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Increasing temperatures associated with climate change may generate 30 
phenological mismatches that disrupt previously synchronous trophic 31 
interactions. Most work on mismatch has focused on temporal trends, whereas 32 
spatial variation in the degree of trophic synchrony has largely been neglected, 33 
even though the degree to which mismatch varies in space has implications for 34 
meso-scale population dynamics and evolution. Here we quantify latitudinal 35 
trends in phenological mismatch, using phenological data on an oak-caterpillar-36 
bird system from across Britain. Increasing latitude delays phenology of all 37 
species, but more so for oak, resulting in a shorter interval between leaf 38 
emergence and peak caterpillar biomass at northern locations. Asynchrony found 39 
between peak caterpillar biomass and peak nestling demand of blue tits, great tits 40 
and pied flycatchers increases in earlier (warm) springs. There was no evidence 41 
of spatial variation in the timing of peak nestling demand relative to peak 42 
caterpillar biomass for any species. Phenological mismatch alone is thus unlikely 43 
to explain spatial variation in population trends. Given projections of continued 44 
spring warming, we predict that temperate forest birds will become increasingly 45 
mismatched with peak caterpillar timing. Latitudinal invariance in the direction 46 
of mismatch may act as a double-edged sword that presents no opportunities for 47 
spatial buffering from the effects of mismatch on population size, but generates 48 
spatially consistent directional selection on timing, which could facilitate rapid 49 
evolutionary change. 50  51 Temperature changes are impacting phenology1, prompting concern that previously 52 synchronous trophic interactions may be disrupted and lead to negative impacts on 53 consumer fitness and demography2-4. Trophic asynchrony or mismatch appears to be 54 most prevalent in the food webs of seasonal habitats, such as deciduous forests and 55 
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aquatic systems5, where resource peaks are ephemeral. Most studies of natural variation 56 in mismatch and its impacts on the fitness and population trends of terrestrial 57 consumers are on temporal data. However, it is also possible for mismatch to vary in 58 space, if species respond differently via plasticity or local adaptation to geographic 59 variation in cues. The scarcity of studies addressing the spatial dimension of variation in 60 mismatch6 means that we have little evidence as to whether the insights into mismatch 61 estimated at one site can be extrapolated to others. 62  63 The degree to which mismatch varies in space has the potential to impact on both 64 population trends and evolution of consumer species on a meso-scale (Supplementary 65 Table 1). Consider the following latitudinal trends in the phenology of a consumer and a 66 resource, assuming that latitudinal variation in consumer phenology has a plastic basis7. 67 If all consumer populations, regardless of their latitude, experience the same magnitude 68 and direction of mismatch (Supplementary Table 1b), which impacts negatively on vital 69 rates, all consumer populations may decline in the short term. If populations of the 70 consumer possess additive variance for phenology, over longer time periods spatially 71 consistent directional selection arising from directional mismatch may facilitate 72 adaptation to reduce mismatch8, although the rate of evolutionary change will also 73 depend on the effect of mismatch on population size and the standing genetic variation. 74 In a second example (Supplementary Table 1c), if the consumer phenology varies less 75 over space than the resource phenology9, and this generates spatial variation in the 76 direction of mismatch, then in the short term there may be spatial buffering that limits 77 population declines. In this case the consequences of mismatch on one population may 78 be buffered by dispersal from a matched population elsewhere6. With gene flow, spatial 79 variation in the direction of selection may oppose the adaption of mismatched 80 populations to their local optima8. 81 
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Here, we use the well-studied tri-trophic deciduous tree–caterpillar–passerine bird food 82 chain, a highly seasonal system, to identify the extent to which consumer phenology 83 tracks resource phenology over time and space. The phenology of these three trophic 84 levels advance with warmer spring temperatures, though birds typically advance by less 85 than trees or caterpillars10,11, causing bird-caterpillar mismatch to be most pronounced 86 in warm springs and associated with strong directional selection for earlier laying12.  87  88 We estimate the spatial (latitudinal) and temporal (among year) trends in relative 89 phenology of consumer (caterpillar) and primary resource (oak) species, and the 90 synchrony of secondary consumer (bird) peak nestling demand and peak caterpillar 91 resource availability. Fig. 1 shows the distribution of sampling across Britain and among 92 years. We used 10073 observations of pedunculate oak (Quercus robur) first leafing for 93 the period 1998-2016. The timing of peak arboreal caterpillar community biomass was 94 inferred from frass captured in traps set beneath oak trees at sites across Britain for the 95 period 2008-201613 (trap:years = 696). Bird phenology was calculated using first egg 96 dates (FED) from across Britain for the period 1960-2016, comprising 36839 blue tit 97 (Cyanistes caeruleus), 24427 great tit (Parus major) and 23813 pied flycatcher (Ficedula 98 
