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FACTORIZATION THEOREMS FOR CLASSICAL GROUP CHARACTERS,
WITH APPLICATIONS TO ALTERNATING SIGN MATRICES

AND PLANE PARTITIONS

ARVIND AYYER AND ROGER E. BEHREND

Abstract. We show that, for a certain class of partitions and an even number of variables of

which half are reciprocals of the other half, Schur polynomials can be factorized into products

of odd and even orthogonal characters. We also obtain related factorizations involving sums of

two Schur polynomials, and certain odd-sized sets of variables. Our results generalize the fac-

torization identities proved by Ciucu and Krattenthaler (2009) [14] for partitions of rectangular

shape. We observe that if, in some of the results, the partitions are taken to have rectangular

or double-staircase shapes and all of the variables are set to 1, then factorization identities for

numbers of certain plane partitions, alternating sign matrices and related combinatorial objects

are obtained.

1. Introduction

Some of the most challenging problems in enumerative combinatorics in recent decades have

involved plane partitions, alternating sign matrices, and related objects. Schur polynomials,

i.e., characters of the general linear group, as well as characters of other classical groups, have

played a role in solving many of these problems. While the appearance of such characters in the

enumeration of plane partitions is expected, a combinatorial understanding of their occurrence

in the enumeration of alternating sign matrices is currently lacking.

The main results of this paper are Theorems 1–3, which state that, for certain partitions

and variables, Schur polynomials can be factorized into products of characters of orthogonal

groups. More specifically, in Theorem 1, we find that, for any partition (λ1, . . . , λn) and in-

teger k ≥ λ1, or half-partition (λ1, . . . , λn) and half-integer k ≥ λ1, the Schur polynomial

s(k+λ1,...,k+λn,k−λn,...,k−λ1)(x1, . . . , xn, x
−1
1 , . . . , x−1

n ) decomposes, up to a simple prefactor, into a

product of a character of a special odd orthogonal group and a character of an even orthog-

onal group. In Theorem 2, we obtain a similar factorization of the sum of two Schur poly-

nomials, and in Theorem 3, we obtain a factorization of a Schur polynomial with arguments

x1, . . . , xn, x
−1
1 , . . . , x−1

n , 1. We prove all of these cases by using standard determinant expres-

sions (which arise from the Weyl character formula) for the characters of the classical groups,

and applying elementary determinant operations. Currently, we do not have a representation-

theoretic explanation of these factorizations, although it would clearly be interesting to find one.

On the other hand, combinatorial proofs of such factorizations, and of generalizations involving

skew Schur polynomials, will be provided in a forthcoming paper [6].

The connection between these results and plane partitions, alternating sign matrices and

related combinatorial objects is that factorization identities for numbers of such objects can
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2 A. AYYER AND R. E. BEHREND

be obtained by setting all of the variables in the theorems to 1, and specializing to parti-

tions with certain rectangular or double-staircase shapes. Indeed, the work reported in this

paper was primarily motivated by previously-known factorization identities for Schur polyno-

mials indexed by partitions with such shapes. In particular, identities for the rectangular case

s(m,...,m︸ ︷︷ ︸
n

,0,...,0︸︷︷︸
n

)(x1, . . . , xn, x
−1
1 , . . . , x−1

n ) were noted without proof by Okada [32, Lem. 5.2, 1st Eq.],

and proved by Ciucu and Krattenthaler [14, Thms. 3.1 & 3.2], while identities for the double-

staircase cases s(n,n−1,n−1,...,1,1,0)(x1, . . . , xn, x
−1
1 , . . . , x−1

n ), s(n−1,n−1,...,1,1,0,0)(x1, . . . , xn, x
−1
1 , . . . ,

x−1
n ) and s(n,n−1,n−1,...,1,1,0,0)(x1, . . . , xn, x

−1
1 , . . . , x−1

n , 1) were noted without proof by Ayyer, Beh-

rend and Fischer [5, Remarks 5.4 & 6.4], and Behrend, Fischer and Konvalinka [8, Eq. (63)].

The results of this paper generalize all of these cases, and provide new, shorter proofs for the

rectangular cases.

The structure of the rest of this paper is as follows. In Section 2, we introduce the classical

group characters, and identify some of their elementary properties. In Section 3, we state the

main Schur polynomial factorization theorems, and in Section 4 we provide their proofs. In

Section 5, we apply the main theorems to partitions with rectangular or double-staircase shapes,

and obtain factorization identities for numbers of plane partitions, alternating sign matrices and

related objects.

2. Classical group characters

We first review some standard terminology. A half-integer is an odd integer divided by 2. A

partition, or respectively half-partition, is a tuple (λ1, . . . , λn) whose entries are all nonnegative

integers, or respectively all positive half-integers, in weakly decreasing order, λ1 ≥ . . . ≥ λn. In

the literature, zero entries of a partition are often omitted, but in this paper it will be convenient

for these to be shown explicitly, since they often play an important role. The shape of a partition

refers to the shape of its associated Young diagram. For further information regarding partitions

and Young diagrams, see, for example, Macdonald [27, Ch. I.1] or Stanley [41, Ch. 7], [42, Ch. 1].

For an indeterminate x, the notation

x̄ = x−1

will be used throughout the rest of this paper.

We now introduce the classical group characters. For indeterminates x1, . . . , xn, and a partition

λ = (λ1, . . . , λn), the Schur polynomial or general linear character is given by

sλ(x1, . . . , xn) =
det

1≤i,j≤n

(
x
λj+n−j
i

)
∏

1≤i<j≤n(xi − xj)
, (1)

and the symplectic character is given by

spλ(x1, . . . , xn) =
det

1≤i,j≤n

(
x
λj+n−j+1
i − x̄λj+n−j+1

i

)
∏n

i=1(xi − x̄i)
∏

1≤i<j≤n(xi + x̄i − xj − x̄j)
. (2)

For indeterminates x1, . . . , xn, and a partition or half-partition λ = (λ1, . . . , λn), the odd

orthogonal character is given by

soodd
λ (x1, . . . , xn) =

det
1≤i,j≤n

(
x
λj+n−j+1/2
i − x̄λj+n−j+1/2

i

)
∏n

i=1

(
x
1/2
i − x̄

1/2
i

) ∏
1≤i<j≤n(xi + x̄i − xj − x̄j)

, (3)
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and the even orthogonal character is given by

oevenλ (x1, . . . , xn) =
det

1≤i,j≤n

(
x
λj+n−j
i + x̄

λj+n−j
i

)
(1 + δλn,0)

∏
1≤i<j≤n(xi + x̄i − xj − x̄j)

, (4)

where δ is the Kronecker delta.

For the exact connection between the functions (1)–(4) and characters of irreducible represen-

tations of the general linear group GLn(C), symplectic group Sp2n(C), special odd orthogonal

group S02n+1(C) and even orthogonal group 02n(C) (and the spin covering groups for the or-

thogonal case), see, for example, Fulton and Harris [17, Ch. 24] and Proctor [36, Appendix 2].

Some elementary properties of these functions, which can be verified using the expressions

(1)–(4), are as follows, where λ denotes (λ1, . . . , λn).

• For a partition λ, sλ(x1, . . . , xn) is a symmetric polynomial in x1, . . . , xn, and spλ(x1, . . . , xn),

soodd
λ (x1, . . . , xn) and oevenλ (x1, . . . , xn) are symmetric Laurent polynomials in x1, . . . , xn.

• For a half-partition λ, soodd
λ (x21, . . . , x

2
n) and oevenλ (x21, . . . , x

2
n) are symmetric Laurent polyno-

mials in x1, . . . , xn.

• For a partition λ and integer k ≥ −λn,

(x1 . . . xn)k sλ(x1, . . . , xn) = s(k+λ1,...,k+λn)(x1, . . . , xn). (5)

• For a partition λ and integer k ≥ λ1,

(x1 . . . xn)k sλ(x̄1, . . . , x̄n) = s(k−λn,...,k−λ1)(x1, . . . , xn). (6)

• For a partition λ and 1 ≤ i ≤ n, spλ(x1, . . . , xn) is invariant under replacement of xi with x̄i.

• For a partition or half-partition λ and 1 ≤ i ≤ n, soodd
λ (x1, . . . , xn) and oevenλ (x1, . . . , xn) are

invariant under replacement of xi with x̄i.

