
 ORCA – Online Research @ Cardiff

This is a n Op e n Acces s doc u m e n t dow nloa d e d fro m ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/11 0 6 0 1/

This is t h e a u t ho r’s ve r sion of a wo rk t h a t w as s u b mi t t e d to / a c c e p t e d for

p u blica tion.

Cit a tion for final p u blish e d ve r sion:

Bisca rini, Filippo , Cozzi, P. a n d Orozco Ter Weng el, Pa blo 2 0 1 8. Lessons lea r n t on

t h e a n alysis of la r g e s e q u e n c e d a t a in a ni m al g e no mics. Anim al Blood Grou p s a n d

Bioch e mic al Ge n e tics 4 9 (3) , p p . 1 4 7-1 5 8. 1 0.11 1 1/a g e.1 2 6 5 5

P u blish e r s p a g e: h t t p://dx.doi.o rg/10.11 1 1/a g e.1 26 5 5

Ple a s e no t e:

Ch a n g e s m a d e a s a r e s ul t of p u blishing p roc e s s e s s uc h a s copy-e di ting, for m a t ting

a n d p a g e n u m b e r s m ay no t b e r eflec t e d in t his ve r sion. For t h e d efini tive ve r sion of

t his p u blica tion, ple a s e r efe r to t h e p u blish e d sou rc e . You a r e a dvis e d to cons ul t t h e

p u blish e r’s ve r sion if you wis h to ci t e t his p a p er.

This ve r sion is b eing m a d e av ailabl e in a cco r d a nc e wi th p u blish e r policies. S e e

h t t p://o rc a .cf.ac.uk/policies.h t ml for u s a g e policies. Copyrigh t a n d m o r al r i gh t s for

p u blica tions m a d e av ailabl e in ORCA a r e r e t ain e d by t h e copyrigh t hold e r s .

For P
eer R

eview

Lessons learnt on the analysis of large sequence data in animal
genomics

Filippo Biscarini1,4¶*, Paolo Cozzi1,3, and Pablo Orozco-ter Wengel2¶

1 CNR-IBBA, Milan, Italy

2 School of Biosciences, Cardiff University, Museum Avenue, CF10 3AX Cardiff, UK

3 PTP Science Park, Department of Bioinformatics and Biostatistics - Via Einstein, 26900 Lodi, Italy

4 School of Medicine, Cardiff University, Heath Park, CF14 4XN Cardiff, UK

¶ these authors contributed equally to this work

Running head:

Analysis of large animal-genomics data

*corresponding author: Filippo Biscarini

Via Bassini 15, 20133 Milan (Italy)

+39 340 7499754

filippo.biscarini@ibba.cnr.it

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Page 1 of 24

Animal Genetics

Animal Genetics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

For P
eer R

eview

Summary

The 'omics revolution has made a large amount of sequence data available to researchers and the

industry. This has had a profound impact in the field of bioinformatics, stimulating

unprecedented advancements in this discipline. Mostly, this is usually looked at from the

perspective of human 'omics, in particular human genomics. Plant and animal genomics,

however, have also been deeply influenced by next-generation sequencing (NGS) technologies,

with several genomics applications now popular among researcher and the breeding industry.

Genomics tends to generate huge amounts of data: genomic sequence data account for an

increasing proportion of Big Data in biological sciences, thanks largely to decreasing sequencing

costs and large-scale sequencing and resequencing projects.

The analysis of big data poses a challenge to scientists: data gathering currently takes place at a

faster pace than data processing and analysis, and the associated computational burden is

increasingly taxing, making even simple manipulation, visualization and transferring of data a

cumbersome operation. The time taken up by the processing and analysing of huge data sets

leaves therefore little time for data quality assessment and critical interpretation. Additionally,

when analysing lots of data something is likely to go awry: the software (pipeline, procedure)

may crash or stop, and it can be very frustrating to track the error.

We hereby review the most relevant issues related to tackling these challenges and problems,

from the perspective of animal genomics, and provide researchers with a framework of steps

needed when processing large genomic data sets.

KEYWORDS: big data, genomics, data analysis, next-generation sequencing, animal genetics,

‘omics, computational biology

INTRODUCTION

Big data: these two words have become buzzwords in diverse disciplines. They refer -broadly

speaking- to the large quantity of data made available through the extraordinary technological

improvements in the automated collection of information (Lohr, 2012). Big data have brought

about a whole new epistemology, leading to the emergence of a fourth paradigm in science (Hey

et al. 2009, Bell, 2009; Kitchin, 2014), that is, after theoretical, experimental and simulation

science, it is now the era of data-driven science. This revolution is impacting several fields of

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Page 2 of 24

Animal Genetics

Animal Genetics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

For P
eer R

eview

science, including bioinformatics (Schuster, 2008; Pop and Salzberg, 2008): e.g. the European

Bioinformatics Institute (EBI) stores over 60 petabytes (60 x 1015 bytes) of data, of which over 2

petabytes are genomic data (Marx, 2013); the Sequence Read Archive (SRA) at the National

Centre for Biotechnology Information (NCBI) contains more than 3.6 petabases of data (4 bases

 1 byte). Table 1 gives examples of large ‘omics data.≊

Genomics is no longer an emerging field but an established one, which is projected to be among

the domains of science and technology that will generate the largest amounts of data by 2025

(Stephens et al. 2015), largely as a consequence of falling sequencing costs (Figure 1). Animal

genomics accounts for an increasing proportion of this amount, thanks also to large-scale

sequencing and resequencing projects such as the 1000 bull genomes project

(http://www.1000bullgenomes.com/), or the EU’s FP7 Nextgen project (http://nextgen.epfl.ch/)

among others. Genomic selection 2.0 is potentially another source of large amounts of sequence

data in livestock (Hickey, 2013). The challenge represented by the analysis of big data in animal

genetics has been already recognized by the scientific community (e.g. Cole et al., 2011;

Tempelman, 2016; Perez-Enciso, 2017): data gathering has currently a faster pace than data

processing and analysing; the associated computational burden is increasingly taxing, making

even simple manipulation, visualization and transferring of data a cumbersome operation; the

time taken up by the processing and analysing of huge data sets leaves little time for its critical

interpretation; when analysing lots of data, something is likely to go awry, the software, pipeline

or procedure may crash, or stop, and it can be very frustrating to track the error.

