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Abstract 

The dominant paradigm for understanding working memory, or the combination of the 

perceptual, attentional, and mnemonic processes needed for thinking, sub-divides short-

term memory according to whether memoranda are encoded in aural-verbal or visual 

formats. This traditional dissociation has been supported by examples of neuropsychological 

patients who seem to selectively lack short-term memory for either aural-verbal, visual, or 

spatial memoranda, and by experimental research using dual-task methods. Though this 

evidence is the foundation of assumptions of modular short-term memory systems, the case 

it makes for a specialized visual short-term memory system is surprisingly weak. I identify 

the key evidence supporting a distinct verbal short-term memory system—patients with 

apparent selective damage to verbal short-term memory and the resilience of verbal short-

term memories to general dual-task interference—and apply these benchmarks to 

neuropsychological and experimental investigations of visual-spatial short-term memory. 

Contrary to the evidence on verbal short-term memory, patients with apparent visual or 

spatial short-term memory deficits tend to experience a wide range of additional deficits, 

making it difficult to conclude that a distinct short-term store was damaged. Consistently 

with this, a meta-analysis of dual-task visual-spatial short-term memory research shows that 

robust dual-task costs are consistently observed regardless of the domain or sensory code of 

the secondary task. Together, this evidence suggests that positing a specialised visual short-

term memory system is not necessary. 

 

Keywords: working memory, short-term memory, visual memory, spatial memory, 

interference, neuropsychology, meta-analysis 
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Public Significance Statement 

This study challenges the popular notion that there is a distinct short-term visual memory 

system in which recent visual memories are maintained separately from other sorts of 

memories. It is important to understand how normal memory functions and how it interacts 

with other cognitive, perceptual, and motor systems to advise those who want to make the 

most of their memories. This work shows that visual memories are vulnerable to interference 

from a variety of sources.  
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The case against specialized visual-spatial short-term memory 

  

 The most prominent model of working memory, the multi-component model of 

working memory (Baddeley, 2012), posits that visual and verbal information are stored 

separately from each other in dedicated storage buffers. This model, one of the most 

influential theoretical frameworks in cognitive psychology, arose to explain two key findings: 

1) neuropsychological case evidence suggesting that it could be possible to selectively lose 

access to aural-verbal or visual or spatial short-term memories, and 2) observations of little 

or no interference between serial recall of verbal lists and concurrent non-verbal tasks 

(Baddeley & Hitch, 1974). Together these pieces of evidence suggested that a comprehensive 

memory system must include some system for short-term storage, and furthermore that 

verbal short-term storage must be distinguished from other mnemonic processes.  

 By logical inference, a comparable short-term memory system specialized for visual 

information has likewise been included in some models of working memory (Baddeley, 1986; 

Baddeley, 2000; Baddeley, 2012; Baddeley & Logie, 1999; Logie, 2011; Repovš & Baddeley, 

2006). Analogously to the proposed verbal short-term memory system, which includes sub-

components for storing phonological information and for articulatory rehearsal (Baddeley, 

2012), the visual short-term memory system includes sub-components for maintaining and 

rehearsing visual materials (Logie, 2011). However, direct evidence supporting an exclusively 

visual-spatial short-term memory system that functions similarly to a verbal short-term 

memory system is actually quite weak. For many years, the study of visual memory lagged 

behind that of verbal memory, and during this period it was perhaps reasonable to rely on 

assumptions of similarity between verbal and visual-spatial short-term memory systems to 

generate theoretical predictions. However, sufficient evidence about visual short-term 
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memory from a variety of sources has now accumulated, and this evidence should be used to 

reconsider theoretical assumptions about visual short-term memory.  

 I argue that the proposition of a dedicated short-term store for visual materials is not 

essential for explaining any of the evidence from the memory literature, including 

neuropsychological cases that purport to demonstrate selective visual or spatial short-term 

memory deficits. I show that the evidence called upon to support the idea of a visual short-

term memory buffer never unequivocally led to this conclusion, but exploratory study of 

visual-spatial short-term memory was nonetheless guided by assumptions that memory for 

and operations performed on visual information would be analogous to those posited for 

verbal memory. After decades of accumulated research, evidence for parallels between visual-

spatial and verbal short-term memory systems has consistently proved weak and 

inconclusive. Despite these weaknesses, disconfirming evidence that weighs against the 

notion of a distinct visual short-term memory system has been disregarded, to the detriment 

of useful advances in working memory theory. I aim to demonstrate that there is now 

sufficient evidence available to reject the notion of a dedicated visual-spatial short-term 

memory store, and to persuade researchers to consider various alternative formulations for 

explaining domain-specific dissociations in memory.    

Describing a hypothetical visual short-term memory system 

 The visual-spatial short-term memory system in Baddeley's multi-component model, 

termed the visuo-spatial sketchpad, has often been apologetically introduced to readers. 

Descriptions of the visuo-spatial sketchpad frequently begin by acknowledging that, in 

contrast to the verbal memory system (including the phonological store for holding verbal 

information and the articulatory loop for rehearsing it in serial order), little research 

supports a comprehensive description of the visuo-spatial short-term memory component 



6 

(e.g., Gathercole, 1994; Repovš and Baddeley, 2006).  Despite the accumulation of evidence 

pertaining to visual memory, contemporary accounts of the multi-component model still 

describe the visual portions of it using the same cautious and exploratory language used 20-

30 years ago. Baddeley (2012) limits his description of the visuo-spatial sketchpad mainly to 

the supposition of fractionation into sub-components for handling spatial versus visual 

imagery, much as Gathercole (1994) previously did. As for components meant for carrying 

out rehearsal, evidence about these is still deemed “unclear” (Baddeley, 2012).    

 Yet a visual short-term memory system was proposed, and is still widely considered 

an essential component of a working memory system. What evidence led to the belief that a 

specialized visual-spatial short-term memory system must exist, even before it could be 

described with any empirically-derived concrete detail? Baddeley's admitted philosophy of 

scientific practice is for theory to follow from data, rather than for theory to predict 

experimental outcomes (Baddeley, 1992; 2012). However, in the instance of the visuo-spatial 

sketchpad, it is difficult to re-trace how data led to the supposition of a visual short-term 

memory system rather than to other possibilities that are equally consistent with the same 

empirical outcomes. Rather, it seems that some component was required to explain retention 

of non-verbal information, and a visual-spatial short-term memory system was chosen to 

complement the verbal one based on logical deduction, not because of data that could not be 

explained in any other manner. At this early stage, the proposition of a visual-spatial short-

term memory system was the logical complement to the better-established verbal one, and 

was assumed on the strength of evidence about the independence of verbal memory from 

other cognitive processes.  

 The assumption of distinct, specialized verbal and visual-spatial short-term memory 

systems has consistently guided exploration of memory phenomena, and arguably still does. 
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Contemporary hypothesis testing about visual short-term memory continues to rely heavily 

on analogy with verbal short-term memory, explicitly applying principles rooted in the study 

of verbal short-term memory to non-verbal memory tasks, and evaluating whether the 

analogy holds (e.g., Allen, Baddeley, & Hitch, 2014; Jünger, Kliegl, & Oberauer, 2014). It 

would therefore seem that, rather than theory about visual short-term memory following 

from data, theory about visual short-term memory follows from theory about verbal short-

term memory, plus assumptions that similar verbal and visual sub-systems must co-exist. 

While work probing similarities and differences between verbal and non-verbal memory is 

important for better establishing boundary conditions on memory phenomena, such work 

does not actually address whether distinct but similar verbal and visual-spatial systems 

underlie performance. Assuming separate sub-systems might misguide our interpretation of 

data, which is perhaps why descriptions of visual-spatial working memory remain speculative 

despite years of accumulated research. It is time that we reconsidered the available evidence 

and abandon the assumption that a specialized visual short-term memory system exists, at 

least temporarily.   

Reconsideration of evidence 

 To understand the progress made in describing how we retain visual memoranda and 

how this process differs from retaining verbal memoranda, I first review the empirical 

evidence that led to the supposition of a visual short-term memory system, updating this 

with recent reports of evidence from the same kinds of tasks. These tasks investigated 

whether the use of visual imagery augmented verbal memory, and classic dual-task 

interference manipulations were applied in order to test for selective disruption of the use of 

these visual imagery mnemonics. While evidence from these manipulations does strongly 

suggest that the same information may be retained in verbal or visual format, it is vital to 
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note that this does not necessarily mean that these representations are held in distinct short-

term memory systems.  

 Evidence from neuropsychological cases has been proposed as the smoking-gun 

justification of separate verbal and visual-spatial short-term memory systems. A handful of 

individuals with apparently selective deficits exclusive to either auditory-verbal or visual-

spatial short-term memory have been reported, and their performance on a variety of tasks 

has been documented. The existence of an individual who could not remember visual 

information over brief retention intervals, but whose long-term memory and cognitive 

functioning were otherwise unaffected, would provide formidable evidence supporting a 

specialized visual-spatial short-term memory system. I describe the patients with visual or 

spatial short-term memory deficits, attempting to examine the evidence they provide without 

the a priori assumption of a specialized visual short-term memory system. Though patients 

with some degree of difficulty with visual and/or spatial short-term memory have been 

reported, I argue that most of these patients do not show the focused pattern of selective 

deficits required to support the proposition of a specialized visual-spatial short-term memory 

system. Additionally, I highlight methodological discrepancies in the case evidence that 

preclude coming to an unambiguous interpretation, which include inconsistent measures 

across patients, and differences in the tasks used to measure verbal, spatial, and visual 

memory that extend beyond the sensory code of the to-be-remembered content. 

      Because in my view the evidence that informed the multi-component model of 

working memory was always ambiguous and capable of supporting multiple proposals of how 

visual information is mentally represented, I outline a set of hypothesis tests that would 

confirm the presumption of a specialized visual-spatial short-term memory system. I then 

evaluate these hypotheses via a re-examination of a previously-published data set and via a 
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comprehensive meta-analysis of classic and contemporary studies including experimental 

dual-task manipulations during visual short-term memory tasks. In summary, I find no 

reason to believe that visual or spatial memories are retained by a distinct, specialized short-

term memory system. I propose that rather than using assumptions about verbal short-term 

memory as the guiding principle for understanding visual memory, we accept the inherent 

asymmetry between representing verbal and non-verbal memoranda and systematically 

compare possible reasons for it.   

Experimental evidence informing the early multi-component working memory  

model 

Visual imagery mnemonics applied to verbal memory 

 The early work that led to confirmation that a specialized visual module comparable to 

the verbal working memory system must be operating incorporated several lines of 

experimental evidence, but oddly, very little of it required participants to explicitly remember 

visual images or spatial sequences. Much of the work cited as inspiring the concept of the 

visuo-spatial sketchpad investigated how visualization may be enlisted to enhance memory 

for verbal information.  Though this evidence has been taken as support for a specifically 

visual short-term memory system, I argue that interpretation of this evidence does not 

actually require this assumption. First, I review this body of research and then I consider 

what limitations it reasonably places on working memory theory. 

 Brooks' tasks.  Brooks (1967) devised a task for investigating whether visual-spatial 

mnemonic processes could assist verbal memory. Several to-be-remembered sentences are 

presented with respect to an imaginary grid. For example, a sequence may begin “place 1 in 

the central square”, and continue with “place 2 in the square to the right”, “place 3 in the 

square above”, etc., changing whether the direction word is above, below, left, or right. With 
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this formulation, imagining the numbers entered onto a spatial layout aids sentence recall. 

Verbal recall in this spatial path condition is contrasted with verbal recall in a nonsensical 

version in which the directional words are replaced with another set of adjectives that lack 

any spatial mapping (e.g., “place 2 in the square to the good”, “place 3 in the square to the 

quick”, etc.). In both versions, the participant's object is to try to recall the sentences in their 

presented serial order. Recall is substantially better in the spatial path version, with an 

improvement of something like 1-3 sentences compared with the nonsense version (Baddeley 

& Lieberman, 1980; Logie, 1986). 

 The observed improvement in sentence recall when supplemented with spatial 

directions is taken as evidence that applying spatial imagery to verbal sequential memory 

enlists extra resources beyond those engaged during rote verbal memorization. Researchers 

have used various dual-task manipulations to attempt to reveal the nature of these resources. 

Baddeley and Lieberman (1980) juxtaposed spatial path and nonsense Brooks tasks with a 

spatial tracking task in which participants tried to keep a flashlight shining on a beeping 

photocell attached to a pendulum, or alternately with a brightness judgment task. Baddeley, 

Grant, Wight, and Thomson (1975) paired the same Brooks tasks with a spatial tracking task 

with visual rather than aural feedback. Spatial tracking, whether by visual or aural cues, 

significantly reduced participants' scores on the spatial path version of the Brooks task, but 

did not significantly impair performance on the nonsense version.  Performing brightness 

judgments on the other hand did not impair performance on the spatial-path Brooks task, 

but did significantly impair memory for the nonsensical sentences.  In contrast though, two 

similar investigations did find that brightness judgments impaired recall in a spatial-path 

Brooks task (Beech, 1984; Quinn, 1988). The case for selective interference with Brooks-task 

visualization is therefore inconsistent.   
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 Logie, Zucco, and Baddeley (1990) used spatial-path and nonsense Brooks tasks as 

concurrent processing tasks during verbal and spatial memory span procedures. Logie et al. 

observed a clear pattern of domain-specific selective interference: the verbal memory span 

procedure impaired the nonsense Brooks task more than it impaired the spatial path Brooks 

task, while the reverse pattern was observed with the spatial memory span procedure. 

However, both span procedures impaired Brooks task performance, regardless of version, by 

an average decrement of at least 25%. Likewise, though the spatial-path Brooks task affected 

spatial memory spans more than the nonsense Brooks task and the nonsense Brooks task 

impaired verbal memory spans to a greater extent than the spatial-path Brooks task, 

combining either span procedure with either Brooks task provoked massive costs to memory 

span. At best, memory span during a secondary Brooks task was an average of 63% of span 

without a concurrent task. These results suggest both domain-general and domain-specific 

sources of disruption to the use of imagery in the Brooks-task, which Logie et al. attributed to 

joint use of the domain-specific and domain-general modules posited in the multi-

component working memory model. 

 A summary of which secondary tasks affect recall in the Brooks task is given in Table 1. 

The spatial path and nonsense versions of the Brooks matrices tasks appear to vary in their 

susceptibility to different sources of interference. However, these findings do not clearly map 

onto expectations generated by the idea that there are distinct verbal and visual-spatial 

short-term memory resources. Though the nonsense Brooks task is intended to assess rote 

verbal serial memory, it is sometimes significantly affected by a brightness judgement task, 

which would not have been thought to rely much, if at all, on verbal processes. Efforts to 

show that only spatial, but not visual, secondary tasks interfere with utilizing a spatial 

imagery strategy in this task also produced inconsistent results. Though spatial tracking had 
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little or no detectable effect on the nonsense Brooks task, both spatial and verbal short-term 

memory loads substantially impaired nonsense Brooks performance. Similarly, both verbal 

and spatial memory loads substantially impaired performance on a spatial-path Brooks task. 

Detrimental effects of memory loads on Brooks task performance are perhaps unsurprising, 

as both tasks require participants to remember lists of verbal information. However, patterns 

clearly show that interference by domain does not operate with perfect selectivity. It is also 

worth considering whether performance on any verbal memory task, however reliant on 

spatial imagery, is ideal for reasoning about the operations of a hypothetical visual-spatial 

short-term memory system.  

 Use of peg-word and Method of Loci mnemonic strategies. If the spatial-path 

version of the Brooks task involves spatial (but not visual) imagery, then a way to assess the 

effects of visual (but not spatial) imagery on verbal recall is also needed. The peg-word 

mnemonic strategy fills this void. Participants are given lists of concrete, imageable words to 

remember, along with the suggestion to visualize each word with another concrete, 

imageable noun that is constantly tied to the same serial position (e.g., one-bun). When 

instructed to use this technique, participants remember about 1.5-3 words more than 

participants who were not told to engage in an imagery technique (Logie, 1986).  

 As with the advantage observed in spatial path compared with nonsense Brook 

matrices tasks, dual-task methods can be employed to learn what sorts of materials prevent 

the peg-word mnemonic advantage from appearing. Again, observed patterns do not 

consistently support hypotheses about selective interference. Logie (1986) paired rote and 

peg-word mnemonic serial recall with passively viewing matrices, colored squares or line 

drawings, passively listening to irrelevant speech, and making judgments about matrices. 

Except for passive listening, all of these secondary task conditions provoked a decrease in 
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recall in the peg-word mnemonic conditions. Quinn and McConnell (1996) found that 

irrelevant pictures disrupted recall using both rote and peg-word strategies. McConnell and 

Quinn (2000) found that only dynamic, but not static, visual information disrupted use of a 

peg-word mnemonic strategy, and that the extent of interference to the use of the peg-word 

strategy increased with the amount of movement and the size of the display (McConnell & 

Quinn, 2004). Baddeley and Lieberman (1980) paired rote and peg-word mnemonic recall 

tasks with a spatial tracking task, and found that concurrent tracking reduced recall in the 

peg-word imagery condition but not in the rote recall condition. Increasing the similarities 

between the mnemonic strategy and the concurrent task predictably decreases the 

effectiveness of the mnemonic strategy. Baddeley and Lieberman demonstrated this by 

replacing the peg-word strategy with a method of loci strategy in which participants were 

given a common path through campus and encouraged to encode list items with respect to 

various landmarks along this path. The effect of concurrent spatial tracking on recall grew 

larger when paired with this spatial mnemonic method than it appeared with the peg-word 

method. Overall though, evidence of domain-specific selective interference with use of visual 

or spatial imagery appears haphazardly. Significant detriments to strategy use often occur 

where they should not if one posits distinct mechanisms for holding verbal, visual, and 

spatial memoranda. 

