

ORCA - Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:https://orca.cardiff.ac.uk/id/eprint/111011/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Feld, Christian K., Fernandes, Maria Rosário, Ferreira, Maria Teresa, Hering, Daniel, Ormerod, Steve J., Venohr, Markus and Gutiérrez-Cánovas, Cayetano 2018. Evaluating riparian solutions to multiple stressor problems in river ecosystems - A conceptual study. Water Research 139, pp. 381-394. 10.1016/j.watres.2018.04.014

Publishers page: http://dx.doi.org/10.1016/j.watres.2018.04.014

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

Accepted Manuscript

Evaluating riparian solutions to multiple stressor problems in river ecosystems — A conceptual study

Christian K. Feld, Maria do Rosário Pereira Fernandes, Maria Teresa Ferreira, Daniel Hering, Steve J. Ormerod, Markus Venohr, Cayetano Gutiérrez-Cánovas

PII: S0043-1354(18)30298-7

DOI: 10.1016/j.watres.2018.04.014

Reference: WR 13711

To appear in: Water Research

Received Date: 18 December 2017

Revised Date: 22 March 2018

Accepted Date: 6 April 2018

Please cite this article as: Feld, C.K., Fernandes, Maria.do.Rosá.Pereira., Ferreira, M.T., Hering, D., Ormerod, S.J., Venohr, M., Gutiérrez-Cánovas, C., Evaluating riparian solutions to multiple stressor problems in river ecosystems — A conceptual study, *Water Research* (2018), doi: 10.1016/j.watres.2018.04.014.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Evaluating riparian solutions to multiple stressor problems
2	in river ecosystems — a conceptual study
3	Christian K. Feld ^{*1} , Maria do Rosário Pereira Fernandes ² , Maria Teresa Ferreira ² , Daniel
4	Hering ¹ , Steve J. Ormerod ³ , Markus Venohr ⁴ and Cayetano Gutiérrez-Cánovas ^{3,5}
5	*Author for correspondence: <u>christian.feld@uni-due.de</u> ; phone: +49 201 183-4390
6	¹ University of Duisburg-Essen, Faculty of Biology-Department of Aquatic Ecology and Centre
7	for Water and Environmental Research, 45117 Essen, Germany
8	² Forest Research Centre (CEF), School of Agriculture, University of Lisbon, Tapada da Ajuda,
9	1349-017, Lisbon, Portugal
10	³ Cardiff University, Water Research Institute, Biosi 2 (Room 6.04), Cardiff CF10 3AX, United
11	Kingdom
12	⁴ Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Department of Ecosystem
13	Research, Justus-von-Liebig-Str. 7, 12489 Berlin, Germany
14	⁵ University of Barcelona, Department of Evolutionary Biology, Ecology and Environmental
15	Sciences, FEM Research Group-IRBIO, Diagonal 643, 08028 Barcelona, Spain
16	

17 Abstract

18 Rivers are among the most sensitive of all ecosystems to the effects of global change, but options 19 to prevent, mitigate or restore ecosystem damage are still inadequately understood. Riparian 20 buffers are widely advocated as a cost-effective option to manage impacts, but empirical 21 evidence is yet to identify ideal riparian features (e.g. width, length and density) which enhance 22 ecological integrity and protect ecosystem services in the face of catchment-scale stressors. Here, 23 we use an extensive literature review to synthesise evidence on riparian buffer and catchment 24 management effects on instream environmental conditions (e.g. nutrients, fine sediments, organic 25 matter), river organisms and ecosystem functions. We offer a conceptual model of the 26 mechanisms through which catchment or riparian management might impact streams either 27 positively or negatively. The model distinguishes scale-independent benefits (shade, thermal damping, organic matter and large wood inputs) that arise from riparian buffer management at 28 29 any scale from scale-dependent benefits (nutrient or fine sediment retention) that reflect stressor 30 conditions at broader (sub-catchment to catchment) scales. The latter require concerted management efforts over equally large domains of scale (e.g. riparian buffers combined with 31 32 nutrient restrictions). The evidence of the relationships between riparian configuration (width, 33 length, zonation, density) and scale-independent benefits is consistent, suggesting a high certainty of the effects. In contrast, scale-dependent effects as well as the biological responses to 34 35 riparian management are more uncertain, suggesting that ongoing diffuse pollution (nutrients, 36 sediments), but also sources of variability (e.g. hydrology, climate) at broader scales may 37 interfere with the effects of local riparian management. Without concerted management across 38 relevant scales, full biological recovery of damaged lotic ecosystems is unlikely. There is, 39 nevertheless, sufficient evidence that the benefits of riparian buffers outweigh potential adverse

- 40 effects, in particular if located in the upstream part of the stream network. This supports the use
- 41 of riparian restoration as a no-regrets management option to improve and sustain lotic ecosystem
- 42 functioning and biodiversity.
- 43
- 44 Keywords
- 45 Agriculture, Aquatic biota, Fine sediments, Nutrients, Riparian buffer, River management

CER MAR

46 1. Introduction

47 Growing evidence suggests that rivers are among the most sensitive of all ecosystems to the 48 effects of global change. As the major terrestrial expression of the global water cycle, they are at 49 risk from major anthropogenic modifications to the atmospheric, catchment and riparian 50 environments from which they receive drainage (Durance & Ormerod, 2007; Palmer et al., 2008; 51 Woodward et al., 2012; Beketov et al., 2013; Bussi et al., 2016). Already well over half of the 52 World's river discharge is appropriated for human use, while pollution, climate change and 53 habitat modification interact among a suite of multiple stressors on river ecosystems that now 54 incur some of the most rapid biodiversity losses on Earth (Matthaei et al., 2010; Gutiérrez-55 Cánovas et al., 2013). These effects are not only of intrinsic ecological significance, but also 56 pose major risk to rivers as some of the World's most valuable natural capital assets and as the 57 sources of ecosystem services of vital importance to human survival (Vörösmarty et al., 2010; 58 Maltby & Ormerod, 2011). The degradation of river environments is now a pressing policy 59 priority, and in Europe the Water Framework Directive (2000/60/EC) aims to return almost 60% 60 of Europe's rivers to 'good ecological status' by 2027 (EEA, 2012). 61 Among the multiple stressors affecting European freshwaters, agricultural intensification, 62 hydromorphological alteration and climate change are among the main causes of river

63 deterioration, increasing nutrients and sediment in waters, reducing habitat quality and

64 modifying thermal and hydrological regimes (EEA, 2012; Hering et al., 2015). However,

65 protecting rivers, arresting degradation and restoring ecological damage in the face of global

- 66 change is a challenging task, and requires some combination of i) cessation or prevention of
- 67 damaging activities (e.g. Wilcock et al., 2009; Vaughan & Ormerod, 2014); ii) mitigation of
- 68 ecological effects of stressors (e.g. Bednarek & Hart, 2005); iii) enhanced resilience by adapting

69 river ecosystems to further change (e.g. Thomas et al., 2016) and iv) restoration to accelerate 70 ecological recovery (e.g. Hickford et al., 2014; Hering et al., 2015). So far, there is only limited 71 information to underpin the implementation of the most effective and practicable combination of 72 these strategies at relevant scales and at low cost. While case studies exist, there is an urgent 73 need to synthesise the extant evidence, which is often local, fragmentary or arises from studies 74 with limitations in study sample size and design.

75 Among the restorative and management strategies to improve ecological status, the establishment 76 of riparian buffers has been most frequently utilised to mitigate diffuse pollution by agriculture 77 (Feld et al., 2011; Collins et al., 2012) and thermal deterioration induced by climate change 78 (Palmer et al., 2009). However, empirical evidence from studies assessing the effects of planting or restoring riparian buffers is unclear because of the many features that characterise riparian 79 80 buffers and ultimately determine their ecological effects, for example buffer length, width, 81 density, or the planted species and its zonation (i.e. single vs. multi-zone buffers) (Dosskey, 82 2001). Practitioners therefore face a lack of clear guidance about the dimensions and 83 composition required for riparian buffers to be effective. Additionally, individual local river 84 characteristics and upstream catchment can all mediate the ecological effects of riparian buffers 85 (Feld et al., 2011). For example, thermal effects of riparian shade are limited at wide and deep 86 river sections (i.e. by tree height and water body volume), while reach-scale water quality effects 87 can be constrained by the degree of land use further upstream in the catchment. Therefore, 88 knowledge of the interplay of riparian buffer effects and related catchment features is critical to 89 render river restoration ecologically successful in the long term.

Here, we present a synthesis of studies performing river restoration and management actions for
mitigating the impacts of agricultural intensification, hydrological alteration and climate change

92 across a range of regions, climates and management features. We introduce a conceptual model 93 to visualise the effects of agriculture, urbanisation and silviculture on riparian degradation, 94 instream nutrient and fine sediment concentrations, and eventually on aquatic biodiversity. We 95 hypothesise that some riparian buffer restoration effects will be consistent across a wide range of spatial scales, i.e. they are 'scale-independent'; in contrast, other restoration benefits are 'scale-96 97 dependent' as they can only be gained by simultaneous actions across scales such that the effects 98 are large enough to offset or mitigate the impact of stressors at the catchment-scale (e.g. tile-99 drainage, extensive agriculture). Second, we hypothesise that riparian buffer restoration effects 100 are negatively related to catchment size and thus conditional on the longitudinal position along 101 the river continuum. Riparian buffers at headwater sections thus would be more likely to give 102 rise to positive outcomes as compared to buffer restoration in the middle and lower parts of the 103 river network.