• For a partition λ, the odd and even orthogonal characters indexed by the half-partition

(λ1 + 1/2, . . . , λn + 1/2) can be expressed in terms of characters indexed by λ as

soodd
(λ1+1/2,...,λn+1/2)(x1, . . . , xn) =

n∏
i=1

(
x
1/2
i + x̄

1/2
i

)
spλ(x1, . . . , xn) (7)

and

oeven(λ1+1/2,...,λn+1/2)(x1, . . . , xn) = (−1)
∑n

i=1 λi

n∏
i=1

(
x
1/2
i + x̄

1/2
i

)
soodd

λ (−x1, . . . ,−xn). (8)

Note that ambiguities arise in (−xi)k if k is a half-integer, and hence the consideration of

such terms will be avoided in this paper. This can be done for the odd orthogonal character

in (8) by observing that (since λ is a partition) soodd
λ (x1, . . . , xn) is a Laurent polynomial in

x1, . . . , xn, which can then be evaluated at −x1, . . . ,−xn.

3. Main results

In this section, we state the main results of the paper. In Subsection 3.1, we provide the

primary statements of these results, while, in Subsection 3.2, we provide alternative statements

of the results. Proofs will be given in Section 4.
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3.1. Primary statements of the results. The main results of this paper are as follows. (Some

general remarks regarding these results will be given at the end of this subsection.)

Theorem 1. For any partition (λ1, . . . , λn) and integer k ≥ λ1, or half-partition (λ1, . . . , λn)

and half-integer k ≥ λ1,

n∏
i=1

(
x
1/2
i + x̄

1/2
i

)
s(k+λ1,...,k+λn,k−λn,...,k−λ1)(x1, . . . , xn, x̄1, . . . , x̄n)

= soodd
(λ1,...,λn)

(x1, . . . , xn) oeven(λ1+1/2,...,λn+1/2)(x1, . . . , xn). (9)

For the case in which (λ1, . . . , λn) is a partition and k is an integer, the shape of the partition

on the LHS of (9) is illustrated in Figure 1.

λ

k

n

n

λ

Figure 1. The shape of the partition on the LHS of (9), where λ = (λ1, . . . , λn)

is a partition and k ≥ λ1 is an integer. The inverted λ denotes (λn, . . . , λ1), and

the shading indicates that the corresponding region should be removed.

Theorem 2. For any partition (λ0, . . . , λn) and integers k1, k2 ≥ λ0, or half-partition (λ0, . . . ,

λn) and half-integers k1, k2 ≥ λ0,

n∏
i=1

(
x
1/2
i + x̄

1/2
i

) (
s(k1+λ1,...,k1+λn,k1−λn−1,...,k1−λ0)(x1, . . . , xn, x̄1, . . . , x̄n)

+ s(k2+λ1,...,k2+λn−1,k2−λn,...,k2−λ0)(x1, . . . , xn, x̄1, . . . , x̄n)
)

= (1 + δλn,0) so
odd
(λ0+1/2,...,λn−1+1/2)(x1, . . . , xn) oeven(λ1,...,λn)

(x1, . . . , xn). (10)

For the case in which (λ0, . . . , λn) is a partition and k1, k2 are integers, the shapes of the

partitions on the LHS of (10) are illustrated in Figure 2.

λ0

k1

n

n

λ
n

λ0n

k2

n− 1

n + 1

λ

+

λ0n

Figure 2. The shapes of the partitions on the LHS of (10), where λ = (λ0, . . . , λn)

is a partition, λ0, λn and λ0n denote (λ1, . . . , λn), (λ0, . . . , λn−1) and (λ1, . . . , λn−1),

respectively, and k1, k2 ≥ λ0 are integers. Also, the inverted λ and λn denote

(λn, . . . , λ0) and (λn−1, . . . , λ0), respectively, and shading indicates that the corre-

sponding region should be removed.
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Theorem 3. For any partition (λ0, . . . , λn) and integer k ≥ λ0, or half-partition (λ0, . . . , λn)

and half-integer k ≥ λ0,

2
n∏
i=1

(
x
1/2
i + x̄

1/2
i

)
s(k+λ1,...,k+λn,k−λn,...,k−λ0)(x1, . . . , xn, x̄1, . . . , x̄n, 1)

= soodd
(λ1,...,λn)

(x1, . . . , xn) oeven(λ0+1/2,...,λn+1/2)(x1, . . . , xn, 1) (11)

and

2
n∏
i=1

(
x
1/2
i + x̄

1/2
i

)
s(k+λ0,...,k+λn−1,k±λn,k−λn−1,...,k−λ0)(x1, . . . , xn, x̄1, . . . , x̄n, 1)

= (1 + δλn,0) so
odd
(λ0+1/2,...,λn−1+1/2)(x1, . . . , xn) oeven(λ0,...,λn)

(x1, . . . , xn, 1). (12)

Note that the ± on the LHS of (12) indicates that either + or − can be used to give a valid

equation.

For the case in which (λ0, . . . , λn) is a partition and k is an integer, the shapes of the partitions

on the LHSs of (11) and (12) are illustrated in Figure 3.

λ0

k

n

n + 1

λ

λ

k

n + 1

n

λ
n

λn

k

n

n + 1

λ

Figure 3. The shapes of the partitions on the LHSs of (11) and (12), where

λ = (λ0, . . . , λn) is a partition, λ0 denotes (λ1, . . . , λn), λn denotes (λ0, . . . , λn−1),

and k ≥ λ0 is an integer. Also, the inverted λ and λn denote (λn, . . . , λ0) and

(λn−1, . . . , λ0), respectively, and shading indicates that the corresponding region

should be removed. The three diagrams correspond to (11), the + case of (12)

and the − case of (12), respectively.

In certain cases, the even orthogonal characters in Theorem 3 can be expressed, up to simple

prefactors, as odd orthogonal characters, as stated in the following results.

Proposition 4. If

(λ0, . . . , λn) = (nb+ a, . . . , 2b+ a, b+ a, a), (13)

for a nonnegative integer or positive half-integer a, and a nonnegative integer b, then

(1 + δλn,0) o
even
(λ0,...,λn)

(x1, . . . , xn, 1) = 2
n∏
i=1

(
b/2∑

j=−b/2

xji

)
soodd

(λ0−b/2,...,λn−1−b/2)(x1, . . . , xn). (14)

Note that if b is odd, then j in the sum on the RHS of (14) ranges over all half-integers

from −b/2 to b/2.

Proposition 5. If

(λ0, . . . , λn) =
(
bn+1

2
cb+ (−1)na, . . . , 2b+ a, 2b− a, b+ a, b− a, a

)
, (15)
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for a nonnegative integer or positive half-integer a, and an integer b ≥ 2a, then

oeven(λ0+1/2,...,λn+1/2)(x1, . . . , xn, 1) = 2
n∏
i=1

(
(b+1)/2∑

j=−(b+1)/2

xji

)
soodd

(λ0−b/2,...,λn−1−b/2)(x1, . . . , xn). (16)

Note that if b is even, then j in the sum on the RHS of (16) ranges over all half-integers

from −(b+ 1)/2 to (b+ 1)/2.

By slightly modifying the proofs of Theorems 1–3, it is possible to obtain certain closely

related results. An example is the following variation of Theorems 1 and 3, for which we omit

the proof. For any partition (λ1, . . . , λn) and integer k ≥ λ1, or half-partition (λ1, . . . , λn) and

half-integer k ≥ λ1,

2
n−1∏
i=1

(
x
1/2
i + x̄

1/2
i

)
s(k+λ1,...,k+λn,k−λn,...,k−λ1)(x1, . . . , xn, x̄1, . . . , x̄n−1, 1)

= xkn so
odd
(λ1,...,λn)

(x1, . . . , xn) oeven(λ1+1/2,...,λn+1/2)(x1, . . . , xn−1, 1). (17)

Some remarks regarding the previous results are as follows.

• It can easily be checked that each of the Schur polynomials is indexed by a valid partition,

and each of the orthogonal characters is indexed by a valid partition or half-partition.

• For a partition (λ1, . . . , λa) with λ1 ≤ b, the complement of (λ1, . . . , λa) in an a× b rectangle

is defined to be the partition (b − λa, . . . , b − λ1). It can easily be checked that, for fixed n

and k, the partitions which can occur on the LHS of (9) are precisely those which are

self-complementary in a (2n) × (2k) rectangle (where 2n is necessarily even, since n is an

integer, but 2k can be even or odd, since k can be an integer or half-integer). Similarly,

for fixed n and k, and λn set to 0 (which implies that (λ0, . . . , λn) is a partition and k is

an integer), the partitions which can occur on the LHS of (12) are precisely those which are

self-complementary in a (2n+1)×(2k) rectangle (where 2n+1 and 2k are necessarily odd and

even, respectively). It follows that the LHSs of (9) and (12) include all self-complementary

partitions, since a partition cannot be self-complementary in an a× b rectangle if a and b are

both odd.

