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Abstract

A new method is proposed to numerically extract the diffusivity of
a (typically nonlinear) diffusion equation from underlying stochastic par-
ticle systems. The proposed strategy requires the system to be in local
equilibrium and have Gaussian fluctuations but is otherwise allowed to un-
dergo arbitrary out of equilibrium evolutions. This could be potentially
relevant for particle data obtained from experimental applications. The
key idea underlying the method is that finite, yet large, particle systems
formally obey stochastic partial differential equations of gradient flow type
satisfying a fluctuation-dissipation relation. The strategy is here applied
to three classic particle models, namely independent random walkers, a
zero range process and a symmetric simple exclusion process in one space
dimension, to allow the comparison with analytic solutions.

1 Introduction

Diffusive processes are ubiquitous in natural and man-made materials and de-
vices, ranging from mass transport in cells over ion diffusion in batteries to
diffusion of pollutants in oceans and the atmosphere. They can often be de-
scribed on a fine scale via particles, and on a coarser (continuum) scale by
partial differential equations. While the former typically provides higher phys-
ical fidelity, the computational efficiency of the latter enables us to reach the
length and time scales required in many applications.

Yet, simulations at the continuum level require the knowledge of correct
material parameters or transport coefficients, such as the diffusivity for mass
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transport processes. These can be determined from lower scale models or ex-
perimental observations, which is precisely the problem we study here. In par-
ticular, we consider diffusive systems described by evolution equations of the
form

∂tρ = div (D(ρ)∇ρ) ,

where ρ = ρ(t, x) is the density and D(ρ) is the diffusion coefficient.
Existing methods to compute diffusivities include equilibrium strategies based

on linear response theory, e.g., Green-Kubo or mean square displacement meth-
ods (see, for example, [1, Section 4.4.1] and [2]), and non-equilibrium molecular
dynamic techniques (see, for example, [3, Chapters 2 and 8], [4, Chapter 13]
or [5]). Although these methods have been proven very successful, they require
the system to be in special configurations, such as macroscopic equilibrium or
steady state, or the simulation of modified equations of motion. This may
pose challenges for a range of problems where transport coefficients should be
inferred from experimental data, where the special configurations required by
these methods might not always be easily achievable experimentally.

In this article, we develop a new computational strategy to determine dif-
fusivity coefficients from quite general non-equilibrium particle evolutions: the
primary assumptions are local equilibrium and Gaussian nature of the fluctu-
ations of the density (see Subsection 2.1.1 for further details). The key idea
is that the evolution of a finite, yet large, number of particles can formally
be described by a stochastic partial differential equation (SPDE) satisfying a
fluctuation-dissipation relation. In particular, when the deterministic part of
the SPDE is written as a gradient flow of the entropy functional, the density
evolves in the direction of steepest ascent of the entropy (while compatible with
the constraint of conservation of mass) at a speed that is characterized by a
mobility coefficient [6, 7]. This mobility is also encoded in the noise term of the
SPDE, by the fluctuation-dissipation relation, and it may be directly related to
the diffusivity through the knowledge of the entropy. We extend in this study a
classic approach for the computation of the noise term of a stochastic ordinary
differential equation to the infinite-dimensional setting of SPDEs, which allows
us to compute the mobility from the fluctuations observed in particle evolution
data.

There are various interesting features of this approach. Firstly, the particle
evolution data is allowed to be in or out of equilibrium, which provides great
flexibility for the input data that can be considered. Furthermore, it allows us
to recover the function D(ρ) within the range of densities covered by the particle
data — we chose here a sinusoidal shape for the initial density to demonstrate
this feature. This is in contrast to common equilibrium techniques, which only
deliver the diffusivity at the simulated density. Secondly, the particles’ mean
square displacement (MSD) is not assumed to be linear in time, as it would be
in conventional calculations of the diffusivity using Einstein’s relation. Rather,
the diffusivity is directly computed from the fluctuations, without assuming
a specific form of the temporal evolution. This versatility of the method is
demonstrated by considering a symmetric nearest neighbour exclusion process
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in one space dimension, for which MSD ∼ t1/2, thus rendering the conventional
method inapplicable; the method determines the diffusivity correctly for this
case. Lastly, we note that, although we restrict the analysis to nonlinear diffu-
sion problems, which in itself exhibit a wide variety of interesting phenomena
and applications, the potential applicability is much larger. Indeed, we only use
a gradient flow structure of the thermodynamic evolution and the fluctuation-
dissipation relation; this setting comprises a much wider range of dissipative
phenomena [8, 9].

In this article we demonstrate the methodology for stochastic particle prob-
lems on lattices with analytic solutions to their macroscopic evolution equation,
so that the errors can be exactly determined. In particular, we study indepen-
dent random walkers, a zero range process with quadratic jump rates and a
symmetric simple exclusion process. We could not find the analytic description
of the continuum limit for the second of these processes in the literature, and
the derivation of the analytic expression is sketched in Subsection 4.1. In all
of these cases, the input to the method is obtained from kinetic Monte Carlo
simulations of these processes. However, the input data can also be, in princi-
ple, obtained from experiments; the applicability of the method in experimental
settings will be investigated in future studies.

The structure of the paper is as follows. In Section 2, we describe the
thermodynamic formulation of diffusion processes, both in deterministic and
stochastic form, in Subsection 2.1, and develop the computational strategy in
Subsection 2.2. Section 3 provides details on the numerical implementation.
Next, in Section 4 we describe the particle processes used as test cases, and
present the computational results in Section 5. Finally, some conclusions are
drawn in Section 6, where also an outlook to an application of the proposed
method to particles experiencing Kawasaki dynamics is given.

2 Thermodynamics metric: theory and compu-

tational method

2.1 Diffusive processes and fluctuating hydrodynamics: ther-

modynamic entropy and metric

As sketched in the introduction, we consider diffusive systems of the form

∂tρ = div(D(ρ)∇ρ) (1)

(complemented with initial and boundary conditions) and develop a computa-
tional strategy to determine the diffusivity D(ρ) from non-equilibrium evolutions
of the underlying particle models.

The proposed methodology starts by reformulating the differential equa-
tion (1) in a form that reveals the thermodynamic nature of the equation.
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Namely, equation (1) can be cast as

∂tρ = div(D(ρ)∇ρ) = − div

(

m(ρ)∇δS
δρ

(ρ)

)

, (2)

where δS
δρ is the variational derivative of the entropy S(ρ) =

´

s(ρ(x)) dx,
(

δS
δρ

)′
= s′′(ρ) represents its derivative with respect to ρ and

m(ρ) = − D(ρ)
(

δS
δρ

)′ ≥ 0 (3)

is the mobility. As an example, the linear diffusion problem (i.e., constant
D(ρ) ≡ D), satisfies equation (2) with the Boltzmann entropy S(ρ) = −

´

ρ log(ρ) dx
(in dimensionless form) and mobility m(ρ) = Dρ. Although the second equality
in (2) is straightforward to verify from (3), the associated thermodynamic formu-

lation of the evolution, ∂tρ = − div
(

m(ρ)∇ δS
δρ (ρ)

)

=: K δS
δρ , has a much deeper

meaning. Specifically, the operator K(ρ)ξ = − div(Dρ∇ξ) defines a geometry,
the so-called Wasserstein geometry, in which the entropy S experiences a steep-
est ascent. This fundamental insight by Jordan, Kinderlehrer and Otto [6] has
triggered much activity in the past two decades; we sketch a few key results in
Appendix A.