 The findings from papers investigating dual-task interference with visualization 

strategies are summarized in Table 1. Taken together, these results suggest that various 

cognitive processes may be enlisted in support of verbal memory, and that these processes 

can be disrupted by concurrent tasks that engage similar processes. Generally (but not 

universally), the more overlap between the mnemonic strategy and the distractors, the less 

effective the mnemonic strategy would prove. These results suggest some degree of 
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distinctness between auditory-verbal processes, spatial processes, and visualization 

processes, which any model of working memory must account for. However, they do not 

strongly suggest independence of visual, spatial, and non-visual cognitive processes. Models 

of working memory must also have a clear method for accounting for this apparent 

dependence.  

Early visual-spatial recognition memory research 
 
 So far, the evidence described (and indeed, the main body of evidence upon which the 

initial descriptions of the visuo-spatial sketchpad were based) pertains exclusively to tests of 

serial verbal memory, an odd situation for theorizing about a buffer meant for holding visual 

images or spatial sequences. Early evidence from visual recognition memory tasks was also 

available at this time, and already suggested that verbal and visual-spatial short-term 

memory might operate differently. Phillips and Christie (1977a, 1977b) tested memory for 

sequences of grid patterns. Participants were presented with a sequence, and then performed 

a sequence of recognition judgments: beginning with the final pattern, they were asked to 

judge whether a test pattern was either identical to or different from the observed pattern. 

Recognition judgments were likewise elicited for the remainder of the presented patterns in 

reverse order. As with verbal serial memory, the data showed a clear spike in recognition 

accuracy for the final item in the list. This recency effect was present in lists ranging in length 

from 1 to 8 items. Unlike verbal serial recall however, the recency advantage was always 

confined to a single pattern, and there was no evidence for primacy effects (i.e., superior 

performance for the first items presented). However, because primacy effects have been 

demonstrated with other sorts of visual materials and tasks (e.g., Cortis, Dent, Kennett, & 

Ward, 2015; Guérard & Tremblay, 2008; Logie, Saito, Morita, Varma, & Norris, 2016; Morey 

and Mall, 2012; Morey & Miron, 2016; Parmentier, Tremblay, & Jones, 2004), and because 
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comparable serial position curves appear when comparable response methods are used (e.g., 

Jones, Farrand, Stuart, & Morris, 1995; Ward, Avons, & Melling, 2005), it is likely that their 

absence here is due to other factors, perhaps interference from attempting to maintain such a 

long list of patterns, or differential interference from reverse-order testing.  

 Notably, Phillips and Christie's work suggested that visual memories might be 

quite susceptible to general interference from non-visual sources, in contrast with verbal 

memories, which seem to be fairly resilient to non-specific interference. Phillips and Christie 

(1977b) made an effort to discern precisely which sorts of processes interfere with the robust 

recency effect in visual recognition tasks. They found that tasks requiring some processing or 

judgment significantly reduced the recency effect, regardless of whether those tasks involved 

auditory or visual presentation of information, while passive distraction, such as observing a 

visual suffix, or listening to or reading off a sequence of digits, had no discernible effect on 

visual recognition accuracy. These experimental investigations of serial visual memory 

showed no evidence that visual-spatial memories are impaired more by visual or spatial 

distractors than by a verbal concurrent task: extent of interference was consistently 

determined by the cognitive demands of the secondary task, not the sensory domain in which 

the stimuli were presented or presumably represented.               

Limits these findings placed on working memory theory 

 The evidence described so far implies that memoranda may be maintained in visual 

formats. Combined with the wealth of evidence that verbal memories can also be maintained 

in phonological code, it furthermore seems clear that mnemonic representations can be 

encoded in multiple domain-specific formats. Additionally, there is unambiguous evidence 

that distracting material provokes greater interference when it shares the domain-specific 

format of the memoranda (e.g., Logie, Zucco, & Baddeley, 1990). Furthermore, there are 
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neuropsychological cases in which verbal but not visual short-term memory seems to be 

impaired, and vice versa (e.g., De Renzi & Nichelli, 1975), and for verbal short-term memory 

deficits, some degree of anatomical specificity is apparent. Taken together, these are the 

findings pointing towards a system in which short-term maintenance is accomplished via 

domain-specific pools of resources (e.g., Baddeley, 1986; Gathercole, 1994).  

 However, as Phillips and Christie (1977b) put it, “. . . the question as to whether there 

are separate mental mechanisms for thinking in words and pictures is sometimes approached 

by treating it as identical to the question as to whether words and pictures have separate 

forms of representation. . . .” (p. 638). Does the conclusion that there are separate mental 

mechanisms for thinking in words versus thinking in pictures follow so confidently from this 

evidence? Put another way, could this evidence be explained as well by a model that allows 

for both verbal and visuo-spatial representations, without specifying that those 

representations must reside in distinct short-term stores? The evidence I have described so 

far, which was cited in the earliest expositions of the visuo-spatial sketchpad as the 

groundwork for the model, cannot unambiguously support a separate systems account. This 

evidence was interpreted as reflecting a distinct visual-spatial short-term memory system 

because another system, the verbal system, was already assumed. Some module capable of 

representing visual images was needed, and this module was assumed to support visual 

memories exclusively.  

 An equally valid solution to this problem might have been to propose an additional 

domain-general short-term memory buffer to complement the verbal system. Distinguishing 

between the possibility that representations formed using domain-specific codes are 

maintained in specialized buffers rather than with domain-general, multi-purpose cognitive 

resources became even more important when domain-general storage resources were added 
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to the multi-component model of working memory later, with the proposal of an episodic 

buffer component (Baddeley, 2000). The logical addition of a component for maintaining 

non-verbal, imagery-based representations might have seemed necessary in a model that was 

otherwise only capable of holding phonological code, but if general-purpose storage is also 

included, is the specialized visual system redundant? The episodic buffer (Baddeley, 2000) 

was intended to provide a means of retrieving long-term knowledge into the working 

memory system for immediate use, as well as for creating links between features encoded in 

verbal versus visual or spatial codes (for instance, pairing names with faces, or location 

names to coordinates on a map). Baddeley allowed for both of these functions by adding a 

store capable of representing information in any sort of code. The acceptance of the need for 

some general-purpose storage in a working memory calls all previous interpretations of 

selective interference during dual-task paradigms into question. Even supposing that this 

body of evidence unambiguously showed that verbal information strictly impaired verbal 

memories and visual-spatial information strictly impaired visual-spatial memories, such a 

double dissociation could be equally well explained by supposing one specialized storage 

buffer and one general storage buffer as by supposing two specialized storage buffers. Now 

that general storage is acknowledged, it is reasonable to consider whether either of the 

specialized stores have become unnecessary baggage.   

  Much more evidence bearing on visual short-term memory is now available to inform 

debate about whether both visual and verbal storage must be posited in models of working 

memory, but in order to be able to fairly consider it, we must attempt to view and weigh it 

without the unnecessary aim of forcing it to fit into the modules specified by the multi-

component working memory model. Instead, we should use the assumptions reasonably 

arising from the multi-component working memory system to predict the patterns that 
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should emerge, given the specific proposals of that modular system. In the next section, I 

describe the patterns that I believe should appear in data if a specialized visual-spatial short-

term memory buffer were in operation. I have aimed to focus my expectations so as not to 

place limits on what other components a multi-faceted cognitive system may or may not 

contain. In the next section, I describe these patterns, and subsequently review evidence in 

two literatures that purportedly serve as the empirical basis for modular short-term memory 

stores: neuropsychological case evidence of selective impairments to visual or spatial short-

term memory, and dual-task interference as measured by costs to accuracy in visual or 

spatial memory tasks. This thorough review makes quite clear that the accumulated evidence 

about what interferes with visual memory does not provide unequivocal support for a distinct 

visual short-term memory module, even though it has been claimed repeatedly to support 

this position (e.g., Baddeley, 2007; Gathercole, 1994; Logie, 2011). In the discussion, I will 

describe what this evidence suggests that we would need to assume about the functioning of a 

hypothetical specialized visual short-term memory system. Beyond that, I will argue that the 

accumulated research fails to distinguish domain-specific from domain-general memory 

storage, and that we therefore have no compelling reason to assume a specialized visual 

short-term memory system at all. I believe that the available evidence is inconsistent with the 

proposition of a distinct visual short-term memory store, and that we ought to consider 

alternative ways of explaining why memory performance tends to be better with cross-

domain task combinations than within-domain task combinations, giving these alternatives 

at least as much credence as is given to the assumption of a specialized visual short-term 

memory system .    

Evidence that would support the proposition of a visual-spatial short-term 

memory buffer 
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 A multi-component working memory system including both verbal and visuo-spatial 

short-term storage is already widely assumed even though the evidence supporting such a 

system could be explained equally well with alternative constructions. How could we decide 

which of several possible frameworks best fit the available evidence? Baddeley (1992) admits 

that a model as complex as the comprehensive multi-component model of working memory 

is unlikely to be strictly falsifiable. If only two components were proposed, then the model 

could be evaluated by creating experimental circumstances intended to reveal double 

dissociations, and evaluating the predominance and strength of these patterns in the data 

(although this method is not without controversy; see Dunn & Kirsner, 2003). Although 

more than two components are assumed, searching for double dissociations is one of the 

experimental strategies that has been applied to assess various pieces of the multi-

component model. However, because cognitive resources besides the ones explicitly tested 

could be contributing to task performance (e.g., Logie, Saito, Morita, Varma, & Norris, 2016), 

finding experimental dissociations does not provide definitive support for the hypotheses 

tested. For instance, the multi-component model now includes at least three components 

capable of storage: the phonological store, the visual cache, and the general-purpose episodic 

buffer. Observing a pattern in which verbal tasks interfere more with verbal memory and 

visuo-spatial tasks interfere more with visuo-spatial memory cannot confirm that there are 

verbal and visuo-spatial short-term stores, because this apparent selectivity could just as well 

arise from making use of a domain-specific resource (e.g., the verbal or the visual-spatial 

buffer) plus a domain-general resource capable of accommodating either sort of code (e.g., 

the episodic buffer). All three components are not needed to explain dissociations. 

 Assuming more than two components in the working memory model, especially when 

one is as versatile as the episodic buffer, makes it impossible to discover an experimental 
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dissociation that demands any single specialized component. Instead, we must delimit a 

network of anticipated evidence that would arise assuming the proposed multi-component 

system. What combination of evidence should be taken as converging upon the need for a 

specialized visuo-spatial short-term memory system? Such a body of evidence should go well 

beyond showing that memoranda can be maintained with visual and spatial features intact, 

because this observation alone is insufficient for declaring that these visual and spatial 

features are maintained within their own specialized sub-system (Phillips & Christie, 1977b). 

What is required is evidence that persuasively eliminates the possibility of visual memoranda 

relying on general-purpose resources for storage. Such evidence is crucial for converging on 

the unparsimonious idea that working memory must include both domain-general stores and 

some variety of domain-specific stores, including specifically verbal, visual, and spatial ones. 

Although such a body of evidence is often assumed, review of the primary studies cited in 

support of the visuo-spatial sketchpad component makes clear that many desirable pieces of 

evidence are missing and that inconsistent pieces of evidence, most notably that verbal tasks 

consistently interfere with visual memory (Phillips & Christie, 1977b), are given little weight.   

 Possibly, researchers hastily concluded that there must be a specialized visual short-

term memory system because there are a handful of neuropsychological patients who present 

with apparent deficits to visual or spatial short-term memory. If there were a visuo-spatial 

short-term memory buffer, one might expect to occasionally observe a patient presenting 

with impaired visual or spatial short-term memory while also demonstrating intact short-

term memory for verbal materials, along with intact visual perception and intact long-term 

memory for imagery and routes learned prior to onset of the neuropsychological complaint. 

Additionally, such a model patient should not show deficits in general cognition that cannot 

be linked directly to visual short-term memory; otherwise, it would be impossible to say with 
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conviction that any visual short-term memory deficits occur because a specialized system is 

defective and not because a more general deficit has a greater impact on visual than verbal 

short-term memory. I shall begin by examining evidence from cases in which visual or spatial 

short-term memory is impaired, and consider whether any of these cases demonstrate the 

degree of selective deficit necessary to support claims that an exclusively visual short-term 

memory system has been damaged. To summarize, though a few instances of patients 

suffering from apparent visual short-term memory deficits have been reported, each patient 

shows patterns of deficits that are inconsistent with the idea that a visual short-term memory 

store has been exclusively affected. The data I shall review therefore does not convincingly 

eliminate the possibility that something more general that affects visualization is damaged in 

these patients, and casts doubt on the argument that these patients prove the existence of 

visual or spatial short-term memory stores. 

 Since the relevant neuropsychological cases do not unequivocally support a distinct 

visual-spatial short-term memory system, then the accumulated experimental evidence 

should be critically evaluated against benchmarks that would provide stronger evidence for 

such a system. In order to meet the criteria I shall propose, any task in question should 

convincingly isolate maintenance of visual or spatial materials; otherwise, there is all too 

much reason to suppose that cognitive processes other than those proposed to be part of any 

visual-spatial short-term memory system influence performance. Much of the evidence 

described above as supporting the initial proposal of a distinct visual-spatial short-term 

memory system already lacks this level of rigor; Brooks matrices tasks and mnemonic 

strategy induction are manipulated with the intent of enhancing verbal memories, not 

measuring visual or spatial memory directly. Recognition of abstract visual images or 

patterns and recall of spatial sequences come much closer to this goal, but little work of this 
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nature was available to influence theorizing about a visual-spatial short-term memory system 

until after the theoretical visual short-term memory system was proposed and presumed.  

 Furthermore, it is necessary to consider whether the manipulation designed to 

interfere with maintenance of the visual materials is likely to act on their maintenance, and 

not only their encoding. Some evidence arising from these mnemonic strategy manipulations 

already casts doubt on the notion that these effects arise during storage of the memoranda. 

Quinn and McConnell (2006) manipulated whether dynamic visual noise, which is a 

changing visual signal that requires no active response from the participant, occurred only 

during encoding or only during retention. Dynamic visual noise had previously been shown 

to disrupt use of the peg-word mnemonic strategy (McConnell & Quinn, 2000; 2004; Quinn 

& McConnell, 1996), but had been applied during both encoding and maintenance.  Quinn 

and McConnell found that dynamic visual noise only impaired use of this strategy when 

applied during encoding. Though this work has been used to theorize about a specifically 

visual short-term memory store, one should not conclude that a process that uniquely 

disrupts encoding of visual information has disabled a visual storage buffer. If we are 

interested in discerning the operations of a module needed to maintain memoranda in visual 

codes, then we need to place special emphasis on data arising from designs that isolated 

interference occurring during maintenance. 

 Assuming that a task fairly isolates maintenance of visual-spatial memoranda, what 

patterns of results would suggest a specialized and independent visual-spatial short-term 

memory system? First, it should be the case that some amount of visual or spatial material 

may be maintained without any dual-task cost. Baddeley and Hitch (1974) found virtually no 

interference to task accuracy between maintaining short verbal lists and performing a 

concurrent reasoning task. Likewise, in order to suppose an independent visual-spatial store 
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it should be possible to demonstrate that some amount of information held in a visual or 

spatial format can be maintained without cost from a concurrent task that does not also make 

use of the visual-spatial short-term memory system. Even if it is a small amount of visual 

material, some visual material should be impervious to cross-domain interference. Moreover, 

if this visual-spatial store is to be believed to be distinct from sensory or long-term memory 

(e.g., Sligte, Scholte, & Lamme, 2008), then experimental methods must be sufficient to rule 

out the possibility that any resistance of these items to general interference is actually due to 

representation in sensory or long-term memory.  I shall examine evidence from studies that 

measure visual memory in the presence of some distracting task or stimulus to learn what 

sort of information can be processed or stored simultaneously with visual information, 

without leading to decreases in visual memory performance. I highlight evidence from my 

own work, which has been explicitly designed to isolate maintenance processes, and then 

broaden consideration by meta-analyzing the dual-task visual-spatial memory literature. 

Both strands of enquiry show that even small visual memory loads are robustly affected by 

the performance of any cognitively-demanding secondary task, regardless of whether the 

secondary task requires visual or non-visual processes.  

 Much research meeting these criteria has been published since the proposal of the 

visual-spatial sketchpad components, but it has not been thoroughly reviewed with the goal 

of discerning whether a dedicated visual-spatial memory store is necessary for explaining 

emerging patterns. Rather, the existence of such a store has been supposed a priori on the 

basis of the evidence described above, and contradictory evidence has been dismissed with 

ad-hoc explanations (e.g., invoking the possibility of verbal recoding). By declining to assume 

the need for a specialized visual-spatial store, I will allow a rather different picture of a 

working memory system to emerge. These emerging ideas are broadly consistent with 
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emerging ideas about working memory and memory theory more generally, and arguably 

more consistent with evidence from neuroscience than the multi-component working 

memory model (cf. D'Esposito & Postle, 2015). My examination of this evidence challenges 

multiple-component working memory theorists and those applying this working memory 

theory to practical problems to overcome the rut that assumptions about modularity has 

mired us in, and shift towards imagining alternative explanations. 

Neuropsychological cases of visual and spatial short-term memory deficits? 

