -300 MW;      Qref2 = -30 MVAr 

MMC3 Power control Pref3 = 400 MW;        Qref3 = 40 MVAr 

MMC4 Power control Pref4 = -600 MW;       Qref4 = -120 MVAr 

* The active and reactive power flows from the AC system into each converter are positive. 

As this chapter focuses on the responses of the ac/dc system to dc faults, the 

internal design of the DCCBs was assumed to have little influence on the system 

dynamic responses [134]-[135]. Therefore, a simplified DCCB has been modelled 

as an ideal breaker with a surge arrester, as shown in Fig. 4. 2. The surge arrester is 

rated at 1.5 p.u. of the rated pole-to-ground dc voltage. A delay timer is set to 

emulate the time of fault discrimination and the opening time of the breaker. This 

DCCB model can emulate an HCB whose operating time is several milliseconds or 

a mechanical DCCB whose operating time is tens of milliseconds.  

Fault 

Delay timer

Current limiting 

reactor

Residual 

current breaker

Reduced DCCB  
Fig. 4. 2. The simplified DCCB model. 

The converter local protection is based on overcurrent and over current-rate-of-

change. Tripping signals will be sent to block the IGBTs either the rate-of-change 

of the current flows through the VSC is higher than 3 kA/ms or the magnitude of 

the current flows through the VSC exceeds 3 kA. The algorithm of the converter 

local protection is shown in Fig. 4. 3. Moreover, to make sure that the IGBTs are 

not damaged by the transient overcurrent or overvoltage during the period of system 

restoration, the converters will be blocked for 20 ms.  
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VSCdI

dt
> 3 kA/ms

OR

IVSC >3 kA

Tripping signal

to

converters

 

Fig. 4. 3. The algorithm of converter local protection. 

4.3 Simulations and analysis  

The transient responses and stability of the test ac/dc system subject to a dc fault 

is assessed. It is to be noted that novel fault isolation and post-fault restoration 

algorithm is not within the scope of this work. Typical fault isolation time and 

devices discussed in Section 2.3 are applied and evaluated.  

In order to investigate the worst situation, a solid pole-to-pole fault has been 

applied in the middle of Line 1 at t = 6 s for each case, as shown in Fig. 4. 2. A fault 

resistance of 1 Ω has been considered. The current flows through DCCB34 in Fig. 

4. 1, the dc terminal voltages of each converter, the voltages of ac buses 7 and 9, 

the power angle difference between generators G1 and G3, and the power 

transferred in the ac corridor are the measured. The protection approaches using HB 

MMC with DCCB, HB MMC with ACCB and FB MMC are considered for 

isolating the fault. It should be mentioned that the fault detection and discrimination 

time can be less than 5 ms in the literature. In this study, a conservative 5 ms for 

fault detection and discrimination is applied. The results and conclusions may be 

different if other fault detection and discrimination time is applied.  

4.3.1 Case 1 — HB MMC + DCCB 

In this study, HB MMCs are used in the dc grid in test system shown in Fig. 4. 1. 

The Fully Selective Approach and the “Open Grid” concept are employed to isolate 

the fault in the middle of Line1. 

4.3.1.1 Fully Selective Approach 

The tripping logic for the DCCBs using the Fully Selective Approach is shown 

in Fig. 4. 4. The DCCB tripping signal will be generated either the dc terminal 

voltage is below 80% of the dc voltage reference value or the magnitude of the 
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current flows through the DCCB is over 3 kA. A 5 ms delay is considered for the 

fault discrimination. It is assumed that after the fault discrimination, only the faulted 

line associated with DCCBs are selected to isolate the fault. Moreover, a 5 ms delay 

is added for the operating time of the DCCBs. Therefore, a 10 ms time delay is 

added before tripping the faulted line associated with DCCBs. The converter local 

protection algorithm is based on the scheme shown in Fig. 4. 3.  

OR

IDCCB >3 kA

Tripping signal

to

DCCBs

5 ms DCCB 

operating delay 

Vdc< 80% Vdcref

5 ms fault 

discrimination delay

 

Fig. 4. 4. The algorithm of tripping DCCBs using the Fully Selective Approach. 

In this case, only the faulted Line1 associated with DCCB34 and DCCB43 will be 

tripped. Fig. 4. 5 shows the positive and negative pole currents flowed through the 

DCCB34P and DCCB34N. As the fault is pole-to-pole, the currents in the positive and 

negative poles are symmetrical. The magnitude of the fault current IDCCB34P reached 

3 kA at t = 6.017 s. Then the tripping signal was generated and sent to the breakers 

after a 10 ms delay. The maximum magnitude of the fault current was 9.74 kA. The 

fault currents became zero at t = 6.0136 s. 

 

Fig. 4. 5. The fault current passing the DCCB34. 

Fig. 4. 6 shows the positive dc terminal voltages of the four converters. As the 

positive and negative pole voltages are symmetrical during the pole-to-pole fault, 

only the positive terminal voltages are depicted. The dc voltages started to drop 

once the fault occurred. The voltages of the converters 3 and 4 dropped earlier and 
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lower than the other two converters as the fault is closed to the converters 3 and 4. 

The voltages started to recover once the fault was isolated. The dc voltages 

experienced oscillations during the recovery period and became stable 0.4 s after 

isolating the fault.  It should mention that the dc voltage did drop to zero during the 

dc fault because the fault is 100 km away from the converters and the dc reactor 

also limit the voltage drop. 

 

Fig. 4. 6. Converter positive dc terminal voltages. 

The voltages of ac buses 7 and 9 are illustrated in Fig. 4. 7. As the converters 3 

and 4 were blocked by their local protection system, the ac currents were infeeded 

to the fault through the uncontrollable bridges. This is equivalent to a three-phase 

short-circuit on the ac bus. However, due to the limitation of the impedance of the 

converter interface transformer and the fast fault isolation using DCCBs, the ac 

voltages did not drop to zero, and it started to recover once the fault was isolated.  

 

Fig. 4. 7. Voltages of ac buses 7 and 9. 

It also should be noted that the two ac buses were impacted by the dc fault at 

almost the same time. The reason for this behaviour is that unlike the ac 

counterparts, MTDC grids are “low-inertia” systems and thus the dc voltage drop 
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propagates quickly within the MTDC grid once a dc fault occurs. The ac system 

will be affected at multiple locations (converters). From the viewpoint of ac systems, 

a dc fault within the dc grid can be seen as “multiple faults”. 

Although the faulted dc line was isolated, the power in this line shifted to other 

routes within the dc grid. The converters are capable of operating at the pre-fault 

output power. For this reason, the power transferred in the ac corridor recovered to 

the original value after the fault, as shown in Fig. 4. 8.  

Fig. 4. 9 shows the power angle difference between the generators G1 and G3 

which are the two generators that have the farthest electrical distance. The power 

angle difference reached steady state after oscillations.  

 

Fig. 4. 8. The power in the ac transmission line. 

 

Fig. 4. 9. The power angle difference between generators G1 and G3. 

4.3.1.2 “Open Grid” Approach 

In this case, the “Open Grid” Approach is employed to isolate the same fault in 

the last section. The tripping logic for the DCCBs, in this case, is shown in Fig. 4. 

10. The tripping signals for DCCBs will be generated once the dc terminal voltage 
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is below 80% of the dc voltage reference value or the magnitude of the DCCB 

current is over 3 kA. The difference between the “Open Grid” Approach and the 

Full Selective Approach is that all the DCCBs will be tripped immediately 

depending on their local measurement without fault discrimination. A 5 ms delay 

is added for the operating time of the DCCBs. A 5 ms delay is considered for the 

fault discrimination using the residual voltages and currents of the remaining 

circuits. It is assumed that after the fault discrimination, only the faulted line 

associated DCCBs are selected to isolate the fault and other DCCBs will be reclosed. 

The converter local protection algorithm is based on the scheme shown in Fig. 4. 3.   

OR

IDCCB >3 kA

5 ms DCCB 

operating delay 

Vdc< 80% Vdcref

5 ms fault 

discrimination delay

Tripping signal

to

DCCBs

Reclosing signal

to

DCCBs

 

Fig. 4. 10. The algorithm of tripping DCCBs using the “Open Grid” Approach. 

Fig. 4. 11 shows operating status (the low state is on and the high state is off) of 

the DCCBs in the positive poles. DCCB34 and DCCB43 detected the fault earlier 

than other breakers, and therefore tripped earlier. Even though the DCCB31 

connected to the same dc bus with DCCB34, DCCB31 detected the fault later than 

DCCB34 due to the limitation of the current liming reactors in the dc lines. This 

applies the same to DCCB42 and DCCB41 that connected to the same dc busbar with 

DCCB43. The DCCB34 and DCCB43 were permanently turned off after the fault 

discrimination while other breakers were reclosed. 
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Fig. 4. 11. Tripping and reclosing signals for DCCBs (Only the DCCBs in the positive pole are 

shown due to the symmetrical fault characteristics of the positive and negative poles). 
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The fault currents passing through DCCB34 are illustrated in Fig. 4. 12. Because 

the breakers were turned off without fault discrimination, the maximum fault 

current was reduced to 6.73 kA (31% lower than the case using the Fully Selective 

Approach). The fault currents dissipated to zero at t = 6.0079 s. 

 

Fig. 4. 12. The fault current passing the DCCB34. 

Fig. 4. 13 shows the positive dc terminal voltages of the four converters. As the 

faulted line was isolated earlier than the case of using the Fully Selective Approach, 

the dc voltages stopped dropping earlier than the previous case. This resulted in 

higher dc voltages after isolating the dc fault. The higher dc voltages facilitated the 

post-fault restoration, for instance, reducing the magnitudes of the voltage 

oscillations compared to the previous case.  

 

Fig. 4. 13. Converter positive dc terminal voltages. 

It should be noted that the transient overvoltage of Vdc4P was caused by the 

current limiting reactors connected with the DCCB42 and DCCB41. DCCB42 and 

DCCB41 were turned off almost at the same time once their fault detection logics 

were triggered by detecting the low dc voltages. The DCCB43 was turned off earlier 

than the two breakers. Therefore, converter 4 were totally isolated from the rest of 
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the dc circuits once all the three breakers were turned off. There was no current path 

for dissipating the reactors’ currents. The energy stored in these current limiting 

reactors were dissipated in a short time which led to the transient overvoltage.  

Due to the short fault isolation times, the system was impacted less severely than 

the case employed Fully Selective Approach. Fig. 4. 14 shows the ac bus voltages. 

