
Heuristic Algorithms for

Dynamic Capacitated Arc Routing

Wasin Padungwech

School of Mathematics

Cardiff University

A thesis submitted for the degree of

Doctor of Philosophy

March 2018

Summary

This thesis concerns the capacitated arc routing problem (CARP), which can be used

as a model of various real-life scenarios such as rubbish collection, snow ploughing,

and other situations where an emphasis is placed on providing a certain service along

streets. The goal of the CARP is to find a minimum-cost set of routes such that

(i) each route starts and ends at the depot, (ii) each task is serviced in one of the

routes, and (iii) the total demand in each route does not exceed the capacity. Until

recently, the study of the CARP is concentrated on its “static” version, that is, it

is assumed that the problem remains unchanged after vehicles start their journeys.

However, with today’s communication technology, a route planner and drivers can

communicate with each other in real time, hence the possibility of amending vehicle

routes if deemed necessary or appropriate for changes that may occur in the problem.

This motivates the study of a dynamic CARP. This thesis focusses on one type of

change in the dynamic CARP, namely the appearance of new tasks.

To ensure that a service can be performed smoothly, the ability to update a

solution quickly is often preferable to achieving optimality with an excessive amount

of computational effort. For this reason, we opt to develop a dynamic CARP solver

based on heuristic algorithms. An investigation is conducted to gain more insights

about what makes an algorithm improve a solution quickly. Furthermore, factors

in the dynamic CARP beyond a solution-seeking algorithm are investigated. This

includes the frequency of updating the solution and the idea of instructing vehicles

to wait for additional tasks at certain locations. Efforts are focussed on reducing the

total distance at the end of the service while ensuring that the service completion

time is not excessive.

i

DECLARATION

This work has not been submitted in substance for any other degree or award at this

or any other university or place of learning, nor is being submitted concurrently in

candidature for any degree or other award.

Signed . (candidate) Date .

STATEMENT 1

This thesis is being submitted in partial fulfillment of the requirements for the degree

of PhD.

Signed . (candidate) Date .

STATEMENT 2

This thesis is the result of my own independent work/investigation, except where

otherwise stated, and the thesis has not been edited by a third party beyond what

is permitted by Cardiff University’s Policy on the Use of Third Party Editors by

Research Degree Students. Other sources are acknowledged by explicit references.

The views expressed are my own.

Signed . (candidate) Date .

STATEMENT 3

I hereby give consent for my thesis, if accepted, to be available online in the

University’s Open Access repository and for inter-library loan, and for the title

and summary to be made available to outside organisations.

Signed . (candidate) Date .

STATEMENT 4: PREVIOUSLY APPROVED BAR ON ACCESS

I hereby give consent for my thesis, if accepted, to be available online in the

University’s Open Access repository and for inter-library loans after expiry of a

bar on access previously approved by the Academic Standards & Quality

Committee.

Signed . (candidate) Date .

ii

Acknowledgement

The first persons who have extensively helped me in this research are my supervisors,

Dr Jonathan Thompson and Dr Rhyd Lewis. Thank you for bearing with me when I

was lost in a maze of thoughts so many times. Thank you for your support throughout

this research, from the beginning when I had little idea of what it meant to do a

research until this thesis eventually came into existence.

I would also like to express my gratitude to my examiners, Professor Emma Hart

and Professor Owen Jones, who provided me with valuable comments that help

improve the quality of this thesis. Thank you for thought-provoking discussions and

for letting me leave the viva voce room with a smile.

My study in the UK might never have happened in the first place without a

scholarship granted by the Institute for the Promotion of Teaching Science and

Technology (IPST), and the Development and Promotion of Science and Technology

Talents Project (DPST) in Thailand. I am deeply grateful for this rare opportunity.

I would also like to thank staff members of the Office of Educational Affairs (OEA),

UK, and the Office of Civil Service Commision (OCSC), Thailand, for their support

throughout my study in the UK, from A-Levels to PhD.

Thank you my fellow PGR students in Cardiff School of Mathematics for knocking

on my office door every now and then and letting me know that I was not the only

one who went through many ups and downs of a PhD life. I am also thankful for staff

members of Cardiff School of Mathematics and Cardiff University for their support

during my time in Cardiff.

I was also fortunate enough to meet fellow Thai PhD students in Cardiff. Although

we could not meet very often, it was always a pleasure to hear and share life stories

(both academic-related and random topics) with all of you. I could feel nice positive

energy every time we met, and that did give me the power to pull through.

The last paragraph is reserved for the most important people in my life: my

mom, my dad, and my brother. Thank you for all advice, perspectives, and support,

especially when I was overwhelmed by setbacks and obstacles. I could not imagine

how I would have completed a PhD by myself. I am deeply grateful to have been in

this family.

iii

Contents

List of Figures vii

List of Tables xiii

List of Algorithms xvi

1 Introduction 1

1.1 Definition of the CARP . 2

1.2 Notation . 3

1.3 Dynamic CARP . 4

1.4 Research Aims . 5

1.5 Contributions of This Thesis . 6

1.6 Academic Publication Produced . 7

2 Literature Review 9

2.1 A Brief Overview of Computational Complexity 9

2.2 Arc Routing Problems . 10

2.2.1 Eulerian Graphs . 10

2.2.2 The Chinese Postman Problem 12

2.2.3 The Rural Postman Problem 13

2.3 Formulation of the CARP . 14

2.4 Computational Complexity of the CARP 16

2.5 Constructive Heuristics . 17

2.6 Metaheuristic Algorithms . 19

2.6.1 Single-Solution-Based Metaheuristics 20

2.6.2 Population-Based Metaheuristics 24

2.6.3 Further Improvement Methods 27

2.6.4 Performance of Existing Metaheuristic Algorithms for the CARP 29

2.7 Lower Bounds and Exact Algorithms 34

2.8 Transforming Arc Routing into Vehicle Routing 35

2.9 Variants of the CARP . 38

iv

CONTENTS

2.9.1 CARP with Time Windows 38

2.9.2 CARP with Multiple Starting and/or Ending Vertices 39

2.10 Dynamic CARPs . 45

2.11 Summary . 47

3 Metaheuristic Algorithms for the Static CARP 49

3.1 Introduction . 49

3.2 Neighbourhood Moves . 50

3.3 Solution Attributes and Tabu Moves 53

3.3.1 Task-in-a-Route Attributes . 54

3.3.2 2-Task Attributes . 55

3.3.3 2-Task-in-a-Route Attributes 55

3.3.4 3-Task Attributes . 56

3.4 Comparison of Tabu Attributes . 57

3.5 Deadheading Cycles . 64

3.5.1 Computational Results . 69

3.6 Notes on the Use of Multiple Tabu Lists 72

3.7 Conclusions . 73

4 Dynamic Capacitated Arc Routing Problem 76

4.1 Introduction . 76

4.2 Components of a Dynamic CARP Solver 78

4.2.1 Solution Update Schedules . 78

4.2.2 Determining the Current State of the Problem 78

4.2.3 Integrating New Tasks into the Solution 80

4.3 Generation of Dynamic CARP Instances 81

4.4 Comparison of Variants of the Dynamic CARP Solver 85

4.4.1 The Number of Iterations of Tabu Search in Each Update . . 85

4.4.2 Update Schedules . 89

4.5 An Alternative Method of Integrating New Tasks 94

4.5.1 Computational Results . 95

4.6 Conclusion . 98

5 Waiting Strategies 100

5.1 Introduction . 100

5.2 Instructing Vehicles to Wait at the End of Last Tasks 101

5.2.1 Computational Results . 105

5.3 Waiting Thresholds . 109

5.4 Instructing Vehicles to Wait Away from Other Vehicles 115

v

CONTENTS

5.5 Employing Extra Routes . 117

5.5.1 Computational Results . 121

5.6 Conclusions . 124

6 Conclusion 126

6.1 The Problem Investigated . 126

6.2 Summary of Findings . 127

6.3 Further Work . 131

Appendix A Performance of Existing Metaheuristic Algorithms for

the Static CARP 135

Appendix B Additional Computational Results 143

Bibliography 155

vi

List of Figures

1.1 Sample CARP instance and feasible solution, where the given capacity

is 30. 3

1.2 Sample dynamic CARP instance . 6

2.1 A map of Königsberg by Merian-Erben (retrieved 24 March 2017 from

https://en.wikipedia.org/wiki/File:Image-Koenigsberg, Map by Merian-

Erben 1652.jpg) . 11

2.2 Relationship between arc routing problems 15

2.3 Performance of existing metaheuristic algorithms for the CARP on

VAL and BMCV benchmark instance sets; for each instance set, the

left figure shows the distributions of percentage deviations from best

known lower bounds on all instances in the given set, and the right

figure shows the distributions of computation time on all instances in

the given set . 31

2.4 Performance of existing metaheuristic algorithms for the CARP on

BMCV and EGL benchmark instance sets; for each instance set, the

left figure shows the distributions of percentage deviations from best

known lower bounds on all instances in the given set, and the right

figure shows the distributions of computation time on all instances in

the given set . 32

2.5 Transformation from M-CARP to CMSTP 41

2.6 Difference between optimal solutions for the CARP and the OCARP

on the same instance; the depot is represented by a square; each task

ab, cd, and ef has demand 1 and the capacity is 2 42

3.1 Two possible ways of joining parts of routes as a result of a 2-opt move;

tasks that are removed from their original routes are highlighted; ã

denotes the opposite direction of traversal on task a 52

vii

LIST OF FIGURES

3.2 Medians of percentage deviations from optimality over the set of

instances in Table 3.1 given by the tabu search algorithm corresponding

to different types of tabu attributes; nt denotes the number of tasks . 59

3.3 Average elapsed time for executing the tabu search algorithm with

different tabu attributes for 100nt iterations, where nt is the number

of tasks (averaged over 20 runs); black vertical lines show one standard

deviation from each side of the averages 61

3.4 Total distances of current solutions over the course of the tabu search

algorithm from 10 sample runs (“Runs 1-10”) on the E17 instance for

each type of attribute; nt denotes the number of tasks 62

3.5 Different sets of routes with the same total distance. Each set contains

two routes shown in different colours (black and red). The depot is

at vertex D. Dashed lines represent traversals without service and

solid lines represent traversals with service. The routes in (a) are

transformed into those in (b) by a swap move; the tasks that are

affected by the move (BE and DA) are underlined. 63

3.6 A route that contains a deadheading cycle (a) and an improved route

after removing the deadheading cycle (b); the depot is at vertex D;

a solid line represents a traversal with service, while a dashed line

represents a traversal without service 65

3.7 A deadheading cycle on an edge that is traversed twice may be

removable (a) or not removable (b) 67

3.8 The number of runs (out of 600 runs) in which the best solution

at various iteration numbers knt has removable deadheading cycles,

where nt is the number of tasks, and k = 0, 1, . . . , 100 70

3.9 Medians of percentage deviations from optimality over a range of

iteration numbers given by the tabu search algorithm with different

ways of implementing the deadheading cycle remover, namely without

the deadheading cycle remover (“without DCR”), with the DCR being

implemented after the final iteration (“with DCR after final iteration”),

and with the DCR being implemented in every iteration (“with DCR

at every iteration”) . 71

3.10 Average elapsed time for executing the tabu search algorithm on

each instance for 100nt iterations taken by the tabu search algorithm

without the deadheading cycle remover (“without DCR”) and with

the DCR being implemented in every iteration (“with DCR at every

iteration”); black vertical lines show one standard deviation from each

side of the averages . 72

viii

LIST OF FIGURES

3.11 An example of how a solution can be revisited; each ai and bj represent

tasks with specified directions; ã denotes the opposite direction of a . 73

4.1 The time T (i) at which a vehicle reaches the ith task in its route. . . 79

4.2 Distributions of average percentage deviations from a posteriori lower

bounds with respect to total distances given by the dynamic CARP

solver with different maximum iteration limits (10nt, 25nt, 50nt, and

100nt, where nt is the number of tasks) for various degrees of dynamism 87

4.3 Average elapsed time taken by each variant of the dynamic CARP

solver in the whole planning horizon; black vertical lines show one

standard deviation from each side of the averages 88

4.4 Distributions of percentage deviations from a posteriori lower bounds

with respect to total distances (a) and distributions of service completion

times (b) given by different update schedules over 40 instances for

each degree of dynamism (0.1, 0.2, . . . , 0.9) 91

4.5 The number of updates in which new tasks exist on 40 dynamic CARP

instances generated in Section 4.3 for each degree of dynamism (0.1,

0.2, . . . , 0.9) . 93

4.6 Distributions of percentage deviations from a posteriori lower bounds

with respect to total distances (a) and distributions of service completion

times (b) given by different update schedules with the Random

Insertion method over 40 instances for each degree of dynamism

(0.1, 0.2, . . . , 0.9) . 96

5.1 Start times, finish times, and total demands in each route in one

solution for the C04-d50-1 instance; T denotes the length of the

planning horizon; the lines with crosses show the period of time in

which a vehicle corresponding to each route travels since leaving the

depot until returning to the depot; the bars show the total demand of

tasks serviced in each route. 102

5.2 A diversion after the last serviced task as a result of assigning an

additional task to a vehicle while it is heading towards the depot (see

the top figure) or after it returns to the depot (see the bottom figure).

A path along which the vehicle travels without waiting is shown in

black. Alternative paths in which the vehicle could have travelled are

shown in grey. Deadheading paths (i.e. travelling without servicing)

are shown in dashed lines. 103

ix

LIST OF FIGURES

5.3 Distributions of percentage deviations from a posteriori lower bounds

with respect to total distances on 40 dynamic CARP instances for

each degree of dynamism (0.1, 0.2, . . . , 0.9) given by the dynamic

CARP solver without and with the “waiting at the end of last task”

strategy . 106

5.4 Distributions of service completion times on 40 dynamic CARP

instances for each degree of dynamism (0.1, 0.2, . . . , 0.9) given by the

dynamic CARP solver without and with the “waiting at the end of

last task” strategy . 107

5.5 The number of runs in which the dynamic CARP solver (with 20

updates) returns solutions with a given number of routes from 800

runs (40 instances × 20 runs) for each degree of dynamism; a vertical

dashed line shows an average number of routes of the solutions over

800 runs . 108

5.6 Histograms showing the proportion of routes with a range of demands

of serviced tasks in solutions at the end of the planning horizon given

by the dynamic CARP solver (with 20 updates) without and with

the waiting strategy over 800 runs (40 instances × 20 runs) for each

degree of dynamism . 110

5.7 The total number of waiting instructions over 2,400 runs (40 dynamic

CARP instances × 20 runs × 3 update schedules) grouped by the

amount of demand in vehicles’ routes at the time of being instructed

to wait for each degree of dynamism 111

5.8 Distributions of percentage deviations from a posteriori lower bounds

with respect to total distances (a) and distributions of service completion

times (b) over 40 dynamic CARP instances given by the waiting

strategy with waiting thresholds ω = 0.0, 0.1, and 0.2 113

5.9 Distributions of percentage deviations from a posteriori lower bounds

with respect to total distances (a) and distributions of service completion

times (b) over 40 dynamic CARP instances given by each waiting

strategy . 117

5.10 Solution cost at each update in an individual run on the C01-d80-1

instance given by the dynamic CARP solver from Chapter 4 with

20 updates and the Random Insertion method and the maximum

iteration limit 50nt, where nt is the number of tasks at each update;

T denotes the length of the planning horizon 120

x

LIST OF FIGURES

5.11 The number of updates in which the solution cost decreased given by

the dynamic CARP solver from Chapter 4 with the Random Insertion

method and the maximum iteration limit 50nt, where nt is the number

of tasks at each update; the black bars show the proportion of those

updates in which an extra route was created. 120

B.1 Percentage deviations for the task-in-a-route attribute with different

tabu tenures . 144

B.2 Percentage deviations for the 2-task attribute with different tabu tenures144

B.3 Percentage deviations for the 2-task-in-a-route attribute with different

tabu tenures . 145

B.4 Percentage deviations for the 3-task attribute with different tabu tenures145

B.5 Total distances of current solutions over the course of the tabu search

algorithm from 10 sample runs (“Runs 11-20”) on the E17 instance

for each type of attribute; nt denotes the number of tasks 146

B.6 Distributions of percentage deviations from a posteriori lower bounds

with respect to total distances on 40 dynamic CARP instances for

each degree of dynamism (0.1, 0.2, . . . , 0.9) given by the dynamic

CARP solver with different update schedules and different methods

of integrating tasks (“Recon” means the Reconstruction method, and

“Random” means the Random Insertion method) 147

B.7 Distributions of service completion times on 40 dynamic CARP

instances for each degree of dynamism (0.1, 0.2, . . . , 0.9) given by the

dynamic CARP solver with different update schedules and different

methods of integrating tasks (“Recon” means the Reconstruction

method, and “Random” means the Random Insertion method) 148

B.8 The number of runs in which the dynamic CARP solver (with 5 and

10 updates) returns solutions with a given number of routes from 800

runs (40 instances × 20 runs) for each degree of dynamism; a vertical

dashed line shows an average number of routes of the solutions over

800 runs . 149

B.9 Histograms showing the proportion of routes with a range of demands

of serviced tasks in solutions at the end of the planning horizon given

by the dynamic CARP solver (with 5 updates) without and with the

waiting strategy over 800 runs (40 instances × 20 runs) for each degree

of dynamism . 150

xi

LIST OF FIGURES

B.10 Histograms showing the proportion of routes with a range of demands

of serviced tasks in solutions at the end of the planning horizon given

by the dynamic CARP solver (with 10 updates) without and with

the waiting strategy over 800 runs (40 instances × 20 runs) for each

degree of dynamism . 151

B.11 Distributions of percentage deviations from a posteriori lower bounds

with respect to total distances over 40 dynamic CARP instances given

by the use of extra routes and different waiting strategies 153

B.12 Distributions of service completion times over 40 dynamic CARP

instances given by the use of extra routes and different waiting strategies154

xii

List of Tables

2.1 Characteristics of benchmark instance sets for the CARP 30

3.1 Characteristics of instances from the BMCV dataset in an ascending

order of the number of tasks; nveh is the least number of vehicles

needed (total demand divided by capacity, rounded up to the nearest

integer) . 58

3.2 Medians of percentage deviations from optimality (rounded to 2

decimal places) given by the tabu search algorithm with different

types of tabu attributes; nt denotes the number of tasks 60

3.3 The number of iterations (out of 3,600 iterations) in which a neighbourhood

move was selected as a result of the aspiration criteria from 20 runs

on the E17 instance . 64

3.4 Medians of percentage deviations from optimality given by the tabu

search algorithm with different ways of implementing the deadheading

cycle remover (“DCR”); nt denotes the number of tasks 71

4.1 Characteristics of static CARP instances on which a generation of

dynamic CARP instances is based; LB and UB are the best known

lower and upper bounds, respectively (LB is omitted when UB is

optimal), and nveh is the least number of vehicles needed (total demand

divided by capacity, rounded up to the nearest integer); the capacity

is 300 for all instances . 84

4.2 Medians of percentage deviations from a posteriori lower bounds given

by the dynamic CARP solver with different maximum iteration limits 89

4.3 Medians of percentage deviations from a posteriori lower bounds given

by the dynamic CARP solver with different update schedules 90

4.4 Medians of service completion times (as multiples of the planning

horizon length) given by the dynamic CARP solver with different

update schedules . 92

xiii

LIST OF TABLES

4.5 Medians of percentage deviations from a posteriori lower bounds given

by the dynamic CARP solver with the Random Insertion method and

different update schedules . 97

4.6 Medians of service completion times (as multiples of the planning

horizon length) given by the dynamic CARP solver with the Random

Insertion method and different update schedules 97

5.1 Medians of percentage deviations from a posteriori lower bounds with

respect to total distances and medians of service completion times

(as multiples of the length of the planning horizon) over 40 dynamic

CARP instances given by the waiting strategy with waiting thresholds

ω = 0.0, 0.1, and 0.2 . 114

5.2 The total number of routes in all updates except at the end of the

planning horizon (nall) and the number of times vehicles are instructed

to wait (nwait) in all 800 runs (40 instances × 20 runs) for the waiting

strategy with each waiting threshold ω = 0.0, 0.1, 0.2 and each degree

of dynamism; nwait(%) is the ratio of nwait to nall 114

5.3 Medians of percentage deviations from a posteriori lower bounds with

respect to total distances and medians of service completions times

(as multiples of the length of the planning horizon) over 40 dynamic

CARP instances given by each waiting strategy 118

5.4 The total number of routes in all updates except at the end of the

planning horizon (nall) and the number of times vehicles are instructed

to wait (nwait) in all 800 runs (40 instances × 20 runs) for each waiting

strategy and each degree of dynamism; nwait(%) is the ratio of nwait

to nall . 118

5.5 Medians of percentage deviations from a posteriori lower bounds with

respect to total distances and medians of service completion times

over 40 dynamic CARP instances given by the dynamic CARP solver

without waiting . 123

5.6 Medians of percentage deviations from a posteriori lower bounds with

respect to total distances and medians of service completion times

over 40 dynamic CARP instances given by the dynamic CARP solver

with waiting at the end of last task 123

5.7 Medians of percentage deviations from a posteriori lower bounds with

respect to total distances and medians of service completion times

over 40 dynamic CARP instances given by the dynamic CARP solver

with waiting away from other vehicles 123

xiv

LIST OF TABLES

A.1 Solution costs given by existing metaheuristic algorithms for the CARP

on the VAL instance set . 137

A.2 Solution costs given by existing metaheuristic algorithms for the CARP

on the BMCV instance set (‘C’ instances) 138

A.3 Solution costs given by existing metaheuristic algorithms for the CARP

on the BMCV instance set (‘D’ instances) 139

A.4 Solution costs given by existing metaheuristic algorithms for the CARP

on the BMCV instance set (‘E’ instances) 140

A.5 Solution costs given by existing metaheuristic algorithms for the CARP

on the BMCV instance set (‘F’ instances) 141

A.6 Solution costs given by existing metaheuristic algorithms for the CARP

on the EGL instance set . 142

B.1 Medians of percentage deviations from a posteriori lower bounds given

by the dynamic CARP solver with different update schedules and

different methods of integrating new tasks 152

B.2 Medians of service completion times (as multiples of the planning

horizon length) the dynamic CARP solver with different update

schedules and different methods of integrating new tasks 152

xv

List of Algorithms

1 Tabu search . 22

2 Guided local search . 24

3 The deadheading cycle remover . 68

4 Configuration of the dynamic CARP solver 82

5 The Random Insertion method . 95

6 Configuration of the dynamic CARP solver with waiting 104

7 Instructing vehicles to wait at the end of last tasks 104

8 Instructing vehicles to wait at the end of last tasks with a waiting

threshold . 112

9 Instructing vehicles to wait away from other vehicles 116

10 Configuration of the dynamic CARP solver with waiting and the use

of extra routes . 121

xvi

Chapter 1

Introduction

There are a variety of tasks or services that need to be performed along streets, for

example, street sweeping, snow ploughing, garbage collection, and electric meter

reading. Naturally, it is preferable to perform a service in a way that is as efficient as

possible with respect to an objective being considered, e.g. minimising total distance.

Thus, sensible route planning is often needed, or at least desired. In addition to the

existence of tasks on streets, there are some constraints in practice that have an

effect on route planning. One common constraint is the capacity constraint, i.e. the

amount of service that can be performed on each route is limited. This leads to a

problem called the Capacitated Arc Routing Problem (CARP).

The CARP was originally introduced in the literature by Golden and Wong (1981).

Since then, a wide variety of both exact and heuristic algorithms have been proposed

for finding (near-)optimal solutions. However, relatively few existing works on the

CARP take into account the fact that some information in the problem, such as the

existence or the quantities of tasks on each street, may change while vehicles are

travelling and performing their services. Adapting or updating routes as the problem

changes would allow us to obtain routes that are more “suitable” for the current

state of the problem than those that are planned originally. This, however, requires

a route planner to know the state of the problem at any given time. Fortunately, the

availability of global positioning systems allow a route planner to track the positions

of vehicles. Furthermore, with today’s communication technology, it is possible for a

route planner to detect (or be informed about) changes that occur in the CARP and

notify drivers of any changes in their routes in real time. This makes it worthwhile

to find a way of updating routes to ensure that a service being considered can still

be performed “efficiently” as the problem changes over time.

There are many types of changes that can occur in the CARP. Examples of those

1

1.1. DEFINITION OF THE CARP

changes, given by Liu et al. (2014b), include vehicles breaking down, streets becoming

inaccessible, new tasks appearing, existing tasks being cancelled, changes in amounts

of tasks, and changes in costs of travelling due to congestion. Nevertheless, this

thesis will be focussed on one particular type of change: the appearance of new tasks.

For clarity, Section 1.1 and Section 1.2 give a definition of the CARP, as well as

related terminology and notations that will be used throughout the thesis. Section 1.3

describes the dynamic CARP in greater detail. Section 1.4 presents research aims

and the structure of this thesis.

1.1 Definition of the CARP

Let the following be given: a graph G = (V,E) with a set of vertices V and a set of

edges E; a positive cost (or distance1) cij and a non-negative demand dij for each

edge {i, j} ∈ E; a capacity Q (assumed to be no less than any demand); and a depot

v0 ∈ V .

A path is an alternating sequence of vertices and edges (v1, e1, v2, . . . , vn, en, vn+1),

where v1, . . . , vn+1 ∈ V are vertices and e1, . . . , en ∈ E are edges such that vi and

vi+1 are the endpoints of ei for each i = 1, . . . , n. A route is a path together with a

binary sequence (s1, . . . , sn), i.e. each si is either 0 or 1. The edge ei is said to be

serviced in the route if the corresponding binary element si = 1. This is similar to a

solution representation used by Brandão and Eglese (2008).

The objective of the CARP is to find a minimum-cost set of routes that satisfy the

following conditions: (i) each edge with non-zero demand, also called a task 2, is

serviced in one of the routes; (ii) the total demand of edges serviced in each route

does not exceed the capacity; and (iii) each route starts and ends at the depot. A

sample CARP instance and a feasible solution are shown in Figure 1.1. Note that in

this thesis, we will focus on the CARP that is defined on an undirected graph: that

is, each edge can be traversed in any direction, and the costs of travelling in both

directions are the same.

1In this thesis, the terms “cost” and “distance” will be used interchangeably; they are both
regarded as a numerical value that needs to be minimised.

2In some papers, this is called a required edge.

2

1.2. NOTATION

A

B

C

E
D

(4, 10)

(2, 15)
(2, 15)

1

3

Task with cost c and demand d

D The depot

(c, d)

c
Edge with cost c (and demand 0)

(a) CARP instance

A

B

C

D

(2, 15)

1

3

A

C

E
D

(4, 10)

3

3

A

C

E
D

(2, 15)

1

3

Traversal with service

Traversal without service

(b) Feasible solution to the CARP instance in (a)

Figure 1.1: Sample CARP instance and feasible solution, where the given capacity is
30.

1.2 Notation

For each edge {i, j}, the two possible directions of traversal “from i to j” and “from

j to i” are denoted by arcs (i, j) and (j, i), respectively. Let h(a) and t(a) denote the

head and the tail of an arc a, respectively; for example, if a = (i, j), then h(a) = j

and t(a) = i.

Instead of a path and a binary sequence, a route can be represented more concisely

by a sequence (vs, a1, . . . an, v0), where vs is the starting vertex, v0 is the depot, and

a1, . . . , an are tasks that are serviced in the route in the order they appear in the

sequence (Beullens et al., 2003). Since the objective is to minimise the total cost, a

path between consecutive tasks can be easily deduced: it is a shortest path between

them, which can be found by an algorithm such as that of Dijkstra (1959). For

example, the three routes in Figure 1.1(b) are (D,AB,BC,D), (D,DE,AC,D), and

(D,CE,EA,D). In the standard CARP defined in Section 1.1, the starting vertex

vs of any route is the depot. However, later in this thesis, we will encounter routes

that do not start at the depot (but still need to return to the depot), so we opt to

include the starting vertex in the representation of routes.

Let D(u, v) denote the shortest distance between vertices u and v. Let c(a) and d(a)

3

1.3. DYNAMIC CARP

denote the cost and the demand of an edge corresponding to an arc a, respectively.

The cost of a route R = (vs, a1, . . . an, v0) is equal to

C(R) =
n∑
k=1

[D(h(ak−1), t(ak)) + c(ak)] +D(h(an), v0), (1.1)

where, for ease of notation, a0 = (vs, vs). The total demand in the route R is equal

to

D(R) =
n∑
k=1

d(ak) (1.2)

With this representation, the CARP can then be viewed as a problem of partitioning

a set of tasks (each element of the partition corresponding to a route), permuting

tasks in each route, and choosing the direction of service on each task to obtain a

set of routes S = {R1, . . . , RK} (for some positive integer K) such that D(Ri) does

not exceed a given capacity Q for all i, and the total cost

f(S) =
K∑
i=1

C(Ri) (1.3)

is minimised.

1.3 Dynamic CARP

The CARP in which some information in the problem changes over time is also

referred to as a dynamic CARP. In a dynamic CARP, a solution (i.e. a set of routes)

needs to be updated in order to maintain the quality or feasibility of the solution in

the face of changes in the problem. With new tasks appearing over time (the type of

changes that will be focussed on in this thesis), a solution needs to be updated to

ensure that all tasks are serviced, regardless of when they appear (as long as they

appear within a time frame being considered).

Once it has been specified when the solution is to be updated, which can happen

more than once, the dynamic CARP can be viewed as a sequence of static CARPs,

where each static CARP occurs at one of the specified points in time. One possible

approach to the dynamic CARP is to use an existing algorithm for the CARP to

solve each static CARP in the sequence. However, it should be noted that obtaining

an optimal solution to each static CARP in the sequence is not guaranteed to give

the best possible solution to the underlying dynamic CARP. This is illustrated by a

4

1.4. RESEARCH AIMS

sample dynamic CARP instance in Figure 1.2: At time 0, there are 2 tasks, namely

AD and BE, each with demand 1. The capacity is 3, so both tasks can be serviced in

the same route. Vertex D is the depot. Each edge has distance 1 and the speed of the

vehicle is 1 unit distance per unit time. Two feasible solutions at time 0 are shown:

in Figure 1.2(top) is the route D–E–B–A–D with cost 4, while in Figure 1.2(bottom)

is the route D–E–B–C–A–D with cost 5. In fact, the route in Figure 1.2(top) is

the optimal solution for the static CARP instance at time 0. At time 3, task AC

appears. In Figure 1.2(top), the vehicle has travelled D–E–B–A and serviced task

BE, The best route from vertex A to the depot that services the remaining tasks

AC and AD is A–C–A–D, so the whole route is D–E–B–A–C–A–D with cost 6. In

Figure 1.2(bottom), at time 3 the vehicle has travelled D–E–B–C and also serviced

tasks BE. The best route from vertex C to the depot the services the remaining

tasks AC and AD is C–A–D, so the whole route is D–E–B–C–A–D with cost 5.

Notice that the final solution in Figure 1.2(top) is obtained from an optimal solution

at both time 0 and time 3, but it has higher total cost than the final solution in

Figure 1.2(bottom). This is possible because features of the static CARP (e.g. the

current position of the vehicle, the remaining tasks) at each update are affected

not only by changes that occur in the problem, but also by solutions from previous

updates. This highlights the importance of investigating and devising an algorithm

specifically for the dynamic CARP, rather than solely relying on algorithms that are

specifically designed for the static CARP.

1.4 Research Aims

The study of this thesis includes the following main points:

• To compare several variants of a tabu search algorithm for the static CARP

and identify variants that can provide good solutions within limited time. Such

variants will then be used to amend the solution in the dynamic CARP.

• To investigate the effect of different frequencies of updating the solution, and

the way of integrating new tasks into an existing solution in each update on

the quality of the final solution (i.e. the solution at the end of the planning

horizon).

• To investigate the trade-off between the total distance travelled and resultant

service completion time given by waiting strategies.

5

1.5. CONTRIBUTIONS OF THIS THESIS

Time 0 Time 3

Traversal with service

Traversal without service

Other existing edge

Depot

Current vehicle position

A

B

C

D

E

A

B

C

D

E



 

Time 0 Time 3

B

C

D

E

A

B

C

D

E



A

Figure 1.2: Sample dynamic CARP instance

1.5 Contributions of This Thesis

This research aims to better understand factors that help a heuristic algorithm for the

dynamic CARP perform well, that is, being capable of amending a solution as new

tasks appear over time while ensuring that both total distance (or solution cost) and

service completion time do not increase excessively. Three major areas are considered:

a heuristic algorithm for finding a solution in each update; the overall configuration

of a dynamic CARP solver, concerning in particular an update frequency; and a way

of integrating new tasks to an existing solution; and ways of anticipating changes in

the future, including waiting strategies and adding extra routes to the solution even

before they are needed. The contributions of this thesis are as follows.

• A novel analysis of the performance of tabu search for the static CARP with

different ways of defining tabu moves is conducted. In particular, variants

of tabu search are compared over a range of iteration limits as opposed to a

single stopping criterion. This allows us to better understand what enhances

or inhibits the algorithm’s ability to improve a static CARP solution quickly.

6

1.6. ACADEMIC PUBLICATION PRODUCED

• A novel operator, namely the deadheading cycle remover (DCR), is proposed.

The aim of this operator is to further improve tabu search’s speed of finding

a good solution. The key idea of the DCR is to detect and remove traversals

that are unnecessary (i.e not involving services) while maintaining feasibility

of a solution.

• In this thesis, a tabu search algorithm is chosen as a heuristic algorithm for

improving a solution in each update in the dynamic CARP. Experiment results

show that increasing the maximum iteration limit for tabu search in each

update does not consistently lead to significant improvement of the solution

quality. This suggests the need to improve the dynamic CARP solver by other

means instead of relying solely on running the algorithm for more iterations.

• Different frequencies of solution updates are empirically compared. Also, a

novel concept of integrating new tasks to the solution while retaining an existing

set of routes (instead of solving each update from scratch) is proposed and

tested. Experiment results show that a promising update frequency depends on

the degree of dynamism (i.e. the number of new tasks known after initial route

planning in relation to the overall number of tasks) and the way of integrating

new tasks to an existing set of routes.

• As a way to anticipate new tasks in the future, two waiting strategies are

proposed and tested: waiting at the end of last task, and waiting away from

other vehicles. These strategies aim to place vehicles at certain locations for

them to stand by in case they receive additional tasks.

• A novel idea of adding extra empty routes to the solution before tabu search in

each update is proposed and tested. This strategy aims to enhance flexibility of

tabu search in amending the solution, especially when many routes are nearly

full and thus there are relatively few feasible neighbourhood moves.

1.6 Academic Publication Produced

The following academic articles have been produced as a result of this research.

• Padungwech W., Thompson J., Lewis R. (2016). Investigating Edge-Reordering

Procedures in a Tabu Search Algorithm for the Capacitated Arc Routing

Problem. In: Blesa M. et al. (eds) Hybrid Metaheuristics. HM 2016. Lecture

7

1.6. ACADEMIC PUBLICATION PRODUCED

Notes in Computer Science, vol 9668, pages 62-74. Springer, Cham. [conference

paper]

• Padungwech W., Thompson J., Lewis R. A Dynamic Capacitated Arc Routing

Problem with Arrival of New Demands, under review. [journal]

8

Chapter 2

Literature Review

2.1 A Brief Overview of Computational Complexity

One way to measure the intractability of a problem is to consider running time, i.e. the

number of basic operations, that an algorithm requires to find or verify a solution. In

computational complexity theory, such running time is used to classify problems into

a variety of complexity classes, which helps shed some light on how hard a problem

might be in comparison with others. In this section, several complexity classes are

briefly reviewed to give sufficient background for a discussion on computational

complexity of the CARP and related problems.

A common criterion for an algorithm to be efficient is that its running time is bounded

above by a polynomial in terms of the size of the input. Such an algorithm is also

called a polynomial-time algorithm. A problem is said to be in P, or polynomial, if

there exists a polynomial-time algorithm for finding a solution to that problem.

For some problems, no polynomial-time algorithms for finding a solution have yet

been found, nor has it been determined that such algorithms do not exist. However,

for many of those problems, a proposed solution can be verified efficiently. A problem

is said to be in NP, or non-deterministic polynomial, if there exists a polynomial-time

algorithm for verifying any proposed solution. For example, the partition problem

asks whether a multiset of positive integers can be partitioned into two subsets with

the same sum. Any possible partition can be verified efficiently by calculating the

sum in each subset; the number of additions in the calculation is polynomial – linear,

in fact – in terms of the number of integers in a given set.

9

2.2. ARC ROUTING PROBLEMS

A problem is said to be NP-hard if all NP problems can be efficiently reduced (i.e.

transformed by a polynomial-time algorithm) into that problem. This provides us

with a rough idea of how (relatively) hard a problem can be: being able to efficiently

solve a NP-hard problem means that we can also efficiently solve all NP problems.

Notice that if one problem is known to be NP-hard and can be reduced in polynomial

time to another problem, then the latter problem is also NP-hard. This is because a

combination of polynomial-time algorithms is also polynomial-time.

2.2 Arc Routing Problems

As the name suggests, the CARP belongs to a class of arc routing problems: finding

a route or a set of routes subject to constraints that are related to edges or arcs in

a graph. Prior to the introduction of the CARP, other arc routing problems were

studied. In fact, some of them can be viewed as special cases of the CARP. This

section reviews those arc routing problems, which will allow us to see how arc routing

problems have evolved and will also provide some useful techniques for constructing

and improving solutions to the CARP.

2.2.1 Eulerian Graphs

One of the oldest arc routing problems is the “Königsberg bridges” problem. The

city was divided by a river into 4 parts which were joined by 7 bridges as shown in

Figure 2.1. The problem is to determine whether there exists a path in which each

bridge is traversed precisely once. Euler (1741) proved1 that it is not possible. In

fact, Euler showed that for a general undirected graph, such a path does not exist

if the graph has more than 2 odd-degree vertices (each part of the city is viewed

as a vertex, and each bridge an edge; the degree of each vertex is the number of

edges that meets the vertex). The converse result, i.e. it is possible to traverse each

bridge precisely once if there exist no more than 2 odd-degree vertices, was proved by

Hierholzer in 1873 (according to Biggs et al., 1976). The two results together form

the following theorem. In what follows, a closed path is defined as a path whose first

and last vertices are the same.

Theorem 2.1 In an undirected (and connected) graph, there exists a path in which

each edge is traversed precisely once if and only if at most 2 vertices have odd degrees.

1The original proof was given in Latin. For the English translation, see e.g. Biggs et al. (1976).

10

2.2. ARC ROUTING PROBLEMS

Figure 2.1: A map of Königsberg by Merian-Erben (retrieved 24 March
2017 from https://en.wikipedia.org/wiki/File:Image-Koenigsberg, Map by Merian-
Erben 1652.jpg)

Furthermore, there exists a closed path in which each edge is traversed precisely once

if and only if all vertices have even degrees.

A path that contains each edge precisely once is called an Eulerian path. A graph

that has an Eulerian closed path is called an Eulerian graph. Theorem 2.1 can then

be stated in another way: an undirected and connected graph is Eulerian if and

only if all vertices have even degrees. Note that Theorem 2.1 only applies to an

undirected graph. For a directed and a mixed graph, Ford and Fulkerson (1962)

provided the following theorems (Theorems 2.2 and 2.3) that specify necessary and

sufficient conditions for a graph to be Eulerian. In a directed graph, the in-degree

of a vertex v is defined as the number of arcs that go into v, i.e. having v as their

heads. The out-degree of a vertex v is defined as the number of arcs that go out of v,

i.e. having v as their tails.

Theorem 2.2 A directed (and connected) graph is Eulerian if and only if the in-

degree of any vertex is equal to its out-degree.

For a mixed graph G = (V,E ∪ A) with the edge set E and the arc set A (an edge

is undirected, whereas an arc is directed), some notations are needed: For any two

subsets S1, S2 of the vertex set V , Nd(S1, S2) = |{(i, j) ∈ A|i ∈ S1, j ∈ S2}| is the

number of arcs from S1 to S2, and Nu(S1, S2) = |{{i, j} ∈ E|i ∈ S1, j ∈ S2}| is the

number of edges between S1 and S2.

11

2.2. ARC ROUTING PROBLEMS

Theorem 2.3 A mixed (and connected) graph in Eulerian if and only if every vertex

has even total degree (i.e. counting all edges and arcs that meet a given vertex,

irrespective of directions of arcs), and for any subset S ⊂ V , the following inequality

holds:

|Nd(S, V \S)−Nd(V \S, S)| ≤ Nu(S, V \S).

With the above three theorems, the problem of determining whether a given graph

is Eulerian is completely solved. The next question that naturally follows is how to

traverse all edges in a given graph, Eulerian or not, with the least repetition. More

generally, given a graph with edge costs, what is the minimum-cost tour (i.e. closed

path) that covers all edges? This is the definition of the Chinese Postman Problem

(CPP). If we are interested in a tour that covers a set of edges as opposed to all

edges, the corresponding problem is called the Rural Postman Problem (RPP). These

problems can be defined on any kind of graphs – undirected, directed, or mixed.

Nevertheless, in the rest of this thesis, we will focus only on undirected graphs.

