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Summary

The 'omics revolution has made a large amount of sequence data available to researchers and the

industry.  This  has  had  a  profound  impact  in  the  field  of  bioinformatics,  stimulating

unprecedented  advancements  in  this  discipline.  Mostly,  this  is  usually  looked  at  from  the

perspective  of  human  'omics,  in  particular  human  genomics.  Plant  and  animal  genomics,

however, have also been deeply influenced by next-generation sequencing (NGS) technologies,

with several genomics applications now popular among researcher and the breeding industry.

Genomics  tends  to  generate  huge  amounts  of  data:  genomic  sequence  data  account  for  an

increasing proportion of Big Data in biological sciences, thanks largely to decreasing sequencing

costs and large-scale sequencing and resequencing projects.

The analysis of big data poses a challenge to scientists: data gathering currently takes place at a

faster  pace  than  data  processing  and  analysis,  and  the  associated  computational  burden  is

increasingly taxing, making even simple manipulation, visualization and transferring of data a

cumbersome operation. The time taken up by the processing and analysing of huge data sets

leaves therefore little time for data quality assessment and critical interpretation. Additionally,

when analysing lots of data something is likely to go awry: the software (pipeline, procedure)

may crash or stop, and it can be very frustrating to track the error.

We hereby review the most relevant issues related to tackling these challenges and problems,

from the perspective of animal genomics, and provide researchers with a framework of steps

needed when processing large genomic data sets.

KEYWORDS: big data, genomics, data analysis, next-generation sequencing, animal genetics,

‘omics, computational biology

INTRODUCTION

Big data: these two words have become buzzwords in diverse disciplines. They refer -broadly

speaking- to the large quantity of data made available through the extraordinary technological

improvements in the automated collection of information (Lohr, 2012). Big data have brought

about a whole new epistemology, leading to the emergence of a fourth paradigm in science (Hey

et al.  2009, Bell,  2009; Kitchin,  2014), that is,  after theoretical,  experimental and simulation

science, it is now the era of data-driven science. This revolution is impacting several fields of
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science, including bioinformatics (Schuster, 2008; Pop and Salzberg, 2008): e.g. the  European

Bioinformatics Institute (EBI) stores over 60 petabytes (60 x 1015 bytes) of data, of which over 2

petabytes are genomic data (Marx, 2013); the Sequence Read Archive (SRA) at the National

Centre for Biotechnology Information (NCBI) contains more than 3.6 petabases of data (4 bases

 1 byte). Table 1 gives examples of large ‘omics data.≊

Genomics is no longer an emerging field but an established one, which is projected to be among

the domains of science and technology that will generate the largest amounts of data by 2025

(Stephens et al. 2015), largely as a consequence of falling sequencing costs (Figure 1). Animal

genomics  accounts  for  an  increasing  proportion  of  this  amount,  thanks  also  to  large-scale

sequencing  and  resequencing  projects  such  as  the  1000  bull  genomes  project

(http://www.1000bullgenomes.com/), or the EU’s FP7 Nextgen project (http://nextgen.epfl.ch/)

among others. Genomic selection 2.0 is potentially another source of large amounts of sequence

data in livestock (Hickey, 2013). The challenge represented by the analysis of big data in animal

genetics  has  been  already  recognized  by  the  scientific  community  (e.g.  Cole  et  al.,  2011;

Tempelman,  2016;  Perez-Enciso,  2017):  data gathering has currently a  faster  pace than data

processing and analysing; the associated computational burden is increasingly taxing, making

even simple manipulation, visualization and transferring of data a cumbersome operation; the

time taken up by the processing and analysing of huge data sets leaves little time for its critical

interpretation; when analysing lots of data, something is likely to go awry, the software, pipeline

or procedure may crash, or stop, and it can be very frustrating to track the error.

Here we review the most relevant issues related to the analysis of large sequence data in animal

genomics.  Additionally,  we  propose  some  useful  guidelines  to  tackle  these  challenges  and

problems, and provide researchers with a framework of steps needed to face the processing of

large  sequence  experiments.  These  indications  were  motivated  by  research  work  with  large

sequence data from livestock genomics experiments; the framework however, applies equally

well to non-livestock animal, plant and human genomics (and, more generally, to the analysis of

big “omics” data). For the sake of illustration, we will refer all-along to a standard mammalian

genome organized in chromosomes,  and a setting in which several animals (individuals)  are

sampled.  Before  starting  off  through  this  review,  we kindly  remind  the  reader  of  a  basic

principle: always conceive effective algorithms and write efficient scripts for your data analysis!
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PRELIMINARY CHECKS AND PLANNING

The internet is a very large resource providing links to publications, software download sites,

databases  and  others.  However,  navigating  this  forest  of  options  can  be  difficult  and

discouraging, resulting in researchers opting for developing tools that enable them answering the

questions of immediate pertinence to their work. Usually, the development of such tools requires

the knowledge of programing skills (e.g. C++, Java, Python, R), which still today are not part of

the  standard  toolkit  of  life  science  researchers  (Ditty  et  al.  2010;  Mangui  et  al.,  2017).