• Partitions with the same forms as those on the LHSs of (9), (12) and (17) have appeared

previously in results of Stanley [40, Lem. 3.3], [41, Exer. 7.106a].

• The RHSs of (9), (11) and (12) are explicitly independent of k, and this independence for

each LHS follows from (5). Similarly, both sides of (10) are independent of k1 and k2.

• Due to (5) and (6) (and the fact that a Schur polynomial is a symmetric function), Theorem 2

remains valid if the condition k1 ≥ λ0 is replaced by k1 ≥ λ1 and the first Schur polynomial

in (10) is replaced by s(k1+λ0,...,k1+λn−1,k1−λn,...,k1−λ1)(x1, . . . , xn, x̄1, . . . , x̄n), or the condition

k2 ≥ λ0 is replaced by k2 ≥ λ1 and the second Schur polynomial in (10) is replaced by

s(k2+λ0,...,k2+λn,k2−λn−1,...,k2−λ1)(x1, . . . , xn, x̄1, . . . , x̄n). Hence, the apparent asymmetry in the

structure of each of the partitions on the LHS of (10) can be reversed.

• Similarly, (11) remains valid if the condition k ≥ λ0 is replaced by k ≥ λ1, and the Schur

polynomial is replaced by s(k+λ0,...,k+λn,k−λn,...,k−λ1)(x1, . . . , xn, x̄1, . . . , x̄n, 1).

• The equality between the + and − cases of the Schur polynomial in (12) follows from (6).

3.2. Alternative statements of the results. In each of (9)–(12) and (17), and in certain

cases of (14) and (16), one of the two orthogonal characters is indexed by a partition and the

other is indexed by a half-partition. However, by using (7) and (8), each of these results can be
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expressed in a form in which all of the characters are indexed by partitions. This will now be

done for Theorems 1 and 2, and the other cases will then be discussed briefly. For simplicity, and

for later convenience in Section 5, the alternative statements of Theorems 1 and 2 will assume

that k = λ1 and k1 = k2 = λ0.

A restatement of Theorem 1 (with k = λ1) is as follows. For any partition (λ1, . . . , λn),

s(λ1+λ1,...,λ1+λn,λ1−λn,...,λ1−λ1)(x1, . . . , xn, x̄1, . . . , x̄n)

= (−1)
∑n

i=1 λi soodd
(λ1,...,λn)

(x1, . . . , xn) soodd
(λ1,...,λn)

(−x1, . . . ,−xn) (18)

and

s(λ1+λ1+1,...,λ1+λn+1,λ1−λn,...,λ1−λ1)(x1, . . . , xn, x̄1, . . . , x̄n)

= sp(λ1,...,λn)(x1, . . . , xn) oeven(λ1+1,...,λn+1)(x1, . . . , xn). (19)

Note that (18) corresponds to the case of Theorem 1 in which (λ1, . . . , λn) is a partition

(and k = λ1) in (9), and (8) is applied to the even orthogonal character. On the other hand, (19)

corresponds to the case of Theorem 1 in which (λ1, . . . , λn) is a half-partition (and k = λ1) in (9).

In this case, (19) is obtained by replacing (λ1, . . . , λn) by
(
λ1 + 1

2
, . . . , λn + 1

2

)
, and applying (7)

to the odd orthogonal character.

A restatement of Theorem 2 (with k1 = k2 = λ0) is as follows. For any partition (λ0, . . . , λn),

s(λ0+λ1,...,λ0+λn,λ0−λn−1,...,λ0−λ0)(x1, . . . , xn, x̄1, . . . , x̄n)

+ s(λ0+λ1,...,λ0+λn−1,λ0−λn,...,λ0−λ0)(x1, . . . , xn, x̄1, . . . , x̄n)

= (1 + δλn,0) sp(λ0,...,λn−1)(x1, . . . , xn) oeven(λ1,...,λn)
(x1, . . . , xn) (20)

and

s(λ0+λ1+1,...,λ0+λn+1,λ0−λn−1,...,λ0−λ0)(x1, . . . , xn, x̄1, . . . , x̄n)

+ s(λ0+λ1+1,...,λ0+λn−1+1,λ0−λn,...,λ0−λ0)(x1, . . . , xn, x̄1, . . . , x̄n)

= (−1)
∑n

i=1 λi soodd
(λ0+1,...,λn−1+1)(x1, . . . , xn) soodd

(λ1,...,λn)
(−x1, . . . ,−xn). (21)

Note that (20) corresponds to the case of Theorem 2 in which (λ0, . . . , λn) is a partition (and k1 =

k2 = λ0) in (10), and (7) is applied to the odd orthogonal character. On the other hand, (21)

corresponds to the case of Theorem 2 in which (λ0, . . . , λn) is a half-partition (and k1 = k2 = λ0)

in (10). In this case, (21) is obtained by replacing (λ0, . . . , λn) by
(
λ0 + 1

2
, . . . , λn + 1

2

)
, and

applying (8) to the even orthogonal character.

Theorem 3, Propositions 4 and 5, and (17) can also be restated in forms analogous to those

given above for Theorems 1 and 2.

The case of Theorem 3 in which (λ0, . . . , λn) is a partition and k is an integer gives reformula-

tions of (11) and (12) in which (8) is applied to the even orthogonal character in (11), and (7) is

applied to the odd orthogonal character in (12). The case of Theorem 3 in which (λ0, . . . , λn) is a

half-partition and k is a half-integer gives reformulations of (11) and (12) in which (7) is applied

to the odd orthogonal character in (11), and (8) is applied to the even orthogonal character

in (12).

Propositions 4 and 5 lead to four cases each. For example, these are as follows for Proposition 4.

If a is an integer and b is even, then (14) is left unchanged. If a is an integer and b is odd, then (7)

is applied to the odd orthogonal character in (14). If a is a half-integer and b is odd, then (8)
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is applied to the even orthogonal character in (14). If a is a half-integer and b is even, then (7)

and (8) are applied to the odd and even orthogonal characters, respectively, in (14).

4. Proofs

In this section, we provide proofs of Theorems 1–3 and Propositions 4 and 5. Note that,

essentially, these proofs rely only on the determinant expressions (1), (3) and (4) for Schur

polynomials and orthogonal characters, and the application of standard determinant operations.

Proof of Theorem 1. Using the Schur polynomial expression (1), the Schur polynomial on the

LHS of (9) is

s(k+λ1,...,k+λn,k−λn,...,k−λ1)(x1, . . . , xn, x̄1, . . . , x̄n)

=

det

 (
x
k+λj+2n−j
i

)
1≤i,j≤n

(
x
k−λn+1−j+n−j
i

)
1≤i,j≤n(

x̄
k+λj+2n−j
i

)
1≤i,j≤n

(
x̄
k−λn+1−j+n−j
i

)
1≤i,j≤n


∏n

i=1(xi − x̄i)
∏

1≤i<j≤n(xi − xj)(x̄i − x̄j)(xi − x̄j)(xj − x̄i)
. (22)

By multiplying row i in the top blocks of the matrix in (22) by x̄
k+n−1/2
i and row i in the

bottom blocks by x
k+n−1/2
i , for each i = 1, . . . , n, and then reversing the order of the columns in

the right blocks, it follows that the numerator of the RHS of (22) is

det

 (
x
λj+n−j+1/2
i

)
1≤i,j≤n

(
x̄
λn+1−j+j−1/2
i

)
1≤i,j≤n(

x̄
λj+n−j+1/2
i

)
1≤i,j≤n

(
x
λn+1−j+j−1/2
i

)
1≤i,j≤n


= (−1)n(n−1)/2 det

 (
x
λj+n−j+1/2
i

)
1≤i,j≤n

(
x̄
λj+n−j+1/2
i

)
1≤i,j≤n(

x̄
λj+n−j+1/2
i

)
1≤i,j≤n

(
x
λj+n−j+1/2
i

)
1≤i,j≤n

 .

Now note that, for any n× n matrices A and B,

det

(
A B

B A

)
= det

(
A−B B

B − A A

)
= det

(
A−B B

0 A+B

)
= det(A−B) det(A+B), (23)

where these equalities are obtained by subtracting the right blocks of the matrix from the left

blocks, adding the top blocks to the bottom blocks, and applying the standard result that the

determinant of a block triangular matrix is the product of the determinants of its diagonal

blocks.

Taking Aij = x
λj+n−j+1/2
i and Bij = x̄

λj+n−j+1/2
i , for 1 ≤ i, j ≤ n, in (23), it follows that the

numerator of the RHS of (22) is

(−1)n(n−1)/2 det
1≤i,j≤n

(
x
λj+n−j+1/2
i − x̄λj+n−j+1/2

i

)
det

1≤i,j≤n

(
x
λj+n−j+1/2
i + x̄

λj+n−j+1/2
i

)
.