2.2.2 The Chinese Postman Problem

The CPP was introduced in the 1960s by a Chinese mathematician Meigu Guan,

who “spent some time as a post office worker during the Chinese cultural revolution”

(Eiselt et al., 1995). One application of the CPP is, as the name suggests, mail

delivery: a solution to the CPP gives a minimum-cost route for a postman who needs

to travel through each street in a given area, starting and ending his journey at the

same location (e.g. the post office). If a given graph G = (V,E) is Eulerian, the CPP

is trivial as we only need to find an Eulerian tour. Otherwise, some edges need to be

traversed more than once. In other words, it is necessary to duplicate some edges in

G to obtain an Eulerian multigraph G′. Notice that the multiplicity of each edge in

G′ needs not be greater than 2 because if an edge is traversed more than twice, a

cycle composed of two copies of the edge can be removed from G′ without affecting

the parity of the degrees of vertices, and thus G′ is still Eulerian. This means that

each edge in G needs to be duplicated at most once. Since the degree of each vertex

v in G′ must be even (according to Theorem 2.1), if the original degree of v in G

is odd (even), the number of duplicated edges that are incident to v must be odd

(even). Let Vodd be the set of odd-degree vertices in G, δ(i) = {j ∈ V |{i, j} ∈ E}
the set of neighbours of vertex i, cij the cost of edge {i, j} ∈ E, and xij the number

of times the edge {i, j} is duplicated. The problem of finding a minimum-cost set

of edges to be duplicated to form an Eulerian multigraph can be formulated as the

12

2.2. ARC ROUTING PROBLEMS

following minimisation problem:

Minimise
∑
{i,j}∈E

cijxij (2.1)

subject to

∑
j∈δ(i)

xij ≡

1 (mod 2) if i ∈ Vodd
0 (mod 2) otherwise

(2.2)

xij ∈ {0, 1} for {i, j} ∈ E (2.3)

Instead of directly solving the above integer linear program, a minimum-cost set of

edges to be duplicated can be found by determining a minimum-cost set of shortest

paths between odd-degree vertices (Edmonds and Johnson, 1973). Duplicating

edges in those shortest paths makes all vertex degrees even, resulting in an Eulerian

multigraph (by Theorem 2.1). To find a minimum-cost set of shortest paths, a

complete graph Godd is constructed from the set of all odd-degree vertices in a given

graph G. The cost of each edge {i, j} in Godd is equal to the cost of a shortest

path between i and j in G; these shortest paths can be found by a polynomial-

time algorithm such as that of Dijkstra (1959). Once Godd is constructed, what

remains is to find a minimum-cost perfect matching in Godd, which can be achieved

in polynomial time by, for example, an algorithm proposed by Cook and Rohe (1999).

Once the perfect matching is found, a shortest path in G corresponding to each edge

in the matching is added to G to construct an Eulerian multigraph G′ as required.

This shows that the CPP can be solved in polynomial time.

Recall that the CPP concerns a minimum-cost route that contains all edges in a

given graph. Interestingly, it is a much more difficult problem to find a minimum-cost

route that contains only a subset of edges, as will be seen in the next section.

2.2.3 The Rural Postman Problem

The RPP is a problem of finding a minimum-cost route that covers a subset R ⊂ E of

edges in a given graph G = (V,E); it is thus a more general version of the CPP. An

edge that is in the specified subset R is also referred to as a required edge. Unlike the

CPP, however, the RPP is NP-hard. One way to prove this concerns another problem,

namely the Hamilton circuit problem, which is the problem of determining whether

13

2.3. FORMULATION OF THE CARP

a given graph contains a closed path that visits each vertex precisely once. Lenstra

and Kan (1976) showed that the Hamilton circuit problem, which was previously

known to be NP-hard (Karp, 1972), can be reduced in polynomial time to the RPP.

As the RPP is NP-hard, several heuristics were proposed for this problem. Some

heuristics (Christofides et al., 1981; Pearn and Wu, 1995) share the same idea: First,

if required edges form several disjoint components, join them into one connected

component by “shrinking” each component into a vertex and finding a minimum

spanning tree in the resulting graph. Then, join odd-degree vertices by solving a

minimum-cost perfect matching problem similar to the method of solving the CPP in

Section 2.2.2. Pearn and Wu (1995) also proposed another heuristic which “reverses”

the aforementioned heuristics, i.e. first join odd-degree vertices by shortest paths

between them and then, if the resulting graph is not connected, connect the disjoint

components by solving a minimum spanning tree problem.

For both the CPP and the RPP, the solution is a single route. In real life, however,

more than one route (or vehicle) may be needed. For example, in the context of

refuse collection, if the total amount of refuse is too large, one bin lorry would not

be able to collect all the refuse in one go due to its limited capacity. Consequently,

it needs to return to its depot to refill its capacity before it can collect more refuse

or, if it is preferable to have multiple vehicles perform the service simultaneously,

more lorries are needed. Such limitation gives rise to the Capacitated Arc Routing

Problem (CARP). The relationship between the aforementioned arc routing problems

is summarised in Figure 2.2.

2.3 Formulation of the CARP

The CARP can be viewed as an integer linear programming problem (ILP) (Golden

and Wong, 1981): Let K denote the number of available vehicles (assumed to be

sufficiently large to service all tasks), Q the vehicle capacity, and | · | the number of

elements of a set. The objective of the CARP is to

Minimise
∑
i∈V

∑
j∈V

K∑
p=1

cijx
p
ij (2.4)

14

2.3. FORMULATION OF THE CARP

Determining whether
a graph is Eulerian

The Chinese Postman Problem
(CPP)

The Rural Postman Problem
(RPP)

The Capacitated Arc Routing Problem
(CARP)

Relax the assumption that
all tasks can be serviced in the same route

Relax the assumption that
all edges must be traversed

Relax the assumption that
each edge can be traversed only once

Figure 2.2: Relationship between arc routing problems

subject to∑
k∈V

xpki −
∑
k∈V

xpik = 0 for i ∈ V and p = 1, . . . , K, (2.5)

K∑
p=1

(lpij + lpji) =

⌈
dij
Q

⌉
for {i, j} ∈ E, (2.6)

xpij ≥ lpij for {i, j} ∈ E and p = 1, . . . , K, (2.7)∑
i∈V

∑
j∈V

lpijdij ≤ Q for p = 1, . . . , K, (2.8)

xpij, l
p
ij ∈ {0, 1} for {i, j} ∈ E and p = 1, . . . , K, (2.9)

∑
i∈S

∑
j∈S

xpij − |V |2y
p
S ≤ |S| − 1∑

i∈S

∑
j 6∈S

xpij + zpS ≥ 1

ypS + zpS ≤ 1

ypS, z
p
S ∈ {0, 1}


for p = 1, . . . ,K,
S ⊂ V \{v0}, S 6= φ (2.10)

The decision variables in the above ILP formulation are

• xpij – a decision variable that indicates whether a vehicle p traverses an edge

{i, j} ∈ E in the direction from i to j, i.e. xpij = 1 if it does, xpij = 0 otherwise

(here we assume a vehicle traverses each edge in each direction at most once);

15

2.4. COMPUTATIONAL COMPLEXITY OF THE CARP

• lpij – a decision variable that indicates whether a vehicle p services an edge

{i, j} ∈ E from i to j, i.e. lpij = 1 if it does, lpij = 0 otherwise (note that a

vehicle either services a whole task or does not service it at all, i.e. partial

service is not allowed);

• ypS, z
p
S – dummy variables for eliminating an illegal route, i.e. it is composed of

disjoint cycles.

Constraint (2.5) ensures route continuity. Constraint (2.6) ensures that each task

is serviced exactly once. Constraint (2.7) ensures that a vehicle p traverses any

edge it services. Constraints (2.8) and (2.9) are the capacity and the integral

(binary) constraints, respectively. Constraint (2.10) eliminates illegal routes. To see

how Constraint (2.10) works, suppose that there exists a route (say, with index p̃)

containing a cycle that does not involve the depot. We will show that this cycle is

linked by some edge to the remaining part of the route. Let S̃ be the set of vertices

in that cycle. It follows that∑
i∈S̃

∑
j∈S̃

xp̃ij = |S̃| > |S̃| − 1. (2.11)

Consequently, the first inequality and the binary constraint in (2.10) imply that

yp̃
S̃

= 1, which in turn implies that zp̃
S̃

= 0 due to the third inequality in (2.10). It

follows from the second inequality in (2.10) that∑
i∈S̃

∑
j 6∈S̃

xp̃ij ≥ 1, (2.12)

which means that the cycle is linked to a vertex outside that cycle, and therefore it

is not a route itself.

2.4 Computational Complexity of the CARP

The CARP has been proved to be NP-hard. In fact, this can be proved in two

different ways. The first proof, given by Golden and Wong (1981), involves reducing

the partition problem to the 0.5-approximate2 Capacitated Chinese Postman Problem

(CCPP); as we have seen, the CCPP is a special case of the CARP in which all

edges have positive demands. Since the partition problem is NP-hard (Karp, 1972),

2Given an optimisation problem and a positive real number α, the corresponding α-approximate
problem is to find a solution whose cost is less than or equal to (1 + α) times the optimal cost.

16

2.5. CONSTRUCTIVE HEURISTICS

the existence of a polynomial-time reduction from the partition problem to the

0.5-approximate CCPP implies that the latter problem is NP-hard, and so also is

the CARP.

The second proof relies on the fact that the RPP is NP-hard (Lenstra and Kan,

1976). Recall that the RPP can be viewed as a special case of the CARP in which

the capacity is large enough for all demands to be serviced in a single route. Since

one of its special cases is NP-hard, it follows that the CARP is also NP-hard. It

should be noted that some special cases of the RPP can be solved in polynomial time:

if all tasks (i.e. edges with positive demands) form a connected subgraph, the RPP

becomes the CPP, which can be solved in polynomial time, as seen in Section 2.2.2.

Notice that these two proofs point to different factors that make the CARP intractable:

the first relies on the existence of vehicle capacity, whereas the second concerns

disconnectedness of tasks. Notice that these two factors do not need to appear

together to make the CARP intractable; either of them alone can give rise to a

NP-hard problem.

The fact that the CARP is NP-hard suggests that finding an optimal solution to

the CARP, especially with a “large” size (with respect to the number of tasks),

can take a substantial amount of time. In practice, it is usually more important to

successfully operate a given service, in which case obtaining a sub-optimal solution

within reasonable time would be preferable to spending much longer time finding an

optimal solution. This can be achieved by means of (meta)heuristic algorithms.

2.5 Constructive Heuristics

In the early stage of research on the CARP, the problem was mostly solved by

constructive heuristics. These heuristics are more recently used as generators of

initial solutions for more sophisticated algorithms, including metaheuristic algorithms,

which will be reviewed in later sections. Constructive heuristics that have been

proposed for the CARP include the work of Golden and Wong (1981), Benavent et al.

(1990), Pearn (1991), and Eydi and Javazi (2012). Among the most commonly used

constructive heuristics are the Path-Scanning algorithm and Ulusoy’s partitioning.

Path Scanning Proposed by Golden et al. (1983), the Path Scanning algorithm

constructs routes one by one. Starting from the depot, each route is constructed

17

2.5. CONSTRUCTIVE HEURISTICS

by iteratively adding a task, which is viewed as an arc here (different directions of

servicing tasks lead to different solutions). The arc to be added is the one that is

nearest to the current end of route (i.e. the head of last arc) among all arcs that do

not exceed the capacity. If there is more than one nearest arc, one of them is chosen

according to a given tie-breaking rule. Golden et al. (1983) proposed the following

five tie-breaking rules: the next arc (i, j) to be added to the route is the one that

• Rule 1: maximises the shortest distance from the new end of route j to the

depot;

• Rule 2: minimises the shortest distance from the new end of route j to the

depot;

• Rule 3: obeys Rule 1 if the vehicle’s remaining capacity is at least half the

whole capacity, and obeys Rule 2 otherwise;

• Rule 4: maximises the ratio demand to cost, i.e. dij/cij;

• Rule 5: minimises the ratio demand to cost.

If there still remains more than one arc after using a tie-breaking rule, then one of

them is chosen randomly. Each rule gives one solution and the best among those

five is chosen as the output of the algorithm.

Several variants of the Path Scanning algorithm have also been proposed. Belenguer

et al. (2006) suggested two alternative ways of breaking ties: (i) random criterion –

randomly choosing one of the above five tie-breaking rules for the addition of each

arc instead of using the same rule for the whole solution, and (ii) random link – a

tie is broken by simply choosing one of the nearest edges randomly (so the above

five tie-breaking rules are not used). These alternative methods allow more solutions

to be generated and hence increase the probability of obtaining better solutions.

Their computation results show that these methods could improve the path scanning

algorithm provided a sufficient number of solutions are explored.

Santos et al. (2009) proposed the “ellipse rule”, which re-defines the set of candidate

arcs in the path scanning algorithm. It is motivated by the intuition that when

the vehicle is nearly full, it should prioritise returning to the depot. So instead of

considering arcs that are nearest to the current end of the route, a candidate arc

should be near the shortest path between the current end of the route and the depot.

More precisely, when the capacity of a vehicle is less than β × total demand
number of tasks

, for some

18

2.6. METAHEURISTIC ALGORITHMS

parameter (real number) β, an arc is randomly chosen from the set of arcs (i, j) that

are nearest to the current end of the route and satisfy the following inequality:

D(ve, i) + cij +D(j, v0) ≤
total cost of all tasks

number of tasks
+D(ve, v0), (2.13)

where ve is the current end vertex of the route, v0 the depot, and D(u, v) the shortest

distance between two vertices u and v. Notice that the inequality is similar to one

that defines an ellipse with the foci at ve and v0 (hence the name “ellipse rule”).

If no tasks satisfy the condition (2.13), then the route is closed and, if there still

remain some tasks to be completed, a new route is constructed. Computational

results given by Santos et al. (2009) indicate that incorporating the ellipse rule into

the path scanning algorithm (with random link) helps improve the solution with

very little increase in computational time.

Ulusoy’s Partitioning Ulusoy (1985) proposed a constructive heuristic that

consists of two main phases. First, in the “Route” phase, a “giant” cycle servicing

all tasks is constructed by temporarily omitting the capacity constraint. If all tasks

form a connected subgraph, the cycle can be found by solving the Chinese Postman

Problem. Otherwise, it is the Rural Postman Problem. Suppose that the tasks in

the order of being serviced in the route are T1, T2, . . . , Tn, where n is the number of

tasks.

Next, in the “Cluster” phase, the giant cycle is divided into a number of feasible

routes. To this end, an auxiliary graph G∗ = (V ∗, E∗) is constructed with V ∗ =

{0, 1, 2, . . . , n} containing n+ 1 vertices. The edge set E∗ contains all edges {i, j}
(i, j ∈ V ∗ with i < j) such that the total demand of the tasks Ti+1, Ti+2, . . . , Tj does

not exceed the capacity. The cost of edge {i, j} is equal to the cycle composed of a

shortest path from the depot to Ti, the part of the giant cycle from Ti to Tj, and a

shortest path from Tj to the depot (so each edge in E∗ represents a feasible route in

G). After constructing the auxiliary graph G∗, a feasible solution can be found by

determining a shortest path in G∗ from 0 to n.

2.6 Metaheuristic Algorithms

A solution obtained from a constructive heuristic algorithm can usually be further

improved. This can be achieved by iteratively making changes to the solution. A

variety of frameworks have been proposed to provide a guide as to how to apply

19

2.6. METAHEURISTIC ALGORITHMS

given changes to the solution in each iteration; such frameworks are also called

metaheuristics. This section provides a review of metaheuristic algorithms that have

been applied to the CARP. For a more complete review of metaheuristic algorithms,

see Talbi (2009).

Depending on the number of solutions that are considered in each iteration, there

are two main types of metaheuristics: single-solution-based and population-based.

2.6.1 Single-Solution-Based Metaheuristics

For single-solution-based metaheuristics, a solution iteratively undergoes a neighbourhood

move, which is an operator that makes small changes to the solution. Following

the notation in Section 1.2, let R1 = (v0, a1, . . . , an1 , v0) and R2 = (v0, b1, . . . , bn2 , v0)

be two routes. Neighbourhood moves for the CARP that have been used in the

literature include the following:

• Insertion or Relocate – Remove (a small number of) consecutive arcs from

one route and insert them into another route. It is possible to reverse the

direction of an arc before the insertion. Usually, both directions are tested and

the better one is chosen. The move is also called Single Insertion or Double

Insertion, respectively when one or two arcs are considered. Beullens et al.

(2003) considered Single Insertion, while Greistorfer (2003), Lacomme et al.

(2004), Brandão and Eglese (2008), and Tang et al. (2009) considered both

Single Insertion and Double Insertion. In the work of Brandão and Eglese

(2008), there is an additional restriction: the insertion is only allowed between

consecutive arcs that are joined by a shortest path. In other words, the insertion

can take place between arcs bj−1 and bj if the head of bj−1 is different from the

tail of bj.

• Swap or Exchange – Swap m consecutive arcs from one route with n consecutive

arcs from another route, for some (small) numbers m,n (commonly, m and n

are either 1 or 2). As is the case with Insertion, both directions are tested when

inserting arcs and the better one is chosen. This type of neighbourhood move

was used by Beullens et al. (2003), Greistorfer (2003), Lacomme et al. (2004),

Brandão and Eglese (2008), and Tang et al. (2009). In these studies except

Brandão and Eglese (2008), the arcs from one route are inserted at the position

of the arcs from the other route. In the algorithm proposed by Brandão and

Eglese (2008), one arc is selected from each route (i.e. m = n = 1), and the

20

2.6. METAHEURISTIC ALGORITHMS

arcs can be inserted in any positions of their respective routes, as long as those

positions are between consecutive arcs that are joined by a shortest path.

• 2-Opt for a single route – Pick a subsequence of arcs in a single route and

reverse it. This neighbourhood move was used by Beullens et al. (2003) (who

referred to this move as “reverse”), Lacomme et al. (2004) and Tang et al.

(2009).

• 2-Opt for two routes – Cut each route into two subsequences, so R1 becomes

(v0, . . . , ai−1) and (ai, . . . , v0) and R2 becomes (v0, . . . , bj−1) and (bj, . . . , v0) for

some indices i, j. Then join the subsequences to form two different routes.

This neighbourhood move was used by Beullens et al. (2003), Lacomme et al.

(2004), and Tang et al. (2009).

• Flip – Pick a subsequence of arcs (ai, . . . , ai+k) and replace it with the same

arcs in the opposite order, i.e. (ai+k, . . . , ai). This neighbourhood move was

used by Beullens et al. (2003).

One of the simplest single-solution-based metaheuristics is Steepest Descent: apply

the best move to the solution in each iteration until no improvement can be obtained.

However, one crucial issue of Steepest Descent is that it can be stuck at a local

optimum that is not a global optimum. In order to circumvent this drawback, several

other metaheuristics have been proposed. Those that have been applied to the CARP

include tabu search and guided local search.

Tabu search Introduced by Glover (1989), tabu search is a metaheuristic that

attempts to avoid the problem of being stuck at a local optimum by two main

procedures: (i) allowing acceptance of moves that worsen the solution in the absence

of improving moves, and (ii) declaring some moves tabu, i.e. they are prohibited,

to avoid returning to solutions that have already been visited and being stuck in

a cycle of solutions. Tabu search has been applied to the CARP by Hertz et al.

(2000); Greistorfer (2003); Brandão and Eglese (2008). A pseudocode of tabu search

is shown in Algorithm 1.

A move is said to be admissible if either it is not tabu or it is tabu but satisfies a

certain criterion called an aspiration criterion. The purpose of an aspiration criterion

is to help prevent tabu search from being too restrictive; a tabu move could sometimes

lead to a solution that is better than the current best solution, so dismissing the move

simply because it is tabu would result in a lost opportunity to improve the solution.

21

2.6. METAHEURISTIC ALGORITHMS

Algorithm 1 Tabu search

1: given an initial solution S0

2: S = S0, Sbest = S0, T = φ . initialise current solution, best solution, and tabu
list

3: repeat
4: M(S) = the set of admissible moves that can be applied to S
5: if M(S) is not empty then
6: m = the best admissible move in M(S)
7: apply m to S
8: if S is better than Sbest then
9: Sbest = S . update best solution

10: update T

11: until stopping criteria are satisfied
12: return Sbest

One common aspiration criterion (used by e.g. Hertz et al. (2000); Greistorfer (2003);

Brandão and Eglese (2008)) is based on the aforementioned scenario: a tabu move

is allowed to be selected if it leads to a solution that is better than the best one

found so far. Since this solution cannot have been visited (otherwise, it would have

been the best solution), this aspiration criterion is consistent with one of the main

purposes of tabu search, which is to avoid a cycle of solutions.

The tabu list T keeps track of tabu moves, although it does not necessarily contain

full descriptions of the moves. Some existing tabu search algorithms use T to record

certain attributes of visited solutions (usually attributes that result from the selected

move in each iteration), and a move is regarded as tabu if it causes attributes that

are currently in T . To avoid being too restricted, attributes only stay in T for a

given number of iterations; this number is also referred to as a tabu tenure. One of

the studies that define tabu moves based on solution attributes is the study of Hertz

et al. (2000). Neighbourhood moves in their tabu search algorithm are of the form

“moving a task from one route to another.” When a task is removed from a route, it is

not allowed to return to the same route for a certain number of iterations. A similar

idea was implemented in the tabu search algorithm proposed by Greistorfer (2003).

Interestingly, Greistorfer (2003) viewed a tabu list as an array, or more precisely, a

two-dimensional array Rec, each of whose elements Rec(s, p) corresponds to a task s

and a route p. When task s is removed from route p, the element Rec(s, p) is set

to the current iteration number. Consequently, a move that moves task s back to

route p is regarded as tabu in the iteration τ if τ −Rec(s, p) is less than or equal to

a given tabu tenure. This helps the algorithm check tabu moves in a more efficient

way than going through a list of attributes.

22

2.6. METAHEURISTIC ALGORITHMS

Guided local search Guided local search (GLS) was introduced by Voudouris

and Tsang (1996). The main idea of GLS is to augment the objective function

whenever a local search reaches a local optimum. To achieve this, a set of features

that can appear in a solution are defined, and each feature is associated with a

penalty term; the augmented objective function is equal to the sum of the original

objective function (i.e. the value to be optimised in the problem) and the penalty

terms, i.e.

f(S) = g(S) + λ
∑
i∈I

piIi(S), (2.14)

where f is the augmented objective function, g is the original objective function, I
is a set of features, pi is a penalty term for each feature i ∈ I, Ii(S) is an indicator

function (Ii(S) = 1 if a solution S contains feature i, and Ii(S) = 0 otherwise), and

λ is a parameter for adjusting the balance between g and the penalty sum.

Each time a local optimum is reached, a certain feature that appears in the local

optimum is selected and the corresponding penalty term is increased. To decide

which feature should be selected, a so-called utility function is defined. Usually, the

utility function is defined in such a way that a feature that causes the solution to

have low quality in some way has a high value of utility function. Once a feature

is selected, increasing the corresponding penalty term in the augmented objective

function guides the search away from solutions that have the selected feature.

The local search is executed a given number of times, each time with the augmented

objective function, and the best solution with respect to the original objective

function that has been found throughout the search is returned. A pseudocode of

guided local search is shown in Algorithm 2, where a local search L is performed

based on the augmented objective function (2.14).

GLS was applied to the CARP by Beullens et al. (2003). In their algorithm, a

penalty term p(a, b) and the utility function u(a, b) are defined for each pair of arcs

(a, b). The utility function u(a, b) is defined as the ratio

u(a, b) =
shortest distance from the head of a to the tail of b

1 + p(a, b)
. (2.15)

All penalty terms p(a, b) are initially set to 0. After each execution of the local

search, the algorithm checks all pairs of arcs (a, b) that are serviced consecutively in

the same route in the solution and finds the pair with the largest utility function.

The penalty term corresponding to the pair of arcs (a, b) with the largest utility

function u(a, b) is then increased by 1. In other words, this penalises the pair of arcs

23

2.6. METAHEURISTIC ALGORITHMS

Algorithm 2 Guided local search

1: given an initial solution S0, a local search L, a set of features I
2: set a penalty pi = 0 for each feature i ∈ I
3: set S = S0 and Sbest = S0

4: repeat
5: apply the local search L to S with respect to the augmented objective function;

let S ′ be the output
6: if S ′ is better than the current Sbest with respect to the original objective

function then
7: set Sbest = S ′

8: compute the utility function ui for each feature i ∈ I based on S ′

9: find a feature i such that ui is maximum
10: increase the corresponding penalty pi by 1
11: set S = S ′

12: until stopping criteria are satisfied
13: return Sbest

that are serviced consecutively but are far away from each other. Notice that the

denominator (1 + p(a, b)) in the utility function helps avoid penalising the same pair

of arcs repeatedly.

2.6.2 Population-Based Metaheuristics

For population-based metaheuristics, multiple solutions are taken into account when

producing new solutions in each generation. Population-based metaheuristics that

have been implemented to find solutions to the CARP include ant colony optimisation

and genetic algorithms.

Ant colony optimisation Ant colony optimisation (ACO) is a metaheuristic that

is inspired by how ants work together to find the shortest path between their nest

and a food source. Along a path it walks past, an ant leaves a chemical substance,

called pheromone, which guides other ants that travel after it: among various possible

paths, an ant will more likely choose a path with a more concentrated pheromone. If

there is more than one path between the nest and the food source, a shorter path

will tend to have a more concentrated pheromone, thus attracting more ants to

follow that path. In terms of solving the CARP (or routing problems in general),

each ant is regarded as an agent that constructs a solution. Each solution attribute

(e.g. a pair of tasks that are serviced consecutively) is associated with a “pheromone

value.” The pheromone values are updated after all ants finish constructing solutions.

24

2.6. METAHEURISTIC ALGORITHMS

Changes in the pheromone values of attributes that are used by some ants depend

on qualities of the solutions that contain those attributes. The next generation of

ants then construct solutions based on the current pheromone values: the higher

the value, the higher probability the ant will use the corresponding attribute. This

process is repeated for a given number of generations, and the algorithm returns

the best found solution. ACO algorithms may also involve an evaporation process,

whereby the pheromone values “evaporate” or reduce before each generation starts.

This helps the algorithms focus more on solutions that are constructed in more recent

generations.

When applying ACO to the CARP (or other optimisation problems in general), there

are at least two questions that need answering: (i) What is represented by a walk of

an ant? (ii) What feature of a solution is a pheromone associated with? In an ACO

algorithm that Santos et al. (2010) proposed for the CARP, each ant constructs a

single route, which they referred to as a “Single Network Tour (SNT),” containing

all tasks. Each “walking step” of an ant corresponds to adding an oriented task (i.e.

a task with a specified direction) to its SNT. A pheromone value τij is associated

with a pair of oriented tasks (ai, aj), representing an ant “walking from task ai to

task aj.” Suppose that ai is the last task in the SNT, the next task to be added in

each step depends on pheromone values. There are several rules for determining the

next task, for example, choosing task aj with the highest pheromone value τik among

all possible tasks ak, or randomly choosing one of possible tasks with probability

proportional to its pheromone value. During the construction of a SNT, the capacity

constraint is omitted. Once all tasks are added to a SNT, a feasible solution is

obtained by means of Ulusoy’s Partitioning (see Section 2.5). The total distance

of the feasible solution is used as a measure of the quality of the corresponding

SNT. After all ants construct their SNTs (the number of ants is a parameter to be

specified), pheromone values are updated. The increase in the pheromone value for

each pair of oriented task depends on the quality of SNTs that contain it: a higher

quality SNT contributes a larger increase. For an exact way of calculating pheromone

values, see Bullnheimer et al. (1997), whose method of updating pheromone values

was adopted by Santos et al. (2010).

Genetic algorithms A genetic algorithm (GA) is a search algorithm that is

inspired by the way biological entities have evolved: In simple terms, each entity has

a “chromosome”, which determines the entity’s features. Chromosomes are combined

to produce new chromosomes and hence new entities. Ideally, a combination of

chromosomes that yield “good” features would lead to new chromosomes with good or

25

2.6. METAHEURISTIC ALGORITHMS

even better features. Main concepts in a genetic algorithm include representation of

chromosomes, crossover operators, population replacement, and mutation operators.

A general genetic algorithm operates as follows: First, an initial set of solutions

(i.e. initial population) is generated by some constructive heuristics. Then, in each

iteration (also called generation), pairs of solutions, called parents, are selected and

each pair undergo a crossover operator to produce new solutions, called offsprings.

The offsprings are added to the population and some solutions in the population

that are deemed low quality are discarded.

• Chromosomes. A chromosome in a genetic algorithm can be viewed as a

code, usually in the form of a sequence of certain items or symbols, that can be

converted into a solution. For the CARP, this may be as simple as a sequence

of all tasks (Lacomme et al., 2004). To evaluate the chromosome, it has to

be converted into a feasible solution. For example, a sequence of all tasks can

be divided into feasible routes by means of Ulusoy’s partitioning (described in

Section 2.5).

• Crossover operators. A crossover operator produces new “offspring” chromosomes

from existing (usually two) “parents” chromosomes. This is achieved by

cutting each given chromosome into several subsequences and recombining

them in some way to form new chromosomes. Examples of crossover operators

are the linear order crossover (LOX) and the order crossover (OX). Given

two parents P1 = (P1(1), . . . , P1(n)) and P2 = (P2(1), . . . , P2(n)), where

each Pk(l) is a task and n is the number of all tasks, and given “cutting”

indices i, j with 1 ≤ i ≤ j ≤ n, the LOX produces an offspring C1 by

first setting C1(l) = P1(l) for l = i, . . . , j. Then, the remaining tasks

C1(1) . . . , C1(i − 1), C1(j + 1), . . . , C1(n) are obtained by taking each task

in P2 successively form P2(1) to P2(n), ignoring tasks that are already in

C1. For the OX, an offspring C1 is produced by first setting C1(l) = P1(l)

for l = i, . . . , j (the same as LOX) but the remaining tasks are obtained in a

different order: the tasks P2(1) to P2(n)) (again, ignoring those that are already

in C1) are successively placed at C1(j+1), . . . , C1(n) before C1(1) . . . , C1(i−1).

After that, tasks in C1 are rotated so that C1(i) = P1(i). For both LOX and

OX, the other offspring C2 is produced in the same way as C1 but with P1 in

place of P2 and vice versa

• Population replacement. There are two schemes for evolving the population:

incremental and generational (Lacomme et al., 2004). The main difference

between these schemes is the number of parents that undergo crossover

26

2.6. METAHEURISTIC ALGORITHMS

operators in each generation. In an incremental GA, two parents undergo

a crossover operator, and one of the offsprings (selected at random) replaces

one of the solutions that is deemed “low quality”, e.g. the worst solution or

one of the solutions whose total cost is greater than the median cost of the

population (assuming the minimisation problem). In a generational GA, the

whole population is divided into pairs and each pair undergoes a crossover

operator. This results in twice as many chromosomes in the population. All

the chromosomes are then ranked from “best” to “worst”, and the second half

of the population are discarded.

• Mutation operators. Some genetic algorithms (Lacomme et al., 2001, 2004)

also involve mutation operators, which make some changes to the offsprings after

the crossover operator with a given probability. This potentially introduces

features that do not exist in the parents, i.e. it can promote diversity in

the population, thus preventing early convergence of the population. Some

mutation operators are specifically designed to improve the quality of the

solutions, for example, a mutation operator can be a local search; a genetic

algorithm that involves a local search in this way is also called a memetic

algorithm.

For examples of how genetic or memetic algorithms can be applied to the CARP, see

Lacomme et al. (2004), Tang et al. (2009), and Fu et al. (2010).

2.6.3 Further Improvement Methods

Several methods have been devised to further improve the performance of metaheuristic

algorithms as follows. Notice that they are not limited to a particular type of

metaheuristic algorithms.

Intensification A search may be enhanced by exploring solutions near a high-

quality solution more extensively. One possible idea is to force the search to go back

to the best solution that has been found so far and continue the search from there.

This idea was implemented in a tabu search algorithm proposed by Brandão and

Eglese (2008).

Merge-split operator Tang et al. (2009) introduced a merge-split operator as a

“large-step” neighbourhood move to complement other neighbourhood moves which

27

2.6. METAHEURISTIC ALGORITHMS

are “small-step” (i.e. they make relatively small changes to the solution). There are

two reasons that motivate this operator: (1) using only small-step neighbourhood

moves may make the search converge slowly if the solution space is large; (2) if the

capacity constraint is tight, it may be unlikely to move from one feasible solution

to another without encountering infeasible solutions. Making a large change to

the solution can help the search “jump” from one region of the solution space to

another. The merge-split operator is a combination of the Path-Scanning algorithm

and Ulusoy’s partitioning described in Section 2.5. Given a number of routes, first

use the Path-Scanning algorithm to create a single “giant” route that contains all

tasks in the routes. Then, use Ulusoy’s partitioning to split the route into smaller

feasible routes.

Accepting infeasible solutions In some existing algorithms for the CARP (Hertz

et al., 2000; Beullens et al., 2003; Brandão and Eglese, 2008), infeasible solutions are

allowed, although a penalty is added to the objective function (the total distance)

when assessing the quality of such solutions. One commonly used penalty term is of

the form

λ
∑
R

max{0, D(R)−Q}, (2.16)

where λ is an adjustable parameter, D(R) is the sum of demands serviced in route

R, and Q is the capacity. In other words, the penalty is proportional to the total

excess of demands. A common rule for adjusting the parameter λ is to double it

when obtaining infeasible solutions for a certain number of consecutive iterations,

and to halve it when obtaining feasible solutions for a certain number of consecutive

iterations. Regarding an initial value of λ, Hertz et al. (2000); Beullens et al. (2003)

used information about the shortest distances between the depot and the endpoint

of all tasks: Let D(v0, v) denote the distance of a shortest path between the depot v0

and another vertex v. Hertz et al. (2000) set the initial value of λ to the average of

D(v0, v) for all vertices v that are endpoints of tasks, and Beullens et al. (2003) used

a multiple of the maximum D(v0, v) among all vertices v that are endpoints of tasks.

In contrast, Brandão and Eglese (2008) opted for a very simple choice: setting the

initial value of λ to 1.

Global repair operator Mei et al. (2009) proposed a global repair operator,

which guides the search back to feasible solutions with a “clearer direction” than

adding penalties to the objective function. Given an infeasible solution, i.e. the

capacity is exceeded in some routes, this operator attempts to find a feasible solution

28

2.6. METAHEURISTIC ALGORITHMS

by transferring services of tasks between routes while keeping the path in each route

unchanged. In particular, a task is allowed to be transferred from its current route

to another route, say route R, only if the edge corresponding to the task is also

traversed in route R. This operator can be useful when a search encounters a low-cost

but infeasible solution.

2.6.4 Performance of Existing Metaheuristic Algorithms for

the CARP

The performance of metaheuristic algorithms for the CARP is commonly reported

based on two measures: percentage deviation from the best known lower bound or

(if known) the optimal cost, that is,

percentage deviation =

(
solution cost− lower bound

lower bound

)
× 100, (2.17)

and computation time. Figures 2.3 and 2.4 show the distributions of these two

measures on a number of benchmark instance sets for various existing metaheuristic

algorithms for the CARP, including the following:

• a tabu search algorithm (‘CARPET’) by Hertz et al. (2000),

• a guided local search algorithm (‘GLS’) by Beullens et al. (2003),

• a memetic algorithm (‘MA’) by Lacomme et al. (2004),

• a tabu search algorithm (‘TSA’) by Brandão and Eglese (2008),

• a memetic algorithm (‘MAENS’) by Tang et al. (2009),

• an ant colony optimisation algorithm (‘Ant-CARP’) by Santos et al. (2010).

Details of the benchmark instance sets are given in Table 2.1. Solution costs and

computation times on individual instances are shown in Tables A.1 to A.6 in Appendix

A. Note that not all of the algorithms have been tested on every benchmark instance

set.

Some of the above studies report results of more than one variant of their algorithms.

For the guided local search algorithm by Beullens et al. (2003), the results with 105

iterations and 5× 105 iterations are denoted in Figures 2.3 and 2.4 by ‘GLS1’ and

29

2.6. METAHEURISTIC ALGORITHMS

Table 2.1: Characteristics of benchmark instance sets for the CARP

Instance set1
Number of
instances

Numbers of
tasks

Minimum numbers
of vehicles needed2

VAL
(Benavent et al., 1992)

34 34 to 97 2 to 10

BMCV
(Beullens et al., 2003)

subset C 25 32 to 121 3 to 12
subset D 25 32 to 121 2 to 6
subset E 25 28 to 107 4 to 12
subset F 25 28 to 107 2 to 6

EGL
(Belenguer and Benavent, 2003)

24 51 to 190 5 to 35

1 These instances can be downloaded from the website http://logistik.bwl.uni-mainz.

de/benchmarks.php (last accessed 21 March 2018).
2 The minimum number of vehicles needed for each instance is the smallest integer that is

greater than or equal to the total demand on that instance divided by the vehicle capacity.

‘GLS2’, respectively. In the original paper of Brandão and Eglese (2008), their main

tabu search algorithm is called ‘TSA Version 1’, whereas ‘TSA Version 2’ results from

their attempt to obtain better solutions by running their main algorithm several times

successively; these variants are denoted here by ‘TSA1’, and ‘TSA2’, respectively. In

the work of Santos et al. (2010), their ant colony optimisation algorithm involves

local search with a variety of neighbourhood moves. They consider two versions of

their algorithm: one involves 6 types of moves in the local search, and the other

involves 12 types (including the former 6 types). These variants are denoted here by

‘Ant-CARP-6’ and ‘Ant-CARP-12’, respectively.

As the algorithms are tested on different computer specifications, computation times

reported in their original papers need to be adjusted in order to facilitate a fair

comparison. For this reason, the computation times shown in Figures 2.3 and 2.4

result from multiplying the following factors to the computation times reported in

the original papers: 0.2 for ‘CARPET’ (based on a Silicon Graphics Indigo2 machine

with a 195 MHz processor), 0.5 for ‘GLS’ (based on a Pentium II 500 MHz processor),

1.0 for ‘MA’ (based on a Pentium III 1 GHz processor), 1.4 for ‘TSA’ (based on a

Pentium Mobile 1.4 GHz processor), 2.0 for ‘MAENS’ (based on an Intel Xeon E5335

2.0GHz processor), and 1.0 for ‘Ant-CARP’ (based on a Pentium III 1 GHz processor).

Note that in the original paper of Tang et al. (2009), there appears no information

about computation time of their algorithm (‘MAENS’) on each instance; only the

average computation time over all instances in each benchmark set is reported.

Let us now review the performance of existing single-solution-based metaheuristic

30

2.6. METAHEURISTIC ALGORITHMS

CARPET
GLS1

GLS2 MA
TSA1

TSA2
MAENS

Ant-CARP-6

Ant-CARP-12

Algorithm

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0

Pe
rc

en
ta

ge
 d

ev
ia

tio
n

fro
m

 b
es

t k
no

wn
 lo

we
r b

ou
nd

 (%
)

CARPET
GLS1

GLS2 MA
TSA1

TSA2
MAENS

Ant-CARP-6

Ant-CARP-12

Algorithm

0

100

200

300

400

500

600

700

800

Ti
m

e
(s

ec
on

ds
)

(a) VAL instance set

GLS1
GLS2

TSA1
TSA2

MAENS

Ant-CARP-6

Ant-CARP-12

Algorithm

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0

Pe
rc

en
ta

ge
 d

ev
ia

tio
n

fro
m

 b
es

t k
no

wn
 lo

we
r b

ou
nd

 (%
)

GLS1
GLS2

TSA1
TSA2

MAENS

Ant-CARP-6

Ant-CARP-12

Algorithm

0

100

200

300

400

500

600

700

800

Ti
m

e
(s

ec
on

ds
)

(b) BMCV instance set (subset C)

GLS1
GLS2

TSA1
TSA2

MAENS

Ant-CARP-6

Ant-CARP-12

Algorithm

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0

Pe
rc

en
ta

ge
 d

ev
ia

tio
n

fro
m

 b
es

t k
no

wn
 lo

we
r b

ou
nd

 (%
)

GLS1
GLS2

TSA1
TSA2

MAENS

Ant-CARP-6

Ant-CARP-12

Algorithm

0

100

200

300

400

500

600

700

800

Ti
m

e
(s

ec
on

ds
)

(c) BMCV instance set (subset D)

Figure 2.3: Performance of existing metaheuristic algorithms for the CARP on VAL
and BMCV benchmark instance sets; for each instance set, the left figure shows the
distributions of percentage deviations from best known lower bounds on all instances
in the given set, and the right figure shows the distributions of computation time on
all instances in the given set

31

2.6. METAHEURISTIC ALGORITHMS

GLS1
GLS2

TSA1
TSA2

MAENS

Ant-CARP-6

Ant-CARP-12

Algorithm

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0

Pe
rc

en
ta

ge
 d

ev
ia

tio
n

fro
m

 b
es

t k
no

wn
 lo

we
r b

ou
nd

 (%
)

GLS1
GLS2

TSA1
TSA2

MAENS

Ant-CARP-6

Ant-CARP-12

Algorithm

0

100

200

300

400

500

600

700

800

Ti
m

e
(s

ec
on

ds
)

(a) BMCV instance set (subset E)

GLS1
GLS2

TSA1
TSA2

MAENS

Ant-CARP-6

Ant-CARP-12

Algorithm

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0

Pe
rc

en
ta

ge
 d

ev
ia

tio
n

fro
m

 b
es

t k
no

wn
 lo

we
r b

ou
nd

 (%
)

GLS1
GLS2

TSA1
TSA2

MAENS

Ant-CARP-6

Ant-CARP-12

Algorithm

0

100

200

300

400

500

600

700

800

Ti
m

e
(s

ec
on

ds
)

(b) BMCV instance set (subset F)

MA
TSA1

TSA2
MAENS

Ant-CARP-6

Ant-CARP-12

Algorithm

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0

Pe
rc

en
ta

ge
 d

ev
ia

tio
n

fro
m

 b
es

t k
no

wn
 lo

we
r b

ou
nd

 (%
)

MA
TSA1

TSA2
MAENS

Ant-CARP-6

Ant-CARP-12

Algorithm

0

300

600

900

1200

1500

1800

2100

2400

Ti
m

e
(s

ec
on

ds
)

(c) EGL instance set

Figure 2.4: Performance of existing metaheuristic algorithms for the CARP on
BMCV and EGL benchmark instance sets; for each instance set, the left figure shows
the distributions of percentage deviations from best known lower bounds on all
instances in the given set, and the right figure shows the distributions of computation
time on all instances in the given set

32

2.6. METAHEURISTIC ALGORITHMS

algorithms for the CARP. Both CARPET and TSAs are based on tabu search,

but TSAs appear to give better solutions overall (see Figure 2.3(a)). This could be

because CARPET only involves one type of neighbourhood move (moving a task from

one route to another), whereas TSA involves three types of neighbourhood moves

(Single Insertion, Double Insertion, and Swap), thus exploring neighbour solutions

more extensively. Interestingly, TSAs perform better than CARPET despite less

computation time. Regarding guided local search, GLS2 generally uses a greater

amount of time than GLS1 as expected since GLS2 involves 5 times as many iterations

as GLS1 does. However, the solutions given by GLS2 are only slightly better than

GLS1. Overall, GLS1 and TSA1 give fairly good solutions within a modest amount

of time, which would be ideal choices for tackling dynamic CARP.