104 2. Material and methods

105 2.1 Literature review

We focused our synthesis on evidence about real outcomes from management intervention and related recovery trajectories, because biological responses to restoration are not necessarily the reverse of responses to degradation (Feld et al., 2011). For example, hysteresis effects or alternative endpoints may prevent ecosystems to recover its pre-disturbance properties after a restoration action (Verdonschot et al., 2013). We searched the peer-reviewed literature using the Web of Science and Scopus using the following combinations of search terms ('*' truncation to include similar versions of the same word such as singular/plural):

- 113 catchment* OR watershed* OR land use* OR riparian OR riparia* vegetation OR buffer AND
- 114 manage* OR enhance AND rive* OR strea*
- 115 riparian* AND catchment* AND manage* AND rive* OR strea*
- 116 riparia* AND land us* AND catchmen* AND manage* AND rive* OR strea*
- 117 rive* OR strea* AND land us* AND catchmen* AND restor* AND manage*
- 118 rive* OR strea* AND land us* AND manage* AND spatial scal*
- 119 riparia* AND catchmen* AND stress* AND rive* OR riparia* AND catchmen* AND stress*
- 120 AND strea*)
- 121 riparia* AND basin* AND stress* AND rive* OR riparia* AND basin* AND stress* AND
- 122 strea*
- 123

The terms resulted initially in 219–998 hits for each search that were scanned (title, keywords and abstracts) to exclude irrelevant references, which led to 711 candidate studies. The candidates were then grouped into i) studies addressing riparian *and* catchment-scale management simultaneously; ii) studies solely addressing management at riparian *or* catchment scale; iii) studies addressing mechanistic modelling or literature reviews of management effects at either scale. Studies that did not fit into any of the groups were omitted, which eventually resulted in 138 references to enter a review database.

131 2.2 Review database

To allow for a structured review including some qualitative meta-analysis of the reviewed body of literature, we defined several criteria to extract information from the reviewed papers, which was compiled into a database (Table 1). These were: i) general study characteristics (e.g. study

135	origin, spatial scale and year), ii) information on the main drivers and related catchment-scale	
136	pressures impacting the study area (e.g. agricultural land use, eutrophication), iii) riparian	
137	management characteristics (e.g. type and spatial extent of a restoration), iv) catchment	
138	management characteristics (e.g. type and spatial extent of a modelled or actually	
139	implemented management option) and v) the instream abiotic and biological effects of	Table 1
140	management (e.g. changes in nutrient concentrations or biological indices). The database assisted	
141	the conceptualisation and synthesis of the evidence of cause-effect relationships (i.e.	
142	management-recovery effects), which resulted in a conceptual model.	
143	2.3 Conceptual model of riparian and catchment-scale management effects	
144	Our conceptual model represents the multi-layer relationship between riparian-scale and	
145	catchment-scale management effects on the instream environmental and biological conditions	
146	(Fig. 1). The model follows the <u>Driver-Pressure-State</u> terminology, as part of the DPSIR scheme	
147	(EEA, 1999). In this context, we use the term 'stressor' to refer to either a pressure (e.g. diffuse	
148	pollution) or an environmental state (e.g. nitrogen concentration) that adversely affects	
149	biodiversity or ecosystem functioning (sensu Townsend et al., 2008).	Figure 1
150	First, we considered all potentially relevant cause-effect links for our study and distinguished	
151	positive, negative and indifferent (i.e. no clear sign definable) potential relationships. Second, to	
152	provide a qualitative measure of the support for each link, we counted the number of papers	
153	showing significant and consistent effects for each relationship and whether the relationship was	
154	positive or negative. The sign and strength of effects were derived from a study's model	
155	coefficients or ANOVA results. Third, we assigned arrow colours (sign) and thickness (strength)	
156	to visualise the sign and strength of the evidence of model linkages. Red and blue arrows in the	

- 157 model mark linkages that were consistently reported as positive or negative in the literature;
- 158 indifferent linkages are marked grey. Arrow thickness is linearly related the number of evidence
- 159 items in the literature that support that link.
- 160 Unfortunately, a quantitative meta-analysis was impracticable, because we addressed numerous
- 161 and often multi-layered links, for which in several cases only qualitative information was
- 162 available. Further, the many effect-response variables addressed in the studies were of very
- 163 different nature, including various kinds of abiotic and biological indicators.

164 3. Results

165 3.1 Reviewed literature

166 Of the 138 studies reviewed in detail, only 55 provided evidence of statistically significant 167 management and restoration effects on the instream abiotic and biological states addressed. These 55 references constituted the core evidence, either based on monitoring surveys after the 168 169 implementation of management or restoration options, through experiments or through (sub-) 170 catchment-scale mechanistic modelling. The remaining references encompassed review papers 171 and empirical studies, the latter of which usually addressed statistical relationships among 172 stressors and biological responses to progressively degraded riparian environments. 173 The 55 core studies were published between 1990 and 2017 and originated mainly from the USA 174 (36%), Europe (32%), New Zealand (24%) and Canada (7%). Experimental studies (52%) 175 dominated over modelling studies (26%), statistical analysis of environmental gradients (17%) 176 and reviews (17%) (NB: percent values do not necessarily sum up to 100% as some studies 177 addressed several criteria simultaneously, for example, if data originated from several countries).

178 Only about 15% of the studies addressed *in situ* monitoring following intervention, highlighting 179 a potentially important shortcoming in evaluating river restoration and management. This reveals 180 another shortcoming in that poor experimental design often limits the quantification of net buffer 181 effects. To calculate net effects, ideally the conditions before and after buffer management would 182 be compared against control or reference locations, to isolate the effects of management action 183 from natural variation. This design is referred to as the "BACI design", i.e. the before-after-184 control-impact comparison that allows the estimation of type II errors in the statistical analysis 185 (Conner et al., 2016). In our sample, the gold standard approach involving the BACI design had 186 been applied in only six studies (11%). 187 Most studies focussed on small streams (66%) and addressed headwater and upstream sections (66%), while the middle (32%) and downstream sections (10%) were less frequently addressed. 188 Fewer than 2% of the studies addressed catchment areas >1,000 km². Regarding elevation, 56% 189 190 of the studies were conducted in lowland streams (<200 m a.s.l.), 41% in piedmont streams 191 (200–500 m a.s.l.), 7% in mountainous streams (500–800 m a.s.l.) and only 3% in alpine streams 192 (>800 m a.s.l.). This suggests that riparian management, but presumably also riparian 193 degradation, is fairly limited to riverscapes at altitudes below 500 m.

194 3.2 Riparian management studies

Riparian management studies most often addressed the reach (61%) and segment scales (42%),
as compared to sub-catchment (16%) and site scales (7%). More specifically, the length of the
management section was generally less than 1 km (31% of the studies) or 2–10 km long (27%),
while studies addressing longer segments (>10 km) were very rare (7%) (Fig. 2a). We should
note, however that this information was absent from roughly a third of the studies. Most riparian

200	buffer widths were <10 m (34%), followed by buffer widths of 10–20 m (22%) and >20 m
201	(20%), respectively (Fig. 2b). Buffer height varied, but again two thirds of the studies provided
202	no usable information on this feature. Buffer vegetation age was usually <5 years (49%),
203	although long-term management effects were also represented (5-10 a: 18%, 10-20 a: 12%,
204	>20 a: 18%). The type of vegetation managed in the studies were mainly trees (74%), followed
205	by grass/forbs (57%) and shrubs (34%). The plant combinations used in the buffers were mostly
206	single trees (27%) or multi-zone configurations (25%), while trees and grass (9%), single grass
207	(10%), shrubs and grass (6%) and trees and shrubs (4%) were less common combinations.

208 3.3 Common abiotic and biological management effects

Studies almost equally addressed pollution by nitrogen (total N, soluble inorganic N, nitrate-N,
nitrate; 41%), diffuse sediments (41%), phosphorous (37%) and thermal effects (31%). Shade
(18%) and the provision of large woody debris (LWD; 8%) were less frequently addressed
(Fig. 3).

213 Only about half of the studies (55%) addressed management effects on instream and/or 214 floodplain biota. Of these, macroinvertebrates (26%) and fish (25%) were most commonly 215 addressed, followed by instream primary producers (8%) and riparian vegetation (8%) (Fig. 4a). 216 Most often, community diversity was used to quantify biological effects (23%), followed by 217 various biotic indices (e.g. national water quality status, multi-metric assessment indices; 19%), 218 trait-based community metrics (e.g. feeding types, substrate preferences; 17%), measures of 219 abundance (15%) and community composition (e.g. the number of Ephemeroptera, Plecopera 220 and Trichoptera taxa; 9%) (Fig 4b).

Figure 2–4

221

3.4 Conceptual model of riparian and catchment-scale management effects

222 We found evidence for altogether 58 links (arrows) of our conceptual model in the reviewed 223 literature (Fig. 5). Most of this evidence was consistent with regard to the sign of the 224 relationship: 25 negative, 16 positive and 17 indifferent links. Notably, the evidence of the 225 effects of riparian configuration (density, width, zonation, length, age, but not location, see Table 226 1 for an explanation) on instream water quality and habitat conditions was fairly consistent. In 227 particular, the arrows that connect riparian buffer width, zonation and length with instream water quality and habitat variables were supported, on average, by 6–10 evidence items (Fig. 5). 228 229 Biological response to riparian management was consistent only for primary producers (although 230 evidence was rare), while fishes and macroinvertebrates revealed a fairly unpredictable response. 231 While riparian management studies almost exclusively addressed real management interventions, 232 the majority of catchment management-related studies presented the outcome of mathematical 233 models. The models were based on catchment-wide management scenarios and represented 14 234 out of the 55 core studies reviewed here. Notably, only a single study addressed the effects of a 235 real sub-catchment-scale management intervention (Hughes & Quinn, 2014). The authors 236 presented results from a 13-year integrated catchment management plan, investigating the 237 effects of cattle exclusion from and land use change in the riparian zone (total area: 153 ha) of a 238 headwater catchment in western Waikato, New Zealand.

