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Abstract: The multifractal analysis of stochastic processes deals with the fine scale

properties of the sample paths and seeks for some global scaling property that would

enable extracting the so-called spectrum of singularities. In this paper we establish bounds

on the support of the spectrum of singularities. To do this, we prove a theorem that

complements the famous Kolmogorov’s continuity criterion. The nature of these bounds

helps us identify the quantities truly responsible for the support of the spectrum. We then

make several conclusions from this. First, specifying global scaling in terms of moments

is incomplete due to possible infinite moments, both of positive and negative order. The

divergence of negative order moments does not affect the spectrum in general. On the

other hand, infinite positive order moments make the spectrum of self-similar processes

nontrivial. In particular, we show that the self-similar stationary increments process

with the nontrivial spectrum must be heavy-tailed. This shows that for determining the

spectrum it is crucial to capture the divergence of moments. We show that the partition

function is capable of doing this and also propose a robust variant of this method for

negative order moments.
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1 INTRODUCTION

The notion of multifractality first appeared in the setting of measures. The importance of

scaling relations was first stressed in the work of Mandelbrot in the context of turbulence

modeling ([1, 2]). Later the notion has been extended to functions and studying fine

scale properties of functions (see [3, 4, 5]). In this setting, multifractal analysis deals

with the local scaling properties of functions characterized by the Hausdorff dimension of

sets of points having the same Hölder exponent. The Hausdorff dimension of these sets

for varying Hölder exponent yields the so-called spectrum of singularities (or multifractal

spectrum). The function is called multifractal if its spectrum is nontrivial, in the sense

that it is not a one point set.

However, from a practical point of view, it is impossible to numerically determine the

spectrum directly from the definition. Frisch and Parisi ([6]) were the first to propose the

idea of determining the spectrum based on certain average quantities as a numerically

attainable way. In order to relate this global scaling property and the local one based

on the Hölder exponents, one needs “multifractal formalism” to hold. This is not always

the case and there has been an extensive research on this topic (see [4, 7, 8, 9, 10]). In

order to overcome the problem, one takes the other way around and seeks for different

definitions of global and local scaling properties that would always be related by a cer-

tain type of multifractal formalism (see [11] for an overview in the context of measures

and functions). Many authors claim that wavelets provide the best way to specify the

multifractal formalism, both theoretically and numerically (see e.g. [11, 12]).

For stochastic processes, the local scaling properties can be immediately generalized

by simply applying the definition for a function on the sample paths. As a global property,

the extension is not so straightforward. In [13], the authors present a theory of multifractal

stochastic processes and define the scaling property in terms of the moments of the process.

The underlying idea is to define a scaling property more general than the well known self-

2



Support of the multifractal spectrum

similarity. However, there are certain discrepancies in the terminology. For example,

α-stable Lévy processes with 0 < α < 2 are known to be self-similar with index 1/α.

On the other hand, these processes are multifractal from the sample paths point of view,

since it follows from [14] that they have a nontrivial spectrum.

The goal of this paper is to make a contribution to the multifractal theory of stochastic

processes by exhibiting limitations of the existing definitions and proposing methods to

overcome these. The issue of infinite moments has so far been discussed mostly as a

problem of the estimation methods for determining the spectrum and has been a major

critic for the partition function method. To our best knowledge, our results are the first

that link heavy-tails of self-similar processes with their path irregularities in this sense.

We illustrate on examples that in this case, ignorant estimation of infinite moments will

yield the correct spectrum. Although these bounds are very general, we later restrict

our attention to stationary increments processes. We consider only R-valued stochastic

processes and our treatment is intended to be probabilistic.

The paper is organized as follows. In the next section we review different definitions

of multifractal stochastic processes and recall some implications between them. We also

discuss the multifractal formalism and different methods for the estimation of spectrum.

In Sec. 3 we derive general bounds that determine the support of the multifractal spectrum

and relate the bounds with the moment scaling properties. We show implications of

these results for self-similar stationary increments processes. Sec. 4 provides examples

of stochastic processes from the perspective of different definitions. We show how the

results of Sec. 3 apply for each example. In Sec. 5 we propose a simple modification of the

partition function method that overcomes divergencies of negative order moments. We

illustrate on the simulated data the advantages of this modification. Appendix contains

some general facts about processes considered in Sec. 4.
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2 MULTIFRACTAL STOCHASTIC PROCESSES

In this section we provide an overview of different scaling relations that are usually referred

to as multifractality. Examples of processes that satisfy these properties are given in Sec. 4.

The best known scaling relation in the theory of stochastic processes is self-similarity.

A stochastic process {X(t), t ≥ 0} is said to be self-similar if for any a > 0, there exists

b > 0 such that

{X(at)} d
= {bX(t)}, (1)

where {·} d
= {·} stands for the equality of finite dimensional distributions. A process

{X(t), t ≥ 0} is said to be stochastically continuous at 0 if for every ε > 0, P (|X(h) −

X(0)| > ε) → 0 as h → 0. If {X(t), t ≥ 0} is self-similar, nontrivial (in the sense that it

is not a.s. constant) and stochastically continuous at 0, then b in (1) must be of the form

aH for some H ≥ 0, i.e.

{X(at)} d
= {aHX(t)}. (2)

The proof of this fact can be found in [15]. These weak assumptions are assumed to hold

for every self-similar process considered in the paper. The exponent H is called the Hurst

parameter and we say {X(t), t ≥ 0} is H-ss or H-sssi if it also has stationary increments.

Following [13], the definition of multifractal process that we present first is motivated

by generalizing the scaling rule of self-similar processes in the following manner:

Definition 1. A stochastic process {X(t)} is said to be multifractal if

{X(ct)} d
= {M(c)X(t)}, (3)

where for every c > 0, M(c) is a random variable independent of {X(t)} whose distribution

does not depend on t.
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When M(c) is deterministic for every c > 0, the process is self-similar and M(c) = cH

if the process is nontrivial and stochastically continuous at 0. The scaling factor M(c) is

assumed to satisfy the following property:

M(ab)
d
= M1(a)M2(b), (4)

for every choice of a and b, where M1 and M2 are independent copies of M . This gen-

eralizes the property of the deterministic factor for H-ss processes (ab)H = aHbH . A

motivation for this property can be found in [13].

However, instead of Definition 1, scaling is usually specified in terms of moments. The

idea of extracting the scaling properties from average type quantities, like Lp norm, dates

back to the work of Frisch and Parisi ([6]).

Definition 2. A stochastic process {X(t)} is said to be multifractal if there exist functions

c(q) and τ(q) such that

E|X(t)−X(s)|q = c(q)|t− s|τ(q), ∀t, s ∈ T , ∀q ∈ Q, (5)

where T and Q are intervals on the real line with positive length and 0 ∈ T .

The function τ(q) is called the scaling function. The set Q may also include negative

reals. The definition can also be based on the moments of the process instead of the

moments of the increments, i.e. E|X(t)| = c(q)tτ(q). If the increments are stationary,

these definitions coincide. It is clear that if {X(t)} is H-sssi, then τ(q) = Hq where it

is defined. One can also show that τ(q) must be concave. Strict concavity can hold only

over a finite time horizon, otherwise τ(q) would be linear. This is not considered to be a

problem for practical purposes (see [13] for details). Since the scaling function is linear for

self-similar processes, every departure from linearity can be attributed to multifractality.
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However, for this reasoning to make sense, one must assume moment scaling to hold as

otherwise self-similarity and multifractality are not complementary notions.

The drawback of involving moments in the definition is that they can be infinite. This

narrows the applicability of the definition and, as we show later, can hide the information

about the singularity spectrum.

It is easy to see that under stationary increments the defining property (3), along with

the property (4), implies multifractality Definition 2. Indeed, (4) implies that E|M(c)|q

must be of the form cτ(q) and the claim follows from X(t) =d M(t)X(1). One has to

assume finiteness of the moments involved in order for the statements like (5) to have

sense. Also notice that both definitions imply X(0) = 0 a.s., which will be used through

the paper.

There exist many variations of Definition 2 (see e.g. [10, 16, 17]). Some processes

obey the definition only for a small range of values t or for asymptotically small t. The

stationarity of increments may also be imposed. When referring to multifractality we will

make clear which definition we mean. However, we exclude self-similar processes from the

preceding definitions.