Here we review the most relevant issues related to the analysis of large sequence data in animal

genomics. Additionally, we propose some useful guidelines to tackle these challenges and

problems, and provide researchers with a framework of steps needed to face the processing of

large sequence experiments. These indications were motivated by research work with large

sequence data from livestock genomics experiments; the framework however, applies equally

well to non-livestock animal, plant and human genomics (and, more generally, to the analysis of

big “omics” data). For the sake of illustration, we will refer all-along to a standard mammalian

genome organized in chromosomes, and a setting in which several animals (individuals) are

sampled. Before starting off through this review, we kindly remind the reader of a basic

principle: always conceive effective algorithms and write efficient scripts for your data analysis!

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

Page 3 of 24

Animal Genetics

Animal Genetics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

For P
eer R

eview

PRELIMINARY CHECKS AND PLANNING

The internet is a very large resource providing links to publications, software download sites,

databases and others. However, navigating this forest of options can be difficult and

discouraging, resulting in researchers opting for developing tools that enable them answering the

questions of immediate pertinence to their work. Usually, the development of such tools requires

the knowledge of programing skills (e.g. C++, Java, Python, R), which still today are not part of

the standard toolkit of life science researchers (Ditty et al. 2010; Mangui et al., 2017).

Developing programing skills is very valuable in terms of i) widening the range of questions that

can be tackled by removing the dependency on available software, ii) the applicability of

programing skills beyond the immediate area of research, iii) reproducibility of research results,

and iv) transferable skills. However, a lack of acquaintance with the available online resources

can result in the inevitable re-invention of the wheel.

As pointed out already by Osborne et al. (2014), the first question that needs addressing is

whether your “question of interest” has already been asked and, especially, answered. Online

databases can help solving this issue by providing access to the literature (e.g. Pubmed, Scopus

or the Web of Science, Google Scholar), data (e.g. Genbank, Ensembl), and software (e.g.

Sourceforge - http://sourceforge.net/ - and Github - https://github.com/). Secondly, what are the

resources available to answer the question of interest? A plethora of online resources for

genomics already exists, e.g. repositories of gene annotations, SNP (single nucleotide

polymorphism) and other variants, as well as cross species comparisons for genomic regions of

interest, such as Ensembl (www.ensembl.org), or the UCSC Genome Browser

(https://genome.ucsc.edu/). Many of these online resources also host up-to-date genome

reference sequences and annotations that can be used to compare the data produced by

researchers for quality purposes. Third, researchers “are not alone” and are not likely the first to

face a particular problem. Beyond these resources, several online portals open the possibility for

both experienced and inexperienced researchers to exchange knowledge in the form of question-

and-answer forums. SEQanswers (http://seqanswers.com/) and Biostars

(https://www.biostars.org/) are community driven forums of users focused on the discussion of

next-generation genomics related issues ranging from technology development to bioinformatics

support, and biological data analysis. ResearchGate (www.researchgate.net) hosts a large

community of researchers from diverse disciplines to archive, disseminate and discuss scientific

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

Page 4 of 24

Animal Genetics

Animal Genetics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

For P
eer R

eview

publications, ask and answer questions, propose and comment research projects and ideas.

Lastly, but not of least importance, Stack Overflow (http://stackoverflow.com) and Stack

Exchange (http://stackexchange.com/) are similar users portals, but which exclusively focus on

statistics, programming and computing related issues, with extensive archives on discussions on

both general and specific issues, covering most of the standard computing languages used in life

sciences (e.g. Python, Java, R). Additionally, traditional peer reviewed articles offer further

guidelines on software, data analysis and best practices, e.g. Nicolazzi et al. (2015) provided a

review of currently available software solutions for researchers working in this field, and tools to

streamline the analysis of animal sequence data are constantly being released (e.g. the Zanardi

suite, Marras et al. 2016; Consesa et al 2016). Table 2 summarizes some of the publicly available

resources.

Large sequence data not only comprise the millions of reads (i.e. sequences) from next

generation sequencing platforms, but other data types too, like large scale genotyping data (e.g.

high density SNP arrays with hundreds of thousands of genotypes for thousands of individuals,

such as in genomic selection programmes: e.g. Van Raden et al 2011; Meuwissen et al., 2016).

The data deluge unleashed by “data-driven” biology can easily become overwhelming (Hawkins

et al. 2010; Berger et al. 2013). This problem arises from two main issues related to handling this

type of data. The first one is the sheer size of the data, e.g. the amount of space required to store

the data, work with it (temporary storage) and archiving it to guarantee its availability in the

future. To give an idea, the complete genome of a single bovine is about 20-40 GB in size, in

terms of (compressed) raw sequence data. Researchers need to assert the size of the data that is

expected they will receive from an experiment, and accordingly purchase the hard-disk space

necessary to maintain it, ensuring there is enough working memory (RAM) to handle the data,

plentiful temporary space where intermediate files of multiple analyses can be stored.

Additionally, the data should be backed up regularly, and ideally it should be available to all

users at all time, e.g. via a server with a mirrored system that can be accessed online via secure

shell or other protocol. While many researchers can purchase space/time in a local server

clusters, others have to opt for online alternatives (e.g. cloud-based computing). Whatever the

choice is, researchers need to carefully consider the additional budget necessary for such venture

as the price per Tb of space is still expensive despite of the continuous fall of the price per byte

and personal computers and laptops do not tend to be powerful enough.

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

Page 5 of 24

Animal Genetics

Animal Genetics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

For P
eer R

eview

The second issue deals with a change in paradigm of handling the data. Until not so long ago

researchers were used to scrupulously look at each piece of data, back up all intermediate steps

of data analysis, transferring files between storage locations using flash drives or even hard

drives. However, typical dataset sizes in this era are easily hundreds of Giga bytes (Gb) large, if

not Tera bytes (Tb) or more (Schadt et al. 2010). Consequently, a new paradigm must be defined

where data can be i) efficiently summarised in order to identify approaches to trim it (e.g.

remove data of lower quality and thus less reliability), ii) avoid unnecessary backing up

intermediate analysis steps that are not crucial, as these can rapidly increase the total data size by

orders of magnitude, iii) avoiding unnecessary transfer of data between locations, as data can

take days or hours to transfer using internet protocols, and iv) carefully document the steps taken

at all stages of data analysis (i.e. write down an analysis pipeline) for reproducibility purposes. In

other words, be pre-emptive and estimate data size and its associated costs, and be tidy by

keeping track of all analyses applied with master scripts and copies of the software used to

handle data. For instance, the National Institutes of Health (NIH) is developing the Big Data to

Knowledge initiative (BD2K), that aims at managing large dataset in biomedicine, with elements

such as data handling and standards, informatics training and software sharing (Marx 2013).

