
Variational Autoencoders for Deforming 3D Mesh Models

Qingyang Tan1,2, Lin Gao1∗, Yu-Kun Lai 3, Shihong Xia1∗

1Beijing Key Laboratory of Mobile Computing and Pervasive Device,
Institute of Computing Technology, Chinese Academy of Sciences

2School of Computer and Control Engineering, University of Chinese Academy of Sciences
3School of Computer Science & Informatics, Cardiff University

tanqingyang14@mails.ucas.ac.cn, {gaolin, xsh}@ict.ac.cn, LaiY4@cardiff.ac.uk

Abstract

3D geometric contents are becoming increasingly pop-
ular. In this paper, we study the problem of analyzing de-
forming 3D meshes using deep neural networks. Deforming
3D meshes are flexible to represent 3D animation sequences
as well as collections of objects of the same category, al-
lowing diverse shapes with large-scale non-linear deforma-
tions. We propose a novel framework which we call mesh
variational autoencoders (mesh VAE), to explore the prob-
abilistic latent space of 3D surfaces. The framework is easy
to train, and requires very few training examples. We also
propose an extended model which allows flexibly adjusting
the significance of different latent variables by altering the
prior distribution. Extensive experiments demonstrate that
our general framework is able to learn a reasonable rep-
resentation for a collection of deformable shapes, and pro-
duce competitive results for a variety of applications, in-
cluding shape generation, shape interpolation, shape space
embedding and shape exploration, outperforming state-of-
the-art methods.

1. Introduction
With the development of performance capture tech-

niques, 3D mesh sequences of deforming objects (such
as human bodies) become increasingly popular, which are
widely used in computer animation. Deforming meshes can
also be used to represent a collection of objects with differ-
ent shapes and poses, where large-scale non-linear defor-
mations are common. There are still challenging problems
to analyze deforming 3D meshes and synthesize plausible
new 3D models. From the analysis perspective, complex
deformations mean it is difficult to embed such 3D meshes
into a meaningful space using existing methods. Acquir-
ing high quality 3D models is still time consuming, since

∗Corresponding Author

multiple scans are usually required to address unavoidable
occlusion. Thus effectively generating plausible new mod-
els is also highly demanded.

In this paper, we propose a novel framework called mesh
variational autoencoders (mesh VAE), which leverages the
power of neural networks to explore the latent space behind
deforming 3D shapes, and is able to generate new models
not existing in the original dataset. Our mesh VAE model is
trained using a collection of 3D shapes with the same con-
nectivity. Many existing deformable object collections sat-
isfy this. They are not restricted to a single deformable ob-
ject; examples include the MPI FAUST dataset [2] which in-
cludes human bodies of different shapes in different poses.
In general, meshes with the same connectivity can be ob-
tained using consistent remeshing. Although convolutional
neural networks (CNNs) have been widely used for im-
age analysis and synthesis, applying them to 3D meshes is
still quite limited. Previous work focuses on generalizing
CNNs from 2D to 3D while preserving image-like regu-
lar grid connectivity, including 3D convolution over vox-
els (e.g. [46]), and 2D convolution over geometry images
(e.g. [37]). However, the voxel representation is inefficient
and given the practical limit can only represent rough 3D
models without details. The parameterization process to
generate geometry images involves unavoidable distortions
and may destroy useful structure information.

Our work aims to produce a generative model capa-
ble of analyzing model collections and synthesizing new
shapes. To achieve this, instead of using representations
with image-like connectivity, we propose to use a state-of-
the-art surface representation called RIMD (Rotation In-
variant Mesh Difference) [9] to effectively represent de-
formations, along with a variational autoencoder [19]. To
cope with meshes of arbitrary connectivity, we propose to
use a fully-connected network, along with a simple recon-
struction loss based on MSE (mean square error). As we
will show later, the large number of coefficients in this net-
work can be efficiently trained, even with a small number of

1

training examples. We also propose a new extended model
where an additional adjustable parameter is introduced to
control the variations of different latent variables in the prior
distribution. This provides the flexibility of enforcing cer-
tain dimensions in the latent space to represent the most im-
portant differences in the original dataset. As we will show
later, by using an effective feature representation and a suit-
able network architecture, our general framework is able to
produce competitive results for various applications, includ-
ing shape generation, shape interpolation, shape embedding
and shape exploration, outperforming state-of-the-art meth-
ods, where traditionally dedicated methods are needed for
different applications.

2. Related Work
3D Shape Representation and Interpolation. To effec-

tively represent a collection of shapes with the same con-
nectivity, a naive solution is to take the vertex positions as
the representation. Such representations however are not
translation or rotation invariant. Among various represen-
tations, the RIMD representation [9] is translation and ro-
tation invariant, and suitable for data-driven shape analysis.
Therefore, we use it to represent shapes in our framework.

A natural application for shape representations is to in-
terpolate or blend shapes. Existing methods can be largely
categorized into geometry-based (e.g. [14]) and data-driven
(e.g. [8]) methods. The latter exploits latent knowledge of
example shapes, and so can produce more convincing in-
terpolation results when such examples are available. Our
method is a generic framework and as we will show later,
it produces comparable or even better results than state-
of-the-art data-driven methods. Rustamov et al. [33] and
Corman et al. [7] propose map-based methods to describe
distortions between models, which can be used with PCA
(Principal Component Analysis) to produce linear embed-
ding, while our embedding application is non-linear.