2.1 Detecting Multifractality

An important question related to multifractal processes is to confirm the occurrence of

multifractal properties in empirical time series. Definition 2, which is a direct consequence

of Definition 1 if (4) is assumed, provides a simple criterion for detecting multifractal

stochastic processes. To do this, one must first determine that the moment scaling of the

form (5) holds. If this is true, then the method can be based on exploiting the fact that

the scaling function is linear for self-similar processes where it is defined. Every departure

from linearity can therefore be accredited to multifractality. So, the main problem is to

check if the moment scaling holds and then estimate the scaling function from the data
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and inspect its shape.

Consider a stationary increments process X(t) defined for t ∈ [0, T ] and suppose

X(0) = 0. Divide the interval [0, T ] into bT/tc blocks of length t and define the partition

function (sometimes also called empirical structure function):

Sq(T, t) =
1

bT/tc

bT/tc∑
i=1

|X(it)−X((i− 1)t)|q . (6)

If {X(t)} is multifractal with stationary increments then ESq(T, t) = E|X(t)|q = c(q)tτ(q)

and

lnESq(T, t) = τ(q) ln t+ ln c(q). (7)

One can also see Sq(T, t) as the empirical counterpart of the left-hand side of (5). Suppose

that the process is sampled at equidistant time points. We can assume these are the time

points 1, . . . , T (see [18]). For fixed value of q, scaling of moments can be confirmed by

plotting the points (ln ti, lnSq(T, ti)), i = 1, . . . , N for chosen 0 ≤ t1 < · · · < tN ≤ T . If

these are approximately linear, we can suspect (7) to hold and consider τ(q) as the slope

of the simple linear regression of lnSq(T, t) on ln t. Using the well known formula for the

slope of the linear regression line, the empirical scaling function is defined as

τ̂N,T (q) =

∑N
i=1 ln ti lnSq(n, ti)− 1

N

∑N
i=1 ln ti

∑N
j=1 lnSq(n, ti)∑N

i=1 (ln ti)
2 − 1

N

(∑N
i=1 ln ti

)2 , (8)

where N is the number of time points chosen in the regression. Repeating the procedure

for a range of q values we obtain a plot of the estimated scaling function. If it is nonlinear,

we can suspect multifractal scaling of the underlying process. See [19, 20] for more details

on this methodology. It was shown in [18] that a large class of processes behaves as

the relation (7) holds even though there is no exact moment scaling (5). Moreover, some

processes may appear empirically as multifractal even when there is no some exact scaling
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property. We discuss this in more details in Sec. 4.

Remark 1. Although the definition (8) follows naturally from the moment scaling relation

(5), it is not the only one used in the literature. Another typical choice is to estimate

the scaling function by using only the smallest time scale available. For example, for the

cascade process on the interval [0, T ] the smallest interval is usually of the length 2−jT

for some j. One can then estimate the scaling function at point q as

log2 Sq(T, 2
−jT )

−j
. (9)

In this regime, the asymptotic behaviour of the estimator is usually investigated by letting

j →∞. The estimator (8) estimates the scaling function across different time scales and

can therefore be regarded as more general than (9).

2.2 Spectrum of Singularities

The preceding notions of multifractality involve “global” properties of the process. Alter-

natively, one can base the definition on the “local” scaling properties, such as roughness

of the process sample paths measured by the pointwise Hölder exponents. There are dif-

ferent approaches on how to develop the notion of a multifractal function. First, we say

that a function f : [0,∞)→ R is Cγ(t0) if there exists constant C > 0 such that for all t

in some neighborhood of t0

|f(t)− f(t0)| ≤ C|t− t0|γ.

One can also define that f is Hölder continuous at point t0 if |f(t)− Pt0(t)| ≤ C|t− t0|γ

for some polynomial Pt0 of degree at most bγc. If Pt0 is constant, then Pt0 ≡ f(t0) and

two definitions coincide. In particular, this happens when γ < 1. For other conditions of

equivalence and more details see [10]. In what follows we will use the first definition as in
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many cases we consider only processes whose sample paths are Cγ(t0) with γ < 1 at any

point t0.

A pointwise Hölder exponent of the function f at t0 is then

H(t0) = sup {γ : f ∈ Cγ(t0)} . (10)

Consider sets Sh = {t : H(t) = h} where f has the Hölder exponent of value h. These sets

are usually fractal in the sense that they have non-integer Hausdorff dimension. Define

d(h) to be the Hausdorff dimension of Sh, using the convention that the dimension of

an empty set is −∞. The function d(h) is called the spectrum of singularities (also

multifractal or Hausdorff spectrum). We will refer to set of h such that d(h) 6= −∞ as

the support of the spectrum. A function f is said to be multifractal if the support of

its spectrum is nontrivial, in the sense that it is not a one point set. This is naturally

extended to stochastic processes:

Definition 3. A stochastic process {X(t)} on some probability space (Ω,F , P ) is said to

have multifractal paths if for (almost) every ω ∈ Ω, t 7→ X(t, ω) is a multifractal function.

When considered for a stochastic process, Hölder exponents are random variables and

Sh random sets. However, in many cases the spectrum is deterministic ([21]). Moreover,

the spectrum is usually homogeneous, in the sense it is the same when considered over

any nonempty subset A ⊂ [0,∞). All the examples considered in the following will have

these two properties. An example of a process with random, nonhomogeneous spectrum

can be found in [22].
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2.3 Multifractal Formalism

The multifractal formalism relates local and global scaling properties by connecting sin-

gularity spectrum with the scaling function via the Legendre transform:

d(h) = inf
q

(hq − τ(q) + 1) . (11)

Since the Legendre transform is concave, the spectrum is always a concave function,

provided the multifractal formalism holds. If the multifractal formalism holds, then

infq (hq − τ(q) + 1) = −∞ implies that Sh = ∅ so that h is not the Hölder exponent

at any point. In addition, the formalism gives the possibility of estimating the spectrum

as the Legendre transform of the estimated scaling function.

A substantial work has been done to investigate when this formalism holds. The

validity of the formalism depends on which definition of τ one uses. Since it ensures

that the spectrum can be estimated from computable global quantities, it is a desirable

property of the object considered. This is the reason many authors seek for different

definitions of global and local scaling properties that would always be related by a certain

type of multifractal formalism.

The validity of the multifractal formalism is known to be limited when the scaling

function is based on the process increments ([3]). It has been showed that a large class

of processes can empirically produce nonlinear scaling function and that this behaviour

is influenced by the tail index ([18]). These nonlinearities are not connected with the

spectrum, except in the models that posses some scaling property. In many examples

negative order moments can also produce concavity in the estimated scaling function

since in many models they are infinite. As we will show on the example of self-similar

stationary increments processes, divergence of the negative order moments is not related

to the spectrum in general. Thus the estimated nonlinearity may be an artefact of the

estimation method. We propose a simple modification of the partition function that will
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make it more robust. On the other hand, nonlinearity that comes from diverging positive

order moments is crucial in estimating the spectrum with (11). For self-similar processes,

increments based partition function can capture these nonlinearities correctly.

The wavelets have proved to be a powerful tool in studying multifractality. Instead

of using moments, one can base the definition of the scaling function on the wavelet

decomposition of the process (see e.g. [10, 23]). This has a direct empirical counterpart

based on the estimation of the wavelet coefficients and leads to different methods for

multifractal analysis. However, this approach is also sensitive to diverging moments as

has been noted in [24] where the wavelet based estimator of the tail index is proposed.

The scaling based on the wavelet coefficients is also unable to yield a full spectrum of

singularities. In [25], the formalism based on wavelet leaders has been proposed. This in

some sense resembles the method we propose in Sec. 5, although our motivation comes

from the results given in the next section.

On the other hand, one can also replace the definition of the spectrum to achieve

multifractal formalism. For other definitions of the local scaling, such as the one based

on the so-called coarse Hölder exponents, see e.g. [10, 26].

The choice of the range over which the infimum in (11) is taken can also be a subject of

discussion. From the statistical point of view, moments of negative order are not usually

investigated. Sometimes τ(q) is calculated only for q > 0 and can therefore yield only left

(increasing) part of the spectrum. For more details see [9, 10].
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3 BOUNDS ON THE SUPPORT OF THE SPEC-

TRUM

The fractional Brownian motion (FBM) is a Gaussian process {BH(t), t ≥ 0}, which starts

at zero, has zero expectation for every t and the following covariance function

EBH(t)BH(s) =
1

2

(
|t|2H + |s|2H − |t− s|2H

)
, H ∈ (0, 1).

