ATLANTIS
PRESS

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 600-607

An Optimal Task-Scheduling Strategy for Large-Scale Astronomical
Workloads using In-transit Computation Model

Xiaoli Wang !, Bharadwaj Veeravalli >, Omer F. Rana?

I School of Computer Science and Technology, Xidian University,
Xi’an, Shaanxi, China, 710071.

E-mail: wangxiaoli@mail.xidian.edu.cn

2 Department of Electrical and ComputerEngineering, The National University of Singapore,
4 Engineering Drive 3, Singapore 117576.

E-mail: elebv@nus.edu.sg

3 School of Computer Science and Informatics, Cardiff University,
Queen’s Buildings, Newport Road, Cardiff CF24 3AA, UK.

E-mail: ranaof@ cardiff.ac.uk

Received 30 April 2017

Accepted 5 January 2018

Abstract

The Sloan Digital Sky Survey (SDSS) has been one of the most successful sky surveys in the history of
astronomy. To map the universe, SDSS uses their telescopes to take pictures of the sky over the whole
survey area. Now the total SDSS data volume is larger than 125 TB since every night telescopes produce
about 200 GB of data. To improve the processing efficiency of such large-scale astronomical data, we
develop an optimal task-scheduling strategy by using in-transit computation model under fog computing.
Within the proposed strategy, we design a global optimization technique to derive an optimal load dis-
tribution among heterogeneously computational resources. Finally, we conduct various experiments to
illustrate the correctness and effectiveness of the proposed strategy. Experimental results show that it can
significantly decrease the processing time of large-scale workloads.

Keywords: Task Scheduling, In-transit Computation, Load Distribution, Fog Computing, Genetic Algo-

rithm.

1. Introduction

For millennia, twinkling stars in the night sky have
always inspired our curiosity about the universe. As-
tronomers have launched various scientific sky sur-
veys in the last century attempting to map the uni-
verse, over ever-larger areas, to ever-greater depths,
and over an ever-increasing range of wavelengths.
Among these surveys, the Sloan Digital Sky Sur-
vey (SDSS)! has created the most detailed three-

dimensional maps of the universe ever made, with
deep multi-color images of more than one third of
the entire night sky, and spectra for more than three
million astronomical objects.

SDSS has progressed through several phases.
In its first five years of operations, SDSS-I (2000-
2005) carried out deep multicolor imaging over
8000 square degrees and measured spectra of more
than 700,000 objects. With an ever-growing collab-
oration, SDSS-II (2005-2008) completed the goals

Copyright © 2018, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

600

ATLANTIS
PRESS

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 600-607

of imaging half the northern sky and mapping the 3-
dimensional clustering of one million galaxies and
100,000 quasars. SDSS-III (2008-2014) undertook
a major upgrade of the venerable spectrographs®. In
July 2014, SDSS-1V was launched. It is an extensive
imaging and spectroscopic survey of the Northern
and Southern sky, using a dedicated 2.5-meter tele-
scope located at southeast New Mexico and the du
Pont Telescope at northern Chile?. Each telescope
is fixed to point directly up at the sky and images a
“stripe” of the sky over the course of night. As the
Earth rotates, more of the sky becomes visible above
the telescopes. Every night the telescopes produce
about 200 GB of data. Now the total SDSS data vol-
ume is larger than 125 TB2.

Each image taken by telescopes is composed
of myriad pixels, each pixel of which captures the
brightness of every tiny point in the sky. But the
sky is not made of pixels. Data managers for SDSS
requires to extract digitized data from images and
process the extracted data to produce information
they can use to identify and measure properties of
stars and galaxies. It is worth noting that scientists
must handle the astronomical workloads as quickly
as possible because SDSS astronomers need the in-
formation to configure their telescope to work most
efficiently during the next dark phase of the moon.
If too much time goes by, we might miss the imme-
diate next season of the target objects.