Equation (2) arises as the limit, the so-called hydrodynamic limit, of in-
finitely many particles under parabolic scaling of space and time. We refer the
reader to Sections 3 and 4 for a concise description of this limit in the context of
lattice systems. Key to the proposed method is that the evolution of the density
ρL describing the evolution of large, yet finite number of particles is formally
given by a stochastic partial differential equation. For instance, the motion of
finitely many random walkers satisfies approximately the equation

∂tρ
L = div(D∇ρL) +

1√
Ld

div(
√

2DρLẆx,t), (4)

where the diffusivity D depends on the jump rate of the walkers, while in the
limit of infinite number of particles the density satisfies (2). Here, Ẇx,t is a
space-time white noise, 1/L is the lattice spacing and d is the dimension of space.
We note that (4), which is also satisfied for the collective motion of finitely many
Brownian particles [10], is an example of fluctuating hydrodynamics [11, 12, 13],
see also [14] for a different derivation. The existence of a solution is an open
mathematical problem, even for constant D, though equations of fluctuating
hydrodynamics are widely used for simulations.

In general, the fluctuations of finitely many particles around the hydrody-
namic limit, cf. (2), are therefore described by a stochastic partial differential
equation (SPDE) and they encode the diffusivity D that we wish to identify.
More precisely, as will be described in the next subsection, the fluctuations
are directly related to the mobility m(ρ), from which D(ρ) can be computed
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by means of equation (3). For the processes we consider, the entropy S is
well-known. Yet, more generally, only entropy differences δS are additionally
required and these can be computed with standard techniques [1, Chapter 7].

We remark that the proposed method is in principle much more widely
applicable, i.e., beyond the realm of diffusion, and this extension to a wider
class of problems will be sketched in the conclusions in Section 6.

2.1.1 Key assumptions of the method

The method requires three key ingredients: a diffusive stochastic particle model,
Gaussian fluctuations of the density and local equilibrium. Roughly speaking,
local equilibrium can be understood as follows. In equilibrium, the probability
distribution of the particles defines a unique invariant measure for each macro-
scopic density and discretisation level L. For fixed L, one can thus think of
a family of invariant measures parametrised by the total mass, or equivalently
by the density ρ. Then, assuming that we know the associated macroscopic
density ρ(t, x) at each x at a time t, we define for the given discretisation level
L a measure by piecing together the invariant measures defined in equilibrium
corresponding to the value of ρ. The resulting measure is itself not invariant;
yet one expects it to be “almost invariant”, in the sense that its evolution under
the adjoint of the generator of the process does not vanish, but is small in a
well-controlled way. For the precise definition of local equilibrium, we refer to
the book of Kipnis and Landim [15, Chapter 3].

2.2 Computational strategy

We now consider particle processes leading, in general, to a nonlinear diffusion
as their hydrodynamic limit. We rewrite these equations as

∂tρ = div(D(ρ)∇ρ) = − div

(

m(ρ)∇δS
δρ

)

=
1

2
∆(Φ(ρ)), (5)

where Φ′(ρ)/2 = D(ρ) as defined by the equality above. The density for a
large but finite number of particles, ρL, can be approximated to leading order
by the hydrodynamic limit given in (5). The next order, the fluctuations, can
be measured via Y L(t, x) :=

√
Ld

(

ρL(t, x) − ρ(t, x)
)

, where the scaling
√
Ld

guarantees a finite non-zero value as L → ∞. In this limit, the fluctuations
solve a linear stochastic partial differential equation (see [16] for the zero range
process discussed in Subsection 4.1 and [17] for the simple exclusion process of
Subsection 4.2). This therefore allows to formally approximate the evolution of
ρL by the SPDE

∂tρ
L =

1

2
∆(Φ(ρL)) +

1√
Ld

div

(

√

2m(ρL)Ẇx,t

)

. (6)

We further define the weak form of the fluctuations as

Y L
γ (t) :=

√
Ld

〈

γ, ρL(t, ·)− ρ(t, ·)
〉

, (7)
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where γ ∈ C2
0 (Ω,R) is a test function and 〈, 〉 denotes the L2 inner product

defined on the domain Ω. For our purposes, γ will be chosen to have local
support so as to measure the fluctuations in the neighbourhood of a given point
x0 ∈ Ω.

The limit of the stochastic processes Y L and Y L
γ are here denoted Y and Yγ ,

respectively, and they satisfy Yγ = 〈Y, γ〉. Formally, Y L
γ = 〈Y, γ〉 + O(1/Ld) =

Yγ +O(1/Ld), where Y and Yγ obey the Ornstein-Uhlenbeck processes defined
by

dY =
1

2
∆(Φ′(ρ)Y ) dt+ div(

√

2m(ρ) dWx,t) (8)

and

dYγ(t) =
1

2
〈∆γ,Φ′(ρ(t, .))Y (t, ·)〉 dt−

〈

∇γ,
√

2m(ρ(t, ·)) dWx,t

〉

, (9)

respectively.
Structurally, (9) is an infinite-dimensional analogue of the finite-dimensional

stochastic ordinary differential equation

dX = f dt+
√
σ dW, (10)

for which one can easily compute the strength of the noise σ as

lim
hց0

1

h
E

[

[X(t0 + h)−X(t0)]
2
]

= dσ, (11)

where limhց0 indicates the limit of h to 0 from above. Here the left-hand side
can be approximated by computer simulations.

We claim that an analogous statement holds for the infinite-dimensional
case (9) as well, namely

1

2h
E

[

[Yγ(t0 + h)− Yγ(t0)]
2
]

= 〈m(ρ(t0, ·))∇γ,∇γ〉 , (12)

where a sufficiently localised function γ around a given point x0 ∈ Ω, delivers
an approximation of m(ρ(t0, x0)) as

m(ρ(t0, x0)) ≃
limhց0

1
hE

[

[Yγ(t0 + h)− Yγ(t0)]
2
]

2 〈∇γ,∇γ〉 . (13)

This relation will allow us to extract m and hence the diffusivity D, via (3),
from the fluctuations of the system, for large enough particle numbers. Further
details on its numerical implementation will be given in Section 3.

