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Abstract

In this paper, we propose a solution to transforming pho-
tos of real-world scenes into cartoon style images, which is
valuable and challenging in computer vision and computer
graphics. Our solution belongs to learning based methods,
which have recently become popular to stylize images in
artistic forms such as painting. However, existing meth-
ods do not produce satisfactory results for cartoonization,
due to the fact that (1) cartoon styles have unique charac-
teristics with high level simplification and abstraction, and
(2) cartoon images tend to have clear edges, smooth color
shading and relatively simple textures, which exhibit signif-
icant challenges for texture-descriptor-based loss functions
used in existing methods. In this paper, we propose Car-
toonGAN, a generative adversarial network (GAN) frame-
work for cartoon stylization. Our method takes unpaired
photos and cartoon images for training, which is easy to
use. Two novel losses suitable for cartoonization are pro-
posed: (1) a semantic content loss, which is formulated as
a sparse regularization in the high-level feature maps of
the VGG network to cope with substantial style variation
between photos and cartoons, and (2) an edge-promoting
adversarial loss for preserving clear edges. We further in-
troduce an initialization phase, to improve the convergence
of the network to the target manifold. Our method is also
much more efficient to train than existing methods. Exper-
imental results show that our method is able to generate
high-quality cartoon images from real-world photos (i.e.,
following specific artists’ styles and with clear edges and
smooth shading) and outperforms state-of-the-art methods.

1. Introduction
Cartoons are an artistic form widely used in our daily

life. In addition to artistic interests, their applications range
from publication in printed media to storytelling for chil-
dren’s education. Like other forms of artworks, many fa-
mous cartoon images were created based on real-world
scenes. Figure 1 shows a real-world scene whose cor-
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(a) Original scene (b) Our result

Figure 1. An example of cartoon stylization. (a) A real-world
scene whose corresponding cartoon image appears in the animated
film “Your Name”. (b) Our result that transforms the photo (a) to
the cartoon style. Note that our training data does not contain any
picture in “Your Name”.

responding cartoon image appeared in the animated film
“Your Name”. However, manually recreating real-world
scenes in cartoon styles is very laborious and involves
substantial artistic skills. To obtain high-quality cartoons,
artists have to draw every single line and shade each color
region of target scenes. Meanwhile, existing image editing
software/algorithms with standard features cannot produce
satisfactory results for cartoonization. Therefore, specially
designed techniques that can automatically transform real-
world photos to high-quality cartoon style images are very
helpful and for artists, tremendous amount of time can be
saved so that they can focus on more creative work. Such
tools also provide a useful addition to photo editing soft-
ware such as Instagram and Photoshop.

Stylizing images in an artistic manner has been widely
studied in the domain of non-photorealistic rendering [25].
Traditional approaches develop dedicated algorithms for
specific styles. However, substantial efforts are required
to produce fine-grained styles that mimic individual artists.
Recently, learning-based style transfer methods (e.g. [6]),
in which an image can be stylized based on provided ex-
amples, have drawn considerable attention. In particular,
the power of Generative Adversarial Networks (GANs) [38]
formulated in a cyclic manner is explored to achieve high-
quality style transfer, with the distinct feature that the model
is trained using unpaired photos and stylized images.

Although significant success has been achieved with



learning based stylization, state-of-the-art methods fail to
produce cartoonized images with acceptable quality. There
are two reasons. First, instead of adding textures such
as brush strokes in many other styles, cartoon images are
highly simplified and abstracted from real-world photos.
Second, despite variation of styles among artists, cartoon
images have noticeable common appearance — clear edges,
smooth color shading and relatively simple textures —
which is very different from other forms of artworks.

