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Abstract 

Real-time reverse transcription loop-mediated isothermal amplification (RT-LAMP) is 

becoming a widely accepted method for use in the field of molecular diagnostics. This method 

makes use of a highly robust core enzymology’s that are tolerant to sample derived inhibitors, 

along with a priming mechanisms that permit impeccable amplification sensitivities and 

specificities. These are well documented attributes associated with LAMP, but little is known 

about factors that drive and interfere with the reverse transcription of RT-LAMP assays. 

This study aims to address a number of factors that affect RNA amplification, including 

impedance of priming related to template structure, inhibition of polymerase activities by 

sample derived inhibitors and the general effect of assay chemistry and primer function with 

respect to reverse transcription. In addition to the chemistry optimisation and choice of 

polymerase (DNA / RT), the secondary structure innate within RNA, could significantly affect 

the efficiency of RT.  Priming position and design would also need to be seriously considered 

with respect to the folding nature of these targets. Overtly, RT-LAMP showed an increased 

sensitivity to inhibition compared to its DNA counterpart.  

Similar observations of impeded RNA transcription were made during the development 

of an internal amplification control (IAC), which was designed to determine the exact 

inhibitory nature of any tested samples, in tandem with the RT-LAMP. This report clearly 

discloses that RT amplification controls must be synthesised ‘free of contaminating DNA’, to 

avoid poor characterisation of first strand DNA synthesis. 

Alternative ‘non-enzymatic methods’ of reporting amplification in real-time were 

compared to the bioluminescent assay real-time (BART) reporter; a well-established method 

of nucleic acid detection and quantification developed and patented by Lumora Ltd, 

Cambridgeshire (Fortes et al., 2013). Despite BARTs track record for detection of LAMP, its 
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indiscriminate reporting of amplification is of little use for duplexed assay characterisation, 

such as the IAC / RT-LAMP combined assay. Thus, methods of specific sequence detection 

were designed that could target single stranded elements of amplified products (STEMs and 

LOOP structures). It was demonstrated that the mechanism for RT-LAMP fluorescent probing 

‘presented here’ was unique to this Thesis and does not fall under the guise of Taqman or other 

molecular beacon detection mechanisms. Together with BART, this new form of probing was 

successfully deployed to distinguish between true RT-LAMP and IAC afflicted amplifications. 

The possibility of utilising the LAMP / BART technologies for microRNA (miRNA) 

detection was also explored. Even though it is well known that miRNAs have crucial roles in 

responding to and regulating a wide range of biological and cellular processes, no real headway 

has been made in developing highly sensitive, low resource methods for their detection. Here 

we develop novel methods of miRNA detection capable of sensing picomolar levels that also 

make use of the LAMP and BART chemistry.   
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Abbreviations 

APS – Adenosine 5’ phosphosulfate 

BART – Bioluminescent Assay in Real Time 

DNA – Deoxyribonucleic acid 
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LAMP – Loop-mediated amplification 
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MGW – Molecular grade water 

NLC – No ligation control 

NTC – No template control 

PCR – Polymerase chain reaction 
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PVP – Polyvinylpyrrolidone 

RLU – Relative luminescent unit 

RFU – Relative fluorescent unit 

RT – Reverse transcription 

TTM – Time to max 

 

Further abbreviations follow the guidelines described in the Nomenclature, Style and 

Conventions section in Biochemical Journal Instructions to Authors, The Biochemical Society, 
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Chapter 1 

1 Introduction 

1.1 Molecular diagnostics 

The field of molecular diagnostics has undergone major developments in recent years, as the 

increasing need for highly accurate detection methods capable of screening a wide range of 

clinical and environmental samples has driven the development of these diagnostic tools (Opel 

et al., 2010, Craw and Balachandran, 2012). Most molecular diagnostics (MDx) platforms 

amplify and detect nucleic acid (NA) sequences, which are specific to a particular disease or 

phenotype. Increasingly, MDx has been adopted for a wide range of research and biomedical 

screening solutions that include pathogen testing, cancer diagnostics, GM / contaminant 

screening, DNA profiling, conservational biology and environmental monitoring (Young and 

Cotter, 1992, Fenton and Lowndes, 2004, Kiddle et al., 2012).  

Molecular diagnostics have proven particularly useful for detection of infectious diseases, and 

as a consequence, have seen an explosion in advances over the last decade, as the need for 

quick and highly accurate detection methods have become more critical to our well-being 

(Euler et al., 2012, Scott and Gretch, 2007). The evolution and advances in MDx has been 

particularly useful, as the human population faces more acute challenges, caused by emerging 

and re-emerging infectious diseases. Research into molecular diagnosis of various diseases has 

provided scientists with a better understanding of all the molecular factors affecting human 

health, but has also offered solutions for treatment that can greatly improve a patient’s 

prognosis and reduce the risk of new infections (Muldrew, 2009).    

Serological-based diagnostics have been the methods of choice for decades, but many of these 

tests are stricken with problems that lead to poor performance, and significant variations in 

accuracy and reliability (Fierz, 2004). Serological diagnosis are surrogate tests that do not 
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qualify the presence of the disease causing agent or its cause directly, but rather the immune 

response of the host; which can lead to a misdiagnosis of positivity and negativity. Each 

patient’s immunity is unique and large variabilities with respect to the amplitude and time to a 

response have been recorded (Kunisaki and Janoff, 2009, Simon et al., 2015). Accordingly, 

differences in immune response can not only result in a misdiagnosis, but also this variability 

greatly increases the risks of the disease spreading within a population. In addition, indirect 

measurements of one’s antibodies gives a much less accurate prediction of disease outcome 

with respect to medical treatments (Zhang et al., 2011). Furthermore, during the acute phase of 

any infection (termed the eclipse), the immune response is undetectable, as these technologies 

have poor sensitivity and often the infected have not seroconverted (Kharsany et al., 2010).  

Nucleic acid amplification technologies (NAAT) that directly measure the presence of a 

microorganism offer clinicians highly reliable alternative to serological tests and this type of 

diagnosis often leads to a much faster and more accurate diagnosis. These technologies are also 

far more sensitive than immunoassays, but are often expensive and require sophisticated 

machinery.  

1.1.1 PCR-based platforms  

Currently, quantitative, real-time polymerase chain reaction (PCR), is the method of choice 

used for MDx of infectious disease (Kurkela and Brown, 2009). Although, the PCR approaches 

have greatly improved the sensitivity and sample throughput of MDx assays, the technology 

still carries major limitations (Patel et al., 2006, Curtis et al., 2008, Yang and Rothman, 2004, 

Ding et al., 2011, Kiddle et al., 2012, Liolios et al., 2001). Firstly, the real time PCR-based NA 

detection techniques often employ expensive fluorescent probes, which require complex 

equipment that is capable of detecting the fluorescent signal but also complicated hardware 
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capable of driving thermal cycles (Figure 1). 

Secondly, depending on the source of the 

biological material tested (e.g. clinical samples 

such as blood, urea or faeces; processed foods or 

even environmental samples including soils and 

plan material), PCR amplification can suffer 

from severe inhibition resulting which may result 

in false negatives (Tebbe and Vahjen, 1993). 

Finally, due to the increased sensitivity of this 

technology, PCR assays have to be carried out in 

a nucleic acid-free laboratory, by experienced scientists in order to reduce potential for reagent 

contamination, which can often produce false positive results. 

