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Abstract

Caricature is an art form that expresses subjects in ab-
stract, simple and exaggerated views. While many cari-
catures are 2D images, this paper presents an algorithm
for creating expressive 3D caricatures from 2D carica-
ture images with minimum user interaction. The key idea
of our approach is to introduce an intrinsic deformation
representation that has the capability of extrapolation, en-
abling us to create a deformation space from standard face
datasets, which maintains face constraints and meanwhile
is sufficiently large for producing exaggerated face mod-
els. Built upon the proposed deformation representation,
an optimization model is formulated to find the 3D carica-
ture that captures the style of the 2D caricature image au-
tomatically. The experiments show that our approach has
better capability in expressing caricatures than those fitting
approaches directly using classical parametric face models
such as 3DMM and FaceWareHouse. Moreover, our ap-
proach is based on standard face datasets and avoids con-
structing complicated 3D caricature training sets, which
provides great flexibility in real applications.

1. Introduction
Caricature is a pictorial representation or description that

deliberately exaggerates a person’s distinctive features or
peculiarities to create an easily identifiable visual likeness
with a comic effect [33]. This vivid art form contains the
concepts of abstraction, simplification and exaggeration. It
has been shown that the effect of producing caricature can
increase face recognition rates [32, 35, 14]. Since Bren-
nan presented the first interactive caricature generator in
1985 [6], many approaches and computer-assisted carica-
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Figure 1. An example of 3D caricature generation from a single
image. Given a single caricature image (left), our algorithm gen-
erates its 3D model and the model with texture (right, displayed in
two views).

ture generation systems have been developed [24, 27, 25,
40]. Most of these works focus on 2D caricature gener-
ation. Our goal is to develop techniques for creating 3D
caricatures from 2D caricature images. Such expressive 3D
models of caricatures are interesting and useful, for exam-
ple, in cartoon and social media.

Creating 3D caricatures from 2D images is a problem
of image-based modeling. A closely-related and very inter-
esting problem is face reconstruction which is widely stud-
ied in computer vision. Due to diverse geometric and tex-
ture variations and a large variety of identities and expres-
sions, face reconstruction is a nontrivial task. Recently face
reconstruction has achieved great progress. Many excel-
lent works have been proposed for reconstructing real faces
and their expressions as well. Among them, example-based
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methods first build a low-dimensional parametric represen-
tation of 3D face models from an example set and then fit
the parametric model to the input 2D image [4, 9]. The
shape-from-shading approach reconstructs faces from im-
age(s) using shading variation [21, 22].

Compared to normal face reconstruction, caricature
modeling is much more difficult. The challenges lie at least
in several aspects outlined below. First, the diversity of
caricatures is much more severe than normal faces, which
means example-based methods in real face reconstruction
cannot be simply transferred. For example, 3DMM [4] and
FaceWareHouse [9] are very successful in modeling nor-
mal faces, but the space they define is not large enough
for modeling caricatures in our experiments. Second, car-
icatures are by nature artwork and may not reflect the real
physical environment such as lighting information, which
implies caricature images may not provide accurate shad-
ing cues. Third, creating caricatures is an artistic process.
Different caricaturists can develop very different styles for
caricatures. Thus the construction process should also con-
sider the individual styles of exaggeration.

Inspired by rapid advances and power of machine learn-
ing techniques, learning-based approaches have also been
proposed to create 3D caricature models [26, 17]. These ap-
proaches require a 3D caricature dataset for training. How-
ever, creating a 3D caricature dataset is time-consuming be-
cause this usually involves caricaturists and caricatures have
richer information such as a large range of deformation pos-
sibility and different styles.