If H = 1/2, then FBM reduces to the standard Brownian motion (BM). The FBM

is H-sssi and has a trivial spectrum consisting of only one point, i.e. d(H) = 1 and

d(h) = −∞ for h 6= H. We say that the paths of FBM are monofractal. However, some

self-similar processes have nontrivial spectrum. Our goal in this section is to identify the

property of the process that makes the spectrum nontrivial. We do this by deriving the

bounds on the support of the spectrum. The lower bound is a consequence of the well-

known Kolmogorov’s continuity theorem. Such applications of Kolmogorov’s theorem

have appeared in the multifractal literature before (see e.g. [27, Corrolary 5]). For the

upper bound we prove a sort of complement of this theorem.

Before we proceed, we fix the following notation for a process {X(t), t ∈ T } where

T = [0, T ] or T = [0,+∞). We denote the range of finite moments as Q = (q, q), i.e.

q = sup{q > 0 : E|X(t)|q <∞, ∀t},

q = inf{q < 0 : E|X(t)|q <∞, ∀t}.
(12)

If {X(t)} is multifractal in the sense of Definition 2 with the scaling function τ , then

define

H− = sup

{
τ(q)

q
− 1

q
: q ∈ (0, q) & τ(q) > 1

}
,

H+ = inf

{
τ(q)

q
− 1

q
: q ∈ (q, 0) & τ(q) < 1

}
,

(13)
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with the convention that sup ∅ = 0 and inf ∅ = +∞. In this context, we always assume

that (5) holds on the whole T and Q. Every process {X(t), t ∈ T } considered here

is defined on some probability space (Ω,F , P ) and measurable, meaning that (t, ω) 7→

X(t, ω) is B(T )×F -measurable. Furthermore, we assume that {X(t), t ∈ T } is separable

with respect to any dense countable set T ⊂ T , in the sense that for all t ∈ T there exists

a sequence (tn) in T, tn → t such that a.s. X(tn)→ X(t). We say that the two processes

{X(t), t ∈ T } and {X̃(t), t ∈ T } defined on the same probability space are modifications

of each other if for every t ∈ T , P (X(t) = X̃(t)) = 1. If P (X(t) = X̃(t),∀t ∈ T ) =

1, then we say that the two processes are indistinguishable. Every stochastic process

{X(t), t ∈ T } has a separable modification (see e.g. [28]).

3.1 The Lower Bound

Using the well-known Kolmogorov’s criterion it is easy to derive the lower bound on the

support of the spectrum. Before stating the theorem, we define f : T → R to be locally

Hölder continuous of order γ if for every compact K ⊂ T there exists a constant C(K)

such that

|f(t)− f(s)| ≤ C(K)|t− s|γ, ∀t, s ∈ K.

It is clear that the local Hölder continuity at some domain implies pointwise Hölder

continuity of the same order at any point. The proof of the following theorem can be

found in [29, Theorem 2.8] or [30, Theorem 3.23].

Theorem 1 (Kolmogorov-Chentsov). Suppose that the process {X(t), t ∈ T } satisfies

E|X(t)−X(s)|α ≤ C|t− s|1+β, ∀t, s ∈ T , (14)

for some constants α > 0, β > 0 and C > 0. Then there exists a modification {X̃(t), t ∈

T } of {X(t), t ∈ T } having continuous sample paths. Furthermore, a.s. {X̃(t)} is locally

13
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Hölder continuous of order γ for every γ ∈ (0, β/α).

Proposition 1. Suppose {X(t), t ∈ T } is multifractal in the sense of Definition 2. If

τ(q) > 1 for some q ∈ (0, q), then there exists a modification of {X(t)} which is a.s. locally

Hölder continuous of order γ for every

γ ∈
(

0,
τ(q)

q
− 1

q

)
.

In particular, there exists a modification such that a.s.

H− ≤ H(t), ∀t ∈ T ,

where H(t) is defined by (10) and H− by (13).

Proof. This is a simple consequence of Theorem 1 since Definition 2 implies

E|X(t)−X(s)|q = c(q)|t− s|1+(τ(q)−1).

For the second part, if H− = 0 there is nothing to prove. Otherwise, by (13), for each

γ < H− there is q ∈ (0, q) such that τ(q) > 1 and γ < (τ(q) − 1)/q, and thus, by the

first part there is modification which is a.s. locally Hölder continuous of order γ. Since all

continuous modifications are indistinguishable (see e.g. [29, Problem 1.5]), we have the

desired modification. This implies that a.s. the pointwise Hölder exponent is everywhere

greater than H−.

In the sequel we always suppose to work with the modification from Proposition 1

where applicable. If H− > 0, we conclude that the spectrum d(h) = −∞ for h ∈ (0, H−).

This way we can establish an estimate for the left endpoint of the support of the spectrum.

It also follows that if the process is H-sssi and has finite moments of every positive order,

then H− = H ≤ H(t). Thus, when the moment scaling holds, path irregularities are

14
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closely related with infinite moments of positive order. We make this point stronger later.

Theorem 1 is valid for general stochastic processes. Although moment condition (14)

is appealing, the condition needed for the proof of Theorem 1 can be stated in a different

form.

Corollary 1. For the process {X(t), t ∈ T } there exists a modification which is a.s. locally

Hölder continuous of order γ > 0 if for some η > 1 it holds that for every K > 0 there

exists C > 0 such that

lim sup
t→0

P (|X(s+ t)−X(s)| ≥ Ktγ)

tη
≤ C, ∀s ∈ T .

Proof. This is obvious from the proof of Theorem 1; see [29, Theorem 2.8].

3.2 The Upper Bound

The negative order moments are considered responsible for the right part of the spectrum.

We show that this is only partially true, as this depends on whether the negative order

moments are finite. To establish the bound on the right endpoint of the support of the

spectrum, one needs to show that a.s. the sample paths are nowhere Hölder continuous of

some order γ, i.e. that a.s. t 7→ X(t) /∈ Cγ(t0) for each t0 ∈ T . To show this we first use

a criterion based on the negative order moments, similar to (14). The resulting theorem

can be seen as a sort of a complement of the Kolmogorov-Chentsov theorem. The method

of proof is similar with the proof of nowhere differentiability of BM (see e.g. [31]). We

then apply this result to moment scaling multifractals to get an estimate for the support

of the spectrum.

In proving the statements involving negative order moments we use the following

two simple facts at several places. The first is a Markov’s inequality for negative order
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moments. If X is a random variable, ε > 0 and q < 0, then

P (|X| ≤ ε) = P (|X|q ≥ εq) ≤ E|X|q

εq
.

The second fact is the expression for the q-th order moment, q < 0,

E|X|q = −
∫ ∞

0

qy−q−1P (1/|X| ≥ y)dy = −
∫ ∞

0

qyq−1P (|X| ≤ y)dy. (15)

Theorem 2. Suppose that the process {X(t), t ∈ T } satisfies

E|X(t)−X(s)|α ≤ C|t− s|1+β, ∀t, s ∈ T , (16)

for some constants α < 0, β < 0 and C > 0. Then a.s. {X(t)} is nowhere Hölder

continuous of order γ for every γ > β/α.

Proof. First, it suffices to prove the statement by fixing arbitrary γ > β/α. Indeed, this

would give events Ωγ, P (Ωγ) = 0 such that for ω ∈ Ω\Ωγ, t 7→ X(t, ω) is nowhere Hölder

continuous of order γ. If Ω0 is the union of Ωγ over all γ ∈ (β/α,∞) ∩Q, then Ω0 ∈ F ,

P (Ω0) = 0 and Ω\Ω0 would fit the statement of the theorem.

Secondly, it is enough to consider only restrictions to the interval [0, 1), as, if needed,

for n ∈ N we get from this the proof for the interval [n, n + 1) by using the process

X ′(t) = X(n + t) − X(n), t ∈ [0, 1). Removing null sets for all n ∈ N would imply the

general statement.

For j, k ∈ N define the set

Mjk :=
⋃

t∈[0,1)

⋂
h∈[0,1/k]

{ω ∈ Ω : |X(t+ h, ω)−X(t, ω)| ≤ jhγ} .

It is clear that if ω /∈ Mjk for every j, k ∈ N, then t 7→ X(t, ω) is nowhere Hölder

continuous of order γ. As there are countably many Mjk, it is enough to fix arbitrary

16
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j, k ∈ N and show that Mjk ⊂ A for some A ∈ F such that P (A) = 0.

Suppose n > 2k and ω ∈Mjk. Then there is some t ∈ [0, 1) such that

|X(t+ h, ω)−X(t, ω)| ≤ jhγ, ∀h ∈ [0, 1/k]. (17)

Take i ∈ {1, . . . , n} such that

i− 1

n
≤ t <

i

n
. (18)

Since n > 2k we have

0 ≤ i

n
− t < i+ 1

n
− t ≤ i+ 1

n
− i− 1

n
=

2

n
<

1

k
,

and from (17) it follows that

∣∣∣∣X (i+ 1

n
, ω

)
−X

(
i

n
, ω

)∣∣∣∣ ≤ ∣∣∣∣X (i+ 1

n
, ω

)
−X (t, ω)

∣∣∣∣+

∣∣∣∣X (t, ω)−X
(
i

n
, ω

)∣∣∣∣
≤ 2γ+1jn−γ.