Finally, by observing that the denominator of the RHS of (22) is

(−1)n(n−1)/2
∏n

i=1(xi − x̄i)
∏

1≤i<j≤n(xi + x̄i − xj − x̄j)2, (24)

and using the odd and even orthogonal character expressions (3) and (4), it follows that the

RHS of (22) is

soodd
(λ1,...,λn)

(x1, . . . , xn) oeven(λ1+1/2,...,λn+1/2)(x1, . . . , xn)
/∏n

i=1

(
x
1/2
i + x̄

1/2
i

)
,
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as required. �

Proof of Theorem 2. Using the Schur polynomial expression (1), the sum of Schur polynomials

on the LHS of (10) is

s(k1+λ1,...,k1+λn,k1−λn−1,...,k1−λ0)(x1, . . . , xn, x̄1, . . . , x̄n)
+ s(k2+λ1,...,k2+λn−1,k2−λn,...,k2−λ0)(x1, . . . , xn, x̄1, . . . , x̄n)

=

det


(
x
k1+λj+2n−j
i

)
1≤i≤n

1≤j≤n

(
x
k1−λn−j+n−j
i

)
1≤i≤n

1≤j≤n(
x̄
k1+λj+2n−j
i

)
1≤i≤n

1≤j≤n

(
x̄
k1−λn−j+n−j
i

)
1≤i≤n

1≤j≤n



+ det


(
x
k2+λj+2n−j
i

)
1≤i≤n

1≤j≤n−1

(
x
k2−λn−j+n−j
i

)
1≤i≤n

0≤j≤n(
x̄
k2+λj+2n−j
i

)
1≤i≤n

1≤j≤n−1

(
x̄
k2−λn−j+n−j
i

)
1≤i≤n

0≤j≤n


/

(∏n
i=1(xi − x̄i)

∏
1≤i<j≤n(xi − xj)(x̄i − x̄j)(xi − x̄j)(xj − x̄i)

)
. (25)

By multiplying row i in the top blocks of the first matrix in (25) by x̄k1+ni , row i in the bottom

blocks of the first matrix by xk1+ni , row i in the top blocks of the second matrix by x̄k2+ni , and

row i in the bottom blocks of the second matrix by xk2+ni , for each i = 1, . . . , n, it follows that

the numerator of the RHS of (25) is

det


(
x
λj+n−j
i

)
1≤i≤n

1≤j≤n

(
x̄
λn−j+j
i

)
1≤i≤n

1≤j≤n(
x̄
λj+n−j
i

)
1≤i≤n

1≤j≤n

(
x
λn−j+j
i

)
1≤i≤n

1≤j≤n

+ det


(
x
λj+n−j
i

)
1≤i≤n

1≤j≤n−1

(
x̄
λn−j+j
i

)
1≤i≤n

0≤j≤n(
x̄
λj+n−j
i

)
1≤i≤n

1≤j≤n−1

(
x
λn−j+j
i

)
1≤i≤n

0≤j≤n

 . (26)

Since the two matrices in (26) differ by only a single column (specifically, column n), the sum

of their determinants is the single determinant

det


(
x
λj+n−j
i

)
1≤i≤n

1≤j≤n−1

(
xλni + x̄λni

)
1≤i≤n

(
x̄
λn−j+j
i

)
1≤i≤n

1≤j≤n(
x̄
λj+n−j
i

)
1≤i≤n

1≤j≤n−1

(
xλni + x̄λni

)
1≤i≤n

(
x
λn−j+j
i

)
1≤i≤n

1≤j≤n

 .

By reversing the order of the columns in the rightmost blocks of the matrix, it follows that

the previous determinant is

(−1)n(n−1)/2 det


(
x
λj+n−j
i

)
1≤i≤n

1≤j≤n−1

(
xλni + x̄λni

)
1≤i≤n

(
x̄λ0+ni

)
1≤i≤n

(
x̄
λj+n−j
i

)
1≤i≤n

1≤j≤n−1(
x̄
λj+n−j
i

)
1≤i≤n

1≤j≤n−1

(
xλni + x̄λni

)
1≤i≤n

(
xλ0+ni

)
1≤i≤n

(
x
λj+n−j
i

)
1≤i≤n

1≤j≤n−1

 .

It can be seen, by applying standard determinant operations, that for any n×(n−1) matrices A

and B, and n× 1 matrices c, d and e,

det

(
A c d B

B c e A

)
= det

(
A+B c d B

A+B c e A

)
= det

(
A+B c d B

0 0 e− d A−B

)
= det(A+B | c) det(e− d |A−B). (27)

Taking Aij = x
λj+n−j
i , Bij = x̄

λj+n−j
i , ci = xλni + x̄λni , di = x̄λ0+ni and ei = xλ0+ni , for 1 ≤ i ≤ n

and 1 ≤ j ≤ n− 1, in (27), it follows that the numerator of the RHS of (25) is

(−1)n(n−1)/2 det
1≤i,j≤n

(
x
λj+n−j
i + x̄

λj+n−j
i

)
det

1≤i,j≤n

(
x
λj−1+n−j+1
i − x̄λj−1+n−j+1

i

)
.
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Finally, by observing that the denominator of the RHS of (25) is the same as the denominator

of the RHS of (22) (and hence given by (24)), and using the odd and even orthogonal character

expressions (3) and (4), it follows that the RHS of (25) is

(1 + δλn,0) so
odd
(λ0+1/2,...,λn−1+1/2)(x1, . . . , xn) oeven(λ1,...,λn)

(x1, . . . , xn)
/∏n

i=1

(
x
1/2
i + x̄

1/2
i

)
,

as required. �

Proof of Theorem 3. Using the Schur polynomial expression (1), the Schur polynomial on the

LHS of (11) is

s(k+λ1,...,k+λn,k−λn,...,k−λ0)(x1, . . . , xn, x̄1, . . . , x̄n, 1)

=

det


(
x
k+λj+2n−j+1
i

)
1≤i≤n

1≤j≤n

(
x
k−λn−j+n−j
i

)
1≤i≤n

0≤j≤n(
x̄
k+λj+2n−j+1
i

)
1≤i≤n

1≤j≤n

(
x̄
k−λn−j+n−j
i

)
1≤i≤n

0≤j≤n

(1)1≤j≤n (1)0≤j≤n


∏n

i=1(xi − x̄i)(xi − 1)(x̄i − 1)
∏

1≤i<j≤n(xi − xj)(x̄i − x̄j)(xi − x̄j)(xj − x̄i)
. (28)

By multiplying row i in the top blocks of the matrix in (28) by x̄
k+n+1/2
i and row i in the

central blocks by x
k+n+1/2
i , for each i = 1, . . . , n, and reversing the order of the columns in the

right blocks, it follows that the numerator of the RHS of (28) is

(−1)n(n+1)/2 det


(
x
λj+n−j+1/2
i

)
1≤i≤n

1≤j≤n

(
x̄
λj+n−j+1/2
i

)
1≤i≤n

0≤j≤n(
x̄
λj+n−j+1/2
i

)
1≤i≤n

1≤j≤n

(
x
λj+n−j+1/2
i

)
1≤i≤n

0≤j≤n

(1)1≤j≤n (1)0≤j≤n

 .

It can be seen, by applying standard determinant operations, that for any matrices (Aij)1≤i≤n

0≤j≤n

and (Bij)1≤i≤n

0≤j≤n

,

det


(Aij)1≤i≤n

1≤j≤n

(Bij)1≤i≤n

0≤j≤n

(Bij)1≤i≤n

1≤j≤n

(Aij)1≤i≤n

0≤j≤n

(1)1≤j≤n (1)0≤j≤n

 = det


(Aij −Bij)1≤i≤n

1≤j≤n

(Bij)1≤i≤n

0≤j≤n

(Bij − Aij)1≤i≤n

1≤j≤n

(Aij)1≤i≤n

0≤j≤n

(0)1≤j≤n (1)0≤j≤n



= det


(Aij −Bij)1≤i≤n

1≤j≤n

(Bij)1≤i≤n

0≤j≤n

(0)1≤i≤n

1≤j≤n

(Aij +Bij)1≤i≤n

0≤j≤n

(0)1≤j≤n (1)0≤j≤n

 = det
1≤i,j≤n

(
Aij −Bij

)
det

(
(Aij +Bij)1≤i≤n

0≤j≤n

(1)0≤j≤n

)

= 1
2

det
1≤i,j≤n

(
Aij −Bij

)
det

(
(Aij +Bij)1≤i≤n

0≤j≤n

(2)0≤j≤n

)
. (29)



FACTORIZATION THEOREMS FOR CLASSICAL GROUP CHARACTERS 11

Taking Aij = x
λj+n−j+1/2
i and Bij = x̄

λj+n−j+1/2
i , for 1 ≤ i ≤ n and 0 ≤ j ≤ n, in (29), it

follows that the numerator of the RHS of (28) is

1
2

(−1)n(n+1)/2 det
1≤i,j≤n

(
x
λj+n−j+1/2
i − x̄λj+n−j+1/2

i

)
det

 (
x
λj+n−j+1/2
i + x̄

λj+n−j+1/2
i

)
1≤i≤n

0≤j≤n

(2)0≤j≤n

 .