To establish (12), we separate the so-called quadratic variation of the pro-
cess (9) from the rest (this is a standard problem in financial mathematics,
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see, e.g., [18]). More precisely, we consider a new random variable F (Yγ), with
F ∈ C2(R,R). By Itô’s formula (see [19, Chapter 4]), this new variable satisfies

dF (Yγ)(t) = F ′(Yγ(t)) dYγ(t) +
F ′′(Yγ(t))

2
〈2m(ρ(t0, ·))∇γ,∇γ〉 dt, (14)

where for the last term of (9) we have made use of the fact that Ẇx,t is a
space-time white noise. We choose

F (x) := (x− Yγ(t0))
2, (15)

where t0 ≥ 0 is an arbitrary initial time and write (having in mind the left-hand
side of (12))

E

[

[Yγ(t0 + h)− Yγ(t0)]
2
]

= E [F (Yγ(t0 + h))] = E

[

ˆ t0+h

t0

dF (Yγ(t))

]

. (16)

Using equations (14)–(15), we can rewrite this identity as

E

[

[Yγ(t0 + h)− Yγ(t0)]
2
]

= E

[

ˆ t0+h

t0

F ′(Yγ(t)) dYγ(t)

]

+
1

2
E

[

ˆ t0+h

t0

F ′′(Yγ(t)) 〈2m(ρ(t0, ·))∇γ,∇γ〉 dt
]

= 2E

[

ˆ t0+h

t0

(Yγ(t)− Yγ(t0)) dYγ(t)

]

+

ˆ t0+h

t0

〈2m(ρ(t0, ·))∇γ,∇γ〉 dt.

(17)

Hence

lim
hց0

1

h
E

[

[Yγ(t0 + h)− Yγ(t0)]
2
]

= lim
hց0

2

h
E

[

ˆ t0+h

t0

(Yγ(t)− Yγ(t0)) dYγ(t)

]

+ 〈2m(ρ(t0, ·))∇γ,∇γ〉 . (18)

To prove (12), we show that the first term on the right-hand side vanishes,

lim
hց0

2

h
E

[

ˆ t0+h

t0

(Yγ(t)− Yγ(t0)) dYγ(t)

]

= 0. (19)

This results follows from (9) and Hölder’s inequality followed by Young’s in-
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equality, namely

E

[

ˆ t0+h

t0

(Yγ(t)− Yγ(t0)) dYγ(t)

]

= E

[

ˆ t0+h

t0

(Yγ(t)− Yγ(t0))

〈

∆γ,
1

2
Φ′(ρ(t, ·))Y (t, ·)

〉

dt

]

≤

√

√

√

√E

[

ˆ t0+h

t0

(Yγ(t)− Yγ(t0))
2 dt

]

· E
[

ˆ t0+h

t0

〈

∆γ,
1

2
Φ′(ρ(t, ·))Y (t, ·)

〉2

dt

]

=

√

√

√

√

ˆ t0+h

t0

E

[

(Yγ(t)− Yγ(t0))
2
]

dt ·
ˆ t0+h

t0

E

[

〈

∆γ,
1

2
Φ′(ρ(t, ·))Y (t, ·)

〉2
]

dt

≤ 1

2

ˆ t0+h

t0

E

[

(Yγ(t)− Yγ(t0))
2
]

dt+
1

2

ˆ t0+h

t0

E

[

〈

∆γ,
1

2
Φ′(ρ(t, ·))Y (t, ·)

〉2
]

dt.

(20)

We can see from (17) and (20) that with

Z(t) :=

ˆ t

t0

E

[

[Yγ(s)− Yγ(t0)]
2
]

ds

and

R (t) :=

ˆ t

t0

E

[

〈

∆γ,
1

2
Φ′(ρ(t, ·))Y (t, ·)

〉2
]

dt+

ˆ t

t0

〈2m(ρ(t0, ·))∇γ,∇γ〉 dt

it holds that
Ż(t) ≤ Z(t) +R(t),

where R is bounded and continuous. Thus, by Gronwall’s lemma (e.g., [20,
Lemma 4.1.2])

Z(t) ≤ e(t−t0)

ˆ t

t0

e−(s−t0)R(s) ds,

and hence Z(t0 + h) = O(h2), as R(t0 + h) = O(h). Inserting this in the second
but last line in (20), we find that

E

[

ˆ t0+h

t0

(Yγ(t)− Yγ(t0)) dYγ(t)

]

= O(h
3
2 ),

since the first product under the square root is O(h2) and the second is O(h).
Thus (19) is established.
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3 Numerical implementation

We first describe the general particle setting studied here (specific examples will
be described in detail in Section 4), and then discuss the numerical implemen-
tation for this class of systems.

We always consider N particles distributed on a periodic lattice Λ = Z
d/(LZ)d,

that is, the torus in Z
d of length L in each direction. We denote lattice coordi-

nates by capital Latin letters, while η stands for a lattice configuration. Thus,
η(T,X) is the number of particles at site X ∈ Λ and time T . Together with
the particle systems, we consider their hydrodynamic limit (both the stochas-
tic/fluctuating form (6) and the deterministic limit (5)), which is on what we
call the macroscopic or continuum scale. The macroscopic spatial and temporal
coordinates will be denoted by x and t, respectively, in accordance with the no-
tation used for the partial differential equations in Section 2. These coordinates
are related to the microscopic coordinates X and T via the parabolic scaling,
x = X/L and t = T/L2, thus x ∈ Ω := (0, 1)d, the d-dimensional unit cube. The
limit passage N → ∞ and L → ∞ is such that N/Ld is kept constant. Also,
the microscopic mass of each particle is rescaled in the limit procedure by 1/Ld,
thus keeping the total mass at the macroscopic scale constant, see Figure 1.
This interpretation endows the empirical measure ρL with the physical meaning
of the density of the system.

With this notation regarding the micro- and macro-scale, we are now ready
to provide further details on the implementation of (13). In particular, the
integrals and derivatives in such equation are approximated by finite differences
on the lattice scale. The deterministic states ρ are substituted by averages over
R realisations of their stochastic counterparts and approximated in the following
fashion. At the rescaled positions x = X

L with X ∈ {1, . . . , L}d, the density ρ is
approximated as

ρ(t, x) ≈ 1

R

R
∑

r=1

ηr(tL
2, xL). (21)

All these realisations originate from an initial configuration η(tiniL
2) at time

tini < t0, which is set up beforehand. Starting from such a configuration, one
typically first needs to overcome a transient regime, before a local equilibrium is
reached. In computations, we therefore wait for a relatively long time t0−tini and
then start the actual measurement. As this waiting time is relatively costly from
a computational perspective and many realisations R are needed for accurate
estimates of the expectations, the following compromise is made, visualised in
Figure 2. We choose a time tprep with tprep < t0 and t0 − tprep ≪ t0 − tini
sufficient for attaining local equilibrium. Then, between t = tini and t = tprep,
R1 samples are simulated. For each of these R1 realisations, R2 realisations are
launched at time t = tprep from the data obtained at tprep. This procedure gives
rise to a total of R = R1R2 random initial conditions at t = t0, which are all
associated to the same macroscopic state. In the subsequent evaluations of the
trajectories in the time period [t0, t0 + h] all R, realisations are treated equally.
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X = 1 X = 6 x = 0 x = 1

