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Abstract 

Attention-Deficit/Hyperactivity Disorder (ADHD) is a highly heritable childhood behavioral 

disorder affecting 5% of children and 2.5% of adults. Common genetic variants contribute 

substantially to ADHD susceptibility, but no variants have been robustly associated with ADHD. 

We report a genome-wide association meta-analysis of 20,183 ADHD diagnosed cases and 

35,191 controls that identifies variants surpassing genome-wide significance in 12 independent 

loci, revealing new and important information on the underlying biology of ADHD. Associations 

are enriched in evolutionarily constrained genomic regions, loss-of-function intolerant genes and 

around brain-expressed regulatory marks. Analyses of three replication studies; a cohort of 

diagnosed ADHD, a self-reported ADHD sample and a meta-analysis of quantitative measures of 

ADHD symptoms in the population, support these findings while highlighting study-spcific 

differences on genetic overlap with educational attainment. Strong concordance with GWAS of 

quantitative population measures of ADHD symptoms supports that clinical diagnosis of ADHD 

is an extreme expression of continuous heritable traits. 

 

Introduction 

Attention-Deficit/Hyperactivity Disorder (ADHD) is a neurodevelopmental psychiatric disorder, 

that affects around 5% of children and adolescents and 2.5% of adults worldwide1. ADHD is 

often persistent and markedly impairing with increased risk of harmful outcomes such as 

injuries2, traffic accidents3, increased health care utilization4,5, substance abuse6, criminality7, 

unemployment8, divorce4, suicide9, AIDS risk behaviors8, and premature mortality10. 

Epidemiologic and clinical studies implicate genetic and environmental risk factors that affect 
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the structure and functional capacity of brain networks involved in behavior and cognition1, in 

the etiology of ADHD. 

 

Consensus estimates from over 30 twin studies indicate that the heritability of ADHD is 70-80% 

throughout the lifespan11,12 and that environmental risks are those not shared by siblings13.  Twin 

studies also suggest that diagnosed ADHD represents the extreme tail of one or more heritable 

quantitative traits14. Additionally, family and twin studies report genetic overlap between ADHD 

and other conditions including antisocial personality disorder/behaviours15, 

cognitive impairment16, autism spectrum disorder17,18, schizophrenia19, bipolar disorder20, and 

major depressive disorder21.  

 

Thus far genome-wide association studies (GWASs) to identify common DNA variants that 

increase the risk of ADHD have not been successful22. Nevertheless, genome-wide SNP 

heritability estimates range from 0.10 – 0.2823,24 supporting the notion that common variants 

comprise a significant fraction of the risk underlying ADHD25 and that with increasing sample 

size, and thus increasing statistical power, genome-wide significant loci will emerge.  

 

Previous studies have demonstrated that the common variant risk, also referred to as the single 

nucleotide polymorphism (SNP) heritability, of ADHD is also associated with depression25, 

conduct problems26, schizophrenia27, continuous measures of ADHD symptoms28,29 and other 

neurodevelopmental traits29 in the population. Genetic studies of quantitative ADHD symptom 

scores in children further support the hypothesis that ADHD is the extreme of a quantitative 

trait30. 



 7 

 

Here we present a genome-wide meta-analysis identifying the first genome-wide significant loci 

for ADHD using a combined sample of 55,374 individuals from an international collaboration. 

We also strengthen the case that the clinical diagnosis of ADHD is the extreme expression of one 

or more heritable quantitative traits, at least as it pertains to common variant genetic risk, by 

integrating our results with previous GWAS of ADHD-related behavior in the general 

population. 

 

Results 

Genome-wide significantly associated ADHD risk loci 

Genotype array data for 20,183 ADHD cases and 35,191 controls were collected from 12 cohorts 

(Supplementary Table 1). These samples included a population-based cohort of 14,584 cases and 

22,492 controls from Denmark collected by the Lundbeck Foundation Initiative for Integrative 

Psychiatric Research (iPSYCH; Supplementary Figure 1), and 11 European, North American and 

Chinese cohorts aggregated by the Psychiatric Genomics Consortium (PGC). ADHD cases in 

iPSYCH were identified from the national Psychiatric Central Research Register psychiatric and 

diagnosed by psychiatrists at a psychiatric hospital according to ICD10 (F90.0), and genotyped 

using Illumina PsychChip. Designs for the PGC cohorts have been described 

previously24,25,31,32,22 (see Supplementary Information for detailed cohort descriptions).  

 

Prior to analysis, stringent quality control procedures were performed on the genotyped markers 

and individuals in each cohort using a standardized pipeline33 (Online Methods). Related 

individuals were removed, and genetic outliers within each cohort were excluded based on 
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principal component analysis. Non-genotyped markers were imputed using the 1000 Genomes 

Project Phase 3 reference panel34 (Online Methods).  

 

GWAS was conducted in each cohort using logistic regression with the imputed additive 

genotype dosages. Principal components were included as covariates to correct for population 

stratification35 (Supplementary Information), and variants with imputation INFO score < 0.8 or 

minor allele frequency (MAF) < 0.01 were excluded. The GWAS were then meta-analyzed using 

an inverse-variance weighted fixed effects model36. The included single Chinese cohort had 

insufficient sample size for well-powered trans-ethnic modelling (Supplementary Figure 2). 

Association results were considered only for variants with an effective sample size greater than 

70% of the full meta-analysis, leaving 8,047,421 variants in the final meta-analysis. A meta-

analysis restricted to European-ancestry individuals (19,099 cases, 34,194 controls) was also 

performed to facilitate secondary analyses (Supplementary Information).  

 

In total, 304 genetic variants in 12 loci surpassed the threshold for genome-wide significance 

(P<5´10-8; Figure 1, Table 1, Supplementary Figure 3.A2 – 3.N2). Results for the European 

ancestry meta-analysis were substantively similar (Supplementary Figure 4). No marker 

demonstrated significant heterogeneity between studies (Supplementary Figure 5 and 6) and no 

heterogeneity was observed between the Chinese and European ancestry cohorts (Supplementary 

Figure 2). Conditional analysis within each locus did not identify any independent secondary 

signals meeting genome-wide significance (Online Methods, Supplementary Table 2).   

 

Homogeneity of effects between cohorts 
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No genome-wide significant heterogeneity was observed in the ADHD GWAS meta-analysis 

(Supplementary Information). Genetic correlation analysis (Online Methods) provided further 

evidence that effects were consistent across cohort study designs. The estimated genetic 

correlation between the European ancestry PGC samples and the iPSYCH sample from LD score 

regression37 was not significantly less than one (rg = 1.17, SE = 0.20). The correlation between 

European ancestry PGC case/control and trio cohorts estimated with bivariate GREML was 

similarly close to one (rg = 1.02, SE = 0.32; Supplementary Table 3).  

 

Polygenic risk scores (PRS)38 were also consistent across target samples. PRS computed in each 

PGC study using iPSYCH as the training sample were consistently higher in ADHD cases as 

compared to controls or pseudo-controls (Supplementary Figure 7). Increasing deciles of PRS in 

the PGC were associated with higher odds ratio (OR) for ADHD (Figure 2). A similar pattern 

was seen in five-fold cross validation in the iPSYCH cohort, with PRS for each subset computed 

from the other four iPSYCH subsets and the PGC samples used as training samples (Online 

Methods; Figure 2). Across iPSYCH subsets, the mean of the maximum variance explained by 

the estimated PRS (Nagelkerke’s R2) was 5.5% (SE = 0.0012) (Supplementary Figure 8). The 

difference in standardized PRS between cases and controls was stable across iPSYCH subsets 

(OR = 1.56, 95% confidence interval [CI]: 1.53 – 1.60; Supplementary Figure 9) and across 

waves and PGC cohorts (Supplementary Figure 10). These results further support the highly 

polygenic architecture of ADHD and demonstrate that ADHD risk is significantly associated 

with PRS in a dose-dependent manner.  

 

Polygenic Architecture of ADHD  
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To assess the proportion of phenotypic variance explained by common variants we applied LD 

score regression37 to results from the European ancestry meta-analysis (Online Methods). 

Assuming a population prevalence of 5% for ADHD39, we estimate that the liability-scale SNP 

heritability h2
snp = 0.216 (SE = 0.014, P = 8.18´10-54; Supplementary Table 4). These estimated 

polygenic effects account for 88% (SE = 0.0335) of observed genome-wide inflation of the test 

statistics in the meta-analysis (! = 1.200; see Supplementary Figure 11 for quantile-quantile 

plots); the remaining inflation, which may reflect confounding factors such as cryptic relatedness 

and population stratification, is significant but modest (intercept=1.0362, SE = 0.0099, P=2.27 ´ 

10-4).   

 

To further characterize the patterns of heritability from the genome-wide association data, we 

partitioned SNP heritability by functional annotations as described in Finucane et al.40 using 

partitioned LD Score regression (Online Methods). The analysis revealed significant enrichment 

in the heritability from SNPs located in conserved regions (P = 8.49 ´ 10-10; Supplementary 

Figure 12), supporting their biological importance. Enrichment of the SNP heritabilty in cell-

type-specific regulatory elements was evaluated using the cell-type-specific group annotations 

described in Finucane et al40. We observed a significant enrichment of the average per SNP 

heritability for variants located in central nervous system specific regulatory elements 

(enrichment = 2.44, SE = 0.35, P = 5.81 ´ 10-5; Supplementary Figures 13 and 14).  

 

Genetic correlation with other traits 

Pairwise genetic correlation with ADHD was estimated for 219 phenotypes using LD score 

regression41,42 (Online Methods, Supplementary Data 1). Fourty-three phenotypes demonstrated 
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significant genetic overlap with ADHD (P < 2.28 ´ 10-4), including major depressive disorder43, 

anorexia nervosa44, educational outcomes45-49, obesity-related phenotypes50-55, smoking56-58, 

reproductive success59, insomnia60, and mortality61 (Figure 3; Supplementary Table 5). In most 

domains the genetic correlation is supported by GWAS of multiple related phenotypes. For the 

positive genetic correlation with major depressive disorder (rg = 0.42, P = 7.38 ´ 10-38), we also 

observe a positive correlation with depressive symptoms (rg = 0.45, P = 7.00 ´ 10-19), neuroticism 

(rg = 0.26, P= 1.02 ´ 10-8) and a negative correlation with subjective well-being (rg = -0.28, P = 

3.73 ´ 10-9). The positive genetic correlations with ever smoked (rg = 0.48, P= 4.33 ´ 10-16) and 

with number of cigarettes smoked (rg = 0.45, P = 1.07 ´ 10-5) are reinforced by significant 

positive correlation with lung cancer (rg = 0.39, P= 6.35 ´ 10-10). Similarly, genetic correlations 

related to obesity include significant relationships with body mass index (BMI; rg = 0.26, P = 

1.68 ´ 10-15), waist-to-hip ratio (rg = 0.30, P= 1.16 ´ 10-17), childhood obesity (rg = 0.22, P = 3.29 

´ 10-6), HDL cholesterol (rg = -0.22, P = 2.44 ´ 10-7), and Type 2 Diabetes (rg = 0.18, P = 7.80 ´ 

10-5). Additionally the negative correlation with years of schooling (rg = -0.53, P = 6.02 ´ 10-80) 

is supported by a negative genetic correlation with human intelligence (rg = -0.41, P = 7.03 ´ 10-

26). Finally the genetic correlation with reproduction include a negative correlation with age of 

first birth (rg = -0.612, P = 3.70 ´ 10-61) and a positive correlation with number of children ever 

born (rg = 0.42, P = 8.51 ´ 10-17). 