Regarding population-based metaheuristic algorithms, MA, MAENS, and Ant-CARP

all have excellent performance, giving solutions close to optimality across different

benchmark instance sets. However, they tend to use a large amount of computation

time compared with the other algorithms. If these types of algorithms are to be

implemented for dynamic CARP, the issue of large computation time would need to be

addressed. Furthermore, memetic algorithms and ant colony optimisation algorithms

generally involve relatively many parameters. Particular attention needs to be paid

on tuning their parameters so that good algorithm performance is maintained despite

changes in the problem. This means that choices of the parameters should be robust

(i.e. performing well across different instances), or alternatively, the algorithms

should be able to adjust the parameters promptly as the problem changes over time.

It should be noted that the existing studies on the static CARP commonly aim to

obtain the best solutions possible. In some cases, this is achieved only after a relatively

large amount of computation time. However, when tackling a dynamic version of

the CARP, we are most likely interested in achieving a fairly good solution within

limited time. To identify algorithms that can improve solution quickly, information

about how different algorithms perform over a period of time (or over a range of

iterations) would be helpful. Such information, however, can rarely be found in the

literature at the time of writing because the performance of existing algorithms for

the CARP is usually reported based on specific stopping criteria. As will be seen

later, Chapter 3 presents a novel analysis that investigates the performance of tabu

search for the CARP over a range of iterations.

Costs of (feasible) solutions from metaheuristic algorithms can be viewed as upper

bounds to optimality. The next section reviews ways of obtaining lower bounds and

provably optimal solutions.

33

2.7. LOWER BOUNDS AND EXACT ALGORITHMS

2.7 Lower Bounds and Exact Algorithms

Despite their ability to find or improve a solution to an intractable problem such

as the CARP, heuristic algorithms alone do not provide information about whether

or not a solution is optimal or about how far a solution is from optimality. In the

absence of optimal solutions, one way to estimate the difference between the total

distance of a given solution and the optimal value is to compute a lower bound.

In fact, if the total distance of a solution is equal to a lower bound, then it is a

proof that the solution is optimal. Existing methods for computing lower bounds are

based on two main approaches: graphically and algebraically. In much early work,

lower bounds were computed graphically. This includes the Matching Lower Bound

(Golden and Wong, 1981), the Node Scanning Lower Bound (Assad et al., 1987), the

Matching Node-Scanning Lower Bound (Pearn, 1988), LB1 and LB2 (Benavent et al.,

1992), and the Node Duplication Lower Bound (Saruwatari et al., 1992). Those

lower bounds are based on the following idea: First, notice that the total distance of

traversals with service is fixed (i.e. it is the same in all feasible solutions in a given

instance), so when computing a lower bound, we can focus on the total distance of

traversals without service, also called the deadheading cost. Given a CARP instance

on a graph G, construct an “augmented” graph G̃ (usually by amending the graph G

in a certain way) and associate each feasible solution S on G with a perfect matching

M on G̃ in such a way that the cost of M is less than or equal to the deadheading

cost in S. A lower bound on the deadheading cost can then be computed by finding

a minimum cost perfect matching in G̃, which can be performed in polynomial time

(see Cook and Rohe (1999), for example). Different lower bounds differ in the way

the augmented graph G̃ is constructed.

Lower bounds can also be computed algebraically by solving a linear programming

relaxation of the CARP such as the “one-index” formulation proposed by Belenguer

and Benavent (2003). A linear programming relaxation can be solved by, for example,

a branch-and-bound method or by a ready-to-use LP solver (such as CPLEX). Some

techniques such as adding cutting planes or column generation may also be used to

improve a lower bound. Existing methods for computing lower bounds algebraically

include the work of Belenguer and Benavent (2003), Beullens et al. (2003), Baldacci

and Maniezzo (2006), Longo et al. (2006), Martinelli et al. (2011), Bode and Irnich

(2012), and Bartolini et al. (2013).

With appropriate constraints, some LP formulations of the CARP can give a feasible,

and sometimes even optimal, solution for the CARP. An algorithm that finds an

34

2.8. TRANSFORMING ARC ROUTING INTO VEHICLE ROUTING

optimal solution in this way is referred to as an exact algorithm. Even though exact

algorithms are guaranteed to give optimal solutions, computational results in existing

work show that exact algorithms often require a substantial amount of time to find

an optimal solution. For example, in the computational results reported by Bartolini

et al. (2013), their exact algorithm was unable to obtain an optimal solution within

6 hours of computation time (using an Intel Xeon E5310 1.6GHz CPU with 8GB

RAM) on 34 instances from 120 instances in the BMCV instance set (Beullens et al.,

2003); the number of tasks in those 34 instances ranges from 54 to 121 and the

number of vehicles needed ranges from 3 to 12. This suggests that the ability of

exact algorithms to find solutions quickly is still limited to relatively small instances

of the CARP. For this reason, heuristic algorithms would be preferable for finding a

solution in a dynamic CARP, where it is more important to obtain a feasible solution

within a short time after the problem changes (so that a service can be operated

smoothly) than to achieve optimality.

2.8 Transforming Arc Routing into Vehicle Routing

Vehicle routing is similar to arc routing except that demands are associated with

vertices instead of edges. As vehicle routing has been studied more extensively

than arc routing3, this offers the possibility of solving an arc routing problem by

transforming it into a vehicle routing problem and using algorithms for vehicle

routing, which are already readily available. This section gives an overview of ways

to transform an arc routing problem into a vehicle routing problem that have been

proposed in the literature.

Pearn et al. (1987) proposed the following method of transforming the CARP into

the Capacitated Vehicle Routing Problem (CVRP). Given a CARP instance on a

graph G, each task {i, j} is associated with two “side” vertices sij, sji and another

“middle” vertex mij; as will be seen below, this transformation has a mechanism

(based on edge costs) that forces mij to be serviced between sij and sji. A complete

graph Gc = (Vc, Ec) is then constructed with the vertex set

Vc =
⋃
{i,j}∈R

{sij, sji,mij} ∪ {v0}

3On 11 July 2017, a search on Scopus (www.scopus.com) with the keyword “vehicle routing”
returned 13,378 document results, while “arc routing” returned 1,197 document results. Moreover, a
search on Google Scholar (scholar.google.co.uk) returned about 856,000 results for “vehicle routing”
and 180,000 results for “arc routing.”

35

2.8. TRANSFORMING ARC ROUTING INTO VEHICLE ROUTING

(with vertex v0 denoting the depot). Let cij and dij be the cost and the demand

of edge {i, j} in G, respectively. Also, let D(i, j) be the shortest distance between

vertices i and j in G. The costs c(u, v) for edges {u, v} ∈ Ec are defined as follows:

c(sij, skl) =

1
4
(cij + ckl) +D(j, k) if {i, j} 6= {k, l}

0 otherwise

c(v0, sij) =
1

4
cij +D(v0, i)

c(mij, v) =

1
4
cij if v = sij or sji

∞ otherwise.

(2.18)

For each task {i, j}, the demands of sij, sji,mij ∈ Vc are set to 1
3
dij (any other

positive values are also possible as long as the demands of sij, sji,mij add up to

dij). The edge costs on Ec (2.18) are defined in such a way that a CVRP solution

has the same total cost as the corresponding CARP solution; in particular, the cost

of task {i, j} ∈ R is divided into four parts in Gc, namely an edge going into sij,

edge (sij,mij), edge (mij, sji), and an edge leaving sji. Furthermore, notice that by

definition of c(mij, v), a CVRP solution with finite cost would service mij between

sij and sji. This ensures that a solution to this CVRP instance with finite cost

corresponds to a valid CARP solution as far as services on individual tasks are

concerned. This transformation gives a CVRP instance with 3r + 1 vertices, where

r is the number of tasks in the given CARP instance. Due to a large number of

vertices, this transformation is not very practical.

Baldacci and Maniezzo (2006) and Longo et al. (2006) proposed alternative transformations

that give a smaller CVRP instance with only 2r + 1 vertices. Both transformations

are similar in the way a graph for the CVRP is constructed but differ in the edge

costs. Given a CARP instance on a graph G, each task {i, j} is associated with two

vertices sij and sji. A complete graph Gc = (Vc, Ec) is constructed with the vertex

set

Vc =
⋃
{i,j}∈R

{sij, sji} ∪ {v0}.

In the work of Baldacci and Maniezzo (2006), the costs c(u, v) for edges {u, v} ∈ Ec
are defined as follows:

c(sij, skl) =

0 if {i, j} = {k, l}
1
2
cij +D(i, k) + 1

2
ckl otherwise

c(v0, sij) = D(v0, i) +
1

2
cij.

(2.19)

36

2.8. TRANSFORMING ARC ROUTING INTO VEHICLE ROUTING

In contrast, Longo et al. (2006) defined the edge costs as follows:

c(sij, skl) =

cij if {i, j} = {k, l}

D(i, k) otherwise

c(v0, sij) = D(v0, i).

(2.20)

However, as far as solution costs are concerned, there is no difference between the

above cost structures (2.19) and (2.20): in both cases, the cost of a CVRP solution

is equal to the cost of the corresponding CARP solution. For each task {i, j}, the

demands of sij and sji are set to 1
2
dij (any other positive values are also possible as

long as the demands of sij and sji add up to dij). To ensure that a CVRP solution

corresponds to a valid CARP solution, additional constraints are introduced to the

CVRP: for all tasks {i, j}, the edge {sij, sji} ∈ Ec must be included in the solution.

More recently, Foulds et al. (2015) proposed a transformation that involves a smaller

number of vertices in the resulting CVRP (r+1 as opposed to 2r+1 vertices). Given

a CARP instance on a graph G, each task {i, j} is associated with a single vertex

mij. A complete graph Gc = (Vc, Ec) is constructed with the vertex set

Vc =
⋃
{i,j}∈R

{mij} ∪ {v0}.

The demand of each vertex mij ∈ Vc is equal to the demand of task {i, j}. A route

(v0,mi1j1 ,mi2j2 , . . . ,minjn , v0) in Gc (for some positive integer n) corresponds to a

route in G that services tasks {i1, j1}, {i2, j2}, . . . , {in, jn} in such an order. To

identify the direction in which the tasks are serviced, additional variables aij are

introduced: for each vertex mij ∈ Vc, aij = 0 denotes servicing the task {i, j} ∈ R
from j to i, and aij = 1 denotes the opposite direction (i.e. from i to j). The edge

costs on Ec are defined as follows:

c(m
aij
ij ,m

akl
kl) =

1

2
cij +D ((1− aij) · i+ aij · j, (1− akl) · k + akl · l) +

1

2
ckl. (2.21)

Note that the middle term in the right hand side of (2.21) is the shortest distance

in G between one endpoint of {i, j} and one endpoint of {k, l}; this depends on the

directions in which the tasks are traversed, which are specified by aij, akl. Since each

task can be serviced in two possible directions, there are 2r possible cost structures

(2.21) of the CVRP, where r is the number of tasks in R. Instead of solving all

of those 2r versions of the CVRP, Foulds et al. (2015) uses a branch-cut-and-price

algorithm, in which appropriate values of aij (i.e. directions of servicing the tasks in

the CARP) are determined in the pricing subproblem.

37

2.9. VARIANTS OF THE CARP

2.9 Variants of the CARP

In addition to the “standard” version of the CARP described in Section 1.1, there

have been studies on other variants of the CARP. They are adapted from the standard

CARP to reflect practical applications of arc routing more accurately. We now review

some of these.

2.9.1 CARP with Time Windows

The CARP with time windows (CARPTW) is the CARP with an additional

constraint: the service of each task must begin within a given time interval. Thus,

in addition to cost and demand, the amount of time for traversing each edge with

and without service are given as part of the problem. Labadi et al. (2008) proposed

an algorithm for the CARPTW based on the greedy randomized adaptive search

procedure (GRASP). In their GRASP, a solution is generated by first creating a giant

tour covering all required edges (ignoring the capacity and time windows for now) and

then dividing it into several feasible routes. The solution is then improved by local

search (choosing the best move in each iteration). The local search uses three types

of moves: Or-Opt, Swap, and 2-Opt, which can operate on one or two routes. Their

GRASP is also enhanced by means of path relinking. The idea of path relinking is to

explore a certain path in the solution space that links two “high-quality” solutions (in

this case, two solutions given by the local search in the GRASP). Such a path depends

on a distance measure, i.e. a function which defines a distance between two solutions.

By “exploring a certain path between two solutions,” it means that we take one of the

solutions and iteratively make some changes to it by some neighbourhood move which

decreases the distance (based on a given distance measure) between them. They

found that, when generating a solution, a better solution can be achieved when using

two greedy algorithms together than when using either of them solely. Moreover,

path relinking was shown to improve the performance of the GRASP. In fact, using

path relinking at different parts of the GRASP could lead to different results: better

results on average could be obtained from implementing path relinking “internally”

(i.e. after the local search in each iteration of the GRASP) than “externally” (i.e.

after the GRASP terminates), although both cases lead to better solutions than not

using path relinking. Their algorithm was also tested on benchmarks instances of

the CARP (without time windows, or equivalently, with infinite time windows) and

was found to be competitive with previously existing algorithms in terms of average

deviations from known lower bounds but using noticeably less computational time.

38

2.9. VARIANTS OF THE CARP

Vansteenwegen et al. (2010) studied the CARP on a mixed graph with soft time

windows to find a route for a van that needs to take pictures of all streets and road

signs in a given city. Soft time windows arise from the fact that a picture of each

street should not be taken in the direction of sunlight as otherwise the pictures may

not be usable, so a picture of each street should ideally be taken within a certain

period of time. In other words, an earliest beginning time and a latest end time

of the service on each task (a street that needs to be taken pictures of) are given.

In their particular CARP, a fixed maximum travel time per day is also given. The

goal is to minimise a weighted sum of the number of days and the violation of time

windows. They solved the CARP with soft time windows by first converting the

problem into a vehicle routing problem and solving it by a hybrid metaheuristic:

minimising the number of days by variable neighbourhood search and minimising

the violations of time windows by iterated local search and linear programming.

2.9.2 CARP with Multiple Starting and/or Ending Vertices

Recall that in the standard CARP, it is assumed that there is only one depot and all

vehicles must start and end at the depot.

CARP with multiple depots Amberg et al. (2000) studied the CARP with

multiple depots, also called M-CARP in their original paper, where different vehicles

can have different depots (each vehicle must start and end at their designated depot).

Their approach involves transforming the M-CARP into the capacitated minimum

spanning tree problem (CMSTP). The transformation is illustrated by Figure 2.5,

reproduced from Amberg et al. (2000). It should be noted that the type of CARP

in their study involves an additional constraint: a maximum limit on the cost of

each route. Their approach begins by augmenting a graph G given in the M-CARP

(i.e. duplicating some edges) to obtain an Eulerian graph (Figure 2.5(a)), which is

then decomposed into several cycles (Figure 2.5(b)). A new graph G′ = (V ′, E ′) for

the CMSTP is constructed (Figure 2.5(c)) such that the number of vertices in V ′ is

equal to the number of depots plus the number of cycles in the decomposition (so

each vertex in V ′ represents either a depot or a cycle in the decomposition), and E ′

contains edges joining any two vertices in V ′ except when both vertices correspond to

depots. Each edge {i, j} in E ′ represents a cycle formed by two copies of a shortest

path between a depot or a cycle represented by i, j ∈ V ′. For example, vertex 3′

and 5′ in Figure 2.5 represent the cycles 1–2–3–1 and 4–5–6–4, respectively, and a

shortest path between these two cycles is 2–5 (with cost 3), so edge {3′, 5′} in G′

39

2.9. VARIANTS OF THE CARP

represents a cycle 2–5–2 in G. After the transformation, a M-CARP solution in G is

obtained by finding minimum spanning trees in G′ such that the number of trees is

equal to the number of depots, each tree contains exactly one depot, and the total

demand (resp. cost) in each tree does not exceed the capacity (resp. maximum cost)

of the depot in that tree. Without loss of generality, it is assumed that the number

of depots is equal to the number of vehicles (otherwise, any depot with more than

one vehicle is duplicated for a sufficient number of times so that the assumption is

true). By doing so, each tree in the CMSTP represents one route in the M-CARP.

Open CARP In some cases, vehicles do not need to return to the depot after

completion of service, resulting in open routes (Fung et al., 2013). For example, a

service provider may hire vehicles from an external company and require them to

start their journeys from a designated location, e.g. vehicle drivers may need to

receive orders from a main office of the service provider. However, the vehicles do

not need to return to the main office after finishing their service; rather, they should

return to the external company that owns the vehicles. In this case, the service

provider wishes to minimise the total cost incurred as a result of the journey of each

vehicle from the main office up to its last task. Note that there is no restriction on

the ending vertex of each vehicle, i.e. their routes can end at any vertices.

Even though a solution to the open CARP can be obtained from a solution to the

CARP by removing a path from the last task to the depot in each route, it is not

guaranteed that an optimal CARP solution will give an optimal open CARP solution

via this process; this is illustrated by Figure 2.6, adapted from Fung et al. (2013).

This means that rather than relying on solution methods for the CARP, there is a

need to develop an algorithm specifically for the open CARP.

Fung et al. (2013) attempted to solve the open CARP by transforming the open

CARP into an open vehicle routing problem (VRP) and subsequently into a closed

VRP. It should be noted that the open CARP considered in their study is based

on a directed graph, so each task in the CARP corresponds to one vertex in the

VRP (as opposed to two vertices in the case of an undirected graph). To solve the

resulting closed VRP, they proposed a memetic algorithm. In their algorithm, a

chromosome is a sequence of all tasks (which are now represented by vertices in the

VRP) without trip delimiters. To evaluate a chromosome, the split algorithm (Prins,

2004) is used to convert the chromosome into feasible routes, and the total cost of

those routes is then regarded as the fitness of the chromosome. The split algorithm

is similar to Ulusoy’s partitioning described in Section 2.5, the difference being that

40

2.9. VARIANTS OF THE CARP

1

2

3 5

4

6

(14,20)

(16,16)

(5,2)

(2,2)

(0,3) (4,3) (5,3)

(6,4)

(3,4)

(2,2)

(2,1)

(a) M-CARP instance converted into an
Eulerian graph with an augmenting edge
shown in dash; depots are represented by
double-lined vertices; the pair (Q,L) on
each depot denotes the capacity Q and the
maximum route cost L; the pair (d, c) on
each edge denotes its demand d and cost c

1

2

3

2

3 5 5

4

6

3’ 4’ 5’

(b) Cycle decomposition of the Eulerian graph in (a)

1’

2’

5’ 4’

3’

(14,20)

(16,16)

10

(7,7)

(15,10)(7,7)

4

6

6

(c) CMSTP instance derived from (a) and
(b); the number next to each edge shows
its cost (with zero cost omitted); the pair
(Q,L) next to each depot shows its capacity
Q and maximum cost L; the pair (d, c) next
to each vertex shows its demand d and cost
c

1’

2’

5’ 4’

3’

(14,20)

(16,16)

(7,7)

(15,10)(7,7)

6

(d) A feasible solution to the CMSTP in (c)

1

2

3 5

4

6

3’ 5’

2

3 5

4’

(e) M-CARP solution derived from the CMSTP solution in (d); solid lines represent traversals with
service and dashed lines without service; the depot of each route is represented by a double-lined
vertex

Figure 2.5: Transformation from M-CARP to CMSTP

41

2.9. VARIANTS OF THE CARP

a

b

d f

c e

2

2

2

2

2

2

57 7

7

(a) Graph with edge costs; each
task (solid line) must be serviced
in a specified direction

a

b

d

c

f

e

(b) Optimal CARP solution

a

b

d

c

f

e

(c) OCARP solution obtained by
removing a path after the last task in
each route in (b) (cost = 15)

f

e

a

b

d

c

(d) Optimal OCARP solution (cost = 12)

Figure 2.6: Difference between optimal solutions for the CARP and the OCARP on
the same instance; the depot is represented by a square; each task ab, cd, and ef has
demand 1 and the capacity is 2

42

2.9. VARIANTS OF THE CARP

it takes a sequence of vertices (as opposed to a sequence of arcs) as an input. An

initial population consists of both chromosomes generated by constructive heuristics

and those generated randomly. To promote diversity in the population, having two

chromosomes with the same fitness is not allowed. To produce new chromosomes,

two parent chromosomes are selected by means of tournament selection, i.e. at least 2

chromosomes are selected randomly and one of them is kept as a parent chromosome.

The process is repeated for the other parent chromosome. The parent chromosomes

then undergo the Order Crossover (OX) (described in Section 2.6.2) to produce

two offspring chromosomes. Then, one of the offspring chromosomes is randomly

selected (and the other discarded). With a given probability, the selected offspring

chromosome undergoes a local search procedure involving 2-opt, 1-1 swap, and single

insertion moves (the last two types of moves are also called 1-1 exchange and 1-0

exchange moves in their original papers). Before the local search procedure, the

split algorithm is used to convert the offspring chromosome into feasible routes. A

solution given by the local search procedure is converted back into a chromosome by

concatenating all routes. The split algorithm is then applied to this chromosome to

determine its fitness, and an evaluation counter (which will be used to determine

when to terminate the algorithm) increases by 1. If the offspring chromosome has

better fitness than the worst one in the current population, one of the chromosomes in

the worse half of the population is selected randomly to be replaced by the offspring

chromosome. However, if this results in there being two chromosomes with the same

fitness, the offspring chromosome is discarded. This process is repeated until the

evaluation counter reaches a given maximum limit.

Open CARP without the depot There is an even more general open CARP,

in which there is no depot, so vehicles can start and end their journeys at any of the

vertices. Notice that this version of open CARP is trivial if the number of vehicles is

a decision variable: an optimal solution can be obtained by using as many vehicles as

tasks, letting each vehicle service one task, starting from one endpoint of the task and

ending at the other endpoint (so the total distance is simply the sum of distances of

all tasks). Thus, we can restrict our attention to non-trivial cases, where the number

of vehicles is fixed and less than the number of tasks. For those cases, Usberti et al.

(2011) proposed a constructive heuristic called the reactive path scanning heuristic

with ellipse rule. It was adapted from the path scanning heuristic with ellipse rule

proposed by Santos et al. (2009) (see Section 2.5), which tends to give an infeasible

solution for this type of open CARP because it has no mechanism for limiting the

number of vehicles and hence it tends to use more vehicles than there are available.

Recall that the path scanning heuristic constructs one route at a time and each route

43

2.9. VARIANTS OF THE CARP

is constructed by iteratively adding to the route a task that is nearest to the current

endpoint of the route. To increase the likelihood of obeying the given number of

vehicles, they amend the criteria for choosing the next task in order to bias towards

tasks that are near the current endpoint and have large demands; this was motivated

by the first fit decreasing heuristic for the bin packing problem. More precisely, let ve

be the current endpoint of the route, SPmax the distance of the longest shortest path

between any two vertices, and dmax the maximum demand, the next task to be added

to the route is chosen from a set of tasks (i, j) (with demand dij) that minimises

γ
D(ve, i)

SPmax + (1− γ)

(
1− dij

dmax

)
, (2.22)

for some parameter γ ∈ [0,1]. Notice that γ = 1 gives the original criteria

(i.e. restricting candidates tasks to those nearest to the current endpoint). The

construction is repeated for a given number of times with γ initially set to 1 and

later adapted depending on the feasibility of a solution: if the construction gives an

infeasible solution, γ is decreased so that the algorithm focusses less on minimising

the distance and more on the bin-packing nature of the problem, i.e. trying to use

relatively few vehicles. Furthermore, the parameter β that controls when to use the

ellipse rule is chosen randomly from a discrete set {0.0, 0.5, 1.0, 1.5, 2.0} because it

was found that no single value of β worked well for all instances (recall that the

ellipse rule is used when the remaining capacity of the vehicle is less than or equal to

β× total demand
number of tasks

). The probability of choosing a particular value of β is also amended

after each construction: it increases when it gives a feasible solution and decreases

otherwise.

Even though the open CARP can be viewed as the CARP without the depot

constraint, it is still NP-hard: Usberti et al. (2011) proved that the CARP, which is

NP-hard, can be reduced polynomially into the open CARP. The main idea in their

proof for transforming the CARP into the open CARP is that, given the number of

vehicles nveh, introduce 2nveh dummy vertices and 2nveh dummy edges, each of which

connects one dummy vertex to the depot and has some demand δ > 0, and increase

the capacity of each vehicles by 2δ. Each route in any feasible solution to this open

CARP contains 2 dummy edges, so a solution to the CARP can be obtained by

removing those dummy edges from the open CARP solution.

44

2.10. DYNAMIC CARPS

2.10 Dynamic CARPs

A dynamic CARP is the CARP in which some information changes over time,

especially while vehicles are travelling around the graph. In this section, we review

types of changes in dynamic CARPs that have been studied in the literature.

Dynamic Graph There are situations where the vertex set and/or the edge set

of an underlying graph can change while vehicles are travelling. One example, often

found in industry, is a problem of determining a minimum-distance path for cutting

a plate into specified shapes (assuming that the shapes have already been arranged

in the plate). This problem can be viewed as a dynamic rural postman problem

(Moreira et al., 2007), where a graph G = (V,E) represents possible movements

of a cutter (equivalent to a “vehicle”) within the plate. Assuming all the shapes

are polygons, the vertex set V contains the polygons’ vertices, and the edge set E

contains the polygons’ edges and straight lines between two vertices in V that do not

pass through any polygons; this ensures that the specified shapes are not cut into

smaller pieces. The dynamism arises from the fact that when part of the plate is

completely cut out and falls to a container underneath, there is more empty space in

which the cutter can move. Moreira et al. (2007) proposed a constructive heuristic

which constructs a route by extending it with one edge at a time. It should be noted

that an edge is forbidden if it cuts out a piece of the plate that contains smaller

shapes also needing to be cut out. After each extension, the heuristic checks whether

the edge leads to a shape being completely cut out (i.e. all of its edges have been

traversed); if so, the graph is updated to reflect current possible movement of the

cutter.

Another example of a dynamic CARP with a changing graph is when vehicles

encounter blockages that are unknown when planning routes initially. In other words,

some edges in the graph disappear, and so any route that involves such edges need

to be amended. Yazici et al. (2014) proposed a constructive heuristic for updating

a solution whenever a blockage is encountered. This constructive heuristic was

obtained by adapting Ulusoy’s Partitioning (described in section 2.5) for the CARP

with heterogeneous vehicles (i.e. having different capacities) and multiple starting

vertices.

Changes of Edge Costs Tagmouti et al. (2011) studied a dynamic CARP with

the focus on winter gritting, where edge costs change according to weather report

45

2.10. DYNAMIC CARPS

updates, which arrive at given regular time intervals. Notice that the changes do not

make the solution infeasible but can affect the quality of the solution, for example,

the solution cost could increase if the cost of some edge contained in the solution

increases. A solution update is needed to maintain or possibly improve the quality

of the solution after the changes. In their study, a solution is updated by a variable

neighbourhood descent algorithm whenever a weather report update is received.

Broken-Down Vehicles When a vehicle is broken down, tasks that are currently

assigned to that vehicle but have not yet been serviced must be reassigned to other

vehicles. Referring to this problem as the rescheduling arc routing problem, Monroy-

Licht et al. (2016) attempted to tackle this type of changes with the assumptions

that initial routes are given, vehicles are uncapacitated (so tasks from broken-down

vehicles can be reassigned to any other vehicle without restriction), and there are

no extra vehicles. Their main goal is to ensure that all tasks are serviced, while

minimising one of the following objective functions: the total distance, the so-called

“disruption cost,” which measures similarity between the original set of routes and a

new one, and a combination of the previous two objectives. Using exact algorithms,

they found that the total distance and the disruption cost could not be minimised

simultaneously, whereas a combination of these two objectives could provide a trade-

off between them. It should be noted that their study is restricted to a single

“breakdown time,” that is, only one solution update is needed, and the update occurs

whenever the breakdown occurs.

Multiple Types of Changes The aforementioned studies concern dynamic CARP

with one type of change. To the best of our knowledge, the study of Liu et al. (2014a,b)

is the only existing study that attempts to tackle a dynamic CARP with multiple

types of changes. More precisely, they considered broken-down vehicles, unavailability

of edges (road blockages), changes of edge costs, and changes of edge demands. In

particular, the changes of edge demands being considered include a slight change

in the amount of demand on an existing task (demand changing from one positive

integer to another), an appearance of a new task (demand changing from zero to a

positive integer), and a disappearance of an existing task (demand changing from a

positive integer to zero). In their study, a solution is updated by a memetic algorithm

whenever changes occur.

Notice that in almost all of the aforementioned studies on dynamic CARPs (the only

46

2.11. SUMMARY

exception being Moreira et al., 2007), solutions are updated as soon as a change

occurs. However, for some types of changes such as the appearance of new tasks, a

solution need not be updated immediately. In fact, it might be possible that updating

a solution at different times would lead to different solution qualities. To the best of

our knowledge, this has not been investigated in the context of dynamic CARPs.

2.11 Summary

In this chapter, the CARP and other related routing problems were reviewed.

Although some routing problems can be solved efficiently, it was found that the

CARP is NP-hard, and thus it can take an infeasible amount of time to find an

optimal solution. In practice, a reasonably good solution is usually acceptable as

long as it can be obtained within a relatively small amount of time. This can be

achieved by means of heuristic algorithms, many of which have been proposed for

the CARP in the literature. These include constructive heuristics and metaheuristic

algorithms. Several techniques for computing lower bounds have also been proposed;

this helps estimate how close a heuristic solution is to optimality and can also be

used to prove optimality of some solutions (when a lower bound is equal to the cost

of a solution). Moreover, there exists some work on developing exact algorithms for

the CARP, although computational results suggest that they require a substantial

amount of time to find optimal solutions in some instances.

It was noticed that most of the existing work on the CARP deal with the static

version of the problem, that is, it is assumed that all information of the problem

is known and does not change after the vehicles depart from the depot. In real

life, however, some information of the problem may change, which may lower the

quality of the original solution or render it infeasible, hence the need to update

the solution. With current communication technology, a route planner can track

the current state of each vehicle and inform drivers of changes in their routes in a

short time, if not immediately. A review of literature revealed that there has been

relatively little work on a dynamic version of the CARP. This motivates further

study in this area. Furthermore, computational results in existing work suggests

that heuristic algorithms would be preferable for tackling dynamic CARP due to its

ability to provide feasible solutions quickly compared with exact algorithms. This

motivates the idea of developing heuristic algorithms for dynamic CARP.

By comparing existing metaheuristic algorithms for the CARP in the literature, it

47

2.11. SUMMARY

was found that single-solution-based metaheuristis algorithms, namely guided local

search and tabu search, can achieve fairly good solutions within a small amount of

computation time. In the next chapter, we opt to study how tabu search performs over

a range of iterations; this metaheuristic algorithm requires relatively few parameters,

which allows us to concentrate our attention when attempting to identify factors

that encourage the algorithm to improve a solution quickly. A variant of a tabu

search algorithm that improves a solution relatively quickly will then be selected to

tackle the dynamic CARP in subsequent chapters.

48

Chapter 3

Metaheuristic Algorithms for the

Static CARP

3.1 Introduction

Metaheuristic algorithms have been shown to be able to achieve near-optimal or

even optimal solutions for the CARP. However, their performances were commonly

reported based on certain stopping criteria such as a given number of iterations

or a given number of consecutive iterations without improvement. This provides

little, if any, information about their performances over the course of their execution,

hence little information about what makes an algorithm find a good solution quickly.

This information would be useful when designing an algorithm for a dynamic CARP,

where a solution is updated while tasks are being serviced. Among algorithms that

can achieve equally good solutions, it would be more preferable to use an algorithm

that can improve a solution significantly within a few iterations than one that can

eventually find an optimal solution but only improves a solution at a very slow rate.

In this chapter, the aim is to gain more insights about what would make an algorithm

find a good CARP solution quickly. In particular, several variants of a tabu search

algorithm will be compared based on a wide range of stopping criteria. Tabu search is

a metaheuristic that requires a relatively small number of parameters; this allows us

to concentrate our attention on certain aspects of the algorithm when investigating

what would make an algorithm find a good solution quickly. A description of how

tabu search works in general can be found in Section 2.6.1.

In addition, a novel operator for improving the tabu search algorithm is proposed; in

49

3.2. NEIGHBOURHOOD MOVES

fact, this operator can also be used not only with tabu search but also with other

metaheuristic algorithms. This operator, called the deadheading cycle remover, works

by detecting and removing unnecessary traversals that form so-called deadheading

cycles in a given solution. It is intended to be a quick operator that helps tabu

search improve a solution faster without too much additional computational effort.

Sections 3.2 and 3.3 describe components of the tabu search algorithm that will be

investigated, i.e. neighbourhood moves and definitions of tabu moves, respectively.

Variants of the tabu search algorithm with different ways of defining tabu moves

will be compared and analysed in Section 3.4. Section 3.5 proposes a novel operator,

namely the deadheading cycle remover and analyses its effect to the performance of

the tabu search algorithm. Section 3.6 discusses a possible pitfall of using different

tabu lists for different neighbourhood moves. The conclusions of this chapter are

given in Section 3.7.

3.2 Neighbourhood Moves

Neighbourhood moves are ways of making small changes to a given solution in the

tabu search methodology (as well as other types of local search in general). Recall

that a CARP solution is a set of routes, and a route can be represented by a sequence

of tasks with specified directions (preceded by its starting vertex and followed by

the depot v0). Let R1 = (vs1 , a1, . . . , an1 , v0) and R2 = (vs2 , b1, . . . , bn2 , v0) be two

routes, for some tasks a1, . . . , an1 , b1, . . . , bn2 , some vertices vs1 , vs2 , and some positive

integers n1, n2. For ease of notation, an1+1 and bn2+1 are identified with the depot v0

at the end of the routes. The tabu search algorithm that will be considered in this

chapter uses the following neighbourhood moves:

• Single Insertion: remove a task from one route and insert it in another route.

Given a removal index i (1 ≤ i ≤ n1) and an insertion index j (1 ≤ j ≤ n2 + 1),

remove ai from R1 and insert it in front of bj in R2.

• Double Insertion: remove two tasks from one route and insert them in another

route. Given two removal indices i1, i2 (1 ≤ i1 < i2 ≤ n+ 1) and two insertion

indices j1, j2 (1 ≤ j1, j2 ≤ n2 + 1), remove ai1 and ai2 from R1 and insert them

in R2 in front of bj1 and bj2 , respectively. If j1 = j2, i.e. ai1 , ai2 are inserted at

the same position, both possible orders (ai1 followed by ai2 or vice versa) are

considered.

50

3.2. NEIGHBOURHOOD MOVES

• Swap: swap tasks between two routes (one task from each route). Given two

removal indices i, j (1 ≤ i ≤ n1, 1 ≤ j ≤ n2) and two insertion indices i′, j′

(1 ≤ i′ ≤ n1 + 1, 1 ≤ j′ ≤ n2 + 1) such that i 6= i′ and j 6= j′, remove ai from

R1 and place it in front of bj′ in R2; remove bj from R2 and place it in front of

ai′ in R1.

• 2-Opt: cut two routes each into two subroutes and re-connect subroutes to

obtain two new routes. Given two cutting indices i, j (1 ≤ i ≤ n1 + 1, 1 ≤ j ≤
n2 + 1), cut R1 into two parts (vs, a1, . . . , ai−1) and (ai, . . . , an1 , v0)

1 and cut

R2 in a similar fashion. Then, join one part of R1 with one part of R2 (and

join the remaining parts together). Note that there are two possible ways to

join the parts, as illustrated in Figure 3.1.

For Single Insertion, Double Insertion, and Swap, when inserting a task into a route,

both directions of traversal on that task are tested.

These four types of neighbourhood moves have been used in the literature (see

Section 2.6.1), although some of them are implemented in this thesis in a slightly

different way: for Double Insertion, removed tasks do not need to be consecutive (i.e.

i2 is not necessarily equal to i1 + 1) and they do not need to be inserted at the same

position (i.e. j2 is not necessarily equal to j1). For 2-opt, it is allowed that all tasks

in one route (e.g. when i = 1) is moved to another route. To avoid unnecessary

computation, 2-opt moves that has essentially no effect to the solution are omitted

(e.g. i = j = 1 with a particular way of joining routes simply results in renumbering

routes). The 2-opt moves that resemble other neighbourhood moves are also omitted

(e.g. i = n1 and j = n2 with a particular way of joining routes resembles Swap).

A neighbourhood move is said to be admissible if either it is non-tabu or it is tabu but

leads to the solution that is better that the current best solution. In each iteration

of the tabu search algorithm, all neighbourhood moves that are both admissible and

feasible with respect to the capacity constraint are considered. Among those moves,

the best move (i.e. it leads to the lowest total distance) is selected and applied to

the current solution; if there is more than one best move, one of them is selected

randomly. The next section describes how the tabu status of neighbourhood moves

are determined.

1If i = 1, then the route R1 is divided into (vs) and (a1, . . . , v0). If i = n1 + 1, then the route is
divided into (vs, . . . , an1

) and (v0).

51

3.2. NEIGHBOURHOOD MOVES

ai – 1

ai

bj – 1

bj

>

>

>

>

ai – 1

ai

bj – 1

bj

ai-1

ai

bj-1

bj

Endpoint of a task

The depot

... ai – 1 ai ...

... bj – 1 bj ...

a1

b1

an

bm

... ai – 1 bj ...

... bj – 1 ai ...

a1

b1

bm

an

... ai – 1 bj – 1 ...

... ai bj ...

a1

an

b1

bm

~ ~

~ ~

Figure 3.1: Two possible ways of joining parts of routes as a result of a 2-opt move;
tasks that are removed from their original routes are highlighted; ã denotes the
opposite direction of traversal on task a

52

3.3. SOLUTION ATTRIBUTES AND TABU MOVES

3.3 Solution Attributes and Tabu Moves

One key idea of tabu search is to avoid getting stuck at local optima by forbidding

neighbourhood moves that lead to previously visited solutions. In theory, this can be

achieved by recording complete descriptions of all solutions that have been visited.

However, checking the whole solutions can be very inefficient as more and more

solutions are visited and recorded. An alternative approach is to consider solution

attributes, i.e. partial descriptions of solutions, in which case a move is regarded

as tabu if it leads to a solution that contains certain solution attributes. Types of

solution attributes that have been considered in existing tabu search algorithms for

arc routing and vehicle routing include:

• Task-in-a-route attributes. This concerns the fact that a task is serviced in

a certain route. When a task is removed from a route, it is prohibited from

returning to that route for a given number of iterations. This type of solution

attributes was used by Hertz et al. (2000) and Greistorfer (2003). A similar

idea was also used by Chiang and Russell (1997), Ho and Haugland (2004),

and Brandão (2009) for vehicle routing, i.e. customers (demands on vertices)

are considered instead of tasks.

• 2-customer attributes. This concerns an edge joining two customers in the

same route for vehicle routing, or equivalently, the fact that two customers

are serviced consecutively in the same route. When an edge is removed, it is

prohibited from re-appearing for a given number of iterations. This type of

solution attributes was used by Ho and Haugland (2004), Montané and Galvao

(2006), and Holborn et al. (2012).

In our tabu search algorithm, after the best neighbourhood move in each iteration

is selected, some solution attributes corresponding to the move are recorded in a

so-called tabu list (which is initially empty). Each solution attribute that is recorded

in the tabu list remains in the list for some iterations, the number of which is

to be specified; this number is called a tabu tenure. To determine whether each

neighbourhood move is tabu, solution attributes that would arise as a result of the

move are checked, and the move is regarded as tabu if all of those attributes are

currently in the tabu list. There are a variety of solution attributes that can be

considered. Here, we will consider and compare four types of solution attributes as

follows:

• Task-in-a-route attributes.

53

3.3. SOLUTION ATTRIBUTES AND TABU MOVES

• 2-task attributes. This is similar to the 2-customer attributes described above

but tasks are considered instead of customers. In other words, this concerns

the fact that two tasks are serviced consecutively in the same route.

• 2-task-in-a-route attributes. This new attribute combines the concepts of the

above two attributes. In other words, it concerns the fact that two tasks are

serviced consecutively in a certain route.

• 3-task attributes. This new attribute concerns the fact that three tasks are

serviced consecutively in the same route.

Notice that 2-task-in-a-route attributes contain more information than task-in-a-

route and 2-task attributes, and 3-task attributes contain more information than

2-task attributes. A type of attribute that contains more information is expected to

make fewer moves tabu, and so the corresponding tabu search algorithm is expected

to be less restrictive (i.e. more admissible moves in each iteration). It will be

investigated whether this necessarily leads to a better tabu search algorithm. Each

type of solution attribute will be used separately (unless otherwise stated), giving

four different variants of the tabu search algorithm. For clarity, the rest of this

section describes what exactly is recorded in the tabu list and how to determine

whether each neighbourhood move is tabu based on each type of solution attributes.

3.3.1 Task-in-a-Route Attributes

Recording solution attributes: When a task t is removed from a route R by

either a Single Insertion, Double Insertion, or Swap move, a pair (t, R) is recorded in

the tabu list. Notice that a Single Insertion move corresponds to one pair, whereas a

Double Insertion or Swap move corresponds to two pairs.

For 2-opt, notice that this type of move generally transfers many tasks between routes

(especially when a route with many tasks is cut near the middle of the route), so it is

expected that determining whether a 2-opt move is tabu based on the task-in-a-route

attributes would involve recording and checking a large number of pairs. For this

reason, we opt to use a separate tabu list for 2-opt moves based on 2-task attributes

(see Section 3.3.2).

Determining tabu status of moves: A Single Insertion move that inserts task t

into route R is tabu if the pair (t, R) is currently in the tabu list. A Double Insertion

54

3.3. SOLUTION ATTRIBUTES AND TABU MOVES

or Swap move that inserts task t1 into route R1 and task t2 into route R2 (R2 = R1

for Double Insertion) is tabu if both pairs (t1, R1), (t2, R2) are currently in the tabu

list.

3.3.2 2-Task Attributes

Recording solution attributes: Let R = (vs, a1, . . . , an, v0) be a route. When

task ai is removed from route R by either a Single Insertion, Double Insertion, or

Swap move, two pairs (ai−1, ai) and (ai, ai+1) are recorded in the tabu list (that is,

each pair of consecutive tasks involving the move task is recorded). For ease of

notation, let a0 = vs (the starting vertex) and an+1 = v0 (the depot at the end of

the route).