The dominant drivers of riparian degradation that preceded management and restoration in the reviewed studies were agriculture and silviculture (30% each of the studies). Although there was evidence for direct effects of both these land uses on the erosion of fine mineral sediments (11 and 8% of the studies, respectively; Fig. 5), many studies reported that riparian vegetation influenced interactions between land use and instream sediment and nutrient conditions,

12

Figure 5

- particularly through buffer density (15% of the studies), width (15%), composition (30%) and
 length (26%), but less so for buffer age (4%).
- 246 Biological effects have been reported mainly from riparian management studies, whereas only a
- single catchment-scale modelling study addressed biological response variables (Guse et al.,
- 248 2015). The effects are detailed below.
- 249 3.5 Evidence of riparian and catchment management effects

250 3.5.1 Nutrient pollution

251 About 75% of the studies reported effects of riparian restoration on nitrogen and/or phosphorous 252 retention in surface and sub-surface waters (Fig. 3). Restorations typically consisted in planting 253 riparian buffers, promoting vegetated buffer strips or fencing, to manage riparian degradation 254 through livestock. Well-developed riparian buffers can retain up to 100% of total nitrogen from 255 the sub-surface groundwater flow before entering the stream network (Feld et al., 2011; Aguiar 256 et al., 2015), but retention capacities for nitrate usually range over 50–75% (Dosskey, 2001; 257 Broadmeadow & Nisbet, 2004; Mankin et al., 2007; Krause et al., 2008; Dodd et al., 2010; 258 Collins et al., 2012). Phosphorous retention by riparian buffers was slightly lower, at 40–70% 259 (Dosskey, 2001; Dodd et al., 2010; but see Kronvang et al., 2005) and mainly associated with 260 particles retained from surface runoff (Dosskey, 2001). 261 Several features, such as buffer length, width, zonation and density, seem to influence nutrient

- retention (Fig. 5). Buffer width was positively related to N and P retention (Dosskey, 2001; Feld
- et al., 2011; Sweeney & Newbold, 2014; King et al., 2016) and, together with buffer zonation,
- they can control the amount of nutrients retained from surface runoff and upper groundwater

265 layer (Dosskey, 2001). A buffer width of 30 m was reported to effectively retain N and P from 266 surface and sub-surface groundwater runoff, if buffers consisted of multiple zones of mature 267 wooded vegetation and grass strips (Feld et al., 2011; Sweeney & Newbold 2014). King et al. (2016) found that 15 m wide buffers retained 2.5 times more nitrogen from the sub-surface 268 269 groundwater than 8 m wide buffers, while buffer vegetation type had no significant effect. 270 Denitrification plays an important role in the overall nitrogen retention capacity. It is promoted 271 by carbon-rich soils with high microbial activity, which usually occur in wetlands (Mayer et al., 272 2005). Lowrance at al. (1995) found denitrification rates in forested riparian buffers to be 273 significantly lower than those measured in adjacent grassy riparian buffers, while denitrification 274 rates in hydrologically intact wetlands can resemble those of mature riparian forests. The authors 275 concluded that denitrification rates in their study were due to factors other than riparian reforestation itself. Total phosphorous was primarily and effectively retained by grass strips 276 277 ranging 1–3 m in width that mechanically filter phosphorous compounds adhered to fine 278 sediment particles (Dosskey, 2001; Yuan et al., 2009). The role of buffer length and density was 279 less often quantified, but buffer strips >1,000 m in length appeared to support nutrient retention 280 (Feld et al., 2011).

The role of riparian buffer tree age for nutrient management remains unclear. Trees and shrubs, with deep and dense root systems can retain nitrogen more effectively at intermediate ages (ca. 15 a), whereas mature stands of woody vegetation (ca. 40 a) were found to be less effective (Mander *et al.*, 1997). However, due to the shade that trees and shrubs cast on the stream banks, dense wooded buffers can suppress the understory vegetation and hence negatively influence stream bank stability and filtering effects of the understory vegetation, with adverse effects on sediment and phosphorous retention (Hughes & Quinn, 2014).

288 In the absence of riparian vegetation planting, riparian livestock exclusion by fencing appears to 289 be less effective an option to retain nutrients if compared to vegetated riparian buffer strips 290 (Parkyn et al. 2003; Collins et al. 2012; Muller et al. 2015). However, fencing is a prerequisite 291 for the establishment of vegetated buffers where livestock grazing occurs in the riparian area. 292 Irrespective of the kind of riparian intervention to reduce nutrient pollution, there is a common 293 shortcoming in the design of studies that prohibits the calculation of net retention effects taking 294 into account the type II errors. Net retention effects can be quantified by comparing the 295 conditions before and after buffer management with those of unmanaged (control) sites. There is 296 evidence that agricultural control sites without riparian buffer structures attenuate already 27-297 35% of nitrate-N (Clausen et al., 2000; King et al., 2016), which points at the need to include control effects in the quantification of management effects. The mere comparison of managed 298 299 and unmanaged sites after buffer instalment, however, although a common design in many 300 studies, does not fulfil the criteria of the BACI design, as the conditions at the managed site 301 before management may deviate substantially from those at the unmanaged (control) site considered, which then may lead to an overestimation of the effect size attributable to the 302 303 management intervention.

At the broad scale, simulations of different land use intensities and agri-environmental schemes suggest that catchment-scale management might reduce nutrient loads in stream systems by 25– 50% for nitrogen and 8–50% for total phosphorous (Krause et al., 2008; Lam et al. 2011; Hughes & Quinn, 2014; Weller & Baker, 2014). However, the direct comparison of nitrogen reduction levels requires a harmonisation of the different N compounds considered (e.g. nitrate, nitrate-N, total nitrogen). In addition, the broad-scale models also revealed that part of the variability in the

- 310 nutrient reduction is explained by other environmental co variates such as temperature,
- 311 precipitation or soil characteristics.

312 3.5.2 Fine sediment pollution

313 In general, riparian buffers can retain between 60–100% fine sediment from surface runoff 314 (Dosskey, 2001; Hook, 2003; Mankin et al., 2007; Yuan et al., 2009; Feld et al., 2011; Sweeney 315 & Newbold, 2014), although once again BACI designs have been rarely applied. Retention 316 capacity was higher for sand-sized particles (up to 90%) than for silt and clay-sized particles 317 (20%) (Dosskey, 2001). Sediment retention has primarily been linked to grass strips, which act 318 as mechanical filters at widths between 3 and 8 m (Hook, 2003; Mankin et al., 2007). However, 319 Dosskey (2001) found that riparian stiffgrass almost completely retained sand-sized sediments 320 already at a width <1 m. In contrast, riparian trees and shrubs have been found much less effective in the retention of fine sediments (Sovell et al., 2000, Yuan et al., 2009). Shading can 321 322 suppress the understory vegetation and thus reduce the buffer's sediment filter functionality 323 (Hughes & Quinn, 2014). Consequently, buffer tree age and height might negatively affect 324 sediment buffer functionality, as close-to-mature tree stands with their wider and dense canopies 325 cast more shade than less developed woody vegetation. However, evidence on negative buffer effects and the role of buffer tree age in this context is still scarce. 326

327 The role of riparian vegetation length and density has not been assessed frequently in riparian 328 management studies, although both aspects are frequently discussed with regard to the 329 limitations of vegetated riparian buffers. Some studies suggest that gaps in the riparian buffer 330 system, together with insufficient buffer width (3–8.5 m) or length cause a weak sediment 331 retention (Parkyn *et al.* 2003; Collins *et al.* 2012). In addition, riparian actions to control lateral

sediment inputs are likely to not reduce instream sediment content when the upstream area is
already exposed to sediment inputs (Collins *et al.* 2012). This points at the role of buffer
longitudinal location as an important determinant of its effectiveness, as riparian buffers cannot
mitigate sediment pollution that occurs further upstream in the continuum. Instead, riparian
management should cover the entire stream network subjected to lateral sediment inputs, in order
to effectively control sediment pollution.

338 The effects of riparian fencing on sediment retention are similar to those reported for nutrients, 339 since fencing primarily induces the establishment of riparian grass vegetation as a mechanical 340 filter strip. Furthermore, fencing reduces fine sediment and nutrient input by cattle activity. The 341 effects of fencing are detectable shortly after instalment of fences (Carline & Walsh, 2007), since 342 grass strips grow fast and may already provide full functionality after one or a few years. In general, however, the evidence of the effects of fencing appears to be less consistent as 343 compared to planting buffer vegetation, which renders fencing alone rather insufficient to 344 345 guarantee the establishment of a functional riparian buffer strip.

Buffer strips need to be thick and wide enough to prevent gully erosion (Dosskey, 2001), which can occur because of damage from agricultural activities such as ploughing at the riparian zone. Removing vegetation cover and ploughing perpendicular to the stream can initiate gully erosion and thus can easily counteract the effect of riparian buffers. In contrast, ploughing along the contour line can help reduce gully erosion (Dosskey, 2001). Surprisingly, tile drainages, and their effects on riparian buffer performance did not figure in the literature reviewed, although there is evidence of their importance in pollutant flux (e.g. Jacobs & Gilliam, 1985).

Four catchment-scale studies addressed management effects on fine sediment pollution, two of
which detected fairly limited reductions ranging 0.8–5.0% following the simulation of

355 management interventions (Lam et al., 2011; Panagopoulos et al., 2011). In contrast, the other 356 two studies by Gumiere et al. (2014) and Nigel et al. (2014) found vegetated riparian buffers to 357 effectively reduce sediment loss by 32–93% and 40%, respectively. The major determinant of 358 sediment trapping efficiency in the case study model by Gumiere et al. (2014) was buffer density (and with a minor role also buffer location; model area <1 km²), while Nigel et al. (2014) defined 359 360 a variable buffer width (5-120 m) conditional on the topography (i.e. slope) and economic restrictions (i.e. agricultural land use) in their model catchment (model area: 108 km²). The 361 362 results of these studies suggest that the potential of riparian buffers to reduce instream annual sediment loads can be fairly limited and influenced by catchment features, yet in general bear a 363 364 great potential to reduce fine sediment pollution, if buffer density in the catchment achieves 365 70%.

366 3.5.3 Shade and water temperature

Most studies report a cooling effect linked to the width of riparian wooded vegetation (Collier et 367 al., 2001; Broadmeadow & Nisbet, 2004; Whitledge et al., 2006; Broadmeadow et al., 2011; 368 369 Sweeney & Newbold, 2014). Accordingly, a buffer width of 20 m on either bank side has been 370 found sufficient to keep water temperature within 2 °C of a fully forested watershed, while 30 m 371 wide buffers on either side are required for full protection from measureable temperature increases (Beschta et al., 1987; Sweeney & Newbold, 2014). Thermal damping by riparian 372 373 vegetation was most effective at streams <5 m wide (Whitledge *et al.*, 2006) and at shading 374 levels within 50-80% (Broadmeadow et al., 2011), which points at stream width and buffer 375 density as key controls of riparian shade and water temperature.

376 Surprisingly, we found limited evidence showing the effects of buffer length on water 377 temperature. A rare example is provided by Collier et al. (2001), who found the first 150 m of a 378 planted (15 m wide) riparian buffer to reduce water temperature already by 3 °C. Yet, in the 379 absence of riparian trees, reheating may occur immediately. Riparian tree harvesting along 380 stretches of 185 m–810 m length of alpine headwater streams led to an increase of 4–6 °C in 381 water temperature (Macdonald et al., 2003). Based on modelling studies, Parkyn et al. (2003) 382 concluded that at least 1-5 km of shaded stream length was required for first-order streams and 383 10-20 km for fifth-order streams to reduce water temperature to reference conditions. A width-384 length function of shading effects was illustrated by Broadmeadow & Nisbet (2004) and could 385 help estimate required buffer width-length combinations to limit the maximum summer water 386 temperature.