Developing programing skills is very valuable in terms of i) widening the range of questions that

can  be  tackled  by  removing  the  dependency  on  available  software,  ii)  the  applicability  of

programing skills beyond the immediate area of research, iii) reproducibility of research results,

and iv) transferable skills. However, a lack of acquaintance with the available online resources

can result in the inevitable re-invention of the wheel.

As pointed out already by Osborne et  al.  (2014),  the first  question that  needs addressing is

whether your “question of interest” has already been asked and, especially, answered. Online

databases can help solving this issue by providing access to the literature (e.g. Pubmed, Scopus

or  the  Web  of  Science,  Google  Scholar),  data  (e.g.  Genbank,  Ensembl),  and  software  (e.g.

Sourceforge -   http://sourceforge.net/ - and Github -   https://github.com/). Secondly, what are the

resources  available  to  answer  the  question  of  interest?  A plethora  of  online  resources  for

genomics  already  exists,  e.g.  repositories  of  gene  annotations,  SNP  (single  nucleotide

polymorphism) and other variants, as well as cross species comparisons for genomic regions of

interest,  such  as  Ensembl  (www.ensembl.org),  or  the  UCSC  Genome  Browser

(https://genome.ucsc.edu/).  Many  of  these  online  resources  also  host  up-to-date  genome

reference  sequences  and  annotations  that  can  be  used  to  compare  the  data  produced  by

researchers for quality purposes. Third, researchers “are not alone” and are not likely the first to

face a particular problem. Beyond these resources, several online portals open the possibility for

both experienced and inexperienced researchers to exchange knowledge in the form of question-

and-answer  forums.  SEQanswers  (http://seqanswers.com/)  and  Biostars

(https://www.biostars.org/) are community driven forums of users focused on the discussion of

next-generation genomics related issues ranging from technology development to bioinformatics

support,  and  biological  data  analysis.  ResearchGate  (www.researchgate.net)  hosts  a  large

community of researchers from diverse disciplines to archive, disseminate and discuss scientific
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publications,  ask  and  answer  questions,  propose  and  comment  research  projects  and  ideas.

Lastly,  but  not  of  least  importance,  Stack  Overflow  (http://stackoverflow.com)  and  Stack

Exchange (http://stackexchange.com/) are similar users portals, but which exclusively focus on

statistics, programming and computing related issues, with extensive archives on discussions on

both general and specific issues, covering most of the standard computing languages used in life

sciences  (e.g.  Python,  Java,  R).  Additionally,  traditional  peer  reviewed  articles  offer  further

guidelines on software, data analysis and best practices, e.g. Nicolazzi et al. (2015) provided a

review of currently available software solutions for researchers working in this field, and tools to

streamline the analysis of animal sequence data are constantly being released (e.g. the Zanardi

suite, Marras et al. 2016; Consesa et al 2016). Table 2 summarizes some of the publicly available

resources.

Large  sequence  data  not  only  comprise  the  millions  of  reads  (i.e.  sequences)  from  next

generation sequencing platforms, but other data types too, like large scale genotyping data (e.g.

high density SNP arrays with hundreds of thousands of genotypes for thousands of individuals,

such as in genomic selection programmes: e.g. Van Raden et al 2011; Meuwissen et al., 2016).

The data deluge unleashed by “data-driven” biology can easily become overwhelming (Hawkins

et al. 2010; Berger et al. 2013). This problem arises from two main issues related to handling this

type of data. The first one is the sheer size of the data, e.g. the amount of space required to store

the data, work with it (temporary storage) and archiving it to guarantee its availability in the

future. To give an idea, the complete genome of a single bovine is about 20-40 GB in size, in

terms of (compressed) raw sequence data. Researchers need to assert the size of the data that is

expected they will receive from an experiment, and accordingly purchase the hard-disk space

necessary to maintain it, ensuring there is enough working memory (RAM) to handle the data,

plentiful  temporary  space  where  intermediate  files  of  multiple  analyses  can  be  stored.