Such large-scale astronomical data could not be
processed efficiently without network-based com-
puting systems. One of the key issues in networked
computation is obtaining an optimal scheduling stra-
tegy, including partition and distribution of work-
load among computational resources, to achieve
shortest processing time. An optimal scheduling
strategy depends mainly on the network architecture
as well as the number of computational resources
and their computing capabilities. Mani and Ghose®
studied the distribution of divisible workload in a
homogeneous linear network and derived recursive
equations for obtaining an optimal load partition.
Later, asymptotic solutions for homogeneous bus
networks were obtained . For heterogeneous star
networks, Bharadwaj et al.’ derived a closed-form
expression for an optimal load partition to achieve

601

shortest processing time. The task-scheduling prob-
lem turns out to be more difficult when practi-
cal issues like the computation and communica-
tion start-up overheads are considered. Carroll® and
Ghanbari’ studied optimal scheduling strategies for
bus and tree networks with arbitrary start-up over-
heads, respectively. Later on, similar studies have
been made on a variety of distributed networks, such
as Gaussian, mesh, torus networks®, complete b-Ary
tree networks’, heterogeneous clusters'?, and cloud

computing systems!!.

It should be noted that even the most advanced
cloud computing architecture still faces challenge to
handle a large amount of astronomical data. Fog
Computing is becoming widely known as being the
one that extends cloud computing to edge devices
and processes directly on the edge devices, thus min-
imizing the amount of data that is transferred to the
cloud'?. One ubiquitous edge device is network
data center. Compared to data centers hosted by
cloud providers, network data centers are managed
and operated by network providers, which consti-
tute an important part of the current Internet infras-
tructure. Fog computing can exploit network data
centers along the path when workloads are in tran-
sit from the user side to cloud data center, so that
the spare compute capacities of network data cen-
ters could be utilized more efficiently and the pro-
cessing time of workloads shall be decreased simul-
taneously. With this idea in mind, Zou et al.'3!# pro-
posed an in-transit computation infrastructure com-
posed of an ensemble of computational resources,
inclusive of a cloud data center and a certain amount
of network data centers connecting the source (user)
and destination (cloud data center). We employ
this in-transit computation model in this work to
improve the processing efficiency of astronomical
workloads. Our main objective is deriving an opti-
mal task-scheduling strategy for in-transit computa-
tion under fog computing so that the processing time
of large-scale workloads could be minimized.

The remaining of this paper is organized as fol-
lows. Section 2 establishes a novel task-scheduling
model for in-transit computation. To solve this
model, we accordingly design an effective genetic
algorithm in Section 3, which will be evaluated

ATLANTIS
PRESS

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 600-607

through experiments in Section 4. In the last sec-
tion, conclusions are obtainable.

2. In-transit Computation under Fog
Computing

In this section, we shall first formally define the task-
scheduling problem we address and introduce all the
notations and definitions used throughout this paper.
Then we propose a novel task-scheduling model for
in-transit computation of large-scale workloads un-
der for computing.

2.1. Problem Description

Suppose that an astronomer needs to compute a
workload W, for example searching among as-
tronomical database or analyzing astronomical data
for a certain purpose. The location where work-
load stores is defined as source s, while the remote
cloud data center is defined as destination d. Work-
load W, ;4 transfers from source s to destination d
through a network path composed of n in-transit net-
work data centers {fi,f2, -, fn} as illustrated in
Fig.1. Now the problem lies in how to take full ad-
vantage of in-transit computation by deriving an op-
timal load distribution strategy among (n+ 1) fog
nodes, including n in-transit network data centers
and the cloud data center, also denoted as f;,+ .
Note that astronomical data, although large in
size, are generally partitionable, meaning that they
can be partitioned into any number of fractions, or
at least fine-grained fractions, and that there are no
precedence relationships among these fractions so
that they can be independently processed on dis-
tributed compute platforms. Hence, workload W,
will be partitioned into (n+ 1) fractions and pro-
cessed by (n+ 1) fog nodes independently. Note that
source s does not participate in workload computa-
tion. We can observe from Fig.1 that after receiv-
ing the whole workload from resource s, fog node
f1, an in-transit network data center, keeps a frac-
tion o of W for itself and transmits the remain-
ing (W — o) to its right immediate neighbor f5.
Similarly, fog node f; keeps a fraction o; of W, for
itself and transmits the remaining (W, s — Z;:l o))
to fog node fiy;. The last node f,1, also known as