Put A
(n)
i =

{
|X( i+1

n
)−X( i

n
)| ≤ 2γ+1jn−γ

}
. Since ω was arbitrary it follows that

Mjk ⊂
n⋃
i=1

A
(n)
i .

Using Markov’s inequality for α < 0 and the assumption of the theorem we get

P (A
(n)
i ) ≤

E|X( i+1
n

)−X( i
n
)|α

(2γ+1j)αn−γα
≤ C(2γ+1j)−αnγα−1−β,

P

(
n⋃
i=1

A
(n)
i

)
≤

n∑
i=1

P (A
(n)
i ) ≤ C(2γ+1j)−αn−(β−γα).

(19)

If we set

A =
⋂
n>2k

n⋃
i=1

A
(n)
i ,

17
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then A ∈ F and Mjk ⊂ A. Since γ > β/α, it follows that β−γα > 0 and hence P (A) = 0.

This proves the theorem.

Proposition 2. Suppose {X(t), t ∈ T } is multifractal in the sense of Definition 2. If

τ(q) < 1 for some q ∈ (q, 0), then a.s. {X(t)} is nowhere Hölder continuous of order γ

for every

γ ∈
(
τ(q)

q
− 1

q
, +∞

)
.

In particular, a.s.

H(t) ≤ H+, ∀t ∈ T .

Proof. Definition 2 implies

E|X(t)−X(s)|q = c(q)|t− s|1+(τ(q)−1).

Since q < 0, τ(q)− 1 < 0 and the statement follows from Theorem 2.

This proposition shows that d(h) = −∞ for h ∈ (H+,∞). Recall that H+ is defined

in (13).

Remark 2. Statements like the ones in Proposition 1 and 2 are stronger than saying, for

example, that for every t ∈ T , H(t) ≤ U a.s. Indeed, an application of the Fubini’s

theorem would yield that for almost every path, H(t) ≤ U for almost every t. If we put

h = U + δ, then the Lebesgue measure of the set Sh = {t : H(t) = h} is zero a.s. This,

however, does not imply that d(h) = −∞ and hence, it is impossible to say something

about the spectrum of almost every sample path. On the other hand, it is clear that this

type of statements are implied by Propositions 1 and 2.

For an example of this weaker type of the bound, consider {X(t),∈ T } multifractal

in the sense of Definition 2. If there is q ∈ (q, 0), then for every t ∈ T

H(t) ≤ τ(q)

q
a.s.

18
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Indeed, let δ > 0 and suppose C > 0. Since q < 0, by Markov’s inequality

P
(
|X(t+ ε)−X(t)| ≤ C|ε|

τ(q)
q

+δ
)
≤ E |X(t+ ε)−X(t)|q

Cq|ε|τ(q)+δq
=

c(q)

Cq|ε|δq
→ 0,

as ε→ 0. We can choose a sequence (εn) that converges to zero such that

P
(
|X(t+ εn)−X(t)| ≤ C|εn|

τ(q)
q

+δ
)
≤ 1

2n
.

Now, by the Borel-Cantelli lemma

|X(t+ εn)−X(t)|

|εn|
τ(q)
q

+δ
→∞ a.s., as n→∞.

Thus, for arbitrary δ > 0 it holds that for every t, H(t) ≤ τ(q)
q

+ δ a.s. However, this

result does not allow us to say anything about the spectrum.

Consider for the moment the FBM. The range of finite moments is (−1,∞) and

τ(q) = Hq for q ∈ (−1,∞), so we have H+ = H + 1. Thus, the best we can say from

Proposition 2, is that d(h) = −∞ for h > H + 1. However, we know that d(h) = −∞ for

h > H. If the infimum in the definition of H+ could be considered over all negative q, we

would get exactly the right endpoint of the support of the spectrum.

The fact that the bound derived in Proposition 2 is not sharp enough for some ex-

amples points that negative order moments may not be the right paradigm to explain

the spectrum. We therefore provide more general conditions that do not depend on the

finiteness of moments.

Theorem 3. A process {X(t), t ∈ T } is a.s. nowhere Hölder continuous of order γ > 0

if for some η > 1 and m ∈ N it holds that for every K > 0 there exists C > 0 such that

lim sup
t→0

P

(
max
l=1,...,m

|X(s+ lt)−X(s+ (l − 1)t)| ≤ Ktγ
)

tη
≤ C, ∀s ∈ T . (20)
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Proof. The first part of the proof goes exactly as in the proof of Theorem 2. Fix j, k ∈ N

and take n ∈ N such that

n > (m+ 1)k.

If ω ∈ Mjk, then there is some t ∈ [0, 1) and i ∈ {1, . . . , n} such that (17) and (18) hold.

Choice of n ensures that for l ∈ {1, . . . ,m}

0 <
i+ l − 1

n
− t < i+ l

n
− t < i+ l

n
− i− 1

n
=
l + 1

n
≤ 1

k
.

It follows from (17) that for each l ∈ {1, . . . ,m}

∣∣∣∣X (i+ l

n
, ω

)
−X

(
i+ l − 1

n
, ω

)∣∣∣∣ ≤ j

(
l + 1

n

)γ
+ j

(
l

n

)γ
≤ 2j

(
m+ 1

n

)γ
.

Let

A
(n)
i,l =

{
|X( i+l

n
)−X( i+l−1

n
)| ≤ 2j

(
m+1
n

)γ}
,

A
(n)
i =

m⋂
l=1

A
(n)
i,l .

It then follows that

Mjk ⊂
n⋃
i=1

A
(n)
i .

From the assumption, there exists C > 0 such that

P (A
(n)
i ) = P

(
max
l=1,...,m

|X( i+l
n

)−X( i+l−1
n

)| ≤ 2j(m+ 1)γ
(

1
n

)γ) ≤ Cn−η,

P

(
n⋃
i=1

A
(n)
i

)
≤

n∑
i=1

P (A
(n)
i ) ≤ Cn−(η−1).

Now setting

A =
⋂

n>(m+1)k

n⋃
i=1

A
(n)
i ∈ F ,
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it follows that P (A) = 0, since η > 1.

The following simple corollary may also be established directly from the proof of

Theorem 2, Eq. (19).

Corollary 2. A process {X(t), t ∈ T } is a.s. nowhere Hölder continuous of order γ > 0

if for some η > 1 it holds that for every K > 0 there exists C > 0 such that

lim sup
t→0

P (|X(s+ t)−X(s)| ≤ Ktγ)

tη
≤ C, ∀s ∈ T .

Theorem 3 enables one to avoid using moments in deriving the bound. As an example,

we consider how Theorem 3 can be applied in the simple case when {X(t)} is BM. Since

{X(t)} is 1/2-sssi we have

P

(
max
l=1,...,m

|X(lt)−X((l − 1)t)| ≤ Ktγ
)

= P

(
max
l=1,...,m

|X(l)−X(l − 1)| ≤ Ktγ−1/2

)
.

Due to independent increments:

P

(
max
l=1,...,m

|X(l)−X(l − 1)| ≤ Ktγ−1/2

)
=
(
P
(
|X(1)| ≤ Ktγ−1/2

))m ≤ Ctm(γ−1/2).

This holds for every γ > 1/2 and m ∈ N and by taking m > 1/(γ−1/2) we conclude that

d(h) = −∞ for h > 1/2.

Before we proceed on applying these results, we state the following simple corollary

that expresses the criterion (20) in terms of the negative order moments, but now moments

of the maximum of increments. This is a generalization of Theorem 2, which enables

bypassing infinite negative order moments under very general conditions. In the next

section we apply this criterion to H-sssi processes.
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Corollary 3. Suppose that a process {X(t), t ∈ T } satisfies

E

[
max
l=1,...,m

|X(s+ lt)−X(s+ (l − 1)t)|
]α
≤ Ct1+β, ∀t, s ∈ T , (21)

for some α < 0, β < 0, m ∈ N and C > 0. Then a.s. {X(t)} is nowhere Hölder continuous

of order γ for every γ > β/α.