For 2-opt, the pair of tasks next to the cutting position in each route is recorded

in the tabu list. More precisely, if a 2-opt move cuts a route R = (vs, a1, . . . , an, v0)

into two parts (vs, a1, . . . , ai−1) and (ai, . . . , an, v0), then a pair (ai−1, ai) is recorded.

Let ã denote the opposite direction of traversal on task a. Due to symmetry of routes

in an undirected graph, for any tasks a and b, the pair (ã, b̃) is regarded as identical

to the pair (b, a).

Determining tabu status of moves: A Single Insertion move that inserts task t

into a route (vs, b1, . . . , bn, v0) between tasks bj−1 and bj is tabu if both pairs (bj−1, t)

and (t, bj) are currently in the tabu list. For a Double Insertion or Swap move, two

pairs corresponding to each inserted task are checked, and the move is tabu if all the

pairs are currently in the tabu list.

A 2-opt move is tabu if the pairs of tasks next to the joining positions in both routes

are currently in the tabu list. More precisely, consider a 2-opt move that modifies

two routes (vs1 , a1, . . . , an1 , v0) and (vs2 , b1, . . . , bn2 , v0) and gives two new routes,

namely (vs1 , . . . , ai−1, bj, . . . , v0) and (vs2 , . . . , bj−1, ai, . . . , v0). This 2-opt move is

tabu if both (ai−1, bj) and (bj−1, ai) are currently in the tabu list.

3.3.3 2-Task-in-a-Route Attributes

Recording solution attributes: The procedure is the same as the 2-task attributes

except that an appropriate route is also recorded. In other words, for any pair of

55

3.3. SOLUTION ATTRIBUTES AND TABU MOVES

tasks (a, b) that would be recorded in the case of the 2-task attributes, we instead

record a triple (a, b, R), where R is the route to which both tasks belong together

before the solution is amended by a selected move.

Determining tabu status of moves: A Single Insertion move that inserts task

t into a route R = (vs, b1, . . . , bn, v0) between tasks bj−1 and bj is tabu if both triples

(bj−1, t, R) and (t, bj, R) are currently in the tabu list. For a Double Insertion or

Swap move, two triples corresponding to each inserted task are checked, and the

move is tabu if all the pairs are currently in the tabu list.

A 2-opt move is tabu if the triples corresponding to tasks next to the joining positions

in both routes are currently in the tabu list. More precisely, consider a 2-opt move

that would amend routes R1 = (vs1 , a1, . . . , an1 , v0) and R2 = (vs2 , b1, . . . , bn2 , v0) and

give R1 = (vs1 , . . . , ai−1, bj, . . . , v0) and R2 = (vs2 , . . . , bj−1, ai, . . . , v0). This 2-opt

move is tabu if both (ai−1, bj, R1) and (bj−1, ai, R2) are currently in the tabu list.

3.3.4 3-Task Attributes

Recording solution attributes: Let R = (vs, a1, . . . , an, v0) be a route. When

task ai is removed from route R by either a Single Insertion, Double Insertion, or

Swap move, the triple (ai−1, ai, ai+1) is recorded in the tabu list. As before, let

a0 = vs and an+1 = v0 for ease of notation.

For 2-opt, each task next to the cutting point in each route is regarded as a middle

task in a triple, and a similar procedure for recoding attributes applies. More precisely,

if a 2-opt move cuts a route R = (vs, a1, . . . , an, v0) into two parts (vs, a1, . . . , ai−1)

and (ai, . . . , an, v0), then the triples (ai−2, ai−1, ai) and (ai−1, ai, ai+1) are recorded in

the tabu list. If i = 1, ai−2 is undefined and so the triple (ai−2, ai−1, ai) is omitted.

The other exception case (i.e. when i = n+ 1) is dealt with in the same way.

Due to symmetry of routes in an undirected graph, for any tasks a, b, and c, the

triple (ã, b̃, c̃) is regarded as identical to the triple (c, b, a).

Determining tabu status of moves: A Single Insertion move that inserts task

t into a route (vs, b1, . . . , bn, v0) between tasks bj−1 and bj is tabu if the triple

(bj−1, t, bj) is currently in the tabu list. For a Double Insertion or Swap move, the

triple corresponding to each inserted task is checked, and the move is tabu if both

56

3.4. COMPARISON OF TABU ATTRIBUTES

the triples are currently in the tabu list.

A 2-opt move is tabu if all “new” sequences of 3 consecutive tasks that arise as a

result of the move are currently in the tabu list (“new” here means that the sequences

are not part of the solution before the move). More precisely, consider a 2-opt move

that would amend routes R1 = (vs1 , a1, . . . , an1 , v0) and R2 = (vs2 , b1, . . . , bn2 , v0) and

give R1 = (vs1 , . . . , ai−1, bj, . . . , v0) and R2 = (vs2 , . . . , bj−1, ai, . . . , v0). This 2-opt

move is tabu if the following triples are currently in the tabu list: (ai−2, ai−1, bj),

(ai−1, bj, bj+1), (bj−2, bj−1, ai), and (bj−1, ai, ai+1).

3.4 Comparison of Tabu Attributes

In this section, variants of the tabu search algorithm with different types of tabu

attributes (described in Section 3.3) are compared. All variants construct an initial

solution by the Path Scanning algorithm (see Section 2.5) and use the neighbourhood

moves described in Section 3.2. Each variant is run for a maximum of 100nt iterations,

where nt is the number of tasks. Due to the stochastic nature of the algorithm, its

performance on a given instance is assessed based on average results over 20 runs.

The instances used here are taken from the BMCV dataset (Beullens et al., 2003),

and their details are shown in Table 3.1 (these instances are taken from http://

logistik.bwl.uni-mainz.de/benchmarks.php, last accessed 29 September 2017).

The tabu search algorithm was coded using C++, and the experiment was performed

on an Intel Core i3-2120 3.30GHz CPU with 8GB RAM.

The performance of the tabu search algorithm is measured based on percentage

deviations from optimality, i.e.

percentage deviation =

(
solution cost− optimal cost

optimal cost

)
× 100. (3.1)

Notice that an optimal solution (a set of routes) on a given instance remains optimal

after multiplying each edge cost by a constant since all solution costs are scaled up or

down by the same constant factor. The percentage deviation is invariant under such

multiplication and therefore helps avoid bias towards results on a particular instance,

especially when relative sizes of unit costs on different instances are unclear.

As different types of tabu attributes may work well with different tabu tenures, each

of them is tested in preliminary experiments with a range of tabu tenures l × nt for

l = 0.25, 0.5, 1, 2, 4, 8, 16, 32. The results (shown in Figures B.1 to B.4 in Appendix B)

57

3.4. COMPARISON OF TABU ATTRIBUTES

Table 3.1: Characteristics of instances from the BMCV dataset in an ascending order
of the number of tasks; nveh is the least number of vehicles needed (total demand
divided by capacity, rounded up to the nearest integer)

Instance
Number of

vertices
Number of

edges
Number of

tasks
Optimal

cost
nveh

E25 26 35 28 1615 4
C16 32 42 32 1475 3
E17 38 50 36 2740 5
C25 37 50 38 2310 5
C17 43 56 42 3555 7
C22 56 76 43 2245 4
E06 49 66 43 2055 5
E22 54 73 44 2470 5
E03 46 61 47 2015 5
E10 56 76 49 3605 7
E07 73 94 50 4155 8
C03 46 64 51 2575 6
C06 38 55 51 2535 6
C07 54 70 52 4075 8
C13 40 60 52 2955 7
E13 49 73 52 3345 7
C02 48 66 53 3135 7
C20 45 64 53 2120 5
E16 60 80 54 3775 7
C10 60 82 55 4700 9
E14 53 72 55 4115 8
C14 58 79 57 4030 8
E02 58 81 58 3990 8
E08 74 98 59 4710 9
C19 62 84 61 3115 6
E05 68 94 61 4585 9
C08 66 88 63 4090 8
E20 56 80 63 2825 7
C05 56 79 65 5365 10
E19 77 103 66 3235 6

58

3.4. COMPARISON OF TABU ATTRIBUTES

0 20nt 40nt 60nt 80nt 100nt

Number of iterations

0.0

1.0

2.0

3.0

4.0

5.0

Pe
rc

en
ta

ge
 d

ev
ia

tio
n

fro
m

 o
pt

im
al

ity

Task-in-a-route
2-task
2-task-in-a-route
3-task

Figure 3.2: Medians of percentage deviations from optimality over the set of instances
in Table 3.1 given by the tabu search algorithm corresponding to different types of
tabu attributes; nt denotes the number of tasks

suggested that the tabu search algorithm performs relatively well with the following

tabu tenures: 2nt for the task-in-a-route attributes, 16nt for the 2-task attributes,

32nt for the 2-task-in-a-route attributes, and 32nt for the 3-task attributes. The

solution attributes will be compared based on these tabu tenures.

Figure 3.2 shows medians of percentage deviations from optimality observed over

the course of the tabu search algorithm with different types of tabu attributes (the

percentage deviations on each instance are averaged over 20 runs, and the medians

shown in Figure 3.2 are taken from the results over 30 instances). It can be seen

that different attributes lead to different rates of improving the solution. Generally,

the task-in-a-route and the 2-task attributes improve the solution at a faster rate

than the 2-task-in-a-route, which in turn improves the solution at a faster rate than

the 3-task attribute.

A two-tailed Wilcoxon signed-rank test (with the significance level of 0.05) is

performed to analyse the significance of the differences between the results given by

the four attributes at various points throughout the process of tabu search (k × nt
for k = 10, 20, . . . , 100). As shown in Table 3.2, it was found that both the task-in-a-

route and the 2-task attributes are significantly better than the 3-task attribute at

all the iteration numbers considered (i.e. 10nt, 20nt, . . . , 100nt). Furthermore, the

task-in-a-route attribute is significantly better than the 2-task-in-a-route attribute at

the iteration numbers 10nt up to 50nt. This further supports that the task-in-a-route

and the 2-task attributes could improve the solution at the fastest rate among the

tabu attributes considered. It is also interesting to note that the 2-task-in-a-route

59

3.4. COMPARISON OF TABU ATTRIBUTES

Table 3.2: Medians of percentage deviations from optimality (rounded to 2 decimal
places) given by the tabu search algorithm with different types of tabu attributes; nt
denotes the number of tasks

Number of
iterations

Type of tabu attribute

Task-in-a-route 2-task 2-task-in-a-route 3-Task

10nt 2.81∗† 3.21† 3.24 3.34
20nt 2.25∗† 2.47† 2.73† 3.10
30nt 1.93∗† 1.89∗† 2.45† 2.91
40nt 1.75∗† 1.67† 2.03† 2.56
50nt 1.61∗† 1.58† 1.88† 2.36
60nt 1.60† 1.49† 1.75† 2.16
70nt 1.52† 1.37† 1.68† 2.09
80nt 1.47† 1.34† 1.60† 2.03
90nt 1.38† 1.15† 1.48† 1.95
100nt 1.31† 1.11† 1.43† 1.86

∗ significantly better than the 2-task-in-a-route attribute
† significantly better than the 3-task attribute

based on a two-tailed Wilcoxon signed-rank test with a Bonferroni correction

(for 6 pairwise comparisons), resulting in a significance level of 0.05/6 ≈ 0.0083

attribute is significantly better than the 3-task attribute from the iteration number

20nt onwards.

Regarding elapsed time for executing the tabu search algorithm, Figure 3.3 shows

that the task-in-a-route type generally uses less computation time than the other

types. This suggests that when actual computation time is considered instead of the

number of iterations, the task-in-a-route type is still among those that improve the

solution at the fastest rate.

To better understand the behaviours of the tabu search algorithm with different

types of tabu attributes, let us look at the results on a particular instance. Figure 3.4

shows total distances of current solutions over the course of the tabu search algorithm

from 10 sample runs on the E17 instance (the other 10 runs are shown in Figure B.5

in Appendix B). The total distances corresponding to the task-in-a-route type tend

to fluctuate more than the other types of attributes. In contrast, the total distances

corresponding to the 3-task type fluctuate noticeably less than the other types of

attributes; in fact, the total distances remain constant for a majority of iterations in

some runs.

To see how the total distance could remain constant, notice that there can be many

CARP solutions with the same total distance because tasks can be transferred

60

3.4. COMPARISON OF TABU ATTRIBUTES

E2
5

C1
6

E1
7

C2
5

C1
7

C2
2

E0
6

E2
2

E0
3

E1
0

E0
7

C0
3

C0
6

C0
7

C1
3

Instance

0

20

40

60

80

100

120

140

160

Ti
m

e
(s

ec
on

ds
)

Task-in-a-route
2-task
2-task-in-a-route
3-task

E1
3

C0
2

C2
0

E1
6

C1
0

E1
4

C1
4

E0
2

E0
8

C1
9

E0
5

C0
8

E2
0

C0
5

E1
9

Instance

0

20

40

60

80

100

120

140

160

Ti
m

e
(s

ec
on

ds
)

Task-in-a-route
2-task
2-task-in-a-route
3-task

Figure 3.3: Average elapsed time for executing the tabu search algorithm with
different tabu attributes for 100nt iterations, where nt is the number of tasks
(averaged over 20 runs); black vertical lines show one standard deviation from
each side of the averages

61

3.4. COMPARISON OF TABU ATTRIBUTES

0 20nt 40nt 60nt 80nt 100nt

Number of iterations

2700

2800

2900

3000

3100

3200

To
ta

l d
ist

an
ce

Run 1
Run 2

Run 3
Run 4

Run 5

0 20nt 40nt 60nt 80nt 100nt

Number of iterations

2700

2800

2900

3000

3100

3200

To
ta

l d
ist

an
ce

Run 6
Run 7

Run 8
Run 9

Run 10

(a) Task-in-a-route

0 20nt 40nt 60nt 80nt 100nt

Number of iterations

2700

2800

2900

3000

3100

3200

To
ta

l d
ist

an
ce

Run 1
Run 2

Run 3
Run 4

Run 5

0 20nt 40nt 60nt 80nt 100nt

Number of iterations

2700

2800

2900

3000

3100

3200

To
ta

l d
ist

an
ce

Run 6
Run 7

Run 8
Run 9

Run 10

(b) 2-task

0 20nt 40nt 60nt 80nt 100nt

Number of iterations

2700

2800

2900

3000

3100

3200

To
ta

l d
ist

an
ce

Run 1
Run 2

Run 3
Run 4

Run 5

0 20nt 40nt 60nt 80nt 100nt

Number of iterations

2700

2800

2900

3000

3100

3200

To
ta

l d
ist

an
ce

Run 6
Run 7

Run 8
Run 9

Run 10

(c) 2-task-in-a-route

0 20nt 40nt 60nt 80nt 100nt

Number of iterations

2700

2800

2900

3000

3100

3200

To
ta

l d
ist

an
ce

Run 1
Run 2

Run 3
Run 4

Run 5

0 20nt 40nt 60nt 80nt 100nt

Number of iterations

2700

2800

2900

3000

3100

3200

To
ta

l d
ist

an
ce

Run 6
Run 7

Run 8
Run 9

Run 10

(d) 3-task

Figure 3.4: Total distances of current solutions over the course of the tabu search
algorithm from 10 sample runs (“Runs 1-10”) on the E17 instance for each type of
attribute; nt denotes the number of tasks

62

3.4. COMPARISON OF TABU ATTRIBUTES

D

A B

F

J
I

H
G

C E

Route 1 Route 2

(a) Routes (AB,BE,BF, FH)
and (DA,AC,CG,HI, JF)

D

A B

F

J
I

H
G

C E

Route 1 Route 2

(b) Routes (DA,AB,BF, FH)
and (AC,CG,HI, JF,BE)

Figure 3.5: Different sets of routes with the same total distance. Each set contains
two routes shown in different colours (black and red). The depot is at vertex D.
Dashed lines represent traversals without service and solid lines represent traversals
with service. The routes in (a) are transformed into those in (b) by a swap move;
the tasks that are affected by the move (BE and DA) are underlined.

between routes without changing the total number of times each edge is traversed.

This is illustrated by Figure 3.5. Two routes in Figure 3.5(a) (one shown in black

and the other in red) are transformed to two new routes in Figure 3.5(b) by swapping

tasks BE and DA between their respective routes. Notice that the swap move does

not affect the total number of traversals on each edge; it only transfers the service

on some edge from one traversal to another, so the routes in Figure 3.5(a) and

Figure 3.5(b) have the same total distance. What remains to be seen now is why

the tabu search algorithm with the 3-task attribute was susceptible to stagnation of

total distances.

It is worth reminding ourselves at this stage that the aspiration criterion was

implemented in the tabu search algorithm. Table 3.3 shows the number of iterations

in which a neighbourhood move is selected as a result of the aspiration criterion (i.e.

it is tabu but leads to a solution better than the best one found so far). It turns

out that the number of such iterations is very low compared with the number of all

iterations for which the tabu search is executed (the maximum number is 9 out of

3,600 iterations). This means that the aspiration criterion plays a part in relatively

few iterations in the results shown in Figure 3.4. It follows that the performance of

each variant of the tabu search algorithm is largely affected by the determination of

tabu/non-tabu moves, which is dependent on the selected type of attributes.

It is suspected that the reason why the 3-task type is more susceptible to stagnation

of total distances than the other types of tabu attributes is because of its relatively

63

3.5. DEADHEADING CYCLES

Table 3.3: The number of iterations (out of 3,600 iterations) in which a neighbourhood
move was selected as a result of the aspiration criteria from 20 runs on the E17
instance

Attribute type Average Max Min

Task-in-a-route 5.15 9 1
2-task 3.95 8 1

2-task-in-a-route 2.25 6 0
3-task 0.95 4 0

low “restrictiveness,” i.e. a neighbourhood move is less likely to be tabu based on the

3-task type than the other types of attributes. For example, a 3-task attribute (s, t, u)

prohibits the insertion of task t between tasks s and u. If tasks s and u are serviced

consecutively in the same route R, then the 3-task attribute (s, t, u) prohibits only

one insertion position in the route R (i.e. between s and u). Otherwise, the 3-task

attribute (s, t, u) plays no role in the determination of tabu moves. In contrast, a

task-route attribute (t, R) prohibits the insertion of task t into route R, regardless of

the insertion position. This means the task-route type of attribute tends to make a

large proportion of moves tabu, thereby potentially ruling out all moves with cost 0

and forcing the algorithm to visit solutions in further reaches of the solution space.

Since there can be many CARP solutions with the same total distance, the abilities

to move away from a certain total distance and to explore a wide variety of solutions

seem important for achieving a high-quality solution over the course of execution of

the tabu search algorithm.

The next section proposes an operator that attempts to improve the tabu search

algorithm by detecting and removing certain undesirable features in a solution.

3.5 Deadheading Cycles

In practice, a route can contain both edges that are traversed with service and those

that are traversed without service; the latter exist when tasks that are serviced

consecutively in the same route are not physically adjacent to each other (or when the

first/last task is not adjacent to the depot). An edge that is traversed without service

is also referred to as a deadheading edge. It is possible that several deadheading

edges in the same route form a cycle, called a deadheading cycle. If a deadheading

cycle exists in some route in a given solution, it can be removed without affecting

feasibility of the solution as long as it does not disconnect the route. The reasons

64

3.5. DEADHEADING CYCLES

a1a3

a4

a5 a6

a7

a8

D
E

F

B

A

C

HG a2

(a) Route (D, a1, a2, a3, a4, a5, a6, a7, a8, D)

a1a3

a4

a5 a6

a7

a8

D
E

F

B

A

C

HG a2

(b) Route (D, a4, a5, a6, a7, a1, a2, a3, a8, D)

Figure 3.6: A route that contains a deadheading cycle (a) and an improved route
after removing the deadheading cycle (b); the depot is at vertex D; a solid line
represents a traversal with service, while a dashed line represents a traversal without
service

why the feasibility of a solution is maintained after removing a deadheading cycle

are that: (i) a deadheading cycle does not involve any services, so all tasks are still

serviced and the capacity constraint remains satisfied, and (ii) with a route regarded

as an Eulerian multigraph, removing a cycle preserves the parity of the degree of

each vertex (since there are an even number of edges that are incident to each vertex

in a cycle), and therefore the multigraph remains Eulerian after the removal of the

cycle.

Provided that all edge costs are positive, removing a deadheading cycle always leads

to a better solution. Figure 3.6 shows an example of a deadheading cycle and how

the solution can be affected by the removal of the deadheading cycle. A route in

Figure 3.6(a) contains a deadheading cycle (E,F,E). Removing this cycle results in

the route shown in Figure 3.6(b). Notice that removing a deadheading cycle can affect

the order of tasks that are serviced in the route: as can be seen in Figure 3.6, removing

the deadheading cycle (E,F,E) transforms the route (D, a1, a2, a3, a4, a5, a6, a7, a8, D)

into (D, a4, a5, a6, a7, a1, a2, a3, a8, D). In other words, the subsequence of tasks

(a4, a5, a6, a7) was moved to the front of a1. If the tabu search algorithm relies only

on “small-step” neighbourhood moves (i.e. making changes to a small number of

tasks) such as those defined in Section 3.2, it would require several neighbourhood

moves to obtain the same change.

In order to detect deadheading cycles in a given route, we need to know the number

of times each edge is traversed in total, counting traversals in any direction, both

with and without services. To put it another way, a route should be viewed as an

Eulerian multigraph in which the multiplicity of each edge is equal to the number of

65

3.5. DEADHEADING CYCLES

traversals on that edge. However, in the tabu search algorithm described in previous

sections (as well as some other existing metaheuristic algorithms for the CARP in

the literature), a route is viewed as a sequence of tasks. Although this provides

a concise representation of a route to work with neighbourhood moves (since a

neighbourhood move is essentially a means to move tasks within a solution), it omits

information about deadheading edges, and thus it gives no indication of the existence

of deadheading cycles. Given a route as a sequence of tasks R = (v0, a1, a2, . . . , an, v0),

we can determine deadheading edges in the route by finding shortest paths between

endpoints of consecutive tasks (and between the first/last task and the depot).

Shortest paths between any two vertices can be found by a polynomial-time algorithm

such as that of Dijkstra (1959).

Let Gmult be a multigraph such that the multiplicity of each edge in Gmult is equal

to the number of times the edge is traversed in the route R. If an edge is traversed

more than twice, at least two such traversals are deadheading because an edge can

only be serviced at most once. Every two deadheading traversals on the same edge

form a cycle in Gmult. Thus, for an edge that is traversed more than twice, there is

guaranteed to be a deadheading cycle on that edge that can be removed without

disconnecting the route. In contrast, for an edge that is traversed twice and both

traversals are deadheading, careful consideration is needed because the removal of

the deadheading cycle in this case may or may not disconnect the route; this is

illustrated in Figure 3.7. A deadheading cycle in Figure 3.7(a) is removable, whereas

a deadheading cycle in Figure 3.7(b) is not removable because removing it would

disconnect the route and result in an invalid solution (i.e. the removal splits the

route into two smaller routes, one of which does not contain the depot). Therefore, to

ensure continuity of a route, here we opt to remove only deadheading cycles on edges

that are traversed at least three times. In other words, we remove a deadheading

cycle on each edge until the number of traversals on that edge reduces to either 1 or

2, depending on its parity.

After detecting and removing deadheading cycles, the consequent Eulerian multigraph

Gmult can be converted back into a sequence of tasks by determining an Eulerian

cycle in Gmult. If an edge corresponding to a task is traversed more than once (i.e.

its multiplicity in Gmult is greater than one), it is assumed that the task is serviced

on its first traversal.

For clarity, a pseudocode of the proposed procedure, which will also be referred to as

the deadheading cycle remover (DCR), is given as Algorithm 3.

66

3.5. DEADHEADING CYCLES

Figure 3.7: A deadheading cycle on an edge that is traversed twice may be removable
(a) or not removable (b)

67

3.5. DEADHEADING CYCLES

Algorithm 3 The deadheading cycle remover

1: given a graph G = (V,E) and a route as a sequence of tasks (v0, a1, a2, . . . , an, v0)
2: /* step 1: count the number of traversals nt(e) on each edge e ∈ E */
3: initialise nt(e) = 0 for all edges e ∈ E
4: for i = 0 to n do
5: find a shortest path P between h(ai) and t(ai+1)
6: (where, for ease of notation, a0 = (v0, v0) = an+1)
7: for each edge e in P do
8: increase nt(e) by 1 . count deadheading traversals

9: if i > 0 then
10: let e be the edge corresponding to task ai
11: increase nt(e) by 1 . count traversals with services

12: /* step 2: remove deadheading cycles while keeping the route connected */
13: for each edge e ∈ E do
14: if nt(e) > 2 then
15: if nt(e) is odd then
16: set nt(e) = 1
17: else
18: set nt(e) = 2

19: /* step 3: obtain a new route after removing deadheading cycles */
20: let Gmult = (V,E) be a multigraph such that the multiplicity of each edge e ∈ E

is equal to nt(e).
21: find an Eulerian cycle in Gmult, say C = (v0, e1, v1, e2, v2, . . . , vm−1, em, v0)
22: let R′ = (v0) . initialise a new route
23: for i = 1 to m do . m is the number of edges in the Eulerian cycle C
24: if ei corresponds to some task aj and aj is not in R′ then
25: append aj (with the appropriate direction, i.e. from vi−1 to vi) to R′

append v0 to R′ . close the route properly
26: return R′

68

3.5. DEADHEADING CYCLES

3.5.1 Computational Results

First we will investigate whether deadheading cycles actually exist in the solutions

given by the best variant of the tabu search algorithm from Section 3.4, namely

the one in which tabu moves are defined based on the task-in-a-route attributes

and the tabu tenure is 2nt, where nt is the number of tasks. Figure 3.8 shows the

number of runs in which there exists a removeable deadheading cycle (i.e. some

edges were traversed more than twice) in the best observed solution given by the

aforementioned variant at various iteration numbers k × nt, k = 0, 1, . . . , 100. Recall

that the algorithm was repeated 20 times on each instance, resulting in 600 runs

(30 instances × 20 runs) in total. Among initial solutions (iteration 0), removable

deadheading cycles existed in about half the runs (318 out of 600 runs). As the

number of iterations increased, the number of runs with removable deadheading cycles

dropped dramatically to just over 100 runs and then decreased steadily, eventually

reaching and seeming to stagnate around 60, which account for 10% of all runs in

this experiment, despite increasing the number of iterations to 100nt. This shows

that some deadheading cycles in early iterations were indirectly removed as the

tabu search algorithm attempted to find better solutions by means of neigbourhood

moves, but afterwards the tabu search algorithm was not always able to completely

remove deadheading cycles on its own even if it was given a relatively large number

of iterations. The inability to remove deadheading cycles could be because the

rule for selecting the best neighbourhood move in each iteration is largely based on

(changes of) total distances, not on whether it would remove deadheading cycles.

Implementing the DCR after the final iteration of the tabu search algorithm as a post-

optimisation step would further improve the solution by dealing with deadheading

cycles that have been overlooked by the tabu search.

Instead of implementing the DCR as a post-optimisation step, it is also possible to

implement the DCR after the best neighbourhood move is applied to the current

solution in each iteration. Figure 3.9 compares two ways of implementing the DCR:

(i) after the final iteration, and (ii) in every iteration after the best neighbourhood

move. More precisely, Figure 3.9 shows medians2 of percentage deviations from

optimality given by these two variants on a range of stopping criteria (that is, the

number of iterations = k × nt, where k = 0, 1, . . . , 100). For ease of reference,

Figure 3.9 also displays the result corresponding to the algorithm without the DCR

(the blue line with circle markers in Figure 3.2). The computational results suggest

that implementing the DCR in either way could help the tabu search algorithm find

2As before, the percentage deviations on each instance are averaged over 20 runs, and the
medians are taken from those averages over 30 instances.

69

3.5. DEADHEADING CYCLES

0 20nt 40nt 60nt 80nt 100nt

Number of iterations

0

50

100

150

200

250

300

350

Nu
m

be
r o

f r
un

s

Figure 3.8: The number of runs (out of 600 runs) in which the best solution at
various iteration numbers knt has removable deadheading cycles, where nt is the
number of tasks, and k = 0, 1, . . . , 100

a better solution. Furthermore, implementing the DCR in every iteration generally

results in lower total distance than implementing it only once after the final iteration

over a wide range of stopping criteria.

A two-tailed Wilcoxon signed-rank test is conducted at various iteration numbers

throughout the execution of tabu search (k × nt, where k = 10, 20, . . . , 100). As

shown in Table 3.4, it was found that implementing the DCR in either way leads

to statistically significant improvement. Moreover, the difference between two ways

of implmenting the DCR is statistically significant at early iterations (10nt and

20nt). This suggests that implementing the DCR in every iteration could help the

tabu search algorithm improve the solution more effectively especially during early

iterations. In other words, not only can the DCR be used to improve the solution as

a post-optimisation step, but it can also be integrated into the tabu search algorithm

and help the algorithm improve the solution at a faster rate.

Figure 3.10 shows average time taken on each instance by the tabu search algorithm

without and with the DCR in every iteration (the results were obtained from running

the algorithm on an Intel Core i5-4690 3.50GHz CPU with 8GB RAM). It can be

seen that the computation times in both cases are very similar on all instances. This

confirms that the DCR requires relatively little computation effort.

It should also be noted that the computation time taken by the tabu search with DCR

is sometimes less than that without DCR. This is possible because implementing

the DCR generally causes the tabu search algorithm to visit different solutions from

70

3.5. DEADHEADING CYCLES

0 20nt 40nt 60nt 80nt 100nt

Number of iterations

0.0

1.0

2.0

3.0

4.0

5.0

Pe
rc

en
ta

ge
 d

ev
ia

tio
n

fro
m

 o
pt

im
al

ity

without DCR
with DCR after final iteration
with DCR in every iteration

Figure 3.9: Medians of percentage deviations from optimality over a range of iteration
numbers given by the tabu search algorithm with different ways of implementing the
deadheading cycle remover, namely without the deadheading cycle remover (“without
DCR”), with the DCR being implemented after the final iteration (“with DCR after
final iteration”), and with the DCR being implemented in every iteration (“with
DCR at every iteration”)

Table 3.4: Medians of percentage deviations from optimality given by the tabu
search algorithm with different ways of implementing the deadheading cycle remover
(“DCR”); nt denotes the number of tasks

Number of
iterations

Ways of implementing the DCR

Without DCR
With DCR after

final iteration
With DCR in
every iteration

10nt 2.81 2.69∗ 2.26∗†

20nt 2.25 2.08∗ 1.90∗†

30nt 1.93 1.74∗ 1.63∗

40nt 1.75 1.70∗ 1.49∗

50nt 1.61 1.45∗ 1.41∗

60nt 1.60 1.42∗ 1.37∗

70nt 1.52 1.39∗ 1.29∗

80nt 1.47 1.32∗ 1.24
90nt 1.38 1.29∗ 1.19∗

100nt 1.31 1.21∗ 1.18
∗ significantly better than “without DCR”
† significantly better than “with DCR after final iteration”

based on a two-tailed Wilcoxon signed-rank test with a Bonferroni correction

(for 3 pairwise comparisons), resulting in a significance level of 0.05/3 ≈ 0.017

71

3.6. NOTES ON THE USE OF MULTIPLE TABU LISTS

E2
5

C1
6

E1
7

C2
5

C1
7

C2
2

E0
6

E2
2

E0
3

E1
0

E0
7

C0
3

C0
6

C0
7

C1
3

E1
3

C0
2

C2
0

E1
6

C1
0

E1
4

C1
4

E0
2

E0
8

C1
9

E0
5

C0
8

E2
0

C0
5

E1
9

Instance

0

10

20

30

40

50

60

70

Ti
m

e
ta

ke
n

(s
ec

on
ds

)

Without DCR
With DCR at every iteration

Figure 3.10: Average elapsed time for executing the tabu search algorithm on
each instance for 100nt iterations taken by the tabu search algorithm without the
deadheading cycle remover (“without DCR”) and with the DCR being implemented
in every iteration (“with DCR at every iteration”); black vertical lines show one
standard deviation from each side of the averages

those that the algorithm would without DCR, and different solutions generally have

different numbers of feasible neighbour solutions. It could be the case that a solution

visited by tabu search without DCR has a smaller number of feasible neighbour

solutions, hence a smaller total amount of time taken to explore neighbourhood

moves (even if the computation time taken by the DCR is included).

3.6 Notes on the Use of Multiple Tabu Lists

Recall that the variant of the tabu search algorithm that is based on the task-in-a-

route attribute uses two separate tabu lists, one for Single Insertion, Double Insertion,

and Swap, and the other for 2-opt moves; the latter is based on the 2-task attribute.

Even though we saw in Section 3.4 that this variant showed the best performance

among all four types of solution attributes being tested, it was later found that using

two separate tabu lists could inadvertently allow the algorithm to revisit previous

solutions, even if the corresponding attributes are currently tabu. An example of

this phenomenon is given in Figure 3.11. The last move in Figure 3.11 is not tabu

according to the task-in-a-route attribute: a5 could be inserted into route A and b4

into route B because both insertions (corresponding to the attributes (a5,Route A)

and (b4,Route B)) are not currently in the tabu list. Notice that a5 was removed

72

3.7. CONCLUSIONS

a1 a2 a3 a4 a5Route A:

b1 b2 b3 b4 b5 b6Route B:

a1 a2 b1b2b3a3

a4a5 b4 b5 b6

a1 a2 b1b2b3a3

a4a5 b4 b5 b6

a1 a2 a5 b1b2b3

a4 b4 b5 b6a3

a1 a2 a5 b1b2b3

a4 b4 b5 b6a3

a1 a2 a4b4 a3

a5b1 b2 b3 b5 b6

a1 a2 a4b4 a3

a5b1 b2 b3 b5 b6

a1 a2 a3 a4 a5

b1 b2 b3 b4 b5 b6

Route A:

Route B:

Route A:

Route B:

Route A:

Route B:

Iteration i

Iteration i+1

Iteration i+2

Iteration i+3

2-opt

swap

2-opt

swap

(a3, a4)

(b3, b4)

(a3, Route A)

(a5, Route B)

(a2, b3)

(b4, b5)

(a3, a4)

(b3, b4)

(a2, a3), (a3, b3)

(Depot, a5), (a5, a4)

(a2, b3)

(b4, b5)

Task-in-a-route 2-task

Recorded attributes

~ ~ ~

~ ~

~ ~ ~

~ ~

~ ~ ~ ~

~ ~

~ ~ ~ ~

~ ~

~

~

~

~

~ ~ ~

~

Figure 3.11: An example of how a solution can be revisited; each ai and bj represent
tasks with specified directions; ã denotes the opposite direction of a

from Route A by 2-opt moves (see Iterations i and i+2); if it were removed by a swap

move, the attribute (a5,Route A) would have been recorded, but it was not because

a different tabu list was used for 2-opt moves. In contrast, the same move would

be tabu and thus forbidden (unless the aspiration criterion is satisfied) according

to the 2-task attribute because all pairs corresponding to the swap move (namely,

(a4, a5), (a5,Depot), (b3, b4), and (b4, b5)) are currently in the tabu list.

Another look at Figure 3.2 reveals that among all the types of attributes considered

here excluding the task-in-route-attribute, it is the 2-task attribute that generally

improves the solution at the fastest rate. We thus opt to investigate a way of solving

a dynamic CARP in the next chapter based on the tabu search algorithm with the

2-task attribute.

3.7 Conclusions

This chapter presents a novel analysis of the performance of tabu search for the

static CARP with different ways of defining tabu moves. In particular, we compare

their performance over different iteration limits (instead of looking at their results

based on a single stopping criteria) and attempt to identify key features of the

algorithm that can enhance or inhibit its performance. The goal of this chapter is to

see whether the best variant would vary according to the number of iterations for

which the tabu search was allowed to run. This will help us decide which algorithm

to use in a dynamic CARP, where the amount of time available for updating the

73

3.7. CONCLUSIONS

solution is often limited. In particular, a variant that could improve the solution

relatively fast would be preferable to one that could find a very good solution after

long computation time but improves the solution at a much slower rate. In the

tabu search algorithm considered in this chapter, the tabu status of neighbourhood

moves was determined in the following way: solution attributes corresponding to the

selected move in each iteration are recorded in the tabu list, and a neighbourhood

move is said to be tabu if solution attributes that arise as a result of the move are

currently in the tabu list. A comparison was made between four types of solution

attributes, namely task-in-a-route, 2-task, 2-task-in-a-route, and 3-task attributes.

Computational results suggested that the tabu search algorithm based on the task-

in-a-route attribute generally gave the best solutions across a wide range of numbers

of iterations; this type of attribute also used the least amount of computation time

on average. The worst type of attribute, namely the 3-task attribute, was seen to

suffer from stagnation of total distance, whereas the other types of attributes did

not encounter the same issue as much. This was suspected to be caused by its

relatively low restrictiveness, i.e. a neighbourhood move is less likely to be tabu

based on the 3-task attribute than the other types of attributes. As the CARP

can have many solutions with the same total distance, a type of attribute that is

sufficiently restrictive would make many moves tabu and encourage the algorithm

to visit solutions that are different from previously visited solution, thereby helping

the algorithm to avoid getting stuck with a group of solutions with certain total

distance. Thus, the notion of “tabu moves” for the CARP in particular is not only

for avoiding previously visited solutions, but it can also help avoid getting stuck in a

set of solutions with the same total distance when defined appropriately. This seems

to be one factor that helps tabu search improve the solution at a relatively fast rate.

A novel operator named the deadheading cycle remover (DCR) was proposed to

improve the performance of tabu search. It was motivated by the fact that a cycle

composed of deadheading cycles, i.e. traversals without services, can be removed

from a route without affecting the feasibility of a solution as long as the route

remains connected after the removal. Furthermore, empirical results showed that

the tabu search algorithm could not always completely remove deadheading cycles

on its own. It was found that implementing the DCR indeed significantly improved

the solutions returned by the tabu search algorithm. In fact, implementing the

DCR in every iteration leads to significant improvement at early iterations compared

with implementing the DCR only once after the final iteration (i.e. using it as a

post-optimisation step); in other words, the DCR can improve tabu search’s speed of

improving CARP solutions. It is also worth noting that the DCR requires only little

74

3.7. CONCLUSIONS

additional computational effort.

Recall that the variant of our tabu search algorithm that is based on the task-in-a-

route attribute actually involves another attribute: a 2-task attribute is considered

instead when a 2-opt move is selected because using the task-in-a-route attribute

would involve recording and checking a large number of pairs. Even though empirical

results suggest that this variant is among those that improve a CARP solution at

the fastest rates, it was found that defining tabu moves based on multiple attributes

could fail to prevent tabu search from revisiting previous solutions. Among the other

variants of tabu search considered in this chapter, the 2-task attribute yields the best

performance. For this reason, the tabu search algorithm in which the definition of

tabu moves is based on the 2-task attribute will be used to tackle a dynamic CARP

in subsequent chapters.

In the next chapter, we will describe in greater detail how the dynamic CARP can

be tackled and will investigate how the dynamic CARP solution can be affected by

the frequency of updating the solution.

75

Chapter 4

Dynamic Capacitated Arc Routing

Problem

4.1 Introduction

A dynamic CARP is an extension of the CARP in which some information in the

problem changes while vehicles are travelling and servicing tasks. Those changes

may cause a set of routes that are planned before the changes to have lower quality

with respect to total distance (or some other quantity that is being optimised) or

even become infeasible, hence the need to update the routes accordingly. There are

many types of changes that can be considered in a dynamic CARP as we saw in

Section 2.10. The type of change that we focus on in this thesis is the appearance of

new demands.

In practice, route planning and amending need to be performed in an indefinite

period of time as long as new tasks appear (Psaraftis, 1980). For the purposes of

this thesis, however, we restrict our attention to a finite period of time, which will

also be referred to as a planning horizon. It is assumed that all demands that appear

within the planning horizon cannot be rejected and must be serviced.1 In other

words, those demands must be included in the solution by the end of the planning

horizon. Nevertheless, they do not need to be added to the solution immediately

when they appear. This means that a route planner can decide when to update the

solution.

1In practice, demands that appear after the end of the planning horizon would be dealt with in
the next planning horizon, e.g. the next working day.

76

4.1. INTRODUCTION

In an extreme case, a route planner may decide to update the solution just once at

the end of the planning horizon (while keeping all vehicles idle at the depot until

the end of the planning horizon), which would allow all tasks to be added to the

solution at the same time. This would be an ideal approach if the total distance

is the only quantity that needs to be minimised. However, this can greatly delay

the completion of the service since those new tasks could be serviced only after the

solution is updated. Therefore, in this chapter, we consider performing a number

of solution updates over the planning horizon as new tasks appear while vehicles

are travelling and servicing tasks. We are interested in finding a way to amend a

solution as new tasks appear while ensuring that both total distance and service

completion time do not increase excessively.

Notice that updating a solution infrequently would allow the route planner to deal

with many tasks at the same update. However, a large amount of time between

updates means that a large proportion, if not the whole, of a route would be traversed

(assuming that the corresponding vehicle travels without stopping from leaving the

depot until returning to the depot) and thus could no longer be amended. This

reduces the number of possible ways in which a solution can be changed. In contrast,

updating the solution more frequently would give more flexibility in making changes

to the solution, although a route planner would have less information about new

tasks to exploit in each update. This illustrates the need to identify a solution

update frequency that facilitates effective route planning for the dynamic CARP

(and dynamic routing problems in general).

This chapter describes how the dynamic CARP will be tackled and investigates how

the frequency of updating the solution can affect solution quality with respect to

both total distance and service completion time, i.e. the time at which all vehicles

return to the depot after servicing all tasks. Apart from the frequency of updating

the solution, a comparison will also be made between different ways of integrating

new tasks into an existing set of routes.

Section 4.2 describes components of a dynamic CARP solver. Section 4.3 explains a

way of generating instances for the dynamic CARP with new tasks. Computational

results given by variants of a dynamic CARP solver are shown and discussed in

Section 4.4. Section 4.5 compares different ways of integrating new tasks into a

solution. The conclusions of this chapter are given in Section 4.6.

77

4.2. COMPONENTS OF A DYNAMIC CARP SOLVER

4.2 Components of a Dynamic CARP Solver

Our process of finding a solution for the dynamic CARP can be divided into three

main components: deciding when to update the solution, determining the current

state of the problem at each update, and amending the solution subject to the current

state of the problem. We now consider these in turn.