Note that caricatures have two basic characteristics. The
first one is that they have the face constraint, i.e. we can tell
they are faces. The second one is that the features of the face
have been exaggerated. These characteristics suggest that a
caricature can be viewed as a deformation from a standard
face that keeps inherent features of the original face. The
effect of exaggeration implies large and nonuniform defor-
mation and usually extrapolation is needed. While classical
parametric face models focus on the position of each ver-
tex of 3D faces and they usually use interpolation to create
new faces, they have difficulty in producing largely exag-
gerated faces. We borrow the concept of deformation gra-
dients from mesh deformation and introduce a new defor-
mation representation that is suitable for local and large de-
formation in a natural way. This representation allows a
data-driven approach to generate a deformation space from
a normal face dataset, which is flexible and maintains the
face-like target. Moreover, we propose to use a set of fa-
cial landmarks to capture the exaggeration style of the input
2D caricature image and formulate an optimization problem
based on landmark constraints to make sure that the gener-
ated 3D caricature has the similar exaggeration style (see
Fig. 1). This avoids the need of creating a 3D caricature
dataset with the same style.

The main contributions of the paper are twofold. First,
we propose a new intrinsic deformation representation that
uses local deformation gradients and allows expressing
face-like targets with nonuniform, large local deformation.
This deformation representation could also be useful for
other applications. Second, we formulate our 3D carica-
ture generation as an optimization problem whose solution
delivers a 3D caricature satisfying the face constraint and
exaggeration styles.

2. Related Work
Face reconstruction and recognition [7, 16, 19, 20] are

closely relevant to our work. For face reconstruction,
data-driven approaches are becoming popular. For exam-
ple, Blanz and Vetter proposed a 3D morphable model
(3DMM) [4] that was built on an example set of 200 3D face
models describing shapes and textures. Based on 3DMM,
Convolutional Neural Networks (CNNs) were constructed
to generate 3D face models [19, 16]. Cao et al. [9] used
RGB-D sensors to develop FaceWareHouse, a large face
database with 150 identities and 47 expressions for each
identity. Using FaceWareHouse, [20] regressed the parame-
ters of the bilinear model of [39] to construct 3D faces from
a single image. We also use 3D faces in the FaceWareHouse
dataset to construct our 3D face representation.

Following Brennan’s work [6], many attempts have been
made to develop computer-assisted tools or systems for cre-
ating 2D caricatures. Akleman et al. [1] developed an in-
teractive tool to make caricatures using morphing. Liang
et al. [24] used a caricature training database and learned
exaggeration prototypes from the database using principal
component analysis. Chiang et al. [25] developed an auto-
matic caricature generation system by analyzing facial fea-
tures and using one existing caricature image as the refer-
ence.

Relatively there is much less work on 3D caricature gen-
eration [30, 29]. Clarke et al. [10] proposed an interactive
caricaturization system to capture deformation style of 2D
hand-drawn caricatures. The method first constructed a 3D
head model from an input facial photograph and then pre-
formed deformation for generating 3D caricatures. Liu et
al. [26] proposed a semi-supervised manifold regulariza-
tion method to learn a regressive model for mapping be-
tween 2D real faces and the enlarged training set with 3D
caricatures. With the development of deep learning, Han et
al. [17] developed a sketch system using a CNN to model
3D caricatures from simple sketches. In their approach, the
FaceWareHouse [9] was extended with 3D caricatures to
handle the variation of 3D caricature models since the lack
of 3D caricature samples made it challenging to train a good
model. Different from these works, our approach does not
require 3D caricature samples.

In geometric modeling, deformation is a common tech-



nique. Many surface based deformation techniques are re-
lated to the underlying geometric representation. Local dif-
ferential coordinates are a powerful representation that en-
codes local details and can benefit the deformation by pre-
serving shape details [41, 36]. To provide high-level or
semantic control, data-driven techniques learn deformation
from examples. Sumner et al. [38] proposed a deformation
method by blending the deformation gradients of example
shapes. Baran et al. [3] proposed a semantic deformation
transfer method using rotation-invariant coordinates. Gao
et al. [12] proposed a deformation representation by blend-
ing rotation differences between adjacent vertices and scal-
ing/shear at each vertex and further developed a sparse data-
driven deformation method for large rotations [13]. Our
work borrows the concept of local deformation gradients
to build the deformation representation.

3. Intrinsic Deformation Representation
To produce 3D caricatures from 2D images, we first

build a new 3D representation for 3D caricature faces. Un-
like previous methods that rely on a large set of carefully
designed 3D caricature faces for training, our method takes
standard 3D faces, and exploits the capability of extrapo-
lation of an intrinsic deformation representation. Standard
3D faces are much easier to obtain and are readily available
from standard datasets. By contrast, caricature faces are
much richer. Particularly, different artists may have differ-
ent styles for caricatures. Therefore, providing a full cover-
age is extremely difficult.