 

Biological annotation of significant loci 

For the 12 genome-wide significant loci, Bayesian credible sets were defined to identify the set 

of variants at each locus most likely to include a variant with causal effect (Online Methods, 

Supplementary Data 2; Supplementary Table 6). Biological annotations of the variants in the 
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credible set were then considered to identify functional or regulatory variants, common 

chromatin marks, and variants associated with gene expression (eQTLs) or in regions with gene 

interactions observed in Hi-C data (Online Methods, Supplementary Data 3). Broadly, the 

significant loci do not coincide with candidate genes proposed to play a role in ADHD62. 

 

Here we highlight genes that are identified in the regions of association (see also Supplementary 

Table 7). The loci on chromosomes 2, 7, and 10 each have credible sets localized to a single gene 

with limited additional annotations. In the chromosome 7 locus, FOXP2 encodes a 

forkhead/winged-helix transcription factor and is known to play an important role in synapse 

formation and neural mechanisms mediating the development of speech and learning63-65. 

Comorbidity of ADHD with specific developmental disorders of language and learning is 

common (7 – 11%)66,67, and poor language skills have been associated with higher 

inattention/hyperactivity symptoms in primary school68. On chromosome 10, the ADHD 

association is intronic, located in SORCS3, which encodes a brain-expressed transmembrane 

receptor that is important for neuronal development and plasticity69 and has previously been 

associated with depression43,70. 

 

Genome-wide significant loci on chromosomes 12 and 15 have more biological annotations 

supporting the co-localized genes. The credible set on chromosome 12 spans DUSP6, and 

includes an annotated missense variant in the first exon and an insertion near the transcription 

start site, though neither is the lead variant in the locus (Supplementary Data 4).  DUSP6 encodes 

a dual specificity phosphatase71, and may play a role in regulating neurotransmitter homeostasis 

by affecting dopamine levels in the synapses72,73. Regulation of dopamine levels is likely to be 
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relevant to ADHD since widely used ADHD medications have dopaminergic targets74,75 that 

increase the availability of synaptic dopamine. The chromosome 15 locus is located in SEMA6D, 

and the majority of variants in the credible set are strongly associated with expression of 

SEMA6D in fibroblasts76. SEMA6D is active in the brain during embryonic development, and 

may play a role in neuronal wiring77. Furthermore, variants in SEMA6D have previously been 

associated with eduational attainment78.  

 

Credible set annotations at the remaining loci are more diverse (Supplementary Data 3). The 

most strongly associated locus on chromosome 1 (index variant rs112984125) covers a gene-rich 

250kb region of strong LD.  The index variant is intronic to ST3GAL3, and most SNPs in the 

credible set are strongly associated with expression of ST3GAL3 in whole blood79 

(Supplementary Data 3). Missense mutations in ST3GAL3 have been shown to cause autosomal 

recessive intellectual disability80. Hi-C and eQTL annotations suggest multiple alternative genes 

however, including PTPRF (Supplementary Data 4). The locus also includes an intergenic 

variant, rs11210892, that has previously been associated with schizophrenia33.  

 

On chromosome 5, the credible set includes links to LINC00461 and TMEM161B 

(Supplementary Data 3). The function of LINC00461 is unclear, but the RNA has highly 

localized expression in the brain81 and the genome-wide significant locus overlaps with variants 

in LINC00461 associated with educational attainment78.  Alternatively, a genome-wide 

significant SNP in this locus (rs304132) is located in MEF2C-AS1, of strong interest given 

previous associations between MEF2C and severe intellectual disability,82-84 cerebral 

malformation83, depression70, schizophrenia33 and Alzheimer’s disease85, but the corresponding 
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variant is not supported by the credible set analysis. Credible set annotations for other significant 

loci are similarly cryptic.  

 

Analysis of gene sets  

Competitive gene based tests were performed for FOXP2 target genes, highly constrained genes, 

and for all Gene Ontology terms86 from  MsigDB 6.087 using MAGMA88 (Online Methods). 

Association results for individual genes are consistent with the genome-wide significant loci for 

the GWAS (Supplementary Table 8), however four new genes passed the threshold for exome-

wide significant association (Supplementary Figure 15.A-D). Three independent sets of FOXP2 

downstream target genes89,90 were tested (Online Methods), none of which demonstrated 

significant association to ADHD (Supplementary Table 9). The lack of association may be 

caused by unknown functions of FOXP2 driving ADHD risk, insufficient power to detect 

relevant downstream genes, or because only a small subset of biological functions regulated by 

FOXP2 are relevant to ADHD pathogenesis. 

 

Consistent with the partitioning of heritability, a set of 2,932 genes that are highly constrained 

and show high intolerance to loss of function91 showed significant association with ADHD (" = 

0.062, P = 2.6 ´ 10-4; Supplementary Table 10).  We also find little evidence for effects in 

previously proposed candidate genes for ADHD62; of the nine proposed genes only SLC9A9 

showed weak association with ADHD (P = 3.4 ´ 10-4; Supplementary Table 11). None of the 

Gene Ontology gene sets were significant after correcting for multiple testing, although the most 

associated included interesting nominally significant pathways such as “dopamine receptor 

binding” (P = 0.0010) and “Excitatory Synapse” (P = 0.0088; Supplementary Data 5). 
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Replication of GWAS loci 

 

For replication we evaluated the comparison of the GWAS meta-analysis of ADHD with three 

other independent ADHD-related GWASs: replication of top loci in an Icelandic cohort with 

ADHD status derived from medical records of ICD codes and medication history by deCODE 

(5,085 cases, 131,122 controls), a GWAS of self-reported ADHD status among 23andMe 

research participants (5,857 cases, 70,393 controls) and a meta-analysis of GWAS of childhood 

rating scales of ADHD symptoms performed by the EAGLE consortium (17,666 children < 13 

years of age)30 and QIMR92 (2,798 adolescents), referred to as EAGLE/QIMR throughout the 

text. Although the phenotyping and cohort ascertainment of the 23andMe and EAGLE/QIMR 

studies differ from the PGC and iPSYCH ADHD meta-analysis (Supplemenatry Information), 

they have clear relevance to understanding how the ADHD GWAS results generalize to closely 

related phenotypes. 

 

Top loci from the ADHD GWAS showed moderate concordance across the three replication 

studies. Sign concordance between each of the three replication cohorts and the ADHD GWAS 

was significantly greater than would be expected by chance (range 72–82% concordant; P < 

0.0167 = 0.05/3 replication cohorts; Supplementary Table 12) for nominally associated loci from 

the ADHD GWAS (P < 1 ´ 10-6), with the highest concordance observed in EAGLE/QIMR. The 

deCODE and 23andMe results also permit direct comparisons of the magnitude of effect sizes 

for the top loci in the ADHD loci (Supplementary Table 13). Regressing effect size estimates 

from each replication cohort on estimates from the ADHD GWAS adjusted for winner’s curse 

yields significantly positive slopes (deCODE slope = 0.664, P = 1.2 ´ 10-4; 23andMe slope = 
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0.417, P = 1.11 ´ 10-3), although these slopes are less than one, suggesting imperfect replication. 

Among the genome-wide significant loci, rs9677504 (SPAG16 locus) in deCODE and 

rs112984125 (ST3GAL3/PTPRF locus) and rs212178 (LINC01572 locus) in 23andMe are 

noteable outlers with weak replication results (Online Methods, Supplementary Figure 16-17).  

 

The genome-wide data available from 23andMe and EAGLE/QIMR showed similar trends for 

replication. The genetic correlation between EAGLE/QIMR and the ADHD GWAS was 

extremely strong (rg = 0.970, SE = 0.207, P = 2.66 ´ 10-6) and not significantly different from 

one (one-sided P = 0.442). Genetic correlation with 23andMe was weaker but still strongly 

positive (rg = 0.653, SE = 0.114, P = 1.11 ´ 10-8), although also significantly less than 1 (one-

sided P= 1.17 ´ 10-3). To explore this lower correlation we evaluated the genetic correlation 

between 23andMe and traits from LD Hub (see URLs)42 to potentially identify differences in 

the profile of genetic correlation compared to the ADHD GWAS (Online Methods). This 

comparison identified striking differences (Supplementary Table 14), most notably that the 

23andMe GWAS show little to no genetic correlation with college completion (rg = 0.056, 

compared to rg = -0.54 for the primary ADHD GWAS; approximate P = 1.1 ´ 10-9 for 

difference) and other education-related phenotypes. Genetic correlations with obesity-related 

phenotypes were similarly smaller for the 23andMe cohort. The one domain where 23andMe 

exhibited a trend toward stronger genetic correlations were schizophrenia (rg = 0.27, vs. rg = 0.12 

in ADHD, P = 0.053) and bipolar disorder (rg = 0.029, vs. rg = 0.095 in ADHD, P = 0.09), 

though these trends are not significant with the approximated test of the difference in genetic 

correlation. 
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Finally, we meta-analyzed the ADHD GWAS with each replication cohort. For EAGLE/QIMR, 

we developed a novel model to meta-analyze the GWAS of the continuous measure of ADHD 

with the clinical diagnosis in the ADHD GWAS. In brief, we perform a Z-score based meta-

analysis using a weighting scheme derived from the SNP heritability and effective sample size 

for each phenotype that fully accounts for the differences in measurement scale (detailed 

description in Supplementary Information, and Supplementary Figures 24-26). This calibration 

based on the genome-wide estimate of heritability prevents joint meta-analysis of all replication 

cohorts since genome-wide data is not available for the deCODE study. 