602

the destination cloud data center, upon receiving its
load fraction ¢, 1, does only computation. We have
Z?jll o = Wiprar and 0 < a; < W;pps. The total pro-
cessing time 7 is the time at which the entire work-
load W, has been processed. It is given by the
maximum of the finish time of all fog nodes. Thus
when all fog nodes stop computing at the same time
instant, the total processing time 7' gets minimized.

[communication start-up overhead [) Communicatiom time

[computation star-up overhead — [T] Computation time

Destination
Fig. 1. Timing diagram for in-transit computation

Source s is assumed to start distributing the
whole package of workload W, to fog node
fi at time t = 0. It takes node f; time {o; +
z2i X Wiotar — 2321 aj)} to transmit load fraction
(Weotar — 2321 ;) to node fi;1, and then it cost f;
time (¢;+w; ;) to finish computing its assigned load
fraction ¢;. Here o; refers to communication start-
up overhead of link /; and ¢; represents computation
start-up overhead of fog node f;, while z; indicates
the ratio of the time taken by link /; to transmit a
given workload to that by a standard link and w; rep-
resents the ratio of the time taken by node f; to com-
pute a given workload to that by a standard com-
pute resource. It may be noted that the computa-
tion speed of the last fog node f,+1 (i.e., cloud data
center) is much faster than that of in-transit nodes.
Hence, w1 < min{wy,wa, - ,w, }.

Let P, denote the time when node f; finishes
transmitting load fractions to node f; ;. We have

P = 00+ 20Wiorar + 01+ 21 (Wipra — 1),

P =P _ 14o0i+z (‘)Vtotal _le:l (Xj) ’

ey

ATLANTIS
PRESS

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 600-607

where i = 1,--- ,n and og + z20W;orar Stands for the
transmission time for the total workload distributed
from source s to fog node f;. For the last node f,,+1,
we have P, = P,. Each fog node starts comput-
ing only after it finishes transmitting its remaining
workload to its immediate neighbor. The finish time
of node f; can be written as,

E:B+Ci+wiai, i:1727“'7n+1' (2)

Finally, we can obtain the processing time 7" of
the total workload as T = max{Ty,Ta, -, Ty41}-

2.2. In-transit Computation Model

Here we formulate a new in-transit computation
model under fog computing.

min7T(A) = nl‘in{max{Tl,Tz,---,Tn+1}}.

where

() A={ou, - ,0h11};

2) T;=P+ci+wia; withi=1,2,--- ,n+1;

(3) P = o +Zovvt0tal+01+ZI(MUlal_al);

4) B=P_1+0i+z W —Yin o) with i =
1,27...,71;

(5) Pn+1 :Pn-

subject to:

G) €A, 0< oy <Wypar, i=1,2,--- ,n+1;
(11) Zl'qill o = Wioral-

1

There are (n+ 1) variables involved in this
model. Constraints (i) and (ii) indicate that load
fractions assigned on fog nodes should be nonneg-
ative and not larger than the entire workload, and
that the sum of all load fractions equals the entire
workload.

3. Optimal Task-Scheduling Strategy

In this section, we shall design a Genetic Algorithm
(GA) searching for an optimal load partition A =
{a1,00, 041} for the proposed in-transit com-
putation model. We select GAs to solve our model
because GAs have been proven to be a promising
technique for combinatorial optimization problems,
especially for task-scheduling problems.

603

3.1. Encoding and Genetic Operators

The key point of finding an optimal solution by
using GAs is to develop an encoding scheme that
can represent the problem to be solved directly
while satisfying the problem constraints easily. In
this paper, an individual is real coded directly as
I=(ay,00, - ,0p41). For a given individual 7, if
di,a; < 0or Z?;’ll a; > W a1, then this individual /
violates the constraints of the proposed model and it
is considered to be an invalid individual.