Without these considerations researchers won’t have enough space or RAM for analyses, and

very importantly, researchers won’t be able to reproduce results contributing to the endless list of

unreproducible published data (Nekrutenko & Taylor 2012).

COMPUTING INFRASTRUCTURE AND BASIC REQUIREMENTS

The advent of large genomics datasets brought about computational challenges which relate to

the available computing infrastructure. A de novo genome assembly requires approximately 1 Gb

of RAM for every 1 Mbps of genome, which for the bovine genome (~2.7 Gbps) would translate

to at least 3 TB of available RAM. Traditionally, larger problems were addressed by scaling-up

i.e. resorting to supercomputers with several processing units and large RAM capabilities (e.g. a

petaflop supercomputer for protein 3D-folding, Allen et al. 2001). This solution can be very fast

for medium scale problems, but it requires highly specialized software which tends to be very

expensive. Additionally, with ever increasing size of the data, this approach would eventually hit

a wall.

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

Page 6 of 24

Animal Genetics

Animal Genetics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

For P
eer R

eview

Scaling-out to using a network of machines is an appealing alternative. One option are high

performance computer clusters, typically constituted by a number of good quality computing

machines accessible through a local connection like an organization’s intranet. An example is the

bioinformatics computing facility at PTP Science Park (www.ptp.it), with over 700 cores and 3.5

TB of memory. Computer clusters are generally high performing and comprise homogeneous

machines, which make it easier to distribute programming over the network. Downsides are the

expensive maintenance and the frequent underutilization: the need for very large computations in

any given organization is typically not continuous, but “bursty” in nature.

Computer clouds are an alternative option for distributed computing, which may circumvent

some such limitations. Cloud-based infrastructure services build on commodity hardware,

individually cheap, which is assembled into very large networks capable of scaling to massive

computation problems. Commercial services on a pay-per-use basis are attractive since they

permit to avoid investing in infrastructure and maintenance, and limit costs to the actual

calculations that are needed. Examples of such services are Amazon Web Services, HPCloud,

Google Compute Engine, Windows Azure: this market is changing rapidly, and is finding

applications also in genomics (O’Driscoll et al. 2013). Major challenges in cloud computing are

usually represented by network communication and by the additional software complexity

generated by dealing with heterogeneous hardware. This can be handled through frameworks for

distributed computing like Apache Spark (Meng et al., 2015), implemented in platforms such as

DataBricks (https://databricks.com/).

Distributed computing is certainly the way to go for animal genomics, be it private computer

clusters or commercial public cloud services. A pre-requisite is generally to work on a

Unix/Linux environment, although virtualization technology allows access also to Windows

users (Krampis et al. 2012).

DATA STORAGE: DATABASE & CO.

The amount of data generated by genomics is huge, and projected to be enormous: Stephens et

al. (2015) determined that over 100 PB of storage are currently used by the 20 largest sequencing

institutions, and estimated that as many as 40 EB (exabytes - 1018) of storage capacity may be

needed by 2025. These requirements may be partially alleviated by data compression (Loh et al.

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

Page 7 of 24

Animal Genetics

Animal Genetics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

For P
eer R

eview

2012) or through techniques like “delta encoding” (Christley et al. 2009), by which only variants

are stored instead of complete genome sequences, at least for some individuals.

High-density genotyping and sequence data are often distributed as ASCII or binary files. Such

files need however to be parsed each time you need to access even a subset of the data, thereby

making the analysis quite cumbersome. While the availability of data files in standard formats is

usually an excellent option (e.g. VCF or BAM files have become a standard in genomics), these

files may be enormous making data handling cumbersome. An alternative are relational

databases, which offer more efficient ways of storing, accessing, extracting and analysing data in

a neater and safer manner. Data in a relational database are represented in tables linked through

unique record IDs, and are processed with SQL (structured query language), a programming

language specifically designed to handle data and their relations. Building a full relational

database (e.g. mySql) is an ideal choice for long-term storage and maintenance of data. However,

such databases may be complex and time- and resources-consuming, as they rely on client/server

applications, and most of the times the server-side component need to reside on a dedicated

infrastructure accessible over a network to guarantee scalability and availability. However, for

smaller projects, simpler solutions like sqLite exist (https://www.sqlite.org). SqLite allows

making use of ordinary files to store data and their relations using a transactional model, instead

of building a client/server database. Such files are portable across platforms and besides storing

data, they also encode high-level functionalities (e.g. “Application File Format”, like MS Excel,

Epub or Pdf files). However, this flexibility does not come without a cost: for instance, when

multiple applications or users need to read/write data at the same time (concurrency), or

increasing network operations is desirable (e.g. to generate and record results), or scaling-up has

to be dealt with, SqLite would not be sufficiently performing, and a full server/client approach

has to be considered instead.

Relational databases, both with a database server or in the no-frills sqLite version, are very

powerful tools that need the tables describing the data to be adequately indexed in order to make

efficient use of them. On one hand, without an index, if a specific row is queried the relational

database management (RDBM) system performs a sequential scan row by row in the table to

check whether its name attributes match our query conditions; the speed of such sequential

search is proportional to the number of rows in the table, i.e. it is O(N) implying that the number

of operations required is the number of rows (N) in the table. However if the database is indexed

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Page 8 of 24

Animal Genetics

Animal Genetics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

For P
eer R

eview

instead, the scanning speed is O(log(N)) (for the default B-tree index type; Owens, 2006),

because only the index needs to be accessed by RDBM. An index is a specialized data structure

that stores the values for one or more columns in the database tables in a highly optimized way.