 

Meta-analyses of the ADHD GWAS with each replication study identified 10 genome-wide 

significant loci (P < 5 ´ 10-8, without multiple testing correction) in meta-analysis with deCODE, 

10 significant loci with 23andMe, and 15 significant loci with EAGLE/QIMR (Supplementary 

Data 6, Supplementary Figures 18 and 19). Of the 12 significant loci from the primary ADHD 

GWAS, four were significant in all three of these replication meta-analyses: index variants 

rs11420276 (ST3GAL3/PTPRF), rs5886709 (FOXP2), rs11591402 (SORCS3), and rs1427829 

(intergenic). The remaining loci were all significant in at least one of the replication meta-

analyses. In addition, ten novel loci reached genome-wide significance in the replication meta-

analyses, of which three loci were significant in two of these analyses (Supplementary Data 6): 

index variants rs1592757 / rs30266 (Refseq LOC105379109), rs28452470 / rs1443749 

(CADPS2), and rs2243638 / rs9574218 (RNF219-AS1). The CADPS2 locus has recently been 

identified in autism spectrum disorder as a novel locus shared with educational attainment93. 
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Meta-analysis with the 23andMe cohort also found genome-wide significant heterogeneity at the 

lead Chromosome 1 locus from the ADHD GWAS meta-analysis (rs12410155: I2 = 97.2, P = 

2.29 ´ 10-9; Supplementary Figures 20-21). This heterogeneity is consistent with the moderate 

sign concordance, effect size replication, and genetic correlation of the 23andMe cohort with the 

ADHD GWAS. Notably, the lead chromosome 1 locus in the ADHD GWAS overlaps a reported 

association with educational attainment78, suggesting this heterogeneity is consistent with the 

much weaker genetic correlation between the 23andMe results and published GWAS of 

education-related outcomes. No genome-wide significant heterogeneity was observed in the 

replication meta-analyses with deCODE or EAGLE/QIMR (Supplementary Figures 22-23, 

Supplementary Data 6).  

 

Discussion 

GWAS meta-analysis of ADHD revealed the first genome-wide significant risk loci, and 

indicates an important role for common variants in the polygenic architecture of ADHD. Several 

of the loci are located in or near genes that implicate neurodevelopmental processes that are 

likely to be relevant to ADHD, including FOXP2, SORCS3, and DUSP6. Future work may focus 

on refining the source of the strong association in each locus, especially the lead locus on 

chromosome 1 which is complicated by broad LD and substantial heterogeneity between ADHD 

the main meta-analysis and analysis of self-reported ADHD status in 23andMe. 

 

The 12 significant loci are compelling, but only capture a tiny fraction of common variant risk 

for ADHD. The odds ratios for the risk increasing allele at the index SNPs in the 12 significant 

loci are modest, ranging from 1.077 to 1.198 (Table 1).  This is within the range of effect sizes 
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for common genetic variants that has been observed for other highly polygenic psychiatric 

disorders e.g. schizophrenia33. A considerably larger proportion of the heritability of ADHD can 

be explained by all common variants (h2
snp

 = 0.22, SE = 0.01).  This is consistent with previous 

estimates of h2
snp for ADHD in smaller studies (h2

snp: 0.1 - 0.28)23,24, and also comparable to SNP 

heritability estimates for schizophrenia (h2
snp 0.23 - 0.26)23,24. As would be hypothesized for a 

psychiatric disorder, these effects are enriched in conserved regions and regions containing 

enhancers and promoters of expression in central nervous system tissues, consistent with 

previous observations in schizophrenia and bipolar disorder40. On the other hand, we do not 

observe substantial effects in most previously reported candidate genes for ADHD62. 

 

Along with polygenicity, selection and evolutionary pressures may be an important feature of the 

architecture of ADHD genetics. We observe that ADHD risk variants are strongly enriched in 

genomic regions conserved in mammals94, and constrained genes likely to be intolerant of loss-

of-function mutations91 are associated with ADHD. We also find that common variant risk for 

ADHD is genetically correlated with having children younger and having more children, in line 

with epidemiological findings of increased risky sexual behaviour95-97 and increased risk of 

ADHD for children born to young parents98-100. Given the phenotypic101,102 and genetic103 

correlation of ADHD with reduced educational attainment, positive selective pressure on the 

genetics of ADHD would be consistent with recent work suggesting that variants associated with 

educational attainment are under negative selection in Iceland104. Future studies of fecundity and 

the role of rare and de novo variants in ADHD may provide more insight on selective pressures 

in ADHD-associated loci.  
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The observed genetic correlations with educational outcomes and other phenotypes suggest a 

strong genetic component to the epidemiological correlates of ADHD. The significant positive 

genetic correlation of ADHD with major depressive disorder and depressive symptoms supports 

previous findings suggesting a positive genetic overlap between those phenotypes24,42, as well as 

the broader genetic overlap of psychiatric disorders23,24. Positive genetic correlations between 

ADHD and health risk behaviors such as smoking and obesity are consistent with the observed 

increase in those behaviors among individuals with ADHD105-108 and are indicative of a shared 

genetic basis for these traits. We also observe a positive genetic correlation of ADHD with 

insomnia, consistent with reports of sleep disturbances in ADHD109, but this relationship does 

not appear to generalize to other sleep-related phenotypes.  

 

These genetic correlations may not generalize to all settings. We observe much weaker genetic 

correlation of the 23andMe ADHD results with educational attainment, with only partial genetic 

correlation between 23andMe and the current ADHD GWAS, including significant heterogeneity 

in the lead chromosome 1 locus. The pattern of replication for the top loci in the deCODE study 

is stronger but still mixed. These differences may reflect dissimilarities in phenotyping (e.g. self-

report vs. medical records), exclusion of individuals with comorbid psychiatric disorders 

(deCODE), study population (e.g. higher average education and socio-economic status among 

23andMe research participants possibly under-representing the proportion of individuals with 

ADHD with poor educational outcomes in the general population), or other study factors that 

should be a focus of future work. 
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On the other hand, the replication results from EAGLE30/QIMR92 are much stronger and support 

the hypothesis that ADHD is the extreme expression of one or more heritable quantitative 

traits110. We observe strong concordance between the GWAS of ADHD and the previous 

GWASs of ADHD-related traits in the population, both in terms of genome-wide genetic 

correlation and concordance at individual loci. Polygenic risk for ADHD has previously been 

associated with inattentive and hyperactive/impulsive trait variation below clinical thresholds in 

the population29. Shared genetic risk with health risk behaviors may similarly be hypothesized to 

reflect an impaired ability to self-regulate and inhibit impulsive behavior111,112. The observed 

negative correlation between ADHD and anorexia nervosa may also be related to these 

behavioral factors.  

 

In summary, we report 12 independent genome-wide significant loci associated with ADHD in 

GWAS meta-analysis of 55,374 individuals from 12 study cohorts. The GWAS meta-analysis 

implicates FOXP2 and other biologically informative genes as well as constrained regions of the 

genome as important contributors to the etiology of ADHD. The results also highlight strong 

overlap with the genetics of ADHD-related traits and health risk behaviors in the population, 

encouraging a dimensional view of ADHD as the extreme end of a continuum of symptoms. 

 

URLs 

LD-Hub: http://ldsc.broadinstitute.org/ldhub/ 

LD score regression: https://github.com/bulik/ldsc 

Pre-computed European LD scores: https://data.broadinstitute.org/alkesgroup/LDSCORE/ 

PGC Ricopili GWA pipeline: https://github.com/Nealelab/ricopili  
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Credible set analysis: https://github.com/hailianghuang/FM-summary 

FUMA: http://fuma.ctglab.nl 

 

Supplementary Information is linked to the online version of the paper at 

www.nature.com/nature 

Acknowledgements 
 

The iPSYCH team acknowledges funding from the Lundbeck Foundation (grant no R102-A9118 and 

R155-2014-1724), the Stanley Medical Research Institute, the European Research Council (project no: 
294838), the European Community’s Horizon 2020 Programme (H2020/2014-2020) under Grant No. 

667302 (CoCA), the Novo Nordisk Foundation for supporting the Danish National Biobank resource, and 

grants from Aarhus and Copenhagen Universities and University Hospitals, including support to the iSEQ 
Center, the GenomeDK HPC facility, and the CIRRAU Center. 

The Broad Institute and Massachusetts General Hospital investigators would like to acknowledge support 

from the Stanley Medical Research Institute and NIH grants: 5U01MH094432-04(PI: Daly), 
1R01MH094469 (PI: Neale), 1R01MH107649-01 (PI: Neale), 1R01MH109539-01 (PI: Daly). We thank 

T., Lehner, A. Addington and G. Senthil for their support in the Psychiatric Genomics Consortium. 

Dr. J. Martin was supported by the Wellcome Trust (Grant No: 106047). 

Dr. Faraone is supported by the K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, 
University of Bergen, Bergen, Norway, the European Union’s Seventh Framework Programme for 

research, technological development and demonstration under grant agreement no 602805, the European 

Union’s Horizon 2020 research and innovation programme under grant agreement No 667302 and NIMH 
grants 5R01MH101519 and U01 MH109536-01. 

Dr. Haavik is supported by grants from Stiftelsen K.G. Jebsen, University of Bergen and The Research 

Council of Norway. 

Dr. Cormand received financial support for this research from the Spanish 'Ministerio de Economía y 
Competitividad' (SAF2015-68341-R) and 'Generalitat de Catalunya/AGAUR' (2014SGR932). Dr. 

Cormand, Dr. Reif and collaborators received funding from the European Community’s Seventh 

Framework Programme (under grant agreement number 602805, Aggressotype), the European 
Community’s H2020 Programme (under grant agreements number 667302, CoCA, and 402003, MiND), 

the ECNP network 'ADHD across the lifespan' and DFG CRC 1193, subproject Z03. 

Dr. Andreassen is supported by the Research Council of Norway (grant nos: 223273, 248778, 213694, 
249711), and KG Jebsen Stiftelsen. 

Philip Asherson is supported by a National Institute of Health Research Senior Investigator Award (NF-

SI-0616-10040), and the Biomedical Research Centre for Mental Health 

Dr. Kuntsi’s research on ADHD is supported by the European Commission (grant agreements 
no. 643051 MiND, 667302 CoCA and 602805 Aggressotype); Action Medical Research (GN2080 and 

GN2315); 4 Medical Research Council and SGDP Centre PhD studentships; and by the ECNP Network 

ADHD Across the Lifespan. 
Dr. Langley was funded by Wellcome Trust (Grant No: 079711) 

Dr. Thapar received ADHD funding from the Wellcome Trust, Medical Research Council (MRC UK), 

Action Medical Research. 
Barbara Franke’s research is supported by funding from a personal Vici grant of the Netherlands 

Organisation for Scientific Research (NWO; grant 016-130-669, to BF), from the European Community’s 



 23 

Seventh Framework Programme (FP7/2007 – 2013) under grant agreements n° 602805 (Aggressotype), 
n° 602450 (IMAGEMEND), and n° 278948 (TACTICS), and from the European Community’s Horizon 

2020 Programme (H2020/2014 – 2020) under grant agreements n° 643051 (MiND) and n° 667302 

(CoCA). In addition, this work was supported by the European College of Neuropsychopharmacology 

(ECNP Network “ADHD across the Lifespan”). 
Dr. Schachar received support from Bank Chair in Child Psychiatry, Canadian Institutes of Health 

Research (MOP-106573 and MOP – 93696). 