1.1.2 Isothermal amplification of nucleic acids 

To prime any polymerised chain reaction requires the opening of the DNA or RNA structure 

to allow for a primed polymerisation. This is often performed using a thermal stable polymerase 

and denaturing conditions which melt the target polynucleotide prior to primer annealing and 

extension; this type of reaction requires sophisticated machinery capable of managing a thermal 

cycle. Alternative isothermal amplifications exist that make use of a unique property of certain 

DNA polymerases (e.g. Bst DNA polymerase from Bacillus stearothermophilus) that have 

helicase or strand displacement activity and unique primer design strategies enable nucleic acid 

synthesis to be carried out at a constant temperature eliminating the requirements for expensive 

thermocycling equipment.  

Currently, there are over a dozen isothermal technologies that make use of displacement 

polymerases and priming mechanisms: Loop-mediated isothermal amplification (LAMP), 

rolling circle amplification (RCA), nucleic acid sequence based amplification (NASBA), 

Figure 1.  Typical real-time PCR equipment used in a wide 

range of biomedical research for detection and 

quantification of nucleic acids. 

Source: http://www.gene-

quantification.de/platform1.html 
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recombinase polymerase amplification (RPA), helicase-dependent amplification (HDA), 

transcription-mediated amplification (TMA), single primer isothermal amplification (SPIA) 

and strand displacement amplification (SDA(Gill and Ghaemi, 2008). However, among the 

techniques mentioned above, LAMP has been shown to be one of the most rapid and sensitive 

methods of nucleic acid amplification with an average assay time of 60 min or less (Gandelman 

et al., 2011, Walker et al., 1992, Compton, 1991).  

1.1.2.1 Rolling circle amplification (RCA) 

The rolling circle nucleic acid amplification employs a unique property of ɸ29 DNA 

polymerase with a strand displacement activity and circle-hybridized primers to generate 

multiple copies of a circular DNA/RNA probe via numerous rounds of isothermal amplification 

(Fire and Xu, 1995). More recent developments in the RCA technology has given rise to a 

much faster way of amplifying circular DNA directly from cells and plaques. Multiple-primed 

RCA involves addition of random primers, 

complementary to the sequences of interest, that target 

both the circular DNA template as well and the single-

stranded (ss) DNA concatemers generated from 

replication of these targets (Figure 2)(Dean et al., 2001).  

 

 

 

 

 

Figure 2. Graphic representation of multiply-primed RCA. Random 

oligonucleotides complementary to the target sequences hybridize to the circular 

template. Biding of the ɸ29 DNA polymerase initiate amplification. Multiple 

rounds of DNA synthesis results in generation of long single-stranded DNA 

concatemers with tandemly repeated target sequences. 

Source:https://www.researchgate.net/publication/6416450_Error-

prone_rolling_circle_amplification_The_simplest_random_mutagenesis_protoco

l 
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1.1.2.2 Nucleic acid sequence based amplification (NASBA) 

Nucleic acid sequence-based amplification or self-

sustained sequence replication (3SR) is another isothermal 

amplification method used in synthesis of nucleic acids 

(Compton, 1991). Unlike the previously mentioned RCA, 

NASBA uses RNA as the target for amplification. NASBA 

technology makes use of avian myeloblastosis virus 

reverse transcriptase (AMV-RT), RNase H and a T7 RNA 

polymerase to generate multiple copies of anti-sense RNA 

and single-stranded cDNA (sscDNA) molecules (Figure 

3). The amplification reaction begins with hybridisation of 

specific primers containing T7 RNA polymerase-binding 

sites to the target RNA molecules. Once bound, reverse 

transcriptase begins the synthesis of a cDNA copy of the 

target RNA forming a RNA/DNA double-stranded hybrid molecule.  Unique property of the 

RNase H enzyme to recognise such hybrids and degrade the RNA portion of the RNA/DNA 

complex results in generation of sscDNAs. A second set of primers binds to the sscDNA 

molecules initiating replication of the complementary strands. Once a double-stranded cDNA 

is formed the T7 RNA polymerase binding site becomes activated. 

T7 RNA polymerase produces multiple copies of the anti-sense RNA template, which can be 

used in a self-sustained phase of the amplification procedure. Each anti-sense RNA, can be 

reverse transcribed into a double-stranded cDNA version of itself therefore carrying an active 

binding site for the RNA polymerase enzyme.  

 

 

Figure 3. Schematic representation of the NASBA 

amplification technology. The straight arrow 

represents the initiation step of the amplification 

procedure required to start off the self-sustained 

phase (circular arrow) of the synthesis procedure by 

generating anti-sense RNA templates. 

Source: 

https://www.researchgate.net/figure/259155941_fi

g2_Principles-of-nucleic-acid-sequence-based-

amplification 
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1.1.2.3 Recombinase polymerase amplification (RPA) 

Recombinase polymerase amplification (RPA) utilizes three core enzymes including: a 

recombinase, a single-stranded DNA binding protein (SSB) and DNA polymerases with strand 

displacement activity (Euler et al., 2012).    

In principle, the system relies on the ability of the 

recombinase to facilitate primer invasion which in 

turn allows the binding of DNA polymerases and 

initiation of the replication reaction (Figure 4). 

Once the DNA polymerase begins the 

amplification of new DNA strands, the parental 

strand (complementary to the strand used as the 

template for the DNA polymerase enzyme) is 

displaced and coated with the single-stranded DNA 

binding proteins to prevent re-hybridisation to its 

complement.   

Recent developments in RPA have attracted the 

attention of diagnostic companies such as TwistDxTM due to the efficiency and the simplicity 

of the assays with potential applications in rapid, near care diagnostics (Aebischer et al., 2014, 

Kersting et al., 2014).   

 

 

 

 

 

 

Figure 4. Schematics representation of the principle 

behind the RPA-based DNA amplification technology. 

Source: 

https://www.researchgate.net/figure/264796231_fig1

_The-three-core-proteins-recombinase-single-strand-

DNA-binding-protein-SSB-and  
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1.1.2.4 Helicase-dependent amplification (HDA)  

Helicase-dependent amplification is very similar mechanism to PCR amplification. Instead of 

the heat denaturation of the DNA double helix required in PCR, HDA uses helicase enzymes 

to unwind DNA molecules, thereby generating single-stranded DNA templates (Vincent et al., 

2004). 

 In general, the HDA-based DNA amplification is 

carried out in two main steps (Figure 5). Firstly, 

helicases unwind and separate both strands of the 

target DNA molecules allowing primers to anneal to 

their complementary sequences. Secondly, DNA 

polymerase binds and extends annealed primers 

until the entire complementary strand is fully 

synthesised. In addition, it has also been reported 

that the use of SSB proteins is crucial for the DNA 

replication step. SSB proteins prevent re-

hybridization of the separated complementary strands which in turns indirectly facilitates the 

primer binding step of the amplification process (Cao et al., 2013, Chase and Williams, 1986). 

Recent studies have shown that the HDA-based assays have the potential of being developed 

into hand-held diagnostic devices suitable for the point-of-care or in-field diagnostics due to 

its simplicity and low energy requirements (Li et al., 2013).  

 

 

 

 

 

Figure 5. The figure shows HDA-based isothermal 

DNA amplification process. 

Source: https://www.neb.com/products/h0110-isoamp-

ii-universal-thda-kit 
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1.1.2.5 Strand displacement amplification (SDA) 

Strand displacement amplification relies on 

restriction enzymes that introduce nicks to double-

stranded DNA molecules and the action of DNA 

polymerases, lacking the exonuclease activity (e.g. 

klenow exo-), to displace the complementary strand 

downstream from the nick. As a result, both the 

displaced and the complementary strands serve as 

templates for DNA replication generating multiple 

copies of the target sequence (Figure 6)(Walker et 

al., 1992).  