Deep Learning for 3D Shape Analysis. In recent years,
effort has been made to generalize image-based CNN mod-
els to analyze 3D shapes. Su et al. [39] and Qi et al. [31]
use multi-view CNN models for 3D object classification.
Li et al. [22] produce joint embeddings of shapes and im-
ages, which are useful for shape-based image retrieval. Shi
et al. [35] propose a method that converts 3D shapes into a
panoramic view, and propose a variant of CNN to learn the
representation from such views. Maturana and Scherer [28]
combine the volumetric occupancy grid representation with
a 3D CNN to recognize 3D objects in real time. Wu
et al. [45] interpret 3D object structure and 2D keypoint
heatmaps from 2D images. Some other works generalize
CNNs from the Euclidean domain to non-Euclidean domain
[3, 27, 5, 4, 26], which is useful for 3D shape analysis such
as establishing correspondences. Maron et al. [25] define a
natural convolution operator on surfaces for CNNs by pa-

rameterizing the surface to a planar flat-torus. Our work
has a rather different focus for analyzing and synthesizing
3D shapes with large deformations, although it may benefit
from [25] to generate consistent meshes. Verma et al. [42]
propose convolutional filters which can be applied to nodes
in a graph with different degrees so can be used in intrinsic
geometry learning. However, their method is suitable for
shape correspondence at the vertex level (surface domain)
rather than the shape level (shape collection domain) and
thus cannot be directly generalized to our problems such
as shape generation and dimensionality reduction. Tan et
al. [40] propose a specific method to analyze sparse de-
formation patterns using CNNs, while our work provides
a more generic framework for various applications.

3D Model Synthesis. Traditional methods for 3D model
synthesis use probabilistic inference. Xue et al. [47] re-
cover 3D geometry from 2D line drawings using examples
and a maximum-a-posteriori (MAP) probability optimiza-
tion. Huang et al. [13] use a probabilistic model to gener-
ate component-based 3D shapes. Such methods are gener-
ally suitable for specific types of 3D shapes. Recent works
consider exploiting the capability of deep learning for 3D
model synthesis. For this purpose, the voxel representation
is resemblance to 2D images and widely used. Wu et al. [46]
propose a generative model based on a deep belief network
trained on a large, unannotated database of voxelized 3D
shapes. Girdhar et al. [10] jointly train an encoder for 2D
images, and a decoder for voxelized 3D shapes, allowing
3D reconstruction from a 2D image. Yan et al. [48] gen-
erate 3D objects with deep networks using 2D images dur-
ing training with a 3D to 2D projection layer. Rezende et
al. [32] learn strong deep generative models for 3D struc-
tures, which is able to recover 3D structures from 2D im-
ages via probabilistic inference. Choy et al. [6] develop a
recurrent neural network which takes in images of an ob-
ject instance from arbitrary viewpoints and outputs a recon-
struction of the object in the form of 3D occupancy grids.
Sharma et al. [34] propose a convolutional volumetric au-
toencoder without object labels, and learn the representation
from noisy data by estimating the voxel occupancy grids,
which is useful for shape completion and denoising. Such
methods however suffer from high complexity of the voxel
representation and can only practically synthesize coarse
3D shapes lack of details.

Sinha et al. [36] propose to learn CNN models using ge-
ometry images [12], which is then extended to synthesize
3D models [37]. Geometry images allow surface details
to be well preserved. However, the parameterization used
for generating geometry images involves unavoidable dis-
tortions and is not unique. This is more challenging for
shapes with complex topology (e.g. high-genus models).
Tulsiani et al. [41] develop a learning framework to abstract
complex shapes and assemble objects using 3D volumetric

primitives. Li et al. [21] propose a neural network archi-
tecture for encoding and synthesizing 3D shapes based on
their structures. Nash et al. [29] use a variational encoder
to synthesize 3D objects segmented into parts. Both [21]
and [29] are designed to synthesize man-made objects and
require part-based segmentation as input, and cannot cope
with unsegmented or deformed shapes addressed in this pa-
per. Such methods can produce shapes with complex struc-
tures, but the level of details is restricted to the components
and primitives used. We propose a general framework that
uses a rotation invariant mesh representation as features,
along with a variational encoder to analyze shape collec-
tions and synthesize new models. Our method can generate
novel plausible shapes with rich details, as well as a variety
of other applications.