In this paper, we propose CartoonGAN, a novel GAN-
based approach to photo cartoonization. Our method takes
a set of photos and a set of cartoon images for training. To
produce high quality results while making the training data
easy to obtain, we do not require pairing or correspondence
between two sets of images. From the perspective of com-
puter vision algorithms, the goal of cartoon stylization is to
map images in the photo manifold into the cartoon mani-
fold while keeping the content unchanged. To achieve this
goal, we propose to use a dedicated GAN-based architec-
ture together with two simple yet effective loss functions.
The main contributions of this paper are:

(1) We propose a dedicated GAN-based approach that ef-
fectively learns the mapping from real-world photos to car-
toon images using unpaired image sets for training. Our
method is able to generate high-quality stylized cartoons,
which are substantially better than state-of-the-art methods.
When cartoon images from individual artists are used for
training, our method is able to reproduce their styles.

(2) We propose two simple yet effective loss functions in
GAN-based architecture. In the generative network, to cope
with substantial style variation between photos and car-
toons, we introduce a semantic loss defined as an `1 sparse
regularization in the high-level feature maps of the VGG
network [30]. In the discriminator network, we propose an
edge-promoting adversarial loss for preserving clear edges.

(3) We further introduce an initialization phase to im-
prove the convergence of the network to the target manifold.
Our method is much more efficient to train than existing
methods.

2. Related Work

2.1. Non-photorealistic rendering (NPR)

Many NPR algorithms have been developed, either au-
tomatically or semi-automatically, to mimic specific artis-
tic styles including cartoons [25]. Some works render 3D
shapes in simple shading, which creates cartoon-like ef-
fect [28]. Such techniques called cel shading can save
substantial amount of time for artists and have been used
in the creation of games as well as cartoon videos and
movies [22]. However, turning existing photos or videos
into cartoons such as the problem studied in this paper is
much more challenging.

A variety of methods have been developed to create im-
ages with flat shading, mimicking cartoon styles. Such
methods use either image filtering [33] or formulations in
optimization problems [35]. However, it is difficult to cap-
ture rich artistic styles using simple mathematical formulas.
In particular, applying filtering or optimization uniformly
to the entirely image does not give the high-level abstrac-
tion that an artist would normally do, such as making object
boundaries clear. To improve the results, alternative meth-
ods rely on segmentation of images/videos [32], although at
the cost of requiring some user interaction. Dedicated meth-
ods have also been developed for portraits [36, 26], where
semantic segmentation can be derived automatically by de-
tecting facial components. However, such methods cannot
cope with general images.

2.2. Stylization with neural networks

Convolutional Neural Networks (CNNs) [17, 18] have
received considerable attention for solving many computer
vision problems. Instead of developing specific NPR al-
gorithms which require substantial effort for each style,
style transfer has been actively researched. Unlike tradi-
tional style transfer methods [11, 12] which require paired
style/non-style images, recent studies [19, 1, 7, 8] show that
the VGG network [30] trained for object recognition has
good ability to extract semantic features of objects, which
is very important in stylization. As a result, more powerful
style transfer methods have been developed which do not
require paired training images.

Given a style image and a content image, Gatys et al. [6]
first proposed a neural style transfer (NST) method based
on CNNs that transfers the style from the style image to the
content image. They use the feature maps of a pre-trained
VGG network to represent the content and optimize the re-
sult image, such that it retains the content from the content
image while matching the texture information of the style
image, where the texture is described using the global Gram
matrix [7]. It produces nice results for transferring a vari-
ety of artistic styles automatically. However, it requires the
content and style images to be reasonably similar. Further-
more, when images contain multiple objects, it may transfer
styles to semantically different regions. The results for car-
toon style transfer are more problematic, as they often fail
to reproduce clear edges or smooth shading.