387 For tree age, the reviewed evidence suggests that mature riparian vegetation is required to 388 maximise thermal damping (Broadmeadow et al., 2011; Feld et al., 2011; Sweeney & Newbold, 389 2014). Our synthesis clearly shows that buffer cooling effects, at least in summer, are related to 390 the presence of tree cover (Fig. 5). Besides buffer characteristics, it is important to note that 391 instream water temperature is controlled too by natural geo-climatic co-variates such as latitude, 392 precipitation, stream size and current velocity (Collier et al., 2001; Hook, 2003; Arora et al., 393 2016). This raises the need to put riparian buffer management into a regional geographical and 394 climatic context. For instance, best practice buffer management is likely to differ between the 395 temperate central European and the summer-dry Mediterranean region. More generally, there is a 396 need for better heat budgets, to understand the physical mechanisms through which cooling, 397 warming and insulating effects occur under different riparian canopies, with or without the

influence of groundwater resurgence; radiative heating is only one component alongside sensibleheat transfer or advection, yet has received most interest.

400 3.5.4 Large Woody Debris (LWD)

401 The presence and quantity of in-stream LWD is linked to riparian buffer width, zonation, length, 402 density and buffer tree age. Opperman & Merenlender (2004) showed that fencing riparian 403 vegetation over periods of 10–20 years increased the amount of LWD and subsequently 404 enhanced the conditions of river biota. In this study, the density of trees, their basal area and the 405 number of LWD pieces was higher in restored reaches than in unrestored reference reaches. This 406 study also found debris dams were five times as numerous at restored reaches. McBride et al. (2008) revealed that passive restoration of the riparian zone, over a course of >40 years increased 407 408 the presence of LWD. Yet, although forested reaches had 40% more pieces of LWD as compared to non-forested reaches, total LWD volume and number of debris dams remained similar 409 410 between both groups of reaches. Other studies showed that forested reaches and reaches buffered 411 by a 15 m-wide tree zone have almost four times as much LWD volume per bottom surface area 412 unit as compared to pasture reaches, although there was a very strong seasonal variation (e.g. 413 Lorion & Kennedy, 2009).

414 3.5.5 Coarse Particulate Organic Matter (CPOM)

415 Our review includes only one study that explicitly addressed the effect of riparian management 416 on instream CPOM (Thompson & Parkinson 2011), investigating the effect of a planted multi-417 zone riparian buffer compared with open-canopy reaches. Leaf litter input was about 40–50% 418 higher along restored reaches, accompanied by an increase in the richness of macroinvertebrate

419 shredders due to the increased availability of litter, while open reaches showed a greater

420 abundance and biomass of invertebrates feeding on autochthonous resources such as algae. Algal

421 biomass showed no significant differences between restored and unrestored reaches.

422 3.5.6 Primary producers

423 There is evidence that aquatic primary producer biomass can be managed effectively by means 424 of riparian shading. Notably, Hutchins et al. (2010) found riparian shade to be even more 425 effective than nutrient reduction through sewage treatment. In combination, both management 426 options led to a reduction of phytoplankton peak biomass by 44%, as compared to 11% at 427 unshaded reaches. Shading can also effectively reduce periphyton and macrophyte growth 428 (Davies-Colley & Quinn, 1998; Parkyn et al., 2003). However, as a negative consequence, 429 dissolved nutrients might be transported further downstream, thus extending the nutrients 430 spiralling.

431 3.5.7 Benthic macroinvertebrates

We found evidence of both positive and negative responses of macroinvertebrates to fine
sediment and temperature reduction at the catchment scale. For example, sediment retention by
riparian buffers can increase macroinvertebrate density, but not diversity (Carline & Walsh,
2007). On the other hand, water temperature reduction in response to catchment-wide riparian
shading was linked to the increase of several macroinvertebrate biotic indices (Collier *et al.*,
2001; Parkyn *et al.*, 2003; Quinn *et al.*, 2009; Dodd *et al.*, 2010), thus reflecting the dominance
of organisms showing preferences for clean and cool water. Other studies report no changes

439 (Quinn *et al.*, 2009) or even a decrease in macroinvertebrate diversity and production in response
440 to reduced water temperature (Weatherley & Ormerod, 1990).

441 3.5.8 Fish

442 Similar to macroinvertebrates, the response of fish to riparian restoration was inconsistent and in part species-specific. Fish density or growth rates may decline through riparian shade (Sovell et 443 444 al., 2000; Weatherley & Ormerod, 1990) or increase (Whitledge et al., 2006). Melcher et al. 445 (2016) observed consistent beneficial effects of riparian shading on water temperature and fish 446 community composition in two piedmont streams, particularly supporting species adapted to cool 447 water such as brown trout (Salmo trutta) and grayling (Thymallus thymallus). Positive effects of LWD arise through an increased pool-riffle heterogeneity, which benefits 448 449 some species such as trout (Sievers et al., 2017) and eel (Jowett et al., 2009). After LWD 450 addition, for example, trout density on average increased by 87.7% (Sievers et al., 2017). However, other species may benefit from more homogenous habitats without LWD (Lorion & 451 452 Kennedy, 2009), which implies that beneficial effects of LWD are not universal, but species-453 specific.

454 4. Synthesis and recommendations

Riparian management offers a promising management option to recover and protect lotic species adapted to clear, cold, well-oxygenated and flowing water (e.g. Elliot & Elliot, 2010; Verberk et al., 2016). In fact, in comparison to open-canopy conditions, aquatic environments with reduced light and water temperatures, and at the same time enhanced amounts of LWD and CPOM are associated with unique and often diverse lotic communities of benthic algae (Potapova &

460	Charles, 2002; Hering et al., 2006), macroinvertebrates (Gutiérrez-Cánovas et al., 2013; Thomas
461	et al., 2016) and fish (Jowett et al., 2009; Sievers et al., 2017) in temperate regions. A higher
462	CPOM availability can diversify trophic links offering food for macroinvertebrate shredders, in
463	particular during late autumn and winter, when primary production is limited by low
464	temperatures (e.g. Wallace et al., 1997; Thomas et al., 2016). A higher abundance of LWD on
465	the stream bottom increases habitat heterogeneity and thus the in-stream retention of nutrients
466	and sediments (Gurnell & Sweet, 1998; Pusch et al., 1998; Mutz, 2000; Gurnell et al., 2002).
467	Our study provides the first conceptual model based on published evidence, which links different
468	anthropogenic drivers and pressures affecting riparian characteristics to the features that mediate
469	anthropogenic impact on the freshwater ecosystem. The reviewed evidence, however, provided
470	consistent results only for a limited number of relationships outlined in the conceptual model
471	(Fig. 5). It is these well-evidenced cause-effect relationships that can help water managers design
472	efficient schemes for riparian management and restoration. Our conceptual model discriminates
473	four variables, namely light, water temperature, LWD and CPOM that can be considered largely
474	scale-independent and thus point at management options with rather positive effects at the local
475	scale, irrespective of other co-occurring stressors operating at the same or broader scales.
476	These variables are, however, conditional on the flow regime, which will largely determine the
477	age, structure and complexity of riparian buffers even in altered situations. For example, reduced
478	and homogenised flow is likely to promote dense and old buffer vegetation, with more shade
479	casted and LWD accumulated on the stream bed. Consequently, riparian buffer management too
480	requires the integration of flow and riparian vegetation dynamics (Egger et al., 2013).
481	Contrastingly, the beneficial effects of riparian management on nutrient and sediment retention
482	are scale-dependent and thus often limited by particular adverse conditions at broader scales,

such as extensive agriculture (Table 2) or environmental co-variates linked to topography and
topology (Gumiere et al. 2011). Then, both the riparian and the catchment scale require

- 485 consideration, to effectively manage and restore a stream reach or segment. Numerous studies
- 486 provided evidence that the riparian and floodplain land use conditions upstream of a
- 487 managed stream section can largely influence and even counteract site or reach-scale

488 restorations (Mayer et al., 2005; Richardson et al., 2010; Feld et al., 2011; Lorenz & Feld, 2013;

489 Giling et al., 2016). Such broad-scale adverse impacts, for example, imposed by intensive land

490 use may operate up to 5–10 km upstream (Lorenz & Feld, 2013) or even further (Feld et al.,

491 2011). Riparian management without broader-scale land use management thus is unlikely to be

492 sufficient to protect lotic ecosystem integrity and diversity.

493 In light of the evidence synthesized in this study, we recommend that riparian buffers should be

494 i) at least 20-30 m wide (Dosskey, 2001), ii) consist of multiple continuous zones with trees, 495 shrubs and grass strips (Weller & Baker, 2014) and iii) cover the entire stream reach or segment 496 impacted by lateral diffuse nutrient and sediment inputs (Parkyn et al., 2003). Future research in this field is urgently required to evaluate sub-catchment and catchment-scale management 497 498 options, in particular the effects of real (i.e. not modelled) agri-environmental measures such as 499 land use abandonment and fertilizer management at broader scales. Future research should also 500 address two widespread shortcomings in the evaluation of riparian buffers. Firstly, management 501 studies should apply the BACI (i.e. before-after-control-impact) design, to be able to reliably 502 quantify the net effects of management interventions and restoration measures. The comparison 503 of managed (impact) and unmanaged (control) sites after the intervention (also referred to as 504 "space-for-time-substitution") may provide useful short-term estimations of the management

505 effects, and may be the only option where decadal time periods are required for buffer

506 development. However, these study designs do not replace controlled comparison with the 507 conditions at the managed site *before* the intervention. Secondly, riparian management studies 508 are often short-term (Feld et al., 2011) and thus do not allow of a reliable estimation of long-term 509 effects, for example, in course of the development of riparian forests. Longer-term BACI 510 assessments of riparian buffer effects are extremely scarce in the scientific literature. Only two 511 field studies conducted in North Carolina and Pennsylvania, United States have reported nitrogen 512 attenuation potential of riparian buffers using a 12 and a 15-year data set (Newbold et al., 2010; 513 King et al., 2016). Computer simulation models can help quantify the long-term performance of 514 riparian buffers for nutrient and sediment retention (see Tilak et al., 2014; 2017 for an example), 515 yet require sound data to set-up and calibrate the models. Such data might be derived from a 516 limited number of long-term field surveys, for instance, linked to or alike the network of Long 517 Term Ecological Research (LTER) sites (https://lternet.edu/site/).