3. Feature Representation
In this section, we briefly summarize the feature used

for training neural networks, as well as reconstructing and
generating new models. We use the rotation-invariant mesh
difference (RIMD) feature [9]. We assume that we have
M (M ≥ 2) models, with n vertices that are in one-to-one
correspondence. Generally, the first model is considered as
the reference model and other models are deformed models.
As we will show later, the choice of base mesh does not
affect the results. The deformation gradient Ti at vertex vi
(the i-th vertex) can be obtained by minimizing the energy:

E(Ti) =
∑
j∈Ni

cij‖e′ij − Tieij‖2, (1)

where Ni is the one-ring neighbors of vertex vi, e′ij =
p′i − p′j , and eij = pi − pj . pi and p′i are the positions of
vi on the reference and deformed models, respectively. cij
is the cotangent weight cij = cotαij + cotβij , where αij

and βij are angles opposite to the edge connecting vi and
vj . As shown in [20, 9], the cotangent weight is helpful to
avoid discretization bias from underlying smooth surfaces
to meshes. The deformation gradient can be decomposed
into a rotation part and a scaling/shear part as Ti = RiSi,
where the scaling/shear part Si is rotation invariant [17].
The rotation difference dRij from vi to an adjacent vertex
vj cancels out global rotation and is thus also rotation in-
variant: dRij = RT

i Rj . The RIMD representation is ob-
tained by collecting the logarithm of the rotation difference
matrix dRij of each edge (vi, vj) and scaling/shear matrix
Si of each vertex vi:

f = {log dRij ;Si} (∀i, j ∈ Ni). (2)

The use of matrix logarithm helps make the feature linearly
combinable. Given a RIMD feature, which can be the out-
put of our mesh VAE, the mesh model can be reconstructed
efficiently by optimizing the energy in Eqn. 1. See [9] for

details. As shown in Table 2 of [9], the mean reconstruction
error between the reconstructed and ground truth shapes is
extremely small (10−4) with no visual difference, which
shows the high representation power of RIMD feature.

4. Mesh VAE
In this section, we introduce our mesh VAE. We first dis-

cuss how to preprocess the feature representation to make
it more suitable for neural networks, and then introduce the
basic mesh VAE architecture, as well as extended models
taking conditions into account for improved control of the
synthesized shapes and with improved embedding capabil-
ity. Finally we summarize a variety of applications.

4.1. Feature Preprocessing

In our architecture, we propose to use hyperbolic tan-
gent (tanh) as the activation function of the probabilistic
decoder’s output layer. The range of tanh is (−1, 1), and
it has the gradient vanishing problem during training when
the output is near −1 and 1. Although alternative activa-
tion function ReLU does not have the gradient vanishing
problem, its range of (0,+∞) is too large. As a generative
model, we expect the network output to be in a reasonable
range. With the limited range of the output, the broad range
of ReLU would make the model difficult to train. The ac-
tivation function tanh is also applied in recent generation
networks [16, 21]. To avoid the gradient vanishing problem
of tanh, we use uniform normalization to preprocess the
feature to the range of [−a, a], where a is close to but not
equal to 1. The preprocessing is a mapping as follows:

f̃ji = 2a× fji −minj(fji)
maxj(fji)−minj(fji)

− a, (3)

where fji is the i-th component of model j’s RIMD feature,

f̃ji is the preprocessed feature. If maxj(fji) = minj(fji) for
examples in the dataset, we replace them with fji ± ε. Using
a and ε also allows the network to generate reasonable mod-
els with features outside the range of the original dataset. In
our experiments, we choose ε = 10−6 and a = 0.9.

4.2. Mesh VAE Architecture

Following [19], our mesh VAE aims to find a probabilis-
tic encoder and a probabilistic decoder. The encoder aims to
map the posterior distribution from datapoint x to the latent
vector z, and the decoder produces a plausible correspond-
ing datapoint x from a latent vector z. In our mesh VAE, the
datapoint x is the preprocessed mesh feature f̃ . Denote by
K the dimension of f̃ . For mesh models with 5000 faces,
a typical input RIMD feature dimension is K = 60012.
By default, we set the dimension of the latent space to 128,
which can be adjusted proportionally with varyingK. In or-
der to train a complicated model to fit the large dimension

*

+

K (=60012)

300

128

128

128

300

60012

z

Figure 1. Pipeline of mesh VAE. The model in the figure has 2502
vertices and 7500 edges. Each dR of a directed edge has 3 ele-
ments, and S of each vertex has 6 elements, so the total feature
dimension K = 2502× 6 + 7500× 3× 2 = 60012.

of mesh features, we replace the reconstruction loss from
a probabilistic formulation to a simpler mean square error
(MSE). The total loss function for the model is defined as

LmeshV AE = α
1

2MK

M∑
j=1

K∑
i=1

(̂f
j

i−f̃ji)
2+DKL(q(z |̃f)‖p(z)),

(4)
where f̃

j

i is the i-th dimension of model j’s preprocessed

RIMD feature, f̂
j

i is the i-th dimension of model j’s output
of the mesh VAE framework, M is the number of models in
the dataset, α is parameters to tune the priority over the re-
construction loss and latent loss, z is the latent vector, p(z)
is the prior probability, q(z |̃f) is the posterior probability,
and DKL is the KL divergence. See [19] for more details.
The pipeline for our mesh VAE is summarized in Fig. 1.