Li and Wand [20] obtained style transfer by local match-
ing of CNN feature maps and using a Markov Random Field
for fusion (CNNMRF). However, local matching can make
mistakes, resulting in semantically incorrect output. Liao et
al. [21] proposed a Deep Analogy method which keeps se-
mantically meaningful dense correspondences between the
content and style images while transferring the style. They
also compare and blend patches in the VGG feature space.
Chen et al. [3] proposed a method to improve comic style



transfer by training a dedicated CNN to classify comic/non-
comic images. All these methods use a single style image
for a content image, and the result heavily depends on the
chosen style image, as there is inevitable ambiguity regard-
ing the separation of styles and content in the style image.
In comparison, our method learns a cartoon style using two
sets of images (i.e., real-world photos and cartoon images).

2.3. Image synthesis with GANs

An alternative, promising approach to image synthesis
is to use Generative Adversarial Networks (GANs) [9, 34],
which produce state-of-the-art results in many applications
such as text to image translation [24], image inpainting [37],
image super-resolution [19], etc. The key idea of a GAN
model is to train two networks (i.e., a generator and a dis-
criminator) iteratively, whereby the adversarial loss pro-
vided by the discriminator pushes the generated images to-
wards the target manifold [37].

Several works [5, 14, 16] have provided GAN solutions
to pixel-to-pixel image synthesis problems. However, these
methods require paired image sets for the training process
which is impractical for stylization due to the challenge of
obtaining such corresponding image sets.

To address this fundamental limitation, CycleGAN [38]
was recently proposed, which is a framework able to per-
form image translation with unpaired training data. To
achieve this goal, it trains two sets of GAN models at the
same time, mapping from class A to class B and from class
B to class A, respectively. The loss is formulated based on
the combined mapping that maps images to the same class.
However, simultaneously training two GAN models often
converges slowly, resulting in a time-consuming training
process. This method also produces poor results for cartoon
stylization due to the characteristics (i.e., high-level abstrac-
tion and clear edges) of cartoon images. As a comparison,
our method utilizes a GAN model to learn the mapping be-
tween photo and cartoon manifolds using unpaired training
data. Thanks to our dedicated loss functions, our method is
able to synthesize high quality cartoon images, and can be
trained much more efficiently.

2.4. Network architectures

Many works show that although deep neural networks
can potentially improve the ability to represent complex
functions, they can also be difficult to train because of the
notorious vanishing gradient problem [29, 31]. The re-
cently introduced concept of residual blocks [10] is a pow-
erful choice to simplify the training process. It designs an
“identity shortcut connection” which relieves the vanishing
gradient issue while training. Models based on residual
blocks have shown impressive performance in generative
networks [15, 19, 38].

Another common way to ease the training of deep CNNs

is batch normalization [13], which is designed to counteract
the internal covariate shift and reduce the oscillations when
approaching the minimum point. In addition, Leaky ReLu
(LReLU) [23] is a widely used activation function in deep
CNNs for efficient gradient propagation which increases the
performance of networks by allowing a small, non-zero gra-
dient when the unit is not active. We integrate these tech-
niques in our cartoonization deep architecture.

3. CartoonGAN
A GAN framework consists of two CNNs. One is the

generator G which is trained to produce output that fools
the discriminator. The other is the discriminator D which
classifies whether the image is from the real target mani-
fold or synthetic. We design the generator and discrimina-
tor networks to suit the particularity of cartoon images; see
Figure 2 for an overview.

We formulate the process of learning to transform real-
world photos into cartoon images as a mapping function
which maps the photo manifold P to the cartoon mani-
fold C. The mapping function is learned using training
data Sdata(p) = {pi |i = 1 . . . N} ⊂ P and Sdata(c) =
{ci |i = 1 . . .M} ⊂ C, where N and M are the numbers of
photo and cartoon images in the training set, respectively.
Like other GAN frameworks, a discriminator function D
is trained for pushing G to reach its goal by distinguishing
images in the cartoon manifold from other images and pro-
viding the adversarial loss forG. Let L be the loss function,
G∗ and D∗ be the weights of the networks. Our objective is
to solve the min-max problem:

(G∗, D∗) = argmin
G

max
D
L(G,D) (1)

We present the detail of our network architecture in Section
3.1 and propose two loss functions for G and D in Sec-
tion 3.2. To further improve the network convergence, we
propose an initialization phase and incorporate it into Car-
toonGAN, which is summarized in Section 3.3.