By observing that the denominator of the RHS of (28) is

(−1)n(n+1)/2
∏n

i=1

(
xi − x̄i

)(
xi + x̄i − 2

) ∏
1≤i<j≤n(xi + x̄i − xj − x̄j)2, (30)

and using the odd and even orthogonal character expressions (3) and (4), it follows that the

RHS of (28) is

soodd
(λ1,...,λn)

(x1, . . . , xn) oeven(λ0+1/2,...,λn+1/2)(x1, . . . , xn, 1)
/(

2
∏n

i=1

(
x
1/2
i + x̄

1/2
i

))
,

as required for the proof of (11).

The proof of (12) can be obtained by slightly modifying the proof of (11). The details will be

omitted. �

Proof of Proposition 4. Using (4), we have

(1 + δλn,0) o
even
(λ0,...,λn)

(x1, . . . , xn, 1) =

det

 (
x
λj+n−j
i + x̄

λj+n−j
i

)
1≤i≤n

0≤j≤n

(2)0≤j≤n


∏n

i=1

(
xi + x̄i − 2

) ∏
1≤i<j≤n(xi + x̄i − xj − x̄j)

. (31)

By subtracting column j of the matrix from column j − 1, for each j = 1, . . . , n, it follows

that the numerator of the RHS of (31) is

2 det
1≤i,j≤n

(
x
λj−1+n−j+1
i + x̄

λj−1+n−j+1
i − xλj+n−ji − x̄λj+n−ji

)
.

Now let (λ0, . . . , λn) be given by (13). Then λj = λj−1 − b, for 1 ≤ j ≤ n. Therefore, the

numerator of the RHS of (31) is

2 det
1≤i,j≤n

(
x
λj−1+n−j+1
i + x̄

λj−1+n−j+1
i − xλj−1−b+n−j

i − x̄λj−1−b+n−j
i

)
= 2 det

1≤i,j≤n

((
x
(b+1)/2
i − x̄(b+1)/2

i

)(
x
λj−1−b/2+n−j+1/2
i − x̄λj−1−b/2+n−j+1/2

i

))
= 2

∏n
i=1

(
x
(b+1)/2
i − x̄(b+1)/2

i

)
det

1≤i,j≤n

(
x
λj−1−b/2+n−j+1/2
i − x̄λj−1−b/2+n−j+1/2

i

)
= 2

∏n
i=1

(
x
1/2
i − x̄

1/2
i

)(∑b/2
j=−b/2 x

j
i

)
det

1≤i,j≤n

(
x
λj−1−b/2+n−j+1/2
i − x̄λj−1−b/2+n−j+1/2

i

)
.

Using (3) and the denominator of the RHS of (31), we now obtain (14), as required. �

Proof of Proposition 5. Using (4), we have

oeven(λ0+1/2,...,λn+1/2)(x1, . . . , xn, 1) =

det

 (
x
λj+n−j+1/2
i + x̄

λj+n−j+1/2
i

)
1≤i≤n

0≤j≤n

(2)0≤j≤n


∏n

i=1

(
xi + x̄i − 2

) ∏
1≤i<j≤n(xi + x̄i − xj − x̄j)

. (32)

By subtracting column j + 1 of the matrix from column j − 1, for each j = 1, . . . , n− 1, and

subtracting column n from column n− 1, it follows that the numerator of the RHS of (32) is
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2 det
((
x
λj−1+n−j+3/2
i + x̄

λj−1+n−j+3/2
i − xλj+1+n−j−1/2

i − x̄λj+1+n−j−1/2
i

)
1≤i≤n

1≤j≤n−1

∣∣∣(
x
λn−1+3/2
i + x̄

λn−1+3/2
i − xλn+1/2

i − x̄λn+1/2
i

)
1≤i≤n

)
.

Now let (λ0, . . . , λn) be given by (15). Then λj+1 = λj−1 − b, for 1 ≤ j ≤ n − 1, and

λn = b− λn−1. Therefore, the numerator of the RHS of (32) is

2 det
((
x
λj−1+n−j+3/2
i + x̄

λj−1+n−j+3/2
i − xλj−1−b+n−j−1/2

i − x̄λj−1−b+n−j−1/2
i

)
1≤i≤n

1≤j≤n−1

∣∣∣(
x
λn−1+3/2
i + x̄

λn−1+3/2
i − x̄λn−1−b−1/2

i − xλn−1−b−1/2
i

)
1≤i≤n

)
= 2 det

1≤i,j≤n

(
x
λj−1+n−j+3/2
i + x̄

λj−1+n−j+3/2
i − xλj−1−b+n−j−1/2

i − x̄λj−1−b+n−j−1/2
i

)
= 2 det

1≤i,j≤n

((
x
b/2+1
i − x̄b/2+1

i

)(
x
λj−1−b/2+n−j+1/2
i − x̄λj−1−b/2+n−j+1/2

i

))
= 2

∏n
i=1

(
x
b/2+1
i − x̄b/2+1

i

)
det

1≤i,j≤n

(
x
λj−1−b/2+n−j+1/2
i − x̄λj−1−b/2+n−j+1/2

i

)
= 2

∏n
i=1

(
x
1/2
i − x̄

1/2
i

)(∑(b+1)/2
j=−(b+1)/2 x

j
i

)
det

1≤i,j≤n

(
x
λj−1−b/2+n−j+1/2
i − x̄λj−1−b/2+n−j+1/2

i

)
.

Using (3) and the denominator of the RHS of (32), we now obtain (16), as required. �

5. Applications

In this section, we obtain certain previously-known Schur polynomial factorization identities

as corollaries of Theorems 1–3, and we consider some combinatorial aspects of our results.

Throughout the section, the notation

rn = r, . . . , r︸ ︷︷ ︸
n times

will be used, where r is a value of a variable of a character, or an entry of a partition or

half-partition.

5.1. General considerations. In addition to the determinant expressions (1)–(4) for the clas-

sical group characters, there exist combinatorial expressions in which each function is given

as a weighted sum over certain tableaux, where the weight of a tableau T typically has the

form
∏n

i=1 x
ki(T )
i , for integers or half-integers ki(T ). Hence, the characters can be regarded as

multivariate generating functions for such tableaux. The simplest case is that of the Schur

polynomial s(λ1,...,λn)(x1, . . . , xn), which is a weighted sum over all semistandard Young tableaux

of shape (λ1, . . . , λn) with entries from {1, . . . , n}, where the weight of such a tableau T is∏n
i=1 x

number of i’s in T
i . In the cases of symplectic and orthogonal characters, (2)–(4), there are

several different types of tableaux which can be used. For further information regarding combi-

natorial expressions for characters, see, for example, Krattenthaler [19, Appendix], Fulmek and

Krattenthaler [16, Sec. 3], and Sundaram [46].

It follows that the main results of this paper, Theorems 1–3, can be interpreted combinatorially

as factorization identities satisfied by generating functions for tableaux. Accordingly, it would

be interesting to obtain combinatorial proofs of these identities, as will be done in [6].