In essence, the SDA amplification begins with a 

denaturation step, which is crucial for this 

technology. Four different primers (B1, B2, S1, S2) 

bind to the ssDNA templates, which initiate primer 

elongation and strand displacement events. The S1 

and S2 primers are designed to target the sequence of 

interest as well as to introduce the HincII restriction 

sites to the target DNA which, the later stages of the 

SDA amplification, are required to sustain the isothermal amplified (Figure 6). Nick sites are 

then recognized by the klenow DNA polymerase, which initiates DNA replication and the 

displacement of the complementary, parental strand, which in turns acts as the template for 

further DNA replication reactions (Figure 6). The SDA technology has mainly been used in 

clinical diagnostics for infectious diseases such as chlamydia or gonorrhea. However, since the 

initial step of the SDA-based nucleic acid amplification involves a denaturation step, it is 

Figure 6. Graphic representation of the SDA-based 

DNA amplification technology. (A) This figure reflects 

the initial step of the SDA reaction which generates 

multiple copies of the target sequence flanked with 

HincII restriction sites. Primers S1 and S2 carries the 

HincII restriction sites targeting the sequence of 

interest. Primers B1 and B2 are displacement primers 

that anneal downstream of the S1/S2 primer binding 

sites. (B) The SDA reaction cycle.  

Source: 

https://www.researchgate.net/figure/259155941_fig

3_Target-generation-scheme-for-strand-

displacement-amplification 
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unlikely that this technology will be used for rapid in-field diagnostics (Walker et al., 1992, 

Gill and Ghaemi, 2008, Chan et al., 2000). 

1.1.2.6 Transcription-mediated amplification (TMA) 

Transcription mediated amplification is a rapid method of nucleic acid amplification based on 

RNA transcription technology (Figure 7). In general, unlike most currently used isothermal 

methods, TMA produces RNA amplicons via T7 transcription using two core enzymes, T7 

RNA polymerase and a reverse transcriptase 

(RT). Firstly, a specific primer containing a T7 

promoter sequence at its 5’ end binds to the 

target RNA molecule followed by a reverse 

transcription process carried out by the RT 

enzyme. During this step, a complementary 

cDNA strand is synthesized while the RNA 

template is being degraded by an RNase H 

activity of the chosen RT. Once a single-

stranded cDNA is formed, a second primer 

anneals and triggers synthesis of the missing 

second strand of the cDNA, resulting in 

generation of a double stranded T7 promoter 

site.  

T7 RNA polymerase binds to the promoter site 

and begins transcription of the target RNA molecules, which in turns are again targeted by the 

T7 promoter site containing primer, repeating the described amplification cycle. TMA has been 

reported to be able to generate billions of amplicons in 60 min or less and has been successfully 

used in HIV or TB diagnostics.  

Figure 7. Graphic representation of the TMA NA amplification 

technology. 

Source: 

https://www.researchgate.net/figure/11169695_fig3_Figure-

2-Transcription-mediated-amplification-TMA 
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1.1.2.7 Loop-mediated isothermal amplification (LAMP) 

Loop-mediated isothermal amplification (LAMP) is a rapid and highly specific method of 

nucleic acid amplification, developed by the EIKEN Chemical Company, in-which the 

polymerization reactions proliferate at a constant temperature (Notomi et al., 2000, Nagamine 

et al., 2002). A typical LAMP mechanism can be sub divided into three main phases: I – the 

initiation; II – cycling amplification and III – recycling and elongation, which together amplify 

each original template molecule 109 times within 60 min (Figure 8).  

Classical LAMP relies on at least two classes of primers that initiate and maintain 

amplification; known as inchworm and displacement primers. Two reciprocal inchworm 

primers (FIP and BIP) are utilized throughout all the phases of LAMP amplification, targeting 

the sense and antisense strands of each invaded DNA template. In contrast, the use of the 

displacement primers is only limited to the phase I.  

Once amplification is initiated via the inchworm primers, the first order amplicon is chased 

from the original DNA template by dedicated displacement primers, releasing strands of DNA 

that contain self-replicating loops derived from the inchworm primer at the 5’ terminus (Figure 

8 I4). This molecule is then subjected to an amplification from the alternate inchworm 

generating a second order displaced molecule with two terminal self-hybridizing loop 

structures known as the dumbbell that has great potential for further rounds of amplification 

(Figure 8 I6). The terminal loop structures of the dumbbell are single-stranded and contain 

engineered sites originating from the inchworm primer that readily hybridize additional 

inchworm primers (Figure 8 II7).  

Further to the described, other LAMP derivatives are engineered to include additional unique 

template-derived priming sites, within the single stranded portions of the replication loops or 

dumbbell stems; these are aptly named Loop or Stem primers. Both primers serve to increase 

the overall concentration of DNA that can be specifically polymerized from the initiated 
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reaction, and therefore increase the kinetics of amplification detected in real time or shorten 

the time to result for endpoint reactions (Gandelman et al., 2011, Nagamine et al., 2002).  

The final phase III of the amplification relies on the activity of both the LAMP and loop primers 

where the overall amplification kinetics are significantly accelerated resulting in the formation 

of a mixture of a wealth of secondary cauliflower-like, stem-loop structures of various lengths,  

as well as branch chain concatemers (Figure 8III) (Notomi et al., 2000).   

From the point at which the dumbbell is synthesized, all down-stream amplification processes 

are cyclical and propagating through phase III, until either the primer and amplification 

precursors are exhausted or until the products of the reaction become intoxicating.  

Like all isothermal amplification methods, LAMP is a displacement technology that does not 

just rely on sophisticated priming mechanisms, but also on highly displacing polymerases that 

have the capacity to unwind the double helix. The helicase activity associated with these 

enzymes defines their function. Of the commercialized enzymes such as Bst large fragment, 

Bst 2.0, Bst 2.0 WarmStart, Bst 3.0 (NEB), GSP-SSD (OptiGene) or phi29 (NEB), many have 

big variations in their temperature optimum, which can range from 30 to 75oC. Some enzymes 

also possess additional associated activities that are helpful to biotechnologists such as reverse 

transcription, which is particularly useful in diagnostic tests, which check RNA expression or 

retro-viral loads (GSP-SSD, Bst 3.0). In addition, some of these enzymes are also marketed for 

their tolerance to sample derived inhibitors that are known to affect PCR-based platforms, such 

as humic acid or various salts (Bst 2.0, NEB; GSP-SSD, OptiGene) (Kiddle et al., 2012, Opel 

et al., 2010).  

Furthermore, in comparison to other nucleic acid amplification technologies, such as PCR or 

TMA, LAMP offers a higher specificity, since any successful propagation of polymerization 

is reliant on coordinated priming from at least six annealing positions, which reduces the 
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number of false positive results caused by non-specific priming (Gandelman et al., 2011, 

Buhlmann et al., 2013).    

As a consequence of the above the LAMP technology is attractive to companies and it has been 

licensed for food and clinical testing, and continues to grow as the preferred method for 

molecular diagnosis (Mori and Notomi, 2009).   
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Figure 8. Schematic representation of the principle behind the LAMP-based DNA amplification technology. (I) The initiation of the LAMP amplification 

begins with a series of primer invasion, DNA replication and strand displacement events that result in generation of the starting LAMP material; 

dumbbell-like DNA structure (I6). This self-priming structure is a crucial element of the LAMP reaction enabling nucleic acid amplification without the 

need for heat-denaturation steps. (II) In the cycling amplification steps, DNA fragments of various length and stem structure are formed. (III) The 

elongation and recycling steps involve both, the LAMP and Loop primers targeting the previously formed dumbbell-like DNA fragments resulting in 

formation of cauliflower-like, multi-loop structures.   