 Supporters of the multi-component model frequently invoke neuropsychological case 

evidence to back up claims of distinct verbal and visual or spatial short-term memory 

systems (e.g., Baddeley, 2012; Gathercole, 1994; Repovš & Baddeley, 2006). Compelling 

evidence from neuropsychological case histories would provide a strong reason a priori to 

suppose specialized short-term memory components, even if evidence from the experimental 

literature remained ambiguous. Neuropsychological evidence is especially helpful for this 

problem if you believe that elements of a working memory system may be flexibly deployed 

based on strategic choices. In any experimental paradigm, other resources apart from the 

targeted specialized stores may be applied, stymieing our attempts to truly isolate a domain-

specific store (Logie, 2011). Convincing patient evidence that converges with experimental 

evidence would alleviate this concern. 

 However, a major problem with this reasoning is that a compelling case of a patient 

with a clearly selective loss of visual-spatial short-term memory has not been documented. 

Several cases have been reported that show some degree of visual or spatial deficit, and 

certainly there are neuropsychological disorders that affect visual thought much more than 

non-visual thought (e.g., Lissauer & Jackson, 1988; Shallice & Jackson, 1988; Tippett, Miller, 

& Farah, 2000; Zeman, Dewar, & della Sala, 2015). However, the loss of function that would 
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be expected if a visual short-term memory buffer were selectively damaged would not merely 

entail an inability to imagine visual information: taken at face value, the extant cases of 

auditory short-term memory loss present a pattern in which short-term memory is impaired 

with auditory but not visual presentation of exactly the same information, while also showing 

that long-term learning based on auditory input is largely unaffected. Few of the purported 

cases of visual short-term memory deficit show the degree of specificity to visual information 

and short delays displayed by K.F. (Shallice & Warrington, 1970; Warrington & Shallice, 

1969) or P.V. (Basso, Spinnler, Vallar, & Zenobio, 1982; Vallar & Baddeley, 1984) with 

auditory information. These patient reports often fall short of ruling out deficits to visual or 

spatial sensory or long-term memory (note though that a skeptical case can also be made that 

auditory short-term memory patient cases do not actually reflect a short-term memory 

impairment; Caplan, Howard, & Waters, 2012). I will describe examples of these cases and 

then analyze the contexts in which they are cited in support of modularity in working 

memory to reveal the discrepancies between the existing evidence and the theoretical 

positions the evidence is meant to support. 

 I identified cases of apparent visual and spatial short-term memory loss primarily via 

previously published literature reviews in support of the multi-component working memory 

model (e.g., Baddeley, 1986; Baddeley, 2012; Gathercole, 1994; Repovš & Baddeley, 2006). 

Because these patient cases provided such important evidence informing the development of 

this model, I expected that the best-documented and clearest cases of visual and spatial 

short-term memory loss would be cited and mentioned by these sources. In reviewing these 

primary case reports, I found additional instances of relevant patient cases which I also 

considered. Table 2 lists these cases, including a brief description of any reported locus of 

anatomical damage, and a blunt assessment of the reported evidence on the patient’s verbal, 
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visual, and spatial short-term memory tests, and visual or spatial long-term memory tests. 

Because the manner of testing differed substantially across papers, I did not include mean 

performance values. The selected cases I describe in detail differ from the ones I merely cite 

in that they include a sufficient battery of tasks to assess whether short-term memory was 

impaired while long-term memory was intact, and similarly to assess whether verbal memory 

was intact despite deficits to visual and/or spatial memory. However, in contrast to the fairly 

consistent batteries of tasks performed on auditory case patients like K.F. and P.V., testing of 

these patients with visual and spatial cognition deficits has been haphazard. Some cases 

report very little evidence from standardized tasks, including only a mix of observations from 

what appear to be ad-hoc tests (Ross, 1980). Others report standardized test scores showing 

a mixed profile of possible deficiencies (e.g., Hanley, et al., 1990; Wilson, Baddeley, & Young, 

1999), by no means limited to visual or spatial short-term memory. I restricted my analysis to 

cases that did not report visual or spatial short-term memory loss in the presence of another 

diagnosed disorder, unless a particular case figured prominently in at least one of the 

literature reviews describing the developing visuo-spatial sketchpad model (e.g., Wilson et 

al., 1999).  

A case of both visual and spatial memory deficits 

 At the time of testing, E.L.D. was a 54-year-old, independent, community-dwelling 

female who had suffered an aneurysm at the age of 49 (Hanley, Young, & Pearson, 1990). 

E.L.D. spontaneously complained of having become “generally forgetful”. She reported 

problems with recognizing faces of people met after her illness, and of having difficulties 

finding her way around her new neighborhood and flat. On preliminary perceptual tests, 

E.L.D. performed normally on object recognition and face comparison tasks, despite 

experiencing impaired color vision and contrast sensitivity. E.L.D.'s post-morbid intelligence 
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test scores were average or above average overall, but she attained lower-than-expected 

scores on particular episodic memory sub-tests, including paired associate word learning. 

While she performed well on a word recognition task, she performed below average on a face 

recognition task (developed by Warrington, 1982) and much worse than a control sample on 

experimental face recognition tasks when the to-be-remembered faces were unknown to her 

prior to her illness. Her ability to recognize famous names was comparable to controls' 

performance regardless of whether the names became famous before or after her illness. 

E.L.D. also demonstrated a deficit compared with controls in recognizing unfamiliar voices. 

 While this evidence does suggest a predominantly visual impairment, it is not clear 

whether short-term memory specifically is affected. Hanley et al. (1990) report several 

experiments in which E.L.D.'s recognition of faces was tested. When E.L.D. was required to 

choose which of 12 faces was recently presented, she performs much worse than controls; 

however, when E.L.D. performed a task that required her to indicate which of two faces or 

objects she had seen recently, she performed nearly as well as controls. This suggests a 

possible deficit during retrieval under conditions of high interference, which may not be 

exclusive to visual images. Hanley et al. also tested whether E.L.D. could recognize precisely 

which view of an object had been presented. E.L.D. appeared to show some deficit in 

recognizing the precise view of the person or object compared with control participants, but 

note that E.L.D. performed this task at a delay of one month, a substantially longer delay 

than the control sample experienced, and a delay far beyond what can reasonably be 

considered “short-term” memory. This difference in measurement alone is sufficient to 

explain any difference in performance between E.L.D. and the healthy control sample. 

Altogether, one could conclude that E.L.D. demonstrated recognition memory for visual 

materials comparable to controls when the test decisions were limited to a two-choice 
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scenario, suggesting that her deficit might not have been in storing visual images per se.   

 E.L.D. also showed deficiencies in spatial memory, as measured by the Brooks 

matrices task and the Corsi blocks task. E.L.D. could recall Brooks' sentences perfectly up to 

series of 5, but made substantially more errors than control participants on longer lists. 

Similarly, E.L.D. performed as well as all control participants on recall of sequences of 3-4 

Corsi blocks, but committed many more errors than control participants on longer 

sequences. She also performed poorly on mental rotation tasks. On verbal serial recall tasks, 

E.L.D.'s performance was similar to that of control participants (Hanley, Young, & Pearson, 

1991). 

 Though Hanley et al. (1990; 1991) demonstrated that E.L.D.'s deficiencies were more 

pronounced in visual or spatial than in verbal memory, the pattern of her deficits and 

preservations is difficult to square with hypothesized damage to the visual-spatial sketchpad 

as it is often described (Beigneux, Plaie, & Isingrini, 2007; Doherty-Sneddon, Bonner, & 

Bruce, 2001; Turriziani, Carlesimo, Perri, Tomaiullo, & Caltagirone, 2003). E.L.D. could not 

learn to associate new faces with their names and occupations, but she had little difficulty 

recognizing which of two unfamiliar faces she had encountered in a recent experimental 

session. Her spatial sequence memory was poorer than controls but perfect for short lists, 

presumably of the length that would be maintained in a visual-spatial short-term memory 

buffer. Her performance of a verbal memory task with a spatial imagery component was 

likewise perfect for short lists, but deficient compared to controls' performance as sequence 

length increased. While she was unable to successfully implement mnemonic strategies based 

on mental imagery, she also had trouble implementing strategies based on verbal repetition. 

Despite pronounced difficulties with particular visual tasks, E.L.D.'s established difficulties 

recognizing new voice timbres, learning verbal paired associates, and implementing verbal 
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strategies clearly suggests that her impairments extended beyond visual memory specifically. 

These deficits implicate episodic memory, auditory memory or audition, and possibly even 

implementation of verbal rehearsal. Moreover, within her problems with visual memory, 

short-term memory is not uniquely implicated based on the available evidence. 

 Much of the nuance inherent in E.L.D.'s case is lost in the way that her case reports 

are cited and summarized. Frequently, the separate papers describing E.L.D.'s memory for 

faces (Hanley, Pearson, & Young, 1990: cited 83 times according to Web of Science, after 

limiting results to peer-reviewed articles in the domain of psychology and excluding authors' 

self-citations) and E.L.D.'s apparent dissociation between serial verbal and spatial memory 

(Hanley, Pearson, & Young, 1991: cited 16 times using the same limitations described above) 

are cited in isolation, and sometimes the statement for which they are cited is inconsistent 

with E.L.D.'s complete range of deficits. For example, the paper comparing E.L.D.'s spatial 

and verbal serial memory has been cited as evidence of dissociations between spatial memory 

and object memory at least 12 times, despite the evidence that E.L.D.'s memory for sequences 

of faces as well as spatial locations is poorer than controls' performance. However, E.L.D.'s 

preserved memory for judging which of two faces she recently saw (Hanley, et al., 1990) does 

hint that any short-term memory deficit for visual materials might be confined to memory for 

their serial order. Considering both papers, E.L.D.'s case is more frequently cited as evidence 

favoring the hypothetical dissociation between a phonological loop and a visuo-spatial 

sketchpad (across both papers' citations, 28 occurrences). While it was clearly demonstrated 

that E.L.D. performs serial verbal memory tasks as well as controls and visual or spatial serial 

memory tasks worse than controls, her entire portfolio of cognitive deficits includes many 

examples of problems that are inconsistent with the idea that she suffers from an impaired 

visual-spatial short-term memory buffer, most especially her intact ability to detect which of 
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two faces were shown on a recent trial. These complexities, which should prevent glib 

conclusions about a clear dissociation isolating visual-spatial short-term memory, are 

acknowledged in remarkably few published references to E.L.D.'s case (e.g., Borgo, Giovanni, 

Moro, Semenza, Arcicasa, & Zaramella, 2003; Della Sala, Gray, Baddeley, Alamano, & 

Wilson, 1999; Jonides, Lewis, Nee, Lustig, Berman, & Moore, 2008).      

 E.L.D.'s case presents a complex mix of deficits. Though the evidence available 

suggests that her memory for visual and spatial materials is more drastically affected than 

many other cognitive processes, sufficient evidence of deficits in tasks that could not be 

dependent on visual or spatial short-term memory make clear that she is not an example of 

someone with a selectively impaired visual short-term memory system. Her impairments 

appear to leave verbal serial short-term memory unaffected, justifying the conclusion that 

verbal serial short-term memory relies on processes beyond those needed for visual or spatial 

cognition. However, her pattern of deficits cannot support a model of working memory that 

separates visual short-term memory from other domain-general processes because her 

deficits include a variety of non-visual memory problems. The pattern of deficits shown by 

E.L.D. is certainly not the reverse of the pattern shown by so-called auditory short-term 

memory patients, who could learn aurally-presented verbal information with long delays 

(Basso, et al., 1982; Warrington & Shallice, 1969). E.L.D.'s case thus does not require that a 

working memory system include a specifically visual or spatial short-term store.   

Cases of visual imagery deficits  

 Of the few proclaimed cases of visual short-term memory deficits, the most vivid and 

detailed is that of L.E. (Wilson, Baddeley, & Young, 1999). L.E. was a sculptress suffering 

from systematic lupus erythematosus, who reported experiencing difficulties with memory 

and wanted advice on how to handle these difficulties. Though she was dissatisfied with her 
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abilities, scores on standard neuropsychological tests showed nothing alarming: L.E. scored 

highly on assessments of intelligence and within normal ranges on a number of memory 

tests. Her insistent complaint that she “can't visualize where things go. . .  (or) . . . draw on 

my fund of knowledge” (p.122) led to extensive testing of visual-spatial abilities, which 

confirmed problems with visualization. L.E. performed below normal controls on tests of 

visual recall and recognition (including famous face visualization tasks; Young, et al., 1996), 

but similarly to controls on perceptual matching tasks. She also performed normally on 

expression imagery tasks (e.g., describing what facial expressions corresponding to various 

emotions look like), but the authors note that this task could be performed using motor 

reenactments rather than visual imagery. Most strikingly, L.E.'s sculptural style changed. 

Before her injuries, she sculpted life-like subjects, but afterwards her style grew abstract. She 

attributed this to difficulties holding an image in mind, and described anecdotes in which she 

committed obvious, unintended errors in depiction, such as sculpting a person with four legs.  

 While it seems clear that something happened to L.E.'s visual-spatial abilities, it is 

difficult to pin this on visual short-term memory specifically. Much of the evidence comes 

from tasks that require retrieval of an image from long-term memory (for instance, of a 

famous face or a familiar animal) and subsequent description of it (Wilson et al., 1999). 

These tasks clearly draw upon learned information, and thus do not necessarily isolate a 

visual short-term memory system.  Another patient diagnosed with “recent visual memory 

loss” (Ross, 1980) scored perfectly on a task in which novel patterns were studied and 

reproduced after a 5-second delay; this procedure would seem to isolate visual short-term 

memory from long-term memory, yet the patient could do it. L.E. functioned well in daily 

life, had no observable object agnosia, and could recognize the same items or faces on a 

matching test. We can thus deduce that her perception of visual information was more or less 
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intact, and that she could somehow access long-term knowledge about what things look like. 

However, we do not know whether her visual long-term knowledge remained as detailed as 

ever. With the reported tests, we are limited to blunt deductions about what went wrong: L.E. 

could not imagine visual imagery, but whether this was due to trouble retrieving visual 

details, using those details to generate an image, or keeping a generated image active is 

unclear. To say that this case illustrates a deficit in the visuo-spatial sketchpad does not in 

itself suggest much detail about what the visuo-spatial sketchpad is meant to do. Today, L.E. 

might instead be described as experiencing an abrupt onset of aphantasia, which is 

characterized by inability to experience mental imagery (Zeman, et al., 2015). 

 Further valuable information comes from L.E.'s performance on tests not directly 

connected to visualization. First, L.E.’s verbal short-term memory scores were abnormally 

low. Furthermore, though her performance on episodic memory tasks and executive 

functioning tasks are within normal ranges (or nearly so in some instances), it is 

acknowledged that in L.E.'s case, this is weak evidence for a lack of impairment to memory 

and executive functions generally (Wilson, et al., 1999). L.E.'s high intelligence test scores 

contrast with her mediocre memory and executive functioning scores, suggesting that she 

might have experienced reduced memory ability after the onset of her illness despite her 

generally good performance compared to the population at large. Although less detail about 

the tasks they performed and their scores is available, evidence from other patients with 

reported visual imagery deficits likewise suggests that supposed visual short-term memory 

deficits did not occur in isolation.  For example, Monsieur X (as described by Young and van 

de Waal, 1996) not only complained about his loss of previously “photographic” memory, but 

also his inability to think fluently in his second language since the onset of his illness. While 

evidence that visual memory deficits tend to co-occur with other impairments does not falsify 
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the idea of a specialized visual short-term memory buffer, these patterns are likewise 

expected from a hypothetical system in which effective visualization requires domain-general 

cognitive resources.  

Cases of spatial memory deficits 

 The most complete case descriptions of patients presenting with spatial short-term 

memory span deficits are those of M.V. (Carlesimo, Perri, Turriziani, Tomaiulo, & 

Caltagirone, 2001) and G.P. (Bonni, et al., 2014). Other reports of spatial short-term memory 

deficits come from DeRenzi and Niccheli (1975), Lepore, Celantano, Conson, and Grossi, 

2008; Luzzati, Vecchi, Agazzi, Cesa-Bianchi, and Vergani (1998), and Ross (1980), but the 

battery of tests given to M.V. and G.P. is more comprehensive and appropriate for revealing 

selective deficits to spatial short-term memory than the collections of measures reported 

elsewhere.  

Though demonstrating normal intelligence and normal-range performance on visual 

perception tests, M.V. showed poor forward spatial span. Comparisons of serial order 

memory spans with verbal, visual, and spatial memoranda showed that M.V. was deficient 

compared to controls only for to-be-remembered spatial location sequences. For both M.V. 

and the control participants, performance with verbal materials exceeded that with visual 

materials, particularly the non-spatial visual memoranda. Various evidence suggested that 

M.V. could learn spatial relations and paths given enough time: he could accurately perform 

mental rotations, albeit much more slowly than control participants, and he had no 

discernible difficulties learning his way around novel environments. Another report 

summarized by Carlesimo et al. indicated that M.V. could learn supra-span Corsi-block 

sequences given sufficient time (Spinnler & Tognoni, 1987). However, real-life navigation 

and mental rotation are difficult to compare directly with the measures of spatial short-term 
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memory, and even repetitive Corsi sequence recall might isolate processes other than 

retention alone. While Carlesimo and colleagues emphasize the specificity of M.V.'s spatial 

short-term memory deficit, he also showed fairly weak (though apparently normal) 

performance given his high intelligence scores on some non-spatial visual memory tasks and 

verbal long-term memory tasks. His deficits also included face recognition, where his scores 

fell in the <5 percentile compared to controls. In other patient cases, impairments in 

recognizing faces were considered evidence of a visual memory deficit, not a spatial memory 

deficit.  