Additionally, the data should be backed up regularly, and ideally it should be available to all

users at all time, e.g. via a server with a mirrored system that can be accessed online via secure

shell  or  other  protocol.  While  many  researchers  can  purchase  space/time  in  a  local  server

clusters, others have to opt for online alternatives (e.g. cloud-based computing). Whatever the

choice is, researchers need to carefully consider the additional budget necessary for such venture

as the price per Tb of space is still expensive despite of the continuous fall of the price per byte

and personal computers and laptops do not tend to be powerful enough.
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The second issue deals with a change in paradigm of handling the data. Until not so long ago

researchers were used to scrupulously look at each piece of data, back up all intermediate steps

of  data analysis,  transferring files  between storage locations  using flash drives or even hard

drives. However, typical dataset sizes in this era are easily hundreds of Giga bytes (Gb) large, if

not Tera bytes (Tb) or more (Schadt et al. 2010). Consequently, a new paradigm must be defined

where  data  can  be  i)  efficiently  summarised  in  order  to  identify  approaches  to  trim it  (e.g.

remove  data  of  lower  quality  and  thus  less  reliability),  ii)  avoid  unnecessary  backing  up

intermediate analysis steps that are not crucial, as these can rapidly increase the total data size by

orders of magnitude, iii) avoiding unnecessary transfer of data between locations, as data can

take days or hours to transfer using internet protocols, and iv) carefully document the steps taken

at all stages of data analysis (i.e. write down an analysis pipeline) for reproducibility purposes. In

other  words,  be pre-emptive and estimate data size  and its  associated costs,  and be  tidy by

keeping track of all  analyses applied with master  scripts  and copies  of the software used to

handle data. For instance, the National Institutes of Health (NIH) is developing the Big Data to

Knowledge initiative (BD2K), that aims at managing large dataset in biomedicine, with elements

such as data handling and standards,  informatics training and software sharing (Marx 2013).

Without these considerations researchers won’t have enough space or RAM for analyses, and

very importantly, researchers won’t be able to reproduce results contributing to the endless list of

unreproducible published data (Nekrutenko & Taylor 2012).

COMPUTING INFRASTRUCTURE AND BASIC REQUIREMENTS

The advent of large genomics datasets brought about computational challenges which relate to

the available computing infrastructure. A de novo genome assembly requires approximately 1 Gb

of RAM for every 1 Mbps of genome, which for the bovine genome (~2.7 Gbps) would translate

to at least 3 TB of available RAM. Traditionally, larger problems were addressed by scaling-up

i.e. resorting to supercomputers with several processing units and large RAM capabilities (e.g. a

petaflop supercomputer for protein 3D-folding, Allen et al. 2001). This solution can be very fast

for medium scale problems, but it requires highly specialized software which tends to be very

expensive. Additionally, with ever increasing size of the data, this approach would eventually hit

a wall.
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Scaling-out to using a network of machines is an appealing alternative. One option are high

performance computer clusters, typically constituted by a number of good quality computing

machines accessible through a local connection like an organization’s intranet. An example is the

bioinformatics computing facility at PTP Science Park (www.ptp.it), with over 700 cores and 3.5

TB of memory. Computer clusters are generally high performing and comprise homogeneous

machines, which make it easier to distribute programming over the network. Downsides are the

expensive maintenance and the frequent underutilization: the need for very large computations in

any given organization is typically not continuous, but “bursty” in nature.

Computer clouds are an alternative option for distributed computing,  which may circumvent

some  such  limitations.  Cloud-based  infrastructure  services  build  on  commodity  hardware,

individually cheap, which is assembled into very large networks capable of scaling to massive

computation problems.  Commercial  services  on a pay-per-use basis  are  attractive  since  they

permit  to  avoid  investing  in  infrastructure  and  maintenance,  and  limit  costs  to  the  actual

calculations that are needed. Examples of such services are Amazon Web Services, HPCloud,

Google  Compute  Engine,  Windows  Azure:  this  market  is  changing  rapidly,  and  is  finding

applications also in genomics (O’Driscoll et al. 2013). Major challenges in cloud computing are

usually  represented  by  network  communication  and  by  the  additional  software  complexity

generated by dealing with heterogeneous hardware. This can be handled through frameworks for

distributed computing like Apache Spark (Meng et al., 2015), implemented in platforms such as

DataBricks (https://databricks.com/).

Distributed computing is certainly the way to go for animal genomics, be it private computer

clusters  or  commercial  public  cloud  services.  A  pre-requisite  is  generally  to  work  on  a

Unix/Linux  environment,  although  virtualization  technology  allows  access  also  to  Windows

users (Krampis et al. 2012).

DATA STORAGE: DATABASE & CO.