If all of the variables x1, . . . , xn in the characters (1)–(4) are set to 1, then this gives the

numbers of associated tableaux, and the dimensions of associated irreducible representations.
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There exist product formulae for each of these numbers, as follows. For a partition (λ1, . . . , λn),

s(λ1,...,λn)(1
n) =

∏
1≤i<j≤n(λi − λj − i+ j)∏n−1

i=1 i!
(33)

and

sp(λ1,...,λn)(1
n)

=

∏n
i=1(λi − i+ n+ 1)

∏
1≤i<j≤n(λi − λj − i+ j)(λi + λj − i− j + 2n+ 2)∏n

i=1(2i− 1)!
, (34)

and for a partition or half-partition (λ1, . . . , λn),

soodd
(λ1,...,λn)

(1n)

=

∏n
i=1(2λi − 2i+ 2n+ 1)

∏
1≤i<j≤n(λi − λj − i+ j)(λi + λj − i− j + 2n+ 1)∏n

i=1(2i− 1)!
(35)

and

oeven(λ1,...,λn)
(1n) =

2n
∏

1≤i<j≤n(λi − λj − i+ j)(λi + λj − i− j + 2n)

(1 + δλn,0)
∏n−1

i=1 (2i)!
. (36)

By combining (8) and (36), it follows that, for a partition or half-partition (λ1, . . . , λn),

soodd
(λ1,...,λn)

((−1)n) =
(−1)

∑n
i=1 λi

∏
1≤i<j≤n(λi − λj − i+ j)(λi + λj − i− j + 2n+ 1)∏n−1

i=1 (2i)!
. (37)

For further information regarding (33)–(36), and derivations using Weyl’s denominator for-

mula, see, for example, Fulton and Harris [17, Ch. 24].

We now proceed to the consideration of plane partitions and related combinatorial objects

(such as rhombus tilings), and alternating sign matrices and related combinatorial objects (such

as alternating sign triangles). For definitions and information regarding plane partitions, al-

ternating sign matrices, and symmetry classes of these objects, see, for example, Bressoud [9],

Krattenthaler [23], and Behrend, Fischer and Konvalinka [8, Secs. 1.2 & 1.3]. Of particular

relevance here are the facts that the sizes of certain sets of these objects are given by product

formulae, and that in all of the cases which will be considered, these product formulae can be

related to cases of the product formulae (33)–(37) in which the partition is of rectangular or

double-staircase shape. The rectangular shapes are associated with exact equalities between

numbers of plane partitions and specializations of (33)–(37) (as will be seen in the list in Sub-

section 5.2), while the double-staircase shapes are associated with equalities, up to certain simple

prefactors (which are typically powers of 3), between numbers of plane partitions or alternating

sign matrices and specializations of (33)–(37) (as will be seen in the list in Subsection 5.3). In the

rectangular cases, certain combinatorial connections can be found between the plane partitions

and tableaux enumerated by the same formula. The simplest example is that of equality between

the number of plane partitions in an a×b×c box and the number of semistandard Young tableaux

of shape (ab, 0c) with entries from {1, . . . , b + c}, for which there is an almost-trivial bijection

between the respective sets of objects. On the other hand, no such combinatorial connections

are currently known for any of the double-staircase cases. Furthermore, in some of these cases,

there are several different types of plane partitions, alternating sign matrices or related objects

which are enumerated by the same product formula, but without a bijective explanation for the
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equalities currently known. We note that the explicit appearance of characters of classical groups

in the enumeration of alternating sign matrices was first obtained, algebraically, by Okada [33].

In the next two subsections, the partitions in the general theorems of Section 3 will first be

specialized to have rectangular shape (Subsection 5.2) or double-staircase shape (Subsection 5.3),

which will lead to factorization identities of Okada [32], Ciucu and Krattenthaler [14], Behrend,

Fischer and Konvalinka [8], and Ayyer, Behrend and Fischer [5]. Then, all of the variables in

these results will be set to 1, which, using the relations discussed above, will lead to factorization

identities for numbers of plane partitions, alternating sign matrices or related objects. Almost all

of these identities have appeared previously in the literature, at least in some form, and although

they can easily be verified directly using the product formulae for the relevant objects, it seems

interesting that they can also be regarded as specializations of multivariate factorization results.

5.2. Partitions of rectangular shape. In the results in this subsection, m is a nonnegative

integer.

The following result, which is a corollary of Theorem 1, was noted without proof by Okada [32,

Lem. 5.2, 1st Eq.], and proved by Ciucu and Krattenthaler [14, Thms. 3.1 & 3.2].

Corollary 6. We have

s((2m)n,0n)(x1, . . . , xn, x̄1, . . . , x̄n) = (−1)mn soodd
(mn)(x1, . . . , xn) soodd

(mn)(−x1, . . . ,−xn) (38)

and

s((2m+1)n,0n)(x1, . . . , xn, x̄1, . . . , x̄n) = sp(mn)(x1, . . . , xn) oeven((m+1)n)(x1, . . . , xn). (39)

Proof. Taking (λ1, . . . , λn) = (mn) in (18) and (19) gives (38) and (39), respectively. �

The following result, which is a corollary of Theorem 2, was obtained by Ciucu and Kratten-

thaler [14, Thms. 3.3 & 3.4].

Corollary 7. We have

s((2m)n,0n)(x1, . . . , xn, x̄1, . . . , x̄n) + s((2m)n−1,0n+1)(x1, . . . , xn, x̄1, . . . , x̄n)

= (1 + δm,0) sp(mn)(x1, . . . , xn) oeven(mn)(x1, . . . , xn) (40)

and

s((2m+1)n,0n)(x1, . . . , xn, x̄1, . . . , x̄n) + s((2m+1)n−1,0n+1)(x1, . . . , xn, x̄1, . . . , x̄n)

= (−1)mn soodd
((m+1)n)(x1, . . . , xn) soodd

(mn)(−x1, . . . ,−xn). (41)

Proof. Taking (λ0, . . . , λn) = (mn+1) in (20) and (21) gives (40) and (41), respectively. �

The following result, which is a corollary of Theorem 3 and Proposition 4, was noted without

proof by Okada [32, Lem. 5.2, 2nd Eq.].

Corollary 8. We have

s((2m)n,0n+1)(x1, . . . , xn, x̄1, . . . , x̄n, 1) = sp(mn)(x1, . . . , xn) soodd
(mn)(x1, . . . , xn) (42)

and

s((2m+1)n,0n+1)(x1, . . . , xn, x̄1, . . . , x̄n, 1) = sp(mn)(x1, . . . , xn) soodd
((m+1)n)(x1, . . . , xn). (43)
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Proof. To obtain (42), take (λ0, . . . , λn) = (mn+1) and k = m in the − case of (12), and apply (7)

to the odd orthogonal character. Then take a = m and b = 0 in (13), and apply (14) to the even

orthogonal character. To obtain (43), take (λ0, . . . , λn) =
(
(m+ 1

2
)n+1

)
and k = m+ 1

2
in (11),

and apply (7) to the odd orthogonal character. Then take a = m + 1 and b = 0 in (13), and

apply (14) to the even orthogonal character. �

We now set xi = 1, for each i, in (38)–(43). The terms in the resulting equations can then be

identified as follows, for appropriate a, b and c.

• We have

s(ab,0c)(1
b+c) =

a∏
i=1

b∏
j=1

c∏
k=1

i+ j + k − 1

i+ j + k − 2
,

which is the number of plane partitions in an a× b× c box (MacMahon [28, Sec. 429]). We

denote this number as PP(a, b, c).

• We have

(−1)absoodd
(ab)((−1)b) = sp(ab−1)(1

b−1) =
∏

1≤i<j≤b

i+ j + 2a− 1

i+ j − 1
,

which is the number of transpose complementary plane partitions in a (2a) × b × b box

(Proctor [34, 35]). We denote this number as TCPP(2a, b, b).

• We have

soodd
(ab)(1

b) =
∏

1≤i≤j≤b

i+ j + 2a− 1

i+ j − 1
,

which is the number of symmetric plane partitions in a (2a)× b× b box (Andrews [1]). We

denote this number as SPP(2a, b, b). Note that SPP(2a, b, b) is also the number of certain

weighted rhombus tilings of a half-hexagon, as shown by Ciucu [10, Sec. 6]. (However, no

bijective explanation for this is currently known.) More specifically, using the notation of

Ciucu [10, Eq. (6.1)], SPP(2a, b, b) = 2bM(H(b, b, 2a)−).

• We have

oeven(ab) (1b) = 2
∏

1≤i<j≤b

i+ j + 2a− 2

i+ j − 2
,

which is the number of certain restricted symmetric plane partitions in a (2a) × b × b box

(Ciucu and Krattenthaler [14, pp. 54–56]). We denote this number as SPP∗(2a, b, b). Note

that SPP∗(2a, b, b) = 2 SPP(2a, b− 1, b− 1).

By using a simple bijection between plane partitions and rhombus tilings, each of the previous

cases can be stated in terms of the latter. For example, PP(a, b, c) is the number of rhombus

tilings of a hexagon with side lengths a, b, c, a, b, c, TCPP(2a, b, b) is the number of rhombus

tilings of a hexagon with side lengths 2a, b, b, 2a, b, b which are symmetric with respect to the

line bisecting the two sides of length 2a, and SPP(2a, b, b) is the number of rhombus tilings of a

hexagon with side lengths 2a, b, b, 2a, b, b which are symmetric with respect to the line joining

the two points where sides of length b meet.