Dr. Roussos was supported by the National Institutes of Health (R01AG050986 Roussos and 
R01MH109677), Brain Behavior Research Foundation (20540), Alzheimer's Association (NIRG-340998) 

and the Veterans Affairs (Merit grant BX002395). 

We thank the customers of 23andMe who answered surveys, as well as the employees of 23andMe, who 
together made this research possible. 

The QIMR studies were supported by funding from the Australian National Health and Medical Research 

Council (grant numbers: 241944, 339462, 389927, 389875, 389891, 389892, 389938, 443036, 442915, 

442981, 496739, 552485, and 552498, and most recently 1049894) and the Australian Research Council 
(grant numbers: A7960034, A79906588, A79801419, DP0212016, and DP0343921). SEM is supported 

by an NHMRC fellowship (1103623).  

Additional acknowledegements can be found in the Supplementary Note 

 

Author Contributions 

 

Analysis:  

DD, RKW, JMar, MM, TDA, CC, NE, MG, KLG, MEH, DPH, HHai, JMal, ARM, JP, DSP, TP, SR, EBR, FKS, HS, 

SS, PT, GBW, HW, DB, DG, CM, PR, PFS, JT, SEM, KS. ADB and BMN supervised and coordinated analyses. 

 
Sample and/or data provider and processing:  

DD, RKW, JMar, MM, EA, GB, RB, JB-G, MB-H, FC, KC, AD, NE, JGo, JGr, OOG, CSH, MVH, JMal, NGM, 

JMo, CBP, MGP, JBP, SR, CS, MJW, OA, PA, CB, DB, BC, SD, BF, JGe, HHak, JH, HK, JK, KL, KPL, CM, AR, 

LAR, RS, PS, ESB, AT, JT, IW, SEM, DMH, OM, PBM, ADB, ADHD Working Group of the Psychiatric 

Genomics Consortium, Early Lifecourse & Genetic Epidemiology (EAGLE) Consortium, 23andMe 

Research Team. 

 
Core PI group:  

SEM, KS, MN, DMH, TW, OM, PBM, MJD, SVF, ADB, BMN. 

 
Core writing group:  

DD, RKW, JM, SVF, ADB, BMN. 

 
Direction of study: ADB, SVF, BMN.  



 24 

References 

1 Faraone, S. V. et al. Attention-deficit/hyperactivity disorder. Nature Reviews Disease Primers, 

15020, doi:10.1038/nrdp.2015.20 (2015). 

2 Dalsgaard, S., Leckman, J. F., Mortensen, P. B., Nielsen, H. S. & Simonsen, M. Effect of drugs on 

the risk of injuries in children with attention deficit hyperactivity disorder: a prospective cohort 

study. Lancet Psychiatry 2, 702-709, doi:10.1016/S2215-0366(15)00271-0 (2015). 

3 Chang, Z., Lichtenstein, P., D'Onofrio, B. M., Sjolander, A. & Larsson, H. Serious transport 

accidents in adults with attention-deficit/hyperactivity disorder and the effect of medication: a 

population-based study. JAMA Psychiatry 71, 319-325, doi:10.1001/jamapsychiatry.2013.4174 

(2014). 

4 Biederman, J. & Faraone, S. V. Attention-deficit hyperactivity disorder. Lancet 366, 237-248, 

doi:10.1016/S0140-6736(05)66915-2 (2005). 

5 Dalsgaard, S., Nielsen, H. S. & Simonsen, M. Consequences of ADHD medication use for 

children's outcomes. J Health Econ 37, 137-151, doi:10.1016/j.jhealeco.2014.05.005 (2014). 

6 Dalsgaard, S., Mortensen, P. B., Frydenberg, M. & Thomsen, P. H. ADHD, stimulant treatment in 

childhood and subsequent substance abuse in adulthood - a naturalistic long-term follow-up 

study. Addict Behav 39, 325-328, doi:10.1016/j.addbeh.2013.09.002 (2014). 

7 Lichtenstein, P. & Larsson, H. Medication for attention deficit-hyperactivity disorder and 

criminality. N Engl J Med 368, 776, doi:10.1056/NEJMc1215531 (2013). 

8 Barkley, R. A., Murphy, K. R. & Fischer, M. ADHD in adults What the Science Says.  (The Guilford 

Press, 2007). 

9 Furczyk, K. & Thome, J. Adult ADHD and suicide. Atten Defic Hyperact Disord 6, 153-158, 

doi:10.1007/s12402-014-0150-1 (2014). 

10 Dalsgaard, S., Ostergaard, S. D., Leckman, J. F., Mortensen, P. B. & Pedersen, M. G. Mortality in 

children, adolescents, and adults with attention deficit hyperactivity disorder: a nationwide 

cohort study. Lancet 385, 2190-2196, doi:10.1016/S0140-6736(14)61684-6 (2015). 

11 Franke, B. et al. The genetics of attention deficit/hyperactivity disorder in adults, a review. 

Molecular psychiatry 17, 960-987, doi:10.1038/mp.2011.138 (2012). 

12 Faraone, S. V. et al. Molecular genetics of attention-deficit/hyperactivity disorder. Biological 

psychiatry 57, 1313-1323, doi:10.1016/j.biopsych.2004.11.024 (2005). 

13 Burt, S. A. Rethinking environmental contributions to child and adolescent psychopathology: a 

meta-analysis of shared environmental influences. Psychological bulletin 135, 608-637, 

doi:10.1037/a0015702 (2009). 

14 Larsson, H., Anckarsater, H., Rastam, M., Chang, Z. & Lichtenstein, P. Childhood attention-deficit 

hyperactivity disorder as an extreme of a continuous trait: a quantitative genetic study of 8,500 

twin pairs. J Child Psychol Psychiatry 53, 73-80, doi:10.1111/j.1469-7610.2011.02467.x (2012). 

15 Christiansen, H. et al. Co-transmission of conduct problems with attention-deficit/hyperactivity 

disorder: familial evidence for a distinct disorder. J Neural Transm (Vienna) 115, 163-175, 

doi:10.1007/s00702-007-0837-y (2008). 

16 Kuntsi, J. et al. The separation of ADHD inattention and hyperactivity-impulsivity symptoms: 

pathways from genetic effects to cognitive impairments and symptoms. Journal of abnormal 

child psychology 42, 127-136, doi:10.1007/s10802-013-9771-7 (2014). 

17 Rommelse, N. N., Franke, B., Geurts, H. M., Hartman, C. A. & Buitelaar, J. K. Shared heritability of 

attention-deficit/hyperactivity disorder and autism spectrum disorder. European child & 

adolescent psychiatry 19, 281-295, doi:10.1007/s00787-010-0092-x (2010). 

18 Ghirardi, L. et al. The familial co-aggregation of ASD and ADHD: a register-based cohort study. 

Molecular psychiatry, doi:10.1038/mp.2017.17 (2017). 



 25 

19 Larsson, H. et al. Risk of bipolar disorder and schizophrenia in relatives of people with attention-

deficit hyperactivity disorder. The British journal of psychiatry : the journal of mental science 

203, 103-106, doi:10.1192/bjp.bp.112.120808 (2013). 

20 Faraone, S. V., Biederman, J. & Wozniak, J. Examining the comorbidity between attention deficit 

hyperactivity disorder and bipolar I disorder: a meta-analysis of family genetic studies. The 

American journal of psychiatry 169, 1256-1266, doi:10.1176/appi.ajp.2012.12010087 (2012). 

21 Faraone, S. V. & Biederman, J. Do attention deficit hyperactivity disorder and major depression 

share familial risk factors? The Journal of nervous and mental disease 185, 533-541 (1997). 

22 Neale, B. M. et al. Meta-analysis of genome-wide association studies of attention-

deficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent 

Psychiatry 49, 884-897, doi:10.1016/j.jaac.2010.06.008 (2010). 

23 Anttila, V. et al. Analysis of shared heritability in common disorders of the brain. BioRxiv, 1-22 

(2016). 

24 Cross-Disorder Group of the Psychiatric Genomics, C. et al. Genetic relationship between five 

psychiatric disorders estimated from genome-wide SNPs. Nature genetics 45, 984-994, 

doi:10.1038/ng.2711 (2013). 

25 Cross-Disorder Group of the Psychiatric Genomics, C. Identification of risk loci with shared 

effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381, 1371-1379, 

doi:10.1016/S0140-6736(12)62129-1 (2013). 

26 Hamshere, M. L. et al. High loading of polygenic risk for ADHD in children with comorbid 

aggression. The American journal of psychiatry 170, 909-916, 

doi:10.1176/appi.ajp.2013.12081129 (2013). 

27 Hamshere, M. L. et al. Shared polygenic contribution between childhood attention-deficit 

hyperactivity disorder and adult schizophrenia. The British journal of psychiatry : the journal of 

mental science 203, 107-111, doi:10.1192/bjp.bp.112.117432 (2013). 

28 Groen-Blokhuis, M. M. et al. Attention-deficit/hyperactivity disorder polygenic risk scores 

predict attention problems in a population-based sample of children. Journal of the American 

Academy of Child and Adolescent Psychiatry 53, 1123-1129 e1126, 

doi:10.1016/j.jaac.2014.06.014 (2014). 

29 Martin, J., Hamshere, M. L., Stergiakouli, E., O'Donovan, M. C. & Thapar, A. Genetic risk for 

attention-deficit/hyperactivity disorder contributes to neurodevelopmental traits in the general 

population. Biological psychiatry 76, 664-671, doi:10.1016/j.biopsych.2014.02.013 (2014). 

30 Middeldorp, C. M. et al. A Genome-Wide Association Meta-Analysis of Attention-

Deficit/Hyperactivity Disorder Symptoms in Population-Based Pediatric Cohorts. Journal of the 

American Academy of Child and Adolescent Psychiatry 55, 896-905 e896, 

doi:10.1016/j.jaac.2016.05.025 (2016). 

31 Yang, L. et al. Polygenic transmission and complex neuro developmental network for attention 

deficit hyperactivity disorder: genome-wide association study of both common and rare 

variants. American journal of medical genetics. Part B, Neuropsychiatric genetics : the official 

publication of the International Society of Psychiatric Genetics 162B, 419-430, 

doi:10.1002/ajmg.b.32169 (2013). 