518 With regard to the location of riparian management in the stream continuum, our synthesis 519 implies that scale-independent benefits are common in the upstream parts of the network. Indeed, almost 60% of the core studies addressed 1st and 2nd order streams, which points at a bias 520 521 towards headwater studies in the reviewed body of literature. We may infer that this bias is owed 522 to the fact that headwater and upstream sections are much more influenced by terrestrial and 523 riparian vegetation (Nakano & Murakami, 2000), as opposed to wider and deeper sections 524 further downstream in the continuum. Then, scale-independent management effects through shade, and CPOM and LWD recruitment are more likely to occur upstream in the network. 525 526 Recent research on meta-community theory suggests that habitat improvements in the upstream 527 part of the network are much more likely to enhance lotic biodiversity as opposed to stream 528 sections further downstream (Swan & Brown, 2017). Hence, if biodiversity improvement is the

- 529 goal of lotic ecosystem management, riparian restoration should start upstream in the network
- and then continue further downstream, to aid the subsequent recolonization of restored reaches.

531 5. Conclusions

532 Riparian management constitutes a widely-applied option to restore and protect stream 533 ecological functioning and biology, yet with often variable and sometimes inconsistent effects. 534 Management effects not only are controlled by physical buffer characteristics, but are subject to other environmental co-variates (e.g. slope, soil particle size, precipitation). Therefore, it is not 535 trivial to provide general guidance for those in charge of the management and restoration of 536 537 stream ecosystems towards a good ecological status. A critical synthesis of the available 538 evidence, if embedded within a useful structural framework, can help identify generalisable 539 management options that are likely to be beneficial for the instream biota. The conceptual model 540 provided with this study constitutes such a framework and allows of the following statements, provided that the minimum demands (e.g. buffer length, width, zonation; see section 4 Synthesis) 541 542 are met:

Consistent beneficial effects arise from the supply of coarse particulate organic matter,
 large woody debris and shade (and thus thermal damping) to the stream system. These
 effects are largely independent of the conditions further upstream in the continuum, i.e.
 the effects are scale-independent.

547
2. Inconsistent and sometimes even adverse effects are evident for the riparian buffer
548
549
549
549
549
549
550
550
550
550

551	3.	To be beneficial, scale-dependent effects require concerted management efforts at both
552		the riparian and the (sub-)catchment scale. Riparian buffer management thus needs to be
553		accompanied by nutrient and erosion control measures at broader scales.
554	4.	Evidence of the effects of (sub-)catchment-scale management options to reduce nutrient
555		and fine sediment pollution is scarce and largely derived from modelling case studies of
556		lowland catchments. The models' outcome, however, suggests that riparian management
557		alone can buffer only up to 50% of the nutrients that enter the stream system. The other
558		half requires nutrient reduction options (e.g. fertiliser management) at the broad scale.
559	5.	Riparian management effects on aquatic biota are less often addressed and largely
560		inconsistent, thus pointing at the poor and incomplete knowledge in the biological
561		domain. However, biological effects implicitly require consideration, if the ultimate goal
562		of stream management is to improve and sustain biodiversity and ecological status.
563		Future studies should address biological effects of riparian management, to provide the
564		scientific basis for an effective riparian management.

565 6. Acknowledgements

This work is part of the MARS project (Managing Aquatic ecosystems and water Resources
under multiple Stress) funded under the EU Seventh Framework Programme, Theme 6
(Environment including Climate Change), Contract No.: 603378 (<u>http://www.mars-project.eu</u>).
CG-C was also supported by a "Juan de la Cierva" research contract (Spanish MINECO, FJCI2015-25785). MdR F was supported by a post-doctoral scholarship from the Foundation for
Science and Technology, Portugal (SFRH/BPD/95449/2013) and from the Forest Research

- 572 Centre (CEF) through the grant UID/AGR/00239/2013. We are grateful to Núria Bonada, Núria
- 573 Cid, Laura Puértolas and Josefa Velasco for providing helpful literature.
- 574

575 7. References

- 576 2000/60/EC, 2000. Directive 2000/60/EC of the European Parliament and of the Council, of 23
- 577 October 2000, establishing a Framework for Community Action in the field of Water
- 578 Policy. Official Journal of the European Communities, L327, 1–72.
- Aguiar, T.R. Jr., Rasera, K., Parron, L.M., Brito, A.G., Ferreira, M.T., 2015. Nutrient removal
 effectiveness by riparian buffer zones in rural temperate watersheds: the impact of no-till

581 crops practices. Agricultural Water Management, 149, 74–80.

- Arora, R., Tockner, K., Venohr, M., 2016. Changing river temperatures in northern Germany:
 trends and drivers of change. Hydrological Processes, 30, 3084–3096.
- 584 Bednarek, A.T., Hart, D.D., 2005. Modifying dam operations to restore rivers: ecological
- 585 responses to Tennessee River dam mitigation. Ecological Applications, 15, 997–1008.
- 586 Beketov, M.A., Kefford, B.J., Schäfer, R.B., Liess, M., 2013. Pesticides reduce regional
- biodiversity of stream invertebrates. Proceedings of the National Academy of Sciences of
 the United States of America, 110, 11039–11043.
- 589 Beschta, R.L., Bilby, R.E., Brown, G.W., Holtby, L.B., Hofstra, T.D., 1987. Stream temperature
- and aquatic habitat: Fisheries and Forestry Interactions In: Streamside management:
- forestry and fishery interactions. E.O. Salo and T.W. Cundy (Eds.) Institute of Forest
 Research, University of Washington, Seattle, WA, USA, pp 191–232.
- 593 Broadmeadow, S., Nisbet, T.R., 2004. The effects of riparian forest management on the
- 594 freshwater environment: a literature review of best management practice. Hydrology and
- 595 Earth System Sciences, 8, 286–305.

596	Broadmeadow, S.B., Jones, J.G., Langford, T.E.L., Shaw, P.J., Nisbet, T.R., 2011. The influence
597	of riparian shade on lowland stream water temperatures in southern England and their
598	viability for brown trout. River Research and Applications, 27, 226–237.
599	Bussi, G., Dadson, S.J., Whitehead, P.G., Prudhomme, C., 2016. Modelling the future impacts of
600	climate and land-use change on suspended sediment transport in the River Thames (UK).
601	Journal of Hydrology, 542, 357–372.
602	Carline, R.F., Walsh, M.C., 2007. Responses to riparian restoration in the Spring Creek
603	watershed, central Pennsylvania. Restoration Ecology, 15, 731–742.
604	Clausen, J.C., Guillard, K., Sigmund, C.M., Martin Dors, K., 2000. Water quality changes from
605	riparian buffer restoration in Connecticut. Journal of Environmental Quality, 29, 1751-
606	1761.
607	Collier, K.J., Rutherford, J.C., Quinn, J.M., Davies-Colley, R.J., 2001. Forecasting rehabilitation
608	outcomes for degraded New Zealand pastoral streams. Water Science and Technology,
609	43, 175–184.
610	Collins, K.E., Doscher, C., Rennie, H.G., Ross, J.G., 2012. The Effectiveness of Riparian
611	'Restoration' on Water Quality-A Case Study of Lowland Streams in Canterbury, New
612	Zealand. Restoration Ecology, 21, 40–48.
613	Conner, M.M., Saunders, W.C., Bouwes, N., Jordan, C., 2016. Evaluating impacts using a BACI
614	design, ratios, and a Bayesian approach with a focus on restoration. Environmental
615	Monitoring and Assessment, 188 (doi: 10.1007/s10661-016-5526-6)
616	Connolly, N.M., Pearson, R.G., Loong, D., Maughan, M., Brodie, J., 2015. Agriculture,
617	Ecosystems and Environment. Agriculture, Ecosystems and Environment, 213, 11-20.

618	Davies-Colley, R.J., Quinn, J.M., 1998. Stream lighting in five regions of North Island, New
619	Zealand: Control by channel size and riparian vegetation. New Zealand Journal of Marine
620	and Freshwater Research, 32, 591–605.
621	Dodd, M.B., Quinn, J.M., Thorrold, B.S., Parminter, T.G., Wedderburn, M.E., 2010. Improving
622	the economic and environmental performance of a New Zealand hill country farm
623	catchment: 3. Short-term outcomes of land-use change. New Zealand Journal of
624	Agricultural Research, 51, 155–169.
625	Dosskey, M.G., 2001. Toward Quantifying Water Pollution Abatement in Response to Installing
626	Buffers on Crop Land. Environmental Management, 28, 577–598.
627	Durance, I., Ormerod, S.J., 2007. Climate change effects on upland stream macroinvertebrates
628	over a 25-year period. Global Change Biology, 13, 942–957.
629	Egger, G., Politti, E., Garófano-Gómez, V., Blamauer, B., Ferreira, M.T., Rivaes, R., Benjankar,
630	R., Habersack, H., 2013. Embodying interactions of riparian vegetation and fluvial
631	processes into a dynamic floodplain model: concepts and applications. In: Ecohydraulics:
632	an integrated approach. Edited by: Maddock, I., Harby, A., Kemp, P. and Wood, P. John
633	Wiley & Sons Ltd, Chichester, UK.
634	Elliott, J.M., Elliott, J.A., 2010. Temperature requirements of Atlantic salmon Salmo salar,
635	brown trout Salmo trutta and Arctic charr Salvelinus alpinus: predicting the effects of
636	climate change. Journal of Fish Biology, 77, 1793–1817.
637	European Environment Agency [EEA] (ed.), 1999. Environmental Indicators: Typology and
638	overview. European Environment Agency, Copenhagen.
639	European Environment Agency [EEA] (ed)., 2012. European Waters — Assessment of Status
640	and Pressures. European Environment Agency, Copenhagen.