hypoleuca) nests. The phenology of oak14 and all three bird species7 have been shown to 99 respond negatively to mean spring temperatures over time and space, in a manner that 100 suggests plasticity is responsible for the majority of the spatiotemporal variation and 101 that temperature may be the proximate or ultimate phenological cue. Here we show that 102 frass timing exhibits similar trends, correlating negatively with temperature over time 103 and space, albeit more shallowly and non-significantly over space (supplementary 104 materials). 105  106 Our focus is on the relationship between the phenology of interacting species15. Where 107 timing changes more in one species than the other, this is indicative of spatial or 108 temporal variation in the magnitude, and potentially direction, of mismatch. In Britain 109 
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latitude provides a major temperature cline along which phenology varies at large 110 scales16, therefore, the spatial component of our study addresses latitudinal trends in 111 relative phenology of species pairs. We also consider the relationship between the 112 timing of the consumer and resource as the major axis (MA) slopes estimated over time 113 (years) and space (i.e. among 50km grid cells after de-trending for the latitudinal 114 gradient in the phenology of each species). For the bird – caterpillar interaction we can 115 derive predictions in the timing of peak consumer demand and peak resource 116 availability which enables us to estimate the absolute departure from synchrony 117 (demand earlier or later than supply). 118  119 
Results and discussion 120  121 Starting at the base of this food chain, for the average latitude (52.63°N) and year (in 122 terms of phenology) in our dataset, there is a 27.6 day interval between oak first leaf 123 and the peak caterpillar biomass. With increasing latitude the delay in oak leafing is 124 significantly steeper than that of the caterpillar peak (Fig. 2a, Supplementary Table 3a). 125 This results in a reduction of the predicted interval to 22 days at 56°N. After de-trending 126 for latitudinal effects, the spatial relationship between the phenology of these species is 127 poorly estimated (Table 1) and caterpillar phenology varies more over time than space 128 (Supplementary Table 3). Among years, the timing of oaks and caterpillars is strongly 129 positively correlated (Table 1a) and the MA slope does not depart significantly from 1 130 (Fig. 2b, Table 1b). This result is consistent with the caterpillar consumer perfectly 131 tracking the timing of the resource over time. This is consistent with earlier work 132 showing that oaks and one of their main caterpillar consumers – the winter moth – are 133 similarly sensitive to temperature17. The shortening of the time between first leaf and 134 peak caterpillar availability as latitude increases may result from the action of a third 135 variable, such as photoperiod acting on one or both species. Alternatively, it may 136 
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represent an adaptation of the life cycle of Lepidoptera species to the shorter spring and 137 summer period in the north6. 138 
 139 In the average year and at the average latitude, FEDs of blue tits (posterior mean ordinal 140 day 118.30 [95% credible interval = 116.83 –119.85], Supplementary Table 3b) and 141 great tits (day 118.95, [117.20 –120.61], Supplementary Table 3c) are approximately 142 one month earlier than peak caterpillar availability (~day 148). However, peak demand 143 is when nestlings are around 10 days old18,19, and once we allow for average clutch sizes 144 and incubation durations (see methods), we find that peak demand occurs soon after 145 peak resource availability, with mean peak demand–mean peak resource = 3.39 [-6.63 – 146 8.86] days in blue tits and 2.01 [-3.99 – 7.71] days in great tits. Pied flycatchers also lay 147 earlier (day 135.04 [133.55–136.53, Supplementary Table 3d) than the peak caterpillar 148 biomass, but predicted peak nestling demand occurs 12.87 [6.69 – 19.40] days later 149 than peak caterpillar availability, suggesting substantial trophic mismatch in the 150 average UK environment.  151  152 With increasing latitude the phenology of caterpillars is delayed by ~ 1.3 days °N-1 and 153 the point estimates for the equivalent latitudinal trend in birds are from 1.67 – 1.93 days 154 °N-1 (Supplementary Tables 3b-d). While the slope for birds is marginally steeper than 155 for caterpillars, such that birds in the north are slightly more mismatched, we have no 156 evidence for a significant latitudinal trend in mismatch (Fig. 3a-c). Moreover, the effect 157 size of any latitudinal trend in mismatch is small, as the point estimate of the magnitude 158 of change in the relative phenology of consumer – resource over the latitudinal range of 159 our data (50 – 57°N) is < 5 days in each case.  160  161 Across years, the timing of the caterpillar peak date and bird FED is strongly and 162 significantly positively correlated for all three bird species (Table 1a). The MA slope is 163 significantly <1 for all three bird species. This means that among years FED varies by 164 