Proof. This follows directly from the Markov’s inequality for negative order moments and

Theorem 3 since

P

(
max
l=1,...,m

|X(s+ lt)−X(s+ (l − 1)t)| ≤ Ktγ
)

≤ K−αt−γαE

[
max
l=1,...,m

|X(s+ lt)−X(s+ (l − 1)t)|
]α
≤ K−αCt−αγ+1+β,

and 1 + β − αγ > 1.

3.3 The Case of Self-similar Stationary Increments Processes

In this subsection we refine our results for the case of H-sssi processes by using Corollary

3. These results can also be viewed in the light of the classical papers [32] and [33]. To

be able to apply Corollary 3, we need to make sure that the moment in (21) can be made

finite by choosing m large enough. We state this condition explicitly for reference.

Condition 1. Suppose {X(t), t ∈ T } is a stationary increments process. For every α < 0

there is m0 ∈ N such that

E

[
max

l=1,...,m0

|X(l)−X(l − 1)|
]α

<∞.

Unfortunately, Condition 1 is not always easy to check on the specific examples. How-

ever, if the process has independent increments, then the following criterion may be useful.

It applies for example to Brownian motion and stable Lévy motion.
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Lemma 1. If {X(t), t ∈ T } has stationary independent increments and P (|X(1) −

X(0)| ≤ t) = O(tr) for some r > 0 as t→ 0, then Condition 1 holds.

Proof. From (15) we have that

E

[
max
l=1,...,m

|X(l)−X(l − 1)|
]α

= −
∫ ∞

0

αyα−1P

(
max
l=1,...,m

|X(l)−X(l − 1)| ≤ y

)
dy

= −
∫ ∞

0

αyα−1P (|X(l)−X(l − 1)| ≤ y)m dy

≤ −
∫ ε

0

αyα−1Cmymrdy +

∫ ∞
ε

αyα−1dy <∞,

by taking m large enough.

Remark 3. Two examples may provide a deeper insight into Condition 1, as in these

examples Condition 1 fails to hold. First, if X(t) = tX for some random variable X, then

max
l=1,...,m

|X(l)−X(l − 1)| = X

and thus, Condition 1 depends on the range of finite moments of X. For the second

example, suppose X(t) =
∑btc

i=1 ξi, where ξi, i ∈ N, is an i.i.d. sequence such that

P (|ξ1| ≤ x) = − ln 2/ lnx for x ∈ (0, 1/2). This implies, in particular, that E|ξ1|r = ∞

for any r < 0. Moreover,

E

[
max
l=1,...,m

|X(l)−X(l − 1)|
]α

= −
∫ ∞

0

αyα−1P

(
max
l=1,...,m

|X(l)−X(l − 1)| ≤ y

)
dy

= −
∫ 1/2

0

αyα−1 (ln 2)m

(ln y)m
dy +

∫ ∞
1/2

αyα−1dy =∞,

for every α < 0 and m ∈ N, thus Condition 1 does not hold.

We next prove a general theorem about H-sssi processes.

Theorem 4. Suppose {X(t), t ≥ 0} is H-sssi stochastic process such that Condition 1
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holds and H − 1/q ≥ 0. Then a.s.

H − 1

q
≤ H(t) ≤ H, ∀t ≥ 0.

Proof. By the same argument as in the beginning of the proof of Theorem 2 it is enough to

take arbitrary γ > H. Given γ we take α < 1/(H−γ) < 0 which implies γ > H−1/α. Due

to Condition 1, we can choose m0 ∈ N such that E [maxl=1,...,m0 |X(lt)−X((l − 1)t)|]α <

∞. Self-similarity then implies that

E

[
max

l=1,...,m0

|X(lt)−X((l − 1)t)|
]α

= tHαE

[
max

l=1,...,m0

|X(l)−X(l − 1)|
]α

= Ct1+(Hα−1).

The claim now follows immediately from Corollary 3 with β = Hα−1 since γ > β/α.

A simple consequence of the preceding is the following statement.

Corollary 4. Suppose that Condition 1 holds. A H-sssi process with all positive order

moments finite has a trivial spectrum, i.e. d(h) = −∞ for h 6= H.

Remark 4. From Corollary 4 we conclude that, under very general conditions, a self-

similar stationary increments process with a nontrivial spectrum must be heavy-tailed.

This shows clearly how infinite moments can affect path properties when the scaling

property holds.

The following simple result shows how the nontrivial spectrum of a self-similar sta-

tionary increments process implies infinite moments of positive order.

Proposition 3. Suppose {X(t), t ≥ 0} is H-sssi. If γ < H and d(γ) 6= −∞, then

E|X(1)|q =∞ for q > 1/(H − γ).

Proof. Suppose E|X(t)|q <∞ for q > 1/(H − γ). Then for ε > 0 we can apply Markov’s
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inequality to get

P (|X(t)| ≥ Ktγ) = P
(
|X(1)| ≥ Ktγ−H

)
≤ E |X(1)|

1
H−γ+ε

K
1

H−γ+εt−1−ε(H−γ)
≤ Ct1+ε(H−γ).

By Corollary 1 this implies d(γ) = −∞, which is a contradiction.

3.4 The Case of Multifractal Processes

Our next goal is to show that in the definition (13) of H+ one can essentially take the

infimum over all q < 0. At the moment this makes no sense as τ from Definition 2 may not

be defined in this range. It is therefore necessary to redefine the meaning of the scaling

function and thus we work with the more general Definition 1.

In the next section we will see on the example of the log-normal cascade process that

when the multifractal process has all negative order moments finite, the bound derived

in Proposition 2 is sharp. In general, this would not be the case for any multifractal in

the sense of Definition 1. Take for example a multifractal random walk (MRW), which

is a compound process X(t) = B(θ(t)) where B is BM and θ is an independent cascade

process, say log-normal cascade (see [34]). The multifractality of the cascade for t < 1,

θ(t) =d M(t)θ(1) and multifractality of MRW imply that X(t) =d (M(t)θ(1))1/2B(1).

Now by the independence of B and θ, if E|B(1)|q =∞, then E|X(t)|q =∞. Since B(1)

is Gaussian, the moments will be infinite for q ≤ −1.

We thus provide a more general bound which only has a restriction on the moments

of the random factor from Definition 1. Therefore, if the process satisfies Definition 1 and

if the random factor M is multifractal by Definition 2 with scaling function τ , we define

H̃+ = inf

{
τ(q)

q
− 1

q
: q < 0 & E|M(t)|q <∞

}
.

Corollary 5. Suppose {X(t), t ∈ T } has stationary increments and Condition 1 holds.
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Suppose also it is multifractal by Definition 1 and the random factor M satisfies Definition

2 with scaling function τ . If E|M(t)|q < ∞, ∀t ∈ T for some q < 0, then a.s. {X(t)} is

nowhere Hölder continuous of order γ for every

γ ∈
(
τ(q)

q
− 1

q
, +∞

)
.

In particular, a.s.

H(t) ≤ H̃+, ∀t ∈ T .

Proof. By Condition 1, for m large enough it follows from the multifractal property (3)

that

E

[
max
l=1,...,m

|X(lt)−X((l − 1)t)|
]q

= E|M(t)|qE
[

max
l=1,...,m

|X(l)−X(l − 1)|
]q

= Ct1+τ(q)−1.

The claim now follows from Corollary 3 with α = q and β = τ(q)−1 and by the argument

at the beginning of the proof of Theorem 2.

In summary, we provide bounds on the support of the multifractal spectrum. We

show that the lower bound can be derived using positive order moments and link infinite

moments with path properties for the case of H-sssi process. In general, negative order

moments are not appropriate for explaining the right part of the spectrum. To derive

an upper bound on the support of the spectrum, we use negative order moments of the

maximum of increments. This may avoid the nonexistence of the negative order moments,

which is a property of the distribution itself.

4 EXAMPLES

In this section we list several examples of stochastic processes and investigate different

aspects of multifractality listed in Sec. 2. We show how the results of Sec. 3 apply in these
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cases and also discuss how the multifractal formalism could be achieved. Definitions and

further details on the processes considered are given in the Appendix.

4.1 Self-similar Processes

It follows from Theorem 4 and Corollary 4 that if H-sssi process satisfies Condition 1 and

has finite positive order moments, then the spectrum is simply

d(h) =


1, if h = H

−∞, otherwise.

This applies to e.g. BM. We conjecture that the same holds for the class of Hermite

processes (see e.g. [35, Sec. 7]), however, we were not able to check Condition 1 in this

case. The spectrum of Hermite processes has been studied numerically in ([36]). We now

discuss heavy tailed examples of H-sssi processes.

