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Tuberculosis is a major global health hazard. The search for new antimycobacterials has focused on such as
screening combinational chemistry libraries or designing chemicals to target prede�ned pockets of essen-
tial bacterial proteins. The relative ineffectiveness of these has led to a reappraisal of natural products for
new antimycobacterial drug leads. However, progress has been limited, we suggest through a failure in
many cases to de�ne the drug target and optimize the hits using this information. We highlight methods
of target discovery needed to develop a drug into a candidate for clinical trials. We incorporate these into
suggested analysis pipelines which could inform the research strategies to accelerate the development of
new drug leads from natural products.
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Natural products: moving back to the forefront of antimycobacterial target discovery
Tuberculosis (TB) is the world’s leading cause of death from infectious disease, causing an estimated 1.4 million
deaths in 2015 [1]. This effectively represents a reverse of trends seen during the middle years of the 20th century
when antibiotics, developed from the 1940s, appeared to be effective in controlling the disease. However, over the
last two decades TB is again a major public health hazard with the appearance of drug-resistant strains of TB,
multidrug-resistant TB (MDR-TB), extensively drug-resistant TB (XDR-TB) and more recently strains resistant
to all the antitubercular chemotherapies [2]. This situation has arisen for a great extent due to the complex drug
therapy regime used for TB which reduces patient compliance and adherence to prescribed medication. Thus,
antitubercular chemotherapy comprises at least a 6-month drug regimen involving an initial 2-month phase of four
agents (isoniazid, rifampicin, pyrazinamide and ethambutol) followed by an additional 4 months with isoniazid
and rifampicin [3,4].

MDR-TB is resistant to both ifampicin and isoniazid, the most effective antituberculous drugs. XDR-TB strains
are resistant to at least rifampicin and isoniazid but also fluoroquinolones and to, at least, one of the injectable drugs;
capreomycin, kanamycin or amikacin. Treatment of MDR-TB consists of a 2-year therapy with a combination of
four to six first- and second-line antitubercular drugs [5]. TB control is therefore contingent on the development of
new drugs and in the past decade there have been major efforts made in this area. There is also a need for new drugs
that act quickly, giving fewer opportunities for the TB-causing organism to develop resistance. Any new drugs also
need to be inexpensive to produce, so that it can be widely adopted in countries outside of the first world. Due to
renewed research and development efforts, bedaquiline, a diarylquinolone, became the first anti-TB drug approved
by the US FDA in more than 40 years [6]. Additionally, innovative methodologies have allowed the development
of more effective therapies, the ‘revitalization’ of old drugs, re-use of drugs in different contexts, and the reduction
of drugs rejected due to their toxicity profile. A vitally important aspect of research leading to new drugs or use of
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existing drugs is a requirement to fully comprehend, at least as far as possible, their mechanisms of action and, this
way, prevent problems with toxicity at the early stages of clinical trials.

In the early part of the last century, research into natural products was prominent in the search for new
drug leads. Indeed, the attractiveness of natural products is obvious considering they reflect the outcome of
evolutionary pressures acting on genomes to produce bioactives to serve many roles including antimicrobial [7].
Streptomycin, isolated from actino-bacterium Streptomyces griseus, is an important example and on first introduction
was as a standard treatment against TB. However, with the emergence of drug-resistant strains of TB and its
increased prevalence with the onset of human immunodeficiency virus/acquired immune deficiency syndrome
(HIV/AIDS), streptomycin has been replaced by other therapies. Streptomycin is also problematic due to its
oto- and nephrotoxicity with prolonged therapies [8]. With the advent of combinatorial chemistry and high-
throughput screening strategies, drug discovery focusing on natural products became less popular. It was thought
that screening vast combinatorial libraries would speed up the development process by eliminating lengthy natural
product identification and often complex synthesis programs. As a result of the combinatorial library focus, very few
antibiotics, derived or based on natural products, had been approved in the past two decades by the FDA.. However,
the poor hit rate though of the combinatorial approach and low diversity of the libraries led to some big Pharma
companies abandoning this approach and looking for new and better ways to explore natural products.