Additionally, indexing is even more relevant when joining tables, as that enables matching rows

on each table that have the same key, instead of having to sequentially scan each pair of tables

using a total of O(N*M) operations (where N and M are the numbers of rows in each table). On

the other hand, indexes are data structures that take up more space than default attributes (i.e.

table columns), and that need to be maintained by the RDBM when records are modified.

Therefore, indexing too many table columns would i) be a waste of resources and ii) cause an

overall performance degradation. Consequently, identifying the right descriptors to be used in

indexes is crucial, and requires taking into account the cardinality of the data and anticipating the

most common and suitable queries of the database. For example, when querying sample

genotypes on a chromosomal sequence it would make no sense to index records on the sample

sex attribute (male/female), given its low cardinality; instead, the position of a polymorphism

along the genome would make a good index, allowing accessing a reduced set of rows upon

query.

Recently, innovative database architectures are emerging, such as graph databases, which hold

the promise of better modelling highly interconnected data like for instance computer networks.

Storage and querying such data in graph databases are expected to be faster and, in general, more

efficient (Angles and Gutierrez, 2008). Interconnected data in animal genetics may be illustrated

by genealogies (animals as nodes and relationships as connections), phenotypic records (traits as

nodes and trait-animal connections as trait values) and SNP genotypes (SNP loci as nodes and

SNP genotypes for individual animals as connections; see Biscarini et al., 2013b, for an

example).

DATA ANALYSIS

The analysis of genomic data may be very diverse, depending on the objective: this may go from

de novo assembly of a genome, to sequence alignments and variant calling; or may be the

downstream statistical analysis of genomic data, such as phylogenetic studies, genome-wide

association studies or genomic predictions for phenotypes of interest in animal breeding (e.g. de

los Campos et al. 2013). For large problems involving vast sequence data for a large number of

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

Page 9 of 24

Animal Genetics

Animal Genetics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

For P
eer R

eview

individuals (e.g. hundreds of thousands of genotyped animals like the US Holstein cattle

population), scalability is certainly an issue, and a distributed computation setting on a computer

cloud or cluster is needed. Frameworks to run the analysis over a network of machines are used

to first distribute the computations to where the data reside (Map operation) and then aggregate

results at the end (Reduce operation). Google MapReduce is one such solution to process big

data (Taylor 2010), which can be effectively coupled with machine learning algorithms for the

analysis of large datasets (e.g. Gillick et al. 2006), by resorting for instance to linear algebra

techniques like inner and outer products between distributed matrix rows and columns, or to

feature-encoding techniques like one-hot encoding or feature hashing. Machine learning is

becoming increasingly popular in genomics (e.g. Szymczak et al 2009) and in animal breeding

(e.g. Gonzalez-Recio & Forni 2011). A popular combination is given by the scripting language

Python within the Apache Spark framework for distributed computing (Meng et al. 2016).

Another recent and productive line of research is to develop “streaming” or “online” algorithms

that can analyze data on the fly without the need of storing it all in memory. Two examples are

the Sailfish (Patro et al. 2014) and Kallisto (Bray et al. 2016) quantification algorithms for reads

from RNA sequencing experiments, that are orders of magnitude faster than standard approaches

while presenting similar or superior accuracy. Such approaches are currently applied to ‘omics

technologies other than genomics, but it can be envisaged that similar ideas may soon find

application also for the analysis of large genomic datasets.

Open-source projects like Galaxy (https://galaxyproject.org/) and Jupyter (http://jupyter.org)

offer sophisticated platforms for data analysis which ease entry barriers for comparatively less

programming-savvy life-science researchers (Grüning et al., 2017).

Big data are not only large in size but also tend to be heterogeneous in nature: in genomics, one

may think of different sources (SNP-arrays, RAD-sequencing/Genotyping-by-sequencing,

whole-genome sequences), different genome assembly or array design and density, gene

annotations data, and so on (Perez-Enciso, 2017). Heterogeneous data pose challenges for data

integration and for imputation of missing values, and may harbour a certain amount of noise

(errors) which should be taken into account when analysing the data (Pompanon et al., 2009;

Biscarini et al., 2016; Biffani et al., 2017).

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

Page 10 of 24

Animal Genetics

Animal Genetics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

For P
eer R

eview

WRITING CODE AND RUNNING THE ANALYSIS

The increasing availability of multiple-core computers and computing clusters with several

processing units (CPUs), has prompted the use of parallel computing, where large problems can

sometimes be divided into smaller ones that are distributed over hundreds of CPUs and solved

concurrently ("in parallel") improving execution times. The analysis of sequence data often

present embarrassing parallel problems: e.g. genome sequences can be analysed per

chromosome, or alignments can be performed on a per sample (and per chromosome) basis (see

for instance Sikorska et al., 2013). Embarrassing parallel problems are “embarrassingly” easy to

run in parallel, e.g. the user just needs to split the job into sub-jobs and run them independently

on different cores/CPUs/machines. In such cases, the computation time is a direct function of the

processing resources (n. of machines, processing units such as in Beowulf clusters).

Parallelization may though be less straightforward when sub-processes are not thoroughly

independent and some degree of communication between them is needed to achieve the final

solution. When such communication is minimal, we talk of “coarse-grain” parallelization: an

example is algebraic matrix inversion frequently used in genetics and genomics (e.g. Biscarini et

al., 2013a). Sometimes though, sub-processes need to communicate extensively by sharing

memory, coordinating I/O, or reciprocally update intermediate values. Such fine-grain

parallelization problems are more difficult to implement and run in parallel, and require the

design of clever algorithms. Examples of fine-grain parallelization with sequence data are the

GPU-Blast implementation of the Blast alignment algorithm (Vouzis and Sahinidis, 2011), and

the determination of progressive alignments topology in the clustalW algorithm (Li KB 2003).