As a simple example, assume that there are n =6
fog nodes in the system, inclusive of 5 in-transit net-
work data centers along the path from source to des-
tination (cloud data center). The size of the entire
workload is 1000 units. A possible encoding scheme
is given as follows:

I = ((Xl, 0, O3, O4, O, 066)
= (94, 78, 60, 68, 50, 650).

We observe that Vi, o; > 0 and Z?jll o = Wit =
1000, thus individual 7 is a valid individual as it sat-
isfies all constraints in our model. It is worth noting
that the last fog node fg is assigned with the largest
load fraction og = 650 > max{ay, 0, 03,04, 0s }.
This is because the last fog node represents the cloud
data center with much higher compute capability
than other fog nodes (network data centers). This
is also validated from our experimental results as
shown in Section 4.

According to our proposed in-transit compu-
tation model, we have a special constraint as
):l’.‘j]l a; = Wiy Therefore, if we adopt two-point
crossover, it may produce invalid offsprings. Hence,
we should normalize the newly generated individu-
als to ensure that the total value of all genes equals
the entire workload W, ;.

We adopt two-point mutation on offsprings gen-
erated by crossover according to a user-definable
mutation probability. This probability should be set
low; otherwise, the search will turn into a primitive
random search. In detail, we randomly generate two
integers p and ¢ satisfying that | < p < g < (n+1),
then exchanging genes o, and ¢, of individual 1.
It can be expected that offsprings generated by this
mutation operator satisfy all of the constraints in our
proposed model by default.

ATLANTIS
PRESS

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 600-607

3.2. Local Search

To accelerate the convergence of the proposed GA,
we introduce a local search operator in this paper.
The main idea is to transfer proper size of load from
the fog node with the longest processing time 7iax
to the one with the shortest processing time 7piy, SO
that all of the fog nodes will eventually stop com-
puting at the same time instant. The process of the
local search operator is given as follows.

Step 1 Fora given individual I = (¢, 00, -+, 0y1),
let Py = 0o + 20 Wiorai-

FOR (i=1,2,---,n) .

Let P, = P—1 +0i +2i (Wiorar — Lj—; @) and
T; = P +ci +wq.

ENDFOR

Let Thp1 = Pyt Cn1 + Wat1 Ot 1

Among all fog nodes {fi, f2,** , fut1}, find
node fiax With the longest processing time
Tmax and fog node fi, with the shortest
processing time Ti,,. Calculate their time
difference by A = Tax — Tin.

Let B = A /max{zZmax,Zmin} . Update indi-
vidual [by Omax = Omax — B and Omin =
Olmin + B :

D Communication start-up overhead Communicatiom time

Step 2

Step 3
Step 4

Step 5

Source [Computation start-up overhead [J Computation time
1
(& == |
I [A=T. T i
1
e ! | \ |
I i !
1 _ i
ON R \s |
Cooy [AT
l : 1 1 !
e ! | |“)
.] !
! I i g ‘]

! |] .
\ ! I] :]
I | 1 : ! i
) Lo e |
1
| | ! [!
Destination T T

Time
Fig. 2. Timing diagram before applying local search

Figure 2 shows a timing diagram that corre-
sponds to an individual before applying local search.
As illustrated in Fig. 2, node f; has the longest pro-
cessing time 77 and f3 has the shortest processing
time 73. Thus fiax = f1 and fiin = f3. After load
balancing between f| and f3; by local search opera-
tor, a possible timing diagram is shown in Fig. 3. It
can be observed that the time difference between T;

604

and T3 illustrated in Fig. 3 becomes much smaller
than that in Fig.2. Hence, the total processing time
of the entire workload would be decreased.