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less than the timing of the caterpillar resource peak (Table 1b, Fig. 3d-f), which gives 165 rise to year-to-year variation in the degree of mismatch. For every 10-day advance in 166 the caterpillar peak, the corresponding bird advance is estimated to be 5.0, 5.3 and 3.4 167 days in blue tit, great tit and pied flycatcher respectively. In late springs (i.e. under 168 colder conditions) peak demand from blue tit and great tit nestlings is expected to 169 coincide with the peak resource availability, and pied flycatcher peak demand occurs 170 soon after the resource peak (Fig. 3d-f). When caterpillar phenology is earlier (i.e. 171 warmer springs), the peak demand of nestlings is predicted to be substantially later 172 than peak resource availability, rendering the nestlings of all three species mismatched, 173 and pied flycatchers most mismatched. For example, in the earliest year for which we 174 have caterpillar data (2011), at the average latitude the peak demand of the nestling 175 birds is predicted to occur 17.78, 11.74 and 27.03 days after the peak availability of 176 caterpillars. The patterns of temporal variation in mismatch we identify for these 177 species are very similar to those reported for great tits in the UK20 and all three species 178 in the Netherlands15 and are likely to result from the caterpillars being more 179 phenologically plastic in response to spring temperatures (supplementary materials). 180 Warmer conditions also produce shorter duration food peaks13, which may strengthen 181 the selection against mismatched individuals. It is also possible that bird populations 182 may advance timings in response to temperature cues experienced after first lay date by 183 varying clutch size, laying interruptions or the initiation and duration of incubation21-24. 184  185 One of our key findings is that in the average year there is little latitudinal variation in 186 the magnitude of caterpillar-bird mismatch. Therefore, meso-scale geographic variation 187 in mismatch in the average year is unlikely to buffer metapopulations from the negative 188 consequences of mismatch, or explain spatial variation in population trends. Thus, more 189 negative declines in population trends of insectivorous birds in southern Britain, driven 190 by low productivity25, do not appear to be caused by greater mismatch in the south than 191 the north. Directional adaptive evolution is expected to be more rapid for connected 192 
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populations when selection pressures are spatially consistent compared to being 193 spatially variable8. This result also has the practical implication that insights into the 194 degree of mismatch in one location can be generalized to trends at different latitudes. In 195 the average spring, the timing of blue tit and great tit nestling demand is quite 196 synchronous with the peak resource, which is consistent with birds being able to track 197 spatial variation in optimal timing. Spatial variation in mismatch will still occur if there 198 is substantial year by site variation in spring temperatures, as would arise if the rate of 199 warming varies spatially. 200  201 Of the three bird species, migratory pied flycatchers showed the greatest mismatch with 202 caterpillar availability, the predicted peak nestling period being consistently later than 203 peak caterpillar timing. If pied flycatcher migration times are mediated by African 204 conditions26-28 or constraints en-route29, this may limit their ability to advance their 205 arrival times, even if once they have arrived they are able to respond to spring 206 temperatures on breeding grounds 30. However, pied flycatchers provision nestlings 207 with fewer caterpillars and more winged invertebrates compared to blue tit and great 208 tit31, so may be less dependent on seasonal caterpillar peaks. 209  210 Our study focuses on mismatch judged from population means within a year and site (or 211 in the case of oak leafing the first date in a population – see methods). There is of course 212 potential for some individuals within a population to be matched even when population 213 means are mismatched, and this could serve to reduce effects of mismatch on local 214 populations32. The residual variance for caterpillars and birds, which corresponds to 215 variance within a year and site, is >30 (Supplementary Table 3), which corresponds to 216 95% of individuals within a 5km grid cell and year being in the range ± 10.74 days of the 217 population mean. All three of our focal bird species are able to inhabit woodland types 218 other than oak and such habitats may differ in the timing or ephemerality of the 219 