Network structure. Since the RIMD features from dif-
ferent datasets have different neighboring structures, the
spatial relationship inside the feature is not regular, so we
use a fully-connected neural network for both the encoder
and the decoder, expecting the network to learn suitable re-
lationships, rather than encoding such neighborhood struc-
ture in the network architecture explicitly. All the internal
layers use batch normalization [15] and Leaky ReLU [24] as
activation layers. The output of the encoder involves a mean
vector and a deviation vector. The mean vector does not
have an activation function, and the deviation vector uses
sigmoid as the activation function, which is then multiplied
by an upper bound value σmax of the expected deviation.
The output of the decoder uses tanh as the activation func-
tion, as we have discussed.

Training details. For most tasks in this paper, we set
α = 106, which is optimized through unseen data to avoid
overfitting. We set the prior probability over latent variables
to be p(z) = N (z; 0, I) (Gaussian distribution with 0 mean
and unit variation). We set σmax = 2, such that the output
deviation can cover 1, for consistency with prior distribu-
tion. We set the learning rate to be 0.001 and use ADAM
algorithm [18] to train the model.

4.3. Conditional Mesh VAE

When synthesizing new shapes, it is often desirable to
control the types of shapes to be generated, especially when
the training dataset contains diverse shapes, e.g. the dataset
from [30] which contains different shapes and motion se-
quences. To achieve this, we extend our model to condition
on labels in the training dataset following [38]. Specifically,
conditions are incorporated in both the encoder and the de-
coder as additional input, with the loss function changed to

LConditional meshV AE =

α
1

2MK

M∑
j=1

K∑
i=1

(f̂c
j

i−f̃ji)
2 +DKL(q(z |̃f, c)‖p(z|c)),

(5)

where f̂c is the output of the conditional mesh VAE, p(z|c)
and q(z |̃f, c) are conditional prior and posterior probabili-
ties respectively. More experimental details are provided in
Sec. 5.

4.4. Extended Model with Improved Low-
Dimensional Embedding

The latent space z provides an embedding that facili-
tates various applications. However, to ensure reconstruc-
tion quality, the dimension of z is typically high (over
100), thus not suitable for low-dimensional embedding. To
address this, we propose an extended model that modi-
fies the prior distribution of the latent variables to p(z) =
N (z; 0, diag(σ2

object)), where σobject is a tunable vector
representing the deviation of the latent space, and diag(·)
is the diagonal matrix of a given vector. Intuitively, if we
set the i-th component σobjecti to be a small value, the ap-
proximate posterior q(zi |̃f) will be encouraged to also have
a small deviation, due to the latent cost. As a result, in or-
der to reduce the reconstruction loss, zi needs to be aligned
to capture dominant changes. This behaviour is similar to
PCA, although our model is non-linear and is thus able to
better capture the characteristics of shapes in the collection.

4.5. Applications

We summarize various applications of our mesh VAE.
Generation and Interpolation. Leveraging the capabil-

ity of VAE, we can produce reasonable vectors in the latent
space, and use them as input to the decoder to generate new
models outside of the training dataset, which still satisfy
the characteristics of the original dataset and are plausible.
Meanwhile, similar to other autoencoder frameworks, we
can interpolate the encoder results between two different
shapes from the original dataset and then use the decoder
to reconstruct the interpolated mesh sequence. In the same
way as shapes in the dataset, our method can interpolate
newly generated shapes by interpolating their latent vectors
to produce a deformation sequence.

Latent Dimension

Dataset 16 128 256

Jumping [43] (×10−4) 4.9129 4.4325 4.2442
Face [49] (×10−2) 8.3833 7.8025 7.9192

Table 1. Per-vertex reconstruction error on held-out shapes with
different latent dimensions.

Feature

Dataset [#. Shapes] 3D Aligned RIMD
Coordinates Coordinates

SCAPE [71] [1](×10−3) 15.7249 7.3582 3.7418
Jumping [150] [43] (×10−4) 49.4876 11.2226 4.4325
Bouncing [75] [43] (×10−4) 28.1823 6.6970 3.7358
Face [385] [49] (×10−2) 47.1863 27.8445 7.8025
Flag [90] (×10−3) 29.5490 2.4462 1.7916
Dyna [2168] [30] (×10−3) 2.9488 1.7634 1.2128

Table 2. Per-vertex reconstruction error on held-out shapes with
different feature representations.

Base Mesh No. 1 No. 6 No. 72
Points 6890 6002 8002 6890 6890

Error(×10−4) 2.77 2.49 3.01 2.85 2.80

Table 3. Per-vertex reconstruction error on held-out shapes of
chicken wings dataset from [30] with different mesh densities or
base mesh choices.

Embedding for Visualization and Exploration. Based
on our extended model for low-dimensional embedding, we
can map the distribution of shapes to a low-dimensional
(typically two) latent space for visualization. We further al-
low users to easily browse the latent space to find the model
they want, probably not in the original training dataset, us-
ing a synthesis based exploration approach. More details
are provided in Sec. 5.

5. Experiments
5.1. Framework Evaluation

To more thoroughly justify the design choices of our
framework and demonstrate the effectiveness of using
RIMD features, we compare results with different param-
eters, settings and input within our framework.

Latent Dimensions. We compare the reconstruction
loss (per-vertex position errors) on held-out models with
different latent dimensions (see Table 1). This suggests that
using 128 dimensions is effective in improving reconstruc-
tion quality. Lower dimensions cannot capture enough in-
formation, while higher dimensions cannot improve results
much and can cause overfitting.