3.1. CartoonGAN architecture

Refer to Figure 2. In CartoonGAN, the generator net-
workG is used to map input images to the cartoon manifold.
Cartoon stylization is produced once the model is trained.
G begins with a flat convolution stage followed by two
down-convolution blocks to spatially compress and encode
the images. Useful local signals are extracted in this stage
for downstream transformation. Afterwards, eight residual
blocks with identical layout are used to construct the content
and manifold feature. We employ the residual block layout
proposed in [15]. Finally, the output cartoon style images
are reconstructed by two up-convolution blocks which con-
tain fractionally strided convolutional layer with stride 1/2
and a final convolutional layer with 7× 7 kernels.
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Figure 2. Architecture of the generator and discriminator networks in the proposed CartoonGAN, in which k is the kernel size, n is
the number of feature maps and s is the stride in each convolutional layer, ‘norm’ indicates a normalization layer and ‘ES’ indicates
elementwise sum.

Complementary to the generator network, the discrimi-
nator network D is used to judge whether the input image
is a real cartoon image. Since judging whether an image is
cartoon or not is a less demanding task, instead of a reg-
ular full-image discriminator, we use a simple patch-level
discriminator with fewer parameters in D. Different from
object classification, cartoon style discrimination relies on
local features of the image. Accordingly, the network D
is designed to be shallow. After the stage with flat layers,
the network employs two strided convolutional blocks to re-
duce the resolution and encode essential local features for
classification. Afterwards, a feature construction block and
a 3× 3 convolutional layer are used to obtain the classifica-
tion response. Leaky ReLU (LReLU) [23] with α = 0.2 is
used after each normalization layer.

3.2. Loss function

The loss function L(G,D) in Eq.(1) consists of two
parts: (1) the adversarial loss Ladv(G,D) (Section 3.2.1),
which drives the generator network to achieve the de-
sired manifold transformation, and (2) the content loss
Lcon(G,D) (Section 3.2.2), which preserves the image
content during cartoon stylization. We use a simple addi-
tive form for the loss function:

L(G,D) = Ladv(G,D) + ωLcon(G,D), (2)

where ω is the weight to balance the two given losses.
Larger ω leads to more content information from the in-
put photos to be retained, and therefore, results in stylized
images with more detailed textures. In all our experiments,
we set ω = 10 which achieves a good balance of style and
content preservation.

3.2.1 Adversarial loss Ladv(G,D)

The adversarial loss is applied to both networks G and D,
which affects the cartoon transformation process in the gen-
erator network G. Its value indicates to what extent the out-
put image of the generator G looks like a cartoon image. In
previous GAN frameworks [9, 14, 38], the task of the dis-
criminatorD is to figure out whether the input image is syn-
thesized from the generator or from the real target manifold.
However, we observe that simply training the discriminator
D to separate generated and true cartoon images is not suf-
ficient for transforming photos to cartoons. This is because
the presentation of clear edges is an important characteris-
tic of cartoon images, but the proportion of these edges is
usually very small in the whole image. Therefore, an out-
put image without clearly reproduced edges but with correct
shading is likely to confuse the discriminator trained with a
standard loss.

To circumvent this problem, from the training cartoon



(a) A cartoon image ci (b) The edge-smoothed version ei

Figure 3. By removing clear edges in a cartoon image ci ∈
Sdata(c), we generate a corresponding image ei ∈ Sdata(e).

images Sdata(c) ⊂ C, we automatically generate a set of
images Sdata(e) = {ei |i = 1 . . .M} ⊂ E by remov-
ing clear edges in Sdata(c), where C and E are the cartoon
manifold and the manifold of cartoon-like images without
clear edges, respectively. In more detail, for each image
ci ∈ Sdata(c), we apply the following three steps: (1) detect
edge pixels using a standard Canny edge detector [2], (2) di-
late the edge regions, and (3) apply a Gaussian smoothing
in the dilated edge regions.