The earlier isolation of the faulted line stopped the further dropping of the ac 

voltages. Fig. 4. 15 and Fig. 4. 16 show the ac line power and the power angle 

between the generators G1 and G3, respectively. The overall system restored to the 

steady state faster than the previous case. 

 

Fig. 4. 14. Voltages of ac buses 7 and 9. 

 

Fig. 4. 15. The power in the ac transmission line. 
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Fig. 4. 16. The power angle difference between generators G1 and G3. 

4.3.2 Case 2 — HB MMC + ACCB 

In this study, the ACCBs have been employed to protect dc grid against the same 

dc fault in the previous cases. The “Handshaking” method proposed in [110] is 

applied. The detailed steps in implementing the method are in Appendix III. 

Due to the long operating time of ACCBs, all converters were blocked by the 

converter local protection before the ACCBs were turned off. A waiting time of 80 

ms was used to emulate the operating time of ACCBs. It is assumed that the fault 

discrimination and location were completed within this period. The ac currents kept 

infeeding into the dc side through the controllable bridges as shown in Fig. 4. 17. 

Therefore, the dc fault current was keeping increasing. The maximum fault current 

reached 13.98 kA within 80 ms, as shown in Fig. 4. 18. The fault currents started to 

neutrally decay once the ACCBs were turned off. The faulted line associated dc 

switches opened when the currents decay to a low value (20 A). 

 

Fig. 4. 17. Equivalent circuit of the dc grid after all converters were blocked. 
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Fig. 4. 18. The fault current passing the DCCB34. 

 

Fig. 4. 19. Converter positive dc terminal voltages. 

Fig. 4. 19 shows the positive dc terminal voltages of the four converters. The dc 

voltage of the whole dc network dropped to zero due to the long waiting for the 

current to decay to an acceptable low value for the dc switches. The post-fault 

restoration process started once the faulted line was isolated and thereafter the dc 

voltage started to recover.   

 

Fig. 4. 20. Voltages of ac buses 7 and 9. 
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The ac voltages of buses 7 and 9 are illustrated in Fig. 4. 20. The two ac voltages 

started to drop once the dc fault occurred. The infeeding currents through the 

controllable bridges drew a large amount of reactive power in converter ac side. 

Thus, ac voltages dropped more severely than the previous cases. As previously 

pointed out, the ac system was suffering “two faults” at buses 7 and 9 caused by the 

dc fault.  

Moreover, as observed from Fig. 4. 20 to Fig. 4. 22, after the isolation of the dc 

fault, the power transferred in the ac corridor and the power angle of the generators 

experienced large oscillations. Finally, the ac voltages became unstable.  It means 

that the long fault isolation and post-fault restoration time (several hundred 

milliseconds) were not acceptable for the ac system.  

 

Fig. 4. 21. The power in the ac transmission line. 

 

Fig. 4. 22. The power angle difference between generators G1 and G3. 

4.3.3 Case 3 — FB MMC 

In this case, the HB MMCs in the dc grid were replaced by FB MMCs. The 

converters are blocked immediately once a dc fault is detected. As explained in 
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Section 2.2.1.4, the ac infeeding currents will be blocked if the sum voltage of all 

SM capacitors in the arms is higher than the valve-side line voltage. The equivalent 

circuit of the dc grid after blocking all converters are shown in Fig. 4. 23.  

The voltage dropped quickly at the fault location. However, the converter dc 

terminal voltages did not drop instantaneously due to the voltage support from the 

distributed capacitance and inductance of the HVDC cable. Moreover, right after 

the occurrence of the fault, voltage surges started to travel from the fault location 

into both directions toward the terminals [133]. Upon the arrival at the terminals, 

the voltage surges were reflected as reversed voltage surges, as illustrated in Fig. 4. 

23. At the same time, due to the resistance and distributed capacitance along the 

transmission line, the magnitudes of the surges decay gradually. Therefore, once all 

the converters within the dc grid were blocked, the converter terminal voltages 

started to periodically reverse polarity with decaying magnitudes. The period of the 

reversing polarity and the magnitude decaying speed depend on the system 

parameters and the fault impedance.  

Traveling Surge Traveling Surge

Reflection Reflection  

Fig. 4. 23. Equivalent circuit of the dc grid after all converters were blocked. 

Fig. 4. 24 illustrates the positive and negative pole currents passed through the 

DCCB34P and DCCB34N. The fault current has reached 3.12 kA at the moment the 

converters were blocked. Then the converter terminal voltages started to oscillate 

with decaying magnitudes, as shown in Fig. 4. 25, which resulted in the oscillations 

of the fault currents.  
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Fig. 4. 24. The fault current passing the DCCB34. 

It can be seen that the fault currents were reversing directions and decaying. As 

the fault currents have zero-crossings, switches which can interrupt a few hundred 

amperes can be utilised to interrupt this type of fault currents. In this study, the 

switches were turned off once the magnitude of the fault current was below 500 A. 

The rate-of-decay of the fault current depends on the parameters of the dc circuit 

and fault impedance. A larger fault resistance leads to a faster decay. In this case, 

the fault resistance is 1 Ω. The results of a 10 Ω fault resistance are shown in 

Appendix IV. Although some work has been conducted using controlled discharge 

during system shutdown in point-to-point FB MMC links [136], more work needs 

to be carried out for MTDC grid. 

 

Fig. 4. 25. Converter positive dc terminal voltages. 

Fig. 4. 26 shows the currents at the grid-side of the MMC3. The current became 

near zero once the MMC3 was blocked. There was no contribution to the dc fault 

currents from the ac side. Therefore, the maximum dc fault currents were 

significantly reduced compared to the cases using DCCBs and ACCBs.  
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Fig. 4. 26. Currents at the grid side of MMC3. 

Fig. 4. 27 illustrated the ac voltages at buses 7 and 9. Both buses were impacted 

by the blocking of the converters. Before the fault, the MMC3 was absorbing power 

from the bus 7. The power transmitting through the MMC3 became zero once the 

converter was blocked, which led to the voltage increase of bus 7. The MMC4 was 

injecting power to the bus 9. Therefore, the voltage of bus 9 dropped once the 

MMC4 was blocked.  

 

Fig. 4. 27. Voltages of ac buses 7 and 9. 

Fig. 4. 28 and Fig. 4. 29 show the ac line power and the power angle between the 

generators G1 and G3. It can be seen from Fig. 4. 27 to Fig. 4. 29 that the ac system 

restored to the steady state.  
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Fig. 4. 28. The power in the ac transmission line. 

 

Fig. 4. 29. The power angle difference between generators G1 and G3. 

4.4 Summary 

In this chapter, the dynamic interactions between a dc grid and its connected ac 

system subjected to dc faults were analysed and assessed. Different fault isolation 

methods were employed in the simulations. The comparisons of the studied 

protection methods are given in Table 4. 3. 

Table 4. 3. Comparisons of different protection methods 

Indicators 

HB MMCs 

with DCCBs 

(FullySelective) 

HB MMCs 

with DCCBs 

(OpenGrid) 

HB MMCs 

with ACCBs 

FB MMCs 

with dc 

switches 

DC fault currents Medium Low High Low 

De-energisation of 

the entire DC grid  
Parts No Yes Yes 

Time for fault 

isolation  
Short Short Long Medium 

Impacts on converter 

ac side voltages 
Low Low High Low 
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 In the case of using DCCBs as fast fault clearance devices, the dc fault can be 

isolated quickly. The Fully Selective Approach imposed quite a high current 

interruption duty on the faulted line associated breakers. The fault isolation time 

can be less than ten milliseconds. The entire dc grid will not be fully discharged. 

On the other hand, the “Open Grid” method reduced the current interrupting 

requirement for DCCBs by reversing the protection sequence order. However, this 

method may extend the outage area of the dc grid. Moreover, the unpredictability 

of a tripping and/or reclosing sequence may lead to transient overvoltage and 

overcurrent.  

The use of ACCBs needs to be carefully assessed as this method leads to the de-

energisation of the entire dc grid. The dc system requires several hundred 

milliseconds to isolate the fault and restore to the steady state. A long fault isolation 

and restoration time can easily lead to the instability of the overall ac/dc system. 

Therefore, the approach using ACCBs as fault clearing devices may not be suitable 

for an overlay ac/dc transmission system with high power supply requirement.  

FB MMC-based dc grid can block the ac infeeding currents by blocking all the 

converters. This method leads to the outage of the entire dc grid. DC switches which 

can interrupt currents with zero crossings are needed to isolate the faulted line. 

However, the switches need to wait for the decay of the fault currents to acceptable 

low values. A long wait may lead to the instability of the overall system. Moreover, 

the quick voltage polarity reversing after blocking all the converters may damage 

the dc cables. In addition, the high capital costs and operating losses are the 

drawbacks of this method. 
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5.1 Introduction 

The studies in previous chapters focused on the dc side faults. The impact of 

converter ac side faults also needs to be taken into account in the designing of 

HVDC systems. Although there have been research on converter grid-side ac faults, 

MMCs subject to station internal faults are not widely studied both in the industry 

and academia.  

The area between the converter valve and the interface transformer is in the 

overlapping protective zones of the converter and the ac system [137], as shown in 

Fig. 5. 1. The valve-side winding bushings of these transformers protrude through 

the hall wall to connect to converter ac buses [24]-[25]. The ac buses in this area 

need high insulation to withstand high voltages and large currents. Insulation failure 

and/or flashover of wall bushings may cause single-phase-to-ground (SPG) faults, 

which are typically permanent, between the converter and the transformer. Valve-

side SPG fault can lead to severe consequences, such as commutation failures in 

LCCs, dc voltage oscillations in symmetrical monopole MMCs, and non-zero-

crossing fault currents in bipole MMCs [29]-[30]. 

F1
F2

F3
F4 F5

AC grid

Converter zone

AC protection 
zone

DC protection 
zone

 

Fig. 5. 1. Schematic diagram of station internal ac faults and protection zones. 

In this chapter, the characteristics of SPG faults at the valve-side of symmetrical 

monopole HB MMCs are theoretically analysed. Then, the factors, such as the 

converter grounding schemes, dc lines and fault resistance, that might influence the 

fault characteristics are studied. A protection strategy has been proposed for point-

to-point MMC HVDC transmission systems based on the theoretical analysis. For 

completeness, the analysis and the proposed protection is validated by simulations 

performed in PSCAD/EMTDC.  
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5.2 Valve-side single-phase faults in symmetrical monopole 

MMC 

Fig. 5. 2 shows the topology of a symmetrical monopole MMC. Each phase 

consists of one upper and one lower arm. Each arm has N series-connected SMs 

and one inductor L. The equivalent circuit resistance is represented by resistor R. 