3.1. Deformation representation for 2 models

To make it easy to follow, we first introduce our intrin-
sic representation of the deformation between two models,
which will then be extended to a collection of shapes. In
particular, one model is chosen as the reference model and
the other is the deformed model. We assume they have been
globally aligned. Let us denote by pi the position of the ith

vertex vi on the reference model, and by p′i the position
of vi on the deformed model. The deformation gradient in
the 1-ring neighborhood of vi from the reference model to
the deformed model is defined as the affine transformation
matrix Ti that minimizes the following energy:

E(Ti) =
∑
j∈Ni

cij‖e′ij −Tieij‖2 (1)

where Ni is the 1-ring neighborhood of vertex vi, e′ij =
p′i − p′j , eij = pi − pj , and cij is the cotangent weight
depending only on the reference model to cope with irregu-
lar tessellation [5]. The matrix Ti can be decomposed into
a rotation part Ri and a scaling/shear part Si using polar
decomposition: Ti = RiSi.

To allow effective linear combination, we take the axis-
angle representation [11] to represent the rotation matrix Ri

of vertex vi. The rotation matrix can be represented using a
rotation axis ωi and rotation angle θi pair with the mapping
φ, specifically Ri = φ(ωi, θi), where ωi ∈ R3 and ‖ωi‖ =
1. Given two rotations in the axis-angle representation, it is
not suitable to blend them linearly, so we convert the axis
ωi and angle θi to the matrix logarithm representation:

log Ri = θi

 0 −ωi,z ωi,y

ωi,z 0 −ωi,x

−ωi,y ωi,x 0

 (2)

The logarithm of rotation matrices allows effective lin-
ear combination [2], e.g., two rotations Ri and Rj can be
blended using exp(log Ri + log Rj). Rotation matrix Ri

can be recovered by matrix exponential Ri = exp(log Ri).
If the deformed model is the same as the reference

model, log Ri = 0 and Si = I for all vi ∈ V , where V
is the set of vertices, and I and 0 are identity and zero ma-
trices. Thus we define our deformation representation f as

f = {log Ri; Si − I|∀vi ∈ V}. (3)

By subtracting the identity matrix I from S, the deformation
representation of “no deformation” becomes a zero vector
which builds a natural coordinate system.

Alternative representations [12, 13] mainly focus on rep-
resenting very large rotations (e.g., > 180◦), which are not
needed for faces. In comparison, our representation is sim-
pler and effective.

3.2. Deformation representation for shape collec-
tions

We can extend the previous definition to a collection of
models. Suppose we have n+ 1 3D face models. In our ex-
periments, we select face models from FaceWareHouse [9],
a 3D face dataset with large variation in identity and ex-
pression. At first, we mark some facial landmarks on the
3D face models. With the help of the landmarks, we apply
rigid alignment to 3D face models to remove global rigid
transformation between them.

We similarly choose one model as the reference model
and let the others be the deformed models. Given n de-
formed models, we can obtain n deformation representa-
tions F = {fl|l = 1, · · · , n} with

fl = {log Rl,i; S
′
l,i|∀vi ∈ V} (4)

and S′l,i = Sl,i − I for simpler expression.
The deformation representation F actually defines a de-

formation space. To generate a new deformed mesh based
on F , we formulate the deformation gradient of a deformed
mesh as a linear combination of the basis deformations fl:

Ti(w) = exp(

n∑
l=1

wR,l log Rl,i)(I +

n∑
l=1

wS,lS
′
l,i) (5)
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Figure 2. A simple example of the deformation representation co-
ordinate system. Here, the reference model is at the origin, and
two example shapes are placed at (1, 0) (with an open mouth) and
(0, 1) (with a different identity). Therefore, the x and y axes de-
note to these two modes of deformation. Denote by f1 and f2 the
two basis deformations, we can obtain new 3D faces using a linear
combination of them, including exaggerated shapes.

where w = (wR,wS) is the combination weight vec-
tor, consisting of weights of rotation wR = {wR,l|l =
1, · · · , n} and weights of scaling/shear wS = {wS,l|l =
1, · · · , n}. log Rl,i and S′l.i correspond to the rotation and
scaling/shear of the ith vertex in the lth basis fl. Given the
representation basis F , different faces can be obtained by
varying w. By introducing two sets of weights for rotation
and scaling/shear, our representation is flexible to cope with
exaggerated 3D faces, as we will demonstrate later.