[Communication start-up overhead [E] Communicatiom time

Source L__‘ Computation start-up overhead

e

[] Computation time

1

Destination Time L

Fig. 3. Timing diagram after applying local search

3.3. Framework of the Proposed Algorithm

Once encoding scheme is defined, a GA initial-
izes a population of individuals and then improves
them through repetitive applications of genetic op-
erators, including crossover, mutation, local search,
and selection. Given workload W, population
size Popsize, crossover probability p...s, mutation
probability p,,, elitist number E = 5, and stop cri-
terion, the framework of our proposed GA is given
as follows.

Step 1 (Initialization) Randomly generate Popsize
individuals as initial population Pop(0) ac-
cording to the encoding scheme. For each
I € Pop(0), compute processing time 7 of
workload W, and take 1/T as the fitness
value of /. Let generation number ¢ = 0.

Step 2 (Crossover) Select Popsize individuals into

the crossover pool from Pop(t) by roulette

wheel selection. Apply two-point crossover
on each pair of parents selected from the
crossover pool according to p.rs and then
normalize the newly generated offsprings to
ensure that Z’.’+11 a; = Wipq- All offsprings

constitute a set denoted by O (1).
Step 3 (Mutation) Apply two-point mutation on
each of the selected individuals from O;(r)
according to pp,s. All newly generated off-

springs constitute a set denoted by O;(t).

ATLANTIS
PRESS

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 600-607

Step 4 (Local Search) Apply local search operator
on each individual in set O (¢) U O (¢).
(Selection) Select the best E individuals
for the next population Pop(r + 1) from set
Pop(t) U O;(t) U Ox(t). Select the remain-
ing Popsize — E individuals for Pop(t + 1)
by roulette wheel selection also from set
Pop(t)JO(t)UO,(t). Lett =1+ 1.
(Stopping Criteria) If a fixed number of
generations reached, then stop and return the
best individual / in the current population;
otherwise, go to Step 2.

Step 5

Step 6

4. Experimental Results and Analysis

As we mentioned earlier, every night the telescopes
of SDSS, including the primary 2.5m telescope,
0.5m photometric telescope, and 10 micron all sky
scanner, produce about 200 GB of raw imaging data.
In our simulation, we have considered this actual
data size and normalized it into 10000 units. Then
a series of operators are required to process these
large-scale telescope imaging data under fog com-
puting, ultimately producing a variety of products
including images with instrumental signatures re-
moved, a photometric solution for the night, and a
catalog of objects found in the data. The computa-
tion speed of each fog node processing every unit of
astronomical data is recorded in Table 1.

In each run of our proposed GA, the following
parameters are set: Popsize = 100, crossover proba-
bility peros = 0.8, mutation probability p,u,, = 0.02,
elitist number E = 5, and stop criterion ¢t = 2500.

4.1. Correctness Evaluation

We conduct two experiments to validate the correct-
ness of our proposed GA. In each experiment, we
employ a fog computing system with 20 fog nodes,
including 19 in-transit network data centers and one
cloud data center. In the first experiment, we fix
system parameters as given in Table 1 and vary the
workload size from 500 to 2500 units. Figs. 4 and 5
collect the experimental resutls. In the second exper-
iment, we fix workload size as W,,;,; = 1000 unites
and vary the network scenarios where the compute

605

capability of cloud data center is g times more pow-
erful than that of in-transit fog nodes, where g €
{5,10,15,20,25}. Figs. 6 and 7 record the results.

We observe from Figs.5 and 7 that all fog nodes
stop computing at the same time for every test.
Hence, the proposed algorithm can obtain an op-
timal task-scheduling strategy that achieves mini-
mum processing time. As expected, we can see from
Figs.4 and 6 that the load fraction assigned to the last
node is much larger than that assigned to other fog
nodes because the last node represents a cloud data
center with high-performance capability, while the
other nodes are in-transit network data centers with
relatively low-performance capabilities.

4.2. Performance Evaluation

To evaluate the effectiveness of the proposed algo-
rithm, we make two comparisons between our al-
gorithm, labeled as “In-transit computation” in the
experiment results, and the task-scheduling strategy
with only cloud data center performing computation,
labeled as “No In-transit computation.” Figure 8
records the comparison results obtained for different
workloads ranging from 1000 to 10000 units, while
Fig. 9 collects the experimental results obtained un-
der different network scenarios with network size
varying from 10 to 30.