The importance of a good antimycobacterial therapy does not reside only on drug potency and safety, but also
in some key features that targets should display. Kana et al. defines the ‘ideal’ target as a macromolecule that acts
in the growth, survival and latency of the bacteria, regulates crucial checkpoints of bacterial metabolism, has a low
tolerance for mutation and is found at targetable locations within the cell. Additionally, the drug target must not
show such similarity with human homologs enough to compromise the drug safety [9]. To meet such requirements
many groups favor an approach where drugs are derived to known mycobacterial proteins. Besides, avoiding the
possibility of new, unexpected targets being defined, this approach could be flawed since it does not consider the
cell environment as essential to the drug’s mode of action. Thus, several details are not evaluated; for example, the
pharmacokinetics of drug internalization by the mycobacteria, innate resistance mechanisms (e.g., efflux pumps)
and the physico-chemical properties of both bacteria and compound. Consequently, potent inhibitors of a specific
target can display unsatisfactory values of in vitro minimum inhibitory concentration (MIC) against Mycobacterium
species [10]. One example of target-based drug discovery that has recently failed is isocitrate lyase, a key enzyme
within the glyoxylate shunt pathway. This enzyme was suggested as a suitable target since it is essential to the growth
and virulence of M. tuberculosis in both acute and chronic phases of infection [11]. This work was discontinued most
likely to the target active site being ‘shallow’ and lack of hydrophobic patches that could be targets for inhibitors [12].
None of the drugs that are currently in clinical trials have arisen following a target-to-drug approach and instead
these have tended to follow drug-to-target strategies based on whole cell-based screenings [13].

It is against this background that natural product discovery based on whole-cell screenings has become a viable
strategy to provide druggable molecules. However, this strategy should be combined with innovative ‘-omics’
technologies, chemical biology and genetics which have made possible the discovery of new drug and target
leads [14]. This is especially useful in the search for new agents against M. tuberculosis where natural products
have assumed a prominent role [15]. The potential of natural products as antimycobacterial drug leads lies in their
intrinsic cell permeability and structural, functional and stereochemical diversity, that provide unique scaffolds for
further drug optimization toward increased potency and selectivity [16,17]. Moreover, new natural products could
be a useful tool to unveil the role of several proteins that are transcribed from the M. tuberculosis genome but whose
functions are unknown [18,19].

These points, notwithstanding the recent failures to take forward natural products or their derived synthetics,
needs to be recognized and the underlying causes identified. We suggest that these arise through incomplete
workflow methodologies that massively affect further development of an antitubercular drug. A cursory glance
at the literature will show many examples of antimycobacterial activity being detected in a natural product but
these observations are not further characterized and can be thought of as effectively useless from the perspective of
defining a new drug lead. In particular, the unequivocal identification of the biological target coupled with a clear
mechanism of action of the bioactive is often not done [20]. This is essential to allow the reduction in the number
of microbial ‘off-targets’ and toxicity to human systems and so leading to the development of potent and safe drugs
against M. tuberculosis.

This review will focus on antimycobacterial target discovery methodologies and highlight examples of ‘best
practice’ where natural product research has included optimization of target identification and validation steps
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Figure 1. Chemical structures of thiolactomycin, brunsvicamide B and C and berberine.

(Table 1) [21]. In doing so, it will identify potential pipelines for target discovery and validation which could inform
research strategies based on natural products. For readers wishing to consider only the discovery of antimycobacterial
natural products, we recommend the following review articles [22–24].

Methodological options for target discovery
Biochemical approaches
The ‘classical’ approach to target discovery and validation aims to assess biochemical differences arising following
treatment with the natural product. Such change could arise from the perturbation of enzymatic activities and these
approaches can give valuable insights of the mode of action and target. Putative mycobacterial targets that have been
explored using this strategy can be classified according to the pathway they affect. Thus, notable biochemical targets
have proven to be in peptidoglycan biosynthesis, arabinogalactan and lipoarabinomanan biosynthesis, mycolic acids
biosynthesis, shikimate pathway, pantothenate biosynthesis, biotine pathway, glyoxylate shunt pathway and DNA
metabolism [25,26].