We give a simple example in Fig. 2 where wR = wS

(and denoted as w for simplicity). We have two deformed
example models, so w only has 2 dimensions. The golden
face located in the origin is the reference model. Two de-
formed models are shaded golden and located at (1, 0) (with
the mouth open), and (0, 1) (with a different subject). By
setting w to (2, 0), we can let the mouth open wider. If we
set w to (1, 1), we can let the face at (0, 1) open his mouth.
When w is set to (0, 2), it will exaggerate the face at (0, 1).
By a linear combination of deformation basis F using dif-
ferent weights w, we can generate deformed meshes in the
deformation space.

3.3. Deformation weight extraction and model re-
construction

We can define the deformation energy Edef as follows:

Edef (P′,w) =
∑
vi∈V

∑
j∈Ni

cij‖(p′i − p′j)−Ti(w)(pi − pj)‖2

(6)
where P′ = {p′i|vi ∈ V} represents the positions of de-
formed vertices. By minimizing this energy, we are able to
determine the position of each vertex p′i ∈ R3 on the de-
formed mesh given weights w, or obtain the combination
weights w given the deformed mesh P′.

3.3.1 Model reconstruction from weights w

Given w, the deformation gradient T(w) can be directly
obtained using Eq. 5. Then model reconstruction is done by
finding the optimal P′ that minimizes:

Edef (P′) =
∑
vi∈V

∑
j∈Ni

cij‖(p′i − p′j)−Ti(w)(pi − pj)‖2.

(7)
For each p′i, we tackle it by solving ∂Edef (P

′)
∂p′

i
= 0, which

leads to:

2
∑
j∈Ni

cije
′
ij =

∑
j∈Ni

cij(Ti(w) + Tj(w))eij (8)

with eij = pi−pj , e′ij = p′i−p′j . The resulting linear sys-
tem can be written in the form Ap′ = b where the matrix A
is fixed and sparse since only entries where the correspond-
ing vertices are associated with the edge are non-zero. By
specifying the position of one vertex, we can get single so-
lution to the equations. This initial specification will not
change the shape of the output. The models shown in Fig. 2
are obtained using this optimization.

3.3.2 Optimizing w for a given deformed model

Given a deformed 3D model P′, the optimal weights w to
represent the deformation can be obtained by minimizing:

Edef (w) =
∑
vi∈V

∑
j∈Ni

cij‖(p′i − p′j)−Ti(w)(pi − pj)‖2.

(9)
This is a non-linear least squares problem because of
Ti(w). To solve it, we first compute Jacobian matrix
∂Ti(w)
∂wl

w.r.t. example model l derived as two components:{
∂Ti(w)
∂wR,l

= exp(
∑

l wR,l log Rl,i) log Rl,i(I +
∑

l wS,lS
′
l,i)

∂Ti(w)
∂wS,l

= exp(
∑

l wR,l log Rl,i)S
′
l,i

(10)
which are the derivatives of Ti w.r.t. the rotation weight
wR and scaling/shear wS , respectively. The optimal w
for a given deformed model can be calculated using the
Levenberg-Marquardt algorithm [28].

4. Generation of 3D Caricature Models
Built upon our deformation representation, we now de-

scribe our algorithm to construct a 3D caricature model
from a 2D caricature image. Assume that we have already
had a 3D reference face model and a deformation represen-
tation based on it. To capture exaggerated facial expres-
sions, we use a set of landmark points in the 2D image and
3D model, which correspond to the landmark points marked
on the reference face.