MSE Loss. We compare MSE loss we use with alterna-
tive probabilistic reconstruction loss following [11] which

Our

Results

NN

Our

Results

NN

Our

Results

NN

Our

Results

NN

SCAPE

Hand FaceSwing

Figure 2. Randomly generated new shapes using our framework,
with their nearest neighbors in the original dataset shown below.

Mesh VAE

Conditional

Mesh VAE Conditioned on Body Shape - Female model with BMI 29.8

Conditioned on Motion Sequence - ‘running on spot’

Figure 3. Randomly generated new shapes using mesh VAE and
conditional mesh VAE.

was originally used for images. The RIMD features are
mapped to [0.1, 0.9] similar to probability, with sigmoid as
output layer, and cross entropy as reconstruction loss. How-
ever, this method does not converge even with three times
of epochs we use for MSE loss.

RIMD Feature. To verify the effectiveness of the RIMD
feature, we work out per-vertex position errors of held-out
shapes in different datasets. We compare our method us-
ing RIMD feature with baseline methods using 3D vertex
coordinates and aligned coordinates (by finding global ro-
tations that minimize vertex differences) as input, with net-
work layers and parameters adjusted accordingly to opti-
mize their performance. In all the datasets we tested, our
method produces visually high quality meshes, substan-
tially reducing reconstruction loss by 59%−94% compared
with 3D coordinates and 27%−72% compared with aligned
coordinates. The details are shown in Table 2. Our proposed
framework is easy to train, as it can be effectively trained
even with small datasets as these examples in the paper typ-
ically contain 70-150 models, while avoiding overfitting as
demonstrated by the generalizability. The dataset size is

Left Side Back

Linear

Interpolation

Data-Driven

Neural

Network

Neural

Network

Figure 4. Comparison of mesh interpolation results. First row is the result of direct linear interpolation of the RIMD feature, second row is
the result of [8], third row is our result. All the results are shown in two views, with artifacts marked using red circles.

Figure 5. Inter-class interpolation with different body shapes and
poses.

a)

b)

c)

Figure 6. More interpolation examples. (a) Results between newly
generated shapes. (b-c) Models other than human bodies.

largely restricted by data availability. Our method has good
generalizability also for larger Dyna dataset [42] with dif-
ferent motions of different male body shapes (see last row of
Table 2). We test our method on simplified, original and re-
fined chicken wings dataset from [30] with 6002, 6890 and
8002 points, and also compare the results when different
base meshes are chosen, the per-vertex reconstruction errors
of unseen data are shown in Table 3. The differences of per-
vertex errors between different density or base choices are
below 10−4, with no visual difference. This demonstrates
that our method is robust with such changes.

5.2. Generation of Novel Models

Mesh VAE. We use standard setting z ∼ N (0, I) as
the input to the probabilistic decoder, and test the capability
of the mesh VAE framework to generate new models. We
train the network on the SCAPE dataset [1], ‘Swing’ dataset

from [43], face dataset [49] and hand dataset. The results
are shown in Fig. 2. We can see that, since we learn the la-
tent space of 3D models from our proposed framework, we
can easily generate new models, which are generally plau-
sible. To validate that the network does not only memo-
rize the dataset, we also show the models with their nearest
neighbors in the original dataset. The nearest neighbors are
based on the Euclidean distance in the RIMD feature space,
following [9] which considers this as a suitable measure to
evaluate results related to RIMD features. The model in the
original dataset with the shortest distance to the newly gen-
erated model is chosen as the nearest neighbor. It is clear
that mesh VAE can generate plausible new models by com-
bining local deformations of different model parts.

Conditional Mesh VAE. With the help of labels as con-
ditions, users can generate more specific models. To show
this, we train the conditional mesh VAE on the Dyna dataset
from [30], which contains male/female models with differ-
ent BMI performing different motions. All the models share
the same connectivity. We used BMI+gender and motion
as conditions to train a network for all models at the same
time. We then randomly generate models either conditioned
on action with the label ‘running on spot’ which contains
shapes of a running action, as well as on body shape ‘50022’
— a female model with BMI 29.8, and compare the gener-
ation results from the normal mesh VAE. As the results in
Fig. 3 show, more specific models can be synthesized with
the given conditions.