X = 1 X = 12 x = 0 x = 1

X → X/Ld = x

M → M/Ld = m

Figure 1: Visualisation of the hydrodynamic limit procedure in microscopic
coordinates X ∈ Λ (left panel) and the macroscopic space x ∈ Ω (right panel);
here the space dimension is d = 1. The top figures correspond to L = 6 and
the bottom ones to L = 12. The particles on the left have mass M = 1, and in
the hydrodynamic limit procedure space and mass are both rescaled by a factor
1/Ld, giving rise to the macroscopic space variable x and macroscopic mass m.
Thus, all four configurations have the same density and the total macroscopic
mass is kept constant. We note that the balls on the right are imaginary and
plotted only to guide the construction of the limit function ρ(t, x), represented
with a solid line.
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tini tprep t0 t0 + h

St
at

e
sp

ac
e

Figure 2: Structure of the R realisations (for simplicity symbolised as scalar) as
a function of time. Between t = tini and t = tprep, R1 samples are simulated,
and each of them gives rise to R2 realisations from time tprep on. Thus in total
there are R = R1 · R2 realisations, which are evaluated in the time interval
[t0, t0 + h]. In the sketch of the figure R1 = 2 and R2 = 3.

Finally, the test function γ in the definition of Y L
γ in (7) is chosen as

x 7→ γ(x) = a0

d
∏

j=1

(

max
(

0, 1−
(

a1

∣

∣

∣
x(j) − x

(j)
0

∣

∣

∣

)a2
))a2

, (22)

with independent parameters a0, a1 > 0, a2 ≥ 1, and where x(j) denotes the jth

Cartesian component of the vector x. The graph of this function resembles a
smoothed hat function centred at x0 ∈ Ω and symmetric with respect to that
point (see Figure 3), where the height is given by a0, the support is of length
2
a1

in each dimension; a2 scales the smoothness: a2 = 1 would correspond to
a piecewise linear wedge-shaped graph in one dimension, while a2 = 2 gives
a smoother function. The dependence of the measured transport coefficients
on these parameters will be discussed in Subsection 5.3. In practice, the same
simulation data is post-processed with test functions concentrated at multiple
points x0. This allows to obtain simultaneously the value of the transport
coefficients at different densities in the case of non-equilibrium evolutions or to
increase the efficiency in measurements gathered from equilibrium data.

We note that we are using the same realisations for finding the deterministic
states, ρ(t0, ·) and ρ(t0 + h, ·), as well as for the expectation of the quadratic
variation on the left-hand side of (12). This can lead to an underestimation of
〈

(∇γ)2,m(ρ(t0, ·))
〉

. Thanks to the choice of F in (15) as a quadratic function,
this error can be compensated the same way as for the sample standard devi-
ation, i.e., by multiplying the left-hand-side of (12) with a factor of R

R−1 [21,
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0.3 0.4 0.5

γ

x

a0 = 1, a1 = 10, a2 = 1, x0 = 0.4
a0 = 1, a1 = 10, a2 = 2, x0 = 0.4

Figure 3: Sketch of the test function γ defined in (22) in one dimension, for two
values of the smoothing parameter a2.

Chapter 2]. The method is summarised in Algorithm 1.
The actual measurements based on (13) give the quantity m. To obtain the

diffusivity D, we use (3) in combination with the analytical expressions for the
entropy S given in Section 4 for each of the three examples studied. We remark
that the use of the analytic form of the entropy is only for simplicity; in principle
it could also be approximated from the particle data.

In addition to the measurement of the transport data m and D, we also
estimate the error bars of such measurement based on the standard error of the
expectation, associated to the R samples. To focus on the key approximation
errors, we neglect the error arising from evaluating the deterministic state ρ via
the law of large numbers from the same realisations. We further ignore this
source of error when converting between m and D. In principle, this leads to
an underestimation of the statistical error.

The particle processes described in the next section are modelled by a Lat-
tice Kinetic Monte Carlo approach (L-KMC), and are evolved according to
the Bortz-Kalos-Lebowitz algorithm [22]. Both the process and the proposed
method to compute the diffusivities are implemented in C.

4 Particle models studied

In this section, we describe the two types of particle processes studied here.
These processes have been chosen since they allow for a comparison with an-
alytic solutions, for the chosen parameters. They are Markovian, composed
of indistinguishable particles and have a hydrodynamic limit of the form (5).

12



Algorithm 1 Pseudo-code describing the method in algorithmic form.

// Set lattice domain and scaling:

1 δx = 1
L , xi =

Xi

L ; // Spatial discretisation; Xi is the lattice

coordinate

// Generate particle data from initial profile η
(

tiniL
2, Xi

)

2 : for all R1 realisations starting from tini do

3 ηr
(

tprepL
2, Xi

)

= stochastic-evolution
(

[tini, tprep] , η
(

tiniL
2, Xi

))

;
4 for all R2 realisations starting from tprep do

5 ηr
(

t0L
2, Xi

)

= stochastic-evolution
(

[tprep, t0] , ηr
(

tprepL
2, Xi

))

;
6 ηr

(

(t0 + h)L2, Xi

)

= stochastic-evolution
(

[t0, t0 + h] , ηr
(

t0L
2, Xi

))

;

7 R = R1 ·R2 ; // Total number of realisations in [t0, t0 + h]

8 ρ (t0, xi) =
1
R ·

∑

r

(

ηr
(

t0L
2, Xi

))

; // Approx. deterministic state

9 ρ (t0 + h, xi) =
1
R ·∑r

(

ηr
(

(t0 + h)L2, Xi

))

;
// Test function γ with parameters a0, a1, a2, x0:

10 Function γ (xi)

11 γ (xi) = a0
∏d

j=1

(

max
(

0, 1−
(

a1

∣

∣

∣
x
(j)
i − x

(j)
0

∣

∣

∣

)a2
))a2

;

; // j is spatial index

12 return γ (xi) ;

// Compute denominator of Equation (13):
13 for all lattice positions Xi ∈ Λ do

14 Gi =
∑d

j=1

(

γ(xi+δx e(j))−γ(xi−δx e(j))
2δx

)2

; // e(j) is j-th Cartesian

unit vector

15 G = 2 (δx)
d ∑

i (Gi) ; // 2 ‖∇γ‖2L2

// Compute numerator of Equation (13):
16 for all R realisations r do

17 for all microscopic positions Xi ∈ Λ do

18 Yr (t0, xi) =
√
Ld

(

ηr
(

t0L
2, Xi

)

− ρ (t0, xi)
)

;

19 Yr (t0 + h, xi) =
√
Ld

(

ηr
(

(t0 + h)L2, Xi

)

− ρ (t0 + h, xi)
)

;

20 Mr = (δx)d
∑

i (γ (xi) (Yr (t0 + h, xi)− Yr (t0, xi))) ;

21 M = 1
h

1
R−1

∑

r

(

M2
r

)

; // 1
hE

[

[Yγ(t0 + h)− Yγ(t0)]
2
]

// Result:

22 m = M
G ; // Mobility

13



Specifically, we consider two zero range processes (one of them being the special
case of Brownian particles) and a simple exclusion process.