4.2.1 Solution Update Schedules

Here we shall focus on a regular update schedule: that is, the solution is updated at

regular intervals. More precisely, let T be the length of the planning horizon and

N the number of updates, which is to be specified. Without loss of generality, let

the planning horizon start at time 0 and end at time T . Solution updates then take

place at time kT
N

for k = 1, . . . , N . Intuitively, fewer updates mean more time to

collect information about new tasks that appear in the interval prior to each update,

while more updates means new tasks can be dealt with more promptly. A regular

update schedule has been used in dynamic vehicle routing (Montemanni et al., 2005;

Chen and Xu, 2006). In particular, computational results given by Montemanni

et al. (2005) showed that the best solution (with respect to total distance) could be

achieved when the number of updates was neither too high nor too low, although

it was not explicitly investigated how (or whether) such “promising” number of

updates would vary with the rate at which new tasks appear. Later in this chapter

(Section 4.4), several numbers of updates will be tested on dynamic CARP instances

with a range of rates at which new tasks appear.

4.2.2 Determining the Current State of the Problem

Before each solution update, the current state of the problem needs to be determined.

This involves updating the set of tasks to be serviced, the vehicles’ positions, and their

remaining capacities. The current state of the problem depends on both changes in

the problem itself (new tasks appear) and solutions from previous updates (vehicles

travel around to service tasks). Also, notice that parts of the routes that have been

traversed cannot be amended, so those parts should be clearly identified to ensure

that changes made to the solution are feasible. For clarity, this section describes how

the current state of the problem and the (non-)amendable parts of the routes are

determined.

78

4.2. COMPONENTS OF A DYNAMIC CARP SOLVER

a1 a2 a3

Time at which
the vehicle leaves the depot

T(1)

T(2)

T(3)

Traversal without service

Traversal with service

Figure 4.1: The time T (i) at which a vehicle reaches the ith task in its route.

Given the time at which the solution is updated, each route R = (vs, a1, . . . , an, v0)

is divided into two parts, for some index ĩ and some vertex ṽs:

(vs, a1, . . . , aĩ, ṽs); (ṽs, aĩ+1, . . . , an, v0) (4.1)

Here the first part cannot be amended (i.e. it is fixed), whereas the second part can

still be amended. The task fixing index ĩ is the largest index i such that ai has been

reached by the vehicle corresponding to the route R. More precisely, let c(a) denote

the cost of an arc a, and D(a, b) the shortest distance from the head of an arc a to

the tail of another arc b. For ease of notation, let a0 = (vs, vs) and c(a0) = 0. The

task fixing index can be determined by finding the largest index i such that

T (i) =
1

ν

i∑
k=1

[c(ak−1) +D(ak−1, ak)] ≤ tu − ts(R), (4.2)

where T (i) is the time at which task ai is reached (with T (0) = 0 by convention), tu

is the time of the update, ts(R) the start time of the route R (not all routes need to

leave the depot at time 0; see Section 4.2.3), and ν the vehicle speed (distance per

unit time); here it is assumed that ν is a constant given as part of the problem and

that all vehicles travel at the same constant speed. Inequality (4.2) ensures that aĩ
is included in the fixed part not only when it has been serviced but also when it is

being serviced at the time of the update; see Figure 4.1 for the illustration. This

agrees with the assumption that partial service is not allowed (see Section 2.3), from

which it follows that if a vehicle is currently servicing aĩ, it must continue the service

until completion, and therefore it is certain that aĩ is serviced by this vehicle at its

current order in the route.

79

4.2. COMPONENTS OF A DYNAMIC CARP SOLVER

The starting vertex ṽs in the expression (4.1) is the first vertex to be visited in the

route after the given update. The way in which ṽs is determined depends on the

current position of the vehicle: (i) if the vehicle is precisely at some vertex at the

time of the update, then ṽs is simply that vertex; (ii) if the vehicle is in the middle

of an edge, then ṽs is the endpoint of that edge which the vehicle is heading towards.

That edge may be either a task that is being serviced by the vehicle or an edge in the

middle of a deadheading path between two consecutive tasks ai and ai+1 for some i

(in fact, the index i here is the task fixing index ĩ).

Once the task fixing index and the starting vertex of each route are determined,

its remaining capacity can be updated accordingly by simply subtracting the total

demand of tasks in the fixed part from the remaining capacity at the previous update.

After that, its fixed part is archived (so at the end of the planning horizon, a complete

journey of each vehicle is a concatenation of fixed parts of the corresponding route

that are archived in all updates). The next step is to combine the amendable parts

of the routes and the set of new tasks that have appeared since the previous update.

It should be noted that even though initially (at time 0) all vehicles have the same

capacity and their routes start at the same vertex (the depot), they can service

different amounts of demands and be at different locations at later time t > 0. This

means that when updating the solution within the planning horizon, it is possible

that a route planner encounters a more general version of the CARP, namely an

open CARP with heterogeneous vehicles. Here, “open” refers to an open route, i.e. a

vehicle’s starting and ending vertices are not necessarily the same (it could be away

from the depot at the time of the update), and “heterogeneous” means that different

vehicles can have different (remaining) capacities.

4.2.3 Integrating New Tasks into the Solution

Once the current state of the problem is determined, new tasks need to be integrated

into the solution to form a feasible solution subject to the current state of the problem.

One way to do so is to reconstruct the solution from scratch. More precisely, all

existing tasks are removed from the routes so the routes only contain their starting

and ending vertices. Then, those tasks together with new tasks are added back to

the routes using the Path Scanning algorithm (described in Section 2.5). Although

the Path Scanning algorithm was originally designed for the standard CARP (where

all vehicles have the same capacity and start their routes from the same vertex),

it can be easily adapted for an open CARP with heterogeneous vehicles. Each

80

4.3. GENERATION OF DYNAMIC CARP INSTANCES

route is reconstructed by adding one task at a time to the end of the route. The

task to be added is the one that is nearest to the end vertex of the last task (or

nearest to the starting vertex of the route if it is the first task). When there is more

than one nearest task, one of them is chosen according to a given tie-breaking rule.

Golden et al. (1983) proposed 5 tie-breaking rules: (i) maximise the distance from

the endpoint to the depot; (ii) minimise the distance from the endpoint to the depot;

(iii) use rule (i) if the vehicle’s remaining capacity is at least half the whole capacity,

and use rule (ii) otherwise; (iv) maximise the ratio demand/cost; and (v) minimise

the ratio demand/cost. Tasks are iteratively added to the routes until no more tasks

can be added due to the capacity. The other routes are constructed in the same

way until all tasks are added to the routes. If the existing routes are not sufficient

to service all the tasks, then a new route is constructed with the starting vertex

being the depot (so this route leaves the depot after time 0). Each tie-breaking rule

gives one solution, and the best among those solutions is chosen as the output of the

algorithm. If there is more than one best solution, one of them is chosen randomly.

Obviously, reconstructing the solution from scratch is not the only way to integrate

new tasks into the solution. Later on in this chapter (Section 4.5), an alternative

way of integrating new tasks will be considered.

After new tasks are integrated into the solution, an attempt is then made to improve

the solution by means of a variant of the tabu search algorithm from Chapter 3,

namely the one in which the definition of tabu moves is based on the 2-task attribute.

A pseudocode for the whole dynamic CARP solver is given in Algorithm 4.

4.3 Generation of Dynamic CARP Instances

To test variants of the dynamic CARP solver, a number of dynamic CARP instances

are required. There exists a benchmark instance generator for dynamic CARPs

with various types of changes in the literature (see Liu et al., 2014a). However, this

generator explicitly specifies the number of updates, the time of each update, and

a set of changes that need to be considered at each update. In contrast, for the

dynamic CARP being considered here, the appearance time of each new task is given

in the problem, whereas the number of updates and the time of each update are

variables to be decided by a route planner; a set of new tasks in each update would

depend on these decisions. To the best of our knowledge, there are no instances

for this type of dynamic CARP at the time of writing. Consequently, this section

81

4.3. GENERATION OF DYNAMIC CARP INSTANCES

Algorithm 4 Configuration of the dynamic CARP solver

1: given max time (i.e. the length of the planning horizon), and a rule for deciding
when to perform solution updates (see Section 4.2.1)

2: construct an initial solution S by the Path Scanning algorithm (see Section 2.5)
3: apply the tabu search algorithm (from Chapter 3) to S
4: set time = 0
5: while time < max time do
6: increase time by 1 unit
7: if time is an update time then
8: let T be the set of new tasks that appear since last update
9: if there exist new tasks then

10: identify the fixed part and the starting vertex of each route for the
current update (see Section 4.2.2)

11: remove tasks from the non-fixed part of each route and add them to
the set of tasks T

12: reconstruct the solution S with the set of tasks T by the Path Scanning
algorithm

13: apply the tabu search algorithm (from Chapter 3) to S

describes how new instances for this type of dynamic CARP were generated for

experiments in this chapter.

Before introducing a way of generating dynamic CARP instances, it is useful to know

how to measure “dynamism,” which will help to classify those instances according

to how changes occur. A task that appears after time 0 will be called a dynamic

task. The degree of dynamism (DoD) of a dynamic CARP instance is defined as the

ratio of the number of dynamic tasks to the number of all tasks, including those that

appear at time 0. This follows the definition of the degree of dynamism for dynamic

vehicle routing given by Lund et al (1996) (as cited in Larsen and Madsen, 2000).

Dynamic CARP instances in this chapter were generated based on existing static

CARP instances. Notice that the only thing that needs to be done once given a

static CARP instance is to specify the time at which each task appears. Given a

static CARP instance, the appearance time of each task is determined (provisionally)

by randomly choosing an integer2 t ∈ {1, 2, . . . , T} with the uniform distribution

(recall that T is the length of the planning horizon). The tasks are then arranged in

a sequence in a random order. Let nt denote the number of tasks in the given static

CARP. For each degree of dynamism δ = 0.1, 0.2, . . . , 0.9, the first nt × δ (rounded

to the nearest integer) tasks in the sequence are regarded as dynamic tasks, while

2This discrete representation of time is designed to resemble a logging system that records the
time at which each new task appears in the format “hour:minute” or “hour:minute:second,” where
the smallest unit of time (minutes or seconds) is discrete.

82

4.3. GENERATION OF DYNAMIC CARP INSTANCES

the rest are static tasks, i.e. their appearance times are reset to 0. One execution of

this process gives 9 dynamic CARP instances (one for each degree of dynamism) per

static CARP instance.

Notice that, among those 9 dynamic CARP instances from the same execution, a

task that is dynamic on an instance with smaller δ is also dynamic and has the

same appearance time on an instance with larger δ. This way of generating dynamic

CARP instances allows us to meaningfully compare total distances on dynamic

CARP instances with different degrees of dynamism: at the end of the planning

horizon, a feasible solution on an instance with larger δ is also feasible on an instance

with smaller δ. To see this, let I1, I2 be dynamic CARP instances that are generated

in the same execution with the DoD on I1 smaller than that on I2. Let S1, S2 be

feasible solutions at the end of the planning horizon on I1, I2, respectively. Because

the appearance time of any task, say t, in I2 is no less than the appearance time of

the same task t in I1, the service on t in S2 starts no earlier than the appearance

time of t in S1 (notice that the time at which the service on a given task starts

must be greater than or equal to the appearance time of the same task). Thus, the

solution S2 would also be feasible in the instance I1. It follows that the optimal total

distance on an instance with larger DoD is no less than the optimal total distance

on an instance with smaller DoD that is based on the same static CARP instance

and the same appearance times.

For experiments in this chapter, a set of dynamic CARP instances has been generated

based on 20 existing static CARP instances from the BMCV dataset (Beullens

et al., 2003). Details of these static CARP instances are shown in Table 4.1.

The best known lower and upper bounds on these instances are taken from http:

//logistik.bwl.uni-mainz.de/benchmarks.php (last accessed 23 March 2018).

The numbers of tasks in the instances range from 66 to 107, and the numbers of

vehicles that are needed (i.e. the total demand divided by the vehicle capacity,

rounded up to the nearest integer) range from 6 to 12. The length of the planning

horizon is set to 500, which is roughly equal to the average route cost in optimal

solutions on the static CARP instances (the last column in Table 4.1); this helps

prevent the planning horizon from being so long that a new task appears after all

vehicles return to the depot. In total, 360 dynamic CARP instances were generated:

20 static CARP instances × 9 degrees of dynamism (δ = 0.1, 0.2, . . . , 0.9) × 2 rounds

of generating dynamic CARP instances (with different sets of dynamic tasks and

their appearance times in different rounds).

83

4.3. GENERATION OF DYNAMIC CARP INSTANCES

Table 4.1: Characteristics of static CARP instances on which a generation of dynamic
CARP instances is based; LB and UB are the best known lower and upper bounds,
respectively (LB is omitted when UB is optimal), and nveh is the least number of
vehicles needed (total demand divided by capacity, rounded up to the nearest integer);
the capacity is 300 for all instances

Instance
Number of

vertices
Number of

edges
Number of

tasks
LB UB

Total
demand

nveh
UB
nveh

C01 69 98 79 4150 2490 9 461.1
C04 60 84 72 3510 2170 8 438.8
C09 76 117 97 5245 5260 3440 12 438.3
C11 83 118 94 4615 4630 2825 10 463.0
C12 62 88 72 4240 2630 9 471.1
C15 97 140 107 4920 4940 3080 11 449.1
C21 60 84 76 3970 2245 8 496.3
C23 78 109 92 4075 4085 2395 8 510.6
C24 77 115 84 3400 2040 7 485.7
E01 73 105 85 4900 4910 2975 10 491.0
E04 70 99 77 4155 2545 9 461.7
E09 93 141 103 5805 5820 3585 12 485.0
E11 80 113 94 4650 2820 10 465.0
E12 74 103 67 4180 2485 9 464.4
E15 85 126 107 4205 2615 9 467.2
E18 78 110 88 3835 2225 8 479.4
E19 77 103 66 3235 1800 6 539.2
E21 57 82 72 3730 2025 7 532.9
E23 93 130 89 3710 2280 8 463.8
E24 97 142 86 4020 2235 8 502.5

84

4.4. COMPARISON OF VARIANTS OF THE DYNAMIC CARP SOLVER

4.4 Comparison of Variants of the Dynamic CARP

Solver

This section presents a novel analysis of how the dynamic CARP solution can be

affected by adjusting two key components of the dynamic CARP solver: the number

of iterations of tabu search in each update, and the frequency of solution updates.

Several variants of the dynamic CARP solver are tested on the instances generated

in Section 4.3. Due to the stochastic nature of the algorithm, each variant is run

20 times on each dynamic CARP instance and its performance on that instance is

assessed based on average results over 20 runs.

The algorithm performance on a given dynamic CARP instance will be measured in

relation to a posteriori lower bound, which is the best known lower bound on the

corresponding static CARP instance (in other words, when all tasks are treated as if

they are all known in advance). More precisely, the algorithm performance will be

reported in the form of percentage deviations from a posteriori lower bounds:

percentage deviation =

(
solution cost− a posteriori lower bound

a posteriori lower bound

)
× 100. (4.3)

In particular, if the optimal cost for a given instance is known, then the percentage

deviation is calculated by putting the optimal cost in place of the lower bound in

Equation (4.3).

4.4.1 The Number of Iterations of Tabu Search in Each

Update

In the static CARP, executing tabu search for more iterations would give a better (or

at least equally good) solution. In the dynamic CARP, however, it is not guaranteed

that a better solution at one update leads to a better solution at a subsequence update

(an example is given in Figure 1.2). Thus, it remains unclear whether executing

tabu search for more iterations in each update would give a better solution (with

respect to total distance) at the end of the planning horizon. This section presents a

comparison between variants of the dynamic CARP solver that differ in how long

tabu search is executed in each update.

Notice that the number of tasks that remain to be serviced can vary over time as new

tasks appear and existing tasks are serviced. It is anticipated that the number of

85

4.4. COMPARISON OF VARIANTS OF THE DYNAMIC CARP SOLVER

iterations that tabu search would need to improve a solution varies with the number

of tasks. For this reason, the maximum iteration limit for the tabu search algorithm

in each update is given in the form of k × nt, where nt is the number of tasks in

the given update (that are not in fixed parts of the routes; see Section 4.2.2 for the

description of a fixed part of a route) and k is a constant to be specified. In this

section, four different maximum iteration limits (corresponding to k = 10, 25, 50,

and 100) are tested with three regular update schedules (5, 10, and 20 updates),

giving 12 variants of the dynamic CARP solver in total. Each variant is tested on

three scenarios: “low,” “moderate,” and “high” dynamism, represented by dynamic

CARP instances with degrees of dynamism δ = 0.2, 0.5, and 0.8, respectively. The

tabu tenure is set to half the number of tasks, following the choice of the tabu tenure

chosen by Brandão and Eglese (2008).

Figure 4.2 shows distributions of percentage deviations over 40 instances given by each

variant of the dynamic CARP solver; the percentage deviations are computed from

solution costs (total distances) at the end of the planning horizon. The experiment

results in Figure 4.2 show little improvement due to increasing the maximum iteration

limit across different degrees of dynamism. Furthermore, a two-tailed Wilcoxon

signed-rank test was conducted to make a comparison between each pair of maximum

iteration limits (with a Bonferroni correction applied, resulting in a significance

level of 0.05/6 ≈ 0.0083). Table 4.2 shows that a higher maximum iteration limit

does not consistently lead to statistically significant improvement. This suggests

that increasing the maximum iteration limit is not a reliable way to improve the

performance of the dynamic CARP solver.

Figure 4.3 shows averages of elapsed time for executing each variant of the dynamic

CARP solver in the whole planning horizon (i.e. accumulating computation time

from all updates). It can be seen that a higher iteration limit indeed led to a

greater amount of elapsed time on average, suggesting that the lack of significant

improvement from the use of a higher iteration limit observed in Figure 4.2 is unlikely

to be caused by premature termination (i.e. tabu search terminating before reaching

the maximum iteration limit due to the absence of admissible3 solutions).

It was also observed in Table 4.2 that the median of percentage deviations increased

when using a higher maximum iteration limit in some cases. This illustrates a striking

difference between the static CARP and the dynamic CARP: running an algorithm

for the static CARP for more iterations would never lead to a worse solution. In

3Recall that a solution is said to be admissible if either it is non-tabu or it is tabu but leads to
the solution that is better than the current best solution; see Section 3.2

86

4.4. COMPARISON OF VARIANTS OF THE DYNAMIC CARP SOLVER

5 updates 10 updates 20 updates
Number of updates

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

Pe
rc

en
ta

ge
 d

ev
ia

tio
n

fro
m

 a
 p

os
te

rio
ri

lo
we

r b
ou

nd

10nt 25nt 50nt 100nt

(a) Degree of dynamism = 0.2

5 updates 10 updates 20 updates
Number of updates

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

Pe
rc

en
ta

ge
 d

ev
ia

tio
n

fro
m

 a
 p

os
te

rio
ri

lo
we

r b
ou

nd

10nt 25nt 50nt 100nt

(b) Degree of dynamism = 0.5

5 updates 10 updates 20 updates
Number of updates

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

Pe
rc

en
ta

ge
 d

ev
ia

tio
n

fro
m

 a
 p

os
te

rio
ri

lo
we

r b
ou

nd

10nt 25nt 50nt 100nt

(c) Degree of dynamism = 0.8

Figure 4.2: Distributions of average percentage deviations from a posteriori lower
bounds with respect to total distances given by the dynamic CARP solver with
different maximum iteration limits (10nt, 25nt, 50nt, and 100nt, where nt is the
number of tasks) for various degrees of dynamism

87

4.4. COMPARISON OF VARIANTS OF THE DYNAMIC CARP SOLVER

10nt 25nt 50nt 100nt

Maximum iteration limit

0

50

100

150

200

250

300

350

400

450

Ti
m

e
(s

ec
on

ds
)

5 updates
10 updates
20 updates

(a) Degree of dynamism = 0.2

10nt 25nt 50nt 100nt

Maximum iteration limit

0

50

100

150

200

250

300

350

400

450

Ti
m

e
(s

ec
on

ds
)

5 updates
10 updates
20 updates

(b) Degree of dynamism = 0.5

10nt 25nt 50nt 100nt

Maximum iteration limit

0

50

100

150

200

250

300

350

400

450

Ti
m

e
(s

ec
on

ds
)

5 updates
10 updates
20 updates

(c) Degree of dynamism = 0.8

Figure 4.3: Average elapsed time taken by each variant of the dynamic CARP solver
in the whole planning horizon; black vertical lines show one standard deviation from
each side of the averages

88

4.4. COMPARISON OF VARIANTS OF THE DYNAMIC CARP SOLVER

Table 4.2: Medians of percentage deviations from a posteriori lower bounds given by
the dynamic CARP solver with different maximum iteration limits

Degree of dynamism Update schedule
Maximum iteration limit

10nt 25nt 50nt 100nt

0.2 5 updates 26.5 26.9 26.3 26.1b

10 updates 27.1 26.8 25.6 26.0
20 updates 26.4 25.6 25.8 26.3a

0.5 5 updates 29.5 29.6 28.7a 27.8a

10 updates 30.1 29.1 30.1 29.9a

20 updates 30.3 30.1 29.9a 29.2a

0.8 5 updates 28.9 28.8 28.1a 27.3a,b

10 updates 28.9 29.3 27.4a 28.7a,b

20 updates 29.8 30.2 29.3 29.2
a significantly better than the maximum iteration limit 10nt
b significantly better than the maximum iteration limit 25nt

based on a two-tailed Wilcoxon signed-rank test with a Bonferroni correction

(for 6 pairwise comparisons), resulting in a significance level of 0.05/6 ≈ 0.0083

contrast, this can occur in the dynamic CARP due to the existence of changes in the

problem. Moreover, as executing tabu search with different numbers of iterations

generally leads to different solutions, this leads to different problem states (i.e. sets

of tasks to be serviced, vehicles positions and capacities). This means that, even

though they are based on the same tabu search algorithm, dynamic CARP solvers

with different maximum iteration limits generally encounter different sequences of

static CARPs over the planning horizon. This allows the relative performance of

difference variants of the dynamic CARP solvers to vary and, in some cases, allows

the variant with a higher iteration limit to return a worse solution. This further

emphasises the need to devise a way to reliably improve the dynamic CARP solver

other than increasing the maximum iteration limit.

4.4.2 Update Schedules

We now turn our attention to the effect of changing the update schedule. For

a more comprehensive result, three regular update schedules (with 5, 10, and 20

updates) are tested on a wider range of degrees of dynamism δ = 0.1, 0.2, . . . , 0.9.

The maximum number of iterations for the tabu search algorithm at each update is

set to 50nt, where nt is the number of tasks. The experiment results with respect

to total distances given by different update schedules are shown in Figure 4.4(a).

89

4.4. COMPARISON OF VARIANTS OF THE DYNAMIC CARP SOLVER

Table 4.3: Medians of percentage deviations from a posteriori lower bounds given by
the dynamic CARP solver with different update schedules

Degree of dynamism
Update schedule

5 updates 10 updates 20 updates

0.1 23.4 23.0a 22.2a

0.2 26.3 25.6 25.8
0.3 28.5 29.1 28.6
0.4 29.1 28.6 29.5
0.5 28.7c 30.1 29.9
0.6 28.1b,c 29.1 29.8
0.7 28.2b,c 29.6 29.0
0.8 28.1 27.4c 29.3
0.9 24.9b,c 26.1 28.0

a significantly better than the 5-update schedule
b significantly better than the 10-update schedule
c significantly better than the 20-update schedule

based on a two-tailed Wilcoxon signed-rank test with a Bonferroni correction

(for 3 pairwise comparisons), resulting in a significance level of 0.05/3 ≈ 0.017

Also, a two-tailed Wilcoxon signed-rank test was conducted to compare each pair of

the update schedules (with a Bonferroni correction, resulting in a significance level

of 0.05/3 ≈ 0.017) and the test results are shown in Table 4.3. It was found that

the best update schedule with respect to total distance varies with the degree of

dynamism. For relatively low degrees of dynamism, a more frequent update schedule

tends to perform better. In particular, the 10-update and the 20-update schedules

are significantly better than the 5-update schedule on the instances with the degree of

dynamism = 0.1. As the degree of dynamism increases, the performance of different

update schedules becomes more and more similar to each other. Then, for relatively

high degrees of dynamism, a less frequent update schedule generally performs better;

in some cases, the 5-update schedule is significantly better than the 10-update and

the 20-update schedules.

The experiment results in terms of service completion times are shown in Figure 4.4(b).

A similar Wilcoxon signed-rank test was also conducted to compare each pair of

the update schedules in terms of service completion times, and the test results

are shown in Table 4.4. The results suggest that a less frequent update schedule

tends to result in a later service completion time, especially when the degree of

dynamism is relatively low. In fact, the service completion time given by the 5-update

schedule is significantly worse than the 10-update and the 20-update schedules on

the instances with degrees of dynamism in the range 0.1 to 0.4. For relatively high

90

4.4. COMPARISON OF VARIANTS OF THE DYNAMIC CARP SOLVER

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Degree of dynamism

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

Pe
rc

en
ta

ge
 d

ev
ia

tio
n

fro
m

 a
 p

os
te

rio
ri

lo
we

r b
ou

nd

5 updates 10 updates 20 updates

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Degree of dynamism

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

Se
rv

ice
 c

om
pl

et
io

n
tim

e
(×

 le
ng

th
 o

f p
la

nn
in

g
ho

riz
on

)

5 updates 10 updates 20 updates

(b)

Figure 4.4: Distributions of percentage deviations from a posteriori lower bounds
with respect to total distances (a) and distributions of service completion times (b)
given by different update schedules over 40 instances for each degree of dynamism
(0.1, 0.2, . . . , 0.9)

91

4.4. COMPARISON OF VARIANTS OF THE DYNAMIC CARP SOLVER

Table 4.4: Medians of service completion times (as multiples of the planning horizon
length) given by the dynamic CARP solver with different update schedules

Degree of dynamism
Update schedule

5 updates 10 updates 20 updates

0.1 1.89 1.87a 1.80a

0.2 2.17 2.11a 2.09a

0.3 2.29 2.24a 2.22a

0.4 2.38 2.27a 2.35a

0.5 2.39 2.37 2.36
0.6 2.37 2.35 2.37
0.7 2.35 2.39 2.35
0.8 2.41 2.38a 2.36a

0.9 2.40 2.38 2.38
a significantly better than the 5-update schedule

based on a two-tailed Wilcoxon signed-rank test with a Bonferroni correction

(for 3 pairwise comparisons), resulting in a significance level of 0.05/3 ≈ 0.017

degrees of dynamism (≥ 0.5), however, the service completion times for different

update schedules are generally similar to each other, and no significant difference

between the results of different update schedules were found in most cases.

As we have seen in Figure 4.4(a), updating the solution many times generally leads

to relatively poor results for relatively high degrees of dynamism. A possible cause of

this is the current way of integrating new tasks, that is, the solution is reconstructed

from scratch before tabu search in each update. As a result, what the tabu search

algorithm has learnt in each update about the problem (e.g. promising or unpromising

sequences of tasks that should be serviced in the same route) is not transferred

to future updates. In this case, a less frequent update would allow the solver to

collect more information about new tasks for each update, which could then help the

algorithm find better solutions. On the other hands, increasing the update frequency

results in less information about new tasks in each update, and consequently the

solver is more susceptible to making poor decisions when amending the solution in

each update due to limited information.

To understand the effect of update schedules observed in the case of relatively low

degrees of dynamism, it should be noted that for some of the dynamic CARP

instances considered here, some updates are omitted due to the absence of new tasks,

especially when the degree of dynamism is low. This is illustrated by Figure 4.5,

which shows the number of actual updates, i.e. those in which there exist new tasks,

under different update schedules on the dynamic CARP instances considered here

92

4.4. COMPARISON OF VARIANTS OF THE DYNAMIC CARP SOLVER

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Degree of dynamism

0

5

10

15

20

Nu
m

be
r o

f u
pd

at
es

5 updates 10 updates 20 updates

Figure 4.5: The number of updates in which new tasks exist on 40 dynamic CARP
instances generated in Section 4.3 for each degree of dynamism (0.1, 0.2, . . . , 0.9)

across different degrees of dynamism. Notice that the difference between the numbers

of actual updates for different update schedules is relatively small for low degrees

of dynamism. Also notice that fewer and fewer updates are omitted as the degree

of dynamism increases. In fact, no updates under the 5-update and the 10-update

schedules are omitted for sufficiently large degrees of dynamism.

When the degree of dynamism is low, the solver does not suffer much from updating

the solution too frequently even if a frequent update schedule is used; this is due to

the absence of new tasks in some updates in the dynamic CARP instances considered

here. In fact, a more frequent update schedule means that there are more updates

arranged throughout the planning horizon, which allows new tasks to be added to

the solution more promptly. The effect of this is particularly evident in Figure 4.4(b):

the service tends to be completed at an earlier time under a more frequent update

schedule. Furthermore, since more and more parts of the routes would be fixed as

vehicles travel along their routes, adding new tasks to the solution at an earlier

time would allow more possibilities to amend the solution, hence a greater chance of

finding better solutions.

It is worth reminding ourselves at this stage that the above comparison of different

update schedules is based on the dynamic CARP solver in which an initial solution

in each update is reconstructed from scratch. The next section proposes another

way of integrating new tasks to the dynamic CARP solution in each update and

investigates whether it is beneficial to retain solutions from previous updates as

opposed to solving the problem in each update from scratch.

93

4.5. AN ALTERNATIVE METHOD OF INTEGRATING NEW TASKS

4.5 An Alternative Method of Integrating New

Tasks

In previous sections, as well as in existing work on the dynamic CARP in the

literature (Liu et al., 2014b), the problem at each update is solved from scratch.

This section proposes a novel concept that aims to retain vehicle routes that have

been improved by the dynamic CARP solver throughout the planning horizon: in

each update, instead of reconstructing a solution from scratch (the “Reconstruction

method”), new tasks are inserted into existing routes one by one in a random order.

This alternative method will be called the Random Insertion method. The motivation

behind this idea is that the solution has been improved by tabu search in previous

updates and so would be likely to contain some favourable characteristics (such as

certain sequences of tasks), which would be lost if the solution was reconstructed

from scratch. The Random Insertion method attempts to integrate new tasks into a

solution in such a way that retains most characteristics of the solution given by the

previous update.

The Random Insertion method works as follows. First, new tasks are arranged in a

random order; they are then added to a given solution in that order by means of a

greedy method: that is, each task is added to a given solution in a way that results

in the least possible increase in the total distance. To find such a cheapest way to

insert a task, let D(a, b) denote the shortest distance from the head of task a to the

tail of task b for any tasks a, b. For a route R = (vs, a1, . . . , an, v0) and a task a′,

the cost (or more precisely, change in the total distance of the solution) incurred by

inserting task a′ into route R between tasks aj and aj+1 for some j ∈ {0, 1, . . . , n} is

equal to

D(aj, a
′) +D(a′, aj+1)−D(aj, aj+1), (4.4)

where, for ease of notation, a0 = (vs, vs) and an+1 = (v0, v0). For each new task,

all routes with sufficient capacities are considered, and the task is inserted into the

route that results in the cheapest insertion cost according to the expression (4.4)4. If

there are many routes into which the task can be inserted with the cheapest cost,

then one of them is chosen randomly. If there are no routes with sufficient capacities,

then a new route is created for the task that is being considered. A pseudocode for

the Random Insertion method is given in 5. The Random Insertion method will be

4Note that the cost of servicing task a′ is omitted in the expression (4.4) because it is independent
of the position of insertion and thus has no effect on the best insertion position.

94

4.5. AN ALTERNATIVE METHOD OF INTEGRATING NEW TASKS

implemented in place of the Reconstruction method in the dynamic CARP solver

(see Lines 11 and 12 in Algorithm 4).

Algorithm 5 The Random Insertion method

1: given a set of new tasks T , and a set of routes S
2: for each task t ∈ T (in a random order) do
3: if there exists a route with sufficient remaining capacity to service t then
4: insert t into one of the routes in S that incurs the cheapest cost (if there

is more than one such route, choose one of them randomly)
5: else
6: add t to a new route

4.5.1 Computational Results

We now look at the performance of the dynamic CARP solver with different update

schedules when the Random Insertion is implemented in place of the Reconstruction

method. Figure 4.6(a) and Figure 4.6(b) show the performance of the dynamic CARP

solver using the Random Insertion method with different update schedules based on

two measures, namely total distances and service completion times, respectively. The

difference between each pair of update schedules is also analysed by means of a two-

tailed Wilcoxon signed-rank test with a Bonferroni correction applied, resulting in a

significance level of 0.05/3 ≈ 0.017, and the test results with respect to total distances

and service completion times are shown in Table 4.5 and Table 4.6, respectively.

The experiment results show that when the Random Insertion is implemented in

place of the Reconstruction method, a more frequent update schedule generally leads

to better solutions across different degrees of dynamism. This is different from the

results with the Reconstruction method seen previously in Section 4.4.2, where the

best update schedule varies with the degree of dynamism. A possible reason for

this is that the Random Insertion method allows the solver to retain a solution that

has been improved from previous updates. This means that an initial solution in

each update has a higher chance of already containing promising features (such as

certain sequences of tasks to be serviced in the same route). Consequently, there is

not as much need to collect a lot of information about new tasks before each update

in order to obtain high quality solutions. In this case, the benefit of accumulating

information about new tasks in each update appears to be less prominent than the

benefit of adding new tasks to the solution promptly. This is particularly evident

when comparing the service completion times for the Reconstruction method and

95

4.5. AN ALTERNATIVE METHOD OF INTEGRATING NEW TASKS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Degree of dynamism

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

Pe
rc

en
ta

ge
 d

ev
ia

tio
n

fro
m

 a
 p

os
te

rio
ri

lo
we

r b
ou

nd

5 updates 10 updates 20 updates

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Degree of dynamism

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

Se
rv

ice
 c

om
pl

et
io

n
tim

e
(×

 le
ng

th
 o

f p
la

nn
in

g
ho

riz
on

)

5 updates 10 updates 20 updates

(b)

Figure 4.6: Distributions of percentage deviations from a posteriori lower bounds
with respect to total distances (a) and distributions of service completion times
(b) given by different update schedules with the Random Insertion method over 40
instances for each degree of dynamism (0.1, 0.2, . . . , 0.9)

96

4.5. AN ALTERNATIVE METHOD OF INTEGRATING NEW TASKS

Table 4.5: Medians of percentage deviations from a posteriori lower bounds given by
the dynamic CARP solver with the Random Insertion method and different update
schedules

Degree of dynamism
Update schedule

5 updates 10 updates 20 updates

0.1 19.5 17.8a 17.6a,b

0.2 23.0 22.3a 21.5a,b

0.3 27.4 26.0a 24.9a,b

0.4 28.6 27.8 27.3a,b

0.5 29.7 28.7a 27.4a

0.6 29.5 28.1 27.3a

0.7 29.1 27.8a 28.7a

0.8 28.1 27.4a 27.6a

0.9 26.8 26.6 25.8
a significantly better than the 5-update schedule
b significantly better than the 10-update schedule

based on a two-tailed Wilcoxon signed-rank test with a Bonferroni correction

(for 3 pairwise comparisons), resulting in a significance level of 0.05/3 ≈ 0.017

Table 4.6: Medians of service completion times (as multiples of the planning horizon
length) given by the dynamic CARP solver with the Random Insertion method and
different update schedules

Degree of dynamism
Update schedule

5 updates 10 updates 20 updates

0.1 1.85 1.81a 1.79a

0.2 2.13 2.08a 1.97a,b

0.3 2.24 2.17a 2.11a,b

0.4 2.32 2.25a 2.23a,b

0.5 2.34 2.26a 2.19a,b

0.6 2.35 2.26a 2.21a,b

0.7 2.34 2.26a 2.21a,b

0.8 2.35 2.27a 2.22a,b

0.9 2.31 2.32a 2.22a,b

a significantly better than the 5-update schedule
b significantly better than the 10-update schedule

based on a two-tailed Wilcoxon signed-rank test with a Bonferroni correction

(for 3 pairwise comparisons), resulting in a significance level of 0.05/3 ≈ 0.017

97

4.6. CONCLUSION

the Random Insertion method; see Figure B.7.5

So far the update schedules have been compared based on the same method of

integrating new tasks. It is also interesting to compare 6 variants of the dynamic

CARP solver (3 update schedules × 2 methods of integrating new tasks) all together;

in particular, this would allow us to clearly see how the performance of the dynamic

CARP solver is affected by the method of integrating new tasks. For ease of reference,

Figures B.6 and B.7 in Appendix B show the experiment results (with respect to total

distances and service completion times, respectively) for both methods of integrating

new tasks on the same plot. It was found that the Random Insertion generally

gives better solutions than the Reconstruction method. In fact, using the Random

Insertion with 20 updates is the most promising variant of the dynamic CARP solver;

it is significantly better than the other variants in most cases (see Tables B.1 and B.2

in Appendix B). This further highlights the benefits of retaining the solution from

previous updates compared with solving the problem at each update from scratch.

4.6 Conclusion

This chapter concerns a heuristic algorithm for solving the dynamic CARP. It begins

by describing main components of a dynamic CARP solver, including an update

schedule, how the current state of the problem can be determined, a method of

integrating new tasks into the solution, and a heuristic algorithm for improving the

solution, which in this thesis is based on tabu search. The purpose of this chapter is

to investigate how the performance of a heuristic algorithm for solving the dynamic

CARP can be affected by adjusting its configuration. In particular, here we consider

adjusting 3 components of the solver: a maximum iteration limit for tabu search

in each update, the frequency of solution updates, and a method of integrating

new tasks to an existing solution. A novel analysis is conducted to compare several

options of these components and to investigate how each of the components could

affect the solution quality with respect to total distance and service completion time.

Regarding the maximum iteration limit, experiment results show that increasing the

maximum iteration limit for tabu search in each update yields little improvement.

Moreover, a larger maximum iteration limit could sometimes give worse results. This

suggests that to consistently achieve a better solution in the dynamic CARP, it is

not sufficient to rely solely on running the tabu search algorithm at each update for

5Figure B.7 contains the same information as Figure 4.4(b) and Figure 4.6(b) but is organised
in such a way that it is easier to compare the results from different ways of integrating new tasks.

98

4.6. CONCLUSION

more iterations. This suggests the need to improve the dynamic CARP solver by

other means.

Two ways of amending the dynamic CARP are then investigated: adjusting the

frequency of solution updates and the way of integrating new tasks to the solution in

each update. Here we consider 3 regular update schedules (with 5, 10, and 20 update)

and 2 methods of integrating new tasks. In the existing literature, the problem at

each update is usually solved from scratch, which we call here the Reconstruction

method. Based on the intuition that solutions from previous updates are likely to

contain some promising features as they have undergone the tabu search process, an

alternative way of integrating new tasks is proposed, namely the Random Insertion

method, which retains a solution from a preceding update and inserts new tasks to the

solution in a greedy way before it is further improved by tabu search. Computational

results show that the effect of adjusting the frequency of solution updates and the

way of integrating new tasks to the solution in each update varies with the degree of

dynamism, i.e. the ratio of the number of dynamic tasks (known after vehicles leave

the depot at the beginning of the planning horizon) to the number of all tasks in the

whole the planning horizon.

More precisely, for relatively low degrees of dynamism (up to 0.4 for the instances

considered here), a more frequent update schedule tends to give better results,

regardless of the method of integrating new tasks. Nevertheless, the Random

Insertion method yields more promising results than the Reconstruction method.

In contrast, for relatively high degrees of dynamism (at least 0.5 for the instances

considered here), the performance of different update schedules depends on the

method of integrating new tasks. With the Reconstruction method, a less frequent

update schedule tends to give better results. In contrast, with the Random Insertion

method, a more frequent update schedule tends to give better results.

Among all variants of the dynamic CARP solver considered, the Random Insertion

method with 20 updates give the best results; it is significantly better than the

other variants in many cases (see Tables B.1 and B.2). This highlights the benefit of

retaining solutions from previous updates as opposed to solving the problem at each

update from scratch.

In the next chapter, we will attempt to improve dynamic CARP solutions by means

of waiting strategies. The goal will be to further reduce total distance while avoiding

an overly large increase in service completion time.

99

Chapter 5

Waiting Strategies

5.1 Introduction

Recall that the dynamic CARP can be viewed as a sequence of static CARPs, each

of which occurs at a certain time in the planning horizon. Given that the dynamic

CARP involves the notion of time, focussing solely on developing an algorithm for

finding a solution to the static CARP in each update would limit the capability

of a route planner to amend vehicle routes for the overarching dynamic CARP. In

Chapter 4, we attempted to exploit the notion of time in the dynamic CARP by

means of varying the frequency of solution updates. This chapter further explores

ways of exploiting the notion of time and anticipating changes that can occur at a

later time to improve the dynamic CARP solution.

One way of exploiting the notion of time is to instruct vehicles to wait and stand by

at certain locations, especially when they finish servicing all tasks that have been

assigned to them. Without waiting instructions, the problem at each update would

largely depend on the solution from the previous update. In particular, the positions

of vehicles at a given update are solely determined by that solution. The dynamic

CARP solver in Chapter 4 amends the solution in each update using only available

information in that update, and thus it cannot be guaranteed that the positions of

vehicles, or other solution features, will still be favourable in the current state of the

problem. Utilising waiting instructions gives a route planner more control over the

locations at which the vehicles will be, or the current state of the problem in general,

at the upcoming update. This allows more possibilities of amending the solution and

potentially improves effectiveness of route planning in the dynamic CARP.

100

5.2. INSTRUCTING VEHICLES TO WAIT AT THE END OF LAST TASKS

Section 5.2 discusses possible undesirable features in the solution without waiting and

proposes a waiting strategy that can prevent such features. Section 5.3 proposes a

way to amend the waiting strategy by specifying a rule to decide which vehicle should

wait based on its current capacity. Section 5.4 proposes another waiting strategy

which is focussed specifically on the positions of vehicles. Section 5.5 introduces the

idea of employing extra routes as a way of anticipating new tasks in the future. The

conclusions of this chapter are given in Section 5.6.