32 Zayats, T. et al. Genome-wide analysis of attention deficit hyperactivity disorder in Norway. PloS 

one 10, e0122501, doi:10.1371/journal.pone.0122501 (2015). 

33 Schizophrenia Working Group of the Psychiatric Genomics, C. Biological insights from 108 

schizophrenia-associated genetic loci. Nature 511, 421-427, doi:10.1038/nature13595 (2014). 

34 Genomes Project, C. et al. A global reference for human genetic variation. Nature 526, 68-74, 

doi:10.1038/nature15393 (2015). 



 26 

35 Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide 

association studies. Nature genetics 38, 904-909, doi:10.1038/ng1847 (2006). 

36 Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide 

association scans. Bioinformatics 26, 2190-2191, doi:10.1093/bioinformatics/btq340 (2010). 

37 Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in 

genome-wide association studies. Nature genetics 47, 291-295, doi:10.1038/ng.3211 (2015). 

38 Purcell, S. M. et al. Common polygenic variation contributes to risk of schizophrenia and bipolar 

disorder. Nature 460, 748-752, doi:0.1038/nature08185 (2009). 

39 Polanczyk, G., de Lima, M. S., Horta, B. L., Biederman, J. & Rohde, L. A. The worldwide 

prevalence of ADHD: a systematic review and metaregression analysis. The American journal of 

psychiatry 164, 942-948, doi:10.1176/ajp.2007.164.6.942 (2007). 

40 Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide 

association summary statistics. Nature genetics 47, 1228-1235, doi:10.1038/ng.3404 (2015). 

41 Zheng, J. et al. LD Hub: a centralized database and web interface to perform LD score regression 

that maximizes the potential of summary level GWAS data for SNP heritability and genetic 

correlation analysis. Bioinformatics 33, 272-279, doi:10.1093/bioinformatics/btw613 (2017). 

42 Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nature 

genetics 47, 1236-1241, doi:10.1038/ng.3406 (2015). 

43 Wray, N. R. & Sullivan, P. F. Genome-wide association analyses identify 44 risk variants and 

refine the genetic architecture of major depression. bioRxiv, doi:10.1101/167577 (2017). 

44 Duncan, L. et al. Significant Locus and Metabolic Genetic Correlations Revealed in Genome-Wide 

Association Study of Anorexia Nervosa. The American journal of psychiatry 174, 850-858, 

doi:10.1176/appi.ajp.2017.16121402 (2017). 

45 Benyamin, B. et al. Childhood intelligence is heritable, highly polygenic and associated with 

FNBP1L. Molecular psychiatry 19, 253-258, doi:10.1038/mp.2012.184 (2014). 

46 Okbay, A. et al. Genetic variants associated with subjective well-being, depressive symptoms, 

and neuroticism identified through genome-wide analyses. Nature genetics 48, 624-633, 

doi:10.1038/ng.3552 (2016). 

47 Rietveld, C. A. et al. GWAS of 126,559 individuals identifies genetic variants associated with 

educational attainment. Science 340, 1467-1471, doi:10.1126/science.1235488 (2013). 

48 Rietveld, C. A. et al. Common genetic variants associated with cognitive performance identified 

using the proxy-phenotype method. Proceedings of the National Academy of Sciences of the 

United States of America 111, 13790-13794, doi:10.1073/pnas.1404623111 (2014). 

49 Davies, G. et al. Genome-wide association study of cognitive functions and educational 

attainment in UK Biobank (N=112 151). Molecular psychiatry 21, 758-767, 

doi:10.1038/mp.2016.45 (2016). 

50 Teslovich, T. M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. 

Nature 466, 707-713, doi:10.1038/nature09270 (2010). 

51 Morris, A. P. et al. Large-scale association analysis provides insights into the genetic architecture 

and pathophysiology of type 2 diabetes. Nature genetics 44, 981-990, doi:10.1038/ng.2383 

(2012). 

52 Bradfield, J. P. et al. A genome-wide association meta-analysis identifies new childhood obesity 

loci. Nature genetics 44, 526-531, doi:10.1038/ng.2247 (2012). 

53 Berndt, S. I. et al. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits 

and provides insights into genetic architecture. Nature genetics 45, 501-512, 

doi:10.1038/ng.2606 (2013). 

54 Speliotes, E. K. et al. Association analyses of 249,796 individuals reveal 18 new loci associated 

with body mass index. Nature genetics 42, 937-948, doi:10.1038/ng.686 (2010). 



 27 

55 Shungin, D. et al. New genetic loci link adipose and insulin biology to body fat distribution. 

Nature 518, 187-196, doi:10.1038/nature14132 (2015). 

56 Tobacco & Genetics, C. Genome-wide meta-analyses identify multiple loci associated with 

smoking behavior. Nature genetics 42, 441-447, doi:10.1038/ng.571 (2010). 

57 Patel, Y. M. et al. Novel Association of Genetic Markers Affecting CYP2A6 Activity and Lung 

Cancer Risk. Cancer Res 76, 5768-5776, doi:10.1158/0008-5472.CAN-16-0446 (2016). 

58 Wang, Y. et al. Rare variants of large effect in BRCA2 and CHEK2 affect risk of lung cancer. 

Nature genetics 46, 736-741, doi:10.1038/ng.3002 (2014). 

59 Barban, N. et al. Genome-wide analysis identifies 12 loci influencing human reproductive 

behavior. Nature genetics 48, 1462-1472, doi:10.1038/ng.3698 (2016). 

60 Hammerschlag, A. R. et al. Genome-wide association analysis of insomnia complaints identifies 

risk genes and genetic overlap with psychiatric and metabolic traits. Nature genetics 49, 1584-

1592, doi:10.1038/ng.3888 (2017). 

61 Pilling, L. C. et al. Human longevity is influenced by many genetic variants: evidence from 75,000 

UK Biobank participants. Aging (Albany NY) 8, 547-560, doi:10.18632/aging.100930 (2016). 

62 Hawi, Z. et al. The molecular genetic architecture of attention deficit hyperactivity disorder. 

Molecular psychiatry 20, 289-297, doi:10.1038/mp.2014.183 (2015). 

63 Sia, G. M., Clem, R. L. & Huganir, R. L. The human language-associated gene SRPX2 regulates 

synapse formation and vocalization in mice. Science 342, 987-991, doi:10.1126/science.1245079 

(2013). 

64 Tsui, D., Vessey, J. P., Tomita, H., Kaplan, D. R. & Miller, F. D. FoxP2 regulates neurogenesis 

during embryonic cortical development. The Journal of neuroscience : the official journal of the 

Society for Neuroscience 33, 244-258, doi:10.1523/JNEUROSCI.1665-12.2013 (2013). 

65 Schreiweis, C. et al. Humanized Foxp2 accelerates learning by enhancing transitions from 

declarative to procedural performance. Proceedings of the National Academy of Sciences of the 

United States of America 111, 14253-14258, doi:10.1073/pnas.1414542111 (2014). 

66 Jensen, C. M. & Steinhausen, H. C. Comorbid mental disorders in children and adolescents with 

attention-deficit/hyperactivity disorder in a large nationwide study. Atten Defic Hyperact Disord 

7, 27-38, doi:10.1007/s12402-014-0142-1 (2015). 

67 Larson, K., Russ, S. A., Kahn, R. S. & Halfon, N. Patterns of comorbidity, functioning, and service 

use for US children with ADHD, 2007. Pediatrics 127, 462-470, doi:10.1542/peds.2010-0165 

(2011). 

68 Peyre, H. et al. Relationship between early language skills and the development of 

inattention/hyperactivity symptoms during the preschool period: Results of the EDEN mother-

child cohort. BMC psychiatry 16, 380, doi:10.1186/s12888-016-1091-3 (2016). 

69 Breiderhoff, T. et al. Sortilin-related receptor SORCS3 is a postsynaptic modulator of synaptic 

depression and fear extinction. PloS one 8, e75006, doi:10.1371/journal.pone.0075006 (2013). 

70 Hyde, C. L. et al. Identification of 15 genetic loci associated with risk of major depression in 

individuals of European descent. Nature genetics 48, 1031-1036, doi:10.1038/ng.3623 (2016). 

71 Caunt, C. J. & Keyse, S. M. Dual-specificity MAP kinase phosphatases (MKPs): shaping the 

outcome of MAP kinase signalling. FEBS J 280, 489-504, doi:10.1111/j.1742-4658.2012.08716.x 

(2013). 

72 Mortensen, O. V. MKP3 eliminates depolarization-dependent neurotransmitter release through 

downregulation of L-type calcium channel Cav1.2 expression. Cell Calcium 53, 224-230, 

doi:10.1016/j.ceca.2012.12.004 (2013). 

73 Mortensen, O. V., Larsen, M. B., Prasad, B. M. & Amara, S. G. Genetic complementation screen 

identifies a mitogen-activated protein kinase phosphatase, MKP3, as a regulator of dopamine 

transporter trafficking. Mol Biol Cell 19, 2818-2829, doi:10.1091/mbc.E07-09-0980 (2008). 



 28 

74 Volkow, N. D., Fowler, J. S., Wang, G., Ding, Y. & Gatley, S. J. Mechanism of action of 

methylphenidate: insights from PET imaging studies. J Atten Disord 6 Suppl 1, S31-43 (2002). 

75 Volkow, N. D. et al. Therapeutic doses of oral methylphenidate significantly increase 

extracellular dopamine in the human brain. The Journal of neuroscience : the official journal of 

the Society for Neuroscience 21, RC121 (2001). 

76 Consortium, G. T. The Genotype-Tissue Expression (GTEx) project. Nature genetics 45, 580-585, 

doi:10.1038/ng.2653 (2013). 

77 Qu, X. et al. Identification, characterization, and functional study of the two novel human 

members of the semaphorin gene family. The Journal of biological chemistry 277, 35574-35585, 

doi:10.1074/jbc.M206451200 (2002). 

78 Okbay, A. et al. Genome-wide association study identifies 74 loci associated with educational 

attainment. Nature 533, 539-542, doi:10.1038/nature17671 (2016). 

79 Zhernakova, D. V. et al. Identification of context-dependent expression quantitative trait loci in 

whole blood. Nature genetics 49, 139-145, doi:10.1038/ng.3737 (2017). 

80 Hu, H. et al. ST3GAL3 mutations impair the development of higher cognitive functions. American 

journal of human genetics 89, 407-414, doi:10.1016/j.ajhg.2011.08.008 (2011). 

81 Oliver, P. L. et al. Disruption of Visc-2, a Brain-Expressed Conserved Long Noncoding RNA, Does 

Not Elicit an Overt Anatomical or Behavioral Phenotype. Cereb Cortex 25, 3572-3585, 

doi:10.1093/cercor/bhu196 (2015). 