Figure 3 shows an example of a cartoon image and a
modified version with edges smoothed out. Recall that for
each photo pk in the photo manifoldP , the generatorG out-
puts a generated image G(pk). In CartoonGAN, the goal of
training the discriminator D is to maximize the probability
of assigning the correct label to G(pk), the cartoon images
without clear edges (i.e., ej ∈ Sdata(e)) and the real car-
toon images (i.e., ci ∈ Sdata(c)), such that the generator
G can be guided correctly by transforming the input to the
correct manifold. Therefore, we define the edge-promoting
adversarial loss as:

Ladv(G,D) = Eci∼Sdata(c)[logD(ci)]

+ Eej∼Sdata(e)[log(1−D(ej))]

+ Epk∼Sdata(p)[log(1−D(G(pk)))].

(3)

3.2.2 Content loss Lcon(G,D)

In addition to transformation between correct manifolds,
one more important goal in cartoon stylization is to ensure
the resulting cartoon images retain semantic content of the
input photos. In CartoonGAN, we adopt the high-level fea-
ture maps in the VGG network [30] pre-trained by [27],
which has been demonstrated to have good object preser-
vation ability. Accordingly, we define the content loss as:

Lcon(G,D) =

Epi∼Sdata(p)[||V GGl(G(pi))− V GGl(pi)||1]
(4)

where l refers to the feature maps of a specific VGG layer.
Unlike other image generation methods [6, 19], we de-

fine our semantic content loss using the `1 sparse regular-
ization of VGG feature maps between the input photo and

(a) Original photo (b) Image after initialization

Figure 4. For an original photo (a), the image (b) is the result after
the initialization phase. See the main text for details.

the generated cartoon image. This is due to the fact that car-
toon images have very different characteristics (i.e., clear
edges and smooth shading) from photos. We observe that
even with a suitable VGG layer that intends to capture the
image content, the feature maps may still be affected by the
massive style difference. Such differences often concen-
trate on local regions where the representation and regional
characteristics change dramatically. `1 sparse regulariza-
tion is able to cope with such changes much better than the
standard `2 norm. As we will show later, this is crucial to
reproduce the cartoon style. We use the feature maps in the
layer ‘conv4 4’ to compute our semantic content loss.

3.3. Initialization phase

Since the GAN model is highly nonlinear, with random
initialization, the optimization can be easily trapped at sub-
optimal local minimum. To help improve its convergence,
we propose a new initialization phase. Note that the tar-
get of the generator network G is to reconstruct the input
photo in a cartoon style while keeping the semantic content.
We start the adversarial learning framework with a gener-
ator which only reconstructs the content of input images.
For this purpose, in the initialization phase, we pre-train
the generator network G with only the semantic content
loss Lcon(G,D). Figure 4 shows an example of the recon-
structed image after 10 epochs of this initialization training
phase, which already produces reasonable reconstruction.
Our experimental results show that this simple initialization
phase helps CartoonGAN fast converge to a good configu-
ration, without premature convergence. Similar observation
is made in [6] which uses the content image to initialize the
result image to improve style transfer quality.

4. Experiments
We implemented our CartoonGAN in Torch [4] and Lua

language. The trained models in our experiments are avail-
able1 to facilitate evaluation of future methods. All experi-
ments were performed on an NVIDIA Titan Xp GPU.

1http://cg.cs.tsinghua.edu.cn/people/˜Yongjin/
Yongjin.htm



(a) input photo (b) Shinkai style (c) Hayao style
Figure 5. Some results of different artistic styles generated by Car-
toonGAN. (a) Input real-world photos. (b) Makoto Shinkai style.
(c) Miyazaki Hayao style.