641	Feld, C.K., Birk, S., Bradley, D.C., Hering, D., Kail, J., Marzin, A., Melcher, A., Nemitz, D.,
642	Pedersen, M.L., Pletterbauer, F., Pont, D., Verdonschot, P.F.M., Friberg, N., 2011. From
643	Natural to Degraded Rivers and Back Again: a Test of Restoration Ecology Theory and
644	Practice, 1st ed (ed G Woodward). Elsevier Ltd., Amsterdam, The Netherlands.
645	Giling, D.P., Mac Nally, R., Thompson, R.M., 2016. How sensitive are invertebrates to riparian-
646	zone replanting in stream ecosystems? Marine and Freshwater Research, 67, 1500.
647	Gumiere, S.J., Bailly, JS., Cheviron, B., Raclot, D., Bissonnais, Y.L., Rousseau, A.N., 2014.
648	Evaluating the Impact of the Spatial Distribution of Land Management Practices on
649	Water Erosion: Case Study of a Mediterranean Catchment. Journal of Hydrologic
650	Engineering, 20, C5014004.
651	Gumiere, S.J., Le Bissonnais, Y., Raclot, D., Cheviron, B., 2011. Vegetated filter effects on
652	sedimentological connectivity of agricultural catchments in erosion modelling: a review.
653	Earth Surface Processes and Landforms, 36, 3–19.
654	Gurnell, A.M., Sweet, R., 1998. The distribution of large woody debris accumulations and pools
655	in relation to woodland stream management in a small, low-gradient stream. Earth
656	Surfaces Processes and Landforms, 23(12), 1101–1121.
657	Gurnell, A.M., Piegay, H., Swanson, F.J., Gregory, S.V., 2002. Large wood and fluvial
658	processes. Freshwater Biology, 47, 601–619.
659	Guse, B., Kail, J., Radinger, J., Schröder, M., Kiesel, J., Hering, D., Wolter, C., Fohrer, N., 2015.
660	Eco-hydrologic model cascades: Simulating land use and climate change impacts on
661	hydrology, hydraulics and habitats for fish and macroinvertebrates. Science of the Total
662	Environment, 533, 542–556.

663	Gutiérrez-Cánovas, C., Millán, A., Velasco, J., Vaughan, I.P., Ormerod, S.J., 2013. Contrasting
664	effects of natural and anthropogenic stressors on beta-diversity in river organisms. Global
665	Ecology and Biogeography, 22(7), 796–805.
666	Hering, D., Johnson, R.K., Kramm, S., Schmutz, S., Szoszkiewicz, K., Verdonschot, P.F.M.,
667	2006. Assessment of European streams with diatoms, macrophytes, macroinvertebrates
668	and fish: a comparative metric-based analysis of organism response to stress. Freshwater
669	Biology, 51, 1757–1785.
670	Hering, D., Carvalho, L., Argillier, C., Beklioglu, M., Borja, A., Cardoso, A.C., Duel, H.,
671	Ferreira, T., Globevnik, L., Hanganu, J., Hellsten, S., Jeppesen, E., Kodeš, V., Solheim,
672	A.L., Nõges, T., Ormerod, S., Panagopoulos, Y., Schmutz, S., Venohr, M., Birk, S.,
673	2015. Managing aquatic ecosystems and water resources under multiple stress — An
674	introduction to the MARS project. Science of The Total Environment, 503/504, 10-21.
675	Hickford, M.J.H., Schiel, D.R., 2014. Experimental Rehabilitation of Degraded Spawning
676	Habitat of a Diadromous Fish, Galaxias maculatus (Jenyns, 1842) in Rural and Urban
677	Streams. Restoration Ecology, 22, 319–326.
678	Hook, P.B., 2003. Sediment retention in rangeland riparian buffers. Journal of Environmental
679	Quality, 32, 1130–1137.
680	Hughes, A.O., Quinn, J.M., 2014. Before and After Integrated Catchment Management in a
681	Headwater Catchment: Changes in Water Quality. Environmental Management, 54,
682	1288–1305.
683	Hughes, A.O., 2016. Riparian management and stream bank erosion in New Zealand. New
684	Zealand Journal of Marine and Freshwater Research, 50, 277–290.

685	Hutchins, M.G., Johnson, A.C., Deflandre-Vlandas, A., Comber, S., Posen, P., Boorman, D.,
686	2010. Which offers more scope to suppress river phytoplankton blooms: Reducing
687	nutrient pollution or riparian shading?. Science of the Total Environment, 408, 5065–
688	5077.
689	Jacobs, T.C., Gilliam, J.W., 1985. Riparian losses of nitrate from agricultural drainage waters.
690	Journal of Environmental Quality, 14(4), 472–478.
691	Jowett, I.G., Richardson, J., Boubée, J.A.T., 2009. Effects of riparian manipulation on stream
692	communities in small streams: Two case studies. New Zealand Journal of Marine and
693	Freshwater Research, 43, 763–774.
694	King, S.E., Osmond, D.L., Smith, J., Burchell, M.R., Dukes, M., Evans, R.O., Knies, S.,
695	Kunickis, S., 2016. Effects of Riparian Buffer Vegetation and Width: A 12-Year
696	Longitudinal Study. Journal of Environmental Quality, 45, 1243–1251.
697	Krause, S., Jacobs, J., Voss, A., Bronstert, A., Zehe, E., 2008. Assessing the impact of changes in
698	landuse and management practices on the diffuse pollution and retention of nitrate in a
699	riparian floodplain. Science of the Total Environment, 389, 149–164.
700	Kronvang, B., Bechmann, M., Lundekvam, H., Behrendt, H., Rubæk, G.H., Schoumans, O.F.,
701	Syversen, N., Andersen, H.E., Hoffmann, C.C., 2005. Phosphorus Losses from
702	Agricultural Areas in River Basins. Journal of Environment Quality, 34, 2129.
703	Lam, Q.D., Schmalz, B., Fohrer, N., 2011. The impact of agricultural Best Management
704	Practices on water quality in a North German lowland catchment. Environmental
705	Monitoring and Assessment, 183, 351379.
706	Lorenz, A.W., Feld, C.K., 2013. Upstream river morphology and riparian land use overrule local
707	restoration effects on ecological status assessment. Hydrobiologia, 704, 489–501.

708	Lorion, C.M., Kennedy, B.P., 2009. Relationships between deforestation, riparian forest buffers
709	and benthic macroinvertebrates in neotropical headwater streams. Freshwater Biology,
710	54, 165–180.
711	Lowrance, R., Vellidis, G., Hubbard, R.K., 1995. Denitrification in a Restored Riparian Forest
712	Wetland. Journal of Environmental Quality, 24, 808–815.
713	Macdonald, J.S., MacIsaac, E.A., Herunter, H.E., 2003. The effect of variable-retention riparian
714	buffer zones on water temperatures in small headwater streams in sub-boreal forest
715	ecosystems of British Columbia. Canadian Journal of Forest Research, 33, 1371–1382.
716	Maltby, E., Ormerod, S.J., 2011. Freshwaters - Openwaters, Wetlands and Floodplains. In: The
717	UK National Ecosystem Assessment. Technical Report, UNEP-WCMC, Cambridge, pp.
718	285 295-360.
719	Mander, Ü., Kuusemets, V., Lohmus, K., Mauring, T., 1997. Efficiency and dimensioning of
720	riparian buffer zones in agricultural catchments. Ecological Engineering, 8, 299–324.
721	Mankin, K.R., Ngandu, D.M., Barden, C.J., Hutchinson, S.L., Geyer, W.A., 2007. Grass-shrub
722	riparian buffer removal of sediment, phosphorus, and nitrogen from simulated runoff.
723	Journal of the American Water Resources Association, 43, 1108–1116.
724	Matthaei, C.D., Piggott, J.J., Townsend, C.R., 2010. Multiple stressors in agricultural streams:
725	interactions among sediment addition, nutrient enrichment and water abstraction. Journal
726	of Applied Ecology, 47, 639–649.
727	Mayer, P.M., Reynolds, S.K., McCutchen, M.D., Canfield, T.J., 2005. Riparian Buffer Width,
728	Vegetative Cover, and Nitrogen Removal Effectiveness: a Review of Current Science and
729	Regulations. U.S. EPA, Cincinnati, OH, U.S.A.

730	McBride, M., Hession, W.C., Rizzo, D.M., 2008. Geomorphology. Geomorphology, 102, 445–
731	459.
732	Melcher A., Dossi F., Graf W., Pletterbauer F., Schaufler K., Kalny G., Rauch H. P., Formayer
733	H., Trimmel H., Weihs P., 2016. "Der Einfluss der Ufervegetation auf die
734	Wassertemperatur unter gewässertypspezifischer Berücksichtigung von Fischen und
735	benthischen Evertebraten am Beispiel von Lafnitz und Pinka." The influence of riparian
736	vegetation on water temperature in light of stream type-specific fish and benthic
737	invertebrates of river Lafnitz and river Pinka, Austria. Österreichische Wasser- und
738	Abfallwirtschaft, 68, 308–323. (in German language)
739	Muller, I., Delisle, M., Ollitrault, M., Bernez, I., 2015. Responses of riparian plant communities
740	and water quality after 8 years of passive ecological restoration using a BACI design.
741	Hydrobiologia, 781, 67–79.
742	Mutz, M., 2000. Influences of Woody Debris on Flow Patterns and Channel Morphology in a
743	Low Energy, Sand-Bed Stream Reach. International Review of Hydrobiology, 85, 107-
744	121.
745	Nakano, S., Murakami, M., 2001. Reciprocal subsidies: dynamic interdependence between
746	terrestrial and aquatic food webs. Proceedings of the National Academy of Sciences of
747	the United States of America, 98, 166–170.
748	Newbold J.D., Herbert S., Sweeney, B.W., Kiry, P., Alberts S.J., 2010. Water quality functions
749	of a 15 year old riparian forest buffer system. Journal of the American Water Resources
750	Association, 46, 299–310.
751	Nigel, R., Chokmani, K., Novoa, J., Rousseau, A.N., El Alem, A., 2014. An extended riparian
752	buffer strip concept for soil conservation and stream protection in an agricultural riverine

753	area of the La Chevrotière River watershed, Québec, Canada, using remote sensing and
754	GIS techniques. Canadian Water Resources Journal / Revue canadienne des ressources
755	hydriques, 39, 285–301.
756	Opperman, J.J., Merenlender, A.M., 2004. The effectiveness of riparian restoration for
757	improving instream fish habitat in four hardwood-dominated California streams. North
758	American Journal of Fisheries Management, 24, 822–834.
759	Palmer, M.A., Reidy Liermann, C.A., Nilsson, C., Flörke, M., Alcamo, J., Lake, P.S., Bond, N.,
760	2008. Climate change and the world's river basins: anticipating management options.
761	Frontiers in Ecology and the Environment, 6, 81–89.
762	Palmer, M.A., Lettenmaier, D.P., Poff, N.L., Postel, S.L., Richter, B., Warner, R., 2009. Climate
763	Change and River Ecosystems: Protection and Adaptation Options. Environmental
764	Management, 44, 1053–1068.
765	Panagopoulos, Y., Makropoulos, C., Mimikou, M., 2011. Reducing surface water pollution
766	through the assessment of the cost-effectiveness of BMPs at different spatial scales.
767	Journal of Environmental Management, 92, 2823–2835.
768	Parkyn, S.M., Davies-Colley, R.J., Halliday, N.J., Costley, K.G., Croker, G.F., 2003. Planted
769	riparian buffer zones in New Zealand: do they live up to expectations? Restoration
770	Ecology, 11, 436–447.
771	Potapova, M. G., Charles, D. F., 2002. Benthic diatoms in USA rivers: distributions along spatial
772	and environmental gradients. Journal of Biogeography, 29, 167–187.
773	Pusch, M., Fiebig, D., Brettar, I., Eisenmann, H., Ellis, B.K., Kaplan, L.A., Lock, M.A., Naegeli,
774	M.W., Traunspurger, W., 1998. The role of micro-organisms in the ecological
775	connectivity of running waters. Freshwater Biology, 40, 453–495.