Scientists following such biochemical approaches have provided some essential insights to a robust, multifaceted
pipeline that can yield some potentially druggable antimycobacterials. Thiolactomycin (TLM) (Figure 1) was
isolated from Nocardia sp., and displays an MIC of 25 µg/ml against M. tuberculosis [27]. Despite the quite high
MIC, TLM’s physicochemical properties, its low cytotoxicity in ex vivo macrophage models and high in vivo
availability, are features that encouraged its further development [27–29]. Several studies have revealed that both
β-ketoacyl-ACP synthases I/II and acetyl coenzyme-A (CoA) were targets of TLM in E. coli [30]. Based on the
incorporation of radiolabeled isotopes into fatty acids and mycolic acid metabolism, it was concluded that TLM
reversibly inhibits the synthesis of both fatty acids and mycolic acids with a high selectivity (at 0.75 µg/ml) for
Fas-II β-ketoacyl-ACP synthase [31]. Kremer et al. overexpressed KasA and KasB, two synthases belonging to the
Fas-II family, to validate these as targets of TLM [32]. Several analogs of TLM, either in racemic mixtures or as pure
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enantiomers, have been synthesized and tested in vitro against M. tuberculosis [33]. When considered together, these
TLM analogues will contribute to structure–activity relationship (SAR) studies, vital for TLM optimization. Thus,
a dataset of 40 TLM analogs, β-ketoacyl-ACP synthase III (mtFabH) inhibitors were subjected to a 3D-quantitative
structure–activity relationship (3D-QSAR) analysis. The derived QSAR model and associated docking studies is
informing our understanding of the mechanism of TLM as an mtFabH inhibitor [34].

Brunsvicamides are cyclic hexapeptides that were first isolated from the cyanobacterium Trychonema. These,
especially Brunsvicamide B and C (Figure 1), were shown to target protein tyrosine phosphatase B (MptpB) which
is an essential virulence factor of mycobacterial species. The activity of these compounds were successfully assessed
against a range of protein phosphatases where MptpB showed an IC50 of 7.3µM [35]. The characterization of MptpB
as the target directly led to the identification of novel synthetic inhibitors of this protein using high-throughput
screens [36]. These, along with diverse natural variants could provide sufficient chemical diversity to perform SAR
studies of MptpB and therefore new treatments for tuberculosis [37].

Another example is berberine (Figure 1), a natural benzylisoquinoline alkaloid obtained from the plant genus
Berberis. This was found to be active against M. smegmatis and MDR-TB at 25 µg/ml [38]. Studies which included
in silico molecular docking analysis revealed the target to be a protein called Ftsz [39]. This protein forms a ring to
aid in the formation of the septum between dividing bacterial cells. Additionally proper ordering of the septum is
dependent on FtsZ GTPase activity. Berberine was found to inhibit Fstz ring assembly in a dose-dependent manner
by a real-time light-scattering assay and GTPase activity using a GTP hydrolysis assay. The binding between Ftsz
and berberine were confirmed by isothermal titration calorimetry. The clear identification of this protein as the
berberine target led directly to the derivation of berberine analogues aimed at an SAR analysis using 2D- and
3D-QSAR [40,41]. The relative success of these analyses will be an important determinant in the optimization of
berberine as a potential drug.

Genomic-based approaches
Some of the more recent approaches used in drug target discovery take advantage of the great advances in genome
sequencing capabilities. These encompass a wide variety of approaches including transcriptomic analyses and DNA-
protein binding studies based on chromatin immunoprecipitation (ChIP). In this approach, antibodies are used
to enrich for particular chromatin components and the relative amount of associated DNA sequences can reveal
epigenetic control points [42].

Considering genomic approaches to search for antimycobacterials targets, some are based on screening genomic
libraries for clones that could confer tolerance when expressed in heterologous hosts. This methodology was used
to identify the targets for halicyclamine A, trichoderin A and agelasine D, three natural products derived from the
marine sponges Haliclona sp. 05A08, Trichoderma sp. and the genus Agelas, respectively (Figure 2) [43–45]. Genomic
cosmid libraries were constructed from strains of M. smegmatis and M. bovis BCG which exhibited spontaneous
resistance to one of the above compounds and each cosmid was introduced into a susceptible strain. Cosmids with
derived alleles that are mutated in the target(s) could increase the MIC required to affect the recipient mycobacterial
strain. By following this strategy, DedA was identified as the target of halicyclamine A and BCG3185c as the target
for agelasine D [46,47], but unfortunately, these results were not validated by other approaches. In contrast, cosmid
screening suggested that trichoderin A targeted ATP synthase, which was validated by measurements of the ATP
content in M. bovis BCG [48]. The first total synthesis of trichoderin A has recently been described and this will be
essential in SAR studies [49].