 G.P. also presents with an apparently selective deficit for serial spatial short-term 

memory, but in G.P.’s case, immediate recall performance was unimpaired while 

performance after delays of 10-20 seconds decreased more rapidly for G.P. than for healthy 

controls (Bonni, et al., 2014). Comparing G.P. with M.V., Bonni et al. argue that G.P.’s spatial 

short-term store is unaffected, but that mechanisms needed to keep spatial memories active 

are impaired. However, the more comprehensive description of methods provided in the 

report of patient G.P. makes clear that differences between the verbal, visual, and spatial 

serial memory tasks extend beyond the domain of the memoranda, muddying interpretation 

of selective impairments. Presumably, these task descriptions also apply to M.V.’s case. In 

the visual task, stimuli were delivered via computer whereas in the other two tasks, stimuli 

were presented by an experimenter. Each of the three memory tasks also differs in response 

conditions. In the verbal serial recall tasks, participants generated both the verbal items and 

their serial order with spoken responses. In the spatial tasks, participants chose the spatial 

locations in order from a set of 9 options, regardless of list length. This is true of Corsi-block 

task administration generally. In the serial visual tasks, participants were shown the shapes 

presented on that trial in a random order, and participants reconstructed the order in which 
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they appeared. These response conditions are different enough to stymie straightforward 

interpretation: in the visual task, participants were only confronted with the relevant 

memory items from the current trial at test, and were confronted with fewer potential 

selections. Some sorts of mistakes (e.g., prior-list intrusions) were impossible to commit in 

the visual task, but possible in the other two tasks. The verbal and spatial tasks additionally 

differed in whether the items were self-generated or not. Because of the overt presentation of 

all the choices at test, the spatial task may have required the greatest ability to resist 

interference arising from considering response options. Though task domain may be the 

most vivid difference between these three tasks, they differ in other non-trivial ways that 

should preclude declaring that spatial serial short-term memory was selectively impaired in 

G.P. and M.V. 

 All considered, evidence for a specialized spatial short-term memory deficit appears 

stronger than evidence for a visual short-term memory deficit, but hardly decisive. As with 

previously described cases, though there is some evidence for a deficit in spatial short-term 

memory, alternative interpretations of this evidence remain plausible. It is also difficult to 

rule out the possibility that these spatial short-term memory deficits spring from other, more 

general deficits. M.V. and G.P. are the only cases in which obvious deficits to cognitive 

processes besides spatial or visual short-term memory are not also evident.  

Anatomical evidence from patient cases 

 For many of these cases, little precise anatomical information about the localization of 

the damage was provided. In cases where anatomical details were known, the damage was 

extensive. For M.V., we know that his stroke affected large sections of the frontal and parietal 

lobes in the right hemisphere, including Broadmann's areas (BA) 1, 2, 3, 4, 5, 6, 7, 8, 24, and 

31. G.P.’s lesion was situated in the right frontal lobe, including BAs 4, 5, 6, 8, 9, 10, 11, 12, 
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24, 31, 32, and 33.  E.L.D.'s damage was likewise described as “extensive”, but only delimited 

that the damage occurred to the right fronto-temporal region. E.P., who was believed to have 

impaired spatial short-term memory, also presented with right hemisphere temporal lobe 

damage (Luzzatti, et al., 1998). Ross's (1980) two cases both exhibited right hemisphere 

occipital damage, plus additional left occipital and right temporal lobe damage in one case. 

This extensive network of regions potentially affecting visual or spatial short-term memory 

poses further problems for interpreting the case findings: with such large extents of affected 

tissue in each case, it would admittedly be surprising to observe a very focused deficit. 

Furthermore, when taken together it is difficult to pinpoint a specific region where damage is 

likely to give rise to a specialized visual or spatial short-term memory deficit.  

 The most obvious commonality among the anatomical evidence provided by these 

patients is that the damage was usually localized to the right cerebral hemisphere. However, 

spatial short-term memory impairment can also co-occur with left hemisphere damage. De 

Renzi and Nichelli (1975) conducted a large-scale study including 125 hospitalized patients 

with either left- or right-hemispheric damage, testing verbal and spatial short-term memory 

in each patient. Participants completed a forward digit span test, digit span and picture span 

tests with pointing responses, and a spatial span test (also with pointing responses). 

Significant deficits in the verbal short-term memory tasks (i.e., forward digit span, digit and 

picture pointing span) in comparison with a control sample were exclusively observed in 

patients with left hemisphere damage. In contrast, individuals presenting with spatial span 

deficits came from both the left- and right-hemisphere patient groups.  

Anatomical evidence from functional neuroimaging in healthy participants 

 Just as the neuropsychological case research does not afford decisive evidence for 

domain-specific short-term memory buffers, the functional neuroimaging literature likewise 
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does not confirm the particular constellation of modules supposed by the multi-component 

working memory model of Baddeley (2012). To the contrary, there is growing consensus 

against the idea of any sort of specialized short-term memory stores based on neuroimaging 

evidence (ably summarized by D'Esposito & Postle, 2015). Though initial BOLD and PET 

evidence was interpreted as reflecting material-specific storage dissociations (e.g., Smith & 

Jonides, 1997), these distinctions have largely broken down as neuroimaging evidence 

accumulated. An illustrative example comes from research on domain-specific activation in 

the dorsal-lateral pre-frontal cortex (DLPFC), which was once believed to reflect separate 

stores for spatial and non-spatial contents. D'Esposito, Aguirre, Zarahn, Ballard, Shin, and 

Lease (1998) re-classified tasks meant to distinguish spatial from non-spatial memory 

activity in DLPFC by whether the tasks involved manipulation in addition to maintenance or 

not. A meta-analysis of these DLPFC activations showed that the maintenance-versus-

manipulation classification produced a more obvious dissociation than the content-based 

classification, neatly questioning conventional wisdom about DLPFC function and 

demonstrating the need for deeper consideration about what processes the activations 

underlying any particular task reflect. More recent evidence tends to uphold the notion that 

DLPFC activity does not reflect storage (domain-specific or otherwise) per se, though 

evidence remains mixed (e.g., Feredoes, et al., 2011; Fried, Rushmore, Moss, Valero-Cabre, & 

Pascal-Leone, 2014; Nee, et al., 2013; Nee & D’Esposito, 2016) as to whether the 

manipulation and orienting functions that DLPFC activity seems to reflect are truly domain-

general: possibly, fine-grained domain-specific sensitivity is present in DLPFC that would be 

challenging to measure precisely with current methods.  

In any case however, the prevailing consensus suggests that the anatomical evidence 

supports “state-based” models of working memory, in which the notion of temporary storage 
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is replaced by allocation of attention to activating long-term or sensory memories, or perhaps 

reconstructions of actions (D’Esposito & Postle, 2015). Neural activity in posterior sensory 

regions and in regions underlying motor activity that appears during short-term memory 

tasks is domain-specific. However, because this activity occurs in regions known to subserve 

functions other than memory storage, arguing that these activations constitute the workings 

of a specialized short-term memory buffer is clearly problematic. Two sorts of observations 

about this domain-specific activity make it difficult to equate this activity with the operation 

of a short-term memory buffer: 1) few if any distinct regions are activated during retention 

but not during encoding or retrieval, and 2) information can be successfully retained even if 

sustained neural activity cannot be associated with it. I shall describe evidence pertaining to 

each of these points next. 

 If there were structures specialized for holding information temporarily, then it should 

be possible to observe unique neural activation during temporary maintenance. These signals 

should differ from patterns observed during stimulus encoding, and should also differ from 

patterns observed when information is retrieved from long-term memory. Moreover, if there 

are distinct verbal and visual or spatial temporary stores, then the maintenance-related 

activity observed when holding verbal information should differ from that observed when 

holding visual or spatial information. As it happens, neural activity observed during 

maintenance often overlaps substantially with activation observed during encoding and 

responding. Furthermore, it is not clear that the activity that is unique to maintenance can be 

neatly divided by stimulus domain. For example, Majerus and colleagues (2010) compared 

the regions activated during verbal and visual memory tasks, manipulating whether 

participants were required to maintain only the identities of the stimuli, or also their 

presented order. Because maintaining their order depends heavily on remembering the 
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specific, recent episodic context in which they were presented, activity related to the 

maintenance of order more plausibly reflects the localization of any temporary memory store. 

During both encoding and retrieval, Majerus et al. found that both tasks were served by a 

common fronto-parietal network. During maintenance, activation in this network decreased 

rapidly, and with little or no compensatory activity arising in other regions. Majerus et al. 

contrasted order with item tasks as well as verbal with visual stimuli to attempt to uncover 

selective activations that could reflect temporary memory stores. The regions specifically 

active during the verbal or visual tasks were the same regions active during perception of 

these materials; there were no unique regions specific to verbal or visual materials during 

maintenance. These domain-specific activations were more pronounced in item memory 

tasks than in order memory tasks, which is inconsistent with the notion of domain-specific 

temporary memory modules. Because the same regions supporting perception and encoding 

also support temporary maintenance, perhaps it is unnecessary to propose unique modules 

or mechanisms exclusively for domain-specific maintenance.  

 In other cases, posterior regions associated with storage might have been assumed to 

be associated with domain-specific storage without evidence from comparable control tasks 

using different content. Cowan et al. (2011) provided further evidence that activation specific 

to maintenance, particularly in a region that been previously associated with visual 

maintenance specifically, is not necessarily domain-specific. Participants were given visual 

stimuli, aurally-presented verbal stimuli, or both kinds of stimuli to remember on each trial. 

Cowan et al. searched for regions in which activations were sensitive to changes in memory 

load, defined by an increase in to-be-remembered visual array size from two colors to four 

colors or as an increase between maintaining two colors and maintaining two colors plus two 

digits. Activations acquired across two experiments honed in on a region of the left intra-
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parietal sulcus that was sensitive to increases in memory load during the maintenance 

period. The same region appeared in previous searches for load-dependent areas during 

visual working memory tasks (Todd & Marois, 2004; 2005; Xu & Chun, 2006), and had 

previously been targeted as a potential basis for a visual working memory store.  

 Applied to working memory theory, assigning functions to BOLD activations is a non-

trivial logical problem: it is not clear where and when distinctions between perception, 

attention, and maintenance should be assumed to arise. When we assume that a signal from 

a temporary store must arise during the trial's maintenance period, not earlier, we are 

assuming that encoding and maintenance happen in sequential steps, which is perhaps too 

strong a supposition. Without this assumption though, how can activations be ascribed 

specifically to attention or storage functions, both of which are assumed to be occurring in 

multi-component models of working memory? Lewis-Peacock, Drysdale, Oberauer and 

Postle (2012) applied multi-voxel pattern analysis to this problem, training a classifier to 

assign activation patterns to categorical descriptors consistent with those observed in a task 

involving phonological, semantic, or visual information. For the critical task, participants 

were given an item to remember from two of these three categories. During an initial 

retention period, one of the two items was cued for a recognition test. Immediately after this 

test, another cue was given, indicating either that the same item would be tested again 

(inducing participants to continue thinking of the same item), or cuing the other item for 

testing (inducing participants to retrieve the other item). Accuracies on these recognition 

tasks were at ceiling, indicating that participants had access to representations of both items. 

However, evidence from the pattern classifier suggested that only one of these 

representations was active at once during the retention period. On repeat-cue trials, the 

uncued representation dropped to the equivalent of a baseline control and never rose, but on 
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switch-cue trials, each item became active after its cue and otherwise fell to baseline level. 

This pattern of results is inconsistent with the notion of dedicated short-term storage 

because apparently only the representation immediately required is represented in the 

activation patterns, even though the other representation can ultimately be retrieved. 

Temporary store models assume that stored information is represented by some active 

memory trace, which should be detectable even when unattended, but evidence for such 

representations was not detected in this case.  

 Taken together, these findings show that maintenance-related neural activation is 

difficult to disentangle from activation related to perception, encoding, or retrieval. Working 

memory theories are meant to explain the junction of these processes, but a coherent 

explanation may be possible without positing temporary storage modules of any kind. 

However, it remains possible that the patterns that would definitively support hypotheses of 

domain-specific temporary stores have not been observed because BOLD measurement 

techniques utilized in human research remain too insensitive. Courtney (2015; 2004) argues 

that the activations of the prefrontal cortex associated primarily with encoding and retrieval 

may yet encompass components that are specific to the maintenance of different classes of 

information, consistently with the evidence from single-cell recordings (reviewed by 

Goldman-Rakic, 1995). Despite this reasonable caution, it is nonetheless clear that the 

evidence currently available can be accommodated by working memory models that exclude 

temporary stores.  

Conclusions from neuropsychological and neuroimaging evidence 

 A handful of documented patient cases portray deficits to visual or spatial short-term 

memory along with apparently intact verbal short-term memory. However, it is never clear 

that visual short-term memory is purely affected: deficits are typically accompanied by other 
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more general impairments, which are either confirmed by comparison with controls or 

implied by lower-than-expected performance compared with the patients' intelligence test 

scores. This coincidence of impairments makes it difficult to conclude that these cases 

support the story of a specialized visual or spatial short-term memory system, because the 

possibility that visual or spatial short-term memory has been adversely impacted by a more 

general deficit cannot be excluded. Procedural differences between measures of memory for 

verbal, visual, and spatial information likewise make interpreting observed differences in 

memory spans with each of these materials awkward. Comparing across cases is complicated 

by differing operational definitions of “short-term memory”, which range from immediate 

recall to delays of many minutes, and encompass tasks that emphasize item recognition and 

serial order. Even within cases, it is difficult to pinpoint the precise nature of an observed 

deficit by comparing performance on tasks that likely differ in other respects apart from 

those aspects the researcher intended to manipulate. While these cases may be consistent 

with the idea of a specialized visual short-term memory system, they are just as consistent 

with propositions that maintaining memories in visual-spatial code is more dependent on 

general cognitive resources than maintaining verbal memoranda is.   

 The standard I set for finding a patient case that unequivocally pointed toward a 

visual-spatial short-term memory system was quite high: evidence of poor visual and/or 

spatial short-term memory in the absence of a deficit to verbal memory, visual or spatial 

long-term memory, or more general deficits in cognitive functioning. Given the strong 

likelihood of comorbidity of neuropsychological deficits, one may argue that this standard 

was impossible to observe. This highlights a pervasive problem with depending on 

neuropsychological case evidence for testing theories: acquiring this evidence is 

opportunistic, and having sufficient specificity for discriminating between similar hypotheses 
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is likely impossible. The standard I chose is the minimum needed to unequivocally support 

hypotheses about specialized visual memory systems, regardless of whether it is likely or not. 

Even with its limits, the available neuropsychological patient evidence does clearly suggest 

that verbal and visual-spatial short-term memory rely to some degree on different resources. 

This much certainly ought to be accounted for in any coherent model of working memory, 

but accounting for it does not necessarily require the supposition of multiple specialized 

short-term memory stores. This blunt conclusion is perhaps the most that we can expect 

from neuropsychological evidence. This evidence therefore does not go far in distinguishing 

between working memory models that include a specialized visual short-term system and 

models that do not.    

 This assessment of neuropsychological cases of visual or spatial short-term memory 

deficits contrasts with characterizations given elsewhere (e.g., Alloway, et al., 2006; 

Baddeley, 2007; Cocchini, et al., 2002; Logie, 2011). Often, the strength of the selective 

patterns present in these patients is raised to support the inclusion of modular short-term 

systems in a multi-component working memory model despite ambiguous or contradictory 

evidence from experimental work. I contend that the case for specificity is frequently over-

stated, and that in fact these cases can be accommodated by alternative perspectives. These 

cases should not be cited as definitive proof of specialized verbal and visual-spatial short-

term memory systems, and should not greatly restrict the conclusions that may be drawn 

from experimental hypothesis testing.    

 Another notable problem for fairly comparing patients' visual short-term memory 

deficits with typical performance in healthy participants is that healthy participants are also 

likely to perform better on verbal than visual short-term memory tests. Healthy participants 

consistently perform better on verbal than visual short-term memory tests (e.g., C. Morey, R. 
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Morey, van der Reijden, & Holweg, 2013), on verbal than spatial short-term memory tests 

(e.g., Morey & Mall, 2012; Shah & Miyake, 1999; Vergauwe, et al., 2010), and with aural 

rather than visual presentation of verbal stimuli (e.g., Penney, 1989), at least for initial- and 

final-list items (Macken, Taylor, Kozlov, Hughes, & Jones, 2016). This typical pattern is one 

reason why the reversed patterns shown by K.F. (Warrington & Shallice, 1969) and P.V. 

(Basso, et al., 1982; Vallar & Baddeley, 1984), who are widely believed to have experienced 

selective auditory short-term memory deficits, were so striking and required explanation.  

However, because healthy participants are expected to perform more poorly on visual than 

verbal short-term memory tasks, we cannot rely on similar reversals when comparing 

patients with visual deficits with controls. Instead, one must show that difference between 

verbal and visual short-term memory is larger in patients than would be expected in controls, 

a subtler distinction that would require greater sensitivity to detect.  

What interferes with the maintenance of visual memoranda? 

 It is clear that verbal short-term memory enjoys some degree of independence from 

other cognitive functions. This observation was one of the primary influences driving the 

emergence of the multiple-component working memory model (Baddeley & Hitch, 1974), and 

it has been confirmed with experimental methods designed to test whether maintenance of 

verbal lists is independent of encoding visual memoranda or storing visual memoranda. 