Source: https://www.researchgate.net/figure/260915985_fig5_Fig-10-Mechanism-of-Loop-mediated-amplification-LAMP-Four-probes-F1c-F2-F3-

R1c-R2  
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Table 1. Characteristics of various isothermal nucleic acid amplification technologies and PCR. 

 

 

 

 

 

 

 

 

 

 

 

*- denaturation step required when DNA template is used 

 

 

 

 

Property PCR NASBA SDA RCA LAMP HDA RPA 

DNA amplification + + + + + + + 

RNA amplification + + + + + + + 

Temperature [°C] 95, 55-60,72 37-42 37 37 55-65 22-24, 37, 60-65 37-42 

Primer design simple simple complex simple complex simple simple 

Multiplexing + + - + - + + 

Tolerance to inhibition - - - - + + - 

Need for template 

denaturation 

+ +* + - - - - 

Denaturing agent 

heat RNase H 

restriction 

enzymes 

strand 

displacement 

primer invasion helicase recombinase 
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1.1.3 Summary of isothermal amplification technologies 

Isothermal amplification technologies are slowly becoming the method of choice and are used in 

a wide range of molecular applications, offering several advantages over the traditional PCR-based 

techniques. However, all of the currently available isothermal nucleic acid amplification methods, 

convey several advantages and disadvantages, which potentially limit their use (Table 1). 

Although, all of the isothermal amplification techniques mentioned previously can use both DNA 

and RNA, as the templates for replication reaction, some of them require additional steps to initiate 

self-sustained polymerisation. For example, SDA technology requires the use of four primers, an 

initial heat-denaturation step, as well as modified dNTPs in order to generate initial amplicons 

with strand-specific nicking (Walker et al., 1992).  Furthermore, this technology is rather 

inefficient for amplifying of long sequences (Gill and Ghaemi, 2008).  

LAMP requires four to six different primers to sustain nucleic acid amplification, which could be 

problematic if their design was poor. Despite the complexity of the LAMP primer design, the use 

of multiple primers to target the sequence greatly increase the specificity of detection. 

Furthermore, the final LAMP amplicons are a complex, they have cauliflower-like structures of 

different sizes that can limit their use in several downstream applications, such as sequencing and 

hybridization techniques (Gill and Ghaemi, 2008).   

One of the most important advantages of the isothermal amplification technologies are their 

tolerance to inhibitory substances that are known to greatly affect PCR (e.g. haem, urea, humic 

acids). LAMP and HDA have been demonstrated to be least sensitive to inhibitory substances 

commonly encountered in molecular diagnostics (Niemz et al., 2011, Gill and Ghaemi, 2008, 

Vincent et al., 2004, Kiddle et al., 2012). According to those studies, LAMP was highly resistant 

to several components of various clinical samples where PCR was shown to fail.  



24 
 

Higher resistance to biological samples carries a huge advantage in terms of sample preparation 

where for some steps of  the nucleic acid purification steps could potentially be omitted (e.g. HDA 

has been shown to be able to successfully amplify target DNA directly from human blood)(Vincent 

et al., 2004).  

Isothermal amplification technologies eliminate the need for heat denaturation which reduce the 

costs of the equipment required to carry out such reactions. Since LAMP does not require initial 

DNA melting steps to facilitate primer binding and subsequent DNA replication events, this 

technology is much better suited for rapid and highly specific molecular diagnostic tests (Gill and 

Ghaemi, 2008, Gandelman et al., 2010).  

In conclusion, current isothermal amplification technologies differ in their method of 

amplification, reaction volumes and sample preparation. There is no doubt that the simplicity and 

the isothermal nature of these technologies has huge implications for the development of hand-

held molecular diagnostic devices suitable for near-care or in-field detection.    

1.1.4 Bioluminescent Assay in Real Time 

Currently, the most commonly used method of reporting nucleic acid amplification in real-time, 

for both the PCR- and isothermal- based technologies, is the use of fluorescent probing and inter 

chelating dyes (e.g. SYBR-green, molecular beacons or TaqMan probes)(Figure 9)(Freeman et 

al., 1999). Although, these methods of detection offer many advantages, such as the specificity of 

detection (TaqMan), or simplicity (SYBR-green) and the possibility of multiplexing (TaqMan / 

beacons) by combining probes derivatised with different colour dyes, fluorescence-based detection 

does have its limitations.  These mainly include: complexed primer design, the expense of 

detectors capable of differentiating between fluorophores, and the inhibition of amplification by 

chelating dyes. 
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As well as fluorescence technologies, bioluminescence approaches for detecting polymerisation 

were realised commercially at the turn of this century, but it was a while before these evolved to 

be mainstream detection of DNA amplification (Nyrén et al., 1993, Gandelman et al., 2010).  

A method called enzymatic luminometric detection of inorganic pyrophosphate (ELIDA) was the 

first bioluminescent chemistry to detect the instantaneous production of pyrophosphate (PPi) 

generated as a biproduct of pyrosequencing (Figure 10)(Nyrén et al., 1993). 

In this technology, the addition of one of the four deoxynucleotide triphosphates (dNTPs) during 

the sequencing reaction releases PPi that is converted into ATP via ATP sulphurylase in the 

presence of adenosine 5´ phosphosulfate. This ATP then acts as a substrate for the luciferase-

Figure 9. Current, commonly used, fluorescence-based DNA detection probes. (A) SYBR-green dye used for detection of double-

stranded DNA molecules. In principle, the dye binds to any double-stranded DNA which results in emission of a fluorescent signal under 

blue light. The fundamental property of this dye is the fact that no signal emission occurs unless the dye molecules are bound to dsDNA. 

(B) TaqMan probes, unlike the SYBR-green, are designed to increase the specificity of DNA quantification (e.g. Quantifiler®DNA 

quantification kit uses probes specific only to human DNA). In general, the TaqMan probes are hydrolysis-based probes with covalently 

attached fluorophore (e.g. FAM) at the 5’ end and a quencher (e.g. TAMRA) at the 3’ end. The role of the quencher is to absorb any 

signal emitted by the fluorophore whilst both bound to the detection probe to prevent any false results. Once the probe binds to its 

target sequence and the DNA replication takes place, the exonuclease activity of Taq polymerase hydrolyse the probe releasing the 

fluorophore. Since the released fluorophore is no longer in close proximity to the quencher, emitted fluorescent signal can be detected.    
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mediated conversion of luciferin to oxyluciferin resulting in generation of visible light, which can 

then simply be detected by a camera or photodiode.  

However, DNA amplification reactions were never monitored in real-time using continuous 

ELIDA, because of the high temperatures essential for most nucleic acid polymerisation typically 

ranging from 60-74oC. The temperatures of these reactions inhibit wild type luciferase enzymes 

but in 2002 a thermostable recombinant version of the firefly luciferase was developed by 

Cambridge University (Tisi et al., 2002). This engineered luciferase was demonstrated to be 

functional at temperatures exceeding 60oC and this changed the prospects for measuring DNA 

polymerisation by bioluminescence in real-time and realised the potential for simple diagnostic 

platforms (Tisi et al., 2001, Kiddle et al., 2012). 

Following on, BART (Bioluminescent assay real-time) emerged; a detection technology that 

capitalised on the ELIDA chemistry in conjunction with the thermostable firefly luciferase to 

monitor NAATs (patented by Lumora Ltd, Cambridgeshire) (Fortes et al., 2013).  

BART is well suited to most isothermal methods as these produce copious amounts of PPi, and 

amplification technologies such as LAMP operate within a thermal window suited to the 

recombinant enzyme used for generating light.  