5.2 Instructing Vehicles to Wait at the End of

Last Tasks

In Chapter 4, it was implicitly assumed that once vehicles depart from the depot,

they travel continuously - that is, without stops in the middle of their routes - until

returning to the depot. This would be an appropriate assumption for the static

CARP since letting vehicles wait or stand by somewhere would make no difference

to the total distance of a solution. In contrast, for the dynamic CARP, instructing

vehicles to wait could help prepare them for changes that may occur in the problem

at a later time. For example, it was found that in some solutions given by the

dynamic CARP solver in Chapter 4, there existed a vehicle that returned to the

depot before the end of the planning horizon even though it still had some remaining

capacity and thus could have serviced more demand. An example of a solution where

this situation occurred is given in Figure 5.1, where black lines with crosses show

the time at which each route starts and ends, and grey bars show the amount of

demands serviced in each route. In this example, notice that Route 1 returned to the

depot before the end of the planning horizon (slightly before time 0.6T , where T is

the length of the planning horizon), but the total demand serviced in this route was

about 70% of the capacity, so it still had some remaining capacity to receive more

demand. A waste of remaining capacity could have been prevented by instructing

vehicles to wait and be on standby at the end vertices of their last tasks. This would

allow a route planner to assign additional tasks to vehicles in an upcoming update

instead of letting them head towards the depot straight away when they have no

tasks to service. Reducing a waste of remaining capacity would decrease the amount

of demands that later vehicles need to service and potentially reduce the need to

employ more vehicles at a later time, thereby saving some distance travelled.

Besides a waste of remaining capacity, another possible drawback of vehicles returning

101

5.2. INSTRUCTING VEHICLES TO WAIT AT THE END OF LAST TASKS

1 2 3 4 5 6 7 8
Route number

0

T

2T

3T

Ti
m

e
(×

 le
ng

th
 o

f p
la

nn
in

g
ho

riz
on

)

0.0

0.2

0.4

0.6

0.8

1.0

To
ta

l d
em

an
d

(×
 v

eh
icl

e
ca

pa
cit

y)

Figure 5.1: Start times, finish times, and total demands in each route in one solution
for the C04-d50-1 instance; T denotes the length of the planning horizon; the lines
with crosses show the period of time in which a vehicle corresponding to each route
travels since leaving the depot until returning to the depot; the bars show the total
demand of tasks serviced in each route.

to the depot immediately after their last tasks is that if they have sufficient remaining

capacity, they could receive an additional task while heading towards the depot, which

would force them to divert away from their originally planned paths. Instructing a

vehicle to wait at the end vertex of the last serviced task would allow the vehicle

to travel directly (i.e. along a shortest path) from the last serviced task to a newly

assigned task, thereby saving some distance. A similar situation in which the waiting

instruction would help save some distance is when a vehicle already returns to the

depot but later departs from the depot again to service an additional task. These

situations are illustrated by Figure 5.2.

Nevertheless, instructing a vehicle to wait means that the vehicle would be idle for

some time, which might delay the completion of the overall service. In this section,

we will investigate the trade-off between total distance and service completion time

as a result of the waiting strategy. More precisely, the waiting strategy that will

be considered works as follows: At each update (except at the end of the planning

horizon), check whether each vehicle will be “idle” at the next update, i.e. it will finish

servicing the last task by the upcoming update, according to the solution returned

by the tabu search algorithm in the current update. For each idle vehicle, instruct it

to wait at the end vertex of the last task after servicing it until the upcoming update.

A pseudocode of the dynamic CARP solver with waiting instructions is shown in

Algorithm 6; the solver makes a decision about waiting in Lines 4 and 15.

102

5.2. INSTRUCTING VEHICLES TO WAIT AT THE END OF LAST TASKS

Last serviced task
before an update Depot

Position of a vehicle
when an update occurs

Newly assigned taskShortest path from
the last serviced task
to the newly assigned task

Last serviced task
before an update Depot

Newly assigned taskShortest path from
the last serviced task
to the newly assigned task

Position of a vehicle
when an update occurs

Figure 5.2: A diversion after the last serviced task as a result of assigning an
additional task to a vehicle while it is heading towards the depot (see the top figure)
or after it returns to the depot (see the bottom figure). A path along which the
vehicle travels without waiting is shown in black. Alternative paths in which the
vehicle could have travelled are shown in grey. Deadheading paths (i.e. travelling
without servicing) are shown in dashed lines.

103

5.2. INSTRUCTING VEHICLES TO WAIT AT THE END OF LAST TASKS

Algorithm 6 Configuration of the dynamic CARP solver with waiting

1: given max time (i.e. the length of the planning horizon), and a rule for deciding
when to perform solution updates (see Section 4.2.1)

2: construct an initial solution S by the Path Scanning algorithm
3: apply the tabu search algorithm (from Chapter 3) to S
4: implement a waiting strategy (Algorithm 7)
5: set time = 0
6: while time < max time do
7: increase time by 1 unit
8: if time is an update time then
9: let T be the set of new tasks that appear since last update

10: if there exist new tasks then
11: identify the fixed part and the starting vertex of each route for the

current update (see Section 4.2.2)

12: add the new tasks in T to S by the Random Insertion method (see
Algorithm 5)

13: apply the tabu search algorithm (from Chapter 3) to S

14: if this update is not the last one then
15: implement a waiting strategy (Algorithm 7)

Algorithm 7 Instructing vehicles to wait at the end of last tasks

1: given a set of routes S, the time of the next update
2: for each route in S do
3: if the service on last task will finish before the next update then
4: instruct the corresponding vehicle to wait at the end of its last task until

the next update

104

5.2. INSTRUCTING VEHICLES TO WAIT AT THE END OF LAST TASKS

5.2.1 Computational Results

The waiting strategy is tested with the dynamic CARP solver from Chapter 4 in

which the method of integrating new tasks is the Random Insertion method and the

maximum iteration limit for tabu search is 50nt, where nt is the number of tasks

at each update. All 3 regular update schedules (with 5, 10, and 20 updates) are

considered. 40 dynamic CARP instances for each degree of dynamism that were

generated and used in Chapter 4 are also used in this experiment (and the rest of

this chapter); recall that in these instances, the length of the planning horizon is

500 units time, and the vehicle speed is one unit distance per unit time. Due to its

stochastic nature, each variant of the dynamic CARP solver is run on each instance

20 times, and its performance on that instance is assessed based on average results

over 20 runs. The performance of the dynamic CARP solver without and with the

waiting strategy is displayed in Figures 5.3 and 5.4, concerning percentage deviations

from a posteriori lower bounds1 and service completion time, respectively. The

computational results show that the waiting strategy generally makes little difference

to the solution quality regarding both total distance and service completion time.

We now investigate why the waiting strategy has only a small effect on the solution

quality. First, we examine how the waiting strategy affects the time at which routes

are constructed throughout the planning horizon. Figure 5.5 shows the number of

runs (out of 800 runs for each degree of dynamism) in which the dynamic CARP

solver returns solutions with a given number of routes. Here, only the results given

by the solver with 20 updates are shown for conciseness; the results corresponding

to 5 and 10 updates are similar and shown in Figure B.8 in Appendix B. It can be

seen that the waiting strategy encourages the solver to give a solution with a smaller

number of routes. This suggests that the waiting strategy helps reduce the need to

construct additional routes.

Figure 5.6 shows the proportion of routes with a range of demands of serviced tasks

(up to half the vehicle capacity) in final solutions, i.e. the solutions at the end of

the planning horizon, from all runs given by the dynamic CARP solver without

and with the waiting strategy; here we only show the results of the dynamic CARP

solver with 20 updates. The results of the dynamic CARP with 5 and 10 updates

are similar and shown respectively in Figures B.9 and B.10 in Appendix B. It can

be seen that the proportion of routes that are less than or exactly half full (i.e. the

total amount of demands of serviced tasks in a given route is no greater than half the

1Recall that a percentage deviation from a posteriori lower bound is computed as follows:

percentage deviation =
(

solution cost−a posteriori lower bound
a posteriori lower bound

)
× 100.

105

5.2. INSTRUCTING VEHICLES TO WAIT AT THE END OF LAST TASKS

0.1 0.1
wait

0.2 0.2
wait

0.3 0.3
wait

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

Pe
rc

en
ta

ge
 d

ev
ia

tio
n

fro
m

 a
 p

os
te

rio
ri

lo
we

r b
ou

nd

5 updates 10 updates 20 updates

0.4 0.4
wait

0.5 0.5
wait

0.6 0.6
wait

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

Pe
rc

en
ta

ge
 d

ev
ia

tio
n

fro
m

 a
 p

os
te

rio
ri

lo
we

r b
ou

nd

5 updates 10 updates 20 updates

0.7 0.7
wait

0.8 0.8
wait

0.9 0.9
wait

Degree of dynamism

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

Pe
rc

en
ta

ge
 d

ev
ia

tio
n

fro
m

 a
 p

os
te

rio
ri

lo
we

r b
ou

nd

5 updates 10 updates 20 updates

Figure 5.3: Distributions of percentage deviations from a posteriori lower bounds
with respect to total distances on 40 dynamic CARP instances for each degree of
dynamism (0.1, 0.2, . . . , 0.9) given by the dynamic CARP solver without and with
the “waiting at the end of last task” strategy

106

5.2. INSTRUCTING VEHICLES TO WAIT AT THE END OF LAST TASKS

0.1 0.1
wait

0.2 0.2
wait

0.3 0.3
wait

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

Se
rv

ice
 c

om
pl

et
io

n
tim

e
(×

 le
ng

th
 o

f p
la

nn
in

g
ho

ris
on

)

5 updates 10 updates 20 updates

0.4 0.4
wait

0.5 0.5
wait

0.6 0.6
wait

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

Se
rv

ice
 c

om
pl

et
io

n
tim

e
(×

 le
ng

th
 o

f p
la

nn
in

g
ho

ris
on

)

5 updates 10 updates 20 updates

0.7 0.7
wait

0.8 0.8
wait

0.9 0.9
wait

Degree of dynamism

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

Se
rv

ice
 c

om
pl

et
io

n
tim

e
(×

 le
ng

th
 o

f p
la

nn
in

g
ho

ris
on

)

5 updates 10 updates 20 updates

Figure 5.4: Distributions of service completion times on 40 dynamic CARP instances
for each degree of dynamism (0.1, 0.2, . . . , 0.9) given by the dynamic CARP solver
without and with the “waiting at the end of last task” strategy

107

5.2. INSTRUCTING VEHICLES TO WAIT AT THE END OF LAST TASKS

6 7 8 9 10 11 12 13 14 15
Number of routes

0

50

100

150

200

250

Nu
m

be
r o

f r
un

s

Without waiting (average)
With waiting (average)
Without waiting
With waiting

(a) Degree of dynamism = 0.2

6 7 8 9 10 11 12 13 14 15
Number of routes

0

50

100

150

200

250

Nu
m

be
r o

f r
un

s

Without waiting (average)
With waiting (average)
Without waiting
With waiting

(b) Degree of dynamism = 0.5

6 7 8 9 10 11 12 13 14 15
Number of routes

0

50

100

150

200

250

Nu
m

be
r o

f r
un

s

Without waiting (average)
With waiting (average)
Without waiting
With waiting

(c) Degree of dynamism = 0.8

Figure 5.5: The number of runs in which the dynamic CARP solver (with 20 updates)
returns solutions with a given number of routes from 800 runs (40 instances × 20
runs) for each degree of dynamism; a vertical dashed line shows an average number
of routes of the solutions over 800 runs

108

5.3. WAITING THRESHOLDS

vehicle capacity) decreases when the waiting strategy is implemented. Also notice

that among solutions given by the solver without waiting, there are some routes with

zero demands2 (illustrated by the leftmost bars, i.e. to the left of the ‘0’ tick on

the x-axis in the histograms), but no such routes exist when the waiting strategy

is implemented. This illustrates that the waiting strategy encourages vehicles to

service a greater amount of demands. In other words, it helps reduce a waste of

vehicle capacity.

We have seen that the waiting strategy indeed has an effect on the construction of

routes over the planning horizon: it reduces the need to construct additional routes

and helps avoid a waste of remaining capacity. However, this does not seem sufficient

to effectively decrease the total distance, as we saw in Figures 5.3 and 5.4. To better

understand why the waiting strategy does not lead to noticeable improvement, we

further investigate how the waiting strategy was utilised in the computational results.

In particular, we examine which vehicles are more likely to be instructed to wait than

the others. Histograms in Figure 5.7 display the total number of times vehicles are

instructed to wait in all 2,400 runs for each degree of dynamism (40 dynamic CARP

instances × 20 runs × 3 update schedules). The results are grouped according to

“route demands”, that is, the amount of demands in the vehicles’ routes at the time

they were instructed to wait. Figure 5.7 shows that for all degrees of dynamism,

most waiting instructions are given to vehicles that are nearly full (in all instances

in this experiment, the capacity is 300). Since nearly full vehicles are unlikely to

receive additional tasks, instructing those vehicles to wait would generally make little

difference to the solution. This could be a cause of the marginal difference made by

the waiting strategy in the computational results seen in Figures 5.3 and 5.4.

5.3 Waiting Thresholds

If a vehicle is nearly full, it may be unlikely to receive additional tasks, so instructing

the vehicle to wait would cause it to return to the depot later than necessary.

Omitting the waiting instruction would allow the vehicle to return to the depot

sooner and help reduce the service completion time. In fact, it can be beneficial for

a nearly full vehicle to go back to the depot and restore its capacity, thus getting

ready to service new tasks. To explicitly determine which vehicle is “nearly full”

and which should be instructed to wait, a waiting threshold ω ∈ [0, 1] is introduced:

2This can happen when a solution update moves all tasks from a certain route, especially those
with very few tasks, to the others before the corresponding vehicle reaches its first task, and so the
vehicle instead heads towards the depot and ends its route there.

109

5.3. WAITING THRESHOLDS

0 5 10 15 20 25 30 35 40 45 50
Total demand of serviced tasks (% of capacity)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
op

or
tio

n
of

 ro
ut

es
 (%

)

Without waiting

0 5 10 15 20 25 30 35 40 45 50
Total demand of serviced tasks (% of capacity)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
op

or
tio

n
of

 ro
ut

es
 (%

)

With waiting

(a) Degree of dynamism = 0.2

0 5 10 15 20 25 30 35 40 45 50
Total demand of serviced tasks (% of capacity)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
op

or
tio

n
of

 ro
ut

es
 (%

)

Without waiting

0 5 10 15 20 25 30 35 40 45 50
Total demand of serviced tasks (% of capacity)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Pr

op
or

tio
n

of
 ro

ut
es

 (%
)

With waiting

(b) Degree of dynamism = 0.5

0 5 10 15 20 25 30 35 40 45 50
Total demand of serviced tasks (% of capacity)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
op

or
tio

n
of

 ro
ut

es
 (%

)

Without waiting

0 5 10 15 20 25 30 35 40 45 50
Total demand of serviced tasks (% of capacity)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
op

or
tio

n
of

 ro
ut

es
 (%

)

With waiting

(c) Degree of dynamism = 0.8

Figure 5.6: Histograms showing the proportion of routes with a range of demands of
serviced tasks in solutions at the end of the planning horizon given by the dynamic
CARP solver (with 20 updates) without and with the waiting strategy over 800 runs
(40 instances × 20 runs) for each degree of dynamism

110

5.3. WAITING THRESHOLDS

0 50 100 150 200 250 300
Route demand

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f w
ai

tin
g

in
st

ru
ct

io
ns

(a) Degree of dynamism = 0.2

0 50 100 150 200 250 300
Route demand

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f w
ai

tin
g

in
st

ru
ct

io
ns

(b) Degree of dynamism = 0.5

0 50 100 150 200 250 300
Route demand

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f w
ai

tin
g

in
st

ru
ct

io
ns

(c) Degree of dynamism = 0.8

Figure 5.7: The total number of waiting instructions over 2,400 runs (40 dynamic
CARP instances × 20 runs × 3 update schedules) grouped by the amount of demand
in vehicles’ routes at the time of being instructed to wait for each degree of dynamism

111

5.3. WAITING THRESHOLDS

a vehicle is instructed to wait if its remaining capacity is at least ω ×Q, where Q

is the vehicle capacity. In particular, ω = 0 means that all vehicles are instructed

to wait regardless of their remaining capacities, and the waiting threshold ω = 1

would correspond to no waiting and always letting vehicles head towards the depot

after servicing their last tasks. A pseudocode of the waiting strategy with a waiting

threshold is given in Algorithm 8.

Algorithm 8 Instructing vehicles to wait at the end of last tasks with a waiting
threshold

1: given a set of routes S, the time of the next update, waiting threshold ω ∈ [0, 1],
vehicle capacity Q

2: for each route in S do
3: if the remaining capacity of the route is no less than ω ×Q then
4: if the service on last task will finish before the next update then
5: instruct the corresponding vehicle to wait at the end of its last task

until the next update

A computational experiment is conducted to compare the effect of the waiting strategy

different waiting thresholds: ω = 0.0, 0.1 and 0.2. The dynamic CARP solver used

in this experiment involves 20 updates and the same configuration as in the previous

experiment (the method of integrating new tasks being the Random Insertion method,

and the maximum iteration limit for tabu search in each update being 50nt, where nt

is the number of tasks in each update). Different waiting thresholds are tested on the

instances with “low,” “moderate,” and “high” dynamism, represented by the degrees

of dynamism 0.2, 0.5, and 0.8, respectively. Computational results in Figure 5.8

suggest that varying the waiting threshold generally makes little difference to the

solution quality with respect to both total distance and service completion time.

Furthermore, as shown in Table 5.1, no statistically significant difference is found

between the results given by different waiting thresholds in most cases; the only

exception is that using the waiting strategy with the waiting threshold ω = 0.0, 0.1

or 0.2 leads to significant reduction in service completion time on the instances with

a low degree of dynamism (0.2), although the reduction is marginal. One possible

reason for a small effect of adjusting the waiting threshold is that vehicles are rarely

given instructions to wait and increasing the waiting threshold further reduces the

chance of doing so.

The likelihood of vehicles being instructed to wait is investigated and displayed in

Table 5.2. The column nall shows the total number of all “active” vehicles in each

update except at the end of the planning horizon in all 800 runs (40 instances ×
20 runs). Here, an “active” vehicle means it has not returned to the depot at a

given update. Notice that nall is also equal to the maximum possible number of

112

5.3. WAITING THRESHOLDS

Low (0.2) Medium (0.5) High (0.8)
Degree of dynamism

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

Pe
rc

en
ta

ge
 d

ev
ia

tio
n

fro
m

 a
 p

os
te

rio
ri

lo
we

r b
ou

nd

No wait = 0.0 = 0.1 = 0.2

(a)

Low (0.2) Medium (0.5) High (0.8)
Degree of dynamism

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

Se
rv

ice
 c

om
pl

et
io

n
tim

e
(×

 le
ng

th
 o

f p
la

nn
in

g
ho

riz
on

)

No wait = 0.0 = 0.1 = 0.2

(b)

Figure 5.8: Distributions of percentage deviations from a posteriori lower bounds
with respect to total distances (a) and distributions of service completion times
(b) over 40 dynamic CARP instances given by the waiting strategy with waiting
thresholds ω = 0.0, 0.1, and 0.2

113

5.3. WAITING THRESHOLDS

Table 5.1: Medians of percentage deviations from a posteriori lower bounds with
respect to total distances and medians of service completion times (as multiples of
the length of the planning horizon) over 40 dynamic CARP instances given by the
waiting strategy with waiting thresholds ω = 0.0, 0.1, and 0.2

Degree of
dynamism

Percentage deviation from
a posteriori lower bound (%)

Service completion time
(× planning horizon length)

Without
waiting

With waiting Without
waiting

With waiting

ω = 0.0 ω = 0.1 ω = 0.2 ω = 0.0 ω = 0.1 ω = 0.2

Low (0.2) 21.47 21.36 21.41 21.41 1.97 1.96∗ 1.94∗ 1.95∗

Moderate (0.5) 27.40 27.51 27.58 27.45 2.19 2.21 2.21 2.21
High (0.8) 27.64 27.69 27.63 27.54 2.22 2.24 2.23 2.23
∗ significantly better than the results without waiting, based on a two-tailed Wilcoxon signed rank test

with a Bonferroni correction (for 6 pairwise comparisons), resulting in a significance level of 0.05/6 ≈ 0.0083

Table 5.2: The total number of routes in all updates except at the end of the planning
horizon (nall) and the number of times vehicles are instructed to wait (nwait) in all 800
runs (40 instances × 20 runs) for the waiting strategy with each waiting threshold
ω = 0.0, 0.1, 0.2 and each degree of dynamism; nwait(%) is the ratio of nwait to nall

Degree of
dynamism

Waiting threshold

ω = 0.0 ω = 0.1 ω = 0.2

nall nwait nwait(%) nall nwait nwait(%) nall nwait nwait(%)

Low (0.2) 130169 8865 6.8% 127832 3976 3.1% 126899 2061 1.6%
Moderate (0.5) 109526 4723 4.3% 108256 2244 2.1% 107660 1143 1.1%
High (0.8) 89766 1651 1.8% 89547 1019 1.1% 89392 653 0.7%

waiting instructions. The column nwait shows the total number of times vehicles are

instructed to wait in all 800 runs. The column nwait(%) shows the ratio of nwait to

nall, which indicates the likelihood that a vehicle is instructed to wait for a given

waiting threshold and a given degree of dynamism. It can be see that in all cases, a

small minority of active vehicles are given instructions to wait. In particular, when

the waiting threshold ω = 0.2 is used on the instances with the degree of dynamism

= 0.8, only about 0.7% of all active vehicles in all updates are instructed to wait.

This confirms that the waiting strategy is quite rarely used. This is because whether

or not the waiting strategy is utilised depends largely on the existence of vehicles

that will finish the last task before an upcoming update. As the degree of dynamism

increases, fewer routes are constructed at the beginning of the planning horizon

and more routes constructed in the middle of the planning horizon. In other words,

routes tend to start, and thus end, at a later time. This generally decreases the

chance that vehicles will finish the last task before a given update, thereby reducing

the probability of vehicles being instructed to wait.

114

5.4. INSTRUCTING VEHICLES TO WAIT AWAY FROM OTHER VEHICLES

5.4 Instructing Vehicles to Wait Away from Other

Vehicles

This section proposes another waiting strategy: to instruct vehicles to wait “far away”

from the locations at which the other vehicles will be at the time of the next update.

The motivation for this is that having many vehicles close to each other runs the

risk of a new task appearing far away from all vehicles. In contrast, sending different

vehicles to different areas would generally reduce the distance between a new task

and the nearest vehicle. Furthermore, notice that in our dynamic CARP solver, the

tabu search algorithm in each update is implemented using only information that is

known in the current update, without anticipating changes that could occur at a

later time. This waiting strategy gives a route planner more control over the vehicles’

starting vertices at the subsequent update instead of letting their starting vertices

depend solely on the solution returned by the tabu search algorithm.

A waiting location according to this waiting strategy is determined by the following

heuristic method. First, according to the solution given by the tabu search algorithm,

if there will be more than one idle vehicle at the upcoming update, randomly order

the idle vehicles. A waiting location will then be determined in such an order. Among

vertices that can be reached by the upcoming update, the waiting location of each

idle vehicle is a vertex vwait that maximises the sum∑
k∈W

D(vwait, vk), (5.1)

where D(u, v) denotes the shortest distance between two vertices u, v, and W is

the set of non-idle vehicles plus idle vehicles for which waiting locations have been

determined. For a non-idle vehicle, vk is the vertex which the vehicle k will be at

or will be heading towards (if it is in the middle of an edge) at the time of the

next update. For an idle vehicle, vk is its waiting location. To put it another away,

Expression (5.1) places each idle vehicle in such a way that all the non-idle vehicles

and the idle vehicles whose waiting locations have been determined are collectively

far away from it. If there is more than one vertex with equal sums according to

Expression (5.1), then one of them is randomly chosen to be the waiting location

vwait. A pseudocode of this novel process of determining a waiting location is shown

in Algorithm 9. This waiting strategy will be implemented in place of the previous

waiting strategy (waiting at the end of last task) within the dynamic CARP solver,

i.e. Lines 4 and 15 of Algorithm 6.

115

5.4. INSTRUCTING VEHICLES TO WAIT AWAY FROM OTHER VEHICLES

It is possible that the above calculation results in vwait being the depot for some idle

vehicle. If this is the case, no waiting instruction is given to that vehicle, i.e. it is

allowed to head towards the depot, where its route will end. This vehicle is then

omitted from Expression (5.1) when determining waiting locations for the remaining

idle vehicles.

Algorithm 9 Instructing vehicles to wait away from other vehicles

1: given a set of routes, the time of the next update
2: check each route to see whether the corresponding vehicle will finish its last task

before the upcoming update; if it does, call it “idle”; otherwise, call it “non-idle”
3: let W = {non-idle vehicles} . W records vehicles whose locations at the next

update have been determined
4: for each idle vehicle V (in a random order) do
5: among vertices that the vehicle V can reach by the next update after servicing

its last task, find a vertex vwait that maximises f(v) =
∑

k∈W D(v, vk) (if
there is more than one such vertex, choose one of them randomly)

6: if vwait is the depot then
7: let the vehicle V head towards the depot (and end its route there)
8: else
9: instruct the vehicle V to head towards vwait after servicing its last task

and wait there until the next update
10: add the vehicle V to the set W

Provided that the shortest distances between each pair of vertices have been computed,

Expression (5.1) can be computed in O(K) time for each possible choice of vwait,

where K is the number of all vehicles. As the number of possible choices for vwait is

O(|V |), the waiting location for each idle vehicle can be determined in O(K|V |) time,

hence O(K2|V |) time for finding the waiting locations for all idle vehicles in each

update. This ensures that the computation time needed to find waiting locations

according to this waiting strategy does not grow exponentially.

As was the case for the previous waiting strategy, this waiting strategy is tested with

the dynamic CARP solver such that the number of updates is 20, the method of

integrating new tasks is the Random Insertion method, and the maximum iteration

limit for tabu search in each update is 50nt, where nt is the number of tasks in each

update. Figure 5.9 shows percentage deviations from a posteriori lower bounds and

service completion times given by different waiting strategies, namely no waiting,

waiting at the end of the last task (introduced in Section 5.2), and waiting away

from other vehicles (introduced in this section). A two-tailed Wilcoxon signed rank

test is also conducted to compare all 3 ways of waiting in pairs, and the significance

results are shown in Table 5.3.

The computational results suggest that instructing vehicles to wait away from other

116

5.5. EMPLOYING EXTRA ROUTES

0.2 0.5 0.8
Degree of dynamism

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

Pe
rc

en
ta

ge
 d

ev
ia

tio
n

fro
m

 a
 p

os
te

rio
ri

lo
we

r b
ou

nd

Without waiting Wait at last task

Wait away from others

(a)

0.2 0.5 0.8
Degree of dynamism

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

Se
rv

ice
 c

om
pl

et
io

n
tim

e
(×

 le
ng

th
 o

f p
la

nn
in

g
ho

riz
on

)

Without waiting Wait at last task

Wait away from others

(b)

Figure 5.9: Distributions of percentage deviations from a posteriori lower bounds
with respect to total distances (a) and distributions of service completion times (b)
over 40 dynamic CARP instances given by each waiting strategy

vehicles does not significantly improve the solution on the instances with low and

moderate degrees of dynamism. In fact, regarding total distance, it is significantly

worse than the other waiting strategies. However, with a high degree of dynamism,

waiting away from other vehicles gives significantly better results than the other two

waiting strategies with respect to both measures of solution quality. This illustrates

the benefit of encouraging vehicles to be at different areas especially on the instances

with a high degree of dynamism, i.e. in the case where a majority of tasks are known

after vehicles leave the depot at the beginning of the planning horizon.

The likelihood of vehicles being instructed to wait according to each waiting strategy

is shown in Table 5.4. The meanings of nall, nwait, and nwait(%) are the same as those

in Table 5.2. It can be seen that the “waiting away from other vehicles” strategy is

also rarely used. The fact that instructing vehicles to wait away from other vehicles

could give lower total distance and earlier service completion time than instructing

vehicles to wait at the end of last task suggests that waiting locations could have an

effect on the solution quality despite not being implemented very often.

5.5 Employing Extra Routes

One might expect that the greater number of tasks would require greater total

distance. However, in computational results from Chapter 4, it was found that the

117

5.5. EMPLOYING EXTRA ROUTES

Table 5.3: Medians of percentage deviations from a posteriori lower bounds with
respect to total distances and medians of service completions times (as multiples of
the length of the planning horizon) over 40 dynamic CARP instances given by each
waiting strategy

Degree of
dynamism

Percentage deviation from
a posteriori lower bound (%)

Service completion time
(× planning horizon length)

Without
waiting

Waiting
at the end
of last task

Waiting
away from

other vehicles

Without
waiting

Waiting
at the end
of last task

Waiting
away from

other vehicles

Low (0.2) 21.47c 21.36c 22.52 1.97 1.96a 1.93
Moderate (0.5) 27.40 27.51 27.37 2.19 2.21 2.20b

High (0.8) 27.64 27.69 25.72ab 2.22 2.24 2.19ab

a significantly better than without waiting
b significantly better than waiting at the end of last task
c significantly better than waiting away from other vehicles

based on a two-tailed Wilcoxon signed-rank test with Bonferroni correction (for 3 pairwise comparisons),

resulting in a significance level of 0.05/3 ≈ 0.017

Table 5.4: The total number of routes in all updates except at the end of the planning
horizon (nall) and the number of times vehicles are instructed to wait (nwait) in all
800 runs (40 instances × 20 runs) for each waiting strategy and each degree of
dynamism; nwait(%) is the ratio of nwait to nall

Degree of dynamism
Waiting at the end

of last task
Waiting away from

other vehicles

nall nwait nwait(%) nall nwait nwait(%)

Low (0.2) 130169 8865 6.8% 128649 8171 6.4%
Moderate (0.5) 109526 4723 4.3% 108754 4142 3.8%
High (0.8) 89766 1651 1.8% 89589 1566 1.7%

118

5.5. EMPLOYING EXTRA ROUTES

solution cost (total distance of planned routes) decreased in some updates despite the

appearance of new tasks. For example, Figure 5.10 shows the solution cost and the

number of routes at each update on the C01-d80-1 instance3 from an individual run

of the dynamic CARP solver in Chapter 4 (with the 20-update schedule, the Random

Insertion method, and the maximum iteration limit of 50nt, where nt is the number

of tasks at each update). In this sample run, the solution cost decreased when the

solution was updated at time 0.7T and 0.85T , where T is the length of the planning

horizon. At these two updates, the number of routes increased by 1; in other words,

a new route was created. This suggests that there might be a connection between

the decrease in solution cost and the construction of a new route (at least for the

dynamic CARP solver that was implemented here).

It is worth reminding ourselves at this stage that in this dynamic CARP solver,

routes are constructed on an as-needed basis, that is, a new route is constructed

only if the method of integrating new tasks could not assign all tasks in the current

update to the existing routes. After the method of integrating new tasks, the number

of routes remains unchanged throughout the course of the tabu search algorithm

because the neighbourhood moves in the algorithm (see Section 3.2) operate in such a

way that they do not create a new route. Consequently, if many routes are nearly full

(i.e. the total demand almost reaches the capacity), there would be a relatively small

number of feasible neighbourhood moves, especially Single Insertion and Double

Insertion since nearly full routes would be unlikely to feasibly receive additional

tasks. This restricts the way in which the tabu search algorithm could amend the

solution. Introducing an extra (empty) route to the existing solution would allow

more possible ways to move tasks between routes, which could increase the chance

of tabu search improving a solution.

For a more comprehensive result, Figure 5.11 displays the number of updates in which

the solution cost (i.e. total distance of planned routes) decreased and the proportion

of those updates in which an extra route was created from the computational results

of 800 runs (40 instances × 20 runs) of the dynamic CARP solver in Chapter 4

(with the Random Insertion method and the maximum iteration limit 50nt, where

nt is the number of tasks at each update). It can be seen that among the updates

with a decrease in solution costs, a significant proportion of updates involved the

construction of new routes, further emphasising the connection between the decrease

in solution cost and the construction of a new route.

3The C01-d80-1 instance is generated based on a static CARP instance named C01 from the
BMCV dataset with the degree of dynamism = 0.8 (i.e. 80%); see Section 4.3.

119

5.5. EMPLOYING EXTRA ROUTES

0 0.2T 0.4T 0.6T 0.8T T
Time

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

So
lu

tio
n

co
st

Solution cost
Number of routes

1

2

3

4

5

6

7

8

9

10

11

Nu
m

be
r o

f r
ou

te
s

Figure 5.10: Solution cost at each update in an individual run on the C01-d80-1
instance given by the dynamic CARP solver from Chapter 4 with 20 updates and
the Random Insertion method and the maximum iteration limit 50nt, where nt is
the number of tasks at each update; T denotes the length of the planning horizon

0

100

200

300

400

500

600

700

800

5
updates

10
updates

20
updates

5
updates

10
updates

20
updates

5
updates

10
updates

20
updates

DoD = 0.2 DoD = 0.5 DoD = 0.8

N
u
m

b
e
r

o
f

u
p
d

a
te

s

Update schedule and degree of dynamism

With an extra vehicle Overall

Figure 5.11: The number of updates in which the solution cost decreased given by
the dynamic CARP solver from Chapter 4 with the Random Insertion method and
the maximum iteration limit 50nt, where nt is the number of tasks at each update;
the black bars show the proportion of those updates in which an extra route was
created.

120

5.5. EMPLOYING EXTRA ROUTES

This motivates the idea of introducing an extra route to the solution in each update.

More precisely, in each update, several empty routes (the number of which is to be

specified) are added to the solution before new tasks are added to it by the Random

Insertion method. By an “empty” route, we mean a route that has only the starting

and ending vertices (both of which are the depot) and has no tasks. Once the tabu

search algorithm returns a solution, any empty routes that exist in the solution are

removed to avoid accumulating empty routes throughout the planning horizon. The

dynamic CARP solver with the use of extra routes (and a waiting strategy) is given

in Algorithm 10.

Algorithm 10 Configuration of the dynamic CARP solver with waiting and the use
of extra routes

1: given max time (i.e. the length of the planning horizon), a rule for deciding
when to perform solution updates (see Section 4.2.1), the number of extra routes,
a waiting strategy (either no waiting, Algorithm 7, or Algorithm 9)

2: construct an initial solution S by the Path Scanning algorithm
3: add a given number of empty route to S
4: apply the tabu search algorithm (from Chapter 3) to S
5: remove empty routes (if any) from S
6: implement the chosen waiting strategy
7: set time = 0
8: while time < max time do
9: increase time by 1 unit

10: if time is an update time then
11: let T be the set of new tasks that appear since last update
12: if there exist new tasks then
13: identify the fixed part and the starting vertex of each route for the

current update (see Section 4.2.2)
14: add a given number of empty route to S
15: add the new tasks in T to S by the Random Insertion method (see

Algorithm 5)
16: apply the tabu search algorithm (from Chapter 3) to S
17: remove empty routes (if any) from S

18: if this update is not the last one then
19: implement the chosen waiting strategy

5.5.1 Computational Results

The idea of an extra route to a solution in each update is tested with 3 waiting

strategies we saw previously in this chapter, namely no waiting, waiting at the end

of last task, and waiting away from other vehicles, and the computational results are

displayed in Tables 5.5 to 5.7, respectively. For ease of reference, the results without

121

5.5. EMPLOYING EXTRA ROUTES

the use of extra routes (previously seen in Table 5.3) are also displayed in the same

tables under the columns “0 extra routes”.

For the dynamic CARP solver with the “without waiting” and the “waiting at the

end of last task” strategies (Tables 5.5 and 5.6), computational results show that

the use of an extra route significantly reduces the total distance across different

degrees of dynamism. The use of 2 extra routes also leads to significant improvement

compared with no extra routes, although there is no significant difference between

the results with 1 and 2 extra routes. This could be because the total demand of

new tasks in each update is generally small in relation to the total capacity of two

vehicles, and so the second extra route is unlikely to be used (i.e. it has no tasks) in

the solution returned by the tabu search algorithm.

Regarding service completion time, Tables 5.5 and 5.6 also shows that the use of

either 1 or 2 extra routes significantly reduces the service completion time in the

case of moderate and high degrees of dynamism. This could be because there are

more tasks appearing after the planning horizon begins on an instance with a higher

degree of dynamism, and hence greater need to construct new routes. Adding an

extra route to a solution in each update encourages new routes to be constructed at

an earlier time, which in turn encourages routes to end at an earlier time.

For the dynamic CARP solver with the “waiting away from other vehicles” strategy

(Table 5.7), the computational results show no significant improvement due to the

use of an extra route in most cases. This suggests that the effect of an extra route

on solution quality can vary with a waiting strategy, and in particular, a waiting

location.

Overall, the use of an extra route can significantly improve the performance of the

dynamic CARP solver when implemented without waiting or with the “waiting

at the end of the last task” strategy. In fact, implementing the use of an extra

route with the “waiting at the end of the last task” strategy appears to give the

most promising results among all numbers of extra routes and all waiting strategies

considered here. However, the second extra route does not appear to yield further

significant improvement, although this is expected to depend on characteristics of

problem instances, especially demands of new tasks in relation to the vehicle capacity;

if their demands are sufficiently large, the benefit of the second extra route (or more

extra routes in general) might be more apparent.

122

5.5. EMPLOYING EXTRA ROUTES

Table 5.5: Medians of percentage deviations from a posteriori lower bounds with
respect to total distances and medians of service completion times over 40 dynamic
CARP instances given by the dynamic CARP solver without waiting

Degree of
dynamism

Percentage deviation from
a posteriori lower bound (%)

Service completion time
(× planning horizon length)

0 extra routes 1 extra route 2 extra routes 0 extra routes 1 extra route 2 extra routes

Low (0.2) 21.47 20.11∗ 20.14∗ 1.97 1.93 1.99
Moderate (0.5) 27.40 26.54∗ 27.02∗ 2.19 2.18∗ 2.19∗

High (0.8) 27.64 25.29∗ 25.33∗ 2.22 2.17∗ 2.18∗

∗ significantly better than not using extra routes, based on a two-tailed Wilcoxon signed rank test

with a Bonferroni correction (for 3 pairwise comparisons), resulting in a significance level of 0.01/3 ≈ 0.0033

Table 5.6: Medians of percentage deviations from a posteriori lower bounds with
respect to total distances and medians of service completion times over 40 dynamic
CARP instances given by the dynamic CARP solver with waiting at the end of last
task

Degree of
dynamism

Percentage deviation from
a posteriori lower bound (%)

Service completion time
(× planning horizon length)

0 extra routes 1 extra route 2 extra routes 0 extra routes 1 extra route 2 extra routes

Low (0.2) 21.36 19.88∗ 19.71∗ 1.96 1.93 1.91
Moderate (0.5) 27.51 26.01∗ 26.39∗ 2.21 2.17∗ 2.19∗

High (0.8) 27.69 25.42∗ 25.43∗ 2.24 2.18∗ 2.17∗

∗ significantly better than not using extra routes, based on a two-tailed Wilcoxon signed rank test

with a Bonferroni correction (for 3 pairwise comparisons), resulting in a significance level of 0.01/3 ≈ 0.0033

Table 5.7: Medians of percentage deviations from a posteriori lower bounds with
respect to total distances and medians of service completion times over 40 dynamic
CARP instances given by the dynamic CARP solver with waiting away from other
vehicles

Degree of
dynamism

Percentage deviation from
a posteriori lower bound (%)

Service completion time
(× planning horizon length)

0 extra routes 1 extra route 0 extra routes 1 extra route

Low (0.2) 22.52 22.29 1.93 1.91
Moderate (0.5) 27.37 27.61 2.20 2.15∗

High (0.8) 25.72 25.93 2.19 2.17
∗ significantly better than not using extra routes, based on a two-tailed Wilcoxon

signed rank test with a significance level of 0.01

123

5.6. CONCLUSIONS

5.6 Conclusions

In this chapter, we investigated ways of exploiting the notion of time in order to

improve the effectiveness of route planning for the dynamic CARP. Prior to this

chapter, it was implicitly assumed that vehicles travel without stopping until reaching

the depot at the end of their routes, as they would in the static CARP. As a result,

vehicles would return to the depot despite having some remaining capacity after the

completion of services on their last tasks. Consequently, some remaining capacity

would be wasted if vehicles return to the depot before the end of the planning horizon.

This motivated the idea of instructing vehicles to wait at certain locations.

The first waiting strategy that we investigated was to let vehicles wait at the end of

their last tasks until further instructions from an upcoming update. It was found

that this waiting strategy indeed reduces the need to construct additional routes as

new tasks appear. It can also prevent unnecessary routes that service zero demands,

which can occur without waiting when a solution update moves all tasks from a

certain route to the other routes before the vehicle reaches its first task. Despite

its ability to prevent a waste of vehicle capacity, however, computational results

suggested that this waiting strategy had only a marginal effect on the solution quality

with respect to both the total distance and the service completion time.

The waiting strategy was then refined by the waiting threshold, which was a means

to explicitly determine whether a vehicle has “too little” remaining capacity, which

would be unlikely to receive additional tasks and thus should head towards the depot

instead of waiting. Nevertheless, using the waiting threshold to restrict waiting

instructions to vehicles with certain remaining capacity rarely made a noticeable

difference to the solution quality. One possible reason for the waiting strategy and

the waiting threshold having a small effect on the solution quality is that the waiting

instructions are rarely given to vehicles, which in turn follows from the fact that

there are not many vehicles whose last tasks are scheduled to be completed before

an upcoming update, at least on the dynamic CARP instances considered here.

An alternative waiting strategy was also considered, namely instructing vehicles to

wait away from other vehicles. This is to reduce the risk of a new task appearing far

away from all vehicles when they are near each other. It was expected that placing

vehicles far away from each other would allow vehicles to cover a wider area and thus

could reach a new task faster, regardless of where the task appeared. Computational

results suggested that this waiting strategy is particularly beneficial on instances

with a relatively high degree of dynamism.

124

5.6. CONCLUSIONS

The idea of adding an extra route to the solution before the tabu search algorithm

in each update was also investigated. This was expected to give the tabu search

algorithm (or any local search algorithm in general) more flexibility in making changes

to the solution, especially when the amounts of demands in many routes are close

to the capacity, limiting the number of feasible neighbourhood moves. Empirical

results showed that the use of one extra route significantly reduced both the total

distance and the service completion time when implemented without waiting or with

waiting at the end of the last task. However, the second extra route did not seem

to give much further improvement, although the effect of the second extra route is

expected to be more apparent on other instances in which the demands of new tasks

are sufficiently large.