Verbal maintenance appears to be impervious to interference from both encoding and 

maintaining visual memories when short verbal lists are to-be-remembered. Morey and Mall 

(2012) report an example in which interleaved verbal and spatial lists are presented for 

maintenance, sometimes testing the short verbal list and sometimes the short spatial list. For 

3-item lists, they observed no interference from spatial lists on verbal list memory, but did 

observe significant interference from verbal lists to spatial memory.   
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Comparable outcomes were likewise found when verbal lists and visual patterns were 

to be simultaneously remembered, indicating that cross-domain interference is not limited to 

remembering two serial lists with different contents. Morey et al. (2013) used a retro-cue 

paradigm to isolate maintenance processes. They presented participants with lists of digits 

and patterns of colored squares, manipulating the order of presentation of each stimulus set 

and also whether one set was retro-cued for eventual testing. When a set was cued, 

participants could focus during the 3-second retention interval on trying to remember the to-

be-tested set. Morey et al. compared capacity estimates with and without retro-cues 

separately for verbal and visual memoranda. For visual memoranda, capacity estimates were 

lower without retro-cues than with a retro-cue, indicating that interference from the verbal 

memoranda occurred during the maintenance interval, in addition to whatever interference 

already occurred from encoding two stimulus sets. However for verbal memoranda, no 

discernible effects specific to maintaining the visual arrays appeared. Morey and Miron 

(2016) replicated this finding using concurrently-presented verbal and spatial sequences. 

Though interference attributable to encoding the other sequence occurred for both verbal 

and spatial tasks, interference due to maintaining another list only occurred for the spatial 

task.  

 These studies, designed to isolate short-term maintenance processes and test for 

interference specific to maintenance (to the degree that such isolation is possible), clearly 

indicate that visual information is more susceptible to general interference during 

maintenance than verbal information is. However, they do not clearly test the essential 

hypothesis that some small amount of visual material may be maintained without cross-

domain interference. Morey and Miron (2016) tested memory for 5-item sequences, which 

may exceed the capability of a specialized visual memory buffer. Morey et al.'s (2013) studies 
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included visual arrays of as few as 2 items, but they never analyzed performance with small 

array sizes in isolation. If a specialized visual short-term memory system capable of holding a 

small set of information were in operation, then possibly maintaining small arrays of 2 or 3 

items occurred without substantial interference from encoding or maintaining a verbal list. I 

re-analyzed a subset of Morey et al.'s published data set to test this hypothesis. The data and 

analysis scripts are publicly available on Open Science Framework (https://osf.io/f5ypx/). 

Re-analysis of interference to the smallest visual arrays of Morey, et al. (2013) 

 In Morey et al.'s (2013) analyses, capacity estimates were calculated by pooling across 

large and small visual array sizes. However, novel analyses also show that even when only the 

small array sizes with only 2 or 3 colors to be remembered are considered, interference from 

simultaneously maintaining verbal information or from encoding a verbal list is apparent1. I 

ran a 2 x 2 x 2 Bayesian ANOVA (Morey & Rouder, 2015; Rouder, Morey, Speckman, & 

Province, 2012) on differences between single-task and dual-task conditions using data from 

Experiments 1a, 1b, 2a, and 2b of Morey et al., with verbal list length (3 or 6), array 

presentation order (before or after the verbal list), and retro-cue condition (visual array cued 

or uninformative) as factors. The winning model included main effects of all three factors (BF 

more than 1 million). The main effect of retro-cue (MCue=0.05,  MUniformative=0.10, inclusion 

favored more than 150:1) indicated that interference costs were higher when verbal lists and 

visual arrays were simultaneously maintained. The main effect of presentation order 

(MBeforeVerbal=0.12,  MAfterVerbal=0.04, inclusion favored more than 700,000:1) indicates that 

encoding the verbal list while maintaining the visual array also took a toll. The main effect of 

verbal list length (MLength=3=0.06,  MLength=6=0.10, inclusion favored more than 25:1) 

                                                
1 I first ran a 4-way ANOVA including an additional factor distinguishing between 2- and 3-item visual arrays. 

Performance as a function of the other factors was similar for both array sizes, so I collapsed across array size for 
simplicity.  
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indicates that dual-task costs rose as verbal list length increased. Figure 1 show that in every 

factor combination, mean costs exceeded zero.  

 To confirm that even very small amounts of visual information suffer a dual-task cost 

from very small amounts of non-visual information, I ran another Bayesian ANOVA on 

arcsine-square-root-transformed proportions correct for arrays of only 2-items under 

baseline single-task conditions and with verbal lists of only 3 items. Presentation order and 

retro-cue condition were again included as factors. The best model included an effect of 

presentation order (BF=13.93, ± 1.28%). This main effect implies a dual-task effect because 

the presentation order factor differentiates between single-task trials (which have no 

meaningful order, M=0.91), dual-task trials in which the visual array was presented after the 

verbal list (M=0.89), and dual-task trials in which the visual array was presented before the 

verbal list (M=0.83). The direction of this effect suggests that even encoding a 3-item verbal 

list interferes with maintaining a visual array of even 2 items.  

 Combined with published evidence from Morey and Mall (2012), which showed that 

even spatial lists of 3 positions were impaired during a concurrent verbal memory task, these 

novel analyses of Morey et al.'s data (2013) focusing on only the smallest visual array sizes 

confirm that not even small amounts of visual information can be held without measurable 

interference from non-visual sources. This contrasts with comparable analyses on verbal 

memory, which suggest that short verbal lists are resistant to interference from non-verbal 

sources, at least under some circumstances (Morey & Mall, 2012; Morey, et al., 2013). These 

data cast doubt on whether visual memoranda meet the two basic thresholds I suggested 

above for assuming storage modularity, namely that: 1) some information may be maintained 

without discernible dual-task cost, and 2) when there is a cost, it is not attributable to 

interference during maintenance. Even though domain-specific interference is consistently 
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greater than domain-general interference, these data reveal patterns that are inconsistent 

with the idea that even two simple visual items may be maintained cost-free by a specialized 

short-term storage module.  

Meta-analysis 

 To thoroughly assess whether the literature more broadly considered requires that we 

assume a specialized visual short-term store, I brought as much data as I could find to this 

question through meta-analysis. To learn what kinds of tasks interfere with maintenance of 

visual information, I searched the literature for any study in which visual memory was 

measured, and in which memory performance with no secondary task and memory 

performance with some secondary task was reported. I coded several aspects of the 

secondary tasks in order to later sort them by these potentially relevant factors. The data 

frame and analysis script are available at https://osf.io/dvh2c/.   

Method 

 I began searching this literature by querying a conjunction of two sets of search terms, 

one targeting visual short-term or working memory (visual short-term memory, visual 

working memory, visuo-spatial sketchpad, visuo-spatial scratchpad, visuospatial sketchpad, 

visuospatial scratchpad) and another to detect papers using dual-task methods (dual-task 

load, dual-task interference, multi-task, secondary task, concurrent task, distractor) in Web 

of Science. First, I searched restricting to results that included at least one term from both of 

these sets in the title of the paper, which produced 12 papers. I broadened this search to 

allow one or both of these search terms to appear in the topic of the paper, which produced as 

many as 2,954 results. Perusing the abstracts in the first few pages of this fully inclusive 

search result convinced me that most of the papers were unlikely to meet my additional 

inclusion criteria. I therefore settled on a combination of searching for any of the visual 
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short-term memory synonyms in the title and any of the dual-task synonyms in the topic in 

order to generate a more inclusive but manageable set. After excluding papers published in 

languages other than English, in disciplines other than psychology, and in formats other than 

peer-reviewed articles, this set included 133 results.  

I also looked for results meeting the same criteria on www.psychfiledrawer.org to 

counteract publication bias, but no additional data meeting these criteria had been deposited 

there. The risk for this meta-analysis to be influenced by publication bias is low because the 

descriptive outcome measures I used for comparison would have been reported in the 

context of other analyses, and need not themselves have been statistically significant to be 

published. In some cases, the original authors were testing for the presence of an interaction 

and did not report simple tests of whether the visual memory measure was significantly 

worse in the dual-task condition. In other cases, the visual memory measure I used was a 

secondary task, not the primary focus of the paper. Compared with a meta-analysis focusing 

on a finding (or not) of a specific outcome, the broad method I employed had the potential to 

catch small or contrary effects evident in data reported alongside other, statistically-

significant effects. 

 I read each of these 133 abstracts, following up with the paper as necessary, to check 

whether the paper met my other inclusion criteria. To be useful, each paper should 1) 

measure visual memory performance via accuracy, excluding memory for visually-presented 

verbal material; 2) include a report of some measure of visual memory without a secondary 

task plus the same measure with a secondary task; 3) test visual memory in a sample of 

healthy adult participants. Many of the papers did not meet these criteria, and various others 

cited by one of these 133 papers (but not appearing in this list itself) did meet these criteria. 

Whenever I found a paper that met these criteria, even if not via my formal search, I added it 
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to my analysis. In total, data from 90 papers are included in the data frame publicly available 

on Open Science Framework, and the 74 that were included in the analyses are marked (*) in 

the references. Table 3 lists the papers, showing which papers contributed data to which 

analyses (by Figures). I do not claim to have found each and every published instance of a 

visual working memory task with and without a dual-task load using these search methods. 

Many papers focusing on other elements of visual cognition, but including memory 

measures, likely eluded my search. Similarly, papers focusing on memory more generally but 

measuring visual memory specifically might have slipped through. By the inclusion of multi-

component model terminology and the criterion that the title must include some synonym 

for “visual” working memory, my formal search was, if anything, biased toward papers 

arguing for distinctions between visual and other kinds of memory. In general, my guiding 

principle was to err on the side of inclusion.   

 For each paper, I coded the following attributes for potential analysis: 1) what the 

visual memoranda were (e.g., spatial locations, color-shape arrays, orientations, patterns, 

etc.),  2) the visual memory task requirements (remember sequences, remember patterns, 

remember binding, n-back, etc.), 3) whether binding was required (either item-in-position, 

or intrinsic feature binding), 4) the number of to-be-remembered elements, 5) what the 

secondary stimulus was (e.g., words, tones, visual noise, visual search array, etc.), and 6) the 

domain of the secondary stimulus (e.g., verbal, auditory, visual), 7) whether any non-

repetitive response to the secondary task was expected, and 8) the length of time the visual 

memoranda were to be maintained. The data frame also includes the identity of the 

dependent variable (e.g., proportions correct, spans, capacity estimates, etc.), the number of 

participants and trials sampled, means and variability around the dependent measure of 

visual memory with and without the secondary task, the most relevant reported test 
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statistics, and the pages on which the test statistics were found. I generally chose not to 

collapse across other factors manipulated in the original paper, unless the data in the original 

paper were only reported in that manner. For instance, if a single paper reported the same 

visual memory task varying the number of to-be-remembered items, or the length of a 

retention interval, I considered each dual-task and single-task mean reported at each level of 

those independent variables to be separate data points. For some papers, the descriptive 

values were presented by unanalyzed factors (such as serial position, or separate reports of 

means of same and change trials in change recognition tasks). In these cases, I collapsed 

across the unanalyzed factor. Coding at this level of specificity allowed for the selective 

exclusion of individual data points that did not meet certain criteria, allowing data points 

from as many separate papers as possible to remain in the most restrictive analyses I carried 

out. 

 My aim was to evaluate the sizes of the effects of various secondary tasks, rather than 

to confirm the presence or absence of statistically-significant effects2.  I recorded condition 

means, standard deviations, and sample sizes where these were reported, in the dependent 

variable reported. Before computing effect sizes, it was necessary to recode some dependent 

variables (e.g., percent or proportions errors) for consistency, so that subtracting the dual-

task mean from the single-task mean would consistently indicate a dual-task cost. I did this 

in my publicly available analysis script rather than recoding the values recorded in the data 

frame. Because the appropriate t-statistic or correlation was not usually reported, I computed 

Cohen's dav (as recommended by Lakens, 2013) on the differences between the single- and 

dual-task means. Standard deviations for computing dav were either taken from the paper, or 

                                                
2 In many cases, simple main effect I would want to compare was part of a more complex experimental 

design, and the particular comparison of interest was not reported in the original manuscript. Choosing to 
evaluate effect sizes therefore allowed for the inclusion of more data. 
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if some other measure of variability was reported, I used it to estimate the standard 

deviations. If no measure of variability was reported, I inserted the data set's mean standard 

deviation for all the other the data of the same sort of dependent variable (e.g., span scores, 

proportion correct, percent correct) to avoid having to exclude an otherwise valid data point. 

Following the advice of Lakens (2013), I applied the Hedges's G correction, which reduces 

bias introduced by differences in sample sizes, to all the effect size estimates.  

 To gage subjectivity of the coding and catch accidental errors, I enlisted a second rater 

to reproduce my coding on a subset (N=69 papers, 744 observations) of the papers. I 

provided definitions of the moderators to be rated. The raters did not communicate further 

about the coding until the second rater finished the task. Reliability was always statistically 

significant and quite strongly positive (k2 from 0.51 to 0.80). I analyzed discrepancies 

between raters to learn whether disagreements were systematic, and to flag and correct 

errors, focusing most on those related to assigning an observation to a distractor category. 

Most discrepancies were due somewhat different interpretations of the moderator 

definitions. Discrepancies in coding distractor domain (k2=0.63) occurred because one rater 

considered any secondary task presented aurally as “auditory”, whereas another defined 

“verbal” tasks as those focusing on verbal content regardless of presentation modality. I 

resolved the discrepancies according to the latter definition. Discrepancies in whether a 

distractor task required a considered response (k2=0.51) occurred because one rater 1) did 

not consider a secondary memory task as requiring a response, and 2) coded this factor as 

“no” if articulatory suppression was used alongside another secondary task, which occurs 

frequently in visual memory research. I resolved these discrepancies so that articulatory 

suppression was ignored if there was another secondary task, and such that secondary task 

that required maintaining information was listed as requiring a response. I re-examined each 
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discrepancy against the original paper before resolving the discrepancies. In reconsidering 

codings following examining these inter-rater discrepancies and cross-checking across 

multiple moderator variables to ensure that their codes were always internally consistent 

(e.g., that single-feature stimuli were never recorded as requiring binding, or that distracting 

tasks that required watching or listening without replying were consistently labeled as 

“perception”), I modified 25 of the original rater’s decisions.    

 Not all of the 1087 observations coded were suitable for analysis. I excluded the 8 data 

points provided by Morris (1987) because it was unclear how the dependent variable was 

calculated. I decided to exclude the 23 instances where the dual-task factor was manipulated 

between-subjects because it is unclear how such a cost could be interpreted. A few papers 

introduced a secondary task which used a comparatively rare stimulus modality (e.g., time 

perception, haptic interference). I excluded these 27 data points because I deemed it unfair to 

compare means based on so little data with means from the auditory, verbal, and visual 

categories, which included hundreds of data points each. I excluded 34 additional data points 

that came from paradigms in which the auditory secondary task required judgment of the 

spatial location of a sound, because this could be considered spatial interference. Though I 

included some studies with varying levels of dual-task difficulty but no true control in my 

data set, I excluded the 103 data points coming from studies without a pure single-task 

control condition. This left 862 observations for analysis. 

Results  

Though the intent of many studies has been to test whether within-domain visual-

spatial distractors interfere more with visual-spatial memoranda than non-visual ones, mean 

differences can nevertheless be used to ascertain how large an effect within- versus cross-

domain distractors typically have on visual-spatial memoranda. I begin by reporting the most 
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inclusive picture of effect size differences between visual-spatial memory with and without 

secondary tasks, grouping secondary tasks by the domain of material participants were 

required to remember or process. I gradually filtered the data included in the meta-analysis 

to hone in on stronger ways of discerning what kinds of materials interfere with maintaining 

visuo-spatial memoranda, restricting the analysis to studies with maintenance intervals of at 

least 1 second (N=748) in order to ensure that maintenance beyond sensory memory was 

required, and finally restricting the analysis to instances in which no more than three visual 

or spatial memoranda were to be remembered (N=354), in order to see whether small 

amounts of information might be more impervious to interference.   

 Figure 2a shows distributions of effect sizes for differences between single task visual 

memory performance and visual memory performance during some secondary task which 

required the storage or processing of auditory, verbal, or visual-spatial materials. Variation 

across included studies due to heterogeneity (I2) was 27.86%.  Secondary tasks in the 

auditory distractor category included memory or categorization tasks of auditory stimuli such 

as tones or birdcalls, or simply listening to non-verbal sounds. Verbal distractor tasks 

included backwards counting, articulatory suppression, listening to verbal input, verbal 

memory, and semantic categorization. Visual-spatial distractors included visual search or 

visual categorization, presentation of visual noise, spatial tapping, and visual memory tasks. 

For each of these, I computed the average effect size (weighted by sample size) and 95% 

credible intervals around this mean, which may be interpreted as the interval with a 95% 

chance of containing the true effect size (Morey, Hoekstra, Rouder, Lee, & Wagenmakers, 

2016) according to the data sampled. No matter the domain of the secondary task, the 

weighted average effect size was substantially higher than zero (MAuditory=0.45 ± 0.07 , 

MVerbal=0.66 ± 0.08, MVisual=0.67 ± 0.07). The 95% credible intervals (plotted in each panel 
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of Figure 2), never included 0.  

 To further ensure that we only considering non-sensory memory, I estimated weighted 

means and credible intervals for the subset of the data that required visual memoranda to be 

retained for at least 1000 ms. These distributions are shown in Figure 2b. Effect sizes remain 

substantially larger than 0 regardless of the domain of the secondary task (MAuditory=0.45 ± 

0.07, MVerbal=0.68 ± 0.09, MVisual=0.69 ± 0.07), and the 95% credible intervals never 

included 0. To test whether cross-domain interference is observed even when small amounts 

of visual information are to-be-remembered, I filtered the data frame again, excluding any 

instances where more than 3 visual items were to-be-remembered. Effect sizes remained well 

above 0 for each domain category (MAuditory=0.41 ± 0.09 , MVerbal=0.59 ± 0.12, MVisual=0.71 ± 

0.09), with 95% credible intervals always excluding 0. These distributions are shown in 

Figure 2c.  