BART, like ELIDA, relies on the detection of pyrophosphate ions (PPi) released during DNA 

polymerisations. As the rate of amplification progresses and becomes exponential, the amount of 

released PPi ions and subsequently ATP molecules increases substantially, resulting in an increase 

in the intensity of the light signal emitted by the sample. Once the amount of PPi ions reaches a 

critical concentration, both the ATP sulphurylase and the luciferase enzymes become significantly 

inhibited leading to a complete switch off of BART. This results in a sharp-peak of light emission 

when monitored in real time, where the time to the highest emission is inversely proportional to 
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starting amount of target.  In addition, this unique signature of the BART light signal greatly 

simplifies the detection of positive samples (Figure 11).  

The BART-based assay offers a very sensitive and simple method of nucleic acid quantification 

that can be performed in a closed-tube, real-time format greatly reducing the contamination risks 

posed by this type of analysis due to the large amount of amplicon generated. In addition, similarly 

to the ELIDA technology, BART can be observed and detected by a CCD camera or photodiodes 

(Gandelman et al., 2010). Thus, offers the simplest and most cost effective, but yet sophisticated 

and highly sensitive, closed-tube format detection system available on the market. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Enzymatic luminometric detection of 

inorganic pyrophosphate(ELIDA). PPi realised during 

DNA synthesis react with APS in reaction catalysed 

by ATP sulphurylase, resulting in generation of ATP 

molecules. Formed ATPs together with luciferin 

under aerobic conditions undergo reduction reaction 

catalysed by a firefly luciferase enzyme resulting in 

emission of a light signal.   
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1.1.5 Fluorescence-based detection systems 

Real-time PCR has been the method of choice for detection and quantification of both DNA and 

RNA targets. This technology combines the specificity and sensitivity of standard PCR with a 

fluorescence-based reporting system that enable monitoring of amplicon generation during each 

cycle of the PCR reaction. Thus, similarly to the BART technology, this eliminates the need for 

post-PCR amplicon analysis, which in turn can greatly reduce the contamination risks, as well as 

the hands-on time required to complete the analysis. Furthermore, real-time monitoring of 

amplification not only simplifies the detection but also can give some valuable insights to the 

quantities of the nucleic acid in the tested samples (Bashiardes et al., 2008, Chevaliez et al., 2007).       

Yet, fluorescent detection of amplification has not been exclusively confined to PCR 

amplification. Many isothermal methods, currently use fluorescent detection methods, such as 

TMA and LAMP that are reported using the standard assay chemistries. Three distinct 

fluorescence detection approaches for amplification detection are introduced below. 

Figure 11. Graphic representation of a typical LAMP-

BART amplification profile.  Time-to-max (TTM) is a 

measure of time required for a LAMP-BART assay to 

reach its maximum light emission stage, which is 

inversely proportional to the initial amount of target 

DNA (red and blue curves represent reactions 

containing 1000 and 100 copies of DNA, respectively, 

whereas no template control (NTC) results in a flat 

baseline trace (black)). A typical LAMP-BART positive 

amplification signature is divided into three phases: 

initiation phase (A), exponential phase (B) and 

switch-off phase(C). Phase A represent the initiation 

stage of the LAMP amplification where the dumbbell 

structures are generated, whereas phases B and C 

corresponds to the elongation and recycling stages 

of DNA synthesis. Phase B represents the early 

exponential stage of DNA synthesis where the 

majority of PPi ions are converted into ATP. In 

contrast, the C phase corresponds to the later stage 

of the exponential amplification where the amounts 

of produced PPi ions becomes inhibitory to BART 

causing a complete switch off of light emission.   
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1.1.5.1 Intercalating dyes 

SYBR green has been the most widely used intercalating dye for the detection of DNA 

amplification. In principle, these dye molecules bind to the minor grove of a double stranded (ds) 

DNA template, which in turns causes up to a 1000-fold increase in the fluorescent properties of 

the dye (Dragan et al., 2012) (Figure 9A). Upon excitation at wavelength of 480 nm, the dye emits 

a green fluorescent signal at 520 nm which is then detected by specrofluorometer detectors. The 

relative change in the emission of the fluorescent signal after each amplification cycle can therefore 

be associated with the amount of amplicon generated, and the initial target input. 

The ability of the dye to bind to any dsDNA is a major advantage and disadvantage for monitoring 

polymerisation. SYBR green and other fluorescent inter-chelators offer quick and relatively cheap 

methods for monitoring DNA amplification where minor optimisations of the chemistry are 

required. However, the intercalating dyes do not allow discrimination between the amplification 

of the main target DNA template and any secondary targets including primer dimers in real-time. 

Nonetheless, the differentiation can be performed by including a dissociation analysis where 

different size amplicons are discriminated from one another based on their differences in melting 

temperatures (Tm) (Kochan et al., 2008). However, this step can significantly increase the overall 

time of an analysis which can be a significant limitation in a diagnostics setting. In addition, it has 

been reported that such dyes can reduce sensitivity of PCR assays (Gudnason et al., 2007).  

1.1.5.2 Taqman probes 

Unlike previously described intercalating dyes, TaqMan probes have been designed to increase the 

specificity of amplicon detection by employing dually labelled probes (Roche diagnostics). In 

principle, TaqMan probes consist of a single-stranded oligonucleotides labelled with a fluorophore 

at the 5’ and a quencher molecule at the 3’ end (Vermehren et al., 2008, Holland et al., 1991). The 
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probe is designed to anneal to a specific region of the template / amplified DNA target molecule 

that is flanked by typical PCR forward and reverse primers. The TaqMan probes rely on fluorescent 

resonance energy transfer (FRET) between the quencher and the fluorophore. In a free, un-bound 

state, the close proximity of the fluorophore to the quencher molecule, prevents any fluorescent 

signal emission. However, upon binding of the probe to its target, extension of the sense primer 

by the Taq DNA polymerase (Figure 9B) causes hydrolysis of the probe by the 5’ -> 3’ 

endonuclease activity of the DNA pol., releasing the fluorophore which in turns enables 

fluorescent signal emission upon excitation.      

 

1.1.5.3 Molecular beacons 

Similar, to TaqMan probes, the molecular beacons (MB) rely on the interactions between a 

oligonucleotide quencher and a fluorophore (Tyagi and Kramer, 2012). MBs do not require 

degradation of the probe in order to release fluorescence, this occurs when the probe sequence 

hybridises to is complementary amplified sequence. The MBs are hairpin shaped structures 

consisting of a fluorophore and a quencher covalently bound to the 5’ and 3’ ends respectively, a 

double-stranded stem region and a bigger single-stranded, open loop with at least 15 nt 

complementary to the target of interest (Figure 12). The double-stranded part of the probe is 

designed to maintain a sufficient proximity between the quencher and the chosen fluorophore, 

preventing any fluorescence release, in an un-bound state. Once, the target molecule is amplified, 

the MBs hybridise to the complementary region of its amplicon via the single-stranded loop, 

forcing stem region to disassociate and resulting in the separation of the fluorophore from the 

quencher that in turn enables fluorescence signal detection upon excitation.   
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MB have been widely used in a wide range of commercial diagnostic tests with an increased 

popularity amongst isothermal technologies. Since most of the DNA polymerases used in 

isothermal tests do not possess 5’ 3’ endonuclease activity, the TaqMan technology was found 

to be unsuitable for this type of analysis, making the MB probing the method of choice for specific 

amplicon detection.  

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Graphic representation of molecular beacons technology. 1 – showing a secondary structure of 

a unbound probe consisting of a double-stranded stem with fluorophore and quencher at 5’ and 3’ ends, 

respectively, and a single-stranded loop region complementary to the target of interest; 2 – Bound 

beacon with an open structure caused by loop hybridisation to its target. 