Moving beyond cosmid library screening, whole-genome sequencing (WGS) analyses are assuming a very
significant role in target discovery by (for example) identifying distinctive genes present only within Mycobacterium.
However, this powerful approach needs to be carefully used as suggested targets can be intractable, nonessential or
undrugabble [50]. Thus, we suggest that the genomic information should be used within a combined methodology
pipeline complemented by validation techniques based on target discovery on tuberculosis [13]. This pipeline could
be as follows. First, the MIC must be confirmed using whole mycobacterial cell based in vitro screens. These will
inform what concentrations of natural target to use in suggestive rounds of culturing with the aim of deriving
variants which exhibit resistance. Such resistance could arise from target overexpression of deletion, transcriptional
or translational disruption or mutation of a key motif. Bacterial DNA from mutants that are resistant to high
concentrations of the specific molecule is extracted and sequenced, aiming at confirmation of the mutational
site [51].
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Figure 2. Chemical structures of halicyclamine A, trichoderin A, agelasine D, pyridomycin and lassomycin.

This seemingly straight-forward strategy may be confounded by the up-regulation of bacterial defence mech-
anisms such as efflux pumps. Indeed, increased activity of efflux pumps may be a bacterial response to the
xenometabolite, rather than direct genetic alteration of operons encoding mutations in the efflux pumps. In this
context, it is relevant that antibiotic resistance clinical isolates do not show any mutations in the genes and regulators
of bacterial efflux systems. As a result the efflux pumps can provide ‘false-positives’ in other words, strains where
there have been no mutations events linked to the bioactive target. Thus, Ioerger et al. suggested the inclusion of
an efflux-pump inhibitor then screening for mycobacterial resistance to any bioactive [51]. Suitable efflux-pump
inhibitors could be natural products such as reserpine or verapamil [52].
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The discovery of the recent natural product lead against TB, pyridomycin (Figure 2), is an example of a
complete and validated target discovery based research, which included genomic analyses. Pyridomycin, was isolated
from Dactylosporangium fulvum and Streptomyces pyridomyceticus, and exhibited a MIC of 0.39 µg/ml against M.
tuberculosis. Hartkoorn and his colleagues identified InhA, an NADH-dependent enoyl-Acyl-Carrier-Protein as
the principal target of pyridomycin following WGS of a resistant mutant colony of M. tuberculosis. Although
InhA is also the target of isoniazid, pyridomycin behaves as a competitive inhibitor of this protein as shown by its
activity against isoniazid-resistant clinical isolates. To validate the target, wild-type inhA and the mutant form was
overexpressed in M. tuberculosis H37Rv and this allowed the steady-state kinetics and susceptibility to isoniazid
and pyridomycin to be accurately measured [53].

Insights on lassomycin (Figure 2) mode of action were also made using a WGS approach. Lassomycin was
isolated from Lentzea kentuckyensis spp. IO0009804 and exhibits MIC ranging between 0.41 and 1.65 µM against
M. tuberculosis, MDR-TB and XDR-TB strains. WGS identified mutations in the clpc1 gene in six spontaneous
lassomycin-resistant M. tuberculosis colonies. This gene encodes the ClpC1 subunit of the hexameric ATPase
complex and this target was validated by measuring ATP hydrolysis and ATP-dependent protein breakdown by
ClpP1P2. To understand the mechanism of action of lassomycin, a molecular docking approach was performed,
focussing on the mutated sites revealed by WGS [54]. This study also highlighted the requirement to sequence
multiple spontaneous mutants in order to demonstrate consistent genetic alterations in a putative target as against
a background of genetic changes that would be unlinked to the resistance mechanism. Such a strategy could also
reveal mechanisms based on multiple components acting synergistically. Thus, the increasing the number of mutant
sequences would increase the likelihood of any inferred resistance mechanism being correct. Thus, six mutants were
sequenced to suggest the lassomycin target but the actual number sequenced in other projects could be limited by
financial resources.