4.1 Zero range process

Zero range processes (ZRPs) are particle processes on a lattice, where finitely
many particles (possibly none) are located on each lattice site. The jump rate
at which one particle leaves a site X depends only on the total number k(X)
of particles at this site X and it is described by the (local) jump rate function
g : N0 → R

+
0 . We consider two cases: g(k) = k, which corresponds to inde-

pendent Brownian particles (i.e., linear diffusion equation as its hydrodynamic
limit), and g(k) = k2, which also has an analytic expression for the diffusivity.

The process starts at some initial configuration η. The system waits an ex-
ponential microscopic time drawn from a Poisson distribution with rate λ(η) :=
∑

X∈Λ g(η(X)), at which time one particle is moved from X to X̃ with proba-

bility g(η(X))
λ(η) p(X̃ −X); here we choose for simplicity

p(X̃ −X) =

{

1
2d

if
∣

∣

∣
X̃ −X

∣

∣

∣
= 1

0 otherwise
; (23)

so particles jump to their nearest neighbour only, with equal probability. After
this jump, the process starts again from ηX,X̃ , which is the configuration where
one particle has changed its position from X to X̃.

The hydrodynamic limit of ZRPs is in general a nonlinear diffusion equa-
tion (5). Namely, let ρL denote the diffusively rescaled density representing
the particle process. That is, for positions x = X/L with X ∈ Λ, we set
ρL(t, x) := η(tL2, xL) and interpolate in a piecewise constant manner in be-
tween. Then formally, in a suitable weak sense,

ρL(t, x) → ρ(t, x)

and ρ solves (5) (for the precise formulation in a measure setting see [15]).
The thermodynamic entropy of the zero range process, in dimensionless units,

is [23]

S(ρ) =
ˆ

Ω

[−ρ log(2m(ρ)) + logZ(2m(ρ))] dx, (24)

with the partition function Z defined as Z(ϕ) :=
∑

k∈N0

ϕk

g!(k) ; here g!(k) :=

g(1) · g(2) · . . . · g(k).
In general, this formula does not lead to explicit expressions for m. Yet,

here we consider two cases for which analytic expressions are available. The
first case considered is the linear one, g(k) = k, which corresponds to Brownian
particles, and for which m(ρ) ≡ 1

2ρ. The second case is g(k) = k2, where m(ρ)

is implicitly given as the inverse of ρ
(

m
2

)

=
√
m · I1(2

√
m)

I0(2
√
m)

, with Ii being the
modified Bessel-function of the first kind. This can be derived directly from the

14



definition of these Bessel functions in combination with the equilibrium measure
ν̄m

2
(η (T,Xi) = k) = 1

Z(m) · mk

g!(k) and ρ (m) = Eν̄m [η (T,Xi)]. Indeed,

ρ
(m

2

)

= Eν̄m
2
[η(T,Xi)] =

∑∞
k=0 k

mk

g!(k)
∑∞

k=0
mk

g!(k)

∣

∣

∣

∣

∣

∣

g!(k)=(k!)2

=

∑∞
k=1

(

2
√

m

2

)2k

(k−1)!·k!

∑∞
k=0

(

2
√

m

2

)2k

k!·k!

=

√
m · 2

√
m

2

∑∞
k=1

(

2
√

m

2

)2(k−1)

(k−1)!·k!

∑∞
k=0

(

2
√

m

2

)2k

k!·k!

=
√
m
I1 (2

√
m)

I0 (2
√
m)

,

where the last equality may be found in [24, (9.6.10)]. It then follows with a
short calculation from (24) and (5) that the hydrodynamic limit can be written
as a nonlinear diffusion equation of the form

∂tρ = K(ρ)
δS
δρ

(ρ) = − div(m(ρ)∇δS
δρ

(ρ)) = ∆(m(ρ)).

For the zero range process, 1
2Φ(ρ) = m(ρ) [15, Chapter 5, Theorem 1.1]. Thus,

the jump rate g determines m (normally implicitly, with two explicit exam-
ples given above); m and Φ are identical up to a prefactor. This defines all
parameters in (8) and (9) for the zero range process.

4.2 Simple exclusion process

In the simple exclusion process (SEP), particles attempt to jump to neighbour-
ing sites with a constant rate one. However, if the destination site is already
occupied, the jump is abandoned and the particle stays at its current loca-
tion. Consequently, all sites are occupied by at most one particle. The jump
rate from site X to neighbouring site X̃ is gX→X̃(η) := 1

2d η(X)(1 − η(X̃)).
For further details, see [15, Section 2.2]. For the simple exclusion process,
m(ρ) = 1

2ρ(1− ρ) [25] and Φ(ρ) = ρ [15, Chapter 4, Theorem 2.1]. We remark,
however, that in the one-dimensional setting studied numerically in Section 5
the individual particles themselves are not following a Brownian motion on a mi-
croscopical level [26]. The entropy of the simple exclusion process is the mixing
entropy, i.e., S(ρ) = −

´

[ρ log ρ+ (1− ρ) log(1 − ρ)] dx in dimensionless form.
This defines all quantities in (8) and (9) for the simple exclusion process.

5 Computational results

We show simulation results in one space dimension for each of the three processes
discussed in Section 4, namely two zero range processes, one with g(k) = k,
i.e., random walkers, and one with g(k) = k2, and a simple exclusion process.
All results shown are given for non-equilibrium situations, i.e., starting from
non-constant initial profiles η(tiniL

2, X). This allows us to obtain diffusivity
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information for a wide range of densities within a single set of simulations,
by choosing different concentration points x0 for the test functions γ. Note,
however, that, if these x0 are chosen too close to each other, their results might
not be statistically independent anymore. This can be addressed, by monitoring
the correlations and suitable post-processing.