The amount of data generated by genomics is huge, and projected to be enormous: Stephens et

al. (2015) determined that over 100 PB of storage are currently used by the 20 largest sequencing

institutions, and estimated that as many as 40 EB (exabytes - 1018) of storage capacity may be

needed by 2025. These requirements may be partially alleviated by data compression (Loh et al.
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2012) or through techniques like “delta encoding” (Christley et al. 2009), by which only variants

are stored instead of complete genome sequences, at least for some individuals.

High-density genotyping and sequence data are often distributed as ASCII or binary files. Such

files need however to be parsed each time you need to access even a subset of the data, thereby

making the analysis quite cumbersome. While the availability of data files in standard formats is

usually an excellent option (e.g. VCF or BAM files have become a standard in genomics), these

files  may  be  enormous  making  data  handling  cumbersome.  An  alternative  are  relational

databases, which offer more efficient ways of storing, accessing, extracting and analysing data in

a neater and safer manner. Data in a relational database are represented in tables linked through

unique record IDs, and are processed with SQL (structured query language),  a programming

language  specifically  designed  to  handle  data  and  their  relations.  Building  a  full  relational

database (e.g. mySql) is an ideal choice for long-term storage and maintenance of data. However,

such databases may be complex and time- and resources-consuming, as they rely on client/server

applications,  and most of the times the server-side component need to reside on a dedicated

infrastructure accessible over a network to guarantee scalability and availability. However, for

smaller  projects,  simpler  solutions  like  sqLite  exist  (https://www.sqlite.org).  SqLite  allows

making use of ordinary files to store data and their relations using a transactional model, instead

of building a client/server database. Such files are portable across platforms and besides storing

data, they also encode high-level functionalities (e.g. “Application File Format”, like MS Excel,

Epub or Pdf files). However, this flexibility does not come without a cost: for instance, when

multiple  applications  or  users  need  to  read/write  data  at  the  same  time  (concurrency),  or

increasing network operations is desirable (e.g. to generate and record results ), or scaling-up has

to be dealt with, SqLite would not be sufficiently performing, and a full server/client approach

has to be considered instead.

Relational  databases,  both with a database server  or  in  the no-frills  sqLite  version,  are very

powerful tools that need the tables describing the data to be adequately indexed in order to make

efficient use of them. On one hand, without an index, if a specific row is queried the relational

database management (RDBM) system performs a sequential scan row by row in the table to

check whether  its  name attributes  match  our  query conditions;  the  speed of  such sequential

search is proportional to the number of rows in the table, i.e. it is O(N) implying that the number

of operations required is the number of rows (N) in the table. However if the database is indexed
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instead,  the  scanning  speed  is  O(log(N))  (for  the  default  B-tree  index  type;  Owens,  2006),

because only the index needs to be accessed by RDBM. An index is a specialized data structure

that stores the values for one or more columns in the database tables in a highly optimized way.

Additionally, indexing is even more relevant when joining tables, as that enables matching rows

on each table that have the same key, instead of having to sequentially scan each pair of tables

using a total of O(N*M) operations (where N and M are the numbers of rows in each table). On

the other hand, indexes are data structures that take up more space than default attributes (i.e.

table  columns),  and  that  need  to  be  maintained  by  the  RDBM when  records  are  modified.

Therefore, indexing too many table columns would i)  be a waste of resources and ii) cause an

overall performance degradation. Consequently, identifying the right descriptors to be used in

indexes is crucial, and requires taking into account the cardinality of the data and anticipating the

most  common  and  suitable  queries  of  the  database.  For  example,  when  querying  sample

genotypes on a chromosomal sequence it would make no sense to index records on the sample

sex attribute (male/female), given its low cardinality; instead, the position of a polymorphism

along the genome would make a good index, allowing accessing a reduced set of rows upon

query.

Recently, innovative database architectures are emerging, such as graph databases, which hold

the promise of better modelling highly interconnected data like for instance computer networks.

Storage and querying such data in graph databases are expected to be faster and, in general, more

efficient (Angles and Gutierrez, 2008). Interconnected data in animal genetics may be illustrated

by genealogies (animals as nodes and relationships as connections), phenotypic records (traits as

nodes and trait-animal connections as trait values) and SNP genotypes (SNP loci as nodes and

SNP genotypes  for  individual  animals  as  connections;  see  Biscarini  et  al.,  2013b,  for  an

example).