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caterpillar resource33, which may have further impacts on spatial variation in 220 demography and selection. 221  222 While phenological mismatch is frequently raised as a potential impact of climate 223 change, there is an urgent need to compile evidence on the consequences of mismatch 224 for population trends across realistic spatial or ecological (e.g., habitat generalist) 225 settings. A Dutch study on pied flycatchers found that population declines were greater 226 in areas where the caterpillar peak (assumed to be a proxy for mismatch) was earlier34, 227 but the spatial relationship between mismatch and population trends remains largely 228 unstudied35. Our study presents the first assessment of whether latitudinal variation in 229 mismatch exists, as is sometimes proposed as a mechanism whereby the adverse 230 impacts of climate change might be buffered, for example, more northern populations 231 being less adversely affected by spring warming compared to southern populations36. 232 The lack of evidence we find for latitudinal variation in mismatch between birds and 233 their caterpillar resource suggests mismatch is unlikely to be a driver of spatially 234 varying population trends found in avian secondary consumers37. 235  236 
Methods 237 
 238 
Phenology data. We obtained pedunculate oak first leafing dates from the UK 239 Phenology Network (https://naturescalendar.woodlandtrust.org.uk/). As a quality 240 control step we excluded outliers (ordinal day 60 ≤ leafing date ≥ 155) and retained only 241 observations from individuals who submitted records in multiple years. Our data for oak 242 leafing differ from the other trophic levels in that they are of first dates within local 243 populations. First dates will be earlier than mean dates, but would only be biased if 244 there is a trend (latitudinal or correlating with year earliness) in sampling effort, 245 population abundance or variance. We suggest that the first two are unlikely to pose a 246 problem14,38, but we do not have the data to rule out the third source of bias. 247 
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 248 Arboreal caterpillar biomass was monitored by collecting frass fall from traps set 249 beneath oak trees at 47 sites across Britain13. Frass was collected, sorted and the dry 250 weight obtained approximately every 5 days (mean = 4.63) during spring up until day 251 180 at the latest, from which we calculated a frass fall rate in g square m-1 day-1. For 252 traps where frass had been collected on at least five occasions during a spring we 253 identified the sampling period over which the rate of frass fall was highest and then 254 identified the start and end of this interval. Where the highest rate was found over two 255 or more separate periods then we allowed the peak frass interval to span the combined 256 period. At one site, Wytham Woods, the timing of peak frass was estimated 257 statistically32. For these estimates we assumed that the interval was the peak date ± 3 258 days.  259  260 First egg dates (FED) for blue tit, great tit and pied flycatcher were obtained from nests 261 monitored across Britain for the BTO Nest Record Scheme7,39. Few nests were visited 262 daily, and so a minimum FED was calculated by combining information collected over 263 repeated visits before and after laying, including the date of previous visits with no eggs 264 present, clutch size, laying rate and incubation period. A maximum FED was calculated 265 as the date on which eggs were first observed minus the product of the number of eggs 266 and the maximum laying rate, i.e. one egg per day. We excluded observations where the 267 interval between minimum and maximum FED exceeded 10 days.  268  269 We imposed a ‘population’ structure on all observations by dividing Britain into 50km x 270 50km grid cells. To spatially match observations at a finer scale within these 271 ‘populations’ and to address some of the spatial psuedoreplication of observations we 272 generated a smaller grid structure corresponding to 5km x 5km.  273  274 
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Analysis. All analyses were conducted in R40. We assessed the degree to which 275 consumer species were able to track the phenology of resource/primary producer 276 species across space and time using a generalized linear mixed model41 with the 277 phenology of the two interacting species included as a bivariate Gaussian response6,42. 278 With the exception of oak, the response was interval censored, meaning that an event 279 was considered to be equally likely to occur at any time within the given interval43. The 280 model included the intercept and latitude as the only fixed effects for each of the 281 response variables, and 50km grid cell, 5km grid cell, year and residual as random 282 effects. For each random term we estimated the (co)variance components, with the 283 exception of the residual term for which we estimated variances but not covariance. For 284 caterpillars we also included trap as a random effect. Our ability to estimate covariances 285 between trophic levels depends principally on the replication of grid cells or years for 286 which we have data for both trophic levels. However, locations where we have data for 287 one trophic level inform our estimates of latitudinal trends, among grid cell variance and 288 year means for that level. Similarly, years for which we have data for only a single 289 trophic level inform our estimates of among year variance and grid cell means or that 290 level. Precise estimates of these means and variances inform our estimates of 291 relationships between the phenology of trophic level pairs.  292  293 We used parameter expanded priors for (co)variances across years and grid cells and 294 inverse-Wishart priors for the residual term. Models were run for 440,000 iterations, 295 with 40,000 iterations removed as burnin and sampling every 100. We assessed model 296 convergence via visual inspection of the posterior distribution trace plots and by 297 running a second chain and ensuring that the multivariate potential scale reduction 298 factor for fixed effects on the two chains was < 1.1 44. The effective sample sizes for all 299 focal parameters exceeded 1000.  300  301 