CartoonGAN is able to produce high-quality cartoon
stylization using the data of individual artists for training,
which are easily obtained from cartoon videos, since our
method does not require paired images. Different artists
have their unique cartoon styles, which can be effectively
learned by CartoonGAN. Some results of different artistic
styles generated by CartoonGAN are shown in Figure 5.

To compare CartoonGAN with state of the art, we col-
lected the training and test data as presented in Section 4.1.
In Section 4.2, we present the comparison between the pro-
posed method and representative stylization methods. In
Section 4.3, we present a further ablation experiment to an-
alyze the effectiveness of each component in our Cartoon-
GAN model.

4.1. Data

The training data contains real-world photos and cartoon
images, and the test data only includes real-world photos.
All the training images are resized and cropped to 256×256.

Photos. 6,153 photos are downloaded from Flickr, in
which 5,402 photos are for training and others for testing.

Cartoon images. Different artists have different styles
when creating cartoon images of real-world scenes. To ob-
tain a set of cartoon images with the same style, we use the
key frames of cartoon films drawn and directed by the same
artist as the training data. In our experiments, 4,573 and
4,212 cartoon images from several short cartoon videos are
used for training the Makoto Shinkai and Mamoru Hosoda

(a) NST (b) CycleGAN (c) CartoonGAN

Figure 7. Details of edge generation. (a) The result of NST [6]
using all the images in the training set as the style image. (b)
CycleGAN [38] with the identity loss. (c) Our result.

style models, and 3,617 and 2,302 images from the cartoon
film “Spirited Away” and “Paprika” are used for training the
Miyazaki Hayao and “Paprika” style models.

4.2. Comparison with state of the art

We first compare CartoonGAN with two recently pro-
posed methods in CNN-based stylization, namely NST [6]
and CycleGAN [38]. Note that the original NST takes one
style image Is and one content image Ic as input, and trans-
fers the style from Is to Ic. For fair comparison, we apply
two adaptations of NST. In the first adaptation, we manually
choose a style image which has close content to the input
photo. In the second adaptation, we extend NST to take all
the cartoon images for training, similar to the comparative
experiment in [38]. We also compare two versions of Cycle-
GAN, i.e., without and with the identity loss Lidentity. The
incorporation of this loss tends to produce stylized images
with better content preservation. 200 epochs were trained
for both CycleGAN and our CartoonGAN.

Qualitative results are presented in Figure 6, which
clearly demonstrate that NST and CycleGAN cannot deal
with cartoon styles well (Figures 6b-6e). In comparison, by
reproducing the necessary clear edges and smooth shading
while retaining the content of the input photo, our Cartoon-
GAN model produces hight-quality results (Figure 6f).

More specifically, NST [6] using only a style image may
not be able to fully learn the style, especially for areas in the
target image whose content is different from the style image
(Figure 6b). When NST is extended to take more training
data, rich styles can be better learned. However, the styl-
ized images tend to have local regions stylized differently,
causing inconsistency artifacts (Figure 6c).

The stylization results of CycleGAN do not capture the
cartoon styles well. Without the identity loss, the output
images do not preserve the content of the input photos well
(Figure 6d). The identity loss is useful to avoid this prob-
lem, but the stylization results are still far from satisfactory
(Figure 6e). In comparison, CartoonGAN produces high-



- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Makoto Shinkai style - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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- - -

(a) Input Photo (b) Gatys (image 1) (c) Gatys (collection) (d) CycleGAN (e) CycleGAN+𝐿𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 (f) Our CartoonGAN

Figure 6. Comparison of CartoonGAN with NST [6] and CycleGAN [38] for Makoto Shinkai (top) and Miyazaki Hayao (bottom) styles.
Gatys (image 1) and Gatys (collection) are two adaptations of NST where a cartoon image with close content to the input photo and all the
cartoon images are used for training, respectively.

quality cartoonization which well follows individual artist’s
style. Figure 7 shows close-up views of an example in Fig-
ure 6, demonstrating that our CartoonGAN generates the es-
sential edges which are very important for the cartoon style.