DATA ANALYSIS

The analysis of genomic data may be very diverse, depending on the objective: this may go from

de novo assembly  of  a  genome,  to  sequence alignments  and variant  calling;  or  may be  the

downstream statistical  analysis  of  genomic  data,  such as  phylogenetic  studies,  genome-wide

association studies or genomic predictions for phenotypes of interest in animal breeding (e.g. de

los Campos et al. 2013). For large problems involving vast sequence data for a large number of
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individuals  (e.g.  hundreds  of  thousands  of  genotyped  animals  like  the  US  Holstein  cattle

population), scalability is certainly an issue, and a distributed computation setting on a computer

cloud or cluster is needed. Frameworks to run the analysis over a network of machines are used

to first distribute the computations to where the data reside (Map operation) and then aggregate

results at the end (Reduce operation). Google MapReduce is one such solution to process big

data (Taylor 2010), which can be effectively coupled with machine learning algorithms for the

analysis of large datasets (e.g. Gillick et al. 2006), by resorting for instance to linear algebra

techniques like inner and outer products between distributed matrix rows and columns, or to

feature-encoding  techniques  like  one-hot  encoding  or  feature  hashing.  Machine  learning  is

becoming increasingly popular in genomics (e.g. Szymczak et al 2009) and in animal breeding

(e.g. Gonzalez-Recio & Forni 2011). A popular combination is given by the scripting language

Python within the Apache Spark framework for distributed computing (Meng et al. 2016).

Another recent and productive line of research is to develop “streaming” or “online” algorithms

that can analyze data on the fly without the need of storing it all in memory. Two examples are

the Sailfish (Patro et al. 2014) and Kallisto (Bray et al. 2016) quantification algorithms for reads

from RNA sequencing experiments, that are orders of magnitude faster than standard approaches

while presenting similar or superior accuracy. Such approaches are currently applied to ‘omics

technologies  other  than  genomics,  but  it  can be envisaged that  similar  ideas  may soon find

application also for the analysis of large genomic datasets.

Open-source  projects  like  Galaxy  (https://galaxyproject.org/)  and  Jupyter  (http://jupyter.org)

offer sophisticated platforms for data analysis which ease entry barriers for comparatively less

programming-savvy life-science researchers (Grüning et al., 2017).

Big data are not only large in size but also tend to be heterogeneous in nature: in genomics, one

may  think  of  different  sources  (SNP-arrays,  RAD-sequencing/Genotyping-by-sequencing,

whole-genome  sequences),  different  genome  assembly  or  array  design  and  density,  gene

annotations data, and so on (Perez-Enciso, 2017). Heterogeneous data pose challenges for data

integration and for imputation of missing values, and may harbour a certain amount of noise

(errors) which should be taken into account when analysing the data (Pompanon et al., 2009;

Biscarini et al., 2016; Biffani et al., 2017).
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WRITING CODE AND RUNNING THE ANALYSIS

The  increasing  availability  of  multiple-core  computers  and  computing  clusters  with  several

processing units (CPUs), has prompted the use of parallel computing, where large problems can

sometimes be divided into smaller ones that are distributed over hundreds of CPUs and solved

concurrently  ("in  parallel")  improving  execution  times.  The  analysis  of  sequence  data  often

present  embarrassing  parallel  problems:  e.g.  genome  sequences  can  be  analysed  per

chromosome, or alignments can be performed on a per sample (and per chromosome) basis (see

for instance Sikorska et al., 2013). Embarrassing parallel problems are “embarrassingly” easy to

run in parallel, e.g. the user just needs to split the job into sub-jobs and run them independently

on different cores/CPUs/machines. In such cases, the computation time is a direct function of the

processing  resources  (n.  of  machines,  processing  units  such  as  in  Beowulf  clusters).

Parallelization  may  though  be  less  straightforward  when  sub-processes  are  not  thoroughly

independent and some degree of communication between them is needed to achieve the final

solution.  When such communication is minimal, we talk of “coarse-grain” parallelization: an

example is algebraic matrix inversion frequently used in genetics and genomics (e.g. Biscarini et

al.,  2013a).  Sometimes  though,  sub-processes  need  to  communicate  extensively  by  sharing

memory,  coordinating  I/O,  or  reciprocally  update  intermediate  values.  Such  fine-grain

parallelization problems are more difficult  to implement and run in parallel,  and require the

design of clever algorithms. Examples of fine-grain parallelization with sequence data are the

GPU-Blast implementation of the Blast alignment algorithm (Vouzis and Sahinidis, 2011), and

the determination of progressive alignments topology in the clustalW algorithm (Li KB 2003).