82 Sobreira, N., Walsh, M. F., Batista, D. & Wang, T. Interstitial deletion 5q14.3-q21 associated with 

iris coloboma, hearing loss, dental anomaly, moderate intellectual disability, and attention 

deficit and hyperactivity disorder. Am J Med Genet A 149A, 2581-2583, 

doi:10.1002/ajmg.a.33079 (2009). 

83 Le Meur, N. et al. MEF2C haploinsufficiency caused by either microdeletion of the 5q14.3 region 

or mutation is responsible for severe mental retardation with stereotypic movements, epilepsy 

and/or cerebral malformations. J Med Genet 47, 22-29, doi:10.1136/jmg.2009.069732 (2010). 

84 Novara, F. et al. Refining the phenotype associated with MEF2C haploinsufficiency. Clin Genet 

78, 471-477, doi:10.1111/j.1399-0004.2010.01413.x (2010). 

85 Lambert, J. C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for 

Alzheimer's disease. Nature genetics 45, 1452-1458, doi:10.1038/ng.2802 (2013). 

86 Gene Ontology, C. Gene Ontology Consortium: going forward. Nucleic acids research 43, D1049-

1056, doi:10.1093/nar/gku1179 (2015). 

87 Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for 

interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences 

of the United States of America 102, 15545-15550, doi:10.1073/pnas.0506580102 (2005). 

88 de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis 

of GWAS data. PLoS Comput Biol 11, e1004219, doi:10.1371/journal.pcbi.1004219 (2015). 

89 Vernes, S. C. et al. Foxp2 regulates gene networks implicated in neurite outgrowth in the 

developing brain. PLoS genetics 7, e1002145, doi:10.1371/journal.pgen.1002145 (2011). 

90 Spiteri, E. et al. Identification of the transcriptional targets of FOXP2, a gene linked to speech 

and language, in developing human brain. American journal of human genetics 81, 1144-1157, 

doi:10.1086/522237 (2007). 

91 Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285-

291, doi:10.1038/nature19057 (2016). 

92 Ebejer, J. L. et al. Genome-wide association study of inattention and hyperactivity-impulsivity 

measured as quantitative traits. Twin Res Hum Genet 16, 560-574, doi:10.1017/thg.2013.12 

(2013). 



 29 

93 Grove, J. et al. Common risk variants identified in autism spectrum disorder. bioRxiv, 

doi:10.1101/224774 (2017). 

94 Lindblad-Toh, K. et al. A high-resolution map of human evolutionary constraint using 29 

mammals. Nature 478, 476-482, doi:10.1038/nature10530 (2011). 

95 Flory, K., Molina, B. S., Pelham, W. E., Jr., Gnagy, E. & Smith, B. Childhood ADHD predicts risky 

sexual behavior in young adulthood. J Clin Child Adolesc Psychol 35, 571-577, 

doi:10.1207/s15374424jccp3504_8 (2006). 

96 Marsh, L. E., Norvilitis, J. M., Ingersoll, T. S. & Li, B. ADHD symptomatology, fear of intimacy, and 

sexual anxiety and behavior among college students in China and the United States. J Atten 

Disord 19, 211-221, doi:10.1177/1087054712453483 (2015). 

97 Hosain, G. M., Berenson, A. B., Tennen, H., Bauer, L. O. & Wu, Z. H. Attention deficit 

hyperactivity symptoms and risky sexual behavior in young adult women. J Womens Health 

(Larchmt) 21, 463-468, doi:10.1089/jwh.2011.2825 (2012). 

98 Chudal, R. et al. Parental age and the risk of attention-deficit/hyperactivity disorder: a 

nationwide, population-based cohort study. Journal of the American Academy of Child and 

Adolescent Psychiatry 54, 487-494 e481, doi:10.1016/j.jaac.2015.03.013 (2015). 

99 Chang, Z. et al. Maternal age at childbirth and risk for ADHD in offspring: a population-based 

cohort study. Int J Epidemiol 43, 1815-1824, doi:10.1093/ije/dyu204 (2014). 

100 Ostergaard, S. D., Dalsgaard, S., Faraone, S. V., Munk-Olsen, T. & Laursen, T. M. Teenage 

Parenthood and Birth Rates for Individuals With and Without Attention-Deficit/Hyperactivity 

Disorder: A Nationwide Cohort Study. Journal of the American Academy of Child and Adolescent 

Psychiatry 56, 578-584 e573, doi:10.1016/j.jaac.2017.05.003 (2017). 

101 Barbaresi, W. J., Katusic, S. K., Colligan, R. C., Weaver, A. L. & Jacobsen, S. J. Long-term school 

outcomes for children with attention-deficit/hyperactivity disorder: a population-based 

perspective. J Dev Behav Pediatr 28, 265-273, doi:10.1097/DBP.0b013e31811ff87d (2007). 

102 Faraone, S. V. et al. Intellectual performance and school failure in children with attention deficit 

hyperactivity disorder and in their siblings. Journal of abnormal psychology 102, 616-623 (1993). 

103 Sniekers, S. et al. Genome-wide association meta-analysis of 78,308 individuals identifies new 

loci and genes influencing human intelligence. Nature genetics 49, 1107-1112, 

doi:10.1038/ng.3869 (2017). 

104 Kong, A. et al. Selection against variants in the genome associated with educational attainment. 

Proceedings of the National Academy of Sciences of the United States of America 114, E727-

E732, doi:10.1073/pnas.1612113114 (2017). 

105 Lee, S. S., Humphreys, K. L., Flory, K., Liu, R. & Glass, K. Prospective association of childhood 

attention-deficit/hyperactivity disorder (ADHD) and substance use and abuse/dependence: a 

meta-analytic review. Clin Psychol Rev 31, 328-341, doi:10.1016/j.cpr.2011.01.006 (2011). 

106 Halfon, N., Larson, K. & Slusser, W. Associations between obesity and comorbid mental health, 

developmental, and physical health conditions in a nationally representative sample of US 

children aged 10 to 17. Acad Pediatr 13, 6-13, doi:10.1016/j.acap.2012.10.007 (2013). 

107 Chen, A. Y., Kim, S. E., Houtrow, A. J. & Newacheck, P. W. Prevalence of obesity among children 

with chronic conditions. Obesity (Silver Spring) 18, 210-213, doi:10.1038/oby.2009.185 (2010). 

108 Cortese, S. et al. Association Between ADHD and Obesity: A Systematic Review and Meta-

Analysis. The American journal of psychiatry 173, 34-43, doi:10.1176/appi.ajp.2015.15020266 

(2016). 

109 Owens, J. A. A clinical overview of sleep and attention-deficit/hyperactivity disorder in children 

and adolescents. J Can Acad Child Adolesc Psychiatry 18, 92-102 (2009). 

110 Lubke, G. H., Hudziak, J. J., Derks, E. M., van Bijsterveldt, T. C. & Boomsma, D. I. Maternal ratings 

of attention problems in ADHD: evidence for the existence of a continuum. Journal of the 



 30 

American Academy of Child and Adolescent Psychiatry 48, 1085-1093, 

doi:10.1097/CHI.0b013e3181ba3dbb (2009). 

111 Cortese, S., Comencini, E., Vincenzi, B., Speranza, M. & Angriman, M. Attention-

deficit/hyperactivity disorder and impairment in executive functions: a barrier to weight loss in 

individuals with obesity? BMC psychiatry 13, 286, doi:10.1186/1471-244X-13-286 (2013). 

112 Ortal, S. et al. The Role of Different Aspects of Impulsivity as Independent Risk Factors for 

Substance Use Disorders in Patients with ADHD: A Review. Curr Drug Abuse Rev 8, 119-133 

(2015). 

 



 31 

Figure legends 

 

Figure 1. Manhattan plot of the results from the GWAS meta-analysis of ADHD.  

The index variants in the 12 genome-wide significant loci are highlighted as a green diamond. 

Index variants located with a distance less than 400kb are considered as one locus. The y-axis 

represents –log(two-sided P-values) for association of variants with ADHD, from meta-analysis 

using an inverse-variance weighted fixed effects model, and a total sample size of 20,183 ADHD 

cases and 35,191 controls. The vertical red line represents the threshold for genome-wide 

significance. 

 

 

Figure 2. Odds Ratio by PRS for ADHD  

Odds Ratio (OR) by PRS within each decile estimated for n = 18,298 biological independent 

individuals in the PGC samples (red dots) and in n = 37,076 biological independent individuals 

in the iPSYCH sample (blue dots). PRSs in the iPSYCH sample were obtained by five leave-

one-out analyses, using 4 of 5 groups as training datasets for estimation of SNP weights, while 

estimating Polygenic Risk Scores (PRS) for the remaining target group. Odds ratios and 95% 

confidence limits (error bars) were estimated using logistic regression on the continuous scores. 
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Figure 3. Genetic correlations of ADHD with other phenotypes 

Significant genetic correlations between ADHD (results from Europena GWAS meta-analysis of 

19,099 cases, 34,194 controls) and other traits reveal overlap of genetic risk factors for ADHD 

across several groups of traits (grouping indicated by a horizontal line): educational, 

psychiatric/personality, weight (and possible weight related traits), smoking behaviour/smoking-

related cancer, reproductive traits and parental longevity (Sample size of the external GWASs 

are presented in Supplementary Table 5) . In total 219 traits were tested and only traits 

significant after Bonferroni correction are presented in the figure. Two significant educational 

phenotypes are omitted due to substantial overlap with years of schooling. Genetic correlation is 

presented as a dot and error bars indicate 95% confidence limits. 
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Table 1. Results for the genome-wide significant index variants in the 12 loci associated with ADHD identified in the GWAS meta-

analysis of 20,183 cases and 35,191 controls. Index variants are LD independent (r2 < 0.1), and are merged into one locus when located 

with a distance less than 400kb. The location (chromosome [Chr] and base position [BP]), alleles (A1 and A2), allele frequency (A1 

Freq), odds ratio (OR) of the effect with respect to A1, and association P-values from inverse-variance weighted fixed effects model, of 

the index variant are given, along with genes within 50kb of the credible set for the locus. 