Some additional remarks regarding the identifications in the previous list, and the identifi-

cations which will appear in the analogous list in Subsection 5.3, are as follows. The initial

equalities (up to prefactors) between characters with all variables set to ±1 and explicit prod-

uct formulae can be obtained straightforwardly using (33)–(37). The further equalities between

explicit product formulae and numbers of plane partitions, alternating sign matrices or related

objects are fundamental results in the enumeration of these objects and their symmetry classes.
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The references given in parentheses are for the first proofs of these results. However, in most

cases, several later proofs are also known, and in some cases, the result was conjectured in the

literature long before being proved. The references for the later proofs and conjectures are omit-

ted here. Also note that the explicit product formulae often appear in the literature in several

different forms, but that the equality between the forms can be obtained straightforwardly.

By applying identifications in the previous list, the results (38)–(43) with all variables set to 1

give the following factorization identities for numbers of plane partitions:

PP(2m,n, n) = SPP(2m,n, n) TCPP(2m,n, n), (44)

PP(2m+ 1, n, n) = SPP∗(2m+ 2, n, n) TCPP(2m,n+ 1, n+ 1), (45)

PP(2m+ 1, n, n) + PP(2m+ 1, n− 1, n+ 1)

= SPP(2m+ 2, n, n) TCPP(2m,n, n), (46)

PP(2m,n, n) + PP(2m,n− 1, n+ 1)

= SPP∗(2m,n, n) TCPP(2m,n+ 1, n+ 1), (47)

PP(2m,n, n+ 1) = SPP(2m,n, n) TCPP(2m,n+ 1, n+ 1), (48)

PP(2m+ 1, n, n+ 1) = SPP(2m+ 2, n, n) TCPP(2m,n+ 1, n+ 1). (49)

Note that (44)–(47) were previously obtained from (38)–(41) by Ciucu and Krattenthaler [14,

Eqs. (3.26), (3.29), (3.36), (3.37)]. For a recent generalization of (44), see Ciucu and Kratten-

thaler [15, Thm. 2.1].

5.3. Partitions of double-staircase shape. The following result, which is a corollary of The-

orem 1, was noted without proof by Ayyer, Behrend and Fischer [5, Remark 6.4].

Corollary 9. We have

s(2n,2n−1,2n−1,2n−2,2n−2,...,2,2,1,1,0)(x1, . . . , x2n, x̄1, . . . , x̄2n)

= (−1)n soodd
(n,n−1,n−1,n−2,n−2,...,2,2,1,1,0)(x1, . . . , x2n)

× soodd
(n,n−1,n−1,n−2,n−2,...,2,2,1,1,0)(−x1, . . . ,−x2n) (50)

and

s(2n+1,2n,2n,2n−1,2n−1,...,2,2,1,1,0)(x1, . . . , x2n+1, x̄1, . . . , x̄2n+1)

= sp(n,n−1,n−1,n−2,n−2,...,1,1,0,0)(x1, . . . , x2n+1) o
even
(n+1,n,n,n−1,n−1,...,2,2,1,1)(x1, . . . , x2n+1). (51)

Proof. Replacing n by 2n in (18), and then taking (λ1, . . . , λ2n) = (n, n − 1, n − 1, n − 2, n −
2, . . . , 2, 2, 1, 1, 0) in that equation gives (50). Replacing n by 2n + 1 in (19), and then taking

(λ1, . . . , λ2n+1) = (n, n− 1, n− 1, n− 2, n− 2, . . . , 1, 1, 0, 0) in that equation gives (51). �

The following result, which is a corollary of Theorem 1, was also noted without proof by

Ayyer, Behrend and Fischer [5, Remark 5.4].

Corollary 10. We have

s(2n,2n,2n−1,2n−1,...,1,1,0,0)(x1, . . . , x2n+1, x̄1, . . . , x̄2n+1)

= soodd
(n,n,n−1,n−1,...,2,2,1,1,0)(x1, . . . , x2n+1) so

odd
(n,n,n−1,n−1,...,2,2,1,1,0)(−x1, . . . ,−x2n+1) (52)
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and

s(2n−1,2n−1,2n−2,2n−2,...,1,1,0,0)(x1, . . . , x2n, x̄1, . . . , x̄2n)

= sp(n−1,n−1,n−2,n−2,...,1,1,0,0)(x1, . . . , x2n) oeven(n,n,n−1,n−1,...,2,2,1,1)(x1, . . . , x2n). (53)

Proof. Replacing n by 2n + 1 in (18), and then taking (λ1, . . . , λ2n+1) = (n, n, n − 1, n −
1, . . . , 2, 2, 1, 1, 0) in that equation gives (52). Replacing n by 2n in (19), and then taking

(λ1, . . . , λ2n) = (n− 1, n− 1, n− 2, n− 2, . . . , 1, 1, 0, 0) in that equation gives (53). �

The following result, which is a corollary of Theorem 3 and Proposition 5, was noted without

proof by Behrend, Fischer and Konvalinka [8, Eq. (63)]. A form of this result in which the odd

orthogonal characters on the RHSs of (54) and (55) are replaced by certain symplectic characters

was obtained previously by Zinn-Justin [48, Eq. (54)].

Corollary 11. We have

s(2n,2n−1,2n−1,2n−2,2n−2,...,1,1,0,0)(x1, . . . , x2n, x̄1, . . . , x̄2n, 1) =
2n∏
i=1

(x̄i + 1 + xi)

× soodd
(n,n−1,n−1,n−2,n−2,...,2,2,1,1,0)(x1, . . . , x2n) sp(n−1,n−1,n−2,n−2,...,1,1,0,0)(x1, . . . , x2n) (54)

and

s(2n+1,2n,2n,2n−1,2n−1,...,1,1,0,0)(x1, . . . , x2n+1, x̄1, . . . , x̄2n+1, 1) =
2n+1∏
i=1

(x̄i + 1 + xi)

× soodd
(n,n,n−1,n−1,...,2,2,1,1,0)(x1, . . . , x2n+1) sp(n,n−1,n−1,n−2,n−2,...,1,1,0,0)(x1, . . . , x2n+1). (55)

Proof. To obtain (54), replace n by 2n in (11), (15) and (16), and let (λ0, . . . , λ2n) be given

by (15) with a = 0 and b = 1. Then use (11) and (16), with k = n, and apply (7) to the odd

orthogonal character in (16).

To obtain (55), replace n by 2n + 1 in (11), (15) and (16), and let (λ0, . . . , λ2n+1) be given

by (15) with a = 0 and b = 1. Then use (11) and (16), with k = n+ 1, and apply (7) to the odd

orthogonal character in (16). Finally, use (6) to obtain s(2n+1,2n+1,2n,2n,...,2,2,1,1,0)(x1, . . . , x2n+1,

x̄1, . . . , x̄2n+1, 1) = s(2n+1,2n,2n,2n−1,2n−1,...,1,1,0,0)(x1, . . . , x2n+1, x̄1, . . . , x̄2n+1, 1). �

Note that several of the characters in (50)–(55) are related to partition functions of certain

cases of the six-vertex model. For further details, see Ayyer, Behrend and Fischer [5, Thms. 6.3

& 5.3], Behrend, Fischer and Konvalinka [8, Cor. 4], Okada [33, Thms. 2.4 & 2.5], Razumov and

Stroganov [37, Thms. 2, 3 & 5], [38, Eqs. (28) & (31)] and Stroganov [44, Eqs. (6) & (11)], [45,

Eq. (17)].

We now set xi = 1, for each i, in (52)–(55). The terms in the resulting equations can

then be identified as follows, for appropriate m (where the remarks made regarding the list in

Subsection 5.2 again apply).

• We have

3−m(m−1)/2 s(m,m−1,m−1,m−2,m−2,...,2,2,1,1,0)(1
2m) =

m−1∏
i=0

(3i+ 2)(3i)!

(m+ i)!
,

which is the number of cyclically symmetric plane partitions in an m×m×m box (Andrews [2,

3]), and the number of quasi alternating sign triangles with m rows (Ayyer, Behrend and

Fischer [5]). We denote this number as CSPP(m).
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• We have

3−m(m−1)/2 s(m−1,m−1,m−2,m−2,...,1,1,0,0)(1
2m) =

m−1∏
i=0

(3i+ 1)!

(m+ i)!
,

which is the number of each of the following: m×m alternating sign matrices (Zeilberger [47],

Kuperberg [24]), order m descending plane partitions (Andrews [2, 3]), totally symmetric self-

complementary plane partitions in a (2m)× (2m)× (2m) box (Andrews [4]), and alternating

sign triangles with m rows (Ayyer, Behrend and Fischer [5]). We denote this number as

ASM(m).