Each SM contains two IGBTs, two diodes and one capacitor CSM. As the grounding 

scheme Δ/Yg presented in Section in 2.2.5.2 has been widely used in practical 

applications, this grounding scheme is applied as the base case. 
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Fig. 5. 2. Converter topology of a symmetrical monopole HB MMC. 

Fig. 5. 3 illustrates the single-phase equivalent circuit of the MMC shown in Fig. 

5. 2. ux is the ac phase-to-ground voltage, ix the phase current, uxP and uxN are the 

voltages produced by SMs in the upper and lower arms, ixP and ixN the arm currents, 

ixcirc the circulating current, and VdcP and VdcN the dc pole-to-ground voltages, with 

VdcP = -VdcN = 1/2Vdc, where Vdc is the dc terminal voltage. In normal operation, the 

sum of the voltages of all SM capacitors in each arm approximately equals to Vdc. 

According to Fig. 5. 3, the MMC is characterised by the following equations: 

 N P1 1
 ( , , )

2 2 2

x x x
x x

di u u
u L Ri x a b c

dt

-
 - - +    (5.1) 
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Fig. 5. 3. Single-phase equivalent circuit of an MMC. 

 N P1
 ( , , )

2 2

xcirc x x
xcirc dc

di u u
L Ri V x a b c

dt

+
+  -    (5.2) 

Equation (5.1) describes the dynamics between the MMC and its connected ac 

grid. The power exchange can be controlled through regulating the switching states 

of upper and lower arm SMs. Equation (5.2) shows the inner dynamics of the MMC. 

The circulating current ixcirc can be reduced to quite a low value using damping 

controllers to reduce second harmonics and power losses [138]. 

If the circulating currents and the voltage drops on arm reactors and resistors are 

ignored, from Fig. 5. 3, the dc pole voltages can be obtained as 

 

P
P P P P

N
N N N N

( )

( )

x
dc x x x x x

x
dc x x x x x

di
V u u L Ri u u

dt

di
V u u L Ri u u

dt


 + + +  +


  - + +  -


  (5.3) 

where uxP and uxN can be expressed as:  

 
P

N

1/ 2 [sin(2 ) 1]

1/ 2 [1 sin(2 )]

x dc x

x dc x

u V πft θ

u V πft θ

 + +


 - +
  (5.4) 

where θx is the phase-angle, f is the system fundamental frequency. Voltages uaP, 

uaN and ua in phase A are illustrated in  Fig. 5. 3. 
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According to (5.3), the following relationships can be obtained: 

 
P P P P

N N N N

,

,

ab b a ca a c

ab a b ca c a

u u u u u u

u u u u u u

 -  -


 -  -
  (5.5) 

where uab and uca are the valve-side line voltages. 

Fig. 5. 4(a) depicts the converter valve-side voltages before a valve-side SPG 

fault in phase A. The neutral point voltage is 0 because the three-phase voltages are 

symmetric. The fault creates a solid grounding point as shown in Fig. 5. 4(b). It can 

be seen that the magnitudes of the line voltages remain unchanged, however, the 

phase voltages become 

 
A B AB C CA0,  ,  .U U U U U  -    (5.6) 
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      (a) Pre-fault voltages.    (b) Post-fault voltages.  

Fig. 5. 4. Valve-side voltages before and after the fault.  

(Solid lines are phase voltages; dash lines are line voltages) 

If the converter is not blocked, VdcP ≈ uaP and VdcN ≈ -uaN can be obtained by 

substituting (5.6) into (5.3) and (5.5). According to (5.4), uaP and uaN contain a large 

dc offset and oscillate sinusoidally with the fundamental frequency. Therefore, the 

dc pole-to-ground voltages VdcP and VdcN will also oscillate sinusoidally. Moreover, 

if the dc voltage is regulated by other MMCs, then VdcP - VdcN ≈ uaP - -uaN   Vdc. 

It means the pole-to-pole dc voltage will not be impacted as a result of the same 

offsets in the dc pole voltages and the dc voltage control of other MMCs.  

It should be emphasised that, as the three ac phases are symmetrical, the analysis 

of the fault in phase A is applicable in the other two phases. Therefore, it can be 

concluded that a valve-side SPG fault will result in overvoltage at the non-faulted 
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ac phases and dc pole voltage oscillations. And the behaviours of the dc pole voltage 

oscillations depend on the arm voltages in the faulted phase. 

5.3 Factors affecting the SPG fault characteristics 

The factors, for instance, the converter grounding systems and the dc transmission 

lines, that may affect the fault characteristics are analysed in this section. 

5.3.1 Influence of converter grounding schemes 

Fig. 5. 5 illustrates a phase A to ground fault under different grounding schemes. 

① is the pre-fault system grounding point and ② is the grounding point created by 

the fault. According to the previous analysis, the post-fault line voltages will not be 

affected by an SGP fault due to the valve-side delta connection of the transformer. 

Therefore, the line voltages on the star-point reactors, as shown in Fig. 5. 5(a), will 

not change. As the reactance and resistance are large, the current flowing through 

the reactors and resistor under fault conditions will be limited to small values. 
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Fig. 5. 5. Schematic diagrams of phase A to ground fault under different grounding schemes. 

In Fig. 5. 5(b) and Fig. 5. 5(c), as the grounding resistance is large, the previous 

analysis is applicable in these two schemes, and therefore fault current will be small 

under fault conditions. The grounding scheme of the grid-side Y connection in Fig. 
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5. 5(c) depends on the requirements of the grid-side network, which will lead to 

different fault responses in the grid-side. For instance, there will be no zero-

sequence current in the grid-side if the Y connection is ungrounded, or there will 

be zero-sequence current if the Y connection is grounded through an impedance.  

The dc side has a solid grounding point in the case shown in Fig. 5. 5(d). 

Therefore, the significant oscillations of the dc pole voltages caused by a valve-side 

SPG fault will result in fault currents in the two grounding resistors. However, as 

the two resistors are large, the fault currents will be small.  

It can be concluded that fault characteristics of a valve-side SPG fault will not be 

affected by different grounding schemes discussed in section. 

5.3.2 Influence of dc transmission lines 

Fig. 5. 6 shows that the delta connection of the transformer prevents valve-side 

SPG faults from creating closed paths for fault currents from the dc side and 

discharging currents from the SM capacitors. Hence, there will be no fault current 

if the effects from the dc line are ignored. However, there are distributed capacitors 

of dc transmission lines, especially for long HVDC cables [139]. According to the 

previous analysis, a valve-side SPG fault will lead to severe oscillations of the dc 

pole voltages. Therefore, the energy stored in the HVDC line will discharge through 

the distributed capacitors and in turn lead to serious fault currents.  
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Fig. 5. 6. Current discharging paths of the distributed capacitors of the dc line. 

Fig. 5. 6 illustrates an MMC with dc line which is modelled using multiple PI 
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sections. Rl and Ll are the resistor and reactor and Cl the distributed capacitor. The 

discharging paths of the distributed capacitors through the faulted phase are 

depicted in the figure. It should be noted that the discharging currents flow through 

the non-faulted phases and create closed paths with the transformer. For clarity, 

they are not shown in the figure. As mentioned in the last section, if the grounding 

scheme using dc resistor is employed, there will also be currents flow through the 

two resistors. However, these currents flow through the resistors will be small due 

to the large resistance. 

It can be noted that the longer the dc line is and the higher the dc voltage, the 

more energy will be stored in the line, and therefore, more significant fault currents 

will be generated. In order to guarantee the security of the system operation and 

hence protect devices, actions are required which will be discussed in the following 

sections.  

5.4 Protection strategy for valve-side SPG fault 

From the previous analysis, it can be concluded that a valve-side SPG fault will 

lead to ac side overvoltage in the non-faulted phases and oscillations in the dc pole 

voltages. In addition, significant fault currents will be generated if the HVDC line 

is long and the dc voltage is high. In order to protect the semiconductors and other 

devices, the converter will be blocked once the fault is detected. 

An MMC will become an uncontrollable bridge once it is blocked. The single-

phase equivalent circuit of a blocked converter is shown in Fig. 5. 7. Ceq represents 

the equivalent capacitor of all SM capacitors in each arm. It can be seen that the 

upper and lower arm capacitors will be charged through diodes once the following 

requirements are satisfied. 

 P P(0 )dc x x
V u u --    (5.7) 

 
N N(0 )x dc x

u V u --    (5.8) 

where uxP(0-) and uxN(0-) are the sum voltages of all SM capacitors in each arm at the 

moment when the converter is blocked. 
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Fig. 5. 7. Single-phase equivalent circuit of a blocked HB MMC. 

As aforementioned, the sum of the voltages of all SM capacitors in each arm 

approximately equal to Vdc in normal operation. Therefore, uxP(0-) and uxN(0-) are 

approximately equal to Vdc. Take an SPG fault in phase A as an example, ua will be 

zero, and the magnitudes of VdcP and -VdcN are normally lower than the pole-to-pole 

voltage Vdc even through the dc pole voltages are oscillating as a result of the fault. 

Thereafter, equations (5.7) and (5.8) will not be satisfied in phase A. SM capacitors 

in the faulted phase will not be charged and will remain constant after being 

blocked.  

For the two non-faulted phases, the phase voltages will increase to line voltages 

and the dc pole voltages will oscillate, according to equations (5.7) and (5.8). The 

upper arm SM capacitors can be charged during the negative part of ux and the lower 

arm SM capacitors can be charged during the positive part of ux. Therefore, the 

faster the fault is isolated, the lower the voltage will increase. 

It should be mentioned that if the sending end converter is not blocked or 

switched to a static synchronous compensator (STATCOM) mode, the transmitting 

power will also lead to the increase of the SM capacitor voltages. 

Assuming the transmitting power from the sending end is P during a time interval 

Δt, the voltage change of the SM capacitor is ΔVSMdc, one can obtain that 
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2 23 3

( )
2 2

eq dc SMdc eq dcP t C V V C V  +  -   (5.9) 

As ΔVSMdc << Vdc, the second order items can be ignored. One can obtain from 

equation (5.9) that 

 
3

SMdc

eq dc

P t
V

C V


    (5.10) 

It can be seen that the higher the transmitting power (P) and the longer time (Δt) 

to stop transmitting the power, the higher the voltage increase of the SM capacitors 

will be. Moreover, the currents discharged from the distributed capacitance of the 

dc line will contribute to the overcharging of the SM capacitors. 