776	Quinn, J.M., Croker, G.F., Smith, B.J., Bellingham, M.A., 2009. Integrated catchment
777	management effects on flow, habitat, instream vegetation and macroinvertebrates in
778	Waikato, New Zealand, hill-country streams. New Zealand Journal of Marine and
779	Freshwater Research, 43, 775–802.
780	Richardson, J.S., Taylor, E., Schluter, D., Pearson, M., Hatfield, T., 2010. Do riparian zones
781	qualify as critical habitat for endangered freshwater fishes? Canadian Journal of Fisheries
782	and Aquatic Sciences, 67, 1197–1204.
783	Sievers, M., Hale, R., Morrongiello, J.R., 2017. Do trout respond to riparian change? A meta-
784	analysis with implications for restoration and management. Freshwater Biology, 62, 445-
785	457.
786	Sovell, L.A., Vondracek, B., Frost, J.A., Mumford, K.G., 2000. Impacts of Rotational Grazing
787	and Riparian Buffers on Physicochemical and Biological Characteristics of Southeastern
788	Minnesota, USA, Streams. Environmental Management, 26, 629–641.
789	Swan, C.M., Brown, B.L., 2017. Metacommunity theory meets restoration: isolation may
790	mediate how ecological communities respond to stream restoration. Ecological
791	Applications, 27, 2209–2219.
792	Sweeney, B.W., Newbold, J.D., 2014. Streamside Forest Buffer Width Needed to Protect Stream
793	Water Quality, Habitat, and Organisms: A Literature Review. JAWRA Journal of the
794	American Water Resources Association, 50, 560–584.
795	Thomas, S.M, Griffiths, S. W., Ormerod, S. J., 2016. Beyond cool: adapting upland streams for
796	climate change using riparian woodlands. Global Change Biology, 22, 310–324.
797	Thompson, R., Parkinson, S., 2011. Assessing the local effects of riparian restoration on urban
798	streams. New Zealand Journal of Marine and Freshwater Research, 45, 625-636.

799	Tilak, A.S., Burchell, M.R., Youssef, M.A., Lowrance, R.R., Williams, R.G., 2014. Field testing
800	the Riparian Ecosystem Management Model (REMM) on a riparian buffer in the North
801	Carolina upper coastal plain. Journal of American Water Resources Association, 50, 665-
802	682.
803	Tilak, A.S, Burchell, M.R., Youssef, M.A., Lowrance, R.R., Williams. R.G., 2017. Testing the
804	Riparian Ecosystem Management Model (REMM) on a Riparian Buffer with Dilution
805	from Deep Groundwater. Transcations of the ASABE, 60, 377–392.
806	Townsend, C.R., Uhlmann, S.S., Matthaei, C.D., 2008. Individual and combined responses of
807	stream ecosystems to multiple stressors. Journal of Applied Ecology, 45, 1810–1819.
808	Vörösmarty, C.J., McIntyre, P.B., Gessner, M.O., Dudgeon, D., Prusevich, A., Green, P.,
809	Glidden, S., Bunn, S.E., Sullivan, C.A., Liermann, C.R., Davies, P.M., 2010. Global
810	threats to human water security and river biodiversity. Nature, 467, 555–561.
811	Vaughan, I., Ormerod, S.J., 2014. Linking inter-decadal changes in British river ecosystems to
812	hydrochemical and climatic dynamics. Global Change Biology, 20, 2725–2740.
813	Verdonschot, P.F.M., Spears, B.M., Feld, C.K., Brucet, S., Keizer-Vlek, H., Borja, A., Elliott,
814	M., Kernan, M., Johnson, R.K., 2013. A comparative review of recovery processes in
815	rivers, lakes, estuarine and coastal waters. Hydrobiologia, 704, 453–474.
816	Verberk, W.C.E.P., Durance, I., Vaughan, I.P., Ormerod, S.J., 2016. Field and laboratory studies
817	reveal interacting effects of stream oxygenation and warming on aquatic ectotherms.
818	Global Change Biology, 22, 1769–1778.
819	Wallace, J.B., Eggert, S.L., Meyer, J.L., Webster, J.R., 1997. Multiple trophic levels of a forest
820	stream linked to terrestrial litter inputs. Science, 277, 102–104.

821	Weller, D.E., Baker, M.E., 2014. Cropland Riparian Buffers throughout Chesapeake Bay
822	Watershed: Spatial Patterns and Effects on Nitrate Loads Delivered to Streams. JAWRA
823	Journal of the American Water Resources Association, 50, 696–712.
824	Weigelhofer, G., Fuchsberger, J., Teufl, B., Welti, N., Hein, T., 2012. Effects of Riparian Forest
825	Buffers on In-Stream Nutrient Retention in Agricultural Catchments. Journal of
826	Environment Quality, 41, 373–379.
827	Weatherley, N.S., Ormerod, S.J., 1990. Forests and the temperature of upland streams in Wales:
828	a modelling exploration of the biological effects. Freshwater Biology, 24, 109–122.
829	Whitledge, G.W., Rabeni, C.F., Annis, G., Sowa, S.P., 2006. Riparian shading and groundwater
830	enhance growth potential for smallmouth bass in Ozark streams. Ecological Applications,
831	16, 1461–1473.
832	Wilcock, R.J., Betteridge, K., Shearman, D., Fowles, C.R., Scarsbrook, M.R., Thorrold, B.S.,
833	Costall, D., 2009. Riparian protection and on -farm best management practices for
834	restoration of a lowland stream in an intensive dairy farming catchment: a case study.
835	New Zealand Journal of Marine and Freshwater Research, 43, 803–818.
836	Woodward, G., Gessner, M.O., Giller, P.S., Gulis, V., Hladyz, S., Lecerf, A., Malmqvist, B.,
837	McKie, B.G, Tiegs, S.D., Cariss, H., Dobson, M., Elosegi, A., Ferreira, V., Graça,
838	M.A.S., Fleituch, T., Lacoursière, J.O., Nistorescu, M., Pozo, J., Risnoveanu, G.,
839	Schindler, M., Vadineanu, A., Vought, L.BM., Chauvet, E., 2012. Continental-scale
840	effects of nutrient pollution on stream ecosystem functioning. Science, 336, 1438–1440.
841	Yuan, Y., Bingner, R.L., Locke, M.A., 2009. A Review of effectiveness of vegetative buffers on
842	sediment trapping in agricultural areas. Ecohydrology, 2, 321–336.
843	

844 Tables

- 845 Table 1: Criteria, variables and variable classification extracted from 138 references to form the
- 846 review database and to draft the conceptual model of cause-effect relationships (Fig. 1).

Criterion	Variable	Variable classification
General study characteristics, meta-data	Study origin and location	Country, latitude, longitude
	Altitude (m a.s.l.)	Lowlands (<200), uplands (200–500), mountainous (500–800), alpine (>800)
	Catchment area at management site/reach (km ²)	Headwater (<10), small (10–100), medium (101–1,000), large (>1,000)
	Stream network position of management site/reach (Strahler order)	Upstream (1–2), middle (3–4), downstream (>4)
Drivers and pressures	Drivers	Agriculture, silviculture, urbanisation
	Diffuse pressures	Nutrient pollution, fine sediment pollution,
	Point-source pressures	Waste water pollution
	Riparian pressures	Vegetation removal, vegetation alteration
	Pressure spatial scale (km)	Site (<0.5), reach (0.5–2), segment (2–5), sub-catchment (>5), catchment (entire catchment)
Riparian management characteristics	Active Passive	Planting Fencing
	Riparian management spatial scale (km)	Site (<0.5), reach (0.5–2), segment (2–5), sub-catchment (>5), catchment (entire catchment)
	Riparian management spatial extent	Length (m), width (m), density (%), vegetation age (a)
1	Vegetation zonation (Dosskey, 2001)	Single-zone (trees or shrubs or forbs or grass), multi-zone (any combination thereof)
Catchment management characteristics	Agricultural	Crop rotation, conservation tillage, livestock density, fertiliser application, land use change/abandonment
	Silvicultural	Afforestation
	Catchment management spatial scale	Sub-catchment or catchment (no further classification)

Instream environmental Physico-chemistry effects		Nitrogen (Total Nitrogen, , NO ₃ , NH ₄), phosphorous (Total Phosphorous, -ortho-PO ₄ , ortho-PO ₄ -P, Soluble Reactive Phosphorous), water temperature, light, conductivity, turbidity	
	Habitat	Fine sediments, large woody debris (LWD), coarse particulate organic matter (CPOM), habitat quality index	
Instream biological effects	Targeted organism groups	Fish, macroinvertebrates, aquatic macrophytes, benthic algae, riparian vegetation, ground beetles	
	Diversity	Species richness, Shannon (community) diversity	
	Composition/density	EPT taxa (Ephemeroptera-Plecoptera- Trichoptera), abundance, biomass	
	Functions/traits	Primary production, feeding types	

847

^{a)} Available at the ArcGIS Online Resources Center.