• We have

3−m(m−1)/2 s(m,m−1,m−1,m−2,m−2,...,2,2,1,1,0,0)(1
2m+1) =

m∏
i=0

(3i)!

(m+ i)!
,

which is the number of (2m + 1) × (2m + 1) diagonally and antidiagonally symmetric al-

ternating sign matrices (Behrend, Fischer and Konvalinka [8]). We denote this number as

DASASM(2m+ 1).

• We have

3−m(m−1)soodd
(m,m−1,m−1,m−2,m−2,...,2,2,1,1,0)(1

2m)

= 1
2

3−m(m+1)oeven(m+1,m,m,m−1,m−1,...,2,2,1,1)(1
2m+1) =

m∏
i=1

(6i− 1) (6i− 3)!

(2i− 1) (2m+ 2i− 1)!
,

which is the number of totally symmetric plane partitions in a (2m)×(2m)×(2m) box (Stem-

bridge [43]). We denote this number as TSPP(2m, 2m, 2m). Note that TSPP(2m, 2m, 2m)

is also the number of certain weighted rhombus tilings of a pentagonal region, as shown by

Ciucu and Krattenthaler [13, Sec. 4]. More specifically, using notation of Ciucu and Krat-

tenthaler [13, Eqs. (4.2)–(4.5) & Fig. 4.2], TSPP(2m, 2m, 2m) = 22mL(R−
1 )|n=m,x=0, or using

notation of Lai and Rohatgi [26, Eq. (4.4) & Fig. 4.1(d)], TSPP(2m, 2m, 2m) = 22m M(∗∗Gm,1).
• We have

3−(m−1)2soodd
(m−1,m−1,m−2,m−2,...,2,2,1,1,0)(1

2m−1)

= 1
2

3−m2

oeven(m,m,m−1,m−1,...,2,2,1,1)(1
2m) =

m−1∏
i=0

(6i+ 1)!

(2m+ 2i− 1)!
,

which is the number of certain weighted rhombus tilings of a pentagonal region (Ciucu

and Krattenthaler [13, Sec. 4]). We denote this number as R(2m). More specifically,

using notation of Ciucu and Krattenthaler [13, Eqs. (4.2)–(4.5) & Fig. 4.2], R(2m) =

22m−2L(R−
1 )|n=m−1,x=1, or using notation of Lai and Rohatgi [26, Eq. (4.4) & Fig. 4.1(d)],

R(2m) = 22m−2 M(∗∗Gm−1,2).

• We have

(−1)m 3−m2

soodd
(m,m−1,m−1,m−2,m−2,...,2,2,1,1,0)((−1)2m)

= 3−(m−1)2sp(m−1,m−2,m−2,m−3,m−3,...,1,1,0,0)(1
2m−1) =

m−1∏
i=0

(2i+ 1) (6i+ 2)!

(6i+ 1) (2m+ 2i)!
,

which is the number of cyclically symmetric transpose complementary plane partitions in a

(2m) × (2m) × (2m) box (Mills, Robbins and Rumsey [31]), and the number of vertically
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symmetric quasi alternating sign triangles with 2m rows (Behrend and Fischer [7]). We

denote this number as CSTCPP(2m, 2m, 2m).

• We have

3−m(m+1)soodd
(m,m,m−1,m−1,...,2,2,1,1,0)((−1)2m+1)

= 3−m(m−1)sp(m−1,m−1,m−2,m−2,...,2,2,1,1,0,0)(1
2m) =

m∏
i=1

(6i− 2)!

(2m+ 2i)!
,

which is the number of each of the following: (2m + 1) × (2m + 1) vertically symmet-

ric alternating sign matrices (Kuperberg [25]), order 2m + 1 descending plane partitions

invariant under a certain involution τ of Mills, Robbins and Rumsey [29, pp. 351–353]

(Mills, Robbins and Rumsey [31]), totally symmetric self-complementary plane partitions

in a (4m + 2) × (4m + 2) × (4m + 2) box invariant under a certain involution γ of Mills,

Robbins and Rumsey [30, p. 286] (Ishikawa [18]), (2m) × (2m) off-diagonally symmetric al-

ternating sign matrices (Kuperberg [25]), and vertically symmetric alternating sign triangles

with 2m+ 1 rows (Behrend and Fischer [7]). We denote this number as VSASM(2m+ 1).

As indicated in Subsection 5.1, no bijective explanations are currently known for any of the

equalities between numbers of objects in the previous list.

On the other hand, by using a simple bijection between plane partitions and rhombus tilings,

several cases can be stated in terms of the latter, as follows. Cyclically symmetric plane partitions

in an m × m × m box are in bijection with rhombus tilings of a regular hexagon with side

length m which are invariant under rotation by 120◦. Order m descending plane partitions are

in bijection with rhombus tilings of a hexagon with alternating sides of lengths m− 1 and m+ 1

and a central equilateral triangular hole with side length 2, which are invariant under rotation

by 120◦. See Krattenthaler [22]. Totally symmetric self-complementary plane partitions in a

(2m) × (2m) × (2m) box are in bijection with rhombus tilings of a regular hexagon with side

length 2m which are invariant under all symmetry operations (i.e., rotation by 60◦ and reflection

in all six symmetry axes). Totally symmetric plane partitions in a (2m)×(2m)×(2m) box are in

bijection with rhombus tilings of a regular hexagon with side length 2m which are invariant under

rotation by 120◦ and reflection in any symmetry axis passing through two vertices. Cyclically

symmetric transpose complementary plane partitions in a (2m)×(2m)×(2m) box are in bijection

with rhombus tilings of a regular hexagon with side length 2m which are invariant under rotation

by 120◦ and reflection in any symmetry axis bisecting two sides. Order 2m+ 1 descending plane

partitions invariant under the involution τ defined by Mills, Robbins and Rumsey [29, pp. 351–

353] are in bijection with rhombus tilings of a hexagon with alternating sides of lengths 2m

and 2m + 2 and a central equilateral triangular hole with side length 2, which are invariant

under rotation by 120◦ and reflection in any symmetry axis (i.e., a line bisecting two sides). See

Krattenthaler [22].

By applying the identifications in the previous list, the results (50)–(55) with all variables set

to 1 give the following factorization identities for numbers of plane partitions, alternating sign

matrices and related objects:

CSPP(2n, 2n, 2n) = TSPP(2n, 2n, 2n) CSTCPP(2n, 2n, 2n), (56)

CSPP(2n+ 1, 2n+ 1, 2n+ 1) = 2 TSPP(2n, 2n, 2n) CSTCPP(2n+ 2, 2n+ 2, 2n+ 2), (57)

ASM(2n+ 1) = R(2n+ 2) VSASM(2n+ 1), (58)

ASM(2n) = 2 R(2n) VSASM(2n+ 1), (59)
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DASASM(4n+ 1) = 3n TSPP(2n, 2n, 2n) VSASM(2n+ 1), (60)

DASASM(4n+ 3) = 3n+1 R(2n+ 2) CSTCPP(2n+ 2, 2n+ 2, 2n+ 2). (61)

Note that (56) and (57) are closely related to results of Mills, Robbins and Rumsey [31, Thm. 5

with x = 1, µ = 0], [39, Thm. 2.1 with x = 1, µ = 0], Ciucu and Krattenthaler [13, Eqs. (4.3) &

(4.5) with x = 0], Krattenthaler [20, Thm. 36 with x = 1, µ = ν = 0], [21, Lem. 2 with x = 1,

µ = ν = 0], and Kuperberg [25, Thm. 4, 9th & 10th Eqs. with x = 1]. Similarly, (58) and (59)

are closely related to results of Mills, Robbins and Rumsey [31, Thm. 5 with x = µ = 1], [39,

Thm. 2.1 with x = µ = 1], Ciucu and Krattenthaler [13, Eqs. (4.3) & (4.5) with x = 1],

Krattenthaler [20, Thm. 36 with x = µ = 1, ν = 0], [21, Lem. 2 with x = µ = 1, ν = 0], and

Kuperberg [25, Thm. 4, 1st & 2nd Eqs. with x = 1].

For a recent discussion of certain factorization identities for numbers of plane partitions,

including (44) and (56), see Ciucu [11, Sec. 1]. For recent generalizations of the rhombus tiling

interpretations of (56)–(59), see Ciucu [12, Thm. 8 & Cor. 1], and Lai and Rohatgi [26, Thms. 2.1

& 2.2].
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