Interpreted scripting languages have many useful features that facilitate the execution of complex

tasks. For instance, R (R Core Team, 2013) can implement complex statistical models; or, high-

level scripting languages like Python (Van Rossum & Drake, 1995) allow to execute complex

tasks with just a few lines of easy-to-read code. Compiled languages like C/C++ or Fortran, on

the  other  side,  achieve  higher  computing  performances  and  a  more  powerful  memory

management,  because they translate  directly to  the native code of the specific  machine.  The

latter,  however,  comes  at  the  expense  of  easy  implementation,  since  compiled  languages

typically  use  low  level  functions  and  very  simple  data  structures  that  force  users  to  write

extensive  code  even  for  relatively  simple  tasks.  Hybrid  solutions  between  compiled  and

interpreted languages that improve computational performances with no need of sacrificing the
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user-friendly syntax of scripting languages exist. Examples include Cython (Behnel et al., 2011),

SWIG (Beazley et al.,  1998), the Rcpp R library (Eddelbuettel  & François, 2011),  that offer

frameworks where users can identify and implement in a compiled language only the bottlenecks

of their algorithms, while keep writing everything else in an interpreted user-friendlier language.

Such hybrid schemes provide therefore a compromise between performance and complexity.

Based on our experience, embedding Cython blocks in a script allowed processing 0.5 Gb of

sequence data in 50.380 seconds compared to 207.266 seconds with the same algorithm solely

implemented in Python (ceteris paribus).

Modular programming refers to the organization of the code in subunits which act more or less

independently (Maynard, 1972). Organising the code in modules or functions (or classes, in the

object-oriented  paradigm)  is  especially  useful  for  complex  programmes  or  pipelines  that

comprise  several  tasks,  entail  a  considerable  running-time,  or  run  extensively  in  parallel.

Modularity allows for the code to be recycled -functions, modules or classes are typically used

repeatedly- and portable across platforms or projects (no need of re-writing everything from

scratch each time), and is a key component of programming efficiency. Besides, modular code is

easier to debug, since you can conveniently go through the program/pipeline “piece by piece”,

and  allows  to  track  even  problems  independent  from  your  code,  like  machine  or  cluster

breakdowns, electric network failures etc ...: you would be able to resume the work from where

the problem occurred and relaunch only what is really needed, instead of everything from start.

This makes your pipeline more robust to system crashes, and reduces the risk of losing data. A

well known example of a modular pipeline of analysis for sequence data is the Ensembl pipeline

for the annotation of genomic sequence (Potter et al., 2004). To recap, make your code modular

and you’ll have an array of advantages, at the expense of only little extra planning effort!

Once you have made your code/pipeline modular, you need to make sure it is reproducible. This

can be achieved by organizing it into e.g. R packages or Python modules. Or it can be organized

into a reproducible pipeline making use of a data/analysis serialization format like the XML

mark-up language, the INI format or YAML. This latter, YAML (recursive acronym: Yaml Ain’t

Mark-up Language), has the advantage of being human-readable and of having an easy syntax

suitable for all programming languages (Ben-Kiki et al., 2005). YAML helps dealing with big

data projects  with several  parameters  and jobs  to  be launched independently.  It  is  useful  to

handle  the  serial  steps  of  a  pipeline,  but  is  particularly  suited  for  “embarrassing  parallel”
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problems, where besides running several consecutive steps, these are to be repeated over a large

number  of  samples.  A  modular  pipeline  plus  YAML  serialization  format  is  a  powerful

combination for the analysis of large sequence data. YAML is usually organised in two files, one

with the serial steps of the analysis, the other with the samples over which the analysis should be

run in parallel (see Box 1 for an illustration). YAML files are written as hash tables/associative

arrays, i.e. in the form of key-value pairs. YAML syntax is overly simple: the most important

rules  to  remember  are  indentation,  a  few  keywords  (e.g.  resources,  steps,  samples)  and

placeholders (i.e. <variable_name>). In order for the analysis to be run, YAML files need to be

interpreted by ad hoc programmes/scripts, like for instance the PipEngine launcher developed in

Ruby (Strozzi & Bonnal, 2017).

Box 2. How YAML works in practice

For bioinformatics tasks, typically the YAML data analysis serialization format comprises two files 

(.yml): 1) “configuration file” listing resources (paths to input data and output directories) and samples to

run the analysis in parallel; 2) “analysis file” describing the serial steps of the analysis and related 

resources (programmes, scripts). YAML files are written in the form of hash tables/associative arrays: 

‘key’: value. Below an illustration for the SNP calling and missing genotype imputation over 100 

samples.