Interpreted scripting languages have many useful features that facilitate the execution of complex

tasks. For instance, R (R Core Team, 2013) can implement complex statistical models; or, high-

level scripting languages like Python (Van Rossum & Drake, 1995) allow to execute complex

tasks with just a few lines of easy-to-read code. Compiled languages like C/C++ or Fortran, on

the other side, achieve higher computing performances and a more powerful memory

management, because they translate directly to the native code of the specific machine. The

latter, however, comes at the expense of easy implementation, since compiled languages

typically use low level functions and very simple data structures that force users to write

extensive code even for relatively simple tasks. Hybrid solutions between compiled and

interpreted languages that improve computational performances with no need of sacrificing the

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

Page 11 of 24

Animal Genetics

Animal Genetics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

For P
eer R

eview

user-friendly syntax of scripting languages exist. Examples include Cython (Behnel et al., 2011),

SWIG (Beazley et al., 1998), the Rcpp R library (Eddelbuettel & François, 2011), that offer

frameworks where users can identify and implement in a compiled language only the bottlenecks

of their algorithms, while keep writing everything else in an interpreted user-friendlier language.

Such hybrid schemes provide therefore a compromise between performance and complexity.

Based on our experience, embedding Cython blocks in a script allowed processing 0.5 Gb of

sequence data in 50.380 seconds compared to 207.266 seconds with the same algorithm solely

implemented in Python (ceteris paribus).

Modular programming refers to the organization of the code in subunits which act more or less

independently (Maynard, 1972). Organising the code in modules or functions (or classes, in the

object-oriented paradigm) is especially useful for complex programmes or pipelines that

comprise several tasks, entail a considerable running-time, or run extensively in parallel.

Modularity allows for the code to be recycled -functions, modules or classes are typically used

repeatedly- and portable across platforms or projects (no need of re-writing everything from

scratch each time), and is a key component of programming efficiency. Besides, modular code is

easier to debug, since you can conveniently go through the program/pipeline “piece by piece”,

and allows to track even problems independent from your code, like machine or cluster

breakdowns, electric network failures etc ...: you would be able to resume the work from where

the problem occurred and relaunch only what is really needed, instead of everything from start.

This makes your pipeline more robust to system crashes, and reduces the risk of losing data. A

well known example of a modular pipeline of analysis for sequence data is the Ensembl pipeline

for the annotation of genomic sequence (Potter et al., 2004). To recap, make your code modular

and you’ll have an array of advantages, at the expense of only little extra planning effort!

Once you have made your code/pipeline modular, you need to make sure it is reproducible. This

can be achieved by organizing it into e.g. R packages or Python modules. Or it can be organized

into a reproducible pipeline making use of a data/analysis serialization format like the XML

mark-up language, the INI format or YAML. This latter, YAML (recursive acronym: Yaml Ain’t

Mark-up Language), has the advantage of being human-readable and of having an easy syntax

suitable for all programming languages (Ben-Kiki et al., 2005). YAML helps dealing with big

data projects with several parameters and jobs to be launched independently. It is useful to

handle the serial steps of a pipeline, but is particularly suited for “embarrassing parallel”

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

Page 12 of 24

Animal Genetics

Animal Genetics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

For P
eer R

eview

problems, where besides running several consecutive steps, these are to be repeated over a large

number of samples. A modular pipeline plus YAML serialization format is a powerful

combination for the analysis of large sequence data. YAML is usually organised in two files, one

with the serial steps of the analysis, the other with the samples over which the analysis should be

run in parallel (see Box 1 for an illustration). YAML files are written as hash tables/associative

arrays, i.e. in the form of key-value pairs. YAML syntax is overly simple: the most important

rules to remember are indentation, a few keywords (e.g. resources, steps, samples) and

placeholders (i.e. <variable_name>). In order for the analysis to be run, YAML files need to be

interpreted by ad hoc programmes/scripts, like for instance the PipEngine launcher developed in

Ruby (Strozzi & Bonnal, 2017).

Box 2. How YAML works in practice

For bioinformatics tasks, typically the YAML data analysis serialization format comprises two files

(.yml): 1) “configuration file” listing resources (paths to input data and output directories) and samples to

run the analysis in parallel; 2) “analysis file” describing the serial steps of the analysis and related

resources (programmes, scripts). YAML files are written in the form of hash tables/associative arrays:

‘key’: value. Below an illustration for the SNP calling and missing genotype imputation over 100

samples.

#-----------------------

configuration.yml

#-----------------------

resources:

 output: /output/directory/
 data: /path/to/data

samples:

 ‘sample1’: sample1_name

 ‘sample2’: sample2_name

 ……

 ‘sample100’: sample100_name

#-----------------

analysis.yml

#-----------------

resources:

snp-calling_program: /path/to/snp-calling_program

355

356

357

358

359

360

361

362

363

364

365

Page 13 of 24

Animal Genetics

Animal Genetics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

For P
eer R

eview

imputation_program: /path/to/imputation_program

steps:

 snp-calling:
 desc: call snps from each sample sequence
 run: <snp-calling_program> --input <sample> -o called_snp.<sample>

 cpu: 4

imputation:

 desc: impute missing genotypes at SNP loci
 run: <imputation_program> --input called_snp.<sample> --output

imputed_snp.<sample>

 cpu: 4

In this simple example, the steps of the analysis are organised with a description of the step, the actual

code to be run in each step, and the number of CPU to be used. The analysis can then be run through and

ad hoc interpreter (see main text) using a command line similar to the following:

>> pipengine run --pipeline analysis.yml --samples-file configuration.yml --name

imputation --steps imputation

Processing data loaded onto the (volatile/RAM) memory is much faster compared to the heavy

workload of repeated I/O operations involved in reading stored data and writing them back out

on the disk (exactly how faster depends on disk and memory architecture: e.g. SSD, HDD,

DDR3). When analysing relatively small datasets, this is usually not a problem, even on a

laptop/client PC: all the data can be placed in the memory and analysed efficiently from there.

With large sequence data this is often not possible, not even if large RAM capacities are

available as in computing clusters or high-performance servers. This is especially true when not

just a single “large” job has to be executed, but several parallel jobs are to be run simultaneously

and have to compete for memory resources: if several “large” jobs are launched in parallel, the

memory would soon be full! In such cases, CPU-intensive rather than memory intensive

computing strategies should be adopted: the software would thus need to be designed so to resort

as much as possible to I/O operations in order to reduce the memory burden. Data can be read in

the memory record by record, or in chunks, and then processed by the CPU. In such a setting,

there is a trade-off between memory usage and CPU-time: memory efficiency is gained at the

expense of increased computation time (repeated I/O operations). An illustration from sequence

data is for instance reading FASTA files: these are usually quite big files, and loading them into

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

Page 14 of 24

Animal Genetics

Animal Genetics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

For P
eer R

eview

memory would easily exhaust memory resources. It makes therefore sense to read such files

sequentially, which won’t use much system memory. In some circumstances, though, repeated

access to (part of) the file is needed, like in most matrix operations: then the approach of reading

the whole file into memory makes the algorithm much easier to write, at the cost of some system

memory.