Reconstructing the 3D model from a 2D image is the in-
verse process of observing a 3D object by projecting it to an
imaging plane. Therefore, this process is affected by view
parameters. For simplicity, we choose orthographic projec-
tion to set the relationship between 3D and 2D. Without loss
of generality, we assume that the projection plane is the z-
plane and thus the projection can be written as

qi = s

(
1 0 0
0 1 0

)
Rpi + t (11)

where pi and qi are the locations of vertex vi in the world
coordinate system and in the image plane, respectively, s is
the scale factor, R is the rotation matrix constructed from
Euler angles pitch, yaw, roll, and t = (tx, ty)T is the trans-
lation vector. For convenience we introduce Π as:

Π = s

(
1 0 0
0 1 0

)
. (12)

Then we map 3D landmarks onto the image plane by
ΠRpi + t. The landmark fitting loss can be defined as

Elan(Π,R, t,P′) =
∑
vi∈L
‖ΠRp′i + t− qi‖2 (13)

where L and Q = {qi|vi ∈ L} are the set of 3D landmarks
and 2D landmarks.

To generate a 3D caricature model that looks like a hu-
man face and meanwhile matches 2D landmarks for the ef-
fects of exaggeration, we utilize our deformation represen-
tation and the projection relationship. The problem is for-
mulated as an optimization problem:

min
P′,w,Π,R,t

Edef (P′,w) + λElan(Π,R, t,P′) (14)

where Edef and Elan are defined in Eq. 6 and Eq. 13, and λ
is the tradeoff factor controlling the relative importance of
the two terms.

To solve the above optimization problem, we initialize
w by simply letting all weights be zero and then alternately
solve for P′ and w using the following P′-step and w-
step. The process continues until convergence or reaching
the maximum number of iterations. The whole algorithm is
outlined in Algorithm 1.
P′-step: We use the similar approach described in
Sec. 3.3.1 to obtain P′. Let E be the overall energy to be
optimized. We set ∂E

∂p′
i

= 0 which gives the following equa-
tions:

2
∑
j∈Ni

cije
′
ij+λRTΠTΠRp′i =

∑
j∈Ni

cijTij(w)eij

+ λRTΠT (qi − t), (vi ∈ L)

2
∑

j∈Ni
cije

′
ij =

∑
j∈Ni

cijTij(w)eij , (vi /∈ L)
(15)

where Tij(w) = Ti(w) + Tj(w). The former equation
applies to landmark vertices (vi ∈ L) and the latter equation
applies to non-landmark vertices (vi /∈ L).
w-step: In this step, we fix P′ and optimize w. Since Elan

is independent of w, we use the Levenberg-Marquardt al-
gorithm described in Sec. 3.3.2 to solve the non-linear least
squares problem. After solving for w, we first update pro-
jection parameters then go back to optimize P′-step. We
exit the loop to obtain the generated P′.

Algorithm 1 Generation of 3D caricature models
Input:

Caricature image I;
A reference 3D face;
Deformation representation F = {fl};

Output: 3D caricature model mesh vertex positions P′

Generate 2D landmarks {qi}
Initialize w
for each iteration do

update projection parameters Π,R, t
Solve for P′ in the P′-step
if ∆Edef < ε or reach max iteration times then

exit;
else

Solve for w in the w-step
end if

end for

5. Experiments
5.1. Implementation Details

Our algorithm is implemented in C++, using the Eigen
library [15] for all linear algebra operations. All the ex-
amples are run on a desktop PC with 4GB of RAM and a
hexa-core CPU at 1.6 GHz. We set λ in Eq. 14 to be 0.01
and the initial value of w is set to be a zero vector. For all
the test models, we run our solver for 4 iterations in Alg. 1
and ε = 10−2, which are sufficient to get satisfactory re-
sults. The number of vertices is 11510. The average time for
manually adjusting the landmarks is about 2 ∼ 4 min. To
solve the optimization problem, each iteration takes about
7 ∼ 10s including P′-step and w-step where w-step takes
most of the time. Overall, it takes less than 40s to produce
the result with our unoptimized implementation.

To construct the deformation representations F =
{fl|l ∈ {1, ..., n}}, we choose models from FaceWare-
House dataset [9], which contains 150 identities and 47
expressions for each identity. The construction pipeline is
shown in Fig. 3. We first compute the average shape of each
expression and then select 23 expressions with large differ-
ences. Meanwhile we choose neutral expression of each
identity and select 75 models with large differences to the



merge

merge

...