According to the above analysis, a protection strategy is proposed and 

summarised in the following steps: 

Step 1:  SPG fault detection (the valve-side voltage unbalance and overcurrent or 

dc terminal overvoltage can be used as the fault criterion); 

Step 2:  Blocking of IGBTs and opening of the ACCB;  

Step 3:  The non-faulted converter switches to STATCOM mode; 

Step 4:  The ACCB is re-closed after clearing the fault;  

Step 5:  IGBTs are de-blocked and the non-faulted converter switches back to 

normal operation; 

Step 6:  Power ramped up and normal operation resumed. 

It should be emphasised that the valve-side SPG faults are normally permanent. 

The system will not re-start immediately once the fault is isolated. Therefore, the 

post-fault restoration process is proposed, however, it is not conducted in 

simulations.   

5.5 Simulations and analysis 

The previous analysis is verified through time-domain simulations in 

PSCAD/EMTDC. 

5.5.1 Base case modelling 

A point-to-point symmetrical monopole MMC HVDC link, shown in Fig. 5. 8, 
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was modelled as the base case. The main parameters of the converter station are 

based on the INELFE project [9] and listed in Table I. Given that the number of 

SMs will not affect the control performance under fault conditions, a detailed 

switching model with 11-levels is implemented to ensure acceptable simulation 

times. The MMC controllers are shown in Appendix II. 

DC line

Vdc_Q P_Q

ACCB

LsRs

ACCB

Ls Rs

MMC1 MMC2G1 G2

SPG
Fault

 

Fig. 5. 8. Schematic diagram of an MMC-HVDC transmission system. 

Table 5. 1. Parameters of the test MMC HVDC link.  

Parameters Real value In per unit 

Capacity (MVA) 1050 1 

Rated DC voltage (kV) ± 320 1 

AC grid frequency (Hz) 50 - 

Rated AC voltage (kV)   400  1 

Transformer ratio (kV/kV) 333/400 1/1.2012 

Transformer leakage reactance (p.u.) 0.18 0.18 

Number of SMs in each arm 10 - 

SM capacitance (mF) 2.5 - 

Arm inductance L (H) 0.05 0.15 

Arm resistance R (Ω) 0.1 0.000095 

AC system equivalent resistance RS (Ω) 1.51625 0.014357 

AC system equivalent reactor LS (H) 0.04826 0.14357 

MMC1 operates in a dc voltage and reactive power control mode, while MMC2 

operates in an active and reactive power control mode. The MMC2 transmits 600 

MW and 120 MVar to the ac system. As the fault responses at the power receiving 

terminal are severer than the power sending terminal, the fault is set on MMC2 at t 

= 2 s. A fault resistance RF = 0.1 Ω is assumed. G1 and G2 represent the two ac grids 
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which are modelled as ideal voltage sources with short-circuit impedances 

represented by LS and RS. The XS/RS and the short-circuit ratio are assumed as 10. 

In the base case, the grounding scheme Δ/Yg is employed. Also, a lumped 

parameter cable model only considering the resistance and reactance (R: 0.0192 

Ω/km and L: 0.24 mH/km [5]) of an XLPE cable is used. ACCBs are equipped in 

the grid-side of the converter transformers. 

5.5.2 Influence of converter grounding schemes 

Firstly, simulation was performed in the base case, and then different grounding 

schemes were varied to test the influences on the fault behaviours. The symbols of 

the valve-side voltages and currents, dc pole voltages and fault current are 

illustrated in Fig. 5. 9. 
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Fig. 5. 9. The illustration of the measurements during the SPG fault. 

The converter was not blocked during the fault. Fig. 5. 10(a) illustrates that, due 

to the SPG fault, the valve-side voltage ua dropped to zero, while the other two 

phases exhibited line voltage magnitudes. The valve-side output ac currents were 

not affected by the fault, as shown in Fig. 5. 10(b). It can be seen from Fig. 5. 10(c) 

that the dc pole voltages VdcP and VdcN started to oscillate sinusoidally with the 

fundamental frequency and the dc pole-to-pole voltage Vdc was not affected. Fig. 5. 

10(d) shows the fault current iF flowed into the ground which was caused by the 

valve-side small zero-sequence voltages. The fault current was less than 0.6 A, 

which can be ignored compared to the output ac currents. 
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Fig. 5. 10. The base case subject to the valve-side SPG fault. 

In order to test the influence of different grounding schemes on the fault 

responses, the grounding schemes shown in Fig. 5. 5 were employed in the base 

case model. The reactance and resistance of the scheme shown in Fig. 5. 5(a) were 

chosen from the INELFE project [9]: 5 H and 5 kΩ. The grounding resistance for 

both schemes in Fig. 5. 5(b) and Fig. 5. 5(c) was 10 kΩ. The grid-side Y connection 

of the scheme in Fig. 5. 5(c) was ungrounded. The dc grounding resistance for the 

scheme in Fig. 5. 5(d) was 50 kΩ. Simulations showed that fault behaviours of the 

system by changing the grounding schemes were quite similar to the results in Fig. 

5. 10. Hence, these results were not duplicated in this section.  

 

Fig. 5. 11. Fault currents under different grounding schemes. 
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The fault current iF under different grounding schemes is illustrated in Fig. 5. 11. 

The fault current in the base case was zero in that the fault did not create closed 

current path. The fault current is small (less than 0.013 kA) when the grounding 

scheme of using dc side resistors was employed. The fault current was caused by 

the oscillating dc pole voltages which led to the discharging of the dc line 

distributed capacitors. The fault currents in the cases of using Yg/Δ and YgY were 

caused by the valve-side zero-sequence voltage during the SPG fault. The currents 

were less than 0.03 kA which can be reduced if the grounding resistor was increased. 

The 30 ̊ phase angle between the two currents were due to the different transformer 

winding connections. The fault current, which was less than 0.06 kA, in case of 

using start-point reactor and resistor was higher than other cases. The reason is that 

the equivalent impedance of this ground scheme is lower than other schemes.  

It can be concluded that, from the above analysis, different grounding schemes 

produce little impacts on the fault currents. 

5.5.3 Influence of dc lines 

In the previous analysis, the effects of dc lines were not considered. In this section, 

both Frequency Dependent (Phase) cable and overhead lines (OHL) models are 

applied in the base model to investigate the impacts on the fault behaviours caused 

by a valve-side SPG fault. The parameters of the cable are from [133] and the 

parameters of the OHL are from [140]. The segments and conductor details of the 

cable and OHL models are given in Appendix I. 

 
Fig. 5. 12. The effects of dc lines. 

(a) 20 km frequency dependent cable model. (b) 200 km frequency dependent cable model. (c) 200 

km frequency dependent OHL model. 
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 Fig. 5. 12(a) illustrates the system responses when a 20 km frequency dependent 

cable model was employed. Comparing to the results in Fig. 5. 10, distortions 

emerge in the valve-side voltages and currents and dc voltages after the fault. The 

fault current appeared with a steady-state maximum value of 0.7 kA. As 

aforementioned, this occurred since the energy stored in the dc line discharged 

through the distributed capacitors, which was caused by the oscillations in the dc 

pole voltages.  

The system response became significantly worse for the case in Fig. 5. 12(b) 

when the length of the frequency dependent model was set to 200 km. Since the 

energy stored in the cable was much greater than the case in Fig. 5. 12(a), the 

currents discharged from the distributed capacitors had much larger magnitudes. 

These currents fed into the fault location that produced a large fault current and led 

to severe distortions in the dc voltages, valve-side voltages and currents. The fault 

current reached an intolerable level which was higher than 16 kA.  

Fig. 5. 12(c) shows the results when a 200 km frequency dependent OHL model 

was implemented. It can be seen that the fault consequences were much better than 

the case in Fig. 5. 12(b). This is because the distributed capacitance of an OHL line 

was much lower than a cable with the same length. Even though the fault current 

was not quite high and the valve-side line-to-line voltages and ac currents were not 

impacted severely, the dc pole voltages still oscillated severely.  

Due to the severe fault responses, the system is required to be shut down 

immediately to guarantee safe operations. 

5.5.4 Influence of fault resistance 

The severity of a fault depends on the value of the fault resistance and on the 

characteristics of the fault current discharging paths. The lower the fault resistance 

is, the severer the fault responds. A valve-side fault, for example, an insulation 

damage, may not be solid grounded but through a fault resistance. The fault 

resistance can affect fault behaviours. The design of converter protection systems 

requests the consideration of these situations. 

The value of the fault resistance in the cable based model studied in Fig. 5. 12(b) 

was varied to test the impacts on fault behaviours. Fig. 5. 13(a) depicts the fault 
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responses with a fault resistance RF = 10 Ω, which is 100 times of the case studied 

in Fig. 5. 12(b). It can be seen that the voltage at the faulted phase was no longer 

zero because the fault current flowed through the fault resistor and produced a 

voltage drop on it. However, the oscillations and distortions of the voltages at the 

non-faulted phases were still severe. The magnitudes of the valve-side currents only 

slightly reduced. The dc pole voltages still oscillated severely. The magnitude of 

the fault current was reduced, however, still exceeded the acceptable range.  

When the fault resistance was increased to 100 Ω, as shown in Fig. 5. 13(b), the 

severity of the fault responses was alleviated. The valve-side overvoltage and 

overcurrent were reduced even though they were still unbalanced and contained 

significant distortions. The oscillations of the dc pole voltages were much lower as 

a result of the overvoltage of the valve-side voltages. The fault current became less 

than 3 kA which was much lower than the case in Fig. 5. 13(a).  

 
Fig. 5. 13. System responses under different fault resistance.  

(a)  RF = 10 Ω. (b) RF = 100 Ω. 

5.5.5 Protection strategy validation 

The proposed protection strategy has been applied in both 200 km cable and OHL 
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based systems. The MMC2 is blocked once the fault currents flow through the 

IGBTs are above 2 kA. The ACCB at the grid G2 is tripped 80 ms after the fault to 

emulate the opening time. The simulation results are shown in Fig. 5. 14. 