5.1 Default choice of parameters

For better comparability, the following default settings are used, unless stated
otherwise. The initial profile is taken as η(tiniL

2, X) = 25 sin
(

πX
L

)

for the
zero range processes, and η(tiniL

2, X) = 0.95 sin
(

πX
L

)

for the simple exclusion
process. The lattice length is L = 5 000, and the chosen time parameters are
such that tprep − tini = 4 · 10−6 and t0 − tprep = 4 · 10−9, and the measurement
time is h = 4 · 10−11. We take R1 = 50 and R2 = 2 000, so in total R = 100 000
realisations are simulated. The parameters chosen for the test functions are
a0 = 1, a1 = 160, a2 = 2. Further, 39 points uniformly distributed over the
unit interval are chosen as concentration points x0. Furthermore, given the
symmetry of both the chosen profile and the concentration points for the test
functions γ, we will average results for similar densities obtained from the left
and right half of the sin profile, to make the plots more readable.

5.2 Results and comparison to the analytical solutions

Figure 4 displays, for each process, the diffusivity D and mobility m, where the
former is computed from the latter via (3) (see Section 4 for the expressions of
the entropy for each process), i.e.,

D(ρ) =



























m (ρ)

ρ
for the ZRP with g (k) = k,

m (ρ)

Φ (ρ)− ρ2
for the ZRP with g (k) = k2,

m (ρ)

ρ (1− ρ)
for the SEP.

(25)

To better assess the accuracy of the method, the right panels show the relative
error of D, i.e., (D−Danalytic)/Danalytic, which coincides with that of m. We find
the agreement between simulation and analytic solution very strong: the relative
errors for the zero range processes are mostly below the single percentage range.
Relative errors for the simple exclusion process are about one order of magnitude
larger for the same choice of the parameters. This is to be expected, as an
untypical behaviour of a single particle can block other particles for long times.
Thus, simulations of the simple exclusion process require finer discretisation in
order to obtain the same accuracy as for the zero range process. Yet, for better
comparison, the parameters have been chosen uniformly for all the processes.
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Figure 4: Measurements of the transport coefficients from non-equilibrium evo-
lutions corresponding to a random walk (top row), a ZRP with g(k) = k2

(middle row) and a SEP (bottom row). Shown are the diffusivity D and the
mobility m (left panel) and the relative errors as compared to the analytical
results (right panel). The choice of parameters is the default one, described in
Subsection 5.1.
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5.3 Parameter dependence

In Figures 5 to 7 we show the dependence of the results on the choice of the pa-
rameters L, h and R for all three processes. In each figure, we depict the errors
associated with a representative low and high value of the density, as well as the
average error over the multiple densities considered (namely, over the results
of the different concentration points x0 ∈ {0.1, 0.2, . . . , 0.9} chosen for the test
function γ). Regarding L, the proposed numerical strategy relies on having a
large enough system size, as only then we can expect the evolution of fluctua-
tions Y L to be well approximated by an Ornstein-Uhlenbeck-process (8). This
convergence is depicted in Figure 5, where the errors are shown to decrease with
increasing values of L, as anticipated. Also, the method requires the measure-
ment time h to be short enough, so that the limit on the left-hand-side of (12)
is well approximated. For the simple exclusion process, systematic deviations
become visible just at around h ≈ 4 · 10−7, whereas for the zero range process
with g(k) = k2 aberrations already start at h ≈ 4 · 10−9. We remark that for
too small values of h, artificial errors are also to be expected, since too few par-
ticles might jump and the system might not yet exhibit its diffusive behaviour,
i.e., the limit h → 0 might not commute with the limits R → ∞ or L → ∞.
Finally, good estimates of the expectation (both the left-hand-side of (12) and
the deterministic states ρ) require by the Law of Large Numbers large sample
sizes R. This convergence is depicted in Figure 7, where both the errors and the
error bars tend to zero with increasing values of R. We note that the error bars
exhibit an almost perfect power law behaviour of the form cR−1/2 with some
constant c, as expected from the Central Limit Theorem. No clear power-law
behaviour is observed for the errors themselves as a function of R.

We further study in Figure 8 the dependence of the measurement errors on
the initial profile η(tiniL

2, X) and the parameters of the test function γ of (22).
Of particular interest is the interplay of the parameter a1, which is inversely
related to the support of the test function γ, and the local slope ∇ρ of the initial
profile at the point of measurement, which serves to quantify how far the system
is from equilibrium. To demonstrate this, we consider various initial profiles so
as to measure the transport coefficient at a point of constant density and varying
slope. More specifically, we consider η

(

tiniL
2, X

)

= 5 + 5 sin
(

2π
A

(

X
L − 1

2

))

for case of the ZRPs and η
(

tiniL
2, X

)

= 1
2 + 1

2 sin
(

2π
A

(

X
L − 1

2

))

for the SEP,
where A 6= 0 is the parameter that controls the slope at the chosen point of
measurement, here x0 = 1

2 . As shown in the figure, being far from equilibrium
can have an impact on the outcome, where the precise value of the error depends
on the process. In all cases, however, this (unwanted) dependence can be cured
by choosing a more narrowly supported test-function (i.e., larger a1). We note
that for a fixed finite system size L, the support of the test function γ can only
be narrowed until a limit determined by the lattice spacing is reached, unless
the expression 〈∇γ,∇γ〉 is evaluated analytically.

Regarding the other two parameters of the test function γ, we remark that
the derivation of the algorithm assumed γ ∈ C2

0 , which is satisfied for the choice
a2 > 2. Yet, simulations for a2 = 2 or even a2 = 1 still delivered good results,
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Figure 5: Relative errors in the diffusivity calculation with respect to the sample
size L for the ZRP with g(k) = k (top left), the ZRP with g(k) = k2 (top right)
and the SEP (bottom). For the parameters and non-equilibrium initial profile
we refer to Subsection 5.1.
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Figure 6: Relative errors in the diffusivity calculation with respect to the mea-
surement time h for the ZRP with g(k) = k (top left), the ZRP with g(k) = k2

(top right) and the SEP (bottom). The parameters are the default ones de-
scribed in Subsection 5.1.

20



−25

−20

−15

−10

−5

0

5

1000 10000 100000

re
l.

er
ro

r
of

D
in

%

R

average
ρ ≈ 2
ρ ≈ 25

−15

−10

−5

0

5

10

15

1000 10000 100000

re
l.

er
ro

r
of

D
in

%

R

average
ρ ≈ 2

ρ ≈ 25

−100

−50

0

50

100

1000 10000 100000

re
l.

er
ro

r
of

D
in

%

R

average
ρ ≈ 0.3
ρ ≈ 0.95

Figure 7: Relative errors in the diffusivity calculation with respect to the sample
size R for ZRP with g(k) = k (top left), ZRP with g(k) = k2 (top right) and
SEP (bottom). Here R1 = 50 and R2 was varied to achieve the different values
of R = R1 ·R2. For all other parameters, the default settings of Subsection 5.1
apply.
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Figure 8: Relative errors in the diffusivity calculation with respect to the slope
of the density profile ∇ρ and the test function parameter a1, for the ZRP with
g(k) = k2 (left) and the SEP (right). The non-equilibrium profiles considered
are described in Subsection 5.3, and all other parameters are set to their default
values of Subsection 5.1.

with slightly reduced accuracy for a2 = 1. Finally, a0 does not play any role, as
it drops out algebraically in (12).