 

           

Locus Chr BP Index Variant Genes A1 A2 A1 Freq OR P-value 

1 1 44184192 rs11420276   ST3GAL3, KDM4A, 

KDM4A-AS1, PTPRF, 

SLC6A9, ARTN, DPH2, 

ATP6V0B, B4GALT2, 

CCDC24, IPO13 

G GT 0.696 1.113 2.14 x 10-13  

2 1 96602440 rs1222063  Intergenic A G 0.328 1.101 3.07 x 10-8  

3 2 215181889 rs9677504  SPAG16 A G 0.109 1.124 1.39 x 10-8 

4 3 20669071 rs4858241  Intergenic T G 0.622 1.082 1.74 x 10-8 

5 4 31151456 rs28411770  PCDH7, LINC02497 T C 0.651 1.090 1.15 x 10-8  

6 5 87854395 rs4916723  LINC00461, MIR9-2, 

LINC02060, 

TMEM161B-AS1 

A C 0.573 0.926 1.58 x 10-8 

7 7 114086133 rs5886709  FOXP2, MIR3666 G GTC 0.463 1.079 1.66 x 10-8  

8 8 34352610 rs74760947  LINC01288 A G 0.957 0.835 1.35 x 10-8 

9 10 106747354 rs11591402  SORCS3 A T 0.224 0.911 1.34 x 10-8 

10 12 89760744 rs1427829  DUSP6, POC1B A G 0.434 1.083 1.82 x 10-9 

11 15 47754018 rs281324  SEMA6D T C 0.531 0.928 2.68 x 10-8 

12 16 72578131 rs212178  LINC01572 A G 0.883 0.891 7.68 x 10-9 
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Online Methods 

 

GWAS meta-analysis 

Quality control, imputation and primary association analyses were done using the bioinformatics 

pipeline Ricopili (available at https://github.com/Nealelab/ricopili), developed by the Psychiatric 

Genomics Consortium (PGC)33. In order to avoid potential study effects the 11 PGC samples and the 23 

genotyping batches within iPSYCH were each processed separately unless otherwise stated 

(Supplementary Information). 

Stringent quality control was applied to each cohort following standard procedures for GWAS, 

including filters for call rate, Hardy-Weinberg equilibrium, and heterozygosity rates (Supplementary 

Information). Each cohort was then phased and imputed using the 1000 Genomes Project phase 3 

(1KGP3)34,113 imputation reference panel using SHAPEIT114 and IMPUTE2115, respectively. For trio 

cohorts, pseudocontrols were defined from phased haplotypes prior to imputation. 

Cryptic relatedness and population structure were evaluated using a set of high quality markers pruned 

for linkage disequilibrium (LD). Genetic relatedness was estimated using PLINK v1.9116,117 to identify 

first and second-degree relatives (!" > 0.2) and one individual was excluded from each related pair. 

Genetic outliers were identified for exclusion based on principal component analyses using 

EIGENSOFT35,118. This was done separately for each of the PGC cohorts and on a merged set of 

genotypes for the iPSYCH cohort (Supplementary Information). Across studies, a total of 20,183 cases 

and 35,191 controls remained for analysis after QC. 
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Genome-wide association analyses for the 11 PGC samples and the 23 waves in iPSYCH were 

performed using logistic regression model with the imputed marker dosages in PLINK v1.9116,117. 

Principal components were included as covariates to control for population stratification35,118, along 

with relevant study-specific covariates where applicable (Supplementary Information, Supplementary 

Table 1). Subsequently the results were meta-analysed using an inverse-variance weighted fixed effects 

model, implemented in METAL (version 2011-03-25)36. Variants were filtered and included if 

imputation quality (INFO score) was > 0.8 and MAF > 0.01. Only markers supported by an effective 

sample size Neff = 4/(1/Ncases + 1/Ncontrols)119 greater than 70% were included. After filtering, the meta-

analysis included results for 8,047,421 markers.   

 

Conditional analysis 

Twelve independent genome-wide significant loci were identified by LD clumping and merging loci 

within 400 kb (Supplementary Information). In two of these loci a second index variant persisted after 

LD clumping. The two putative secondary signals were evaluated by considering analysis conditional 

on the lead index variant in each locus. In each cohort, logistic regression was performed with the 

imputed genotype dosage for the lead index variant included as a covariate. All covariates from the 

primary GWAS (e.g. principal components) were also included. The conditional association results 

were then combined in an inverse-variance weighted meta-analysis. 

 

Genetic correlations between ADHD samples 

Genetic correlation between the European-ancestry PGC and iPSYCH GWAS results was calculated 

using LD Score regression37. The regression was performed using pre-computed LD scores for 
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HapMap3 SNPs calculated based on 378 European-ancestry individuals from the 1000 Genomes Project 

(available on https://github.com/bulik/ldsc). Only results for markers with an imputation INFO score > 

0.90 were included in the analysis. In addition, a bivariate GREML analysis was conducted using 

GCTA120 in order to estimate the genetic correlation between PGC case/control and trio study designs. 

 

Polygenic Risk Scores for ADHD 

The iPSYCH sample were split into five groups, and subsequently five leave-one-out association 

analyses were conducted, using four out of five groups and the PGC samples as training datasets38. PRS 

were estimated for each target sample using variants passing a range of association P-value thresholds in 

the training samples. PRS were calculated by multiplying the natural log of the odds ratio of each 

variant by the allele-dosage (imputation probability) and whole-genome polygenic risk scores were 

obtained by summing values over variants for each individual.  

For each of the five groups of target samples, PRS were normalized and the significance of the case-

control score difference was tested by standard logistic regression including principal components. For 

each target group and for each P-value threshold the proportion of variance explained (i.e. Nagelkerke’s 

R2) was estimated by comparing the regression with PRS to a reduced model with covariates only. The 

OR for ADHD within each PRS decile group was estimated based on the normalized score across 

groups (using the P-value threshold with the highest Nagelkerke’s R2 within each target group) (Figure 

3). OR was also estimated using logistic regression on the continuous scores for each target group 

separately and an OR based on all samples using the normalized PRS score across all groups 

(Supplementary Figure 9). Additionally PRS were evaluated in the PGC samples using the iPSYCH 

sample as training sample, following the approach described above (Supplementary Information). 
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SNP heritability and intercept evaluation 

LD score regression37 was used to evaluated the relative contribution of polygenic effects and 

confounding factors, such as cryptic relatedness and population stratification, to deviation from the null 

in the genome-wide distribution of GWAS #$ statistics. Analysis was performed using pre-computed 

LD scores from European-ancestry samples in the 1000 Genomes Project (available on 

https://github.com/bulik/ldsc) and summary statistics for the European-ancestry ADHD GWAS to 

ensure matching of population LD structure. The influence of confounding factors was tested by 

comparing the estimated intercept of the LD score regression to one, it’s expected value under the null 

hypothesis of no confounding from e.g. population stratification. The ratio between this deviation and 

the deviation of the mean #$ from one (i.e. it’s expected value under the null hypothesis of no 

association) was used to estimate the proportion of inflation in #$ attributable to confounding as 

opposed to true polygenic effects (ratio = (intercept-1)/(mean #$-1)).  SNP heritability was estimated 

based on the slope of the LD score regression, with heritability on the liability scale calculated assuming 

a 5% population prevalence of ADHD39.  

 

Partitioning of the heritability 

SNP heritability was partitioned by functional category and tissue association using LD score 

regression40. Partitioning was performed for 53 overlapping functional categories, as well as 220 cell-

type-specific annotations grouped into 10 cell-type groups, as described in Finucane et al. 40. For both 

sets of annotations we used previously computed LD scores and allele frequencies from European 
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ancestry samples in the 1000 Genomes Project (available on 

https://data.broadinstitute.org/alkesgroup/LDSCORE/).  

Additionally we expanded the cell-type specific heritability analysis by including an annotation based 

on information about H3K4Me1 imputed gapped peaks excluding the broad MHC-region (chr6:25-

35MB), generated by the Roadmap Epigenomics Mapping Consortium121,122 (Supplementary 

Information). The analyses were restricted to the European GWAS meta-analysis results to ensure 

matching of population LD structure. Results for each functional category were evaluated based on 

marginal enrichment, defined as the proportion of SNP heritability explained by SNPs in the annotation 

divided by the proportion of genome-wide SNPs in the annotation40. For each cell-type group and each 

H3K4Me1 cell-type annotations, the contribution to SNP heritability was tested conditional on the 

baseline model containing the 53 functional categories.   

 

Genetic correlations of ADHD with other traits 

The genetic correlations of ADHD with other phenotypes were evaluated using LD Score regression42. 

For a given pair of traits, LD score regession estimates the expected population correlation between the 

best possible linear SNP-based predictor for each trait, restricting to common SNPs. Such correlation of 

genetic risk may reflect a combination of colocalization, pleiotropy, shared biological mechanisms, and 

causal relationships between traits.   Correlations were tested for 211 phenotypes with publically 

available GWAS summary statistics using LD Hub41 (Supplementary Information). Additonally, we 

analysed on our local computer cluster, the genetic correlation of ADHD with eight phenotypes: human 

intelligence103, four phenotypes related to education and cognition analyzed in samples from the 

UK_Biobank49 (college/university degree, verbal–numerical reasoning, memory and reaction time), 
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insomnia60, anorexia nervosa44, and major depressive disorder43. The genetic correlation with major 

depressive disorder was tested using GWAS results from an updated analysis of 130,664 cases with 

major depressive disorder and 330,470 controls from the Psychiatric Genomics Consortium. As in the 

previous LD score regression analyses, this estimation was based on summary statistics from the 

European GWAS meta-analysis, and significant correlations reported are for traits analysed using 

individuals with European ancestry.  

 

Credible set analysis 

We defined a credible set of variants in each locus using the method described by Maller et al.123 

(Supplementary Information), implemented by a freely available R script 

(https://github.com/hailianghuang/FM-summary). Under the assumption that (a) there is one causal 

variant in each locus, and (b) the causal variant is observed in the genotype data, the credible set can be 

considered to have a 99% probability of containing the causal variant. For each the 12 genome-wide 

significant loci, variants within 1MB and in LD with correlation  r2 > 0.4  to the index variant were 

considered for inclusion in the credible set analysis. The credible set analysis was done using the 

European GWAS meta-analysis to ensure consistent LD structure in the analyzed cohorts.  

 

Biological annotation of variants in credible set 

The variants in the credible set for each locus, were annotated based on external reference data in order 

to evaluate potential functional consequences. In particular, we identify: (a) Gene and regulatory 

consequences annotated by Variant Effect Predictor (VEP) using Ensembl with genome build 

GRCh37124. We exclude upstream and downstream consequences, and consequences for transcripts that 
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lack a HGNC gene symbol (e.g. vega genes). (b) Variants within 2kb upstream of the transcription start 

site (TSS) of at least one gene isoform based on Gencode v19125. (c) Variants annotated as interacting 

with a given gene in Hi-C data from samples of developing human cerebral cortex during neurogenesis 

and migration126. Annotations are considered for both the germinal zone (GZ), primarily consisting of 

actively dividing neural progenitors, and the cortical and subcortical plate (CP), primarily consisting of 

post-mitotic neurons. (d) Variants identified as eQTLs based on gene expression in GTEx127 or BIOS79. 