Source: http://www.sigmaaldrich.com/technical-documents/articles/biology/molecular-beacons.html  
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1.1.6 Summary 

Probe-based detections systems offer real-time monitoring and quantification of amplification but 

also offer a significantly increase the sensitivity of molecular assays. TaqMan probes have been 

the most widely used in PCR-based detection systems. However due to their requirements for 

probe hydrolysis, are incompatible with most isothermal amplification technologies. Molecular 

beacons, on the other hand, offer the specificity of TaqMan probes without the need for probe 

digestion thus their use in isothermal platforms has significantly grown over the past 20 years (Yan 

et al., 2014). Although, fluorescent based detection systems have been widely used by PCR and 

isothermal technologies and offer some advantages over BART, such as the ability to 

simultaneously detect multiple targets (multiplexing), they require expensive optical components 

capable of detecting such signals, resulting in a significantly increased cost of both, assays and 

equipment. 
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Chapter 2 

2 Material and methods 

2.1 Materials 

2.1.1 Samples 

a) Freeze-dried Hepatitis C 5’UTR RNA and DNA fragments (RNA: LGC (ATCC), USA; 

DNA: ERBAM, UK) 

b) Freeze-dried Mycobacterium bovis genomic DNA and rRNA (ERBAM, UK) 

c) Freeze-dried Hepatitis B genomic DNA (ERBAM,UK) 

2.1.2 Consumables 

a) 2.0 mL ultra-non-stick screw-cap tubes (BioLabs, UK) 

b) 96-well plates, White (ThermoFisher Scientific, UK) 

c) 96-well plate adhesive seals (Sigma, Aldrich, UK) 

d) Ultra-non-stick tips (10,100 and 1000) uL and Nishi/Gilson pipettes 

e) Gloves  

2.1.3 Reagents 

a) 10x Isothermal buffer (NEB, UK) 

b) 10x Thermopol buffer (NEB, UK) 

c) 1M DTT (Sigma, Aldrich, UK) 

d) 1x TAE buffer 

e) 4x 50 mM Bicene Buffer (ERBAM, UK) 

f) 4x 500 mM Bicene Buffer (ERBAM,UK)  

g) Acrylamide (30%) (Sigma, Aldrich, UK) 

h) APS (Biolog Institue, UK) 

i) ATP sulphurylase (NEB, UK) 

j) Bst 1.0 Large fragment (NEB, UK) 

k) Bst 2.0  (NEB, UK) 

l) Bst 2.0 Warm Start Large fragment (NEB, UK) 

m) carrier tRNA (ThermoFisher Scientific, UK) 

n) Collagen from calf skin (Sigma, Aldrich, UK) 

o) dNTPs (Sigma, Aldrich, UK) 

p) GSP-SSD (Optigene, UK) 

q) Humic Acid (Sigma, Aldrich, UK) 
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r) Luciferase (NEB, UK) 

s) Luciferin (Sigma, Aldrich, UK) 

t) Maxima RNaseH- (ThermoFisher Scientific, UK) 

u) Maxima RNaseH+ (ThermoFisher Scientific, UK) 

v) Mineral oil (ThermoFisher Scientific, UK) 

w) Molecular biology grade water (Sigma, Aldrich, UK) 

x) Polyvinylpyrrolidone (PVP) (Sigma, Aldrich, UK) 

y) Potassium Acetate (KAc) (Sigma, Aldrich, UK) 

z) Potassium Chloride (KCl) (Sigma, Aldrich, UK) 

aa) Salmon sperm DNA (NEB, UK) 

bb) Sodium Chloride (NaCl)(Sigma, Aldrich, UK) 

cc) SuperScript IV (ThermoFisher Scientific, UK) 

dd) TEMED 10x (Sigma, Aldrich, UK) 

ee) Trehalose (Sigma, Aldrich, UK) 

2.1.4 Equipment  

a) “BISON” LAMP-BART instrument (Lumora Ltd., UK) 

b) “Lucy” LAMP-BART instrument (Lumora Ltd, UK) 

c) Centrifuge (Technico mini, Thermo Scientific, UK) 

d) CX-2000 UV crosslinker (Fisher Scientific UK Ltd., UK) 

e) Freezer 

f) Fridge  

g) Gel electrophoresis tanks (BioRad, UK) 

h) Laminar flow hood (BioQuell, UK) 

i) UV-transilluminator (Syngene, Cambridge, UK) 

j) Vortex 
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2.2 Methods 

All samples used in this study, including HCV 5’ UTR DNA and RNA, TB M. bovis gDNA and 

23s rRNA as well as the IAC RNA, were prepared by ERBAM, UK. Samples were stored as a 

single-use aliquots at -80 °C.   

2.2.1 Contamination control 

Every precaution was taken throughout the study to minimize the risks of sample contamination. 

Preparation of the DNA and RNA templates and reaction mixes were carried out in a laminar flow 

hood crosslinked for 10 mins prior to each experiment. In addition, no-template controls (NTCs) 

were run each time new aliquots of the LAMP-BART reaction were prepared. Each aliquot was 

used only once per assay to minimize contamination events caused by sample handling. 

2.2.2 DNA quantity and purity  

All DNA and RNA templates were quantified by measuring its absorbance between 230 and 300 

nm on a NanoDrop 2000 spectrophotometer. 1 ul of each aliquot of the linearized plasmid was 

analysed to check its purity and quantity. In addition, the samples were also quantified using the 

Agilent 2100 Bioanalyzer (Agilent Technologies Inc., UK). 

Note that the HCV RNA template was quantified by a certified reference materials supplier that 

guaranties the highest accuracy quantifications. Thus, the concentration determined by the supplier 

was used to generate the working stock aliquots.   
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2.2.3 Reagents preparation for LAMP-BART assays 

Reagents used for the development of isothermal miRNA detection systems were prepared 

according to the Protocol 26: Reagents preparation for miRNA assays (see Appendix 26). 

All other reagents were supplied by ERBAM, UK and stored at -20 °C. 

2.2.4 Reconstitution of primers    

Oligonucleotides used for HCV, TB and HBV LAMP assays were purchased from Eurofins 

MWG-BioTech, Germany. Oligonucleotides, including primers and probes, used for the 

development of isothermal miRNA detection systems were purchased from Sigma, UK.  

All primers and probes used in this study were reconstituted with the required volume of 1x TE 

buffer (pH=8.0), as indicated on the company’s technical datasheet, to 100 µM. The primers were 

then labelled and stored at -20 °C. 

2.2.5 Amplicon visualisation  

Analysis of ligation and endonuclease digestion of the target oligonucleotides was performed using 

polyacrylamide gel electrophoresis (SDS-PAGE) according to the Protocol 34: SDS-PAGE 

protocol (see Appendix 34).  

Gels were stained using 5 uL of 10000x GelRed per every 50 mL of the gel solution. 

Electrophoresis was performed at 45 V for 60-85 min. Nucleic acid bands were visualised with a 

UV transilluminator. 
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2.2.6 Preparation of the internal amplification control RNA 

IAC RNA template was in vitro transcribed using MEGAscript T7 transcription kit (ThermoFisher 

Scientific, UK) according to the protocol provided by the manufacturer [see MEGAscript T7 

transcription kit manual: URL: https://www.thermofisher.com/order/catalog/product/AM1334].  

pEX DNA plasmid containing the IAC insert and the T7 promoter sequence was purchased from 

Eurofins Genomics.  

Full preparation of the final IAC RNA product was performed by ERBAM, UK.  

2.2.7 Secondary structure analysis 

Vienna RNAfold online software was used to determine the secondary structures of the 5’UTR 

HCV RNA [URL: http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi]. The analysis 

was performed using the minimum free energy and partition function at 60 °C.   