5.4 Alternative method for sequence of consecutive mea-

surements

One drawback of the method described above is that one must be able to prepare
the same initial state η

(

t0L
2, X

)

numerous times to obtain a good estimate of
the deterministic ρ in (12). This may be difficult in some experimental settings,
where it could be advantageous to observe the system over only one, longer,
period of time. In such a scenario, one would take measurements at snapshots,
say at times h, 2h, 3h, . . . , P · h with P ∈ N, instead of analysing multiple re-
alisations at times t0 and t0 + h. We sketch here how this alternative strategy
might be adopted in the experimental setting described. Towards this purpose,
we deviate from the approach described in Subsection 2.2 by substituting Y L

γ

from (7) with
Ỹ L
γ (t) :=

√
Ld

〈

γ, ρL(t, ·)
〉

.

That is, we suppress the deterministic states entirely. Note that Y L
γ only ap-

pears in the function F in (15). To use Ỹ L
γ (t), one would require the difference

ρ (t0 + h) − ρ (t0) to be negligible for h → 0, when compared to the difference
of their stochastic counterparts. Obviously, if the deterministic state is differ-
entiable, then this difference is O(h), which should be of lower order. Yet, it is
not clear that this is preserved in the second limit L → ∞. This makes the ver-
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Figure 9: Results for the diffusivity D for all three processes (a random walk,
a ZRP with g(k) = k2 and a SEP), based on one sequence of snapshot mea-
surements as described in Subsection 5.4. Here P = 100 000 measurements were
made and for all other parameters the default choices in Subsection 5.1 are used.

sion sketched in this subsection more speculative, and a detailed investigation
will be the topic of a separate investigation. Yet, initial computational results
indicate a good agreement of the original approach of Subsection 2.2 and the
modification discussed in this subsection. We call the former method parallel
and the latter sequential. When measuring in equilibrium, the sequential and
the parallel method gave equivalent results. Figure 9 shows the diffusivity D
computed with the sequential method for non-equilibrium data. The relative
errors are found to be in good agreement with those of the parallel method.

5.5 Discussion

While the simulations deliberately had a sinusoidal initial profile to probe the
method out of equilibrium, the errors on the diffusivities are even lower for
constant initial profiles. In such a setting, equilibrium methods are applicable,
such as mean square displacement (MSD). We here compare the performance of
both approaches (MSD and the parallel method proposed in this article) for the
zero range process with g(k) = k (the random walk) and g(k) = k2. We remark
that in the standard mean square displacement method, particles are tagged
and the diffusivity is computed from the slope of the temporal evolution of the
mean square displacement. The standard setting assumes that the evolution of
a tagged particles scales as X(t) ∼

√
t. Since the SEP in one space dimension

scales as X(t) ∼ t1/4 and is thus inaccessible for this method, the results for
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the method we propose cannot be compared. It is noteworthy that the method
proposed here does compute the diffusivity accurately also for this process.

To achieve a fair comparison between MSD and the proposed methodology,
the algorithms of both methods have been implemented in serial on the same
machine, for systems of equal size L = 5 000, and with equal equilibration
times. Also, the computation time for the equilibration was ignored for the
performance comparison, and we only generated new samples for our method
with t0 − tprep = 4 · 10−9, i.e., we set R1 = 1. Additionally, we assumed that
the measurements can be repeated independently arbitrarily often, leading to
a scaling of the standard error of m proportional to 1/

√
computation time. For the

same computation time, it turns out that the particle-tagging has a lower error
by a factor of about 17 for the random walk and 2 for the zero range process
with g(k) = k2, when compared to the method proposed here. This effect is
largely due to the relatively long preparation time t0 − tprep, as well as the
extra effort required for storing the measured states to compute the averages
of both the deterministic states and the quadratic variation. For t0 − tprep = 0
(i.e., all initial states are microscopically identical), the factors reduce to 12
and 0.7, respectively; i.e., the proposed parallel method is slightly faster than
the established mean square displacement for the ZRP with g(k) = k2, but
slower for the random walk. When using the sequential method proposed in
Subsection 5.4, these factors reduce to 3 and 0.2, respectively. Note that the
proposed approach is trivially parallelisable, and taking advantage of this feature
would dramatically accelerate the calculations.

We also emphasise that the method presented here applies to non-equilibrium
evolutions, and that it enables the simultaneous measurement of diffusivities
over the range of densities present in the simulations (in contrast, equilibrium
measurements deliver the value of the transport coefficient at the single density
simulated). Furthermore, we point out that our new approach does not depend
on any microscopic information, but only requires the macroscopic states. This
makes it applicable in cases like the simple exclusion process, where the individ-
ual particles are not exhibiting a diffusive behaviour, and could be particularly
beneficial in physical experiments or in social sciences, where microscopic data
is less accessible. Finally, we note that the proposed strategy only requires the
initial and final data (at times t0 and t0 + h), while other methods, such as
Green-Kubo or mean square displacement, require the full temporal evolution
in the simulated time interval.

6 Conclusions and outlook

This article considers macroscopically diffusive systems and presents a novel
strategy for computing the diffusivity from fluctuations in underlying stochastic
particle systems. The method works in a wide range of out of equilibrium scenar-
ios; specifically, it only requires that the system is in local equilibrium and that
it exhibits Gaussian fluctuations. As paradigm for out of equilibrium evolution,
sinusoidal initial profiles are simulated for particle models for which analytic
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expressions for the diffusivity exist, and an excellent accuracy is observed. In
addition, in equilibrium, the method compares well in terms of computational
cost with mean square displacement, when tested with the same processes, both
in serial. The algorithm is trivially parallelisable, and taking of advantage of
this feature could offer dramatic speedup.

The method introduced in this article can in principle be extended to an even
wider range of problems. The thermodynamic setting of Section 2 generalises
as follows to purely diffusive systems of the form

∂tρ = K(ρ)
δS
δρ

(ρ), (26)

where K is a positive semidefinite operator and S is the entropy; (2) is a special
case of this form. The extension of (4) (or more generally (6)) reads

∂tρ
L = K(ρL)

δS
δρL

(ρL) +
1√
Ld

√

2K(ρL)Ẇx,t;

see [27, Eq. (160)], or [8, Eqs. (1.56)–(1.57)]. The fluctuation-dissipation relation
establishes that the fluctuation operator is directly linked to the dissipative
operator K, via a square root operation [7]. We remark that in this general
setting, ρ is a state variable, not necessarily a density. This shows the potential
generality of the approach, as (26) is the dissipative (non-conservative) part
of the GENERIC setting (General Equations for Non-Equilibrium Reversible-
Irreversible Coupling) [8].