Our CartoonGAN has the same property of not requiring
paired images for training as CycleGAN. However, Car-
toonGAN takes much less training time. For each epoch,
CycleGAN and CycleGAN with Lidentity take 2291.77s
and 3020.31s, respectively, whereas CartoonGAN only
takes 1517.69s, about half compared with CycleGAN +
Lidentity. This is because CycleGAN needs to train two
GAN models for bidirectional mappings, which seriously
slows down the training process. For image cartoonization,
mapping back from cartoons to photos is not necessary. By
using the VGG feature maps rather than a cycle architec-
ture to restrain the content, CartoonGAN can learn cartoon
stylization more efficiently.

We also compare our method with CNNMRF [20] and
Deep Analogy [21], with Paprika and Mamoru Hosoda

styles in Figure 8. Since both methods expect a single style
image, two strategies are used to choose the style image
from the training set: a manually selected cartoon image
most similar in content with the input photo (image1) and
a randomly picked cartoon image (image2). These meth-
ods fail to reproduce the characteristics of cartoon styles
and produce results with clear artifacts, whereas our method
produces high-quality stylization.

4.3. Roles of components in loss function

We perform the ablation experiment to study the role of
each part in CartoonGAN. Figure 9 shows the examples of
ablations of our full loss function, in which all the results
are trained by Makoto Shinkai style’s data. The follow-
ing results show that each component plays an important
role in CartoonGAN. First, the initialization phase helps the
generator G quickly converge to a reasonable manifold. As
shown in Fig. 9b, without initialization, although some key
features are shown, the styles are far from expectation. Sec-



(a) Input photo

(b) CNNMRF
(image1)

(c) CNNMRF
(image2) (f) Our CartoonGAN(d) Deep Analogy

(image1)
(d) Deep Analogy

(image2)

Paprika
Style

Mamoru
Style

Figure 8. Cartoonization with ‘Paprika’ and Mamoru Hosoda styles, compared with CNNMRF [20] and Deep Analogy [21].

(a) Input Photo (b) Without Initialization (c) With 𝐿2 loss (d) Without edge loss (e) CartoonGAN (ours)

Figure 9. Results of removing/changing components in the loss function of CartoonGAN: (a) input photo, (b) without initialization process,
(c) using `2 regularization for the content loss, (d) removing edge loss in the adversarial loss, (e) our CartoonGAN.

ond, even with a suitable VGG layer, large and often local-
ized differences in feature maps of input and cartoon style
images are still needed due to massive style differences. Us-
ing the `1 sparse regularization (instead of `2) of high-level
VGG feature maps helps cope with substantial style differ-
ences between cartoon images and photos. Last, the elabo-
rately designed edge loss guides the generator G to produce
clear edges in results, leading to better cartoon style images.

5. Conclusion and Future Work

In this paper we proposed CartoonGAN, a Generative
Adversarial Network to transform real-world photos to
high-quality cartoon style images. Aiming at recreating
faithful characteristics of cartoon images, we propose (1) a
novel edge-promoting adversarial loss for clear edges, and
(2) an `1 sparse regularization of high-level feature maps
in the VGG network for content loss, which provides suf-
ficient flexibility for reproducing smooth shading. We also
propose a simple yet efficient initialization phase to help

improve convergence. The experiments show that Cartoon-
GAN is able to learn a model that transforms photos of real-
world scenes to cartoon style images with high quality and
high efficiency, significantly outperforming the state-of-the-
art stylization methods.

In the future work, due to the importance of portrait, we
would like to investigate how to exploit local facial features
to improve cartoon stylization for human faces. Although
we design our loss functions to tackle specific nature of
cartoon stylization, similar ideas are useful for other image
synthesis tasks, which we will investigate further. We also
plan to add sequential constraints to the training process to
extend our method to handling videos.
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