PUBLISHING RESULTS, DATA AND CODE

In the previous sections we attempted to emphasise that researchers working on large datasets

usually encounter problems that are very similar, and which in many cases others also have

encountered and frequently solved. It is possible to gain access to that communal knowledge by

querying the literature, public databases, open forums and discussion groups. In the same way, it

impends on researchers to make their knowledge publicly available as members of the “scientific

community” (Budd et al. 2015). For that purpose it is important to identify the public databases

where raw data used for research can be stored. Such approach serves two purposes. On one

hand prevents researchers from having to come up with the funds necessary to secure data

archiving and iis availability in the future (i.e. public databases are free). On the other hand, by

using public databases researchers make sure that their work contributes to the continuous

growth of the scientific community. Depending on the type of data, several public repositories

are available, e.g. DRYAD (http://datadryad.org/), Zenodo (https://zenodo.org/), the Short Read

Archive (NCBI, http://www.ncbi.nlm.nih.gov/sra), the European Nucleotide Archive (EBI,

http://www.ebi.ac.uk/ena).

While publishing the data used for analyses and the metadata associated to it is a very important

step, publishing the analyses pipelines (i.e. the collections of bioinformatics scripts used) is

crucial, and regretfully, still rarely done (Ince et al. 2012). Several public repositories exist that

enable publishing scripts used for data analysis, e.g. Google Code (https://code.google.com/),

Sourceforge (http://sourceforge.net/), Github (https://github.com/) or GitLab

(https://about.gitlab.com/). The users community expects to find in this type of repositories

scripts that can be directly used by others; however, researchers frequently write code that was

intended for their own use or for a specific task (a.k.a. quick and dirty script). While publishing

those scripts is still important, programing skills are no longer a desired skill only for

mathematicians, physicists and engineers: researchers in the biological sciences, too, need to

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

Page 15 of 24

Animal Genetics

Animal Genetics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

For P
eer R

eview

build a basic informatics knowledge (Dudley & Butte 2009, Hawkins et al. 2010) that enables

them writing scripts that are accessible to others (i.e. that can be read and modified).

Finally, although researchers plan their work so to maximize the likelihood of obtaining

significant and relevant results, it is of fundamental importance to also publish lack of or

negative results, so to minimize issues with publication and reporting bias (Dwan et al., 2008):

on-line archives like Bioarxiv (http://www.biorxiv.org/) offer a convenient way to make all

research results readily available to the scientific community and the broader public.

CONCLUSIONS
The advancement in ‘omics technologies has guided the development of a data-driven approach

to biological sciences. This change has marked the need for researchers in the biological sciences

to change their approach to experiment design, data handling and storage, and time allocation for

wet-lab vs. dry-lab (computer based) work, as well as it has resulted in the growing need for

those researchers to at least have a basic understanding of computing language (e.g. to at least be

able to look at files) and information technology (e.g. to understand about file transfer protocols

between servers). Fast computers and vast storage capabilities are giving us plenty of

possibilities to handle large-scale data (besides contributing to produce big-data, in a sort of

virtuous/vicious cycle). However, such resources, though ample, are not infinite, and the design

of good computation strategies is still fundamental to handle today’s large quantities of data. In

this review of common practices we described principles that we feel are very important and that

biological researchers embarking in the field of genomics need to be aware of. Importantly, while

our views derive from our experience working with livestock genomics, our comments are

equally applicable to research on crops, wildlife fauna and flora, humans, and microbial ‘omics

technologies. Lastly, these comments reflect the lessons we learnt during our own experience,

and it is very important to note that no matter how well you plan experiments and how strictly

you follow our guidelines , when analysing large data involving multiple comparisons, methods,

models, samples etc, you must be patient and willing to learn at each step, as you cannot expect

that everything will run smoothly without problems!

Acknowledgements

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

Page 16 of 24

Animal Genetics

Animal Genetics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

For P
eer R

eview

The authors acknowledge the contribution of the NEXTGEN FP7 EU and ClimGen projects

from which they received financial support and the opportunity of experimenting with large

genomic data. A special thanks/acknowledgement goes to Ian Streeter for his scientific and

technical support in dealing with large sequence data. FB was financed also by the Marie-Curie

European Reintegration Grant NEUTRADAPT.

Conflicts of interests

The authors declare that they have no conflicts of interests.

REFERENCES

Allen F., Almasi G., Andreoni W., Beece D., Berne B.J., Bright A. et al. (2001) Blue Gene: a

vision for protein science using a petaflop supercomputer. IBM systems journal 40(2): 310-27.

Angles R, Gutierrez C. (2008). Survey of graph database models. ACM Computing Surveys

(CSUR), 40(1): 1.

Beazley DM (1998). Interfacing C/C++ and Python with SWIG. In7th International Python

Conference, SWIG Tutorial.

Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D. S., & Smith, K. (2011). Cython:

The best of both worlds. Computing in Science & Engineering, 13(2), 31-39.

Bell G, Hey T, Szalay A (2009) Beyond the data deluge. Science 323: 1297-1298.

Ben-Kiki O, Evans C, Ingerson B (2005). YAML Ain't Markup Language (YAML™) Version

1.1. yaml. org, Tech. Rep.

Berger, B., Peng, J., & Singh, M. (2013). Computational solutions for omics data. Nature

reviews. Genetics, 14(5), 333.

Biffani, S., Pausch, H., Schwarzenbacher, H., & Biscarini, F. (2017). The effect of mislabeled

phenotypic status on the identification of mutation-carriers from SNP genotypes in dairy cattle.

BMC research notes, 10(1), 230.

Biscarini F, Picciolini M, Stella A, Iamartino D, Strozzi F (2013a) A graph database to store and

manage phenotypic, pedigree and genotypic data of livestock. Book of abstracts No. 19 of the

64th Annual Meeting of the European Federation of Animal Science (Nantes, France).