Fig. 5. 14(a) shows system responses in the case of using the 200 km frequency 

dependent cable model. It can be seen that the magnitudes of the valve-side 

currents, the dc pole voltage oscillations and the fault current were significantly 

reduced once the converter was blocked compared to the results in Fig. 5. 12(b), 

where no action has been taken after the fault. The distortions of the dc voltages 

were caused by the uncontrollable bridge. It can be seen that the voltages of the SM 

capacitors in the faulted phase A remained constant once the converter was blocked 

and the SM capacitors in the non-faulted phases were overcharged. The highest 

overvoltage occurred in the lower arm of phase B which reached 1.21 p.u.  

 
Fig. 5. 14. System responses under the proposed protection strategy.  

(a) Cable based model. (b) OHL based model. 
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In Fig. 5. 14(b), the dc circuit is an OHL. The valve-side voltages and the dc 

voltages exhibited distortions due to the uncontrollable bridge compared to the 

results in Fig. 5. 12(b). The valve-side currents were significantly reduced once the 

converter was blocked. There was still fault current after blocking the converter as 

the SM capacitors were overcharged. However, the overvoltage of the SM 

capacitors was less severe than the cable-based system. Therefore, the requirements 

of SMs’ overvoltage capability in OHL based systems can be released than the 

systems using cables.  

5.6 Summary 

This chapter investigates fault characteristics during valve-side single-phase 

faults in symmetrical MMC HVDC stations. Theoretical analysis has been carried 

out and validated through time-domain simulations in PSCAD. The studies 

conclude that a valve-side SPG fault will lead to:  

1) Valve-side overvoltage at the non-faulted phases;  

2) Severe dc pole voltage oscillations;  

3) Significant discharging currents from HVDC cable-based systems; 

4) SM capacitors overvoltage once the MMC is blocked. 

Moreover, the studies show that the grounding schemes of MMCs will negligibly 

affect the fault behaviours. With the increase of the length of an HVDC line, the 

fault consequences will be worse. Both a low resistance and a high resistance fault 

will lead to severe fault consequences. 

A protection strategy based on the theoretical analysis and fault characteristics 

has been proposed for a point-to-point MMC HVDC transmission system. The fault 

currents and the dc pole voltage oscillations are significantly mitigated through the 

protection strategy.  
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6.1 Introduction 

The studies in the last chapter focused on the impact of valve-side single-phase 

faults on symmetrical monopole HB MMCs. In contrast, valve-side SPG faults will 

induce special fault behaviours in asymmetrical monopole MMCs. For instance, 

non-zero-crossing fault currents. Given that an asymmetrical monopole MMC 

HVDC link is the building block of bipole systems, bipole MMCs will inherit the 

drawbacks of asymmetrical MMCs.  

In this chapter, the fault characteristics of asymmetrical and bipole MMCs are 

studied. An LR parallel circuit is employed to address the issues arising from non-

zero-crossing fault currents in asymmetrical and bipole systems. Protection 

strategies have been proposed for each station configuration based on a thorough 

theoretical analysis. The analysis is verified by simulations in PSCAD/EMTDC. 

6.2 Valve-side single-phase faults in asymmetrical monopole 

MMC 

Fig. 6. 1 shows the topology of an asymmetric monopole HB MMC. There is 

only one positive pole in the dc terminal and the other pole is grounded.  
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Fig. 6. 1. Converter topology of an asymmetrical monopole HB MMC. 
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If circulating currents are neglected, according to Fig. 6. 1, the valve-side phase 

voltages can be expressed as 

 
N P1 1 1

   ( , , )
2 2 2 2

vx x x

x vx dc

di u u
u L Ri V x a b c

dt

-
 - - + +    (6.1) 

where uxP and uxN are the voltages produced by SMs in the upper and lower arms. 

It can be seen that ux contains a dc component (1/2Vdc) which makes the valve-side 

voltages always positive, as illustrated by ua,b,c in Fig. 6. 1. As a result, the converter 

transformers need to be specially designed to withstand the high voltage stress on 

the valve-side winds.   

Since a Δ/Yg transformer connection is used, the post-fault valve-side voltages 

are similar to those exhibited by the symmetrical MMC configuration presented in 

Section 5. However, significant fault currents will be generated due to the converter 

dc grounding. To protect the system, the IGBTs is requested to be blocked 

immediately once the fault is detected. The equivalent circuit of a blocked converter 

during a valve-side SPG fault at phase A is shown in Fig. 6. 2. Cequ represents the 

equivalent capacitor of all SM capacitors in each arm. 

+

-

+

-

+

-

+

-

+

-

+

-

A
B

C

Ceq

D5

+ P

Ceq Ceq

Ceq Ceq Ceq

Vdc

GND

iAupiBupiCup

iAdowniBdowniCdown

SPG
Fault

ACCBiva
ivb
ivc

iF

D5' D3 D3' D1 D1' 

D2 D2' D6 D6' D4 D4' 

igb
igc

iga

 

Fig. 6. 2. Equivalent circuit of a blocked asymmetrical monopole HB MMC. 
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6.2.1 Overvoltage in upper arm SM capacitors 

Post-fault equivalent circuit of the faulted phase A is illustrated in Fig. 6. 3. As 

shown in the figure, an SPG fault results in a new zero potential reference. Due to 

their forward-bias characteristic, diodes D1 and D4' will become reverse-biased once 

the converter is blocked. Because of the arm reactor, D4 will be reverse-biased until 

the transient current iAdown decays to zero. The upper arm capacitors in phase A will 

be charged through D1' as a result of the dc side transient overvoltage caused by the 

fault. D1' will be reverse-biased once the capacitor voltage uAP is equal to or higher 

than Vdc. Then, uAP will remain constant.  
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Fig. 6. 3. Post-fault equivalent circuit of phase A. 

Post-fault equivalent circuits of the non-faulted phase B is illustrated in Fig. 6. 4. 

The analysis presented for phase B also applies to phase C. The Lequ in Fig. 6. 4 is 

the total equivalent reactance of the transformer and the grid side reactance referred 

to the valve-side. The ac source represents the transformer’s post-fault voltage uvb. 

D3 and D6' will be reverse-biased since both the dc voltage Vdc and the capacitor 

voltage uBN encounter a higher magnitude than ub. However, D3' and D6 will conduct 

during every negative half-cycle of ub. If the arm resistance is neglected, ub can be 

estimated by:  

 ub ≈ uvb×L/(L+Lequ)  (6.2) 
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Fig. 6. 4. Post-fault equivalent circuit of phase B. 

The upper arm capacitor will stop charging once 

 uBP_max = Vdc + max |ub|.  (6.3) 

According to (6.3), the voltage increase is given by the amplitude of the post-

fault voltage ub. Hence, in steady-state, all upper arm capacitors will be overcharged 

and no more current will flow through the upper arms.  

It can be seen from (6.2) and (6.3) that the upper arm overvoltage in non-faulted 

phases is dependent on system parameters. For instance, a small arm reactor or a 

large transformer leakage reactor will reduce it. However, arm reactors are expected 

to be large enough to limit the circulating and fault currents. In addition, a large 

circuit reactance will increase power losses and affect the system dynamic 

characteristics.  

According to (6.3), blocking the MMC that regulates Vdc will further reduce the 

dc voltage and consequently will mitigate the overvoltage. DC overcurrent 

protection based on fault characteristics can be applied to such MMC so that it is 

blocked immediately after the local fault detection. Alternatively, choosing a low 

valve-side voltage for the transformer can mitigate upper arm overvoltage, but this 

approach may affect the system dynamics in the meantime. It can be concluded that 
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a comprehensive design that considers not only the system parameters but also the 

fault characteristics is required. 

6.2.2 DC offsets in fault currents 

According to Fig. 6. 2, an SPG fault creates closed current paths through the 

lower arms in non-faulted phases and the converter dc grounding. The lower arms 

in non-faulted phases will start to conduct large fault currents during the negative 

half-cycles of the valve-side voltages. Moreover, due to the inductor freewheeling 

effect, the diode will keep conducting when the positive half-cycles of the valve-

side voltage appear. Therefore, there will be instances when the two lower arms in 

the non-faulted phases conduct at the same time. The resistance in the current path 

affects the duration of the inductor freewheeling. As analysed in the Appendix V, 

the current will keep conducting in both the positive and negative voltages if the 

resistance is ignored. The following analysis is based on this phenomenon.  

The equivalent circuit illustrated in Fig. 6. 5 is used to analyse the fault currents. 

The transformer’s valve-side and grid side voltages are respectively given by uvx 

and ugx (with x = a, b, c). The resistors and reactors represent the equivalent 

resistance and reactance within the circuit. Currents will be positive if they flow in 

the directions illustrated in the figure. 

ugb

ugc

RF

ugauva

D6

Valve side Grid side

uA

uB

uC

Transformer

GND

Fault

GND
GND

iF

GND

uvb

uvc

RvaLva iva

RvbLvb ivb

RvcLvc ivc

RgaLgaiga

RgbLgbigb

RgcLgcigc

D2

iG

ivab

ivbc

ivca

 

Fig. 6. 5. System equivalent circuit during a valve-side SPG fault in phase A. 

Recall that there is no zero-sequence current present in the valve-side due to the 

transformer’s delta connection. Thus, the three-phase valve-side currents satisfy:  

 iva + ivb + ivc = 0  (6.4) 

Due to the forward-bias characteristic of diodes, ivb and ivc will always be positive. 

Thus, iva will always be negative according to (6.4). This implies that the current in 

all phases contains dc components.  
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There will be instances when both D2 and D6 conduct due to the reactors within 

the circuit. Fig. 6. 6 illustrates the diode conducting sequences in the non-faulted 

phases. The conduction pattern of the lower arm diodes will keep repeating from 

Fig. 6. 6(a) to Fig. 6. 6(d). There will be instances when both D2 and D6 are 

conducting due to the inductor freewheeling. The conducting modes of D2 and D6 

are given in Table 6. 1. It is assumed that uvb is negative and uvc positive when the 

IGBTs are blocked. 

(a) D6 is on and D2 is off. 

D6

iva

ivb

D2

+

-
uvab

D6

iva

ivb

ivc

D2

+

-
uvab

+

-
uvbc

D6

iva

ivc

D2

+

uvca

-

D6

D2

+

-
uvab

+

-
uvbc

iva

ivb

ivc

(b) Both D2 and D6 are on. 

(c) D2 is on and D6 is off.  (d) Both D2 and D6 are on.  

Fig. 6. 6. Conducting modes of the lower arm diodes in the non-faulted phases. 

Table 6. 1. Conducting modes of the diodes D2 and D6.   