Proteomic approaches
In situ identification of protein–molecule interactions is another valuable tool for the discovery of targets in a
native cellular environment. These are based on advances in organic chemistry that have permitted the detection of
target and off-target interactions by the modification of key ‘activatable’ groups of active molecules [55,56]. Chemical
proteomics is based on the manipulation of a natural product of interest with a tag, normally a terminal alkyne,
azide or cyclopropene, which will react via bio-orthogonal ‘click’ chemistry reaction with a fluorophore or affinity
label. This reaction will occur after cells, previously incubated with the natural product, are lyzed. These terminal
groups are small enough to not interfere negatively with the molecular binding between the target and the reactive
site on the natural product. Biotin or a fluorophore can be directly attached to the natural product, instead of the
tag, if permitted by their reactivity. The result of the reaction between the natural product and the fluorophore or
affinity label can be analyzed by SDS-PAGE with in-gel fluorescence or LC–MS proteomics [57].

An affinity-based method was used to discover the target of agrimophol (Figure 3), a phloroglucinol from
Agrimonia pilosa, which is a plant used in traditional Chinese medicine. Interestingly, this strategy was followed
when no agrimophol-resistant mutants were obtained. Whole-cell based screens against M. tuberculosis found that
agrimophol was able to inhibit pH homeostasis. A click-chemistry reaction was carried out to produce a biotinylated
triazole and proteins were fractionated by SDS-PAGE. Following screening with the prebiotinylated probe a1b, the
M. tuberculosis protein Rv3852; whose function is unclear, was suggested as the target of agrimophol; a conclusion
that was further validated by protein mass fingerprinting [58]. A similar methodology was used to discover the
target of cyclomarin A (Figure 3) produced by a marine bacterium (Streptomyces sp.) [59]. This is a cyclic peptide,
identified from a whole-cell screening, and has MICs of 0.3 and 2.5 µM against M. tuberculosis in culture broth
and in human-derived macrophages, respectively [59]. In attempting the identification of the cyclomarin A target in
M. tuberculosis, no spontaneous resistant mutants could be isolated. Therefore, a proteomics approach appeared to
be an appropriate alternative method. Here, cyclomarin A was linked to sepharose beads and co-incubated with a
M. bovis BCG cell lysate to enrich for the interacting target. The mixture was then separated using SDS-PAGE gels
to reveal ClpC1 was the major cyclomarin A interactor [59]. With the target now defined follow on studies revealed
the co-crystal structure of the complex cyclomarin A-ClpC1. This will be indispensable to the design and synthesis
of new antimycobacterials that target ClpC1 [60].

Another strategy that can be used to identify targets from natural products is drug affinity responsive target
stability. It is based on the protective action against proteolysis conferred through target–protein interactions.
Comparison of the degradation patterns in natural product interacting (‘protected’) samples versus ‘unprotected’
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controls can be used to suggest protein targets. This technique is known to be fast and avoids any costly structural
modifications on the natural product as demanded in the techniques described previously.

Ecumicin (Figure 3), a macrocyclic tridecapeptide isolated from Nonomuraea sp. MJM5123, was discovered
following high-throughput screening from different extracts of several actinomycetes [61]. It was highly active against
M. tuberculosis, (MIC 0.26 µg/ml) and against strains resistant to streptomycin, rifampicin and cycloserine [61] but
its further development required definition of its mode of action within the bacteria. Initially, the genomic DNA of
ecumicin-resistant strains of M. tuberculosis were sequenced and compared with the corresponding wild-type strain.
As with agrimophol ClpC1, was one of the targets found and was further validated using a proteomics-based test
for drug affinity responsive target stability. Thus, ecumicin was able to protect ClpC1 from nonspecific proteolytic
degradation in wild-type M. tuberculosis but not in the mutated form. Additional validation was made after LC–MS
analysis of the excised band. In a logical, and important further step, Gao et al. co-crystallized ecumicin docked
with ClpC1 which provided crucial information on the protein pocket required for interaction with the natural
product and hence its molecular mechanisms of action. This information has facilitated the informed design of
synthetic derivatives of ecumicin that could be more effective antibiotics [62].
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Figure 4. Strategies for antimycobacterial discovery pipeline from natural products.
MBC: Minimal bactericidal concentration; MIC: Minimal inhibitory concentration.