5.3. Mesh Interpolation

We test the capability of our framework to interpolate
two different models in the original dataset. First, we gen-
erate the mean output of the probabilistic encoder for 2
models in the original dataset. Then, we linearly inter-
polate between the two outputs and generate a list of in-
puts to the probabilistic decoder. Finally, we use the out-
puts of the probabilistic decoder to reconstruct a 3D de-
formation sequence. We compare the results on ‘jump-
ing’ dataset from [43] with direct linear interpolation of the
RIMD feature, and the state-of-the-art data-driven deforma-

First Dimension

Our Mesh VAE

S
ec

o
n

d
 D

im
en

si
o

n

S
ec

o
n

d
 D

im
en

si
o

n

First Dimension

PCA

S
ec

o
n

d
 D

im
e
n

si
o

n

First Dimension

NPE

S
ec

o
n

d
 D

im
e
n

si
o

n

First Dimension

t-SNE

Zoom In

Zoom In

Figure 7. 2D embedding of Dyna dataset. Different colors represent different body shapes. PCA embedding is very sparse so we include
two zoom-in subfigures as shown in the circles.

tion method [8], as shown in Fig. 4. We can see that direct
linear interpolation produces models with self-intersections.
Traditional geometry-based methods such as as-rigid-as-
possible interpolation [23] have similar problems (results
omitted due to space restriction). The interpolation result
in the latent space can avoid these problems. Meanwhile,
the data-driven method tends to follow the movement se-
quences from the original dataset which has similar start
and end states, and the results have some redundant mo-
tions such as the swing of right arm. Our interpolation re-
sult gives a reasonable motion sequence from start to end.
We also test inter-class interpolation on ‘jumping jacks’ and
‘punching’ datasets from [30], interpolating between mod-
els with different body shapes and poses. The results are
shown in Fig. 5. We show more interpolation results in
Fig. 6, including sequences between newly generated mod-
els and models beyond human bodies.

5.4. Embedding

As mentioned in Sec. 4, we adjust the deviation of la-
tent probability to let some dimensions of z capture more
important deformations. We utilize this capability to em-
bed shapes in a low-dimensional space. We use different
motion sequences of different body shapes from [30], and
compare the results of our method with standard dimension-
ality reduction methods PCA, NPE (Neighborhood Preserv-
ing Embedding) and t-SNE (t-Distributed Stochastic Neigh-
bor Embedding). When training meshVAE, we set the devi-

ation of the first two dimensions of the latent space z to be
0.1, and the remaining 1. The K-nearest neighbor setting for
NPE is set to k = 25 and the perplexity for t-SNE is set to
30, which are optimized to give more plausible results. The
comparative results are shown in Fig. 7. Since the dataset
contains a large number of diverse models, our embedding
is able to capture more than one major deformation patterns
in one dimension. When using the first two dimensions for
visualization, our method effectively divides all the models
according to their shapes, while allowing models of similar
poses to stay in close places. PCA is a linear model, and can
only represent one deformation pattern in each direction. In
this case, it can discriminate body shapes but the distribu-
tion is rather sparse. It also cannot capture other modes of
variation such as poses in 2D embedding. The results of t-
SNE have relatively large distances between primary clus-
ters, similar to PCA. This phenomenon is also mentioned
in [44]. NPE cannot even discriminate body shapes, which
shows the difficulty of the task. To quantitatively analyze
the performance of embeddings, we perform experiments
on the retrieval task using styles and poses as labels. The
AUC (area under the curve) values of the precision-recall
curves are: our method (0.5168) > t-SNE (0.4961) > PCA
(0.2272) > NPE (0.1391).

5.5. Synthesis based Exploration of the Shape Space

By adjusting the parameters σobject, our meshVAE
model is able to capture different importance levels of fea-

Figure 8. Exploring the latent shape space. The main figure (bottom left) shows the exploration results of the first two dimensions, and the
subfigures are results of browsing the third and fourth dimensions, with the first two dimensions fixed based on the selected shape.

tures, and thus allows the user to easily explore the latent
space of the dataset, and find new models they want. We
test this exploration application over the SCAPE dataset [1]
and demonstrate the results in 2 levels (each in a 2D space).
We set the first two dimensions of σobject to 0.1, the next
two dimensions 0.5, and remaining 1. In the main figure of
Fig. 8, we show the result of browsing the latent space in the
first two dimensions. We set the range for both dimensions
as [−2, 2], while ignoring the remaining dimensions. We
can see that these feature dimensions correspond to domi-
nant shape deformation. The first dimension appears to con-
trol the total height of the model; when the value increases,
the model changes from standing to squatting. The second
dimension appears to control the supporting leg; when the
value increases, the model starts to change its supporting
leg from left to right. After picking up interested locations
in the first level browsing, the user can fix the values of the
first two dimensions, and use the next two dimensions to
explore the shape space in more detail. In the subfigures of
Fig. 8, we show the results of browsing the third and fourth
dimensions of the latent space. The values of the first two
dimensions are selected based on the choice in the first step,
and then the range for the third and fourth dimensions is set
to [−2, 2]. The third dimension appears to control the height
of arms; when the value increases, the model gradually lifts
the arms. The fourth dimension appears to control the di-
rection of the body; when the value increases, the model
gradually turns to the left.

6. Conclusions

In this paper, we introduce mesh variational autoen-
coders (mesh VAE), which use a variational autoencoder
model with a mesh-based rotation invariant feature repre-
sentation. We further study an extended model where the
variation of latent variables can be controlled. We demon-
strate that our generic model has various interesting ap-
plications, including analysis of shape collections as well
as generating novel shapes. Unlike existing methods, our
method can generate high quality deformable models with
rich details. Experiments show that our method outperforms
state-of-the-art methods in various applications. A restric-
tion of our mesh VAE model is that it can only process ho-
mogeneous meshes. As future work, it is desirable to de-
velop a framework capable of handling shapes with differ-
ent topologies as input.