Conducting modes (a) (b) (c) (d) (a) … 

Conducting diode(s)  D6 D2&D6  D2 D2&D6  D6 … 

Given that fault currents flow through first-order LR circuits, the decay of 

transient dc components will be governed by a time constant τ = L/R. In this case, 

τ is large since the reactance is much greater than the resistance. Therefore, the dc 

component will not decay considerably during each conducting mode. If the 

resistance is ignored (see Fig. 6. 7), the circuit will be purely inductive. In steady-

state, the diodes in this circuit will always be conducting. The reader is referred to 

the Appendix V for further details.  
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D6

ivb

ivc

D2

iva
+

-
uvab

+

-
uvbc +

uvca

-

 

Fig. 6. 7. Equivalent circuit ignoring resistances. 

According to Fig. 6. 7, the following expressions are derived:   

 

va vb
va vb vab

vb vc
vb vc vbc

va vc
va vc vca

di di
L L u

dt dt
di di

L L u
dt dt

di di
L L u

dt dt


- + 




- + 

- +  -


  (6.5) 

where uvab, uvbc and uvca are the line voltages, given by 

 

3 sin( )

3 sin( 120 )

3 sin( 120 )

vab

vbc

vca

u U ωt +φ

u U ωt +φ+

u U ωt +φ

 



  -


  (6.6) 

where ω is the system frequency, φ is the initial angle and U is the transformer’s 

valve-side pre-fault peak phase voltage. Differential equations for ivb and ivc can be 

obtained from (6.5): 

 

( )

( )

vb va vc vab va vca

va vb va vc vb vc

vc va vab va vb vca

va vb va vc vb vc

di L L u L u

dt L L L L L L

di L u L L u

dt L L L L L L

+ +
 + +


+ +

  -
 + +

  (6.7) 

As shown in Appendix V, an initial condition can be chosen at any moment when 

the current is zero: 

 
(0 ) (0 ) 0

(0 ) (0 ) 0

vb vb

vc vc

i i

i i

+ -

+ -

  


 
  (6.8) 

According to (6.5)-(6.8), ivb and ivc can be derived as follows: 

 
1 1

2 2

1 sin( )

sin( ) 1

vb

vc

i M ωt Φ

i M ωt Φ

  - +   


 + +   
  (6.9) 
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where M1, M2, Φ1 and Φ2 are provided in the Appendix V. Thus, current iva can be 

expressed as: 

  1 1 2 2( ) 1 sin( ) sin( ) 1va vb vci i i M ωt Φ M ωt Φ - +  - - + + + +         (6.10) 

It can be seen from (6.9) and (6.10) that ivb and ivc are always positive and that iva 

is always negative. Hence, all valve-side fault currents contain high dc components 

and do not exhibit zero-crossings. As shown in equation (A4) in Appendix V, the 

current magnitudes are mainly determined by the transformer’s valve-side voltage 

and circuit reactors.  

The currents at both sides of the transformer (Delta lags Star 30̊ ) are related as 

follows: 
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3

3
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 -
  



  (6.11) 

where k is the transformer’s turn ratio. Since there is no zero-sequence current in 

the transformer’s grid side, the grid side currents satisfy: 

 iga + igb + igc =0  (6.12) 

From (6.11)-(6.12), the grid side currents can be rewritten as 

  

(2 )

3

( )

3

( 2 )

3

vb vc
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vb vc
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gc

i i
i
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i i
i
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i i
i

k

 +
 -


 -



 +




  (6.13) 

It can be observed from (6.9) and (6.13) that iga is always negative and igc is 

always positive. The dc offset of igb is given by 1 2 3( ) / ( )M M k- , which has a small 

magnitude and hence will not lead to a non-zero-crossing. 
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The analysis presented in the last two sections shows that a valve-side SPG fault 

at an asymmetrical HB MMC will cause upper arm overvoltage and large dc offset 

in currents at both sides of the converter transformer. Due to the absence of zero-

crossings, ACCBs will not be capable of interrupting arcs within the parting time 

of the contactors in real applications. 

6.2.3 Protection strategy for valve-side single-phase faults 

To limit upper arm overvoltage, the converter needs to be blocked once a fault is 

detected. At the same time, the voltage-regulating MMC can be blocked using local 

dc overcurrent protection to reduce the dc side voltage which, in turn, will further 

assist to reduce the overvoltage.  

In order to damp the dc components in fault currents, an LR parallel circuit is 

employed as the converter dc grounding. This is shown in Fig. 6. 8. Resistor RG will 

not only damp the dc components during a valve-side SPG fault, but will also limit 

fault current caused by dc side faults. Inductor LG will limit the ac components of 

fault currents and drive the currents into RG, which will damp the dc components. 

During normal operation, RG is bypassed by LG. In this way, the normal operation 

will not be affected, and power losses will be avoided. 

GND RG

LG

ACCB
MMC

 

Fig. 6. 8. Asymmetrical MMC equipped with an LR parallel grounding circuit. 

The selection of a suitable LR circuit needs to consider the system parameters 

such as arm reactors and resistors, transformer impedance, and resistance of 

switches. The value of RG will ensure that dc components are damped enough so 

that zero-crossing currents arise in the grid side. Then, LG can be selected as low as 

possible. The LR parallel circuit can also be deployed in systems with a metallic 

return path. 

A protection strategy based on the previous analysis is proposed and the main 

steps in the proposed method are as follows:  
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Step 1:  SPG fault detection (the valve-side voltage unbalance and overcurrent can 

be used as fault criterion); 

Step 2:  Blocking of faulted and dc voltage-regulating MMCs;  

Step 3:  Opening of ACCB once zero-crossings in grid side currents are detected; 

Step 4:  The non-faulted converter is switched to STATCOM mode;  

Step 5:  The ACCB is re-closed after clearing the fault;  

Step 6:  IGBTs are de-blocked and the non-faulted converter switches back to 

normal operation; 

Step 7:  Power is ramped up and normal operation is resumed. 

It should be emphasised that the valve-side SPG faults are normally permanent. 

The system will not re-start immediately once the fault is isolated. Therefore, the 

post-fault restoration process is proposed, however, it is not conducted in 

simulations. 

6.3 Valve-side single-phase faults in bipole MMC 

Since bipole systems consist of two symmetrical and independently controlled 

asymmetrical monopole links, the analysis made in Section 6.2 is applicable. An 

LR parallel circuit can also be used for both bipole systems shown in Fig. 2. 7(c) 

and Fig. 2. 7(d). However, such an approach encounters one drawback for the bipole 

systems: transient fault currents caused by both ac and dc side faults will produce a 

transient voltage on the parallel circuit, which temporarily affects the operation of 

the healthy pole.  

To ensure the security, disconnectors Sp and Sn are installed, as shown in Fig. 6. 

9. The disconnector associated with a fault will be tripped once the residual current 

in reactor LG decays to zero after tripping the faulted link’s grid side ACCB.  

MMC_P

GND RG

LG Sp

Sn

ACCB

ACCB
MMC_N

 

Fig. 6. 9. Bipole MMC system equipped with an LR grounding circuit. 
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The protection strategy for asymmetrical monopole MMC is applicable to bipole 

systems. The differences are the opening of the disconnector in the faulted pole 

after opening the ACCB and the re-closure of the disconnector before restoring the 

converter. 

6.4 Simulations and analysis 

To verify the analysis presented in the previous sections, the symmetrical 

monopole and bipole HB MMC based HVDC links have been built in 

PSCAD/EMTDC, as shown in Fig. 6. 10 and Fig. 6. 11.  

320 kV,200 km

Vdc_Q P_Q

ACCB

LsRs

ACCB

Ls Rs RGLGRG LG

MMC1 MMC2

SPG Fault

 

Fig. 6. 10. Asymmetrical monopole MMC link. 

± 320 kV,200 km ACCB
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Sn RG

LG

Vdc_Q

Sp

RG

LG

ACCB

Ls Rs

SPG Fault
MMC2_PMMC1_P

Sn

MMC1_N MMC2_N

 

Fig. 6. 11. Bipole MMC link. 

Considering that the number of SMs will not affect the equivalent circuit of a 

converter once it is blocked, a detailed switching model with 11-levels is 

implemented to ensure acceptable simulation times. The MMC controllers are 

shown in Appendix II. The bipole system in Fig. 6. 11 consists of two of the 

asymmetrical links in Fig. 6. 10. The parameters of the systems are given in Table 

6. 2. 

Since the impact of an SPG fault in power-receiving MMCs is worse than that of 

dc voltage-regulating MMCs, a valve-side SPG fault at t = 2 s is applied in phase A 

in the power-receiving MMCs for both topologies. A fault resistance RF = 0.1 Ω is 

assumed. The ac systems are modelled as ideal voltage sources with short-circuit 

impedances formed by LS and RS. For all cases, XS/RS and the short-circuit ratio are 

assumed as 10. A frequency dependent dc cable model is used, with parameters 
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found in [133]. The LR parallel circuit with RG: 5 Ω; LG: 0.2 H. The MMC2 will be 

blocked immediately once any arm current exceeds 2 kA. It should be mentioned 

in most practical applications the asymmetrical monopole is built as one pole of 

bipole systems, therefore there will be no current during normal operation in the LR 

parallel circuit. Therefore, the inductance of L can be large, for example 0.2 H used 

in this study.  

Table 6. 2. Parameters of the test asymmetrical and bipole MMC links. 

Parameters Real value In per unit 

Capacity (MVA) 1000 1 

Rated dc voltage (kV) ± 320 1 

AC grid frequency (Hz) 50 - 

Rated ac gird voltage (kV)   230  1.15 

Transformer ratio (kV/kV) 200/230 1/1.15 

Transformer leakage reactance (p.u.) 0.1 0.1 

Number of SMs in each arm 10 - 

SM capacitance (mF) 2.5 - 

Arm inductance L (H) 0.05 0.15 

Arm resistance R (Ω) 0.1 0.000095 

AC system equivalent resistance RS (Ω) 1.05275 0.014357 

AC system equivalent reactor LS (H) 0.03351 0.14357 

 

6.4.1 Simulation results of the fault in the asymmetrical monopole  

Considering the asymmetrical monopole configuration provided by Fig. 6. 10., 

Fig. 6. 12 illustrates the fault responses. Currents are positive if they flow in the 

directions illustrated in Fig. 6. 2.  

It can be seen from Fig. 6. 12(a) that the non-faulted phase currents ivb and ivc are 

always positive. Current iva in the faulted phase is always negative and exhibits a 

large dc offset. The grid side fault current iga is always negative, whereas igb is 

always positive. As a result, grid side ACCBs are not able to interrupt such fault 
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currents. The upper arm capacitors start to be charged immediately after the fault. 