4.1.1 Stable Lévy Motion

Suppose {X(t)} is an α-stable Lévy motion. This process is 1/α-sssi and moment scaling

(5) holds but makes sense only for a range of finite moments, that is for Q = (−1, α) in

Definition 2. For this range of q, scaling function is τSLM(q) = q/α and the process is

self-similar. Due to infinite moments beyond order α the empirical scaling function (8)

will asymptotically behave for q > 0 as

τ∞α (q) =


q
α
, if 0 < q ≤ α,

1, if q > α.
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See [18] for the precise result. The nonlinearity points that the process would empirically

behave as multifractal. The spectrum of singularities is given by ([14]):

dSLM(h) =


αh, if h ∈ [0, 1/α],

−∞, if h > 1/α.

(22)

Hence the spectrum is nontrivial and supported on [0, 1/α]. These are exactly the bounds

given in Theorem 4 as in this case H = 1/α and q = α. We stress that even self-

similar processes can have multifractal paths and that this is closely related with infinite

moments.

We now discuss which form of the scaling function would yield the multifractal spec-

trum via the Legendre transform. This will highly depend on the range of q over which

the infimum in the Legendre transform is taken. If we consider Legendre transforms of

τSLM and τ∞α and take infimum over all positive q where they are defined, then one can

easily check that

inf
0<q<α

(hq − τSLM(q) + 1) = inf
0<q<∞

(hq − τ∞α (q) + 1) =


αh, if h ∈ [0, 1/α],

1, if h > 1/α.

This actually coincides with the true spectrum (22), except for the part h > 1/α, which

is the infimum obtained when q → 0. To correctly estimate this part one needs negative

order moments, which will be discussed later. So even though the moments beyond order

α are infinite, estimating infinite moments with the partition function can lead to the

correct spectrum of singularities.
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4.1.2 Linear Fractional Stable Motion

In the same manner we treat linear fractional stable motion (LFSM) (see Appendix for the

definition). The dependence introduces a new parameter in the scaling relations and the

spectrum. The LFSM {X(t)} is H-sssi and for the range of finite moments Q = (−1, α)

scaling function is τLFSM(q) = Hq. As follows from the results of [37] (see also [38], [39]

and [40]), empirical scaling function asymptotically behaves for q > −1 as

τ∞H,α(q) =


Hq, if 0 < q ≤ α,(
H − 1

α

)
q + 1, if q > α.

The combined influence of infinite moments and dependence produces concavity, pointing

to multifractality in the empirical sense. In [21], the spectrum was established for α ∈

[1, 2), H ∈ (0, 1) and the long-range dependence case H > 1/α:

dLFSM(h) =


α(h−H) + 1, if h ∈ [H − 1

α
, H],

−∞, otherwise.

(23)

It is known that in the case H < 1/α the sample paths are nowhere bounded, which

explains the assumptions. Since q = α is the tail index, Theorem 4 gives sharp bounds

on the support of the spectrum provided that the Condition 1 holds.

Considering Legendre transform of τLFSM over (0, α) gives

inf
0<q<α

(hq − τLFSM(q) + 1) =


α(h−H) + 1, if h ∈ [0, H],

1, if h > H.

Although the expression is similar to the true spectrum dLFSM defined in (23), the support
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is different. On the other hand, it is easy to check that

inf
0<q<∞

(
hq − τ∞H,α(q) + 1

)
=


−∞, if h < H − 1/α,

α(h−H) + 1, if h ∈ [H − 1/α,H],

1, if h > H.

Thus, the empirical scaling function will lead to a correct left part of the spectrum using

formalism. This reveals that the validity of the formalism may be limited if τ is specified

as in (5). Secondly, it shows the potential of the empirical scaling function and indicates

how infinite positive order moments are related with path properties when some scaling

property holds.

4.1.3 Inverse Stable Subordinator

The inverse stable subordinator {X(t)} is a non-decreasing α-ss stochastic process, for

some α ∈ (0, 1). The application of the results of the previous section for the inverse

stable subordinator is not straightforward as it has nonstationary increments, yet we can

prove that it has a trivial spectrum such that d(α) = 1.

To derive the lower bound we use Theorem 1. First recall that aα + bα ≤ (a+ b)α for

a, b ≥ 0 and α ∈ (0, 1). Taking a = t − s, b = s when t ≥ s and a = t, b = s − t when

t < s gives that |tα − sα| ≤ |t − s|α. Since {X(t)} has finite moments of every positive

order we have for arbitrary q > 0 and t, s > 0

E|X(t)−X(s)|q = |tα − sα|qE|X(1)|q ≤ E|X(1)|q|t− s|1+αq−1.

By Theorem 1 there exists modification which is a.s. locally Hölder continuous of order

γ < α−1/q. Since q can be taken arbitrarily large, we can get the modification such that

a.s. H(t) ≥ α for every t ≥ 0.
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For the upper bound we use Theorem 3. Given γ > α we choose m ∈ N such that

m > 1/(γ − α). If {Y (t)} is the corresponding stable subordinator, from the property

{X(t) ≤ a} = {Y (a) ≥ t} we have for every t1 < t2 and a > 0

{X(t2)−X(t1) ≤ a} = {Y (X(t1) + a) ≥ t2} = {Y (X(t1) + a)− t1 ≥ t2 − t1}.

By [41, Theorem 4, p. 77], for every t1 > 0, P (Y (X(t1)) > t1) = 1, thus, on this event

{Y (X(t1) + a)− t1 ≥ t2 − t1} ⊂ {Y (X(t1) + a)− Y (X(t1)) ≥ t2 − t1}.

Now by the strong Markov property choosing t small enough and stationarity of increments

of {Y (t)} we have

P

(
max
l=1,...,m

|X(s+ lt)−X(s+ (l − 1)t)| ≤ Ktγ
)

= P (X(s+ t)−X(s) ≤ Ktγ, . . . , X(s+mt)−X(s+ (m− 1)t) ≤ Ktγ)

≤ P (Y (X(s) +Ktγ)− Y (X(s)) ≥ t, . . . , Y (X(s+ (m− 1)t) +Ktγ)− Y (X(s+ (m− 1)t)) ≥ t)

≤ (P (Y (Ktγ) ≥ t))m =
(
P
(
Y (1) ≥ K−

1
α t1−

γ
α

))m
≤
(
Ctγ−α

)m
,

by the regular variation of the tail for t sufficiently small. Due to the choice of m,

m(γ − α) > 1. This property of the first-passage process has been noted in [41, p. 96].

4.2 Lévy Processes

Suppose {X(t), t ≥ 0} is a Lévy process. The Lévy processes in general do not satisfy the

moment scaling of the form (5). The only such examples are the BM and the α-stable

Lévy motion. However, it was shown in [18] that the data sampled from certain Lévy

processes may behave as obeying the scaling relation (7) in the sense that one can form

a plausible linear regression model relating lnSq(T, t) and ln t. More precisely, if X(1) is
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zero mean with heavy-tailed distribution with tail index α and if ti in (8) is of the form

T
i
N for i = 1, . . . , N , then for every q > 0 as T,N → ∞ the empirical scaling function

will asymptotically behave as

τ∞LP (q) =



q
α
, if 0 < q ≤ α & α ≤ 2,

1, if q > α & α ≤ 2,

q
2
, if 0 < q ≤ α & α > 2,

q
2

+ 2(α−q)2(2α+4q−3αq)
α3(2−q)2 , if q > α & α > 2.

(24)

See [18] and [42] for the proof and more details. This shows that estimating the scaling

function under infinite moments is influenced by the value of the tail index α and will

yield a concave shape of the scaling function.

The local regularity of Lévy processes has been established in [14] and extended in [21]

under weaker assumptions. Denote by β the Blumenthal-Getoor (BG) index of a Lévy

process, i.e.

β = inf

{
γ ≥ 0 :

∫
|x|≤1

|x|γπ(dx) <∞
}
,

where π is the corresponding Lévy measure. If σ is a Brownian component of the charac-

teristic triplet, define

β′ =


β, if σ = 0,

2, if σ 6= 0.

The multifractal spectrum of the Lévy process is given by

dLP (h) =


βh, if h ∈ [0, 1/β′),

1, if h = 1/β′,

−∞, if h > 1/β′.

(25)
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Thus the most Lévy processes have a nontrivial spectrum. Moreover, the estimated scaling

function and the spectrum are not related as they depend on the different parts of the

Lévy measure. The behaviour of the estimated scaling function is governed by the tail

index which depends on the behaviour of the Lévy measure at infinity since for q > 0,

E|X(1)|q <∞ is equivalent to
∫
|x|>1
|x|qπ(dx) <∞. On the other hand, the spectrum is

determined by the behaviour of π around origin, i.e. by the BG index. The discrepancy

happens as there is no exact scaling in the sense of (3) or (5). It is therefore important to

check the validity of relation (7) from the data. This may be problematic as it is hard to

distinguish exact scaling from the asymptotic one exhibited by a large class of processes.