848 Table 2: Evidence of riparian management effects in light of potential limiting factors operating at broader spatial scales. The table

849 summarises the reviewed riparian management literature that reports weak or no effects after the implementation of management and

850 restoration measures, and that attributes the lack of effects to broad-scale stressors/pressures that continue to impact the restored river

sites/reaches.

Riparian management	Abiotic effect	Biological effect	Limitation	Reference [type of
option				study]
Wooded multi-zone	Retention of nutrients	Increase of macroinvertebrate	Land use further upstream in	Feld et al. (2011)
riparian buffer strips, 5–30	(up to 100% N/P) and	and fish diversity,	the continuum continues to limit	[review of 57 riparian
m wide and >1,000 m long	fine sediments (up to	improvements of functional	restoration success; poorly	management papers,
	100%), reduction of	traits, improved community	designed buffers (too narrow,	various regions and
	stream temperature,	composition, enhanced fish	too short) are not functional	stream types worldwide]
	habitat improvement	biomass, less studies effects of		
	(LWD, CPOM)	riverine plants		
Scenario 1 covers partial	Reduced nitrate		Floodplain nitrate contribution	Krause et al. (2008)
land use change on	leaching from the root		constitutes only about 1% of	[modelling of land use
sensitive floodplain areas	zone (43-85% for		total river nitrate loads per year;	and management effects
(e.g. hydromorphic soils,	scenarios 1 and 2,		hence modelled management	of two scenarios within
erodible soils) and 20 m-	respectively); reduced		effects are negligible	a ca. 1,000 km ² sub-
wide riparian forested	nitrate contribution			catchment of River
buffers along the river	from the floodplain			Havel, Germany]
course; scenario 2 covers	(70–100%); floodplain			
full land use change on	can even constitute a			
sensitive areas and 50 m-	sink for river-derived) ´		
wide riparian forested	nitrate.			
buffers				
Comparison of pasture sites	Bank erosion		The exclusion of livestock from	Hughes (2016) [review
with unlimited livestock	processes vary		riparian areas is generally	of various studies with
access and fenced sites	throughout catchments		reported as the principal factor	and without livestock
without livestock access	(with particular		in the measured improvements	access to river banks and
and riparian trees/shrubs	reference to their scale		or differences; planting of	riparian trees/shrubs]
present	dependence); only two		riparian vegetation in headwater	

Riparian management	studies specifically attributed reduced stream bank erosion to the presence of riparian vegetation Riparian habitat is	Riparian habitat should be	streams and the subsequent shading of stream banks can reduce bank stability and promote channel widening (and hence a release of sediment; see also Hughes & Quinn 2014) Protecting the riparian zone	Richardson <i>et al.</i> (2010)
riparian habitat that fulfils critical functions for fish (e.g. bank stability, shade/temperature, large	control of channel complexity and sediment inputs	critical for most species of freshwater fish, unless the habitat requirements of individual species indicate	maintain stream ecosystem integrity or species at risk, if the development within the watershed (e.g. agriculture or whorization) significantly altern	riparian management studies in light of habitat demands of fish]
sediment retention)	stabilization, input of large wood and allochthonous energy sources, and filtering of nutrients and toxins from adjacent land	functions associated with riparian zones	hydrology or water quality	
Riparian land use in buffers of 100–200 m width and 500–10,000 m length upstream, and riverine hydromorphology 500– 10,000 m upstream of biological sampling sites		Upstream land use and hydromorphology are stronger determinants of ecological recovery after restoration than local land use and hydromorphology at restored sites	Land use and hydromorphological degradation in the sub- catchment upstream can limit the success of local restorations	Lorenz & Feld (2013) [analysis of biological effects of riverine hydromorphology and riparian land use at several distances upstream of restored and unrestored lowland and mountainous stream sites in Germany]
Comparison of modelled nitrogen loads from cropland conditional on the amount of buffered stream length and streamflow	In the entire watershed, croplands release 92.3 t of nitrate nitrogen, 19.8 t of which is removed by riparian buffers; 29.4 t more might be		47% of cropland nitrogen load cannot be reduced by riparian buffers and must be addressed by other management options	Weller & Baker (2014) [modelling of riparian buffer effects on cropland nitrate loads at 1,964 sub-basins of Chesapeake Bay, USA]

	removed with all buffer gaps closed; the remaining 43.1 t of cropland load cannot be removed by riparian buffers			
Analysis of the response of aquatic macroinvertebrate assemblages to riparian replanting (8–22 a before monitoring) at agricultural streams		Macroinvertebrates did not respond to replanting over the time gradient, probably because replanting had little benefit for local water quality or in-stream habitat; invertebrate assemblages were influenced mainly by catchment-scale effects, but were closer to reference condition at sites with lower total catchment agricultural land cover	Reach-scale replanting in heavily modified (agriculturally-used) landscapes may not effectively return biodiversity to pre-clearance condition over decadal time- scales	Giling <i>et al.</i> (2016) [analysis of riparian vegetation replanting of different ages at streams in south-eastern Australia]
Meta-analysis of the effects	Riparian buffers	- (Riparian buffers are a best-	Mayer <i>et al.</i> (2005)
of riparian buffer width and	effectively remove		practice management option,	[review of the effects of
buffer vegetation type on	nitrate through uptake		but only in concert with other	riparian buffers on
the removal of nitrogen	and denitrification		management options at the	nutrient and fine
from surface runoff and	(mean: 74%), but the		watershed scale; soil	sediment retention]
sub-surface groundwater	relation to buffer width		characteristics can promote	
now paths	is not strong		denitrification (nign organic	
Passive ecological	After eight years the		Water quality did not improve:	Muller at al. (2015)
restoration (excluding	restored stream had		the same low water quality in	Imprime et al. (2013)
livestock by fencing along	complex riparian		the reference stream	quality and rinarian
an entire stream 1 m from	banks similar to those		demonstrated the need for a	habitat beterogeneity of
the stream bed) with the	of reference streams		whole watershed-scale approach	an entire stream in
assumption that recovering	(more trees less bare		and for actions to improve	France eight years after
riparian habitat will restore	soil increased habitat		agricultural practices before	lifestock exclusion
ecological processes (e g	heterogeneity)		implementing restoration	through fencing]
filtration soil stabilization)	increase generally)		practices at a smaller scale	an capit tenening]

Analysis of the capability	Riparian forested		Already highly eutrophied	Weigelhofer <i>et al.</i>
of longitudinally restricted	buffers can increase		streams seem to have a limited	(2012) [experiment and
riparian forest buffers to	instream ammonia (but		retention capacity for N and P	modelling of the effects
enhance in-stream nutrient	not phosphate) uptake		components; instream nutrient	of riparian forested
retention in nutrient-	through enhanced		retention cannot compensate for	buffers on instream
enriched headwater	hydrologic retention		deficits in riparian nutrient	nutrient uptake]
streams.	(reduced flow) induced		retention when the nutrient	-
	by LWD on the bottom		supply exceeds the demand	
			significantly	
Measurement of water	Nitrate and nitrite		An adequate reduction in NOx	Connolly et al. (2015)
quality along four	(NOx) concentrations		in streams can only be achieved	[comparison of N
Australian tropical streams	and loads were		by reduced fertilizer application	reduction along buffered
in two catchments with	significantly lower in	A	rates in the catchments	and unbuffered streams
similar agricultural	streams with greater			in four agricultural
development (mainly	riparian vegetation;			catchments in Australia]
sugarcane growing) but	yet, NOx concentration			
contrasting riparian	significantly increased			
vegetation (intact native	with distance			
rainforest vs. exotic	downstream (i.e. with			
weeds).	the amount of			
	fertilized agricultural			
	land in the catchment)			
) (
	¥			

853 Figure captions

- Figure 1: Conceptual model showing the hypothesised hierarchical relationships between
- 855 catchment drivers of impact (land-use), catchment pressures, riparian buffer management,
- 856 instream environmental and biological states. Blue arrows represent assumed negative
- 857 relationships, red arrows assumed positive relationships and grey arrows assumed unclear
- 858 effects, i.e. both positive and negative relationships are possible. (See Supplementary Table S1
- 859 for the linkage of arrow numbers and core references.)
- 860 Figure 2: a) Length (km) and b) width classes (m on either side of the stream) of riparian
- 861 management areas addressed by the 55 core studies.
- Figure 3: Common abiotic state variables (stressors) addressed in the 55 core management
 papers (N=nitrogen, P=phosphorous, Organic=organic matter).
- Figure 4: a) Common biological response variables and b) community attributes addressed by the
 55 core management studies (Riparian=riparian invertebrates, Indices=various assessment
 indices).
- Figure 5: Conceptual model showing the meta-analysis results through hierarchical relationships between catchment land-use, catchment pressures, riparian buffer management, instream abiotic states and instream biological states. Arrows represent consistent evidence of negative (blue) and positive (red) relationships, or unclear evidence (grey) with both positive and negative effects reported in the literature. Arrow thickness is proportional to the number of studies supporting a significant relationship between two elements of the model. (See Supplementary Table S1 for the linkage of arrow numbers and core references.)
- 874

875 Figures

876

Figure 1: Conceptual model showing the hypothesised hierarchical relationships between
catchment drivers of impact (land-use), catchment pressures, riparian buffer management,
instream environmental and biological states. Blue arrows represent assumed negative
relationships, red arrows assumed positive relationships and grey arrows assumed unclear
effects, i.e. both positive and negative relationships are possible. (See Supplementary Table S1
for the linkage of arrow numbers and core references.)

887 Figure 3: Common abiotic state variables (stressors) addressed in the 55 core management

- 891 55 core management studies (Riparian=riparian invertebrates, Indices=various assessment
- 892 indices).

⁸⁹³

Figure 5: Conceptual model showing the meta-analysis results through hierarchical relationships between catchment land-use, catchment pressures, riparian buffer management, instream abiotic states and instream biological states. Arrows represent consistent evidence of negative (blue) and positive (red) relationships, or unclear evidence (grey) with both positive and negative effects reported in the literature. Arrow thickness is proportional to the number of studies supporting a significant relationship between two elements of the model. (See Supplementary Table S1 for the linkage of arrow numbers and core references.)

Highlights

- A conceptual framework to evaluate riparian management options is presented.
- The framework is tested against the evidence in the management literature.
- Consistent beneficial effects on the instream environment are detectable.
- For full ecosystem protection, management beyond the riparian scale is required.