Acknowledgments

This work was supported by grants from the National
Natural Science Foundation of China (No. 61502453, No.
61772499 and No.61611130215), Royal Society-Newton
Mobility Grant (No. IE150731), the Science and Technol-
ogy Service Network Initiative of Chinese Academy of Sci-
ences (No. KFJSTS-ZDTP-017).

References
[1] D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers,

and J. Davis. SCAPE: shape completion and animation of
people. ACM Trans. Graph., 24(3):408–416, 2005. 5, 6, 8

[2] F. Bogo, J. Romero, M. Loper, and M. J. Black. FAUST:
Dataset and evaluation for 3D mesh registration. In IEEE
CVPR, 2014. 1

[3] D. Boscaini, J. Masci, S. Melzi, M. M. Bronstein, U. Castel-
lani, and P. Vandergheynst. Learning class-specific descrip-
tors for deformable shapes using localized spectral convolu-
tional networks. Computer Graphics Forum, 34(5):13–23,
2015. 2

[4] D. Boscaini, J. Masci, E. Rodolà, and M. Bronstein. Learn-
ing shape correspondence with anisotropic convolutional
neural networks. In Advances in Neural Information Pro-
cessing Systems, pages 3189–3197, 2016. 2

[5] D. Boscaini, J. Masci, E. Rodolà, M. M. Bronstein, and
D. Cremers. Anisotropic diffusion descriptors. Computer
Graphics Forum, 35(2):431–441, 2016. 2

[6] C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese. 3D-
R2N2: A unified approach for single and multi-view 3D ob-
ject reconstruction. In ECCV, pages 628–644, 2016. 2

[7] E. Corman, J. Solomon, M. Ben-Chen, L. Guibas, and
M. Ovsjanikov. Functional characterization of intrinsic and
extrinsic geometry. ACM Trans. Graph., 36(2):14:1–14:17,
2017. 2

[8] L. Gao, S.-Y. Chen, Y.-K. Lai, and S. Xia. Data-driven shape
interpolation and morphing editing. Computer Graphics Fo-
rum, 2016. 2, 6, 7

[9] L. Gao, Y.-K. Lai, D. Liang, S.-Y. Chen, and S. Xia. Effi-
cient and flexible deformation representation for data-driven
surface modeling. ACM Trans. Graph., 35(5):158:1–158:17,
2016. 1, 2, 3, 6

[10] R. Girdhar, D. Fouhey, M. Rodriguez, and A. Gupta. Learn-
ing a predictable and generative vector representation for ob-
jects. In ECCV, 2016. 2

[11] K. Gregor, I. Danihelka, A. Graves, D. Rezende, and
D. Wierstra. DRAW: A recurrent neural network for image
generation. In International Conference on Machine Learn-
ing, pages 1462–1471, 2015. 5

[12] X. Gu, S. Gortler, and H. Hoppe. Geometry images. In ACM
SIGGRAPH, pages 355–361, 2002. 2

[13] H. Huang, E. Kalogerakis, and B. Marlin. Analysis and syn-
thesis of 3D shape families via deep-learned generative mod-
els of surfaces. Computer Graphics Forum, 34(5):25–38,
2015. 2

[14] P. Huber, R. Perl, and M. Rumpf. Smooth interpolation of
key frames in a riemannian shell space. Computer Aided
Geometric Design, 52:313–328, 2017. 2

[15] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In
International Conference on Machine Learning, pages 448–
456, 2015. 4

[16] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image
translation with conditional adversarial networks. In IEEE
CVPR, 2017. 3

[17] P. Kelly. Mechanics Lecture Notes Part III. Wiley, 2015. 3
[18] D. Kingma and J. Ba. ADAM: A method for stochastic opti-

mization. In ICLR, 2015. 4
[19] D. P. Kingma and M. Welling. Auto-encoding variational

Bayes. arXiv preprint arXiv:1312.6114, 2013. 1, 3, 4
[20] Z. Levi and C. Gotsman. Smooth rotation enhanced as-

rigid-as-possible mesh animation. IEEE Trans. Vis. Comput.
Graph., 21(2):264–277, 2015. 3

[21] J. Li, K. Xu, S. Chaudhuri, E. Yumer, H. Zhang, and
L. Guibas. GRASS: Generative recursive autoencoders for
shape structures. ACM Trans. Graph., 36(4), 2017. 3

[22] Y. Li, H. Su, C. R. Qi, N. Fish, D. Cohen-Or, and L. J.
Guibas. Joint embeddings of shapes and images via CNN
image purification. ACM Trans. Graph., 34(6):234, 2015. 2

[23] Y.-S. Liu, H.-B. Yan, and R. R. Martin. As-rigid-as-possible
surface morphing. Journal of Computer Science and Tech-
nology, 26(3):548–557, 2011. 7

[24] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlin-
earities improve neural network acoustic models. In Interna-
tional Conference on Machine Learning, volume 30, 2013.
4

[25] H. Maron, M. Galun, N. Aigerman, M. Trope, N. Dym,
E. Yumer, V. G. Kim, and Y. Lipman. Convolutional neural
networks on surfaces via seamless toric covers. ACM Trans.
Graph., 36(4):71:1–71:10, 2017. 2