The feasibility study presented here opens the door to many future investiga-
tions. In particular, the method could be extended to more complex situations,
including, multi-component systems or other transport phenomena. Further-
more, the sequential version, sketched in Subsection 5.4, is potentially promis-
ing for experimental data and deserves further analysis. Establishing a rigorous
theory is likely to be a demanding task, as for other methods for the determi-
nation of transport coefficients. Indeed, in general key assumptions are known
rigorously only in few cases. For example, mean square displacement methods
rely on the observation that a tagged particle behaves under diffusive rescaling
like a Brownian motion with diffusion matrix σ. While this proves very suc-
cessful in a wide variety of cases, rigorous proofs are known only either in some
equilibrium situations or for the zero-range process out of equilibrium [28], one
of test cases studied with the method proposed here.

To conclude, we note that the method can provide insight in the contin-
uum behaviour of particle systems whose coarse-grained description is currently
unknown, as shown in the following example.

6.1 Outlook: Kawasaki dynamics

Kawasaki dynamics is a stochastic process used to model the evolution of sur-
faces, where the total mass of the substance surrounded by the surface is con-
served (see, for example, [29, Chapter 18]). One version of this process can
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be described as follows. We assume the surface can be described as a graph,
such that the height at lattice position X is η(X). The following dynamics is
a modification of the nearest neighbour Ising model with Kawasaki dynamics,
which, unlike the original model, preserves the graph property under evolution.
Several particles can occupy a site and jump to a neighbouring position with
the rate based on the overall “energy” H of the system, given by

H(η) =
1

2

∑

X

∑

|X−X̃|=1

(η(X̃)− η(X))2. (27)

The rate for a particle at site X to jump to X̃ , thus changing the state from η

to ηX,X̃ , is

gX→X̃(η) :=







eH(ηX,X̃ )

eH(ηX,X̃ )+eH(η)
if η(X) > 0 and

∣

∣

∣
X̃ −X

∣

∣

∣
= 1

0 otherwise
.

Note that although H depends on the whole state, the jump rate at a site
only depends on the occupation numbers at the two sites involved in the jump,
and their neighbours. To our knowledge, neither the entropy S nor the hy-
drodynamic limit have been rigorously established for this version of Kawasaki
dynamics (for a related, simpler, model, the hydrodynamic limit can be estab-
lished [30]). The application of our method to this process is thus speculative.
Yet, the governing metric is expected to be an H−1 metric [31, 30].

While in principle the entropy S and the mobility m could depend on ρ
and ∇ρ, a dependency of m on ρ is not expected. Such a conclusion is drawn
from the fact that the Hamiltonian (27) is invariant under additions to η, and
ρ is the expectation of η. We show in Figure 10 supporting evidence for this
independence, thus suggesting that the macroscopic evolution is governed by a
norm independent of ρ, such as the H−1 norm. We point out that while the in-
dependence on ρ is easily observed for high densities, the computational method
presented here fails for low densities in this test case. This is not surprising,
as one would expect the constant profile (in ρ) to appear as a result of cancel-
lations, which might not be captured correctly in the numerical computations
for small values of ρ. This error is somewhat artificial, as only large densities
are a good representation of the graph of the surface whose evolution Kawasaki
dynamics aims to study.

A Entropy gradient flow and the Wasserstein met-

ric

The linear diffusion equation can be written as

∂tρ = ∆ρ = − div(ρ∇δS
δρ

(ρ)) =: K(ρ)
δS
δρ

(ρ), (28)
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Figure 10: Results for the Kawasaki type dynamics. Depicted is only the mo-
bility m, as the diffusivity D would require the knowledge of the entropy of
this process. The black, horizontal line at about 0.077 is the mean of the
data for large ρ. The measurement is based on a1 = 40, and an initial pro-
file η(tiniL

2, X) = 12.5 ·
(

1− cos
(

2πX
L

))

is chosen, to better capture the non-
constant behaviour close to ρ = 0. The other parameters are the default ones
described in Subsection 5.1.

where S(ρ) = −
´

ρ log(ρ) dx is the Boltzmann entropy in dimensionless units;
K is the operator K(ρ)ξ = − div(ρ∇ξ); and δS

δρ is the variational derivative,
δS
δρ = − log(ρ)− 1. While the previous identity is trivial to verify, the meaning
of the term on the right-hand side goes much deeper. Namely, it can be shown
that K(ρ) δSδρ (ρ) is the steepest ascent of the entropy in a geometry associated to
K, the so-called Wasserstein geometry [6]. We sketch some core results forming
the background of this article, in particular the gradient ascent in the Wasser-
stein geometry, for (28) on R

d. It can be seen that natural setting for (28)
is ρ ∈ P2(R

d), the space of probability measures with finite second moments.
This space can be equipped with the so-called Wasserstein metric; a result by
Benamou and Brenier [32] characterises this metric in variational form,

d(ρ0, ρ1)
2 = inf

ˆ 1

0

ˆ

Rd

ρ(x, t) |v(x, t)|2 dxdt, (29)

with (pathwise) minimisation over densities ρ and velocities v satisfying

∂tρ+ div(ρv) = 0. (30)

Note that (29) is a problem of optimal transport. Indeed, one can visualise (29)
as the cost of moving mass from ρ0 to ρ1. The continuity equation ensures that
mass is conserved along the transport; the distance is the optimal one, i.e., the
one that minimises the cost functional on the right-hand side of (29). Benamou
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and Brenier also show that the velocity field is in fact a gradient, v = ∇Ψ.
Then, the norm (29) gives formally rise to an inner product,

(s1, s2)K−1 :=

ˆ

ρ∇Ψ1∇Ψ2 dx, (31)

where sj = − div(ρ∇Ψj) for j = 1, 2.
We are now in a position to see the Wasserstein gradient flow structure.

Namely, a gradient flow of a functional S in a geometry given by an inner
product is by definition an evolution of the kind that

(∂tρ, s2)K−1 =

ˆ

δS
δρ

s2 dx (32)

for all suitable test functions s2 with s2 = − div(ρ∇Ψ2). Here, this gives
ˆ

Rd

ρ∇Ψ1∇Ψ2 dx = −
ˆ

Rd

(log(ρ) + 1)s2 dx

with ∂tρ = − div(ρ∇Ψ1) and s2 = − div(ρ∇Ψ2). An integration by parts gives

ˆ

Rd

(div)−1(∂tρ)∇Ψ2 dx =

ˆ

Rd

∇ρ∇Ψ2 dx,

from which we obtain by integrating by parts once more

ˆ

Rd

∂tρΨ2 dx =

ˆ

Rd

∆ρΨ2 dx.

This is the weak form of the diffusion equation (28).
For the zero range process discussed in Subsection 4.1, one can analogously

define a gradient flow structure. We refer the reader to [33].
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