Particularly, the upper arm SM voltages in the non-faulted phases reach 1.19 p.u., 

but all lower arm SM voltages remain constant once the converter is blocked. The 

upper arm currents are all positive but become zero once the SM capacitors have 

been charged to their maximum values. The lower arm current iA_down decays 

naturally through diode D4 after the converter has been blocked.  

 

Fig. 6. 12. Fault responses.  

(a) The proposed protection strategy is not employed. (b) The proposed protection strategy is 

employed.   

Fig. 6. 12(b) illustrates the results when an LR parallel circuit and the proposed 

protection strategy were applied. It can be seen that fault currents were reduced 

significantly. More importantly, current zero-crossings appear and, therefore, grid 

side ACCBs can interrupt the fault quickly. As a result, the maximum overvoltage 

in the upper arm SM capacitors is reduced to 1.1 p.u. The residual current in the 

reactor of the LR parallel circuit decays naturally through diode D4 after the grid 

side ACCBs are tripped.  
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Fig. 6. 13 compares the steady-state current ivc obtained from the simulation with 

that analytically calculated for the case when no protection is employed. As it can 

be observed, no significant difference appears, which, in turn, verifies the 

theoretical analysis. 

 

Fig. 6. 13.Simulation and analytical calculation results for ivc. 

6.4.2 Simulation results of the fault in the bipole 

The LR circuit was employed in the bipole system shown in Fig. 6. 11. The fault 

responses of the faulted pole are similar to those in Fig. 6. 12(a) and hence are not 

shown. Fig. 6. 14 illustrates that the dc voltage of the healthy pole experiences 

oscillations. This is a result of the fault current flowing through the LR circuit, 

which produces transient voltages. The operation of the healthy pole is not impacted 

after the fault transients.  

 

Fig. 6. 14. Responses of the healthy pole.  

(a) Negative pole voltage and the voltage on the LR circuit. (b) Output power of the healthy pole. 

6.5 Summary 

In this chapter, the characteristics of valve-side SPG faults in both asymmetrical 

and bipole MMC systems have been investigated.  

The studies presented in the paper show that valve-side SPG faults at 

asymmetrical and bipole HB-MMCs will produce overvoltage in the upper arm SM 
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capacitors and non-zero-crossing fault currents at both sides of the interface 

transformer. To address these issues, the MMC controlling the dc voltage is blocked 

to mitigate the upper arm overvoltage and an LR parallel circuit is employed to 

create zero-crossings currents so that grid side ACCBs can interrupt the fault.  
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7.1 Conclusions 

VSC HVDC technology plays an increasingly important role in transmitting bulk 

power over long distances and integrating renewable energy. However, there are 

still technical challenges that have to be addressed before this technology becomes 

a mature and reliable solution. The research work in this thesis investigated the fault 

behaviour of VSC HVDC systems subject to ac and dc faults.  

7.1.1 Application of DCCB in dc grids 

Since the resistance dominates the impedance of the dc circuit, a fault in an 

MTDC grid can be seen from the ac system as simultaneous multi-faults at each of 

the connection points with the dc grid. DCCB can be an effective solution to isolate 

dc fault quickly and in a reliable manner. The operating characteristics of DCCBs 

were studied in Chapter 3. The factors influencing the performance of DCCBs were 

investigated. Moreover, experimental validation of applying DCCBs in a VSC 

HVDC grid test-rig was conducted. 

The studies show that DCCB’s current limiting reactor and the surge arrester are 

the main factors affecting the performance of interrupting dc fault currents. A large 

reactor limits the rate-of-change of dc fault current significantly. With a large 

reactor, the impact of a dc fault on the stability of the overall system is reduced. On 

the other hand, a large dc reactor increases the time constant of the dc system, which 

can produce negative effects on the dynamic stability of the dc system. The surge 

arrester affects the dissipating time of the fault current arc and the transient 

overvoltage during the current dissipating period. Therefore, it is concluded that the 

design of the reactor is project specific.  

The experimental results show that the DCCBs are capable of isolating a dc fault 

in a dc grid quickly, and the dc system can recover to the steady state after the fault 

isolation.  

7.1.2 Dynamic interactions of ac and dc grids subject to dc faults 

Chapter 4 studied different approaches for clearing a dc fault within a dc grid and 

the dynamic interactions between the ac and dc grid caused by the dc fault.  
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There are two alternative solutions for fast clearance of a dc fault when DCCBs 

are available.  

The first solution is based on a Fully Selective Approach and applies the same 

protection philosophy and principles as used in ac systems. Only the DCCBs 

associated with the faulted line are tripped. This means that the time is taken for the 

communications and the fault discrimination logic between fault detection and 

tripping of the DCCBs.  

The second solution is based on the “Open Grid” concept, where each DCCB is 

allowed to trip autonomously on detection of a fault without fault discrimination 

and location. The non-faulted line associated breakers are re-closed based on the 

residual voltage and current of the healthy circuit.  

The studies of the two solutions show that the Fully Selective Approach imposes 

quite a high current interruption duty on the DCCBs associated with the faulted line 

and will have a greater impact on its connected ac system than the “Open Grid” 

approach. However, the “Open Grid” will possibly extend the outage area of the dc 

grid because DCCBs close to the fault can also be tripped. Moreover, the 

unpredictability of a tripping and/or reclosing sequence will lead to transient 

overvoltage and overcurrent.    

Clearing a dc fault using ACCBs was demonstrated in Chapter 4 as well. The 

comparatively long fault clearance time associated with this solution leads to the 

de-energisation of the entire MTDC grid. The overall ac/dc system becomes 

unstable due to the long fault clearance and restoration time. Therefore, the 

approach using ACCBs as fault clearing devices seems not suitable in an overlay 

ac/dc transmission system with the high power supply requirement.  

An FB MMC based MTDC grid can achieve fast fault isolation by blocking all 

the converters. However, this method leads to the outage of the entire dc grid. 

Moreover, the dc switches need to wait for the decay of the fault currents to 

acceptable values which can lead to the instability of the overall ac/dc system. In 

addition, the voltage polarity reversing after blocking all the converters can damage 

the dc cables. Auxiliary devices, for instance, dc choppers, can be installed in the 

dc side to consume the residual energy in the dc circuit and therefore reduce the 
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duration of the power outage. In addition, the high capital costs and operating losses 

are also drawbacks limiting the applications of FB MMC based MTDC grids. 

It can be concluded that each solution has the merits and demerits which needs 

trade-off according to the requirements of the real applications. 

7.1.3 MMC valve-side single-phase faults 

The valve-side single-phase faults in MMC stations were studied in Chapters 5 

and 6. Three MMC station configurations have been investigated in detail. The 

theoretical analysis and simulation results show that such a fault in symmetrical 

monopole HB MMCs will lead to valve-side overvoltage at the non-faulted phases 

and severe dc pole voltage oscillations. In addition, the energy stored in a long dc 

line will discharge through its distributed capacitors due to the dc pole voltage 

oscillations, and thereby result in severe fault currents. As a result, the converter 

needs to be blocked and the grid side ACCBs is tripped to protect the system. 

The valve-side single-phase faults at asymmetrical and bipole HB MMCs will 

cause overvoltage in the upper arm SM capacitors and non-zero-crossing fault 

currents at both sides of the interface transformer. To address these issues, the 

MMC controlling the dc voltage is blocked to mitigate the upper arm overvoltage 

and an LR parallel circuit is employed to create zero-crossings currents. The grid 

side ACCBs can interrupt the fault.  

The results and analyses presented in the two chapters are valuable for the design 

of the protection systems for station internal ac grounding faults in MMC HVDC 

transmission systems.  

7.2 Contributions of the research work 

The main contributions of this thesis are summarised as follows: 

• Studied the factors affecting the operating characteristics of DCCBs 

through simulations; 

• Conducted experimental validation of the effectiveness of utilising 

DCCB to interrupt dc fault currents in a VSC HVDC test-rig. 
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• Compared and evaluated different dc fault protection approaches in terms 

of maximum fault currents, system restoration time and interruption of 

power supply. 

• Investigated the interactions between ac and dc systems when the dc grid 

subjects to dc faults in terms of the stability of the overall ac/dc system. 

• Developed theoretical analysis of the fault behaviours of valve-side 

single-phase faults in three MMC configurations. 

• Proposed protection strategies to mitigate the impacts from the valve-side 

single-phase fault. 

7.3 Future work 

The following future work is outlined: 

7.3.1 AC and dc systems coordinated protection and control  

As concluded in Chapter 4, a dc fault is equivalent to a “multi-fault” to the dc 

grid connected ac systems. The overall system can be unstable if the dc fault cannot 

be isolated fast enough. In this thesis, only the dc side protection approaches were 

analysed. The ac system protection and control will be considered to coordinate 

with the dc side protection actions. For instance, increase power generation and/or 

switch off loads once a power injecting converter is blocked. This study will 

contribute to mitigating the overall impact on the ac/dc system when the system 

subject to dc faults.      

7.3.2 SM capacitor overvoltage caused by the valve-side single-phase 

faults in symmetrical monopole MMC 

In Chapter 5, the studies focused on factors affecting system fault behaviour in 

terms of dc voltage oscillations, valve-side voltages and fault currents. The issues 

of SM capacitor overvoltage caused by MMC valve-side single-phase faults were 

not investigated further. The factors, for instance, converter grid side short-circuit 

ratio and transformer leakage inductance, can affect the overvoltage will be studied 

in the future. Protection and/or control strategies to mitigate the overvoltage will be 

developed.        
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7.3.3 The valve-side faults in MVDC and LVDC systems 

There are more and more researches focusing on the area of medium voltage 

(MV) and low voltage (LV) dc systems [141]-[143]. The converters in the MVDC 

and LVDC systems have the risk of suffering valve-side single-phase fault. 

Therefore, the work in Chapter 5 and 6 can be extended to the areas of MVDC and 

LVDC systems. As the converter topologies in the MVDC and LVDC systems will 

differ from the converters used in HVDC systems, such as the cascade three-level 

NPC used in [142], the fault characteristics can be different from the studies in 

Chapter 5 and 6. Hence, the protection strategies for the MVDC and LVDC systems 

will be different from the HVDC system. Therefore, it is worth investigating the 

valve-side fault in MVDC and LVDC system. 
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Appendix I 
The HVDC cable and the OHL model used in the time domain simulations in 

this research study are modelled using the Frequency Dependent (Phase) models in 

PSCAD.  