It can be observed from Figs.8 and 9 that the pro-
cessing time obtained by “In-transit computation”
strategy is much less than that by “No in-transit
computation” strategy for each test, and that the
time difference between them grows with increas-
ing workload size and network size. As shown in
Fig.8, when workload size is as large as 10000 units
in our experiment, the processing time obtained by
the “In-transit computation” strategy shows a gain
of 65.4% compared to “No In-transit computation”
strategy. Also, it can be seen from Fig.9 that when
there are 30 fog nodes in the network system, the
“In-transit computation” strategy reduces the pro-
cessing time by over 55.3% compared to “No In-
transit computation” strategy. Therefore, it is clear
that our proposed algorithm for in-transit compu-
tation can derive an optimal task-scheduling stra-
tegy that significantly decreases the processing time
of large-scale workloads. This holds even in cases
where in-transit fog nodes are not very powerful in
computation compared to the cloud data center.

ATLANTIS
PRESS

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 600-607

Table 1. Parameters for fog nodes

pi 0 ¢ Zi wi | pi 0; Ci Zi wi Di 0; Ci Zi wi
p1 540 987 0.14 29.71 ps 5.03 221 0.14 3726 | p;5 7.00 648 020 32.62
p» 697 140 0.19 3052 | po 3.06 418 0.15 2433 | p;g 940 684 0.12 21.28
p3 722 696 0.19 3953 | pjgp 403 649 0.19 3673 | p;7 207 730 020 3544
ps 650 250 0.17 2051 | p;p 1.63 339 0.11 2739 | pjg 880 440 0.18 3342
ps 234 338 0.13 3063 | pip 930 434 0.12 3037 | pi9 793 812 0.17 34.67
pe 423 935 0.12 3370 | p;3 359 9.05 0.14 3952 | ppo 246 928 0.16 0.30
p7 971 314 016 3662 | pi4 139 7.68 0.15 3099 | — — — — —

ﬁgg ——500 ——1000 ——1500 ——2000 ——2500 6000 ——500 —=—1000 1500 —~—2000 ——32500

1000 f

000 5000

S0 4000

L
' 600 T 3000

500 —

400 7 2000

300 II

200 1000

100 1SR
0 - 0

0123456 7891011121314151617181920

n

Fig. 4. Optimal load partitions for different workloads

=+=5times =+=]10times 15times =+==20times =#=25times
n

a;

0 — T
1 2 3 4 5 6 7 8 9 1011 1213 1415 16 17 18 19 20
n

Fig. 6. Optimal load partitions under different networks

5. Conclusions

In this paper, we have addressed the task-scheduling
problem for in-transit computation of large-scale as-
tronomical workloads under fog computing. We
built a novel task-scheduling model and proposed
a genetic algorithm to derive an optimal load dis-
tribution strategy. We have explicitly considered

606

6 7 8§ 91011121314151617181920
n

012345
Fig. 5. Finish times of fog nodes for different workloads

2500

=—=5times ===10times 15times ==—=20times ==—25times

2450

2400

2350

2300

0123456 78 91011121314151617 181920
Rn

Fig. 7. Finish times of fog nodes under different networks

the astronomical imaging data taken by telescopes
of SDSS as our reference size of data volume in
our extensive experiments. We demonstrated that
the proposed algorithm could significantly decrease
the processing time of large-scale workloads by in-
transit computation. An important and immediate
useful extension to the study posed in this paper is
considering complex networks with more than one

ATLANTIS
PRESS

£

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 600-607

=#=In-transit Computation =~ =#=No in-transit computation

40000

34378.4

30952.3
275262
24100.1/‘/
20674
% 20784.9
B712.9
Bb42.9

145719
2500.9

35000

30000

25000

20000 1
138217

10395.6,

479

15000

10000
58.87

3543.43 87.86

. 216.85
145.85

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Wt
Fig. 8. Comparison between in-transit computation and no
in-transit computation for different workloads

5000

network path available from source to destination,
and deriving an optimal task-scheduling strategy, in-
cluding selection of in-transit nodes along the path
and distribution of workloads among them.