Computational chemistry strategies to inform & optimize antimycobacterial natural products
X-ray crystallography can provide important insights on specific binding between drug and target through high-
resolution 3D structural data. For instance, x-rays were used to confirm that N-terminus of ClpCq bound lassomycin
via positively charged guanidium groups. Docking studies showed that the N-terminal Gln17 was the major
interacting residue through hydrogen binding. Moreover, lassomycin binding was reduced when Gln17 was mutated
to Arg- or His [54].

The widespread use of x-ray crystallography has led to a rapid increase in 3D protein structures suitable to
use in in silico methods for hit identification and lead optimization. In addition to the computational chemistry
methodologies that have been successfully applied on natural products to optimize drugs with antimycobacterial
activity, other drug design techniques show considerable promise. Fragment-based de novo drug design, for instance,
has enabled the redesigning of molecules, in a drug-target environment. This has led to the production of more
active synthetic molecules based on the original scaffold and interactions [63]. However, this method has never been
used in drug design of natural products against tuberculosis targets [64].

Different techniques in computational chemistry now also play important roles in optimization of a drug where
previous research can be considered to only have provided a scaffold for further development. Once again natural
products are often not taken forward to this important stage as no target is identified and validated and so will fail in
the advancing the druggability of any identified bioactive. Thus, computerized approaches allow the visualization
and analysis of 3D structures of the bioactive molecule and the target protein and their interactions. Based on
these, it is possible to use virtual screening approaches to design derivatives, which allow better interaction between
target and drug without altering its physical and chemical properties, assuring the drug is effective and not toxic
and making synthesis more efficient. This was successfully applied with the generation and screening of new InhA
inhibitors in silico [65].

Although, these approaches are powerful, they seldom can function ex nihilo in other words, design a drug
based only on knowledge of the protein target pocket. Given this, natural product libraries play an important role
in screening as they present a wide-ranging diversity of scaffolds complemented with a range of structural and
functional features [66].

Future perspective
The examples given above have highlighted several approaches used to exploit natural products as new antimy-
cobacterial drugs. Although, these present impressive progress, none has yet achieved the status of a commercially
available drug. This reflects the relative ease that antimycobacterial natural products can be identified but is not
matched by strategies where their targets are quickly defined. Without this, the value of a natural product as
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a drug lead cannot be assessed and, if suitable, further optimized. However, current research has also furnished
approaches which can be rationalized into a robust discovery pipeline; often based on the use of the latest genomic
and computational platforms (Figure 4). It should be noted that key steps in the pipeline, target discovery and lead
optimization, encompass many approaches. Particularly with target discovery, adoption of multiple approaches
at each step will undoubtedly increase the probability of successful definition of the targets, and not ‘off-targets’
for antimycobacterial activity. Therefore, the results of multiple strategies should be complementary and mutually
confirmatory. This would also represent an efficient use of resources since the process of obtaining the natural prod-
ucts with their typically low yields, sometimes difficulty in confirming structures and complex/expensive synthetic
routes, can impede progress. Given these points, research groups are urged to follow such a strategy to increase the
probability of success; in other words, leading to drug candidates. This would allow the power of natural selection
acting on natural products to be more effectively exploited in the search for new antimycobacterials.

Executive summary

Dif�culties of target deconvolution
• High-throughput screenings of combinatorial libraries for target discovery have a poor hit rate.

• Natural products yield scaffolds that can be used as tools toward novel targets discovery.
Target discovery from natural products
• Natural products based research programs normally do not follow a complete pipeline of target discovery and

validation.

• Whole-cell based screenings combined with ‘-omics’ technologies make possible the discovery of new targets
from new drug leads.

• Use of ‘-omics’ allows small amount of sample to discover of new targets.

• Target discovery allows the consequent rational optimization of compounds or total synthesis by de novo
techniques.
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