 Even with small visual memory loads, there is no reason to believe that visual 

information can be maintained without a cross-domain interference cost based on these 

patterns, as seems to be the case with verbal memoranda. Regardless of the domain of 

distractors, average effect sizes of an interfering task on visual memory were moderate to 

robust according to common conventions, and the 95% credible regions around the average 

effect sizes never approached zero. Figures 2a, 2b, and 2c furthermore give little reason to 

believe that the domain of the interfering material changes the size of interference effects 

much. Though auditory distractors appear to cause smaller interference than visual ones, 

95% credible regions on effect sizes of verbal distractors (which might have been presented 

aurally or visually) consistently overlap with those of visual distractors. Other systematically 

manipulated factors have larger differential effects on visual memory performance. An 

analysis of the demand of the secondary task is shown in Figure 3. When the secondary task 



56 

required memory or the selection of a non-repetitive choice response, average effect sizes 

were consistently high regardless of domain, and the overlapping 95% credible intervals 

suggest that there is no reason to suppose that a cognitively-demanding visual task provokes 

greater interference than a demanding auditory or verbal task. However, when the secondary 

task involved only passive perception or repetitive action, effect sizes were much smaller, 

except when the distractor task materials were visual. With visual materials, the 95% credible 

intervals overlapped regardless of secondary task demand. It therefore appears that the 

cognitive load of the secondary task has a much larger impact on visual memory than sensory 

or domain overlap does. 

General Discussion 

 I investigated the available evidence supporting the prevalent idea of a specialized 

visual short-term memory system. The theoretical development of the multi-component 

working memory model (Baddeley, 2012; Logie, 2011) was influenced by evidence suggesting 

that verbal short-term memory could be selectively impaired by brain damage and empirical 

dual-task research showing that verbal short-term memory loads provoke little, if any, dual-

task interference (Baddeley & Hitch, 1974), except to other verbal memory tasks (e.g., 

Cocchini, et al., 2002; Logie, Zucco, & Baddeley, 1990). Though the equivalent pattern has 

been assumed for visual short-term memory, the available evidence looks quite different. 

Neuropsychological patients believed to evince a selective deficit for visual or spatial short-

term memory all present with more extensive patterns of dysfunction. Dual-task methods 

likewise do not provide strong evidence supporting a specifically visual short-term memory 

component. The pattern of evidence clearly suggests that many kinds of cognitive tasks, not 

only those with domain-specific overlap, interfere with maintenance of visual memoranda. 

Judgments about such disparate stimuli as spoken words or tones consistently interfere with 
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visual memoranda. This evidence does not require models of working memory to posit a 

specialized resource for briefly maintaining only visual short-term memories. 

 Previously, in some instances where visual or spatial memory tasks have not mirrored 

the selective interference observed in verbal tasks, authors supposed that verbal recoding of 

the visual or spatial stimuli was the reason (see, for example, Shah & Miyake, 1996). Under 

some circumstances, memory of visual stimuli may be supplemented or perhaps replaced by 

a verbal label capturing the information (Brandimonte, et al., 1992; Schooler & Engstler-

Schooler, 1990). However, reasoning that visual memoranda are susceptible to general 

interference solely because participants engage in verbal coding is unsatisfying. While 

evidence suggests that visual information may be encoded verbally under some 

circumstances, this is no way suggests that such recoding always occurs. Studies attempting 

to show effects of verbalization on visual memory use materials specifically shown to be 

amenable to verbal labeling (e.g., Brandimonte, Hitch, & Bishop, 1992; Brown, Forbes, & 

McConnell, 2006; Brown & Wesley, 2013) and tend to deploy longer stimulus exposures than 

used in comparable tasks to better facilitate the generation of a verbal label (e.g., Mate, Allen, 

& Baques, 2012). Under these circumstances, use of verbalization is demonstrated by 

showing that concurrent articulatory suppression impairs task performance. However, with 

faster presentation times and abstract stimuli that do not easily lend themselves to verbal 

labeling, articulatory suppression does not impair visual memory (Luria, Sessa, Gotler, 

Jolicoeur, & Dell'Acqua, 2010; Morey & Cowan, 2004; 2005; Sense, C. Morey, Heathcote, 

Prince, & R. Morey, 2016). The abstract visual stimuli now commonly used to measure visual 

short-term memory cannot be quickly reduced to a concise verbal label that reliably 

distinguishes the salient aspects of one visual stimulus from another (Souza & Skora, 2017). 

Furthermore, the very idea that verbalization could be the primary strategy for remembering 
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visual images would seem to belie the hypothesis that we have access to a mental resource 

specifically for maintaining visual memories. While verbal labeling may have some impact on 

remembering visual information (as gesturing or visualization may likewise have some 

impact on verbal memory), the evidence I have evaluated here cannot be summarily 

dismissed on the grounds that visual memory tasks are too dependent on verbal strategy use 

without completely undermining the study of visual short-term memory, and indeed, the 

very idea of a separate visual short-term memory system.   

No current working memory model manages to satisfactorily explain why verbal and 

visual memoranda differ in their vulnerability to general interference. I shall describe 

competing models of working memory (or models of memory that may be applied to short-

term memory phenomena) and consider how each theory might accommodate asymmetry 

between verbal and visual-spatial mnemonic representations.    

Theoretical approaches to domain-specificity in working memory 

 When assumptions about parallel operations between verbal and visual memory are 

set aside rather than taken for granted, it becomes clear that domain-specific visual stores or 

rehearsal modules are not necessary for explaining existing data. The strong assumption of 

domain-specific stores was based largely on the supposed existence of patients who had 

selectively lost access to either auditory, visual, or spatial short-term memory. Evidence 

based on the patients with apparent auditory short-term memory loss has been skeptically 

re-considered, and is not universally believed to reflect a selective short-term memory deficit 

(e.g., Caplan, Waters, & Howard, 2012). The evidence from patients who experience 

difficulties with visual or spatial materials is even less consistent with the idea of a selective 

short-term memory deficit, and likewise deserves skepticism. De-emphasizing the evidence 

afforded by these patient cases should lead us to reconsider the objections to modular visual 
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or spatial short-term storage raised by Phillips and Christie (1977b), which were perhaps 

abandoned too hastily. Phillips and Christie did not take the strong position that visual 

information is not maintained in a distinct module; instead, they argued that the available 

evidence was insufficient to decide between a system in which a general resource is needed to 

act on some distinct visual memory module and a system in which the general resource is 

responsible for maintaining visual representations. As the multi-component model grew 

more popular, the separate short-term memory stores hypothesis became the standard view 

even though remaining skeptical towards the notion of a visual-spatial short-term memory 

store would have been just as consistent with the available evidence. I argue that there is now 

sufficient evidence to instead adopt the more parsimonious view that there is no “special 

purpose visualizer”, as Phillips and Christie put it. Pending new evidence that actually 

mandates both specific visual memory stores and general resources for adequate explanation, 

we should proceed with modeling working memory based on the overwhelming empirical 

evidence that visual short-term memory relies primarily on domain-general cognitive 

resources.  

At the very least, frameworks retaining visual-spatial short-term stores should be re-

specified so that the fragility of visual information in comparison with verbal information is 

clearly accounted for. Within the dominant model of working memory, the multi-component 

model (Baddeley, 2012), this could mean allowing the general-purpose episodic buffer a 

greater role in maintaining visual-spatial information than currently assumed. This could 

range from the complete removal of a specific visual-spatial short-term memory component, 

with all its operations subsumed by the domain-general episodic buffer, or perhaps a 

restricted role for a specific visual short-term memory component. Given the evidence 

summarized here, justifying the inclusion of both the domain-general episodic buffer and the 
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specialized visual short-term memory store will be challenging. In summarizing the available 

neuropsychological case literature and the empirical literature on dual-task costs on visual 

memory, I observed none of the strong benchmarks expected if short-term visual memories 

are maintained in a specialized system. Possibly, there exist restricted circumstances in 

which a specialized visual store can operate. These restrictions need to be clearly delineated 

and differentiated from the operations of other presumed working memory components. The 

properties and capabilities of any specialized visual short-term memory store should no 

longer be assumed analogous to a specialized verbal short-term memory storage system.     

 However, assuming both domain-specific and domain-general short-term memory 

storage within working memory may not be necessary at all. Some models of working 

memory do not emphasize roles of domain-specific short-term memory stores. Embedded 

process models (Cowan, 2005; Oberauer, 2013) neither explicitly disavow nor incorporate 

domain-specific stores. Embedded process models propose that a subset of the sensory 

memories or long-term knowledge occupies a state of especially heightened activation, 

referred to as the focus of attention. While in this heightened state, activated information is 

less susceptible to interference or gradual decay (Ricker & Cowan, 2014). However, very little 

information can occupy the attentional focus at any given moment. Various models estimate 

this limit at about 4 items or chunks of information (Cowan, 2001; Gilchrist & Cowan, 2011) 

or even only 1 item or chunk (Basak & Verhaeghen, 2011; Oberauer, 2013). Information that 

is not in the focus of attention varies in its level of activation. More highly-activated items 

may be more easily retrieved and promoted to the focus of attention.  

 Cue-based retrieval models (e.g., Nairne, 2002; Unsworth & Engle, 2007) also focus 

on explaining immediate memory by considering accessibility of information. Contrary to the 

notion that some information is held in short-term memory buffers that are subject to 
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passive decay, it has been shown that recovering an immediate memory is largely dependent 

on how the memory is elicited, just as recovering a more distant memory is. If temporarily 

activated short-term memories fade with time, then eventually they should be unrecoverable 

regardless of the nature of the cue used to elicit them, but cue-dependent variability in 

retrieval success is consistently observed (e.g., Tehan & Humphreys, 1996). Cue-based 

retrieval models vary in whether memory is considered to be unitary or not. Unsworth and 

Engle's model lies between the embedded process models and Nairne's unitary cue-based 

memory retrieval conception in that Unsworth and Engle argue for dual-component 

framework, setting primary memory apart from secondary memory much as the embedded 

process models distinguish the contents of the focus of attention from other memories. 

Whichever term is applied, attention/primary memory is characterized as a privileged state 

in which information is protected from interference, but is not proposed to be divisible 

according to the sensory domain or code of the memories represented.   

 Though these models do not assume domain-specific short-term memory stores, we 

should not necessarily assume that these models predict that verbal and visual-spatial 

information is treated equivalently. In focusing on accessibility of information, embedded 

process models and cue-based retrieval models remain quite flexible about how assumptions 

about domain-specificity of memories might be implemented. Embedded process models 

make no specific claim about the construction of the systems contributing to activated 

memory, and thus presumably depend on resolution of other disagreements about how 

sensory memories and long-term knowledge are immediately represented for a full 

description. One solution allows for domain-specific stores to co-exist alongside embedded 

processes, by subsuming them within activated memory (e.g., Cowan, 1988). This solution 

unparsimoniously allows for any possible combination of specialized short-term memory 
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components.  If neither empirical nor neuropsychological evidence demands these short-

term memory buffers, then we need not advocate for this comprehensive solution. Instead, 

both unitary and dual-component memory models may suppose that domain-specific 

limitations are inherited from perception, sensory memory, or long-term knowledge, or some 

combination of these. Observed asymmetries in robustness of verbal and non-verbal 

information must be supported by assumptions about the peripheral sensory and long-term 

memory systems that underlie embedded process or cue-based retrieval models.  

 Some models of working memory besides the multi-component model (Baddeley, 

2012) incorporate domain-specificity into their frameworks and predictions. I shall describe 

two accounts of working memory phenomena that incorporate domain-specificity in different 

ways: the most recent version of the Time-based Resource Sharing (TBRS) model 

(Barrouillet & Camos, 2015) and perceptual-gestural embodied accounts (e.g., Jones, et al., 

2006; Macken, Taylor, & Jones, 2015). Both of these accounts could handle evidence 

showing that visual memoranda are more susceptible to general interference than verbal 

memoranda, but do so by making very different assumptions.     

 Time-based Resource Sharing Model (2015). The latest iteration of the time-

based resource sharing model (Barrouillet & Camos, 2015) inherits many ideas from the 

traditional multi-component models of Baddeley (1986; 2012). In Barrouillet and Camos's 

conception, the heart of a working memory system is a linked representation and production 

system in which the same limited cognitive resource is devoted to holding representations 

and ensuring they remain activated. This central system, which Barrouillet and Camos 

specify as domain-general, is fed by a collection of specialized peripheral resources. The 

presumed nature of these resources is inspired by previous working memory models. From 

the ACT-R model of cognition (Anderson, et al., 2004), TBRS inherits modules for temporary 
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maintenance of declarative long-term memories, current task goals, and motor actions. From 

the classic multi-component model (Baddeley, 1986), TBRS inherits a visual-spatial buffer 

(akin to the multi-component model's visual cache) and a phonological buffer. Consistently 

with Baddeley and colleagues, Barrouillet and Camos characterize these peripheral systems 

as passive: information may be represented in these modules, but until it is selected for 

representation in the central working memory system (which Barrouillet and Camos 

characterize as an episodic buffer refreshed by a production system, which in combination 

form an executive loop), representations maintained in the peripheral stores fade as time 

passes. Information that is not selected and refreshed by the central system will eventually 

decay past the possibility of accurate recovery.    

 The sole exception to this cycle of refreshing and decay by Barrouillet and Camos's 

(2015) central cognitive system is for rote rehearsal of verbal information. The contents of 

the passive, peripheral phonological buffer alone can be re-activated through articulatory 

rehearsal, which is accomplished independently of the central system. This exception is 

based on empirical findings that keeping verbal information active does not necessarily 

interfere with maintenance of other kinds of information (Camos, Lagner, & Barrouillet, 

2009; Camos, Mora, & Oberauer, 2011), and is likewise consistent with an abundance of 

evidence that maintaining verbal information suffers little (Shah & Miyake, 1999; Vergauwe, 

Barrouillet, & Camos, 2010) or not at all (Morey et al., 2013) from concurrently storing or 

processing visual information, while a variety of materials and tasks provoke interference to 

visual memories. 

 This latest iteration of TBRS is heavily inspired by the classic multi-component model 

(Baddeley, 2000), adopting the pieces for which there is strongest consensus and jettisoning 

the pieces with the least support, most notably specialized visual or spatial rehearsal 
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mechanisms. This selectivity enables TBRS to better account for the non-selective 

interference with visual memories that I have described. However, like the classic multi-

component model, thoroughly testing this version of TBRS will be difficult: it will be 

challenging to devise experimental tests that convincingly isolate the components of the 

system meant to be under scrutiny, and to potentially falsify any single component. This is 

especially true given the flexibility with which information may be encoded: verbal 

information might be maintained via visual imagery (e.g., Brandimonte, Hitch, & Bishop, 

1992; Logie, Della Sala, Wynn, & Baddeley, 2000; Postle, et al., 2006) and visual information 

might be encoded via verbal labels (e.g., Schooler & Engstler-Schooler, 1990). Support for 

this constellation of components therefore must arise from the consistency of a large body of 

evidence. Though many might say this consistent body of evidence is already in place, in this 

paper I have shown that there is reason to doubt whether the data supporting our 

conventional wisdom really discriminates between similar theoretical possibilities.  

 Although TBRS (Barrouillet & Camos, 2015) specifically includes components that 

support the prediction that verbal information is more resistant to general interference than 

visual information, TBRS does not perfectly account for the differential interference patterns 

observed by Morey et al. (2013). Though it is clear that verbal information should resist 

interference better than visual information, TBRS does not predict any interference between 

a serial verbal memory task, which could rely on its specialized sub-system, and a non-verbal 

memory task, which could rely on the domain-general executive loop. According to TBRS, 

overloading the verbal rehearsal component during a visual memory task should provoke 

some dual-task interference. Excess verbal information would require the executive loop 

activation, causing competition between the verbal and visual memoranda. However, in this 

scenario, verbal task performance would also suffer. One potential factor to re-consider is 
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evidence that even automatic verbal rehearsal may include an attention-demanding planning 

phase (Naveh-Benjamin  & Jonides, 1984). Invoking the idea that the initiation of verbal 

rehearsal requires general resources might partially explain why verbal memories interfere 

with visual memories while remaining resistant to general interference themselves.   

Perceptual-gestural embodied accounts. Embodied accounts of short-term 

memory (e.g., Glenberg, 1997; Macken, Taylor, & Jones, 2015) attempt to explain memory 

phenomena in reference only to well-established perceptual and motor systems. An account 

of working memory that resorts only to perceptual, motor, and long-term memory systems 

rather than additionally proposing one or more distinct short-term memory systems would 

have the advantage of more parsimoniously accounting for the data. Whether these attempts 

have succeeded or not is a matter of debate, and one that largely hinges upon how apparent 

selective short-term memory deficits in patients are best explained: If these deficits were 

definitively shown to implicate hypothetical short-term stores, then explaining short-term 

memory phenomena without recourse to specialized stores would not be so plausible. 

However, whether the patient evidence really demands the supposition of short-term storage 

modules remains dubious (Caplan, et al., 2012), making attempts to do without short-term 

memory stores a viable, parsimonious approach. In short-term memory, most of the 

available experimental evidence and argument on these points pertains to verbal memory 

storage. I will recount these arguments briefly before considering the unique predictions 

about visual short-term memory phenomena that seem to arise naturally from the embodied 

perspective.  