As there is no exact moment scaling, Propositions 1 and 2 generally do not hold.

Thus, in order to establish bounds on the support of the spectrum we use other criteria

from Sec. 3. We present two analytically tractable examples to illustrate the use of these

criteria.

4.2.1 Inverse Gaussian Lévy Process

The inverse Gaussian Lévy process is a subordinator such that X(1) has an inverse Gaus-

sian distribution IG(δ, λ), δ > 0, λ ≥ 0, given by the density

f(x) =
δ√
2π
eδλx−3/2 exp

{
−1

2

(
δ2

x
+ λ2x

)}
, x > 0.

The expression for the cumulant function reveals that for each t, X(t) has IG(tδ, λ)

distribution. The Lévy measure is absolutely continuous with the density given by

g(x) =
δ√
2π
x−3/2 exp

{
−λ

2x

2

}
, x > 0,
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thus, the BG index is β = 1/2. See [43] for more details. The inverse Gaussian distribution

has moments of every order finite and for every q ∈ R we can express them as

E|X(1)|q =

∫ ∞
0

xqf(x)dx =
δ√
2π
eδλ
(

2

λ2

)q−1/2 ∫ ∞
0

xq−3/2 exp

{
−x− δ2λ2

4x

}
dx

=
δ√
2π
eδλ
(

2

λ2

)q−1/2

K−q+ 1
2
(δλ)2

(
δλ

2

)q− 1
2

=

√
2

π
eδλδq+

1
2λ−q+

1
2K−q+ 1

2
(δλ),

where we have used [44, Eq. (10.32.10)] and Kν denotes the modified Bessel function of

the second kind. This implies that

E|X(t)|q =

√
2

π
etδλtq+

1
2 δq+

1
2λ−q+

1
2K−q+ 1

2
(tδλ) ∼ Ctq+

1
2 t−|−q+

1
2
|, as t→ 0,

since Kν(z) ∼ 1
2
Γ(ν)(1

2
z)−ν for z > 0 and K−ν(z) = Kν(z). For any choice of γ > 0

condition of Corollary 1 cannot be fulfilled, so the best we can say is that the lower

bound is 0, in accordance with (25). Since negative order moments are finite, Corollary

2 yields the sharp upper bound on the spectrum. Indeed, given γ > 1/β = 2 we have for

q < 1/(2− γ) < 0

P (|X(t)| ≤ Ktγ) ≤ E|X(t)|q

Kqtγq
≤ Ct−q(γ−2),

for t sufficiently small. It follows that the upper bound is 2 which is exactly the reciprocal

of the BG index.

4.2.2 Tempered Stable Subordinator

The positive tempered stable distribution is obtained by exponentially tilting the Lévy

density of the α-stable distribution, 0 < α < 1. The tempered stable subordinator is a

Lévy process {X(t)} such that X(1) has a positive tempered stable distribution given by

the cumulant function

Φ(θ) = logE
[
e−θX(1)

]
= δλ− δ

(
λ1/α + 2θ

)α
, θ ≥ 0,
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where δ is the scale parameter of the stable distribution and λ is the tilt parameter. In

this case the BG index is equal to α (see [45] for more details). We use Corollary 2 for

γ > α to get

P (|X(t)| ≤ Ktγ) ≤ eE
[
e−

X(t)
Ktγ

]
= e1+tΦ(K−1t−γ) = O(e−t

1−γ/α
), as t→ 0.

As this decays faster than any power of t as t→ 0, the upper bound follows.

4.3 Multiplicative Cascade

Although it is ambiguous what multifractality means, some models are usually studied

in this sense. One of the first models of this kind is the multiplicative cascade. Cascades

are actually measures, but can be used to construct non-negative increasing multifractal

processes. The discrete cascades satisfy only discrete scaling invariance, in the sense that

Definition 2 is valid only on a discrete grid of points. Another drawback of these processes

is the nonstationarity of increments.

In [34], a class of measures has been constructed having continuous scaling invariance

and called multifractal random measures, thus generalizing the earlier cascade models.

We will refer to a process obtained from such measure simply as the cascade. Since this

is a notable example of a theoretically well developed multifractal process, we analyze it

in the view of the results of the preceding section. Furthermore, we consider only one

cascade process, the log-normal cascade (LNC). One can use cascades as subordinators

to BM to build more general models called log-infinitely divisible multifractal processes

(see [34, 46] and the references therein).

The following properties hold for the log-normal cascade {X(t)} with parameter λ2

([47]). First, {X(t)} satisfies Definition 1 with the random factor M(c) = c e2Γc where Γc

is Gaussian random variable and can therefore be considered as a true multifractal. The
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moment scaling holds with

τLNC(q) = q(1 + 2λ2)− 2λ2q2.

The increments of {X(t)} are heavy-tailed with tail index equal to 1/(2λ2) and moments

of every negative order are finite provided λ2 < 1/2 (see [48, Proposition 5]). Although the

asymptotic behaviour of the scaling function defined by (8) is unknown, there are results

for the estimator defined by (9). Fixed domain asymptotic properties of this estimator

for the multiplicative cascade have been established in [49] where it was shown that when

j →∞, the estimator (9) tends a.s. to

τ∞LNC(q) =


h−0 q, if q ≤ q−0 ,

q(1 + 2λ2)− 2λ2q2, if q−0 < q < q+
0

h+
0 q, if q ≥ q+

0 ,

(26)

where

q+
0 = inf{q ≥ 1 : qτ ′(q)− τ(q) + 1 ≤ 0} =

1√
2λ2

, (27)

q−0 = sup{q ≤ 0 : qτ ′(q)− τ(q) + 1 ≤ 0} = − 1√
2λ2

(28)

and h+
0 = τ ′(q+

0 ), h−0 = τ ′(q−0 ). Hence, the estimator (9) is consistent for a certain

range of q, while outside this interval the so-called linearization effect happens. Similar

results have been established in the mixed asymptotic framework [50]; see also [51] for a

different method. The spectrum of the log-normal cascade is supported on the interval[
1 + 2λ2 − 2

√
2λ2, 1 + 2λ2 + 2

√
2λ2
]
, given by

dLNC(h) = inf
q∈(−∞,1/(2λ2))

(hq − τLNC(q) + 1) = 1− (h− 1− 2λ2)2

8λ2
,
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and the multifractal formalism holds [52].

The condition τ(q) > 1 of Proposition 1 yields q ∈ (1, 1/(2λ2)). We then get that

H− = 1 + 2λ2 − 2
√

2λ2.

This is exactly the left endpoint of the interval where the spectrum of the cascade is

defined, in accordance with Proposition 1. This maximal lower bound is achieved for

q = 1/
√

2λ2 = q+
0 . If q− is the point at which maximal lower bound H− is achieved, then

(
τ(q)

q
− 1

q

)′
=

1

q2
(qτ ′(q)− τ(q) + 1)

must be equal to 0 at q−. This is exactly defined in (27). Although the range of finite

moments is not relevant for computing H− in this case, in general it can depend on q.

Since all negative order moments are finite we get that

H+ = H̃+ = 1 + 2λ2 + 2
√

2λ2

achieved for q = −1/
√

2λ2. Thus again the bound from Proposition 2 is sharp giving the

right endpoint of the interval where the spectrum is defined.

4.4 Multifractal Random Walk

With this example we want to show that we may have H+ 6= H̃+ and that the definition of

the scaling function needs to be adjusted to avoid infinite moments of negative order. The

log-normal multifractal random walk (LNMRW) is a compound process X(t) = B(θ(t))

where B is a BM and θ is the independent LNC (see [34]). The multifractal properties of

this process are inherited from those of the underlying cascade. Indeed, {X(t)} satisfies

Definition 1 with the random factor M(c) = c1/2 eΓc where Γc is a Gaussian random
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variable and the scaling function is given by

τLNMRW (q) = q

(
1

2
+ λ2

)
− λ2

2
q2.

The range of finite moments is (−1, 1/λ2) as explained in Subsec. 3.4. The spectrum is

finite on the interval
[
1/2 + λ2 −

√
2λ2, 1/2 + λ2 +

√
2λ2
]

and given by

dLNMRW (h) = 1− (h− 1/2− λ2)2

2λ2
.