Expression quantitative trait loci were annotated using FUMA (http://fuma.ctglab.nl/). We restricted to 

eQTL associations with false discovery fate (FDR) < 1e-3 within each dataset. (e) Chromatin states of 

each variant based on the 15-state chromHMM analysis of epigenomics data from Roadmap128. The 15 

states summarize to annotations of active chromatin marks (i.e. Active TSS, Flanking Active TSS, 

Flanking Transcription, Strong Transcription, Weak Transcription, Genic Enhancer, Enhancer, or Zinc 

Finger [ZNF] gene), repressed chromatin marks (Heterochromatin, Bivalent TSS, Flanking Bivalent 

TSS, Bivalent Enhancer, Repressed Polycomb, or Weak Repressed Polycomb), or quiescent. The most 

common chromatin state across 127 tissue/cell types was annotated using FUMA 

(http://fuma.ctglab.nl/). We also evalauted the annotated chromatin state from fetal brain.   

 

Gene-set analyses 

Gene-based association with ADHD was estimated with MAGMA 1.0588 using the summary statistics 

from the European GWAS meta-analysis (Ncases = 19,099, Ncontrols = 34,194; Supplementary 

Information, Supplementary Information Table 1).  Association was tested using the SNP-wise mean 

model, in which the sum of -log(SNP P-value) for SNPs located within the transcribed region (defined 

using NCBI 37.3 gene definitions) was used as the test statistic. MAGMA accounts for gene-size, 
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number of SNPs in a gene and LD between markers when estimating gene-based P-values. LD 

correction was based on estimates from the 1000 genome phase 3 European ancestry samples34.  

The generated gene-based P-values were used to analyze sets of genes in order to test for enrichment of 

association signals in genes belonging to specific biological pathways or processes. In the analysis only 

genes on autosomes, and genes located outside the broad MHC region (hg19:chr6:25-35M) were 

included. We used the gene names and locations and the European genotype reference panel provided 

with MAGMA. For gene sets we used sets with 10-1000 genes from the Gene Ontology sets86 currated 

from  MsigDB 6.087.  

Targeted FOXP2 downstream target gene sets were analysed for association with ADHD. Three sets 

were examined: 1) Putative target genes of Foxp2 that were enriched in wild type compared to control 

Foxp2 knockout mouse brains in ChIP-chip experiments (219 genes), 2) Genes showing differential 

expression in wild type compared to Foxp2 knockout mouse brains (243 genes), and 3) FOXP2 target 

genes that were enriched in either or both basal ganglia (BG) and inferior frontal cortex (IFC) from 

human fetal brain samples in ChIP-chip experiments (258 genes). Curated short lists of high-confidence 

genes were obtained from Vernes et al.89 and Spiteri et al90. 

A set of evolutionarily highly constrained genes were also analysed. The set of highly constrained genes 

was defined using a posterior probability of being loss-of-function intolerant (pLI) based on the 

observed and expected counts of protein-truncating variants (PTV) within each gene in a large study of 

over 60,000 exomes from the Exome Aggregation Consortium (ExAC)91. Genes with pLI ≥0.9 were 

selected as the set of highly constrained genes (2932 genes).  

 

Replication of GWAS loci 
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To replicate the results of the ADHD GWAS meta-analysis we compared the results to analyses of 

cohorts from deCODE and 23andMe, and a meta-analysis of two independent studies conducted by 

EAGLE and QIMR (referred to as EAGLE/QIMR). We evaluated evidence for replication based on: (a) 

sign tests of concordance between the ADHD GWAS meta-analysis and each replication cohort; (b) 

comparison of bias-corrected effect sizes between the ADHD GWAS and the deCODE and 23andMe 

replication cohorts; (c) genetic correlation between the ADHD GWAS and the 23andMe and 

EAGLE/QIMR replication cohorts; (d) meta-analysis of the ADHD GWAS meta-analysis results with 

the results from each replication cohort; and (e) tests of heterogeneity between the ADHD GWAS and 

each replication cohorts. 

For the sign test, we first identified the overlapping SNPs present in the ADHD GWAS and each of the 

three replication analyses (i.e. deCODE, 23andMe, and EAGLE/QIMR). For each replication cohort 

intersecting SNPs were then clumped for LD (r2 > 0.05 within 1 Mb) for all variants with P < 1 ´ 10-4 in 

the ADHD GWAS (or P < 1 ´ 10-5 for the deCODE replication) using 1000 Genomes Phase 3 data on 

European ancestry populations. After clumping, sign tests were performed to test the proportion of loci 

with a concordant direction of effect in the replication cohort (p) using a one sample test of the 

proportion with Yates’ continuity correction129 against a null hypothesis of p = 0.50 (i.e. the signs are 

concordant between the two analyses by chance) in R130. This test was evaluated separately for 

concordance in deCODE, 23andMe, and EAGLE/QIMR for loci passing P-value thresholds of P < 5 ´ 

10-8 (i.e. genome-wide significant loci), P < 1 ´ 10-7, P < 1 ´ 10-6, P < 1 ´ 10-5, and P < 1 ´ 10-4 in the 

ADHD GWAS meta-analysis (Supplementary Information).  
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In addition to testing concordance for the direction of effect, we also evaluate replication for the 

magnitude of the effect sizes. Specifically, for each of deCODE and 23andMe we regressed the effect 

size in the replication cohort (i.e. the log odds ratio) on the estimated effect size from the ADHD 

GWAS after adjustment for winner’s curse for loci with P < 1e-6. Winner’s curse correction is 

perfomed by computing posterior mean estimates of marginal SNP effects %& after fitting a spike-and-

alab distribution  

%&~ ( 0
*(0, -$)with	probability	!otherwise  

by maximum likelihood as described by Okbay et al.78 (Supplementary Information). For the regression 

of effect sizes we oriented all variants in the direction of the risk increasing allele estimated from the 

ADHD GWAS, constrained the intercept to zero, and weighted the variants proportional to the inverse 

of their squared standard error from the ADHD GWAS. A regression slope of one indicates “ideal” 

replication of all loci in the regression, whereas a slope of zero indicates no replication. 

Genetic correlation of the ADHD GWAS with the 23andMe and EAGLE/QIMR results was computed 

using LD score regression37 with pre-computed European ancestry LD scores following the same 

procedure as described above for other genetic correlation analyses. Genetic correlation could not be 

computed for deCODE since results were only available for top loci from the ADHD GWAS. To further 

explore the moderate genetic correlation between the 23andMe results and the ADHD GWAS we also 

evaluated the genetic correlation between 23andMe and traits from LD Hub 

(http://ldsc.broadinstitute.org/ldhub/)42. To evaluate the magnitude of the observed differences in rg we 

consider both the absolute difference (i.e. =>?,@ABA − >?,$DEFGHI =) and the test of an approximate Z score 

for this difference (Supplementary Information): 
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J = >?,@ABA − >?,$DEFGHI
LMN@ABA$ + MN$DEFGHI$  

We do not expect this to be an ideal formal test for the difference between two genetic correlations, and 

therefore emphasize caution in interpreting the precise results. Nevertheless, it does offer a useful 

benchmark for evaluating the magnitude of the difference between the rg estimates in the context of the 

uncertainty in those values. 

Finally, we meta-analyzed the ADHD GWAS with the results from each replication cohort. For 

deCODE and 23andMe inverse variance-weighted meta-analyses were performed. For meta-analysis 

with the EAGLE/QIMR GWAS of ADHD-related behaviors in childhood population samples we used a 

modified sample size-based weighting method. Modified sample size-based weights were derived to 

accounts for the respective heritabilities, genetic correlation, and measurement scale of the GWASs 

(Supplementary Information). To summarize, given z-scores Z1j and Z2j resulting from GWAS of SNP j 

in a dichotomous phenotype (e.g. ADHD) with sample size NI and a continuous phenotype (e.g. ADHD-

related traits) with sample size N2, respectively, we calculate 

J&,PIQE =
R*ST&JT& + R*S$&JU$&

R*ST& +*S$&
 

where 

JU$& = VWXYZ>?[	´	 J$&
R1+ Z1 − >?$[*$&ℎ$$ &̂ _⁄

 

*ST& = *T& a(1 − a)	b(c
dT[f])$

[f(1 − f)]$  
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*S$& = *$& >?$ℎ$$ ℎT$⁄
1 + (1 − >?$) *$&ℎ$$ &̂ _⁄  

 

The adjusted sample sizes *Th and *$h  reflect differences in power between the studies due to 

measurement scale and relative heritability that is not captured by sample size. The calculation of J$h 

reduces the contribution of the continuous phenotype’s GWAS to the meta-analysis based on imperfect 

genetic correlation with the dichotomous phenotype of interest (i.e. ADHD). The adjustments are 

computed based on the sample prevalence (P) and population prevalence (K) of the dichotomous 

phenotype, the estimated liability scale SNP heritability of the two phenotypes (ℎT$ and ℎ$$), and the 

genetic correlation (rg) between the two phenotypes, as well as the average SNP LD score (lj) and the 

number of SNPs (M). Heritability and genetic correlation values to compute these weights are computed 

using LD score regression. This meta-analysis weighting scheme is consistent with weights alternatively 

derived based on modelling the joint distribution of marginal GWAS beta across traits131. 

To test heterogeneity with each replication cohort, we considered Cochran’s Q test of heterogeneity in 

the meta-analyses. Specifically, we evaluated the one degree of freedom test for heterogeneity between 

the ADHD GWAS meta-analysis and the replication cohort.  

 

Data Avalibility Statement 

The PGC’s policy is to make genome-wide summary results public. Summary statistics with the results 

from the ADHD GWAs meta-analysis of iPSYCH and the PGC samples are available on the PGC 

website (https://www.med.unc.edu/pgc/results-and-downloads). GWA summary statistics with results 

from the GWAS of ADHD symptom scores analyzed in the EAGLE sample can be accessed at the PGC 



 49 

website (see link above). Summary statistics for the 23andMe dataset can be obtained by qualified 

researchers under an agreement with 23andMe that protects the privacy of the 23andMe participants.  

  

Availability of genotype data and summary statistics 

For access to genotypes from the PGC cohorts and the iPSYCH sample interested researchers should 

contact the lead PIs (iPSYCH: lead PI Anders D. Børglum; PGC: Benjamin Neale and Stephen 

Faraone). Summary statitistics can be downloaded from: https://www.med.unc.edu/pgc/results-and-

downloads 

http://ipsych.au.dk/downloads/   

http://www.wikigenes.org/e/art/e/348.html 
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