The strongest experimental case for explaining short-term memory phenomena 

without positing a short-term memory store comes from consideration of the predictions 

about verbal serial recall arising from the multi-component model. According to the multi-
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component working memory model, verbal information is held in the phonological store, 

where its phonological characteristics are preserved, giving rise to interference based on 

phonological similarity and temporal duration. There are two routes to entry into the 

phonological store: aurally-presented items are encoded directly into the phonological store, 

whereas visually-presented items get access to the phonological store via an additional 

process, articulatory re-coding. Crucially though, as long as aurally- and visually-presented 

items both gain access to this phonological store, both should be subject to phonological 

similarity effects, and these effects should appear throughout the serial position functions 

because they act upon all of the information held in the phonological store. Engaging in 

articulatory suppression disrupts the conversion of visually-presented verbal materials to 

phonological code, and should therefore reduce any effect of phonological similarity 

throughout the list. Supporting the multi-component model's buffer-plus-articulation idea, 

concurrent articulation reliably reduces the impact of phonological similarity on visually-

presented lists (Baddeley & Larsen, 2007; Baddeley, Lewis, & Vallar, 1984; Jones, Macken, & 

Nichols, 2004). However, the locus of this effect within an ordered list is less clear; 

sometimes this impact appears throughout the list, but sometimes striking interactions 

emerge in which aurally-presented materials show a clear recency effect regardless of 

whether they are phonologically similar or dissimilar or whether suppression is imposed, 

while visually-presented materials do not (Jones, et al., 2004). Additionally, the phonological 

similarity effects reliably observed at list-final positions are disrupted by purely acoustic 

factors such as the addition of suffixes and prefixes (Jones, et al., 2004; Jones, Hughes, & 

Macken, 2007), suggesting that if anything, an acoustic, rather than a phonological, 

representation is maintained. These observations cast doubt on the buffer-plus-articulation 

notion, raising the possibility that the phenomena may be explained without assuming any 
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buffer at all, and instead supposing that early-list items suffer more from phonological 

similarity than late ones because they are most sensitive to interference that arises while 

planning a spoken response. Final-list items may be impaired by a suffix not because they are 

maintained in a domain-specific buffer that the suffix automatically accesses, but because 

auditory perception is biased toward grouping adjacent sounds together, even if these items 

are not part of the intended response set. Encoding the suffix along with the end-of-list items 

results in confusions about which item was to-be-ignored and which was to-be-remembered, 

increasing errors. 

In response, Baddeley and Larsen (2007) invoke the complexity of the multi-

component working memory model and the apparent impossibility of truly isolating its 

components: they discuss the multiple possibilities for domain-specific and domain-general 

representation and rehearsal, which might be strategically adopted or abandoned based on 

many circumstantial factors. They fall back on the evidence provided by neuropsychological 

cases in which aural-verbal short-term storage appears to be uniquely impaired (e.g., Basso, 

et al., 1982; Warrington & Shallice, 1969), strongly suggesting that aural-verbal short-term 

storage is an independently manipulatable cognitive mechanism. According to Baddeley and 

Larsen, even when experimental hypothesis tests fail to support the multi-component model, 

we still must credit it on account of the strength of the neuropsychological case data. This 

makes interpreting these rare data profoundly important, because interpretation limits how 

we can deploy our most power scientific tool, experimental falsification.  

In fact though, the same neuropsychological case data may be interpreted without 

recourse to domain-specific stores. Caplan, Waters, and Howard (2012) re-examined cases of 

auditory short-term memory deficits, and argued that the patient evidence is not consistent 

with the phonological store and articulatory loop components as described by the multi-
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component working memory theory. The cases described most in-depth, those of P.V. (Vallar 

& Baddeley, 1984) and K.F. (Warrington & Shallice, 1972), are not necessarily consistent with 

assumptions about an impaired or absent phonological store: in both cases, effects arising 

from maintenance in the phonological store, such as phonological similarity effects, remain 

present with aural presentation. These inconsistencies, like those with healthy participants 

(Baddeley, 2000), are dealt with by the inelegant supposition that use of the phonological 

store is strategically abandoned whenever phonological storage becomes difficult (Shallice & 

Vallar, 1990), a proposition which seems in conflict with the idea that aurally-presented 

verbal information has automatic access to a phonological store. Waters, Rochon, and Caplan 

(1992) argue that apraxic patients, who also present with verbal short-term memory deficits, 

suffer an impairment in forming articulatory plans, not in articulation or memory per se. 

They support this contention with evidence that these patients show patterns of verbal short-

term memory effects similar to those of healthy individuals engaged in articulatory 

suppression, namely reduced or absent phonological similarity and word length effects with 

visual presentation. Consistently with the idea that memory itself is intact, when recognition 

rather than recall of auditory lists was tested in patients with reduced aural-verbal short-

term memory spans, patients showed quite good performance even on 4-item lists, 

drastically better performance than with recall (Morey, 2015). In recognition, neither 

articulation nor articulatory planning would be required, but memory for the list is required. 

That patients perform quite well with recognition suggests that the deficit is not in memory 

per se, and that recall tests which require response planning and production in addition to 

memory underestimate these patients' memory capabilities. In both apraxia and the short-

term memory deficit cases, it is possible that abilities to plan speech, rather than a short-term 

phonological store, were damaged. Thus, the patient cases that are cited as the theoretical 
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back-bone of a phonological store even when experimental evidence would seem to 

disconfirm it need not be taken as definitive evidence for domain-specific short-term stores 

at all. Indeed, like the experimental evidence, the strongest existing patient evidence does not 

strictly conform to predictions and is capable of alternative interpretations. We therefore 

should not limit our interpretation of experimental hypothesis tests of working memory 

phenomena based on one interpretation of these patient data. Despite appeals to case 

evidence and to the flexibility with which information may be encoded into working memory, 

it remains possible that short-term memory phenomena might be explained within an 

account that does not posit short-term memory stores at all. 

If the evidence afforded by supposed cases of auditory-verbal short-term memory 

deficits remains ambiguous, then the evidence afforded by possible cases of visual or spatial 

deficits is even more so. Patients said to have visual or spatial short-term memory deficits 

typically also present with declines in cognitive functioning more generally, making it 

difficult to definitively pinpoint their deficit to short-term memory. This absence of evidence 

is troubling for a multi-component working memory model featuring specialized short-term 

visual or spatial storage and rehearsal modules; surely if such modules existed, then a truly 

selective deficit would occasionally arise. However, this absence presents no problem for 

perceptual-gestural accounts of memory phenomena. An embodied framework invoking 

motor systems for rehearsal of memoranda quite naturally predicts superior memory for 

verbal stimuli that have recourse to articulatory-motor processes for re-activation than for 

visual or spatial memories, which have fewer obvious means of motor reactivation. 

Compared with well-practiced speech processes, it is difficult to imagine a plausible analogue 

for re-activating visual or spatial stimuli. Proposals for embodying visual memory include 

rehearsal-based manual motor sequences or eye movements. Evidence evaluating the 
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effectiveness of gaze-based and manual “rehearsal” of spatial or visual material has been 

mixed. While manual suppression techniques, such as spatial tapping or engaging in 

repetitive motions can be shown to impair spatial memories (Guérard & Tremblay, 2008; 

Meiser & Klauer, 1999; Pecher, 2013), this seems to be the limit of any analogy between 

visuo-motor and articulatory suppression. Pecher demonstrated that the motions performed 

in a manual suppression task did not need to overlap with the motions afforded by visual 

objects in order to provoke interference. Smyth and Scholey (1992) searched for evidence 

that movement speed predicted spatial memory recall, akin to observed relationships 

between articulatory speed and verbal recall, but they found no evidence for this despite 

observing statistically significant but unexpected relationships between articulation speed 

and spatial memory.     

Eye movements in particular can be shown to positively affect spatial memory recall, 

but again this relationship deviates from observed relationships between articulation and 

verbal recall in several telling respects. First, while it looks as though gaze sequences 

consistent with the spatial memory sequence result in superior performance (Tremblay, 

Saint-Aubin, & Jalbert, 2006) and glances toward irrelevant information systematically 

impair spatial recall (Guérard & Tremblay, 2011), path-consistent tracing is nonetheless 

inferior to no movement at all (Lange & Engebert, 2013). Stationary gaze does not produce 

worse recall than free gazing (Godijn & Theeuwes, 2012; Postle, et al., 2006), which is 

unexpected if you assume that gazes are explicitly used to strengthen spatial memory in the 

same way that repetitive speech is employed to maintain verbal lists. It has been suggested 

that it is not the eye movements themselves, but the preparation and planning to perform the 

movements that produces interference with spatial memory (Pearson, Ball, & Smith, 2014; 

Postle et al., 2006). While suppressing eye movements by making repetitive irrelevant 
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saccades is more damaging for spatial sequential memory than for visual object memory 

(Postle, et al., 2006), it is not clear that this mechanism is specialized for deployment with 

visual-spatial sequences, because forced performance of sequence-consistent eye movements 

likewise harms verbal serial memory (Lange & Engebert, 2013). The broadest ideas about 

gaze assisting memory envision looking as a retrieval cue, but do not propose that this 

retrieval cue is only useful for prompting retrieval of visual memories. Ferreira, Apel, and 

Henderson (2008) surmise that looking at a place previously occupied by a stimulus can 

trigger memory for that stimulus. They do not propose this is a process specialized to aid in 

retrieving visual images; examples include looking back at the position of a speaker in order 

to better recall a recent utterance, or looking toward the position on a page where text was 

originally read. This differs drastically from articulatory rehearsal, which is believed to be 

useful for keeping specifically verbal information active.    

Altogether, the available evidence about motor actions assisting memory suggests that 

verbal information has access to stronger systems for re-generating or activating sensory 

materials than visual or spatial materials do. This makes embodied accounts a parsimonious 

way to integrate domain-specificity into working memory models. They can naturally predict 

the resilience of verbal memories to interference from non-verbal materials without invoking 

custom short-term memory modules, and they likewise predict that visual and spatial 

materials would be more difficult to remember accurately because they cannot be readily re-

produced by existing motor systems. However, embodied accounts are currently under-

specified. Applied to memory, they have been successfully invoked to explain maintenance of 

serial verbal information, but attempts to explain visual memory via embodiment have 

mainly been restricted to showing that eye movements or motor affordances impact memory. 

There is consistent evidence of relationships between eye movements and other motor 
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processes and memory, but these relationships are often small and the nature of systematic 

differences between the utility of these functions for different kinds of task are not yet clear. 

There is reason to think that perceptual and motor affordances for activating visual and 

verbal memories differ, and these contrasts should be systematically evaluated to generate 

novel predictions for memory phenomena. 

Conclusions 

 One of the starkest gradients along which various models of working memory vary is 

in how short-term memory is explained. Models vary drastically, from proposing multiple 

specialized short-term memory buffers or rehearsal mechanisms (Baddeley, 2012; Barrouillet 

& Camos, 2015; Logie, 2011), to proposing a distinction between extremely active and 

somewhat less active memories (Cowan, 2005; Oberauer, 2013) or retrieval cues (Unsworth 

& Engle, 2007), to explicitly denying any need for short-term memory stores (Macken, 

Taylor, & Jones, 2015; Nairne, 2002). The apparent need to posit distinct short-term stores 

to explain neuropsychological case data and dual-task working memory research has so far 

stood in the way of mass adoption of more parsimonious models that propose fewer 

components. However, neither the neuropsychological evidence nor the dual-task literature 

provides strong support for a dedicated visual-spatial short-term memory system. Proposing 

distinct mechanisms for every stage of verbal and visual perception and memory may be 

unnecessary, and ought to be reconsidered. Though existing models vary in how well they 

capture the apparent difference in robustness of visual and verbal memories, no model 

perfectly manages to explain this.  We should focus future efforts on testing and comparing 

more parsimonious ways to explain and predict domain-specific interference in working 

memory. 
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Table 1. Effects of selective interference to the application of mnemonic strategies 
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Spatial Brooks 
Baddeley & Lieberman, 
1980 -    +      

 
Baddeley, et al., 1975 
      +      

 Beech, 1984 +     +     
 Logie, et al., 1990        ++ +  

 Postle, et al., 2006      
-, 
+     

 Quinn 1988 +     +     
 Quinn & Ralston, 1986      +1     

Nonsense Brooks 
Baddeley & Lieberman, 
1980 +    -      

 Baddeley, et al., 1975     -      
 Beech, 1984 -     -     
 Logie, et al., 1990        + ++  

 Postle, et al., 2006      
+, 
-     

 Quinn 1988 +     +     

Peg-word 
Baddeley & Lieberman, 
1980     +      

 Logie, 1986  +  +   ++   - 

 
McConnell & Quinn, 
2000    +       

 
McConnell & Quinn, 
2004    +       

 Quinn & McConnell, 1996  +  +      - 

 
Quinn & McConnell, 
2006    +       
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Rote Rehearsal 
Baddeley & Lieberman, 
1980     -      

 Logie, 1986  -  -   +   + 

 
McConnell & Quinn, 
2000    -       

 
McConnell & Quinn, 
2004    -       

 Quinn & McConnell, 1996  +  -      + 

 
Quinn & McConnell, 
2006    -       

Method of Loci 
Baddeley & Lieberman, 
1980     +      

Note. When reported, “+” indicates that a significant decrease in recall was observed, and “-” 
indicates that it wasn't. Sometimes, only the relevant interaction was reported. In those 
cases, the super-scripted + marks the condition that experienced the significantly greater 
decrement.  
1. I included only the “incompatible” movement condition of Quinn & Ralston, 1988. This 
involved making a formulaic sequence of movements around a matrix, similarly to the spatial 
tapping tasks. 
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Table 2. Patients with apparent visual or spatial short-term memory deficits 
 

Case 
type 

Paper ID Anatomy Verbal 
STM? 

Spatial 
STM? 

Visual 
STM? 

Visual or 
spatial 
LTM? 

Visual  Hanley, 
Pearson, & 
Young, 1990 

E.L.D. Right fronto-
temporal 

Normal (See 
Hanley et 
al. 1991) 

Mixed Normal 

 Ross, 1980 Case 2 Right medial 
occipital lobe 

Normal Normal Mixed Normal 

 Wilson, 
Baddeley, & 
Young, 1999 

L.E. Unreported Impaired Normal Impaired Impaired (if 
verbal and 
motor 
strategies 
prevented) 

Spatial Bonni, et al., 
2014 

G.P. Right dorso-
mesial frontal 
lobe 

Normal Normal Normal Normal, 
selective 
impairment 
for spatial 
information 
with 10-20 sec 
delay 

 Carlesimo, 
et al., 2001 

M.V. Right fronto-
parietal 

Normal Impaired Normal (but 
low) 

Normal (but 
low) 

 Hanley, 
Young, & 
Pearson, 
1991 

E.L.D. Right fronto-
temporal 

Normal Impaired Impaired Normal 

 Lepore, et 
al. 2008 

M.Z. Unreported Normal Impaired Mixed Mixed 

 Luzzatti, et 
al, 1998 

E.P. Anterior right 
temporal lobe 

Normal 
(but details 
not 
reported) 

Impaired Not tested? 
Implied by 
intact 
retrieval of 
images in 
wrong spatial 
layout, but 
from long-
term 
knowledge. 