Acknowledgments

This work was initiated and conducted jointly when
the second author visited Department of CS, Cardiff
University, in September 2016, and supported by
MOE Tier-1 grant No. R-263-000-C14-112. This
study on data distribution aspects serves as a prelim-
inary study for possible extensions to take care of se-
curity aspects while designing IOT based platforms
to handle large-scale data processing for intelligent
transportation system in Singapore. The first author
would like to acknowledge the funding supported
by National Natural Science Foundation of China
(N0.61402350, N0.61472297, and No.61572391).

References

1. http://www.sdss.org/

2. S. Collaboration, F. D. Albareti, C. A. Prieto, et al.
The Thirteenth Data Release of the Sloan Digital Sky
Survey: First Spectroscopic Data from the SDSS-IV
Survey MApping Nearby Galaxies at Apache Point
Observatory. (2016).

V. Mani, D. Ghose, Distributed computation in linear
networks: Closed-form solutions, IEEE Trans. Aero.
Elec. Sys. 30 (1994) 471-483

D. Ghose and V. Mani, Distributed Computation
with Communication Delays: Asymptotic Perfor-
mance Analysis, J. Parallel and Distrib. Computing.

607

T

6000

—8—In-transit computation =~ =s—No in-transit computation

Y

—

5000

4000

3000

.

._.-_’.—o-""‘

2000

1000

20 24 26 28 30
n
Fig. 9. Comparison between in-transit computation and no

in-transit computation under different network scenarios

10 12 14 16 18 22

23 (1994) 293-305.

V. Bharadwaj, D. Ghose, and V. Mani, Optimal Se-
quencing and Arrangement in Distributed Single-
Level Networks with Communication Delays, /IEEE
Trans. Parallel Distrib. Syst. 5 (1994) 968-976.

T. E. Carroll, D. Grosu, Strategyproof mechanisms
for scheduling divisible loads in bus-networked dis-
tributed systems, /IEEE Trans. Parallel Distrib. Syst.
19 (2008) 1124-1135

S. Ghanbari, M. Othman, M. R. A. Bakar, W. J. Leong,
Multi-objective method for divisible load scheduling
in multi-level tree network, Future Gener. Comput.
Sys. 54 (2016) 132-143

Z. Zhang, T. G. Robertazzi, Scheduling Divisible
Loads in Gaussian, Mesh and Torus Network of Pro-
cessors, IEEE Trans. Comput. 64 (2015) 3249-3264
C. Y. Chen, C. P. Chu, Novel Methods for Divisi-
ble Load Distribution with Start-Up Costs on a Com-
plete b-Ary Tree, IEEE Trans. Parallel Distrib. Syst.
26 (2015) 28362848

K. Li, X. Tang, B. Veeravalli, et al, Scheduling prece-
dence constrained stochastic tasks on heterogeneous
cluster systems, IEEE Trans. Comput. 64 (1) (2015)
191-204.

W. Lin, S. Xu, L. He, et al, Multi-resource scheduling
and power simulation for cloud computing, Informa-
tion Sciences. 397 (2017) 168—186.

B. P. Rimal, M. Maier, Workflow Scheduling in Multi-
Tenant Cloud Computing Environments, IEEE Trans.
Parallel Distrib. Syst. 28 (1) (2017) 290-304.

M. Zou, A. R. Zamani, J. Diaz-Montes, et al. Lever-
aging In-Transit Computational Capabilities in Fed-
erated Ecosystems, in IEEE Symposium on Service-
Oriented System Engineering, (2016), pp. 81-90.

A. R. Zamani, M. Zou, J. Diaz-Montes, et al. A com-
putational model to support in-network data analysis
in federated ecosystems, in Future Generation Com-
puter Systems, (2017). In press.

10.

11.

12.

13.

14.