2.2.8 Data analysis and statistics 

Microsoft EXCEL 2013 was used for analysis of the experimental data including ANOVA and t-

test statistical analysis. Note that standard deviation was calculated from technical replicates, and 

was used as a measure of the reproducibility of an assay preformed on a given day.   

Sequence alignments were visualised using GeneDoc free software [URL: 

http://genedoc.software.informer.com/]  

2.2.9 LAMP primer design 

2.2.9.1 HCV LAMP primers 

HCV LAMP primers were designed to target the 5’UTR region of the Hepatitis C virus RNA 

genome. The sequence alignments were retrieved from HCV database [URL: 

https://hcv.lanl.gov/content/sequence/HCV/ToolsOutline.html]. Melting temperatures of all of the 

https://www.thermofisher.com/order/catalog/product/AM1334
http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi
http://genedoc.software.informer.com/
https://hcv.lanl.gov/content/sequence/HCV/ToolsOutline.html
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HCV LAMP primers were assessed using IDT oligo analyser [URL: 

https://www.idtdna.com/calc/analyzer] under 50 mM sodium, 2 mM magnesium ions and 0.3 mM 

dNTPs. Self- and cross-priming interactions were assessed using multiple primer analyser 

provided by ThermoFisher [URL: https://www.thermofisher.com/uk/en/home/brands/thermo-

scientific/molecular-biology/molecular-biology-learning-center/molecular-biology-resource-

library/thermo-scientific-web-tools/multiple-primer-analyzer.html] under sensitivity setting 1.  

Primer sequences were adjusted accordingly in order to minimise 3’ interactions and thus reduce 

the NTC formation.  

2.2.9.2 HBV LAMP primers 

HBV LAMP primers were designed by ERBAM, UK (see Appendix 39). 

2.2.9.3 TB LAMP primers  

TB LAMP primers were designed by ERBAM, UK (see Appendix 39). 

2.2.9.4 miRNA primers and probes 

LAMP primers were designed to target the cauliflower mosaic virus 35S promoter sequence 

(GeneBank accession number X79465) by Dr Patrick Hardinge.  

Ligation probes were designed based on the dumbbell sequence generated by the 35S LAMP 

primers where 22 nt of its stem sequence was substituted with the target miRNA complementary 

binding site. Each probe (P1 and P2) contained 11 nt of the miRNA binding site (refer to the 

ligation-based miRNA detection design, Appendix 37). 

Note that a phosphate group at the 5’ end of the P2 probe was introduced in order to enable ligation. 

https://www.idtdna.com/calc/analyzer
https://www.thermofisher.com/uk/en/home/brands/thermo-scientific/molecular-biology/molecular-biology-learning-center/molecular-biology-resource-library/thermo-scientific-web-tools/multiple-primer-analyzer.html
https://www.thermofisher.com/uk/en/home/brands/thermo-scientific/molecular-biology/molecular-biology-learning-center/molecular-biology-resource-library/thermo-scientific-web-tools/multiple-primer-analyzer.html
https://www.thermofisher.com/uk/en/home/brands/thermo-scientific/molecular-biology/molecular-biology-learning-center/molecular-biology-resource-library/thermo-scientific-web-tools/multiple-primer-analyzer.html
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Endonuclease probes were designed based on the dumbbell sequence generated by the 35S LAMP 

primers where the loop F and FIP primer binding sites were substituted with an artificial stem loop 

sequence. miRNA binding site was introduced at the 3’ end of the probe (see Appendix 38).  

The sequence of the target miRNA lin-4 was retrieved from: Lee RC, Feinbaum RL, Ambros V 

(1993). "The C. elegans heterochronic gene lin-4encodes small RNAs with antisense 

complementarity to lin-14.". Cell. 75 (5): 843–854.  

2.2.10 LAMP BART assays 

All LAMP BART amplification reactions were performed on dedicated instruments that 

simultaneously control temperature and record bioluminescence (“BISON” and “Lucy”, ERBAM., 

UK). Each LAMP-BART assay was performed in nuclease free 96-well plates (white) under 

molecular grade mineral oil, at 60 °C for 90-120 min. In addition, all LAMP-BART reactions were 

performed in a total volume of 20 uL, unless otherwise stated. 

2.2.10.1 HCV LAMP BART assays 

2.2.10.1.1 Primer screening assay 

Initial master mix was prepared according to the reaction mix set up shown in Appendix 2. 1388 

uL of the initial reaction mix was then split into four aliquots of 347 uL each. Final master mix 

was prepared by adding 2 uL of F3 and B3, 4 uL of Loop B and F and 8 uL of FIP and BIP of the 

appropriate LAMP primer sets to the aliquots containing 347 uL of the initial master mix. 15 uL 

of the final master mix was then mixed with 5 uL of the HCV 5’ UTR RNA template [10^4 cp/5uL] 

in a 96-well plate (white) followed by an addition of two drops of mineral oil. Samples were sealed 

using a clear adhesive film and loaded onto BISON set at 60 °C and ran for 90 min.  
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2.2.10.1.2 DNA polymerase screening assay 

Initial master mixes (2x) were prepared according to the reaction mix set up shown Appendix 3. 

1498 uL of each of the prepared initial reaction mixes were then split into two aliquots of 749 uL. 

Final master mixes were prepared by adding 1 uL of either GSP-SSD [100 U/uL], Bst 2.0 [200 

U/uL] or Bst 2.0WS [200 U/uL], or 1.3 uL of Bst large fragment [160 U/uL] to separate aliquots 

containing 749 uL of the initial master mix. 15 uL of the final master mix was then mixed with 5 

uL of the appropriate HCV template in a 96-well plate (white) followed by an addition of two 

drops of mineral oil. Samples were sealed using a clear adhesive film and loaded onto BISON set 

at 60 °C and ran for 90 min.  

HCV RNA at concentrations 10^4, 10^3, 100, 50 and 10 cps/5uL were used in this study. 

2.2.10.1.3 Reverse transcriptase screening assay 

Initial master mixes (2x) were prepared according to the reaction mix set up shown in Appendix 

4. 1498 uL of each of the prepared initial reaction mixes were then split into two aliquots of 749 

uL. Final master mixes were prepared by adding 1 uL of either Maxima RNaseH+ [200 U/uL], 

Maxima RNaseH+ [200 U/uL] or SuperScriptIV [200 U/uL] to separate aliquots containing 749 

uL of the initial master mix. 15 uL of the final master mix was then mixed with 5 uL of the 

appropriate HCV template in a 96-well plate (white) followed by an addition of two drops of 

mineral oil. Samples were sealed using a clear adhesive film and loaded onto BISON set at 60 °C 

and ran for 90 min.  

HCV RNA at concentrations 10^4, 10^3, 100, 50, 10 and 1 cps/5uL were used in this study. 
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2.2.10.1.4 Reaction buffers screening assay 

Initial master mix was prepared according to the reaction mix set up shown in Appendix 5. 1300 

uL of the prepared initial reaction mixes was then split into two aliquots of 650 uL each. Final 

master mix was prepared by adding 100 uL of either Isothermal [10x] or Thermopol [10x] buffers 

to separate aliquots containing 650 uL of the initial master mix. 15 uL of the final master mix was 

then mixed with 5 uL of the appropriate HCV template in a 96-well plate (white) followed by an 

addition of two drops of mineral oil. Samples were sealed using a clear adhesive film and loaded 

onto BISON set at 60 °C and ran for 90 min. 

HCV RNA at concentrations 10^4, 10^3, 100, 50, 10 and 1 cps/5uL were used in this study. 