#-----------------------

# configuration.yml

#-----------------------

resources:

 output: /output/directory/
 data: /path/to/data

samples:

 ‘sample1’: sample1_name

 ‘sample2’: sample2_name

 ……

 ‘sample100’: sample100_name

#-----------------

# analysis.yml

#-----------------

resources:

snp-calling_program: /path/to/snp-calling_program

355

356

357

358

359

360

361

362

363

364

365

Page 13 of 24

Animal Genetics

Animal Genetics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For P
eer R

eview

imputation_program: /path/to/imputation_program

steps:

 snp-calling:
 desc: call snps from each sample sequence
 run: <snp-calling_program> --input <sample> -o called_snp.<sample>

 cpu: 4

imputation:

 desc: impute missing genotypes at SNP loci
 run: <imputation_program> --input called_snp.<sample> --output 

imputed_snp.<sample>

 cpu: 4

In this simple example, the steps of the analysis are organised with a description of the step, the actual 

code to be run in each step, and the number of CPU to be used. The analysis can then be run through and 

ad hoc interpreter (see main text) using a command line similar to the following:

>> pipengine run --pipeline analysis.yml --samples-file configuration.yml --name 

imputation --steps imputation

Processing data loaded onto the (volatile/RAM) memory is much faster compared to the heavy

workload of repeated I/O operations involved in reading stored data and writing them back out

on the disk (exactly  how faster  depends on disk and memory architecture:  e.g.  SSD, HDD,

DDR3).  When analysing  relatively  small  datasets,  this  is  usually  not  a  problem,  even on a

laptop/client PC: all the data can be placed in the memory and analysed efficiently from there.

With  large  sequence  data  this  is  often  not  possible,  not  even  if  large  RAM  capacities  are

available as in computing clusters or high-performance servers. This is especially true when not

just a single “large” job has to be executed, but several parallel jobs are to be run simultaneously

and have to compete for memory resources: if several “large” jobs are launched in parallel, the

memory  would  soon  be  full!  In  such  cases,  CPU-intensive  rather  than  memory  intensive

computing strategies should be adopted: the software would thus need to be designed so to resort

as much as possible to I/O operations in order to reduce the memory burden. Data can be read in

the memory record by record, or in chunks, and then processed by the CPU. In such a setting,

there is a trade-off between memory usage and CPU-time: memory efficiency is gained at the

expense of increased computation time (repeated I/O operations). An illustration from sequence

data is for instance reading FASTA files: these are usually quite big files, and loading them into
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memory would easily exhaust memory resources.  It makes therefore sense to read such files

sequentially, which won’t use much system memory. In some circumstances, though, repeated

access to (part of) the file is needed, like in most matrix operations: then the approach of reading

the whole file into memory makes the algorithm much easier to write, at the cost of some system

memory.

PUBLISHING RESULTS, DATA AND CODE

In the previous sections we attempted to emphasise that researchers working on large datasets

usually encounter problems that are very similar,  and which in many cases others also have

encountered and frequently solved. It is possible to gain access to that communal knowledge by

querying the literature, public databases, open forums and discussion groups. In the same way, it

impends on researchers to make their knowledge publicly available as members of the “scientific

community” (Budd et al. 2015). For that purpose it is important to identify the public databases

where raw data used for research can be stored. Such approach serves two purposes. On one

hand prevents  researchers  from having to  come up with  the  funds  necessary  to  secure  data

archiving and iis availability in the future (i.e. public databases are free). On the other hand, by

using  public  databases  researchers  make  sure  that  their  work  contributes  to  the  continuous

growth of the scientific community. Depending on the type of data, several public repositories

are available, e.g. DRYAD (http://datadryad.org/), Zenodo (https://zenodo.org/), the Short Read

Archive  (NCBI, http://www.ncbi.nlm.nih.gov/sra),  the  European  Nucleotide  Archive  (EBI,

http://www.ebi.ac.uk/ena).

While publishing the data used for analyses and the metadata associated to it is a very important

step,  publishing the  analyses  pipelines  (i.e.  the  collections  of  bioinformatics  scripts  used)  is

crucial, and regretfully, still rarely done (Ince et al. 2012). Several public repositories exist that

enable publishing scripts used for data analysis, e.g. Google Code (https://code.google.com/),

Sourceforge  (http://sourceforge.net/),  Github  (https://github.com/)  or  GitLab

(https://about.gitlab.com/).  The  users  community  expects  to  find  in  this  type  of  repositories

scripts that can be directly used by others; however, researchers frequently write code that was

intended for their own use or for a specific task (a.k.a. quick and dirty script). While publishing

those  scripts  is  still  important,  programing  skills  are  no  longer  a  desired  skill  only  for

mathematicians,  physicists  and engineers:  researchers in the biological sciences, too,  need to
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build a basic informatics knowledge (Dudley & Butte 2009, Hawkins et al. 2010) that enables

them writing scripts that are accessible to others (i.e. that can be read and modified).