FaceWareHouse

...

...
... ...

...

...

...

...

... ... ...

...

...

... ...
...

...

...

...

...

neutral expression

expression
average

select

select

Our dataset

...

Figure 3. The pipeline of our database construction. We generate
the average face for each expression and select 23 expressions of
average faces. Meanwhile we choose 75 identities with neutral
expression. Merging both gives our dataset.

Figure 4. Some of facial landmarks on the 2D caricature image de-
tected by Dlib may not be accurate (left). We design an interactive
system to allow the user to relocate the landmarks (right).

mean neutral face. Merging these two parts together, we ob-
tain our dataset, which includes 98 face models. The mean
neutral face is set as the reference model and the others are
set as deformed models.

In our method, 68 facial landmarks are applied to con-
strain the 3D face shape. To detect the facial landmarks on
caricature images, we use Dlib library [23]. However, as
Dlib library is trained with standard face images, some of
the detected landmarks on caricature images might be inac-
curate. We design an interactive system that allows the user
to adjust the landmarks, as shown in Fig. 4.

In Alg. 1, we update Π,R, t before P′-step. Similar
with [20], we update the silhouette landmark vertices for
non-frontal caricature according to the rotation matrix R.
The projection parameters are updated via a linear least
squares optimization by fixing L and Q in Eq. (13).

...

... ...... ...

level of exaggeration

Figure 5. We follow the method in [17, 34] to expand the
Basel Face Model [31] to generate some caricatured face models.
Golden faces in the first column are the original models from the
dataset and we generate three levels of caricatured models.

5.2. Baselines

We compare the proposed method with the reconstruc-
tion methods by 3DMM [31, 42] and FaceWareHouse
dataset [9, 7]. For all the methods, the 3D face model is
reconstructed by minimizing the residuals between the pro-
jected 3D landmarks and the corresponding 2D landmarks.
In the following, we introduce the implementation details
of these baseline methods.

3DMM with different regularization weights: In [42],
the 3DMM representation is adopted to represent any 3D
face model:

P = P̄ + Aidαid + Aexpαexp, (16)

where P is a 3D face, P̄ is the mean face, and Aid and
Aexp are the principal axes on identities and expressions.
Since Aid and Aexp are generated by principal component
analysis, the fitted model should satisfy the distribution of
face space, and thus a regularization term is added:

Ereg(α) =

199∑
j=1

(
αid,j

σid,j
)2 +

29∑
j=1

(
αexp,j

σexp,j
)2, (17)

where σid and σexp are the standard deviations of each prin-
cipal component for identity and expression, respectively.
By representing projected 3D landmarks L with α, the ob-
jective energy functional in their method is:

min
Π,R,t,α

Elan(Π,R, t,α) + λregEreg(α). (18)



    (a)3DMM         (b)3DMM(-)    (c)FaceWareHouse     (d)Caricatured 3DMM                         (e) Our Method 

Figure 6. Comparison among (a) 3DMM [42], (b) 3DMM(-), (c) FaceWareHouse [9, 8, 7], (d) Caricatured 3DMM [17, 34] and (e) our
method. Except 3DMM(-), we show generated models with front and right views.

When λreg gets larger, the reconstructed model would get
towards mean face. We test λreg with two values 3000 and
0, and denote the corresponding reconstruction results as
3DMM, 3DMM(-) respectively.

FaceWareHouse: In [8, 7, 9], the bilinear model repre-
sents 3D face as:

P = Cr ×2 uid ×3 uexp, (19)

where Cr is the core tensor, and uid and uexp are the coeffi-
cients of identity and expression. By minimizing the residu-
als between projected landmarks and 2D landmarks, we can
obtain optimal uid and uexp and thus the reconstructed face
model.

Caricatured 3DMM: In [17], the FaceWareHouse
dataset is expanded by adding more exaggerated face mod-
els to enhance the representation capability of the original
dataset, where the exaggerated face models are generated
via the method in [34]. However, the expanded FaceWare-
House dataset is not publicly available. Thus, we follow the
same method [34] to expand Basel Face Model [31] dataset,
and some examples are shown in Fig. 5. After construct-
ing expanded 3DMM, we apply principal component anal-
ysis to generate the parametric model, similar to the method
in [17] to produce the bilinear model.