Furthermore, the dynamic CARP solver with the “waiting at the end of last task”

and the use of 1 extra route gives the most promising results among all variants

tested here, illustrating the benefit of combining an appropriate waiting location

with an appropriate number of extra routes. It is also interesting to note that all

waiting strategies introduced in this chapter do not significantly increase the service

completion time.

125

Chapter 6

Conclusion

6.1 The Problem Investigated

This thesis concerns the capacitated arc routing problem (CARP), in which the goal

is to find a minimum-cost set of routes such that (i) each route starts and ends at

the depot, (ii) each task is serviced in one of the routes, and (iii) the total demand

in each route does not exceed the capacity. The CARP can be used as a model of

various real-life scenarios such as rubbish collection, snow ploughing, street sweeping,

and other situations where an emphasis is placed on providing a certain service along

streets (as opposed to individual locations).

Up until recently, the study of the CARP is concentrated on its “static” version,

that is, all information of the problem is assumed to be available at the time of

route planning, or equivalently, it is assumed that the problem does not change after

vehicles start their journeys. Nevertheless, with the availability of global positioning

systems and today’s communication technology, a route planner has the capability

to track vehicles and to be informed about any changes in the problem that may

occur while the vehicles are travelling and performing their services. This opens up

an opportunity for a route planner to amend vehicles’ routes if deemed necessary or

appropriate for the current state of the problem and, more importantly, to inform

drivers of any changes in their routes so that the amended routes can indeed be

followed. This motivates the study of a dynamic CARP.

A variety of possible changes means there are many types of dynamic CARPs. This

thesis focusses on the dynamic CARP with the appearance of new tasks. In particular,

all tasks that appear within a certain time interval, also referred to as the planning

126

6.2. SUMMARY OF FINDINGS

horizon, must be serviced. However, in the dynamic CARP that we consider here, it

is not required that a new task is integrated into a solution as soon as it appears. In

other words, a route planner is allowed to update the solution at any time and any

number of times as long as all tasks are included in the solution at the end of the

planning horizon.

Although the dynamic CARP can be viewed as a sequence of static CARPs, it has

been shown in the literature that the static CARP is NP-hard. Literature review

suggests that to find a good solution for the CARP in a reasonably short time,

heuristic algorithms are a more promising choice than exact algorithms. For this

reason, we opt to investigate ways of finding a solution for a dynamic CARP based on

heuristic algorithms. In particular, a metaheuristic methodology called tabu search

is considered as it usually requires a small number of parameters. This allows us to

focus more on factors beyond tackling the static CARP in each update, including the

frequency of solution updates, the method of integrating new tasks into a solution,

and waiting strategies.

6.2 Summary of Findings

The findings and contributions made throughout this thesis are summarised below

in connection with the research aims stated in Section 1.4.

1st Research Aim: To compare several variants of a tabu search algorithm for

the static CARP and identify variants that can provide good solutions within limited

time.

In existing literature, the performance of heuristic algorithms for the static CARP

is commonly reported based on a given stopping criterion. In Chapter 3, we study

the performance of variants of tabu search by analysing solution costs over a range

of iteration numbers. This helps us better understand what variant of tabu search

can improve solution quality at a relatively fast rate. This information will be useful

for designing a heuristic algorithm for dynamic CARP, where it is preferable to find

good solutions within limited time.

Variants of tabu search for the static CARP that we investigate in Chapter 3 differ in

ways of defining tabu moves. In our tabu search algorithm, the process of determining

the tabu status of neighbourhood move relies on recording and checking a specific type

127

6.2. SUMMARY OF FINDINGS

of solution attribute. Four types of solution attributes are compared: task-in-a-route,

2-task, 2-task-in-a-route, and 3-task attributes.

Computational results (shown in Table 3.2) suggest that the definition of tabu moves

has a significant effect on the rate at which tabu seach improves the static CARP

solution. The variants of tabu search that generally improves the solution at a faster

rate than the others are those with the task-in-a-route and the 2-task attributes.

Furthermore, the costs of solutions visited over a range of iterations by tabu search

with the 3-task attribute tend to fluctuate noticeably less than the other types of

attributes (examples are shown in Figure 3.4). This suggests that tabu search for

the CARP can perform relatively well when the definition of tabu moves is relatively

restrictive. In other words, there are generally a larger proportion of moves that are

tabu, which consequently encourages the tabu search algorithm to explore a wider

variety of solutions. This is because there are generally many CARP solutions that

have the same total distance, so the ability to move away from a set of solutions

with a certain total distance is important for achieving a high-quality solution over

the course of execution of the tabu search algorithm.

In addition, a deadheading cycle remover is proposed with the aim of further

improving a solution found by tabu search (or other heuristic algorithms for the

CARP in general) without too much additional computational effort. Given a route,

the deadheading cycle remover attempts to detect and remove deadheading cycles

without disconnecting the route. In Section 3.5.1, the deadheading cycle remover

is tested with the tabu search algorithm based on the task-in-a-route attribute.

Empirical results (Figure 3.8) show that the tabu search algorithm is not always

able to eliminate deadheading cycles on its own, and so the solution returned by the

tabu search algorithm can be further improved by applying the deadheading cycle

remover to the solution as a post-optimisation step. Moreover, the performance of

the tabu search algorithm can be further improved by implementing the deadheading

cycle remover in each iteration instead of only after the final iteration (as shown in

Figure 3.9 and Table 3.4).

Recall that the tabu search algorithm with the task-in-a-route attribute involves

two separate tabu lists, one list for 2-Opt moves and another list for the other

neighbourhood moves. Although the computational results suggest that this variant

of the tabu search algorithm is among those that improve the solution at the fastest

rate, it is later discovered that using multiple tabu lists could fail to prevent the

tabu search algorithm from returning to the solutions in previous iterations. For this

reason, a dynamic CARP solver in Chapters 4 and 5 is based on the tabu search

128

6.2. SUMMARY OF FINDINGS

algorithm with another attribute that has similar performance, namely the 2-task

attribute.

2nd Research Aim: To investigate the effect of different frequencies of updating

the solution, and the way of integrating new tasks into an existing solution in each

update on the quality of the final solution (i.e. the solution at the end of the planning

horizon).

Existing works on dynamic CARP with new tasks or dynamic vehicle routing with

new requests (i.e. demands on vertices) consider solving the problem with given

update times (Chen and Xu, 2006; Liu et al., 2014a,b). There also exists other work

on dynamic CARP that consider several choices of update frequencies (Montemanni

et al., 2005), although it is not explicitly investigated how or whether a promising

update frequency would vary with the degree of dynamism. This is studied in

Chapter 4, where we test several frequencies of solution updates on dynamic CARP

instances with a range of degrees of dynamism.

The first experiment in Chapter 4 reveals that running the tabu search algorithm

for a greater number of iterations in each update does not always lead to significant

improvement of dynamic CARP solutions (Section 4.4.1). This is possible because

running the tabu search algorithm for different numbers of iterations generally gives

different solutions, and different solutions in one update lead to different CARPs

in a subsequent update. Therefore, in order to improve the solution at the end of

the planning horizon, it does not suffice to rely solely on executing the tabu search

algorithm for more iterations in each update. This highlights the need to improve

the dynamic CARP solver by other means; here we consider adjusting the frequency

of solution updates and the method of integrating new tasks.

Computational results in Chapter 4 show that changing the update frequency could

significantly affect the solution quality with respect to both the final total distance,

i.e. the total distance at which time all vehicles return to the depot after all tasks

are serviced, and the service completion time, i.e. the time at which the last vehicle

returns to the depot. However, its effect depends on the method of integrating

new tasks. Recall that two such methods are considered: (i) “Reconstruction” –

reconstructing the solution from scratch, and (ii) “Random Insertion” – retaining

the solution from the previous update and inserting new tasks into the solution in a

random order.

For the dynamic CARP solver that solves the problem in each update from scratch

129

6.2. SUMMARY OF FINDINGS

(i.e. using the Reconstruction method), the performance of different update schedule

varies with the degree of dynamism (Section 4.4.2). When the degree of dynamism

is relatively low, a more frequent update schedule tends to give solutions with lower

total distance. In the case of relatively high degree of dynamism, the opposite is the

case. However, regarding service completion time, a more frequent update schedule

generally results in earlier service completion time, especially when the degree of

dynamism is relatively low.

For the dynamic CARP solver with the Random Insertion method, a more frequent

update schedule tends to give better solutions with respect to both total distance and

service completion time, and this is the case across different degrees of dynamism

(Section 4.5).

Overall, among all variants of the dynamic CARP solver considered here, empirical

results show that the one that performs the best in general involves a 20-update

schedule (the most frequent among those considered) and integrates new tasks into

the solution by the Random Insertion method.

3rd Research Aim: To investigate the trade-off between the total distance

travelled and resultant service completion time given by waiting strategies.

In existing work on dynamic CARP (Liu et al., 2014b), a solution at each update is

found based solely on information that is available at the current update. However,

when new tasks (or other types of changes in general) are expected to occur, it

may be beneficial to anticipate those changes and amend the solution at each

update accordingly. In Chapter 5, we investigate several ways of doing so, including

instructing vehicles to wait and stand by at certain locations, and adding extra routes

to the solution even if the current set of routes have enough capacity to service all

tasks that have appeared so far.

Chapter 5 proposes and analyses the idea of instructing vehicles to wait at the end of

their last tasks until further instructions from an upcoming update. Computational

results (Section 5.2) show that this waiting strategy has a small effect on the quality of

dynamic CARP solutions with respect to both total distance and service completion

time. Nevertheless, it can reduce the chance of the vehicle capacity being underused

and also encourages a dynamic CARP solver to return solutions with a smaller

number of routes.

Apart from waiting at the end of the last task, another waiting strategy is also

130

6.3. FURTHER WORK

investigated, namely instructing vehicles to wait away from other vehicles. This

waiting strategy attempts to prevent many vehicles from staying close to each other

as this could result in a new task appearing far away from all vehicles. By letting

vehicles to be far away from each other, they could cover a wider area and generally

reach a new task sooner, regardless of where a new task appears. Empirical results

show that this waiting strategy leads to significant improvement when the degree of

dynamism is relatively high (Section 5.4).

The idea of adding extra (empty) routes to the solution before the tabu search

algorithm in each update is also investigated. Adding an extra route to the solution

would allow more ways of moving tasks between routes and potentially help tabu

search explore a wider range of solutions, thereby increasing the chance of finding a

better solution. Computational results (Section 5.5.1) show that the use of an extra

route indeed improves the solution quality. Nevertheless, the second extra route does

not seem to give much further improvement. This could be because the second extra

route is not often used in the solution returned by the tabu search algorithm on the

instances considered.

It is also interesting to note that implementing the “waiting at the last task” strategy

together with the use of 1 extra route generally gives the best solutions among

different waiting strategies and different numbers of extra routes. This illustrates the

benefit of combining an appropriate waiting strategy with an appropriate number of

extra routes. However, such appropriate choices are expected to depend on instance

features such as the amount of demands in relation to the vehicle capacity.

6.3 Further Work

There are a variety of ways in which the study in this thesis could be extended. This

section provides several suggestions.

Deadheading cycle remover. In Section 3.5, where we investigated a deadheading

cycle remover, the focus was on deadheading cycles that arose from edges traversed

more than twice in a given route. This type of deadheading cycles is guaranteed to

be removable without disconnecting the route, and thus no computation is needed

to check whether or not such cycles are removable. Nevertheless, there are also other

types of deadheading cycles, including those on edges that are traversed twice or

simple cycles (i.e. cycles that has no repeated edges) that are composed of traversals

131

6.3. FURTHER WORK

on different edges. However, when these types of deadheading cycles are encountered,

it is necessary to check whether they are removable. One way of checking this is to

view the route as a graph, say Gr, and remove a cycle from Gr. Then starting from

any vertex, determine a set of vertices in Gr that can be reached from the starting

vertex, which can be achieved by breadth-first search, for example. If all vertices in

Gr can be reached, this means that Gr remains connected and therefore the cycle

can be removed. This would allow us to find more removable deadheading cycles

and potentially better solutions, although additional computation for checking the

removability would be needed. Investigating a balance between considering more

deadheading cycles and saving computational time would provide more insights

about how to develop an algorithm that is both quick and effective.

Update schedules. In Chapter 4, we opted to investigate regular update schedules,

i.e. the time between consecutive updates is the same throughout the planning horizon.

Our experiments involved only 3 regular update schedules, in which there are either

5, 10, or 20 updates. To extend this research, a wider range of numbers of updates

may be studied. Alternatively, “irregular” update schedules could also be considered.

That is, instead of fixed time intervals, the solution updates may be scheduled

according to how new tasks appear, for example, updating the solution as soon as

each task appears or after a certain number of tasks appear. In practice, there may

also be information about the appearance of tasks throughout the planning horizon,

for example, new tasks may be more likely to appear within a certain time interval

than others. It is interesting to find a way to exploit such information to adjust the

solution update schedule accordingly.

Algorithms for finding solutions in each update. In addition to tabu search,

which was investigated in this thesis, other heuristic algorithms could also be used

to improve the solution in each update. In the literature, there are a wide variety

of heuristic algorithms proposed for the static CARP, although their performance

is usually reported based on solutions they return after a certain stopping criterion

is satisfied (for example, when a given maximum number of iterations is reached).

Investigating the rate at which they improve the solution would provide more insights

about which algorithm tends to improve a solution at a faster rate than others and

what makes such an algorithm able to do so. This would help us develop a better

algorithm for planning routes in the dynamic CARP, where the time taken to find a

solution is not necessarily less important than the solution quality.

132

6.3. FURTHER WORK

Appearance times of new tasks. In the dynamic CARP instances that are

considered in our experiments, it is assumed that the times at which new tasks

appear are uniformly distributed over the planning horizon. In practice, however,

those appearance times may have different distributions. A wider range of dynamic

CARP instances are therefore needed to be considered in order to cover a greater

variety of the dynamic CARP.

Waiting locations. In Chapter 5, we investigate two ways of determining waiting

locations: at the end of the last task or at a location far away from other vehicles.

It was found that the first waiting strategy has a very small effect on the quality

of dynamic CARP solution (except when it is implemented with the use of an

extra route), and the second waiting strategy only yields significant improvement on

instances with relatively high degrees of dynamism. Consequently, further research is

needed to identify a more robust waiting strategy that can enhance the performance

of a dynamic CARP solver over a wide range of degrees of dynamism.

Moreover, it is assumed in Chapter 5 that vehicle drivers can wait at any vertex. In

reality, however, it might be impractical to wait at a certain vertex, for example, if

that vertex represents an intersection of small streets, in which case parking could

block the traffic. Also, vehicle drivers may prefer to wait at a certain location such

as a rest stop at the side of a highway rather than at a remote area. Taking into

account the practicality of each possible waiting location would allow us to find a

balance between improving the solution quality and ensuring drivers’ healthy working

conditions.

Postponing tasks until the next planning horizon. In this thesis, we opt

to consider the dynamic CARP on a single planning horizon. Nevertheless, some

services such as street sweeping are usually performed regularly, in which case a

series of planning horizons exist. For a service that is not urgent, some tasks may be

better serviced in the next planning horizon, for example, when it appears very close

to the end of the current planning horizon and all vehicles are nearly full and/or

almost reach the depot. Considering multiple planning horizons would allow a route

planner more options to decide how tasks should be serviced and could reduce the

overall total distance (or some other objectives in general) than focussing on one

planning horizon at a time.

In general, considering route planning in a larger scale of time and/or space would

133

6.3. FURTHER WORK

provide a route planner with greater flexibility to plan and amend routes, thus

potentially achieving better routes in the long run. Nevertheless, with greater

flexibility comes a vast increase in the number of possible solutions, not to mention

the fact that a larger scale of time would allow a larger number of changes to occur

over time, further adding the intractability of the problem. The quest for long-term

efficient routes necessitates the development of algorithms for route planning in the

face of changes that are often unpredictable in the dynamic CARP, as well as other

dynamic routing problems.

134

Appendix A

Performance of Existing

Metaheuristic Algorithms for the

Static CARP

This chapter presents the performance (solution costs and computation times) of

existing metaheuristic algorithms for the static CARP as reported in their original

papers. These include:

• a tabu search algorithm (‘CARPET’) by Hertz et al. (2000),

• a guided local search local search (‘GLS’) by Beullens et al. (2003),

• a memetic algorithm (‘MA’) by Lacomme et al. (2004),

• a tabu search algorithm (‘TSA’) by Brandão and Eglese (2008),

• a memetic algorithm (‘MAENS’) by Tang et al. (2009),

• an ant colony optimisation algorithm (‘Ant-CARP’) by Santos et al. (2010).

For some of the above studies, the performance of their algorithms is reported in

multiple ways:

• For the guided local search algorithm by Beullens et al. (2003), the results with

105 iterations and 5× 105 iterations are displayed in the columns ‘GLS1’ and

‘GLS2’, respectively.

135

APPENDIX A. PERFORMANCE OF EXISTING METAHEURISTIC
ALGORITHMS FOR THE STATIC CARP

• In the original paper of Brandão and Eglese (2008), their main algorithm is

referred to as ‘TSA Version 1’, whereas ‘TSA Version 2’ results from their

attempt to obtain better solutions by running their main algorithm several

times successively; these variants are denoted here by ‘TSA1’, and ‘TSA2’,

respectively.

• In the work of Santos et al. (2010), their ant colony optimisation algorithm

involves local search. They consider two versions of their algorithm, one

involving 6 types of neighbourhood moves in the local search, and the other

involving 12 types (including the former 6 types). These variants are denoted

here by ‘Ant-CARP-6’ and ‘Ant-CARP-12’, respectively.

It should also be noted that Tang et al. (2009) report the results of their algorithm in

terms of averages over 30 independent runs, while Santos et al. (2010) report median

costs and average computation times (to achieve the median costs) calculated from

results of executing their algorithm 15 times on each instance.

For ease of reference, Tables A.1 to A.6 also include computation times of the

respective algorithms as reported in their original papers; these are displayed under

the columns ‘Time’. It should be noted, however, that the computation times from

different papers are obtains from computers with different specifications (including

different speeds of CPUs). Therefore, care needs to be taken when comparing these

computation times to ensure a fair comparison of the algorithm speeds.

Details of benchmark instance sets for the static CARP can be found in Table 2.1.

These instances, as well as their optimal costs or best known lower bounds can be

found at the website http://logistik.bwl.uni-mainz.de/benchmarks.php (last

accessed 21 March 2018).

136

APPENDIX A. PERFORMANCE OF EXISTING METAHEURISTIC
ALGORITHMS FOR THE STATIC CARP

T
ab

le
A

.1
:

S
ol

u
ti

on
co

st
s

gi
ve

n
b
y

ex
is

ti
n
g

m
et

ah
eu

ri
st

ic
al

go
ri

th
m

s
fo

r
th

e
C

A
R

P
on

th
e

V
A

L
in

st
an

ce
se

t

In
st

an
ce

O
p

ti
m

al
∗

C
A

R
P

E
T

G
L

S
1

G
L

S
2

M
A

T
S

A
1

T
S

A
2

M
A

E
N

S
A

n
t-

C
A

R
P

-6
A

n
t-

C
A

R
P

-1
2

C
os

t
T

im
e

C
os

t
T

im
e

C
os

t
T

im
e

C
os

t
T

im
e

C
os

t
T

im
e

C
os

t
T

im
e

C
os

t
T

im
e

C
os

t
T

im
e

1A
17

3
17

3
0.

1
17

3
0.

1
17

3
0.

1
17

3
0.

0
17

3
0.

0
17

3
0.

0
17

3.
0

17
3

0.
0

17
3

0.
1

1B
17

3
17

3
50
.2

17
3

0.
3

17
3

0.
3

17
3

8.
0

17
3

0.
2

17
3

0.
9

17
3.

0
17

3
2.

2
17

3
0.

6
1C

24
5

24
5

50
6.

1
24

5
45
.3

24
5

19
8.

2
24

5
28
.7

24
5

0.
8

24
5

12
.1

24
5.

0
24

5
0.

2
24

5
0.

2
2A

22
7

22
7

0.
9

22
7

0.
0

22
7

0.
0

22
7

0.
1

22
7

0.
0

22
7

0.
0

22
7.

0
22

7
0.

0
22

7
0.

0
2B

25
9

26
0

70
.7

25
9

0.
3

25
9

0.
3

25
9

0.
2

25
9

0.
1

25
9

0.
3

25
9.

0
25

9
0.

1
25

9
0.

1
2C

45
7

49
4

17
1.

6
45

7
44
.9

45
7

18
0.

0
45

7
21
.8

45
7

1.
5

45
7

7.
8

45
7.

2
45

7
0.

2
45

7
0.

2
3A

81
81

4.
2

81
0.

1
81

0.
1

81
0.

1
81

0.
0

81
0.

0
81
.0

81
0.

0
81

0.
0

3B
87

87
15
.1

87
0.

1
87

0.
1

87
0.

0
87

0.
0

87
0.

0
87
.0

87
0.

2
87

0.
1

3C
13

8
13

8
22

5.
8

13
8

0.
6

13
8

0.
6

13
8

28
.2

13
8

0.
6

13
8

1.
3

13
8.

0
13

8
0.

2
13

8
0.

2
4A

40
0

40
0

15
3.

5
40

0
0.

1
40

0
0.

1
40

0
0.

7
40

0
0.

1
40

0
0.

4
40

0.
0

40
0

0.
0

40
0

0.
9

4B
41

2
41

6
41

0.
1

41
2

0.
1

41
2

0.
1

41
2

1.
2

41
4

1.
7

41
2

5.
5

41
2.

0
41

2
1.

5
41

2
1.

5
4C

42
8

45
3

37
9.

7
42

8
0.

3
42

8
0.

3
42

8
19
.1

44
4

1.
7

42
8

38
.0

43
1.

1
42

8
14
.7

42
8

25
.0

4D
52

8
55

6
12

65
.9

53
0

63
.0

53
0

27
5.

9
54

1
10

3.
3

53
8

10
.3

53
0

11
0.

0
53

2.
9

53
0

50
.1

53
0

74
.2

5A
42

3
42

3
20
.6

42
3

0.
3

42
3

0.
3

42
3

1.
9

42
3

0.
3

42
3

0.
3

42
3.

0
42

3
1.

1
42

3
0.

9
5B

44
6

44
8

22
4.

3
44

6
0.

4
44

6
0.

4
44

6
1.

0
44

6
0.

1
44

6
0.

1
44

6.
0

44
6

1.
4

44
6

0.
9

5C
47

4
47

6
28

8.
7

47
4

59
.0

47
4

26
6.

7
47

4
10

1.
0

47
4

1.
2

47
4

10
.6

47
4.

0
47

4
56
.6

47
4

82
.8

5D
57

5
60

7
12

14
.7

58
3

56
.7

57
9

24
1.

2
58

1
90
.7

58
3

6.
5

58
3

73
.3

58
2.

9
58

2
41
.4

58
3

61
.4

6A
22

3
22

3
21
.1

22
3

0.
1

22
3

0.
1

22
3

0.
2

22
3

0.
1

22
3

1.
6

22
3.

0
22

3
0.

1
22

3
0.

2
6B

23
3

24
1

14
6.

0
23

3
31
.6

23
3

14
8.

9
23

3
67
.3

23
3

2.
5

23
3

12
.7

23
3.

0
23

3
30
.8

23
3

44
.6

6C
31

7
32

9
46

1.
7

31
7

39
.1

31
7

16
8.

7
31

7
52
.2

32
3

3.
1

31
7

22
.9

31
7.

0
31

7
22
.1

31
7

32
.2

7A
27

9
27

9
35
.7

27
9

0.
1

27
9

0.
1

27
9

2.
0

28
3

0.
9

27
9

1.
0

27
9.

0
27

9
0.

2
27

9
0.

1
7B

28
3

28
3

0.
1

28
3

0.
2

28
3

0.
2

28
3

0.
4

28
3

0.
1

28
3

0.
5

28
3.

0
28

3
0.

4
28

3
0.

4
7C

33
4

34
3

65
8.

2
33

4
48
.0

33
4

22
5.

8
33

4
10

1.
2

33
5

4.
0

33
4

37
.0

33
4.

0
33

4
5.

0
33

4
5.

0
8A

38
6

38
6

20
.8

38
6

0.
1

38
6

0.
1

38
6

0.
7

38
6

0.
6

38
6

0.
3

38
6.

0
38

6
0.

8
38

6
0.

4
8B

39
5

40
1

44
1.

5
39

5
0.

2
39

5
0.

2
39

5
10
.0

40
7

1.
0

39
5

1.
8

39
5.

0
39

5
2.

0
39

5
1.

9
8C

52
1

53
3

79
8.

9
52

3
53
.3

52
1

23
5.

1
52

7
71
.5

54
5

1.
9

52
9

55
.7

52
5.

9
52

7
39
.2

52
7

55
.6

9A
32

3
32

3
15

4.
5

32
3

2.
3

32
3

2.
3

32
3

18
.3

32
3

0.
7

32
3

0.
0

32
3.

0
32

3
9.

5
32

3
8.

9
9B

32
6

32
9

32
4.

6
32

6
0.

6
32

6
0.

6
32

6
29
.4

32
6

1.
3

32
6

0.
5

32
6.

0
32

6
9.

0
32

6
7.

6
9C

33
2

33
2

30
5.

9
33

2
1.

2
33

2
1.

2
33

2
71
.2

33
2

0.
7

33
2

0.
4

33
2.

0
33

2
10
.2

33
2

11
.0

9D
38

8
40

9
19

14
.8

39
1

81
.1

39
1

37
2.

0
39

1
21

1.
1

40
4

7.
3

39
1

60
.4

39
1.

0
39

1
10

4.
6

39
1

15
5.

2
10

A
42

8
42

8
29
.9

42
8

0.
3

42
8

0.
3

42
8

25
.5

43
0

3.
5

42
8

3.
2

42
8.

0
42

8
34
.4

42
8

22
.2

10
B

43
6

43
6

99
.9

43
6

1.
5

43
6

1.
5

43
6

4.
7

43
8

3.
6

43
6

1.
8

43
6.

0
43

6
47
.4

43
6

49
.1

10
C

44
6

45
1

50
6.

6
44

6
1.

6
44

6
1.

6
44

6
17
.3

44
7

4.
6

44
6

7.
5

44
6.

0
44

6
34
.7

44
6

41
.0

10
D

52
5

54
4

84
7.

2
52

9
96
.1

52
6

44
1.

4
53

0
21

5.
0

53
4

10
.9

53
0

21
8.

1
53

3.
6

53
0

12
6.

1
52

8
17

5.
6

∗
O

ri
gi

n
al

ly
,

se
rv

ic
e

co
st

s
on

th
es

e
in

st
an

ce
s

ar
e

gi
ve

n
in

ad
d
it

io
n

to
ed

ge
co

st
s.

H
er

e,
th

e
op

ti
m

al
co

st
s

ar
e

ad
ju

st
ed

so
th

at
th

e
co

st
of

se
rv

ic
in

g
ea

ch
ta

sk
is

eq
u

al
to

th
e

co
st

of
tr

av
er

si
n

g
th

e
co

rr
es

p
on

d
in

g
ed

ge
.

137

APPENDIX A. PERFORMANCE OF EXISTING METAHEURISTIC
ALGORITHMS FOR THE STATIC CARP

T
ab

le
A

.2
:

S
ol

u
ti

on
co

st
s

gi
ve

n
b
y

ex
is

ti
n
g

m
et

ah
eu

ri
st

ic
al

go
ri

th
m

s
fo

r
th

e
C

A
R

P
on

th
e

B
M

C
V

in
st

an
ce

se
t

(‘
C

’
in

st
an

ce
s)

In
st

an
ce

B
es

t
k
n
ow

n
lo

w
er

b
ou

n
d

G
L

S
1

G
L

S
2

T
S
A

1
T

S
A

2
M

A
E

N
S

A
n
t-

C
A

R
P

-6
A

n
t-

C
A

R
P

-1
2

C
os

t
T

im
e

C
os

t
T

im
e

C
os

t
T

im
e

C
os

t
T

im
e

C
os

t
T

im
e

C
os

t
T

im
e

C
1

41
50

41
50

72
.9

41
50

32
5.

4
41

90
12
.7

41
50

12
7.

1
41

97
.0

41
95

10
8.

6
41

95
14

3.
5

C
2

31
35

31
35

7.
9

31
35

7.
9

32
05

1.
6

31
35

26
.6

31
35
.7

31
35

39
.3

31
35

53
.8

C
3

25
75

25
75

40
.5

25
75

17
2.

6
25

85
3.

8
25

75
19
.4

25
77
.8

25
85

45
.3

25
75

61
.4

C
4

35
10

35
10

64
.3

35
10

28
3.

7
36

85
11
.0

35
10

65
.4

35
12
.7

35
10

97
.0

35
10

12
1.

5
C

5
53

65
53

70
52
.8

53
70

23
4.

3
55

25
6.

8
53

65
47
.8

54
17
.3

53
70

60
.5

54
35

85
.0

C
6

25
35

25
35

37
.4

25
35

16
0.

4
25

50
2.

7
25

35
9.

3
25

47
.5

25
35

46
.7

25
35

58
.3

C
7

40
75

40
75

38
.2

40
75

16
6.

6
40

75
5.

4
40

75
29
.9

40
75
.0

40
75

42
.5

40
75

54
.1

C
8

40
90

40
90

52
.1

40
90

22
9.

8
41

00
7.

2
40

90
44
.4

40
92
.3

40
90

45
.8

40
90

62
.8

C
9

52
45

52
70

99
.5

52
65

44
5.

1
53

20
24
.6

52
70

24
5.

9
52

92
.8

53
00

17
1.

2
53

00
22

6.
9

C
10

47
00

47
20

41
.8

47
20

18
1.

1
48

00
5.

5
47

00
30
.6

47
47
.8

47
60

46
.0

47
35

60
.7

C
11

46
15

46
40

92
.8

46
40

42
3.

6
47

65
22
.8

46
40

20
9.

4
46

78
.7

46
45

16
4.

9
46

45
21

5.
5

C
12

42
40

42
40

64
.5

42
40

28
5.

2
43

90
10
.8

42
40

46
.2

42
40
.0

42
40

79
.0

42
40

10
1.

6
C

13
29

55
29

55
40
.5

29
55

17
3.

6
29

60
4.

4
29

55
23
.8

29
67
.0

29
55

49
.1

29
55

58
.4

C
14

40
30

40
30

44
.4

40
30

19
8.

9
40

60
6.

4
40

30
54
.6

40
37
.3

40
30

43
.2

40
30

56
.9

C
15

49
20

49
70

11
6.

0
49

40
55

2.
3

49
90

30
.8

49
45

33
5.

3
49

76
.5

49
50

20
8.

5
49

60
31

5.
2

C
16

14
75

14
75

29
.1

14
75

12
1.

9
14

75
0.

8
14

75
5.

1
14

75
.2

14
75

16
.7

14
75

25
.8

C
17

35
55

35
65

32
.0

35
55

13
7.

5
35

75
3.

2
35

55
14
.0

35
63
.3

35
55

29
.3

35
55

38
.3

C
18

55
80

56
60

12
0.

7
56

45
56

5.
6

56
95

38
.8

56
50

52
0.

8
56

46
.7

56
25

30
7.

1
56

25
39

7.
0

C
19

31
15

31
15

46
.4

31
15

21
0.

2
31

45
7.

0
31

20
76
.2

31
45
.7

31
20

61
.7

31
20

77
.7

C
20

21
20

21
20

1.
2

21
20

1.
2

22
50

1.
0

21
20

2.
6

21
23
.5

21
20

41
.7

21
20

51
.2

C
21

39
70

39
70

72
.7

39
70

32
6.

9
39

70
3.

7
39

70
32
.0

39
70
.2

39
70

11
4.

1
39

70
14

0.
2

C
22

22
45

22
45

2.
8

22
45

2.
8

22
45

0.
1

22
45

0.
7

22
45
.0

22
45

29
.9

22
45

36
.3

C
23

40
75

40
85

83
.7

40
85

38
1.

6
41

70
18
.9

40
95

99
.5

41
19
.3

40
95

13
8.

1
41

05
19

1.
1

C
24

34
00

34
05

68
.6

34
00

31
1.

4
34

45
6.

0
34

00
78
.9

34
08
.5

34
00

12
1.

2
34

00
16

5.
7

C
25

23
10

23
10

0.
3

23
10

0.
3

23
40

1.
9

23
10

0.
7

23
12
.0

23
10

22
.6

23
10

31
.4

138

APPENDIX A. PERFORMANCE OF EXISTING METAHEURISTIC
ALGORITHMS FOR THE STATIC CARP

T
ab

le
A

.3
:

S
ol

u
ti

on
co

st
s

gi
ve

n
b
y

ex
is

ti
n
g

m
et

ah
eu

ri
st

ic
al

go
ri

th
m

s
fo

r
th

e
C

A
R

P
on

th
e

B
M

C
V

in
st

an
ce

se
t

(‘
D

’
in

st
an

ce
s)

In
st

an
ce

B
es

t
k
n
ow

n
lo

w
er

b
ou

n
d

G
L

S
1

G
L

S
2

T
S
A

1
T

S
A

2
M

A
E

N
S

A
n
t-

C
A

R
P

-6
A

n
t-

C
A

R
P

-1
2

C
os

t
T

im
e

C
os

t
T

im
e

C
os

t
T

im
e

C
os

t
T

im
e

C
os

t
T

im
e

C
os

t
T

im
e

D
1

32
15

32
15

11
.8

32
15

11
.8

33
55

2.
8

32
30

62
.7

32
35
.0

32
35

14
5.

7
32

35
19

9.
7

D
2

25
20

25
20

1.
2

25
20

1.
2

25
20

1.
6

25
20

0.
8

25
20
.0

25
20

51
.4

25
20

72
.6

D
3

20
65

20
65

0.
4

20
65

0.
4

20
65

0.
2

20
65

0.
2

20
65
.2

20
65

46
.2

20
65

67
.1

D
4

27
85

27
85

0.
5

27
85

0.
5

28
00

4.
4

27
85

1.
7

27
86
.0

27
85

12
5.

3
27

85
17

1.
5

D
5

39
35

39
35

1.
4

39
35

1.
4

39
75

2.
4

39
35

2.
8

39
35
.0

39
35

79
.6

39
35

11
7.

5
D

6
21

25
21

25
0.

2
21

25
0.

2
21

65
0.

7
21

25
7.

9
21

33
.0

21
25

45
.5

21
25

65
.6

D
7

31
15

31
15

30
.7

31
15

13
8.

9
31

95
3.

4
31

15
22
.8

31
27
.3

31
65

49
.4

31
35

58
.9

D
8

30
45

30
55

43
.3

30
45

19
5.

1
30

45
4.

5
30

45
49
.1

30
64
.2

30
55

58
.0

30
45

77
.5

D
9

41
20

41
20

1.
1

41
20

1.
1

42
50

6.
1

41
20

30
.1

41
20
.0

41
20

19
6.

8
41

20
26

2.
7

D
10

33
40

33
40

31
.1

33
40

14
9.

1
33

40
1.

3
33

40
16
.5

33
40
.0

33
40

56
.4

33
40

78
.1

D
11

37
45

37
55

75
.7

37
55

36
8.

3
38

15
8.

0
37

85
11

2.
0

37
60
.2

37
75

18
4.

7
37

60
27

3.
9

D
12

33
10

33
10

0.
4

33
10

0.
4

33
65

2.
5

33
10

26
.0

33
10
.0

33
10

92
.4

33
10

12
2.

3
D

13
25

35
25

35
0.

8
25

35
0.

8
25

40
1.

1
25

40
13
.9

25
36
.0

25
35

60
.7

25
35

75
.5

D
14

32
80

32
80

38
.8

32
80

18
0.

2
33

00
1.

0
32

90
21
.1

32
81
.0

32
80

54
.1

32
80

76
.3

D
15

39
90

40
00

92
.1

39
90

36
8.

8
41

80
23
.6

40
30

10
2.

3
39

99
.0

40
00

30
1.

7
40

00
40

8.
6

D
16

10
60

10
60

0.
0

10
60

0.
0

10
65

0.
1

10
60

0.
4

10
60
.0

10
60

19
.2

10
60

28
.0

D
17

26
20

26
20

0.
2

26
20

0.
2

26
20

0.
0

26
20

0.
0

26
20
.0

26
20

34
.7

26
20

46
.1

D
18

41
65

41
65

2.
5

41
65

2.
5

43
10

13
.9

41
65

19
0.

5
41

69
.2

41
65

38
0.

1
41

65
51

9.
9

D
19

24
00

24
00

32
.8

24
00

15
4.

8
24

10
2.

7
24

10
20
.1

24
00
.0

24
00

78
.5

24
00

10
1.

6
D

20
18

70
18

70
0.

1
18

70
0.

1
18

75
2.

5
18

70
1.

1
18

70
.2

18
70

58
.0

18
70

73
.4

D
21

30
05

30
55

53
.6

30
50

25
1.

8
31

10
2.

3
30

70
60
.9

30
79
.2

30
55

12
6.

7
30

55
16

4.
3

D
22

18
65

18
65

0.
3

18
65

0.
3

18
65

0.
0

18
65

0.
0

18
65
.0

18
65

34
.3

18
65

43
.4

D
23

31
30

31
30

71
.6

31
30

33
5.

3
31

75
5.

3
31

30
11

1.
1

31
43
.2

31
40

15
7.

2
31

30
21

5.
1

D
24

27
10

27
10

50
.2

27
10

24
8.

0
27

10
10
.3

27
10

10
5.

2
27

23
.5

27
10

17
6.

8
27

10
24

9.
5

D
25

18
15

18
15

0.
0

18
15

0.
0

19
15

0.
2

18
15

0.
6

18
15
.0

18
15

25
.2

18
15

34
.0

139

APPENDIX A. PERFORMANCE OF EXISTING METAHEURISTIC
ALGORITHMS FOR THE STATIC CARP

T
ab

le
A

.4
:

S
ol

u
ti

on
co

st
s

gi
ve

n
b
y

ex
is

ti
n
g

m
et

ah
eu

ri
st

ic
al

go
ri

th
m

s
fo

r
th

e
C

A
R

P
on

th
e

B
M

C
V

in
st

an
ce

se
t

(‘
E

’
in

st
an

ce
s)

In
st

an
ce

B
es

t
k
n
ow

n
lo

w
er

b
ou

n
d

G
L

S
1

G
L

S
2

T
S
A

1
T

S
A

2
M

A
E

N
S

A
n
t-

C
A

R
P

-6
A

n
t-

C
A

R
P

-1
2

C
os

t
T

im
e

C
os

t
T

im
e

C
os

t
T

im
e

C
os

t
T

im
e

C
os

t
T

im
e

C
os

t
T

im
e

E
1

49
00

49
20

74
.9

49
15

34
2.

0
51

35
13
.4

49
10

20
3.

1
49

42
.8

49
25

10
6.

3
49

20
14

0.
7

E
2

39
90

39
90

40
.8

39
90

18
8.

6
40

80
5.

5
39

90
53
.2

39
95
.5

39
90

52
.2

39
90

67
.0

E
3

20
15

20
15

0.
8

20
15

0.
8

20
15

0.
1

20
15

7.
7

20
17
.0

20
15

38
.6

20
15

46
.9

E
4

41
55

41
55

69
.3

41
55

32
8.

3
43

05
11
.1

41
60

13
2.

2
42

29
.3

42
20

99
.7

42
20

12
3.

1
E

5
45

85
46

70
48
.0

45
95

21
4.

1
46

60
8.

5
45

85
81
.9

46
53
.7

46
45

59
.6

46
45

77
.9

E
6

20
55

20
55

0.
1

20
55

0.
1

20
55

0.
0

20
55

0.
7

20
55
.0

20
55

32
.2

20
55

38
.6

E
7

41
55

41
55

37
.7

41
55

16
1.

7
41

55
0.

9
41

55
39
.1

41
55
.0

41
55

41
.6

41
55

52
.5

E
8

47
10

47
10

49
.8

47
10

22
1.

6
47

40
6.

6
47

15
83
.7

47
10
.5

47
10

59
.0

47
10

74
.2

E
9

58
05

58
65

95
.7

58
35

44
0.

2
60

25
24
.3

58
85

25
7.

3
59

12
.7

59
00

21
0.

6
58

80
23

7.
7

E
10

36
05

36
05

0.
2

36
05

0.
2

36
05

1.
3

36
05

3.
7

36
06
.5

36
05

36
.7

36
05

45
.8

E
11

46
50

46
70

91
.7

46
70

42
0.

4
48

00
22
.4

46
75

17
4.

3
47

52
.0

46
80

16
9.

6
46

80
23

3.
5

E
12

41
80

42
00

61
.8

41
95

26
4.

7
42

20
7.

1
42

15
89
.7

42
49
.3

42
45

78
.3

42
45

93
.1

E
13

33
45

33
45

42
.0

33
45

17
8.

5
34

35
1.

0
33

45
39
.0

33
55
.3

33
45

46
.0

33
45

54
.1

E
14

41
15

41
15

43
.0

41
15

19
0.

2
41

45
3.

8
41

15
45
.4

41
22
.0

41
35

49
.1

41
15

62
.8

E
15

42
05

42
30

10
9.

5
42

25
50

3.
4

42
60

29
.2

42
25

30
3.

3
42

32
.8

42
25

24
5.

2
42

25
32

4.
4

E
16

37
75

37
75

50
.7

37
75

19
9.

3
38

20
5.

5
37

75
70
.7

37
75
.0

37
75

56
.0

37
75

72
.5

E
17

27
40

27
40

6.
3

27
40

6.
3

27
75

1.
6

27
40

0.
0

27
44
.3

27
40

28
.3

27
40

36
.3

E
18

38
35

38
35

78
.8

38
35

36
3.

1
38

85
5.

0
38

35
12

3.
2

38
37
.3

38
35

14
9.

1
38

35
21

2.
5

E
19

32
35

32
35

46
.4

32
35

21
1.

5
32

75
7.

9
32

35
10

1.
6

32
37
.0

32
35

81
.5

32
35

10
3.