Impaired 

 Ross, 1980 Case 1 Right 
hemisphere 

Normal Impaired Mixed Mixed 

 
Note. Various measures of “short-term” memory reported in these papers varied 
considerably as to the delay period. For the purpose of constructing this summary, I 
considered short-term memory to be “mixed” when performance on some tests that the 
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authors described as “short-term” memory was deficient compared to controls while other 
measures showed classed as “short-term” memory showed no deficit.   
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Table 3. Studies of visual short-term memory with dual-task manipulations coded for meta-
analysis 

Auditory Secondary Task     
Paper Memoranda Distractor Description Decision 

Response 
Required 

Included 
in Fig.:  

Dell'acqua & Jolicoeur, 2000 Spatial patterns Tone judgment Yes  
  Listen to tones No  
Fougnie, et al., 2015 Spatial patterns Birdcall recognition Yes 2a, 2b, 

2c, 3 
Fougnie & Marois, 2011 Color, shape, face arrays Tone sequence 

recognition 
Yes 2a, 2b, 3 

Janczyk & Berryhill, 2014 Color arrays Tone judgment Yes  
Klauer & Stegmaier, 1997 Spatial sequences Listen to tones No 2a, 2b, 3 
  Loudness judgement Yes 2a, 2b, 3 
  Tone judgment Yes 2a, 2b, 3 
Langerock, Vergauwe, & Barrouillet, 
2014 

Spatial sequences Tone judgement Yes  

Morey & Bieler, 2013 Color, shape, color-shape 
arrays 

Tone judgement Yes 2a, 2b, 
2c, 3 

Morey, et al., 2011 Color arrays Tone sequence 
recognition 

Yes  

Ricker, Cowan, & Morey, 2010 Shape arrays Tone judgment Yes 2a, 2b, 
2c, 3 

Saults & Cowan, 2007 Color arrays Timbre-content 
recognition 

Yes  

  Timbre-content-
location recognition 

Yes  

Smyth & Scholey, 1994 Spatial sequences Listen to tone No 2a, 2b, 3 
Smyth, 1996 Spatial sequences Listen to tone No 2a, 2b, 

2c, 3 
Stevanovski & Jolicoeur, 2007 Color arrays Tone judgment Yes 2a, 2b, 

2c, 3 
  Listen to tone No 2a, 2b, 

2c, 3 
Stevanovski & Jolicoeur, 2011 Color-orientation arrays Tone judgment Yes 2a, 2b, 

2c, 3 
Van Lamsweerde, Beck, & Elliott, 
2015 

Shape, color-shape arrays Detect tone No 2a, 2b, 
2c, 3 

Vergauwe, Langerock, & Barrouillet, 
2014 

Color-shape arrays Tone judgment Yes  

Zokaei, Heider, & Husain, 2014 Orientation arrays, motion 
direction 

Timbre judgment Yes 2a, 2b, 
2c, 3 

     
Verbal Secondary Task     
Paper Memoranda Distractor Description Decision 

Response 
Required 

Included 
in Fig.:  

Allen, Baddeley, & Hitch, 2006 Color, shape, color-shape 
arrays 

Arithmetic Yes 2a 

Allen, et al., 2012 Color, color-shape arrays Arithmetic Yes  
Allen, Baddeley, & Hitch, 2014 Color, shape, color-shape 

sequences 
Arithmetic Yes  
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Barrouillet, De Paepe, & Langerock, 
2012 

Spatial sequences Arithmetic Yes  

Barton, et al., 1995 Spatial patterns Articulatory 
suppression 

No 2a, 2b, 3 

Boduroglu & Shah, 2014 Spatial sequences Articulatory 
suppression 

No  

Brown & Brockmole, 2010 Color, shape, color-shape 
arrays 

Arithmetic Yes  

Cocchini, et al., 2002 Matrix patterns Articulatory 
suppression 

No 2a, 2b, 3 

  Verbal memory Yes 2a, 2b, 3 
Cowan & Morey, 2007 Color arrays Verbal sequence 

memory 
Yes 2a, 2b, 

2c, 3 
Cowan, Saults, & Blume, 2014 Color arrays Verbal sequence 

memory 
Yes 2a, 2b, 3 

Dent, 2010 Color arrays Articulatory 
suppression 

No 2a, 2b, 3 

Depoorter & Vandierendonck, 2009 Spatial patterns, spatial 
sequences 

Verbal item memory Yes 2a, 2b, 3 

  Verbal sequence 
memory 

Yes 2a, 2b, 3 

Duff, 2000 Spatial sequences Verbal sequence 
memory 

Yes 2a 

Feng, Pratt, & Spence, 2012 Color arrays Arithmetic Yes 2a, 2b, 
2c, 3 

Fougnie, et al., 2015 Spatial patterns Verbal item memory Yes 2a, 2b, 
2c, 3 

Fougnie & Marois, 2011 Color, shape, face arrays Verbal sequence 
memory 

Yes 2a, 2b, 3 

Fougnie & Marois, 2006 Color arrays Verbal item memory Yes 2a, 2b, 
2c, 3 

Karlsen, et al., 2010 Color, shape, color-shape 
arrays 

Arithmetic Yes  

Klauer & Stegmaier, 1997 Spatial sequences Repeat words No 2a, 2b, 3 
Lilienthal, Hale, & Myerson, 2014 Spatial sequences Arithmetic Yes 2a, 2b, 3 
Logie, Zucco, & Baddeley, 1990 Spatial patterns Arithmetic Yes 2a, 2b, 3 
  Verbal sequence 

memory 
Yes 2a, 2b, 3 

Makovski, Shim, & Jiang, 2006 Natural scenes, color arrays, 
spatial arrays 

Word judgment Yes 2a, 2b, 
2c, 3 

  Listen to verbal input No 2a, 2b, 
2c, 3 

Martein, Kemps, & 
Vandierendonck, 1999 

Spatial sequences Articulatory 
suppression 

No  

Mate, Allen, & Baques, 2012 Color-shape arrays Articulatory 
Suppression 

No 2a, 2b, 3 

Morey, et al., 2015 Color arrays Arithmetic Yes  
  Articulatory 

suppression 
No  

Morey, et al., 2013 Color arrays Verbal sequence 
memory 

Yes 2a, 2b, 
2c, 3 

Morey & Cowan, 2004 Color arrays Verbal sequence 
memory 

Yes 2a 

  Articulatory 
suppression 

No 2a 
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Morey & Cowan, 2005 Color arrays Verbal sequence 
memory 

Yes 2a, 2b, 3 

Morey & Mall, 2012 Spatial sequences Listen to verbal input No 2a, 2b, 
2c, 3 

  Verbal sequence 
memory 

Yes 2a, 2b, 
2c, 3 

Morey & Miron, 2016 Spatial sequences Verbal sequence 
memory 

Yes 2a, 2b, 3 

Nieuwenstein & Wyble, 2014 Kanji characters Arithmetic Yes 2a, 2b, 
2c, 3 

Pecher, 2013 Photos of objects Articulatory 
suppression 

No 2a, 2b, 
2c, 3 

Phillips & Christie, 1977a Spatial patterns Arithmetic Yes 2a, 2b, 3 
Phillips & Christie, 1977b Spatial patterns Arithmetic Yes 2a, 2b, 

2c, 3 
  Listen to digits No 2a, 2b, 

2c, 3 
  Read digits No 2a, 2b, 

2c, 3 
Postle, D'Esposito, & Corkin, 2005 Spatial, shape arrays Animacy judgment Yes 2a, 2b, 

2c, 3 
  Part-of-speech 

judgment 
Yes 2a, 2b, 

2c, 3 
Postle & Hamidi, 2007 Shape arrays Listen to verbal input No 2a, 2b, 

2c, 3 
Postle, et al., 2006 Spatial, shape arrays Read words No 2a, 2b, 

2c, 3 
Ricker & Cowan, 2010 Shape arrays Arithmetic Yes 2a, 2b, 

2c, 3 
  Repeat digits No 2a, 2b, 

2c, 3 
Ricker, Cowan, & Morey, 2010 Shape arrays Articulatory 

suppression 
No 2a, 2b, 

2c, 3 
  Listen to verbal input No 2a, 2b, 

2c, 3 
  Verbal recognition Yes 2a, 2b, 

2c, 3 
Rudkin, Pearson, & Logie, 2007 Spatial patterns, spatial 

sequences 
Random generation Yes 2a 

Shah & Miyake, 1999 Orientation arrays Sentence verification Yes 2a 
Sims & Hegarty, 1997 Spatial patterns Verbal reasoning Yes  
Smyth & Pendleton, 1990 Movement sequences Repeat word No 2a, 2b, 3 
Smyth & Scholey, 1992 Spatial sequences Articulatory 

suppression 
No 2a 

Smyth & Scholey, 1994 Spatial sequences Listen to verbal input No 2a, 2b, 
2c, 3 

  Read No 2a, 2b, 3 
  Repeat word No 2a, 2b, 3 
Van Lamsweerde, Beck, & Elliott, 
2015 

Shape, color-shape arrays Verbal recognition Yes 2a, 2b, 
2c, 3 

Vandierendonck, 2016 Spatial pattern, spatial 
sequences 

Verbal sequence 
memory 

Yes 2a, 2b, 3 

  Verbal item memory Yes 2a, 2b, 3 
Vandierendonck, et al., 2004 Spatial sequences, forwards Articulatory No 2a 
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and backwards suppression 
Vergauwe, Barrouillet, & Camos, 
2010 

Spatial sequences Semantic 
categorization 

Yes  

Vergauwe, et al., 2012 Spatial sequences Semantic 
categorization 

Yes  

Zokaei, Heider, & Husain, 2014 Orientation arrays, motion 
direction 

Semantic judgment Yes 2a, 2b, 
2c, 3 

     
Visual-Spatial Secondary Task     
Paper Memoranda Distractor Description Decision 

Response 
Required 

Included 
in Fig.: 

Anderson, et al., 2008 Spatial patterns Visual search Yes 2a, 2b, 
2c, 3 

Andrade, et al., 2002 Spatial patterns, Chinese 
characters 

Color memory Yes  

  Dynamic visual noise No 2a, 2b, 3 
  Spatial tapping No 2a, 2b, 3 
Avons & Sestieri, 2005 Spatial patterns Dynamic visual noise No 2a, 2b, 

2c, 3 
  Static visual noise No 2a, 2b, 

2c, 3 
Barton, et al., 1995 Spatial patterns Spatial tapping No 2a, 2b, 3 
Boduroglu & Shah, 2014 Spatial sequences Irrelevant color 

changes 
No 2a 

Cocchini, et al., 2002 Spatial patterns Tracking Yes 2a, 2b, 3 
Cortese & Rossi-Arnaud, 2010 Spatial sequences Spatial tapping No 2a 
Cowan & Morey, 2007 Color arrays Color array memory Yes 2a, 2b, 

2c, 3 
Della Sala,  et al., 1999  Spatial patterns, location 

sequences 
Spatial tapping No 2a, 2b, 3 

  View images No 2a, 2b, 3 
Dent, 2010 Color, spatial arrays Dynamic visual noise No  
Depoorter & Vandierendonck, 2009 Spatial patterns, spatial 

sequences 
Spatial pattern 
memory 

Yes 2a, 2b, 3 

  Spatial sequence 
memory 

Yes 2a, 2b, 3 

Emrich, et al., 2010 Color arrays Visual search Yes 2a, 2b, 
2c, 3 

Ester, et al., 2014 Color arrays Visual search Yes 2a, 2b, 
2c, 3 

Fougnie & Marois, 2009a Color-shape arrays Tracking Yes 2a, 2b, 
2c, 3 

Fougnie & Marois, 2009b Color arrays Color array memory Yes 2a, 2b, 
2c, 3 

Fougnie & Marois, 2006 Color arrays Tracking Yes 2a, 2b, 
2c, 3 

  Color array memory Yes 2a, 2b, 
2c, 3 

Johnson, Hollingworth, & Luck, 
2008 

Color-orientation arrays Visual search Yes 2a, 2b, 
2c, 3 

Klauer & Stegmaier, 1997 Spatial sequences Localize visual image Yes 2a, 2b, 3 
  View image No 2a, 2b, 3 
Lawrence, Myerson, & Abrams, 
2004 

Spatial sequences Spatial judgment Yes  
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Lilienthal, Hale, & Myerson, 2014 Spatial sequences Spatial judgment Yes 2a, 2b, 3 
Logie, Zucco, & Baddeley, 1990 Spatial patterns Image generation Yes 2a, 2b, 3 
Logie & Marchetti, 1991 Color arrays, spatial 

sequences 
Spatial tapping No 2a, 2b, 3 

  View image No 2a, 2b, 3 
Makovski, Shim, & Jiang, 2006 Natural scenes, color arrays, 

spatial arrays 
Picture judgment Yes 2a, 2b, 

2c, 3 
  View image No 2a, 2b, 

2c, 3 
Martein, Kemps, & 
Vandierendonck, 1999 

Spatial sequences Spatial tapping No  

Matsukura & Vecera, 2009 Spatial, color, shape arrays Visual judgment Yes 2a, 2b, 
2c, 3 

  Visual search Yes 2a, 2b, 
2c, 3 

Mishra, et al., 2013 Motion direction Speed judgment Yes 2a, 2b, 
2c, 3 

  View image No 2a, 2b, 
2c, 3 

Myerson, et al., 1999 Spatial sequences Color judgment Yes 2a 
  Localize visual image Yes 2a 
Oh & Kim, 2004 Spatial, color arrays Visual search Yes 2a, 2b, 3 
Phillips & Christie, 1977b Spatial patterns View image No 2a, 2b, 

2c, 3 
  Visual memory Yes 2a, 2b, 

2c, 3 
Postle, D'Esposito, & Corkin, 2005 Spatial, shape arrays Tracking Yes 2a, 2b, 

2c, 3 
Rerko, Souza, & Oberauer, 2014 Color arrays Color judgment Yes 2a, 2b, 3 
Ricker, Cowan, & Morey, 2010 Shape arrays Spatial tapping No 2a, 2b, 

2c, 3 
Sapkota, Pardhan, & van der Linde, 
2013 

Grayscale noise Spatial tapping No 2a, 2b, 3 

Seemüller, Fieler, & Rösler, 2011 Motion direction Orientation 
discrimination 

Yes 2a, 2b, 
2c, 3 

Shah & Miyake, 1999 Orientation arrays Mental rotation Yes 2a 
Shen, Huang, & Gao, 2015 Color, shape, color-shape, 

orientation, color-orientation 
arrays 

Mental rotation Yes 2a, 2b, 
2c, 3 

  Motion discrimination Yes 2a, 2b, 
2c, 3 

  Visual memory Yes 2a, 2b, 
2c, 3 

  Visual search Yes 2a, 2b, 
2c, 3 

Sims & Hegarty, 1997 Spatial patterns Spatial reasoning Yes 2a, 2b, 
2c, 3 

Smyth & Pendleton, 1990 Movement sequences Location memory Yes 2a, 2b, 3 
  Movement memory Yes 2a, 2b, 3 
  Spatial tapping Yes 2a, 2b, 3 
  View image No 2a, 2b, 3 
Smyth & Scholey, 1994 Spatial sequences Spatial judgment Yes 2a, 2b, 3 
  View image No 2a, 2b, 

2c, 3 
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Vandierendonck, et al., 2004 Spatial sequences, forwards 
and backwards 

Spatial tapping No 2a 

Vergauwe, Barrouillet, & Camos, 
2010 

Spatial sequences Spatial judgment Yes  

Vergauwe, Barrouillet, & Camos, 
2009 

Spatial patterns, spatial 
sequences, Chinese characters 

Color judgment Yes 2a, 2b, 
2c, 3 

  Motion judgment Yes 2a, 2b, 
2c, 3 

  Spatial judgment Yes 2a 
  Symmetry judgment Yes 2a 
Wood, 2007 Movement sequences, color 

arrays, spatial arrays, color 
sequences 

Color array memory Yes 2a, 2b, 
2c, 3 

  Color sequence 
memory 

Yes 2a, 2b, 
2c, 3 

  Movement sequence 
memory 

Yes 2a 

  Spatial array memory Yes 2a, 2b, 
2c, 3 

Wood, 2011a Color sequences, movement 
sequences, shape arrays, color 
arrays 

Color array memory Yes 2a, 2b 

  Color sequence 
memory 

Yes 2a, 2b, 
2c, 3 

  Movement sequence 
memory 

Yes 2a, 2b, 
2c, 3 

  Shape array memory Yes 2a, 2b 
Wood, 2011b Color arrays, spatial arrays, 

shape arrays, Color-shape 
arrays 

Color array memory Yes 2a, 2b, 
2c, 3 

  Color-shape array 
memory 

Yes 2a, 2b, 
2c, 3 

  Shape array memory Yes 2a, 2b, 
2c, 3 

  Spatial array memory Yes 2a, 2b, 
2c, 3 

  Visual search  Yes 2a, 2b 
Woodman, Vogel, & Luck, 2001 Color, orientation arrays Visual search Yes 2a, 2b, 3 
Woodman & Luck, 2004 Spatial arrays Visual search Yes 2a, 2b, 

2c, 3 
Woodman, Luck, & Schall, 2007 Color arrays Visual search Yes 2a, 2b, 3 
Zhang, et al., 2010 Color, color-shape arrays Tracking Yes 2a, 2b, 

2c, 3 
Zimmer, Speiser, & Seidler, 2003 Object arrays, spatial 

sequences 
Dynamic visual noise No 2a, 2b, 3 

  Spatial tapping No 2a, 2b, 3 
  View image No  
Zokaei, Heider, & Husain, 2014 Orientation arrays, motion 

direction 
Visual search Yes 2a, 2b, 

2c, 3 
     
Other Secondary Task     
Paper Memoranda Distractor Description Decision 

Response 
Required 

Included 
in Fig.: 

Cortese & Rossi-Arnaud, 2010 Spatial sequences Manual suppression No  
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Martein, Kemps, & 
Vandierendonck, 1999 

Spatial sequences Random interval 
generation 

No  

Pecher, 2013 Photos of objects Manual suppression No  

Postle & Hamidi, 2007 Shape arrays Saccade suppression No  

Postle, et al., 2006 Spatial, shape arrays Saccade suppression No  

Rudkin, Pearson, & Logie, 2007 Spatial patterns, spatial 
sequences 

Fixed interval 
generation 

No  

  Random interval 
generation 

Yes  

Seemüller, Fiehler, & Rösler, 2011 Motion direction Kinesthetic 
discrimination 

Yes  

Smyth & Pendleton, 1990 Movement sequences Manual suppression No  

Vandierendonck, et al., 2004 Spatial sequences, forwards 
and backwards 

Random interval 
generation 

Yes  
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Figure 1 
 

 
 
Figure 1. Dual-task costs for arrays of two (left) or three (right) visual items in Experiments 1a, 1b, 2a, and 2b of 
Morey, et al., 2013. Left panel N=49, right panel N=26. Black parameters are for trials in which the visual array 
was retro-cued for testing. Teal parameters indicate that no informative retro-cue was given. Open shapes 
depict trials in which visual arrays were presented before verbal lists, and in filled shapes visual arrays were 
presented after the verbal lists. Error bars are standard errors of the mean with the Morey-Cosineau (Morey, 
2008) correction applied.   
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Figure 2 
 
 

 
 

 
 

 
Figure 2. Violin plots depicting the distributions of Hedges G effect size values calculated on the difference 
between single-task and dual-task performance on visual memory tasks, organized by the domain of the 
secondary task. 2a includes all 862 observations meeting all criteria. 2b is restricted to observations with 
retention intervals of at least 1000 ms. 2c is additionally restricted to observations where the visual memory 
task set size was no more than 3. Regions marked in purple are the 95% credible intervals surrounding the 
mean effect size, weighted by the sample size of each point.    
 

A 

B 
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Figure 3 
 

 
 
Figure 3.  Mean Hedges G, weighted by the sample size, for comparisons involving auditory, verbal, or visual 
secondary tasks that varied by whether they required a non-repetitive decision or response. Error bars are 95% 
credible intervals. N=748. 