5.3. Results

Fig. 6 shows some visual results of the generated 3D car-
icatures using different methods. It can be observed that
the face shape by 3DMM is too regular, and thus not exag-
gerated enough to match the input face images. Although

Figure 7. Comparison of 3D caricature results with ARAP defor-
mation (two views per column) of Example 3 in Fig. 6.

the 3D models by 3DMM(-) are exaggerated, the shapes
are distorted, not regular to be face shapes. Since the lin-
ear model is applied in FaceWareHouse, its exaggeration
capability is also limited. As for the method of carica-
tured 3DMM, although some caricatured face models gen-
erated by using [34] are included in the database, it con-
tains only limited styles of exaggeration. If the exaggerated
face is beyond the expanded database, it cannot be prop-
erly expressed. In contrast, the reconstruction results by our
method are quite close to the shape of the input images, and
the model quality is better.

To quantitatively compare different methods, we define
the average fitting error Eerror as the root-mean-square fit-
ting error:

Eerror =
√
Elan/68. (20)

We compared 3DMM, 3DMM(-), FaceWareHouse, Carica-
tured 3DMM and our method over all test data including 50



Figure 8. A gallery of 3D caricature models generated by our
method.

Table 1. The mean square fitting error of landmarks over test
data. The first row shows the methods, and the second row shows
their corresponding mean square fitting error of landmarks. FWH:
FaceWareHouse; C-3DMM: Caricatured 3DMM.

3DMM 3DMM(-) FWH C-3DMM Ours
7.24 4.86 19.00 6.46 0.03

annotated caricature images, and the statistics are shown in
Tab. 1. It can be observed that existing linear 3D face repre-
sentation methods cannot fit the landmarks of the caricature
images well even by setting λreg = 0, while our method
can achieve small fitting errors.

To further satisfy the landmark constraints while pre-
serving a reasonable face shape, we apply as-rid-as-possible
(ARAP) [37] deformation to the reconstruction results of
existing methods. With the help of ARAP deformation, the
fitting error Eerror of other methods are reduced to 0.01.
Although ARAP deformation could help fit the landmarks,
it still preserves the shape structure of the original recon-
struction results which cannot fit the input caricature images
well, as shown in Fig. 7.

As the landmark fitting error is not sufficient for eval-
uation, we conduct a user study including 15 participants
from different backgrounds. Each participant is given 10

randomly selected images and their corresponding recon-
struction results by each method (Our method and ARAP
deformation on 3DMM, Caricature 3DMM and FaceWare-
House) in random order. Each participant sorts the recon-
structed models from best to worst by judging their simi-
larities with the input caricature image. The statistical re-
sult indicates that our models get 80% voting for top-1 and
100% for top-2. We also investigate the subjective feeling
of each participant after knowing the corresponding method
of each model. According to the following investigation, all
participants agree that our method captures the shape of car-
icatures much better than other three methods. However, in
around 20% cases, the output meshes by our method are too
smooth compared with other methods, and seem to lack de-
tail information of caricatures. Our reconstructed meshes
may contain self-intersections if the expression is exagger-
ated too much. In comparison, the reconstructed meshes by
other methods have the same problem even for caricature
images with small exaggerated expressions.

More results by our method are shown in Fig. 8, where
the caricature images are selected from the database [18]
and Internet. All the tested caricature images, their
corresponding landmarks and the reconstructed meshes
are available at https://github.com/QianyiWu/
Caricature-Data.

6. Conclusion

We have presented an efficient algorithm for generating
a 3D caricature model from a 2D caricature image. As we
can see from the experiments, our algorithm can generate
appealing 3D caricatures with the similar exaggeration style
conveyed in the 2D caricature images. One of the key tech-
niques of our approach is a new deformation representation
which has the capacity of modeling caricature faces in a
non-linear and more nature way. As a result, compared to
previous work, our approach has a unique advantage that
we just use normal face models to create caricatures. This
enables our approach to be more suitable for various appli-
cations in real scenarios.
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