4
E

20
28

25
28

25
51
.2

28
25

23
2.

2
28

55
7.

3
28

25
78
.8

28
25
.0

28
25

88
.5

28
25

10
4.

7
E

21
37

30
37

40
64
.7

37
30

29
3.

4
38

15
3.

8
37

30
78
.4

37
80
.5

37
85

11
1.

6
37

85
13

6.
0

E
22

24
70

24
70

29
.8

24
70

12
9.

0
25

00
2.

8
24

70
30
.7

24
72
.5

24
70

34
.4

24
70

45
.5

E
23

37
10

37
30

86
.9

37
10

39
4.

8
38

10
17
.8

37
25

18
9.

6
37

49
.0

37
55

17
2.

8
37

15
20

9.
6

E
24

40
20

40
25

79
.7

40
20

36
2.

1
40

85
13
.4

40
20

11
2.

5
40

57
.2

40
20

14
8.

0
40

20
19

5.
0

E
25

16
15

16
15

0.
0

16
15

0.
0

16
15

0.
1

16
15

0.
1

16
15
.0

16
15

14
.9

16
15

27
.7

140

APPENDIX A. PERFORMANCE OF EXISTING METAHEURISTIC
ALGORITHMS FOR THE STATIC CARP

T
ab

le
A

.5
:

S
ol

u
ti

on
co

st
s

gi
ve

n
b
y

ex
is

ti
n
g

m
et

ah
eu

ri
st

ic
al

go
ri

th
m

s
fo

r
th

e
C

A
R

P
on

th
e

B
M

C
V

in
st

an
ce

se
t

(‘
F

’
in

st
an

ce
s)

In
st

an
ce

B
es

t
k
n
ow

n
lo

w
er

b
ou

n
d

G
L

S
1

G
L

S
2

T
S
A

1
T

S
A

2
M

A
E

N
S

A
n
t-

C
A

R
P

-6
A

n
t-

C
A

R
P

-1
2

C
os

t
T

im
e

C
os

t
T

im
e

C
os

t
T

im
e

C
os

t
T

im
e

C
os

t
T

im
e

C
os

t
T

im
e

F
1

40
40

40
40

3.
4

40
40

3.
4

40
65

11
.5

40
60

88
.5

40
46
.0

40
50

12
0.

4
40

40
15

7.
4

F
2

33
00

33
00

2.
3

33
00

2.
3

33
20

2.
6

33
00

0.
3

33
00
.0

33
00

53
.1

33
00

76
.4

F
3

16
65

16
65

0.
0

16
65

0.
0

17
45

1.
8

16
65

1.
3

16
65
.0

16
65

45
.8

16
65

65
.6

F
4

34
85

34
85

53
.6

34
85

24
7.

8
35

15
2.

7
35

05
63
.7

35
08
.5

35
00

13
0.

8
35

00
18

2.
7

F
5

36
05

36
05

0.
2

36
05

0.
2

36
10

1.
8

36
05

17
.1

36
05
.3

36
05

77
.8

36
05

10
8.

2
F

6
18

75
18

75
0.

0
18

75
0.

0
19

25
0.

4
18

75
0.

0
18

75
.0

18
75

42
.7

18
75

55
.4

F
7

33
35

33
35

0.
1

33
35

0.
1

33
65

3.
6

33
35

1.
7

33
45
.7

33
35

45
.1

33
35

52
.9

F
8

37
05

37
05

40
.1

37
05

18
5.

5
37

15
1.

1
37

05
35
.7

37
05
.0

37
05

78
.9

37
05

93
.4

F
9

47
30

47
30

3.
7

47
30

3.
7

51
05

7.
4

47
55

14
5.

9
47

82
.8

48
10

30
8.

7
48

10
42

4.
6

F
10

29
25

29
25

0.
1

29
25

0.
1

29
25

0.
1

29
25

0.
1

29
25
.0

29
25

50
.8

29
25

69
.4

F
11

38
35

38
35

4.
5

38
35

4.
5

39
20

8.
5

38
35

12
5.

8
38

57
.5

38
65

19
8.

6
38

65
26

5.
7

F
12

33
95

33
95

50
.3

33
95

22
8.

7
34

85
4.

9
33

95
47
.9

34
24
.5

34
05

76
.6

34
60

13
6.

8
F

13
28

55
28

55
0.

2
28

55
0.

2
28

75
0.

8
28

55
0.

2
28

55
.0

28
55

60
.9

28
55

73
.7

F
14

33
30

33
30

18
.8

33
30

18
.8

33
90

2.
5

33
40

29
.7

33
70
.5

33
30

53
.8

33
30

76
.4

F
15

35
60

35
60

1.
3

35
60

1.
3

39
30

22
.1

36
05

14
5.

4
35

66
.7

35
60

29
8.

0
35

60
40

9.
6

F
16

27
25

27
25

0.
1

27
25

0.
1

28
95

1.
9

27
25

3.
4

27
25
.0

27
25

67
.6

27
25

83
.4

F
17

20
55

20
55

0.
1

20
55

0.
1

21
10

0.
3

20
80

4.
7

20
55
.0

20
55

23
.9

20
55

31
.9

F
18

30
65

30
75

56
.8

30
75

27
4.

5
31

70
13
.9

30
75

92
.9

30
86
.2

30
75

16
3.

8
30

75
24

3.
5

F
19

25
15

25
25

33
.1

25
25

15
8.

0
25

40
1.

5
25

40
34
.9

25
25
.0

25
25

88
.1

25
25

12
5.

5
F

20
24

45
24

45
1.

3
24

45
1.

3
24

45
0.

3
24

45
9.

8
24

49
.8

24
50

10
2.

2
24

45
14

1.
7

F
21

29
30

29
30

4.
0

29
30

4.
0

29
65

2.
1

29
30

45
.5

29
30
.0

29
30

13
8.

6
29

30
18

3.
3

F
22

20
75

20
75

0.
4

20
75

0.
4

20
75

0.
1

20
75

0.
4

20
75
.0

20
75

50
.6

20
75

65
.7

F
23

30
05

30
05

68
.4

30
05

31
9.

6
31

75
4.

6
30

10
80
.2

30
16
.3

30
10

17
7.

6
30

10
23

4.
4

F
24

32
10

32
10

26
.6

32
10

26
.6

32
75

10
.3

32
45

79
.2

32
36
.3

32
10

16
8.

8
32

10
24

3.
3

F
25

13
90

13
90

0.
1

13
90

0.
1

13
90

0.
0

13
90

0.
1

13
90
.0

13
90

16
.7

13
90

22
.3

141

APPENDIX A. PERFORMANCE OF EXISTING METAHEURISTIC
ALGORITHMS FOR THE STATIC CARP

T
ab

le
A

.6
:

S
ol

u
ti

on
co

st
s

gi
ve

n
b
y

ex
is

ti
n
g

m
et

ah
eu

ri
st

ic
al

go
ri

th
m

s
fo

r
th

e
C

A
R

P
on

th
e

E
G

L
in

st
an

ce
se

t

In
st

an
ce

B
es

t
k
n
ow

n
lo

w
er

b
ou

n
d

M
A

T
S
A

1
T

S
A

2
M

A
E

N
S

A
n
t-

C
A

R
P

-6
A

n
t-

C
A

R
P

-1
2

C
os

t
T

im
e

C
os

t
T

im
e

C
os

t
T

im
e

C
os

t
T

im
e

C
os

t
T

im
e

E
1-

A
35

48
35

48
74
.3

35
48

2.
1

35
48

22
.1

35
48
.0

35
48

0.
5

35
48

0.
5

E
1-

B
44

98
44

98
69
.5

45
33

4.
8

45
33

28
.0

45
16
.5

45
39

47
.3

45
39

63
.5

E
1-

C
55

95
55

95
71
.2

56
59

5.
1

55
95

24
.1

56
01
.6

56
13

46
.4

55
95

72
.6

E
2-

A
50

18
50

18
15

2.
6

50
18

7.
7

50
18

63
.4

50
18
.0

50
18

11
3.

7
50

18
15

2.
5

E
2-

B
63

17
63

40
15

3.
4

63
85

11
.5

63
43

66
.7

63
41
.4

63
44

98
.0

63
44

13
0.

3
E

2-
C

83
35

84
15

12
9.

6
84

00
12
.0

83
47

78
.7

83
55
.7

83
39

10
2.

7
83

35
14

0.
1

E
3-

A
58

98
58

98
24

2.
0

60
44

17
.9

59
02

77
.3

58
98
.8

58
98

53
.0

58
98

32
.4

E
3-

B
77

44
78

22
25

5.
4

79
16

17
.8

78
16

11
3.

4
78

02
.9

77
89

15
9.

0
77

87
21

1.
8

E
3-

C
10

24
4

10
43

3
20

6.
4

10
30

9
23
.2

10
30

9
13

4.
3

10
32

1.
9

10
30

5
14

0.
7

10
29

2
19

3.
9

E
4-

A
64

08
64

61
29

1.
9

64
76

14
.0

64
73

13
5.

5
64

75
.2

64
71

22
4.

0
64

64
31

3.
5

E
4-

B
89

35
90

21
31

2.
9

91
34

26
.9

90
63

16
7.

6
90

23
.0

90
65

19
3.

9
90

47
27

5.
1

E
4-

C
11

51
2

11
77

9
25

2.
4

11
62

7
31
.8

11
62

7
18

8.
6

11
64

5.
8

11
65

8
18

2.
5

11
64

5
28

6.
8

S
1-

A
50

18
50

18
20

8.
6

51
71

10
.3

50
72

66
.6

50
39
.8

50
18

98
.4

50
18

15
7.

3
S
1-

B
63

88
64

35
20

8.
8

63
88

13
.1

63
88

80
.8

64
33
.4

64
35

10
6.

8
63

88
15

5.
1

S
1-

C
85

18
85

18
16

5.
6

87
39

6.
9

85
35

79
.2

85
18
.3

85
18

97
.7

85
18

15
1.

1
S
2-

A
98

25
99

95
87

4.
4

10
19

0
70
.2

10
03

8
39

5.
1

99
59
.2

99
85

48
4.

9
99

74
70

9.
0

S
2-

B
13

01
7

13
17

4
76

0.
5

13
28

4
78
.2

13
17

8
44

8.
3

13
23

1.
6

13
26

6
57

8.
5

13
28

3
77

2.
6

S
2-

C
16

42
5

16
79

5
74

6.
9

16
70

9
53
.6

16
50

5
51

5.
8

16
50

9.
8

16
63

6
59

6.
2

16
55

8
68

4.
6

S
3-

A
10

16
5

10
29

6
10

70
.5

10
50

8
79
.3

10
45

1
55

4.
2

10
31

2.
7

10
30

6
67

5.
3

10
30

6
84

3.
0

S
3-

B
13

64
8

14
05

3
10

64
.0

13
98

1
84
.2

13
98

1
57

0.
6

13
87

6.
6

13
89

9
80

0.
6

13
89

0
88

9.
5

S
3-

C
17

18
8

17
29

7
87

4.
3

17
34

6
99
.1

17
34

6
59

6.
4

17
30

5.
8

17
34

1
59

7.
7

17
30

4
76

8.
6

S
4-

A
12

15
3

12
44

2
15

37
.6

12
54

6
12

9.
8

12
46

2
69

6.
8

12
41

9.
2

12
45

7
11

86
.4

12
43

9
15

48
.2

S
4-

B
16

11
3

16
53

1
14

30
.3

16
69

5
14

1.
4

16
49

0
95

4.
6

16
44

1.
2

16
50

2
10

77
.2

16
50

2
20

67
.2

S
4-

C
20

43
0

20
83

2
14

95
.0

20
98

1
14

4.
9

20
73

3
93

4.
5

20
76

7.
2

20
79

6
10

69
.7

20
73

1
14

53
.4

142

Appendix B

Additional Computational Results

143

APPENDIX B. ADDITIONAL COMPUTATIONAL RESULTS

0 20nt 40nt 60nt 80nt 100nt

Number of iterations

0.0

1.0

2.0

3.0

4.0

5.0

6.0

Pe
rc

en
ta

ge
 d

ev
ia

tio
n

fro
m

 o
pt

im
al

ity
Tenure 0.25nt

Tenure 0.5nt

Tenure 1nt

Tenure 2nt

Tenure 4nt

Tenure 8nt

Tenure 16nt

Tenure 32nt

Figure B.1: Percentage deviations for the task-in-a-route attribute with different
tabu tenures

0 20nt 40nt 60nt 80nt 100nt

Number of iterations

0.0

1.0

2.0

3.0

4.0

5.0

6.0

Pe
rc

en
ta

ge
 d

ev
ia

tio
n

fro
m

 o
pt

im
al

ity

Tenure 0.25nt

Tenure 0.5nt

Tenure 1nt

Tenure 2nt

Tenure 4nt

Tenure 8nt

Tenure 16nt

Tenure 32nt

Figure B.2: Percentage deviations for the 2-task attribute with different tabu tenures

144

APPENDIX B. ADDITIONAL COMPUTATIONAL RESULTS

0 20nt 40nt 60nt 80nt 100nt

Number of iterations

0.0

1.0

2.0

3.0

4.0

5.0

6.0

Pe
rc

en
ta

ge
 d

ev
ia

tio
n

fro
m

 o
pt

im
al

ity
Tenure 0.25nt

Tenure 0.5nt

Tenure 1nt

Tenure 2nt

Tenure 4nt

Tenure 8nt

Tenure 16nt

Tenure 32nt

Figure B.3: Percentage deviations for the 2-task-in-a-route attribute with different
tabu tenures

0 20nt 40nt 60nt 80nt 100nt

Number of iterations

0.0

1.0

2.0

3.0

4.0

5.0

6.0

Pe
rc

en
ta

ge
 d

ev
ia

tio
n

fro
m

 o
pt

im
al

ity

Tenure 0.25nt

Tenure 0.5nt

Tenure 1nt

Tenure 2nt

Tenure 4nt

Tenure 8nt

Tenure 16nt

Tenure 32nt

Figure B.4: Percentage deviations for the 3-task attribute with different tabu tenures

145

APPENDIX B. ADDITIONAL COMPUTATIONAL RESULTS

0 20nt 40nt 60nt 80nt 100nt

Number of iterations

2700

2800

2900

3000

3100

3200

To
ta

l d
ist

an
ce

Run 11
Run 12
Run 13
Run 14
Run 15

0 20nt 40nt 60nt 80nt 100nt

Number of iterations

2700

2800

2900

3000

3100

3200

To
ta

l d
ist

an
ce

Run 16
Run 17
Run 18
Run 19
Run 20

(a) Task-in-a-route

0 20nt 40nt 60nt 80nt 100nt

Number of iterations

2700

2800

2900

3000

3100

3200

To
ta

l d
ist

an
ce

Run 11
Run 12
Run 13
Run 14
Run 15

0 20nt 40nt 60nt 80nt 100nt

Number of iterations

2700

2800

2900

3000

3100

3200

To
ta

l d
ist

an
ce

Run 16
Run 17
Run 18
Run 19
Run 20

(b) 2-task

0 20nt 40nt 60nt 80nt 100nt

Number of iterations

2700

2800

2900

3000

3100

3200

To
ta

l d
ist

an
ce

Run 11
Run 12
Run 13
Run 14
Run 15

0 20nt 40nt 60nt 80nt 100nt

Number of iterations

2700

2800

2900

3000

3100

3200

To
ta

l d
ist

an
ce

Run 16
Run 17
Run 18
Run 19
Run 20

(c) 2-task-in-a-route

0 20nt 40nt 60nt 80nt 100nt

Number of iterations

2700

2800

2900

3000

3100

3200

To
ta

l d
ist

an
ce

Run 11
Run 12
Run 13
Run 14
Run 15

0 20nt 40nt 60nt 80nt 100nt

Number of iterations

2700

2800

2900

3000

3100

3200

To
ta

l d
ist

an
ce

Run 16
Run 17
Run 18
Run 19
Run 20

(d) 3-task

Figure B.5: Total distances of current solutions over the course of the tabu search
algorithm from 10 sample runs (“Runs 11-20”) on the E17 instance for each type of
attribute; nt denotes the number of tasks

146

APPENDIX B. ADDITIONAL COMPUTATIONAL RESULTS

0.1
Recon

0.1
Random

0.2
Recon

0.2
Random

0.3
Recon

0.3
Random

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

Pe
rc

en
ta

ge
 d

ev
ia

tio
n

fro
m

 a
 p

os
te

rio
ri

lo
we

r b
ou

nd

5 updates 10 updates 20 updates

0.4
Recon

0.4
Random

0.5
Recon

0.5
Random

0.6
Recon

0.6
Random

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

Pe
rc

en
ta

ge
 d

ev
ia

tio
n

fro
m

 a
 p

os
te

rio
ri

lo
we

r b
ou

nd

5 updates 10 updates 20 updates

0.7
Recon

0.7
Random

0.8
Recon

0.8
Random

0.9
Recon

0.9
Random

Degree of dynamism
 and a method of integrating new tasks

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

Pe
rc

en
ta

ge
 d

ev
ia

tio
n

fro
m

 a
 p

os
te

rio
ri

lo
we

r b
ou

nd

5 updates 10 updates 20 updates

Figure B.6: Distributions of percentage deviations from a posteriori lower bounds
with respect to total distances on 40 dynamic CARP instances for each degree of
dynamism (0.1, 0.2, . . . , 0.9) given by the dynamic CARP solver with different
update schedules and different methods of integrating tasks (“Recon” means the
Reconstruction method, and “Random” means the Random Insertion method)

147

APPENDIX B. ADDITIONAL COMPUTATIONAL RESULTS

0.1
Recon

0.1
Random

0.2
Recon

0.2
Random

0.3
Recon

0.3
Random

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

Se
rv

ice
 c

om
pl

et
io

n
tim

e
(×

 le
ng

th
 o

f p
la

nn
in

g
ho

riz
on

)

5 updates 10 updates 20 updates

0.4
Recon

0.4
Random

0.5
Recon

0.5
Random

0.6
Recon

0.6
Random

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

Se
rv

ice
 c

om
pl

et
io

n
tim

e
(×

 le
ng

th
 o

f p
la

nn
in

g
ho

riz
on

)

5 updates 10 updates 20 updates

0.7
Recon

0.7
Random

0.8
Recon

0.8
Random

0.9
Recon

0.9
Random

Degree of dynamism
 and a method of integrating new tasks

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

Se
rv

ice
 c

om
pl

et
io

n
tim

e
(×

 le
ng

th
 o

f p
la

nn
in

g
ho

riz
on

)

5 updates 10 updates 20 updates

Figure B.7: Distributions of service completion times on 40 dynamic CARP instances
for each degree of dynamism (0.1, 0.2, . . . , 0.9) given by the dynamic CARP solver
with different update schedules and different methods of integrating tasks (“Recon”
means the Reconstruction method, and “Random” means the Random Insertion
method)

148

APPENDIX B. ADDITIONAL COMPUTATIONAL RESULTS

6 7 8 9 10 11 12 13 14 15
Number of routes

0

50

100

150

200

250

Nu
m

be
r o

f r
un

s

5 updates
Without waiting (average)
With waiting (average)
Without waiting
With waiting

6 7 8 9 10 11 12 13 14 15
Number of routes

0

50

100

150

200

250

Nu
m

be
r o

f r
un

s

10 updates
Without waiting (average)
With waiting (average)
Without waiting
With waiting

(a) Degree of dynamism = 0.2

6 7 8 9 10 11 12 13 14 15
Number of routes

0

50

100

150

200

250

Nu
m

be
r o

f r
un

s

5 updates
Without waiting (average)
With waiting (average)
Without waiting
With waiting

6 7 8 9 10 11 12 13 14 15
Number of routes

0

50

100

150

200

250
Nu

m
be

r o
f r

un
s

10 updates
Without waiting (average)
With waiting (average)
Without waiting
With waiting

(b) Degree of dynamism = 0.5

6 7 8 9 10 11 12 13 14 15
Number of routes

0

50

100

150

200

250

Nu
m

be
r o

f r
un

s

5 updates
Without waiting (average)
With waiting (average)
Without waiting
With waiting

6 7 8 9 10 11 12 13 14 15
Number of routes

0

50

100

150

200

250

Nu
m

be
r o

f r
un

s

10 updates
Without waiting (average)
With waiting (average)
Without waiting
With waiting

(c) Degree of dynamism = 0.8

Figure B.8: The number of runs in which the dynamic CARP solver (with 5 and 10
updates) returns solutions with a given number of routes from 800 runs (40 instances
× 20 runs) for each degree of dynamism; a vertical dashed line shows an average
number of routes of the solutions over 800 runs

149

APPENDIX B. ADDITIONAL COMPUTATIONAL RESULTS

0 5 10 15 20 25 30 35 40 45 50
Total demand of serviced tasks (% of capacity)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
op

or
tio

n
of

 ro
ut

es
 (%

)

Without waiting

0 5 10 15 20 25 30 35 40 45 50
Total demand of serviced tasks (% of capacity)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
op

or
tio

n
of

 ro
ut

es
 (%

)

With waiting

(a) Degree of dynamism = 0.2

0 5 10 15 20 25 30 35 40 45 50
Total demand of serviced tasks (% of capacity)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
op

or
tio

n
of

 ro
ut

es
 (%

)

Without waiting

0 5 10 15 20 25 30 35 40 45 50
Total demand of serviced tasks (% of capacity)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Pr

op
or

tio
n

of
 ro

ut
es

 (%
)

With waiting

(b) Degree of dynamism = 0.5

0 5 10 15 20 25 30 35 40 45 50
Total demand of serviced tasks (% of capacity)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
op

or
tio

n
of

 ro
ut

es
 (%

)

Without waiting

0 5 10 15 20 25 30 35 40 45 50
Total demand of serviced tasks (% of capacity)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
op

or
tio

n
of

 ro
ut

es
 (%

)

With waiting

(c) Degree of dynamism = 0.8

Figure B.9: Histograms showing the proportion of routes with a range of demands of
serviced tasks in solutions at the end of the planning horizon given by the dynamic
CARP solver (with 5 updates) without and with the waiting strategy over 800 runs
(40 instances × 20 runs) for each degree of dynamism

150

APPENDIX B. ADDITIONAL COMPUTATIONAL RESULTS

0 5 10 15 20 25 30 35 40 45 50
Total demand of serviced tasks (% of capacity)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
op

or
tio

n
of

 ro
ut

es
 (%

)

Without waiting

0 5 10 15 20 25 30 35 40 45 50
Total demand of serviced tasks (% of capacity)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
op

or
tio

n
of

 ro
ut

es
 (%

)

With waiting

(a) Degree of dynamism = 0.2

0 5 10 15 20 25 30 35 40 45 50
Total demand of serviced tasks (% of capacity)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
op

or
tio

n
of

 ro
ut

es
 (%

)

Without waiting

0 5 10 15 20 25 30 35 40 45 50
Total demand of serviced tasks (% of capacity)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Pr

op
or

tio
n

of
 ro

ut
es

 (%
)

With waiting

(b) Degree of dynamism = 0.5

0 5 10 15 20 25 30 35 40 45 50
Total demand of serviced tasks (% of capacity)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
op

or
tio

n
of

 ro
ut

es
 (%

)

Without waiting

0 5 10 15 20 25 30 35 40 45 50
Total demand of serviced tasks (% of capacity)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
op

or
tio

n
of

 ro
ut

es
 (%

)

With waiting

(c) Degree of dynamism = 0.8

Figure B.10: Histograms showing the proportion of routes with a range of demands
of serviced tasks in solutions at the end of the planning horizon given by the dynamic
CARP solver (with 10 updates) without and with the waiting strategy over 800 runs
(40 instances × 20 runs) for each degree of dynamism

151

APPENDIX B. ADDITIONAL COMPUTATIONAL RESULTS

Table B.1: Medians of percentage deviations from a posteriori lower bounds given by
the dynamic CARP solver with different update schedules and different methods of
integrating new tasks

Degree of dynamism
Reconstruction Random Insertion

5 updates 10 updates 20 updates 5 updates 10 updates 20 updates

0.1 23.4 23.0a 22.2a 19.5abc 17.8abcd 17.6abcde

0.2 26.3 25.6 25.8 23.0abc 22.3abcd 21.5abcde

0.3 28.5 29.1 28.6 27.4ab 26.0abcd 24.9abcde

0.4 29.1 28.6 29.5 28.6 27.8bc 27.3abcde

0.5 28.7 30.1 29.9 29.7 28.7bc 27.4abcd

0.6 28.1c 29.1 29.8 29.5 28.1 27.3c

0.7 28.2bcd 29.6 29.0 29.1 27.8d 28.7bcd

0.8 28.1 27.4 29.3 28.1 27.4cd 27.6cd

0.9 24.9c 26.1 28.0 26.8 26.6 25.8c

a significantly better than the Reconstruction method with 5 updates
b significantly better than the Reconstruction method with 10 updates
c significantly better than the Reconstruction method with 20 updates
d significantly better than the Random Insertion method with 5 updates
e significantly better than the Random Insertion method with 10 updates

based on a two-tailed Wilcoxon signed-rank test with a Bonferroni correction (for 15 pairwise comparisons),

resulting in a significance level of 0.05/15 ≈ 0.0033

Table B.2: Medians of service completion times (as multiples of the planning horizon
length) the dynamic CARP solver with different update schedules and different
methods of integrating new tasks

Degree of dynamism
Reconstruction Random Insertion

5 updates 10 updates 20 updates 5 updates 10 updates 20 updates

0.1 1.89 1.87a 1.80ad 1.85 1.81ad 1.79abd

0.2 2.17 2.11ad 2.09ad 2.13 2.08ad 1.97abcde

0.3 2.29 2.24a 2.22a 2.24a 2.17abcd 2.11abcde

0.4 2.38 2.27a 2.35a 2.32a 2.25abcd 2.23abcd

0.5 2.39 2.37 2.36 2.34 2.26abcd 2.19abcd

0.6 2.37 2.35 2.37 2.35 2.26abcd 2.21abcd

0.7 2.35 2.39 2.35 2.34 2.26abcd 2.21abcde

0.8 2.41 2.38 2.36a 2.35a 2.27abcd 2.22abcde

0.9 2.40 2.38 2.38 2.31 2.32abcd 2.22abcde

a significantly better than the Reconstruction method with 5 updates
b significantly better than the Reconstruction method with 10 updates
c significantly better than the Reconstruction method with 20 updates
d significantly better than the Random Insertion method with 5 updates
e significantly better than the Random Insertion method with 10 updates

based on a two-tailed Wilcoxon signed-rank test with a Bonferroni correction (for 15 pairwise comparisons),

resulting in a significance level of 0.05/15 ≈ 0.0033

152

APPENDIX B. ADDITIONAL COMPUTATIONAL RESULTS

0.2 0.5 0.8
Degree of dynamism

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

Pe
rc

en
ta

ge
 d

ev
ia

tio
n

fro
m

 a
 p

os
te

rio
ri

lo
we

r b
ou

nd

No extra routes

1 extra route 2 extra routes

(a) Without waiting

0.2 0.5 0.8
Degree of dynamism

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

Pe
rc

en
ta

ge
 d

ev
ia

tio
n

fro
m

 a
 p

os
te

rio
ri

lo
we

r b
ou

nd

No extra routes

1 extra route 2 extra routes

(b) Waiting at the end of last task

0.2 0.5 0.8
Degree of dynamism

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

Pe
rc

en
ta

ge
 d

ev
ia

tio
n

fro
m

 a
 p

os
te

rio
ri

lo
we

r b
ou

nd

No extra routes 1 extra route

(c) Waiting away from other vehicles

Figure B.11: Distributions of percentage deviations from a posteriori lower bounds
with respect to total distances over 40 dynamic CARP instances given by the use of
extra routes and different waiting strategies

153

APPENDIX B. ADDITIONAL COMPUTATIONAL RESULTS

0.2 0.5 0.8
Degree of dynamism

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

Se
rv

ice
 c

om
pl

et
io

n
tim

e
(×

 le
ng

th
 o

f p
la

nn
in

g
ho

riz
on

)

No extra routes

1 extra route 2 extra routes

(a) Without waiting

0.2 0.5 0.8
Degree of dynamism

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

Se
rv

ice
 c

om
pl

et
io

n
tim

e
(×

 le
ng

th
 o

f p
la

nn
in

g
ho

riz
on

)

No extra routes

1 extra route 2 extra routes

(b) Waiting at the end of last task

0.2 0.5 0.8
Degree of dynamism

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

Se
rv

ice
 c

om
pl

et
io

n
tim

e
(×

 le
ng

th
 o

f p
la

nn
in

g
ho

riz
on

)

No extra routes 1 extra route

(c) Waiting away from other vehicles

Figure B.12: Distributions of service completion times over 40 dynamic CARP
instances given by the use of extra routes and different waiting strategies

154

Bibliography

Amberg, A., Domschke, W., and Voß, S. (2000). Multiple center capacitated arc

routing problems: A tabu search algorithm using capacitated trees. European

Journal of Operational Research, 124(2):360–376.

Assad, A. A., Pearn, W.-L., and Golden, B. L. (1987). The capacitated chinese

postman problem: Lower bounds and solvable cases. American Journal of

Mathematical and Management Sciences, 7(1-2):63–88.

Baldacci, R. and Maniezzo, V. (2006). Exact methods based on node-routing

formulations for undirected arc-routing problems. Networks, 47(1):52–60.

Bartolini, E., Cordeau, J.-F., and Laporte, G. (2013). Improved lower bounds

and exact algorithm for the capacitated arc routing problem. Mathematical

Programming, 137(1-2):409–452.

Belenguer, J. M. and Benavent, E. (2003). A cutting plane algorithm for the

capacitated arc routing problem. Computers & Operations Research, 30(5):705–

728.

Belenguer, J.-M., Benavent, E., Lacomme, P., and Prins, C. (2006). Lower and upper

bounds for the mixed capacitated arc routing problem. Computers & Operations

Research, 33(12):3363–3383.

Benavent, E., Campos, V., Corberán, Á., and Mota, E. (1990). The capacitated

arc routing problem. a heuristic algorithm. Qüestiió: quaderns d’estad́ıstica i

investigació operativa, 14(1).

Benavent, E., Campos, V., Corberán, A., and Mota, E. (1992). The capacitated arc

routing problem: lower bounds. Networks, 22(7):669–690.

Beullens, P., Muyldermans, L., Cattrysse, D., and Van Oudheusden, D. (2003). A

guided local search heuristic for the capacitated arc routing problem. European

Journal of Operational Research, 147(3):629–643.

155

BIBLIOGRAPHY

Biggs, N., Lloyd, E. K., and Wilson, R. J. (1976). Graph Theory, 1736-1936. Oxford

University Press.

Bode, C. and Irnich, S. (2012). Cut-first branch-and-price-second for the capacitated

arc-routing problem. Operations research, 60(5):1167–1182.

Brandão, J. (2009). A deterministic tabu search algorithm for the fleet size and mix

vehicle routing problem. European journal of operational research, 195(3):716–728.

Brandão, J. and Eglese, R. (2008). A deterministic tabu search algorithm for the

capacitated arc routing problem. Computers & Operations Research, 35(4):1112–

1126.

Bullnheimer, B., Hartl, R. F., and Strauss, C. (1997). A new rank based version of

the ant system. a computational study.

Chen, Z.-L. and Xu, H. (2006). Dynamic column generation for dynamic vehicle

routing with time windows. Transportation Science, 40(1):74–88.

Chiang, W.-C. and Russell, R. A. (1997). A reactive tabu search metaheuristic for

the vehicle routing problem with time windows. INFORMS Journal on computing,

9(4):417–430.

Christofides, N., Campos, V., Corberán, A., and Mota, E. (1981). An algorithm for

the rural postman problem. Report IC. OR, 81.

Cook, W. and Rohe, A. (1999). Computing minimum-weight perfect matchings.

INFORMS Journal on Computing, 11(2):138–148.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische

mathematik, 1(1):269–271.

Edmonds, J. and Johnson, E. L. (1973). Matching, euler tours and the chinese

postman. Mathematical programming, 5(1):88–124.

Eiselt, H. A., Gendreau, M., and Laporte, G. (1995). Arc routing problems, part i:

The chinese postman problem. Operations Research, 43(2):231–242.

Euler, L. (1741). Solutio problematis ad geometriam situs pertinentis. Commentarii

academiae scientiarum Petropolitanae, 8:128–140.

Eydi, A. and Javazi, L. (2012). A novel heuristic method to solve the capacitated arc

routing problem. International Journal of Industrial Engineering Computations,

3(5):767–776.

156

BIBLIOGRAPHY

Ford, L. and Fulkerson, D. R. (1962). Flows in networks, volume 3. Princeton

Princeton University Press.

Foulds, L., Longo, H., and Martins, J. (2015). A compact transformation of arc

routing problems into node routing problems. Annals of Operations Research,

226(1):177–200.

Fu, H., Mei, Y., Tang, K., and Zhu, Y. (2010). Memetic algorithm with heuristic

candidate list strategy for capacitated arc routing problem. In Evolutionary

Computation (CEC), 2010 IEEE Congress on, pages 1–8. IEEE.

Fung, R. Y., Liu, R., and Jiang, Z. (2013). A memetic algorithm for the open

capacitated arc routing problem. Transportation Research Part E: Logistics and

Transportation Review, 50:53–67.

Glover, F. (1989). Tabu search—part i. ORSA Journal on Computing, 1(3):190–206.

Golden, B. L., DeArmon, J. S., and Baker, E. K. (1983). Computational experiments

with algorithms for a class of routing problems. Computers & Operations Research,

10(1):47–59.

Golden, B. L. and Wong, R. T. (1981). Capacitated arc routing problems. Networks,

11(3):305–315.

Greistorfer, P. (2003). A tabu scatter search metaheuristic for the arc routing problem.

Computers & Industrial Engineering, 44(2):249–266.

Hertz, A., Laporte, G., and Mittaz, M. (2000). A tabu search heuristic for the

capacitated arc routing problem. Operations research, 48(1):129–135.

Ho, S. C. and Haugland, D. (2004). A tabu search heuristic for the vehicle routing

problem with time windows and split deliveries. Computers & Operations Research,

31(12):1947–1964.

Holborn, P., Thompson, J., and Lewis, R. (2012). Combining heuristic and exact

methods to solve the vehicle routing problem with pickups, deliveries and time

windows. Evolutionary Computation in Combinatorial Optimization, pages 63–74.

Karp, R. M. (1972). Reducibility among combinatorial problems. In Complexity of

computer computations, pages 85–103. Springer.

Labadi, N., Prins, C., and Reghioui, M. (2008). GRASP with path relinking for the

capacitated arc routing problem with time windows. In Advances in computational

intelligence in transport, logistics, and supply chain management, pages 111–135.

Springer.

157

BIBLIOGRAPHY

Lacomme, P., Prins, C., and Ramdane-Chérif, W. (2001). A genetic algorithm for the

capacitated arc routing problem and its extensions. In Workshops on Applications

of Evolutionary Computation, pages 473–483. Springer.

Lacomme, P., Prins, C., and Ramdane-Cherif, W. (2004). Competitive memetic

algorithms for arc routing problems. Annals of Operations Research, 131(1-4):159–

185.

Larsen, A. and Madsen, O. B. (2000). The dynamic vehicle routing problem. PhD

thesis, Technical University of Denmark (DTU).

Lenstra, J. K. and Kan, A. (1976). On general routing problems. Networks, 6(3):273–

280.

Liu, M., Singh, H. K., and Ray, T. (2014a). A benchmark generator for dynamic

capacitated arc routing problems. In Evolutionary Computation (CEC), 2014

IEEE Congress on, pages 579–586. IEEE.

Liu, M., Singh, H. K., and Ray, T. (2014b). A memetic algorithm with a new split

scheme for solving dynamic capacitated arc routing problems. In Evolutionary

Computation (CEC), 2014 IEEE Congress on, pages 595–602. IEEE.

Longo, H., De Aragao, M. P., and Uchoa, E. (2006). Solving capacitated arc routing

problems using a transformation to the CVRP. Computers & Operations Research,

33(6):1823–1837.

Martinelli, R., Pecin, D., Poggi, M., and Longo, H. (2011). A branch-cut-and-price

algorithm for the capacitated arc routing problem. In International Symposium

on Experimental Algorithms, pages 315–326. Springer.

Mei, Y., Tang, K., and Yao, X. (2009). A global repair operator for capacitated arc

routing problem. IEEE Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics), 39(3):723–734.

Monroy-Licht, M., Amaya, C. A., Langevin, A., and Rousseau, L.-M. (2016). The

rescheduling arc routing problem. International Transactions in Operational

Research.

Montané, F. A. T. and Galvao, R. D. (2006). A tabu search algorithm for the vehicle

routing problem with simultaneous pick-up and delivery service. Computers &

Operations Research, 33(3):595–619.

158

BIBLIOGRAPHY

Montemanni, R., Gambardella, L. M., Rizzoli, A. E., and Donati, A. V. (2005). Ant

colony system for a dynamic vehicle routing problem. Journal of Combinatorial

Optimization, 10(4):327–343.

Moreira, L. M., Oliveira, J. F., Gomes, A. M., and Ferreira, J. S. (2007). Heuristics for

a dynamic rural postman problem. Computers & operations research, 34(11):3281–

3294.

Pearn, W. L. (1988). New lower bounds for the capacitated arc routing problem.

Networks, 18(3):181–191.

Pearn, W. L. (1991). Augment-insert algorithms for the capacitated arc routing

problem. Computers & Operations Research, 18(2):189–198.

Pearn, W. L., Assad, A., and Golden, B. L. (1987). Transforming arc routing into

node routing problems. Computers & Operations Research, 14(4):285–288.

Pearn, W. L. and Wu, T. (1995). Algorithms for the rural postman problem.

Computers & Operations Research, 22(8):819–828.

Prins, C. (2004). A simple and effective evolutionary algorithm for the vehicle routing

problem. Computers & Operations Research, 31(12):1985–2002.

Psaraftis, H. N. (1980). A dynamic programming solution to the single vehicle

many-to-many immediate request dial-a-ride problem. Transportation Science,

14(2):130–154.

Santos, L., Coutinho-Rodrigues, J., and Current, J. R. (2009). An improved heuristic

for the capacitated arc routing problem. Computers & Operations Research,

36(9):2632–2637.

Santos, L., Coutinho-Rodrigues, J., and Current, J. R. (2010). An improved ant

colony optimization based algorithm for the capacitated arc routing problem.

Transportation Research Part B: Methodological, 44(2):246–266.

Saruwatari, Y., Hirabayashi, R., and Nishida, N. (1992). Node duplication lower

bounds for the capacitated arc routing problem. Journal of the Operations Research

Society of Japan, 35(2):119–133.

Tagmouti, M., Gendreau, M., and Potvin, J.-Y. (2011). A dynamic capacitated arc

routing problem with time-dependent service costs. Transportation Research Part

C: Emerging Technologies, 19(1):20–28.

159

BIBLIOGRAPHY

Talbi, E.-G. (2009). Metaheuristics: from design to implementation, volume 74. John

Wiley & Sons.

Tang, K., Mei, Y., and Yao, X. (2009). Memetic algorithm with extended

neighborhood search for capacitated arc routing problems. IEEE Transactions on

Evolutionary Computation, 13(5):1151–1166.

Ulusoy, G. (1985). The fleet size and mix problem for capacitated arc routing.

European Journal of Operational Research, 22(3):329–337.

Usberti, F. L., França, P. M., and França, A. L. M. (2011). The open capacitated

arc routing problem. Computers & Operations Research, 38(11):1543–1555.

Vansteenwegen, P., Souffriau, W., and Sörensen, K. (2010). Solving the mobile

mapping van problem: A hybrid metaheuristic for capacitated arc routing with

soft time windows. Computers & operations research, 37(11):1870–1876.

Voudouris, C. and Tsang, E. (1996). Partial constraint satisfaction problems

and guided local search. Proc., Practical Application of Constraint Technology

(PACT’96), London, pages 337–356.

Yazici, A., Kirlik, G., Parlaktuna, O., and Sipahioglu, A. (2014). A dynamic

path planning approach for multirobot sensor-based coverage considering energy

constraints. IEEE transactions on cybernetics, 44(3):305–314.

160

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Definition of the CARP
	Notation
	Dynamic CARP
	Research Aims
	Contributions of This Thesis
	Academic Publication Produced

	Literature Review
	A Brief Overview of Computational Complexity
	Arc Routing Problems
	Eulerian Graphs
	The Chinese Postman Problem
	The Rural Postman Problem

	Formulation of the CARP
	Computational Complexity of the CARP
	Constructive Heuristics
	Metaheuristic Algorithms
	Single-Solution-Based Metaheuristics
	Population-Based Metaheuristics
	Further Improvement Methods
	Performance of Existing Metaheuristic Algorithms for the CARP

	Lower Bounds and Exact Algorithms
	Transforming Arc Routing into Vehicle Routing
	Variants of the CARP
	CARP with Time Windows
	CARP with Multiple Starting and/or Ending Vertices

	Dynamic CARPs
	Summary

	Metaheuristic Algorithms for the Static CARP
	Introduction
	Neighbourhood Moves
	Solution Attributes and Tabu Moves
	Task-in-a-Route Attributes
	2-Task Attributes
	2-Task-in-a-Route Attributes
	3-Task Attributes

	Comparison of Tabu Attributes
	Deadheading Cycles
	Computational Results

	Notes on the Use of Multiple Tabu Lists
	Conclusions

	Dynamic Capacitated Arc Routing Problem
	Introduction
	Components of a Dynamic CARP Solver
	Solution Update Schedules
	Determining the Current State of the Problem
	Integrating New Tasks into the Solution

	Generation of Dynamic CARP Instances
	Comparison of Variants of the Dynamic CARP Solver
	The Number of Iterations of Tabu Search in Each Update
	Update Schedules

	An Alternative Method of Integrating New Tasks
	Computational Results

	Conclusion

	Waiting Strategies
	Introduction
	Instructing Vehicles to Wait at the End of Last Tasks
	Computational Results

	Waiting Thresholds
	Instructing Vehicles to Wait Away from Other Vehicles
	Employing Extra Routes
	Computational Results

	Conclusions

	Conclusion
	The Problem Investigated
	Summary of Findings
	Further Work

	Appendix Performance of Existing Metaheuristic Algorithms for the Static CARP
	Appendix Additional Computational Results
	Bibliography