The random factor M(c) is the source of multifractality, has the same scaling function,

but all negative order moments are finite. Thus we get

H− = 1/2 + λ2 −
√

2λ2,

H+ =
3

2
+

3λ2

2
,

H̃+ = 1/2 + λ2 +
√

2λ2.

One can see thatH− and H̃+ give the sharp bounds, whileH+ is affected by the divergence

of negative order moments. This shows that when the multifractal process has infinite

negative order moments, one should specify scaling in terms of the random factor.

5 ROBUST VERSION OF THE PARTITION FUNC-

TION

In Sec. 3 using Corollary 3 we managed to avoid the problematic infinite moments of

negative order and prove results like Theorem 4 and Corollary 5. When the scaling

function (8) is estimated from the data, spurious concavity may appear for negative

values of q due to the effect of diverging negative order moments. We use the idea of
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Corollary 3 to develop a more robust version of the partition function.

Instead of using plain increments in the partition function (6), we can use the maximum

of some fixed number m of the same length increments. This will make negative order

moments finite for some reasonable range and prevent divergencies. The underlying idea

also resembles the wavelet leaders method where leaders are formed as the maximum of

the wavelet coefficients over some time scale (see [25]). Since m is fixed, this does not

affect the true scaling. The same idea can be used for q > 0 by an argument following

from Corollary 1. It is important to stress that the estimation of the scaling function

makes sense only if the underlying process is known to possess scaling property of the

type (5).

Suppose {X(t)} has stationary increments and X(0) = 0. Divide the interval [0, T ]

into bT/(mt)c blocks each consisting of m increments of length t and define the modified

partition function:

S̃q(T, t) =
1

bT/(mt)c

bT/(mt)c−1∑
i=0

(
max
l=1,...,m

|X(imt+ lt)−X(imt+ (l − 1)t)|
)q

. (29)

One can see S̃q(T, t) as a natural estimator of the moment in (21). Analogously we define

the modified scaling function as in (8) by using S̃q(n, ti):

τ̃N,T (q) =

∑N
i=1 ln ti ln S̃q(n, ti)− 1

N

∑N
i=1 ln ti

∑N
j=1 ln S̃q(n, ti)∑N

i=1 (ln ti)
2 − 1

N

(∑N
i=1 ln ti

)2 . (30)

Another possibility is to change the original definition only for q < 0 although there is no

much difference between two forms when q > 0.

To illustrate how this modification makes the scaling function more robust we present

several examples comparing (8) and (30). We generate sample paths of several processes

and estimate the scaling function by both methods. We also estimate the spectrum

numerically using (11). The results are shown in Figures 1-4. Each figure shows the
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estimated scaling functions and the estimated spectrum by using standard definition (8)

and by using (30). We also added the plots of the scaling function that would yield the

correct spectrum via multifractal formalism and the true spectrum of the process.

For the BM (Figure 1) and the α-stable Lévy process (Figure 2) we generated sample

paths of length 10000 and we used α = 1 for the latter. The LFSM (Figure 3) was

generated using H = 0.9 and α = 1.2 with path length 15784 (see [53] for details on the

simulation algorithm used). Finally, the LNMRW of length 10000 was generated with

λ2 = 0.025 (Figure 4). For each case we take m = 20 in defining the modified partition

function (29).

In all the examples considered, the modified scaling function is capable of yielding

the correct spectrum of the process with the multifractal formalism. As opposed to the

standard definition, it is unaffected by diverging negative order moments. Moreover, it

captures the divergence of positive order moments which determines the shape of the

spectrum.
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Figure 1: Brownian motion
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Figure 2: Stable Lévy motion α = 1
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Figure 3: Linear fractional stable motion H = 0.9, α = 1.2
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Figure 4: Log-normal multifractal random walk λ2 = 0.025
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[14] S. Jaffard. The multifractal nature of Lévy processes. Probability Theory and Related

Fields, 114(2):207–227, 1999.

[15] P. Embrechts and M. Maejima. Selfsimilar Processes. Princeton University Press,

2002.
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[45] W. Schoutens. Lévy processes in finance: pricing financial derivatives. Wiley, New

York, 2003.

[46] C. Ludeña. Lp-variations for multifractal fractional random walks. The Annals of

Applied Probability, 18(3):1138–1163, 2008.

[47] E. Bacry, A. Kozhemyak, and J.-F. Muzy. Continuous cascade models for asset

returns. Journal of Economic Dynamics and Control, 32(1):156–199, 2008.

[48] E. Bacry, A. Kozhemyak, and J.-F. Muzy. Log-normal continuous cascade model

of asset returns: aggregation properties and estimation. Quantitative Finance,

13(5):795–818, 2013.

[49] M. Ossiander and E. C. Waymire. Statistical estimation for multiplicative cascades.

The Annals of Statistics, 28(6):1533–1560, 2000.

46



Support of the multifractal spectrum

[50] E. Bacry, A. Gloter, M. Hoffmann, and J. F. Muzy. Multifractal analysis in a mixed

asymptotic framework. The Annals of Applied Probability, 20(5):1729–1760, 2010.

[51] C. Ludeña and P. Soulier. Estimating the scaling function of multifractal measures

and multifractal random walks using ratios. Bernoulli, 20(1):334–376, 2014.

[52] J. Barral and B. B. Mandelbrot. Multifractal products of cylindrical pulses. Proba-

bility Theory and Related Fields, 124(3):409–430, 2002.

[53] S. Stoev and M. S. Taqqu. Simulation methods for linear fractional stable motion

and FARIMA using the Fast Fourier Transform. Fractals, 12(01):95–121, 2004.

[54] G. Samorodnitsky and M. S. Taqqu. Stable Non-Gaussian Random Processes:

Stochastic Models with Infinite Variance. Chapman & Hall, New York, 1994.

[55] M. M. Meerschaert and P. Straka. Inverse stable subordinators. Mathematical Mod-

elling of Natural Phenomena, 8(02):1–16, 2013.

APPENDIX

We provide a brief overview of different classes of stochastic processes that are used along

the paper.

A Lévy process is a process with stationary and independent increments starting form

0 and stochastically continuous at 0. Given an infinitely divisible distribution there exists

a Lévy process such that X(1) has this distribution. Moreover, the characteristic function

can be uniquely represented by the Lévy-Khintchine formula. See [41] and [45] for more

details.

An α-stable Lévy motion is a process such that X(1) has strictly stable distribution

with stability index 0 < α < 2. In general, a random variable X has an α-stable distri-

bution with index of stability α ∈ (0, 2), scale parameter σ ∈ (0,∞), skewness parameter
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β ∈ [−1, 1] and shift parameter µ ∈ R, denoted by X ∼ Sα(σ, β, µ), if its characteristic

function has the following form

E exp{iζX} =


exp

{
−σα|ζ|α

(
1− iβsign(ζ) tan απ

2
+ iζµ

)}
, if α 6= 1,

exp
{
−σ|ζ|

(
1− iβ 2

π
sign(ζ) ln |ζ|+ iζµ

)}
, if α = 1,

ζ ∈ R.

The stable distribution is strictly stable if µ = 0 and α 6= 1, or if β = 0 and α = 1. The

stable Lévy motion is 1/α-sssi.

The linear fractional stable motion (LFSM) is an example of a process with heavy-

tailed and dependent increments. It can be defined through the stochastic integral

X(t) =
1

CH,α

∫
R

(
(t− u)

H−1/α
+ − (−u)

H−1/α
+

)
dLα(u),

where {Lα} is a strictly α-stable Lévy process, α ∈ (0, 2), 0 < H < 1 and (x)+ =

max(x, 0). The constant CH,α is chosen such that the scaling parameter of X(1) equals

1, i.e.

CH,α =

(∫
R

∣∣∣(1− u)
H−1/α
+ − (−u)

H−1/α
+

∣∣∣α du)1/α

.

It is then called standard LFSM. The LFSM is H-sssi. Setting α = 2 in the definition

reduces the LFSM to the FBM. By analogy to this process, the case H > 1/α is referred to

as a long-range dependence and the case H < 1/α as negative dependence. The parameter

α governs the tail behaviour of the marginal distributions implying, in particular, that

E|X(t)|q =∞ for q ≥ α. For more details see [54].

A Lévy process {Y (t)} such that Y (1) ∼ Sα(σ, 1, 0), 0 < α < 1 is referred to as the

stable subordinator. It is nondecreasing and 1/α-sssi. The inverse stable subordinator

{X(t)} is defined as

X(t) = inf {s > 0 : Y (u) > t} .

It is α-ss with dependent, nonstationary increments and corresponds to a first passage time
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of the stable subordinator strictly above level t. For more details see [55] and references

therein.

49