Finally,  although  researchers  plan  their  work  so  to  maximize  the  likelihood  of  obtaining

significant  and  relevant  results,  it  is  of  fundamental  importance  to  also  publish  lack  of  or

negative results, so to minimize issues with publication and reporting bias (Dwan et al., 2008):

on-line  archives  like  Bioarxiv  (http://www.biorxiv.org/)  offer  a  convenient  way  to  make  all

research results readily available to the scientific community and the broader public.

CONCLUSIONS  
The advancement in ‘omics technologies has guided the development of a data-driven approach

to biological sciences. This change has marked the need for researchers in the biological sciences

to change their approach to experiment design, data handling and storage, and time allocation for

wet-lab vs. dry-lab (computer based) work, as well as it has resulted in the growing need for

those researchers to at least have a basic understanding of computing language (e.g. to at least be

able to look at files) and information technology (e.g. to understand about file transfer protocols

between  servers).  Fast  computers  and  vast  storage  capabilities  are  giving  us  plenty  of

possibilities to handle large-scale data (besides contributing to produce big-data,  in a sort  of

virtuous/vicious cycle). However, such resources, though ample, are not infinite, and the design

of good computation strategies is still fundamental to handle today’s large quantities of data. In

this review of common practices we described principles that we feel are very important and that

biological researchers embarking in the field of genomics need to be aware of. Importantly, while

our  views  derive  from our  experience  working with  livestock  genomics,  our  comments  are

equally applicable to research on crops, wildlife fauna and flora, humans, and microbial ‘omics

technologies. Lastly, these comments reflect the lessons we learnt during our own experience,

and it is very important to note that no matter how well you plan experiments and how strictly

you follow our guidelines , when analysing large data involving multiple comparisons, methods,

models, samples etc, you must be patient and willing to learn at each step, as you cannot expect

that everything will run smoothly without problems!
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Tables

Table 1: Examples of Big Data from ’omics technologies

Examples of Big Data from ’omics technologies

Category Raw data Size

Whole-genome sequences (WGS)

sequence 

reads

∼ 5 GB for a genome ∼ 3 Gbps

long at ∼ 10x coverage

Transcriptome Sequence Analysis (TSA)

sequence 

reads

several GB depending on coverage (<

WGS)

Bisulphite sequencing

sequence 

reads several GB (≤ TSA)

SNP array genotypes

few kB for sample → usually 

several ples → MB/GB

5 GB: giga-bytes; 5 MB: mega-bytes; 5 kB: kilo-

bytes; Gbps: giga-base-pairs.

Table 2: Publicly available resources

Resource Name access type

Forum SEQanswers http://seqanswers.com/ Sequencing, Bioinformatics

Biostars https://www.biostars.org/ Bioinformatics, Biological Data 

Analysis

Stack Overflow http://stackoverflow.com/ Informatics

Stack Exchange http://stackexchange.com/ Informatics

Software Sourceforge http://sourceforge.net/ Repository

Github https://github.com/ Repository

Google Code https://code.google.com/ Repository

sqLite https://www.sqlite.org Database software

YAML http://yaml.org/ Data serialization standard

Database Pubmed http://www.ncbi.nlm.nih.gov/pub

med

Literature

Scopus http://www.scopus.com/ Literature

Genbank http://www.ncbi.nlm.nih.gov/gen

bank/

Data

Ensembl http://www.ensembl.org/index.h

tml

Data
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Short Read Archive http://www.ncbi.nlm.nih.gov/sra

http://www.ebi.ac.uk/ena

Data

Dryad http://datadryad.org/ Data

USGC Genome Browser https://genome.ucsc.edu/ Data

Large 

Scale 

Projects

1000 genomes http://www.1000genomes.org/ Human genomes

1000 bull genomes 

project

http://www.1000bullgenomes.c

om/

Cattle genomes

NextGen Consortium http://nextgen.epfl.ch/ Mouflon, Sheep, Bezoar, Goat, 

Cattle

The 3000 rice genomes 

project

http://gigadb.org/dataset/20000

1

Rice

1001genomes http://1001genomes.org/ Arabidopsis

Figures

Figure 1: Trends in costs and data production over time. Cost per giga-byte (gray line), per 

genome (green line), per mega-base (blue line). Base-pairs from GenBank (red line), from 

whole-genome sequences (WGS, yellow line) and from transcriptome sequence analysis (TSA, 
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orange line); Moore’s law (black line). The y-axis holds for all units (dollars, base-pairs, n. of 

transistors). WGS and TSA data are not distributed in conjunction with GenBank releases. Data 

from ftp://ftp.ncbi.nih.gov/genbank/gbrel.txt,   https://www.genome.gov/sequencingcosts/
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