Biscarini F, Pedretti A, Ober U, Erbe M, Jorjani H, Nicolazzi E, Picciolini M (2013b) Use of

molecular markers to estimate genomic relationships and marker effects: computation strategies

in R. In: The R User Conference, useR! 2013 July 10-12 2013 University of Castilla-La Mancha,

Albacete, Spain (Vol. 10, No. 30, p. 13).

Biscarini, F., Nazzicari, N., Broccanello, C., Stevanato, P., & Marini, S. (2016). “Noisy beets”:

impact of phenotyping errors on genomic predictions for binary traits in Beta vulgaris. Plant

methods, 12(1), 36.

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

Page 17 of 24

Animal Genetics

Animal Genetics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

For P
eer R

eview

Bray NL, Pimentel H, Melsted P, Pachter L (2016) Near-optimal probabilistic RNA-seq

quantification. Nature biotechnology 34(5): 525-527.

Christley S, Lu Y, Li C, Xie X (2009) Human genomes as email attachments. Bioinformatics

25(2): 274-275.

Cole J, Newman S, Foertter F, Aguilar I, Coffey M (2012) Breeding and genetics symposium:

Really big data: Processing and analysis of very large data sets. Journal of Animal Science 90:

723–733.

Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, Szcześniak

MW, Gaffney DJ, Elo LL, Zhang X, Mortazavi A (2016) A survey of best practices for RNA-seq

data analysis. Genome biology 17(1): 1.

de los Campos G, Hickey JM, Pong-Wong R, Daetwyler HD, Calus MP (2013) Whole-genome

regression and prediction methods applied to plant and animal breeding. Genetics 193(2): 327-

345.

Ditty J, Kvaal C, Goodner B, et al. (2010) Incorporating genomics and bioinformatics across the

Life Sciences curriculum. PLoS Biology 8:e1000448

Dwan, K., Altman, D. G., Arnaiz, J. A., Bloom, J., Chan, A. W., Cronin, E., ... & Ghersi, D.

(2008). Systematic review of the empirical evidence of study publication bias and outcome

reporting bias. PloS one, 3(8), e3081.

Eddelbuettel, D., François, R., Allaire, J., Chambers, J., Bates, D., & Ushey, K. (2011). Rcpp:

Seamless R and C++ integration. Journal of Statistical Software, 40(8), 1-18.

Gillick D, Faria A, DeNero J (2006) Map-reduce: Distributed computing for machine learning.

Berkley 18.

González-Recio O, Forni S (2011) Genome-wide prediction of discrete traits using Bayesian

regressions and machine learning. Genetics Selection Evolution 43(1):1.

Grüning, B. A., Rasche, E., Rebolledo-Jaramillo, B., Eberhard, C., Houwaart, T., Chilton, J., ... &

Nekrutenko, A. (2017). Jupyter and Galaxy: Easing entry barriers into complex data analyses for

biomedical researchers. PLOS Computational Biology, 13(5), e1005425.

Hey T, Tansley S, Tolle K (2009) The Fourth Paradigm: Data-Intensive Scientific Discovery,

Redmond, WA: Microsoft Research.

Hawkins RD, Hon GC, Ren B. (2010) Next-generation genomics: an integrative approach.

Nature Reviews Genetics 11(7): 476-486.

Hickey JM. (2013) Sequencing millions of animals for genomic selection 2.0. Journal of Animal

Breeding & Genetics 130(5): 331-332.

Kitchin R (2014) Big Data, new epistemologies and paradigm shifts. Big Data & Society 1: 1-12.

Krampis K, Booth T, Chapman B, Tiwari B, Bicak M, Field D, Nelson KE. (2012) Cloud

BioLinux: pre-configured and on-demand bioinformatics computing for the genomics

community. BMC Bioinformatics 13(1): 1.

Li KB (2003) "ClustalW-MPI: ClustalW analysis using distributed and parallel computing",

Bioinformatics 19(12): 1585-1586.

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

Page 18 of 24

Animal Genetics

Animal Genetics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

For P
eer R

eview

Loh PR, Baym M, Berger B. (2012) Compressive genomics. Nature biotechnology 30(7): 627-

630.

Lohr, S. (2012). The age of big data. New York Times, 11.

Marx, V. (2013). Biology: The big challenges of big data. Nature 498(7453): 255-260.

Mangul, S., Martin, L. S., Hoffmann, A., Pellegrini, M., & Eskin, E. (2017). Addressing the

digital divide in contemporary biology: Lessons from teaching UNIX. Trends in Biotechnology.

Maynard, J. (1972) "Modular programming." CRC Press

Meng, Xiangrui, et al. (2016) "Mllib: Machine learning in apache spark." Journal of Machine

Learning Research 17(34): 1-7.

Meuwissen, T., Hayes, B., & Goddard, M. (2016). Genomic selection: A paradigm shift in animal

breeding. Animal frontiers, 6(1), 6-14.

“NEXT GENERATION METHODS TO PRESERVE FARM ANIMAL BIODIVERSITY:

NEXTGEN” FP7-EU Project [http://nextgen.epfl.ch/]

Nicolazzi EL, Biffani S, Biscarini F, Orozco ter Wengel P, Caprera A, Nazzicari N, Stella A.

(2015) Software solutions for the livestock genomics SNP array revolution. Animal genetics

46(4): 343-353.

O’Driscoll A, Daugelaite J, Sleator RD. (2013) ‘Big data’, Hadoop and cloud computing in

genomics. Journal of Biomedical Informatics 46(5): 774-781.

Osborne JM, Bernabeu MO, Bruna M, Calderhead B, Cooper J, Dalchau N et al. (2014). Ten

simple rules for effective computational research. PLoS computational biology 10(3): e1003506.

Owens M (2006) “The Definitive Guide to SQLite”, Chapter 4, pp 155-158, isbn: 978-1-59059-

673-9

Patro R, Mount SM, Kingsford C (2014) Sailfish enables alignment-free isoform quantification

from RNA-seq reads using lightweight algorithms. Nature biotechnology 32(5): 462-464.