[26] J. Masci, D. Boscaini, M. Bronstein, and P. Vandergheynst.
Geodesic convolutional neural networks on riemannian man-
ifolds. In IEEE ICCV Workshops, pages 37–45, 2015. 2

[27] J. Masci, D. Boscaini, M. Bronstein, and P. Vandergheynst.
ShapeNet: Convolutional neural networks on non-Euclidean
manifolds. arXiv preprint arXiv:1501.06297, 2015. 2

[28] D. Maturana and S. Scherer. Voxnet: a 3D convolutional neu-
ral network for real-time object recognition. In IEEE Con-
ference on Intelligent Robots and Systems, pages 922–928,
2015. 2

[29] C. Nash and C. K. Williams. The shape variational autoen-
coder: A deep generative model of part-segmented 3D ob-
jects. Computer Graphics Forum, 36(5):1–12, 2017. 3

[30] G. Pons-Moll, J. Romero, N. Mahmood, and M. J. Black.
Dyna: A model of dynamic human shape in motion. ACM
Trans. Graph., 34(4):120:1–120:14, 2015. 4, 5, 6, 7

[31] C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. J.
Guibas. Volumetric and multi-view cnns for object classifi-
cation on 3D data. In IEEE CVPR, pages 5648–5656, 2016.
2

[32] D. J. Rezende, S. A. Eslami, S. Mohamed, P. Battaglia,
M. Jaderberg, and N. Heess. Unsupervised learning of 3D
structure from images. In Advances in Neural Information
Processing Systems, pages 4997–5005, 2016. 2

[33] R. M. Rustamov, M. Ovsjanikov, O. Azencot, M. Ben-Chen,
F. Chazal, and L. Guibas. Map-based exploration of intrin-
sic shape differences and variability. ACM Trans. Graph.,
32(4):72:1–72:12, 2013. 2

[34] A. Sharma, O. Grau, and M. Fritz. VConv-DAE: Deep volu-
metric shape learning without object labels. In ECCV Work-
shops, pages 236–250, 2016. 2

[35] B. Shi, S. Bai, Z. Zhou, and X. Bai. Deeppano: Deep
panoramic representation for 3-d shape recognition. IEEE
Signal Processing Letters, 22(12):2339–2343, 2015. 2

[36] A. Sinha, J. Bai, and K. Ramani. Deep learning 3D shape
surfaces using geometry images. In ECCV, pages 223–240,
2016. 2

[37] A. Sinha, A. Unmesh, Q. Huang, and K. Ramani. SurfNet:
Generating 3D shape surfaces using deep residual networks.
In IEEE CVPR, 2017. 1, 2

[38] K. Sohn, H. Lee, and X. Yan. Learning structured output
representation using deep conditional generative models. In
Advances in Neural Information Processing Systems, pages
3483–3491, 2015. 4

[39] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller. Multi-
view convolutional neural networks for 3d shape recognition.
In IEEE ICCV, pages 945–953, 2015. 2

[40] Q. Tan, L. Gao, Y.-K. Lai, J. Yang, and S. Xia. Mesh-based
autoencoders for localized deformation component analysis.
CoRR, abs/1709.04304, 2017. 2

[41] S. Tulsiani, H. Su, L. J. Guibas, A. A. Efros, and J. Malik.
Learning shape abstractions by assembling volumetric prim-
itives. arXiv preprint arXiv:1612.00404, 2016. 2

[42] N. Verma, E. Boyer, and J. Verbeek. Dynamic filters in graph
convolutional networks. arXiv preprint arXiv:1706.05206,
2017. 2, 6

[43] D. Vlasic, I. Baran, W. Matusik, and J. Popović. Articulated
mesh animation from multi-view silhouettes. ACM Trans.
Graph., 27(3):97:1–9, 2008. 5, 6

[44] M. Wattenberg, F. Viégas, and I. Johnson. How to use t-SNE
effectively. Distill, 2016. 7

[45] J. Wu, T. Xue, J. J. Lim, Y. Tian, J. B. Tenenbaum, A. Tor-
ralba, and W. T. Freeman. Single image 3D interpreter net-
work. In ECCV, pages 365–382, 2016. 2

[46] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and
J. Xiao. 3D ShapeNets: A deep representation for volumetric
shapes. In IEEE CVPR, pages 1912–1920, 2015. 1, 2

[47] T. Xue, J. Liu, and X. Tang. Example-based 3D object re-
construction from line drawings. In IEEE CVPR, pages 302–
309, 2012. 2

[48] X. Yan, J. Yang, E. Yumer, Y. Guo, and H. Lee. Perspective
transformer nets: Learning single-view 3d object reconstruc-
tion without 3d supervision. In Advances in Neural Informa-
tion Processing Systems, pages 1696–1704, 2016. 2

[49] L. Zhang, N. Snavely, B. Curless, and S. M. Seitz. Spacetime
faces: High-resolution capture for modeling and animation.
In ACM SIGGRAPH, pages 548–558, 2004. 5, 6