Fig. A. 1 illustrates the parameters, configuration and dimensions of the cable 

model. Detail cable parameters can be found in [133]. The parameters and 

arrangement of the OHL are obtained from [140], as shown in Fig. A. 2. 

 

Fig. A. 1 Parameters, configuration and dimensions of the HVDC cable. 

 

Fig. A. 2 Parameters, configuration and dimensions of the HVDC OHL. 
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Appendix II 

This appendix shows the control systems of the MMCs used in this research work.  

 

Fig. A. 3. DC voltage controller.  

 

Fig. A. 4. Active power controller.  

 

Fig. A. 5. Reactive power controller.  
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Fig. A. 6. The nearest level modulation.  

 

Fig. A. 7. The circulating current damping controller.  
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Fig. A. 8. The SM capacity voltage balancing control for HB MMC.  

The algorithm in the block shown in Fig. A. 8 are shown as follows: 

 

        # LOCAL INTEGER T1(10) 

        # LOCAL INTEGER T2(10) 

        # LOCAL REAL M(10) 

        # LOCAL REAL M1 

        # LOCAL REAL N1 

        # LOCAL REAL Uk(10) 

        # LOCAL REAL Ukk(20) 

        # LOCAL REAL NUM 

 

       NUM=10 

 

       IF ($Blk<0.1) THEN 

            DO I=1,NUM 

            $Ts1(I)=0 

            $Ts2(I)=0 

            END DO  

       ELSE 

 

       IF ($CLK>0.9) THEN 

 

        DO I=1,NUM 

        Uk(I)=$Us1(I) 

        END DO 
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        DO K=1,NUM 

        Ukk(K)= K 

        Ukk(NUM+K)=Uk(K) 

        END DO 

           

       IF ($Iarm>0) THEN 

       

            DO I=1,NUM-1 

             DO J=1,NUM-I 

              IF (Ukk(NUM+J)>Ukk(NUM+J+1))THEN 

                  M1=Ukk(J+1) 

                  N1=Ukk(NUM+J+1) 

                  Ukk(J+1)=Ukk(J) 

                  Ukk(J)=M1 

                  Ukk(NUM+J+1)=Ukk(NUM+J) 

                  Ukk(NUM+J)=N1 

              END IF 

             END DO 

            END DO  

 

              DO I=1,NUM 

               T1(I)=0 

               T2(I)=1 

              END DO 

   

              DO I=1,$Unum 

               M(I)=Ukk(I) 

               T1(M(I))=1 

               T2(M(I))=0 

              END DO 

 

       END IF 

             

       IF ($Iarm<0) THEN 

       

            DO I=1,NUM-1 

             DO J=1,NUM-I 

              IF (Ukk(NUM+J)>Ukk(NUM+J+1))THEN 

                  M1=Ukk(J+1) 

                  N1=Ukk(NUM+J+1) 

                  Ukk(J+1)=Ukk(J) 

                  Ukk(J)=M1 

                  Ukk(NUM+J+1)=Ukk(NUM+J) 

                  Ukk(NUM+J)=N1 

              END IF 

             END DO 

            END DO  

 

              DO I=1,NUM 
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               T1(I)=0 

               T2(I)=1 

              END DO   

 

              DO I=1,$Unum 

               M(I)=Ukk(NUM+1-I) 

               T1(M(I))=1 

               T2(M(I))=0 

              END DO  

 

       END IF 

  

            DO I=1,NUM 

            $Ts1(I)=T1(I) 

            $Ts2(I)=T2(I) 

            END DO  

     

       END IF 

       

       END IF 
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Fig. A. 9. The SM capacity voltage balancing control for FB MMC.  

The algorithm in the block shown in Fig. A. 9 are shown as follows: 

 

        # LOCAL INTEGER T1(10) 

        # LOCAL INTEGER T2(10) 

        # LOCAL REAL M(10) 

        # LOCAL REAL M1 

        # LOCAL REAL N1 

        # LOCAL REAL Uk(10) 

        # LOCAL REAL Ukk(20) 

        # LOCAL REAL NUM 

 

       NUM=10 

 

       IF ($Blk<0.1) THEN 

            DO I=1,NUM 

            $Ts1(I)=0 

            $Ts2(I)=0 

            $Ts3(I)=0 

            $Ts4(I)=0 

            END DO  

       ELSE 

 

       IF ($CLK>0.9) THEN 

 

        DO I=1,NUM 

        Uk(I)=$Us1(I) 
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        END DO 

            

        DO K=1,NUM 

        Ukk(K)= K 

        Ukk(NUM+K)=Uk(K) 

        END DO 

           

       IF ($Iarm>0) THEN 

       

            DO I=1,NUM-1 

             DO J=1,NUM-I 

              IF (Ukk(NUM+J)>Ukk(NUM+J+1))THEN 

                  M1=Ukk(J+1) 

                  N1=Ukk(NUM+J+1) 

                  Ukk(J+1)=Ukk(J) 

                  Ukk(J)=M1 

                  Ukk(NUM+J+1)=Ukk(NUM+J) 

                  Ukk(NUM+J)=N1 

              END IF 

             END DO 

            END DO  

 

              DO I=1,NUM 

               T1(I)=0 

               T2(I)=1 

              END DO 

   

              DO I=1,$Unum 

               M(I)=Ukk(I) 

               T1(M(I))=1 

               T2(M(I))=0 

              END DO 

 

       END IF 

             

       IF ($Iarm<0) THEN 

       

            DO I=1,NUM-1 

             DO J=1,NUM-I 

              IF (Ukk(NUM+J)>Ukk(NUM+J+1))THEN 

                  M1=Ukk(J+1) 

                  N1=Ukk(NUM+J+1) 

                  Ukk(J+1)=Ukk(J) 

                  Ukk(J)=M1 

                  Ukk(NUM+J+1)=Ukk(NUM+J) 

                  Ukk(NUM+J)=N1 

              END IF 

             END DO 

            END DO  
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              DO I=1,NUM 

               T1(I)=0 

               T2(I)=1 

              END DO   

 

              DO I=1,$Unum 

               M(I)=Ukk(NUM+1-I) 

               T1(M(I))=1 

               T2(M(I))=0 

              END DO  

 

       END IF 

  

            DO I=1,NUM 

            $Ts1(I)=T1(I) 

            $Ts2(I)=T2(I) 

            $Ts3(I)=0 

            $Ts4(I)=1 

            END DO  

     

       END IF 
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Appendix III 

The steps of the dc fault isolation and post-fault restoration control scheme using 

ACCBs are proposed as follows: 

Step  0) Detecting DC fault; 

Step  1) Block the IGBTs of VSCs by converter local protection; 

Step  2) Select the potential faulted dc line for the opening of its fast dc switch; 

Step  3) Trip ACCBs; A waiting time of 80 ms is used to simulate the ACCB 

operating time; 

Step  4) Wait for the voltage and current of the selected line to decay to zero; 

Step  5) Trip the dc switch of the selected faulted line when Step 4) is satisfied; 

Step  6) Deblock all converter IGBTs to balance the positive and negative dc 

voltages; The converter will be blocked again before Step 7); 

Step  7) Reclose the ACCBs of the converter operating on Vdc_Q control mode; 

Step  8) Wait for the dc voltage reach to a pre-set value Us ; 

Step  9) Bypass the ac side start-up resistors of the converters operating on Vdc_Q 

control mode; Wait for a short period to protect IGBTs from the inrush 

currents.   

Step  10) Deblock IGBTs of the converter operating on Vdc control; Set Qref=0; 

Step  11) Wait the dc voltage reaches to Vdcref ; 

Step  12) Reclose ACCBs at other converters connecting with active ac networks; 

Bypass the start-up resistors of these converters; 

Step  13) Deblock converters connecting with active ac networks (P_Q control 

mode); Set Pref=0, Qref=0; 

Step  14) Deblock all the rest converters connecting with passive ac networks (Vac 

control mode); Set Vacref=0; 
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Step  15) Power and Vac ramp up; 

Step  16) Restoration process complete.  
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Appendix IV 

The results of a 10 Ω fault resistance in the FB MMC dc grid are shown below. 

The dc switches are tripped once the fault currents decay to below 0.5 kA. 

 

Fig. A. 10. The fault current passing the DCCB34. 

 

Fig. A. 11. Converter positive dc terminal voltages. 

 

Fig. A. 12. Currents at the grid side of MMC3. 
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Fig. A. 13. Voltages of ac buses 7 and 9. 

 

Fig. A. 14. The power in the ac transmission line. 

 

Fig. A. 15. The power angle difference between generators G1 and G3. 
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Appendix V 

Consider a diode in series with an inductor as shown in Fig. A. 16. The current 

characteristic of this circuit is explained below to derive the coefficients in equation 

(6.9). The ac voltage is assumed as sinusoidal. 

L

i

u=Usin(ωt+ϕ)

 

Fig. A. 16. An inductor in series with a diode. 

Fig. A. 17 illustrates the voltage and current waveforms in the circuit shown in 

Fig. A. 16 for ac voltages with different initial phase angles. The diode will conduct 

from the first negative period if the initial phase angle is  ≤  < , as shown in Fig. 

A. 17(a). Current i is expressed as: 

 
0 0  

[cos( ) 1]

i                        ,  ωt π
U

i ωt ,  π ωt
ωL

   -

  + + - 




    (A.1) 

 
(a) 0 ≤  <  (b)   ≤  < 2. 

Fig. A. 17. Schematic diagram of the voltage and current waveforms:  

It can be seen from (A1) and Fig. A2(a) that the diode will conduct from the first 

negative period. If the initial phase angle is   ≤  < 2, the initial ac voltage will 

be negative and the diode will conduct immediately from a zero state. However, it 

will stop conducting early before the next negative period, but will start conducting 

once the subsequent negative period starts. At this stage, current i can be defined as  

       

C
u

r
re

n
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0,                               2(2 )  3

[cos( ) 1]             3  

U U
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ωL ωL
i               π ωt π

U
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 

 


 + -   -


 -   -


 + + - 



  (A.2) 

It can be seen from (A.1) and (A.2) that the steady-state current will become non-

zero-crossing regardless of its initial state. As a result, the diode will remain 

conducting in steady-state.  

According to (6.7), the following expressions can be obtained: 
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  (A.3) 

Considering the initial conditions in (6.8), ivb and ivc are given by: 
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