Pérez‐Enciso, M. (2017). Animal Breeding learning from machine learning. Journal of Animal

Breeding and Genetics, 134(2), 85-86.

Pompanon, F., Bonin, A., Bellemain, E., & Taberlet, P. (2005). Genotyping errors: causes,

consequences and solutions. Nature reviews. Genetics, 6(11), 847.

Pop M, Salzberg SL (2008) Bioinformatics challenges of new sequencing technology. Trends in

Genetics 24(3): 142-149.

Potter SC, Clarke L, Curwen V, Keenan S, Mongin E, Searle SM et al (2004). The Ensembl

analysis pipeline. Genome research 14(5): 934-941.

R Core Team (2013). R: A language and environment for statistical computing. R Foundation for

Statistical Computing, Vienna, Austria. [http://www.R-project.org/]

Schuster SC (2008). Next-generation sequencing transforms today's biology. Nature methods

5(1): 16-18.

Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, Efron MJ et al. (2015) Big data:

astronomical or genomical?. PLoS Biology 13(7): e1002195.

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

Page 19 of 24

Animal Genetics

Animal Genetics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

For P
eer R

eview

Strozzi F, Bonnal RJP (2017) Pipengine: an ultra light YAML-based pipeline execution engine.

The Journal of Open Source Software 12:16.

Sikorska K, Lesaffre E, Groenen PF, Eilers PH (2013). GWAS on your notebook: fast semi-

parallel linear and logistic regression for genome-wide association studies. BMC Bioinformatics

14(1): 166.

Szymczak S, Biernacka JM, Cordell HJ, González‐Recio O, König IR, Zhang H, Sun YV (2009)

Machine learning in genome‐wide association studies. Genetic epidemiology 33(S1): S51-57.

Taylor RC. (2010) An overview of the Hadoop/MapReduce/HBase framework and its current

applications in bioinformatics. BMC Bioinformatics 11(Suppl 12):S1.

Tempelman, R. J. "The frontier spirit and reproducible research in animal breeding." Journal of

Animal Breeding and Genetics 133, no. 6 (2016): 441-442.

VanRaden PM, O'Connell JR, Wiggans GR, Weigel KA (2011) Genomic evaluations with many

more genotypes. Genetics Selection Evolution 43(1):1.

Van Rossum G, Drake Jr FL (1995) Python reference manual. Amsterdam: Centrum voor

Wiskunde en Informatica.

Vouzis PD, Sahinidis NV (2011). GPU-BLAST: using graphics processors to accelerate protein

sequence alignment. Bioinformatics 27(2): 182–188.

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

Page 20 of 24

Animal Genetics

Animal Genetics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

For P
eer R

eview

Tables

Table 1: Examples of Big Data from ’omics technologies

Examples of Big Data from ’omics technologies

Category Raw data Size

Whole-genome sequences (WGS)

sequence

reads

∼ 5 GB for a genome ∼ 3 Gbps

long at ∼ 10x coverage

Transcriptome Sequence Analysis (TSA)

sequence

reads

several GB depending on coverage (<

WGS)

Bisulphite sequencing

sequence

reads several GB (≤ TSA)

SNP array genotypes

few kB for sample → usually

several ples → MB/GB

5 GB: giga-bytes; 5 MB: mega-bytes; 5 kB: kilo-

bytes; Gbps: giga-base-pairs.

Table 2: Publicly available resources

Resource Name access type

Forum SEQanswers http://seqanswers.com/ Sequencing, Bioinformatics

Biostars https://www.biostars.org/ Bioinformatics, Biological Data

Analysis

Stack Overflow http://stackoverflow.com/ Informatics

Stack Exchange http://stackexchange.com/ Informatics

Software Sourceforge http://sourceforge.net/ Repository

Github https://github.com/ Repository

Google Code https://code.google.com/ Repository

sqLite https://www.sqlite.org Database software

YAML http://yaml.org/ Data serialization standard

Database Pubmed http://www.ncbi.nlm.nih.gov/pub

med

Literature

Scopus http://www.scopus.com/ Literature

Genbank http://www.ncbi.nlm.nih.gov/gen

bank/

Data

Ensembl http://www.ensembl.org/index.h

tml

Data

575

576

577

578

579

Page 21 of 24

Animal Genetics

Animal Genetics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

For P
eer R

eview

Short Read Archive http://www.ncbi.nlm.nih.gov/sra

http://www.ebi.ac.uk/ena

Data

Dryad http://datadryad.org/ Data

USGC Genome Browser https://genome.ucsc.edu/ Data

Large

Scale

Projects

1000 genomes http://www.1000genomes.org/ Human genomes

1000 bull genomes

project

http://www.1000bullgenomes.c

om/

Cattle genomes

NextGen Consortium http://nextgen.epfl.ch/ Mouflon, Sheep, Bezoar, Goat,

Cattle

The 3000 rice genomes

project

http://gigadb.org/dataset/20000

1

Rice

1001genomes http://1001genomes.org/ Arabidopsis

Figures

Figure 1: Trends in costs and data production over time. Cost per giga-byte (gray line), per

genome (green line), per mega-base (blue line). Base-pairs from GenBank (red line), from

whole-genome sequences (WGS, yellow line) and from transcriptome sequence analysis (TSA,

580

581

582

583

585

586

587

Page 22 of 24

Animal Genetics

Animal Genetics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

For P
eer R

eview

orange line); Moore’s law (black line). The y-axis holds for all units (dollars, base-pairs, n. of

transistors). WGS and TSA data are not distributed in conjunction with GenBank releases. Data

from ftp://ftp.ncbi.nih.gov/genbank/gbrel.txt, https://www.genome.gov/sequencingcosts/

588

589

590

591

Page 23 of 24

Animal Genetics

Animal Genetics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

For Peer Review

0.001

0.01

0.1

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

1E+10

1E+11

1E+12

1E+13

10/01/1978 03/07/1983 23/12/1988 15/06/1994 06/12/1999 28/05/2005 18/11/2010 10/05/2016

Cost per Gigabyte in $

GenBank size in base pairs

GenBank base pairs WGS

GenBank base pairs TSA

Moore's Law

Cost per Megabase in $

Cost per Genome in $

Page 24 of 24

Animal Genetics

Animal Genetics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