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The model intercepts estimate the mean phenology of each species at the average 302 latitude in the average year. We used the (co)variance components estimated for grid 303 cells and years to obtain correlation estimates between the two species over space 304 (50km grid cells only) and years, respectively. We estimated the major axis rather than 305 type I regression slope45, because we were interested in the degree of phenological 306 tracking, rather than the degree to which the phenology of one species predicts the 307 phenology of another. 308  309 We considered the following bivariate models: (i) peak caterpillar date versus oak first 310 leafing date, (ii) each of the three bird species FED versus peak caterpillar date, and (iii) 311 each bird FED with oak first leafing date. For the bird versus caterpillar we compared 312 the predicted peak resource availability to the predicted peak consumer demand, which 313 we calculated as the predicted FED across latitudes or years plus mean clutch size which 314 varies little at the scale of our study46, and incubation duration (both from BTO nest 315 record scheme http://app.bto.org/birdfacts/results/) and the 10 day duration between 316 hatching and peak nestling food demand47,48. While the tree versus bird comparisons are 317 not trophic interactions, we consider them here because we anticipate that oak leafing 318 may be a proxy for peak caterpillar date, with the spatiotemporal replication of first 319 leafing observations greatly exceeding those of peak caterpillar.  320  321 
Data availability 322  323 Supplementary materials are available in the online version of the paper. The data that 324 
support the findings of this study are available at the following datashare repository: 325 http://dx.doi.org/10.7488/ds/2215. Correspondence and requests for materials and 326 data should be addressed to M.D.B. 327  328 
Code availability 329 
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 330 Example R code is available at the following repository: 331 https://github.com/allyphillimore/birds_frass_oak. 332  333 
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 515 
Figure legends 516 
 517 
Fig. 1 | Number of years of data for each 50km grid cell used for each trophic level 518 
and bird species. a for oak, b for frass, with trapping locations indicated by dots, c for 519 blue tit, d for great tit and e for pied flycatcher. 520 
 521 
Fig. 2 | The relationship between latitude and the phenology of oak leafing and 522 
peak caterpillar abundance (a) and the among year relationship between the 523 
timing of the two trophic levels (b). In both panels the solid lines correspond to the 524 mean prediction and the shaded areas correspond to the posterior distribution of 525 predictions under type I regression (a) and major axis regression (b). In a, dark green 526 shaded area shows oak leafing and light green shaded area shows the caterpillar peak. 527 In b, data points represent the posterior means for the best linear unbiased predictions 528 for years that have observations for both trophic levels. Dashed line corresponds to 529 unity; this is plotted to illustrate the relative slopes. An offset intercept is expected 530 owing to the growth and development of caterpillars. 531 
 532 
Fig. 3 | The relationship between latitude and mismatch (a – c) and the timing of 533 
peak frass versus first egg date among years (d – f), with a and d for blue tits, b and e 534 for great tits and c and f pied flycatchers. In panels a – c mismatch is defined as the 535 timing of peak avian demand minus the timing of peak frass availability, with peak 536 nestling demand calculated as being when nestlings are predicted to be 14 days old (see 537 methods). In panels d – f datapoints represent the posterior means for the best linear 538 unbiased predictions for years that have observations for both birds and caterpillars. 539 
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Dashed line corresponds to unity. In d – f the black line is the among year mean major 540 axis slope and the red line is the predicted relationship between peak resource 541 availability and peak demand. Transparent gray lines represent the posterior 542 distribution of predictions.  543 
 544 
Table 1 | Correlation (a) and major axis slopes (b) of the phenology of higher 545 
trophic level on lower trophic level in time (bold, upper right) and de-trended 546 
space ( lower left). 95% credible intervals in parentheses. 547  548 (a) 549 

 Oak leafing Peak caterpillar Blue tit FED Great tit FED 
Pied flycatcher 
FED 

Oak leafing - 
0.69 (0.295 - 
0.963) 

0.754 (0.537 - 
0.918) 

0.808 (0.62 - 
0.95) 

0.719 (0.409 - 
0.934) 

Peak caterpillar 
0.415 (-0.153 - 
0.945) - 

0.724 (0.388 - 
0.949) 

0.691 (0.297 - 
0.951) 

0.834 (0.54 - 
0.984) 

Blue tit FED 
0.665 (0.463 - 
0.86) 

0.485 (-0.028 - 
0.963) - - - 

Great tit FED 
0.713 (0.49 - 
0.907) 

0.534 (-0.012 - 
0.966) - - - 

Pied flycatcher 
FED 

0.547 (0.147 - 
0.913) 

0.306 (-0.498 - 
0.959) - - -  550 (b) 551 

 Oak leafing Peak caterpillar Blue tit FED Great tit FED 
Pied flycatcher 
FED 

Oak leafing - 
1.788 (0.497 - 
3.896) 

0.667 (0.409 - 
0.935) 

0.744 (0.485 - 
1.023) 

0.413 (0.228 - 
0.621) 

Peak caterpillar 
3.008 (-13.635 - 
20.407) - 

0.498 (0.189 - 
0.775) 

0.527 (0.154 - 
0.88) 

0.343 (0.2 - 
0.521) 

Blue tit FED 
1.126 (0.675 - 
1.626) 

1.061 (-0.55 - 
3.452) - - - 

Great tit FED 
1.128 (0.7 - 
1.639) 

0.778 (-0.391 - 
2.905) - - - 

Pied flycatcher 
FED 

1.113 (0.174 - 
2.814) 

2.471 (-3.121 - 
5.03) - - -  552 