2.2.10.1.5 Inhibitory substances screening assay: KCl, KAc and NaCl  

Initial master mix was prepared according to the reaction mix set up shown in Appendix 6. 1498 

uL of the initial reaction mixes was then split into two aliquots of 749 uL each. Final master mix 

was prepared by adding 1 uL of either GSP-SSD [100 U/uL] or Bst 2.0 [200 U/uL] to separate 

aliquots containing 749 uL of the initial master mix. 15 uL of the final master mix was then mixed 

with 5 uL of the appropriate inhibitory substance in a 96-well plate (white) followed by an addition 

of two drops of mineral oil. Samples were sealed using a clear adhesive film and loaded onto 

BISON set at 60 °C and ran for 90 min.  

Potassium and sodium chloride and Potassium acetate at concentrations 0 to 50 mM, were tested 

in this study.  

2.2.10.2 TB LAMP BART assays 

All TB LAMP BART assays used GSP-SSD DNA polymerase and 500 mM Bicine buffer [4x], 

unless otherwise stated. 
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2.2.10.2.1 DNA polymerase screening assay 

Initial master mixes (2x) were prepared according to the reaction mix set up shown in Appendix 

8. 1498 uL of each of the prepared initial reaction mixes were then split into two aliquots of 749 

uL. Final master mixes were prepared by adding 1 uL of either GSP-SSD [100 U/uL], Bst 2.0 [200 

U/uL] or Bst 2.0WS [200 U/uL], or 1.3 uL Bst large fragment [160 U/uL] to separate aliquots 

containing 749 uL of the initial master mix. 15 uL of the final master mix was then mixed with 5 

uL of the appropriate TB M. bovis template in a 96-well plate (white) followed by an addition of 

two drops of mineral oil. Samples were sealed using a clear adhesive film and loaded onto BISON 

set at 60 °C and ran for 90 min.  

M. bovis nucleic acids concentrations of 1000 and 100 cps/5uL were used in this study. 

Both genomic DNA and 23s rRNA were used.  

2.2.10.2.2 Inhibitory substances screening assay: LDS (no IAC) 

Master mix was prepared according to the reaction mix set up shown in Appendix 9. 15 uL of the 

master mix was then mixed with 5 uL of the appropriate M. bovis template* in a 96-well plate 

(white) followed by an addition of two drops of mineral oil. Samples were sealed using a clear 

adhesive film and loaded onto BISON set at 60 °C and ran for 90 min.  

*- dilutions of the templates were performed using the appropriate concentrations of the tested 

inhibitors as diluents. 

M. bovis 23s rRNA at concentration 1000 and 100 cps/5uL was used in this study.  

Serial dilutions (20 uL sample + 180 uL diluent) of the 23s rRNA top stock [10^6 cps/5uL]   were 

carried out in order to obtain the appropriate template concentrations. 
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For the inhibitory samples, 0.01 and 0.05% LDS was used as diluents. 

2.2.10.2.3 Inhibitory substances screening assay: Bicine buffers 

Initial master mix was prepared according to the reaction mix set up shown in Appendix 10. 1000 

uL of the initial reaction mix was then split into two aliquots of 500 uL each. Final master mix was 

prepared by adding 250 uL of either 500 mM [4x] or 50 mM [4x] Bicine buffers to separate aliquots 

containing 500 uL of the initial master mix. 15 uL of the final master mix was then mixed with 5 

uL of the appropriate M. bovis template* in a 96-well plate (white) followed by an addition of two 

drops of mineral oil. Samples were sealed using a clear adhesive film and loaded onto BISON set 

at 60 °C and ran for 90 min.  

*- dilutions of the templates were performed using the appropriate concentrations of the tested 

inhibitors as diluents. 

M. bovis 23s rRNA at concentration 10000 and 1000 cps/5uL was used in this study.  

Serial dilutions (20 uL sample + 180 uL diluent) of the 23s rRNA top stock [10^6 cps/5uL]   were 

carried out in order to obtain the appropriate template concentrations. 

For the inhibitory samples, 0.05% LDS was used as diluent. 

2.2.10.2.4 Inhibitory substances screening assay: carrier DNA (no IAC) 

Master mix was prepared according to the reaction mix set up shown in the Appendix 11. 15 uL 

of the master mix was then mixed with 5 uL of the appropriate M. bovis template* in a 96-well 

plate (white) followed by an addition of two drops of mineral oil. Samples were sealed using a 

clear adhesive film and loaded onto BISON set at 60 °C and ran for 90 min.  
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*- dilutions of the templates were performed using the appropriate concentrations of the tested 

inhibitors as diluents. 

M. bovis 23s rRNA at concentration 1000 and 100 cps/5uL was used in this study.  

Serial dilutions (20 uL sample + 180 uL diluent) of the 23s rRNA top stock [10^6 cps/5uL]   were 

carried out in order to obtain the appropriate template concentrations. 

For the inhibitory samples, 1000 ng/5uL of salmon sperm DNA was used as diluent. 

2.2.10.2.5 Inhibitory substances screening assay: carrier DNA (incl. IAC) (50 vs 10 uL reactions) 

Initial master mix was prepared according to the reaction mix set up shown in Appendix 19. 1470 

uL of the initial reaction mixes was then split into two aliquots of 735 uL each followed by an 

addition of 7.5 uL either MGW or TB M. bovis RNA. The two prepared initial master mixes (after 

additions) were then split into two smaller aliquots of 371.25 uL each. Final master mix was 

prepared by adding 3.75 uL of either MGW or carrier DNA [1000 ng/uL] to separate aliquots 

containing 371.25 uL of the initial master mix with either added TB RNA or MGW. 50 uL and 10 

uL of the final reaction mix (including templates) were then dispensed across  a 96-well plate 

(white) covered with 2 drops of mineral oil and sealed using adhesive clear film. Samples were 

run at 60 °C for 90 min on BISON.   

2.2.10.2.6 Inhibitory substances screening assay (incl. IAC) 

Initial master mix was prepared according to the reaction mix set up shown in Appendix 16. 1480 

uL of the initial reaction mix was then split into two aliquots of 740 uL each. Final master mix was 

prepared by adding 5 uL of both MGW and IAC RNA or 5 uL of IAC and TB RNA to the separate 

aliquots containing 740 uL of the initial master mix. 15 uL of the final master mix was then mixed 

with 5 uL of the appropriate inhibitory substance in a 96-well plate (white) followed by an addition 
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of two drops of mineral oil. Samples were sealed using a clear adhesive film and loaded onto 

BISON set at 60 °C and ran for 90 min. 

Inhibitory substances used in this study: 

Sodium chloride at concentrations 20, 30 and 40 mM; 

Salmon sperm DNA at concentrations 50, 500 and 1000 ng/5uL; 

tRNA at concentrations 50, 500 and 1000 ng/5uL; 

Mucin solution at concentrations 400, 500 and 700 ng/rxn; 

NaOH at concentrations 1333, 1667 and 2326 µM; 

2.2.10.2.7 Inhibitory substances screening assay: Mucin 

Master mix was prepared according to the reaction mix set up shown in Appendix 9. 15 uL of the 

master mix was then mixed with 5 uL of the appropriate M. bovis [100 cps/5uL] or IAC RNA 

[10^6 cps/uL] template* in a 96-well plate (white) followed by an addition of two drops of mineral 

oil. Samples were sealed using a clear adhesive film and loaded onto BISON set at 60 °C and ran 

for 90 min.  

*- dilutions of the templates were performed using the appropriate concentrations of the tested 

inhibitors as diluents.  

Serial dilutions (20 uL sample + 180 uL diluent) of the 23s rRNA top stock [10^6 cps/5uL]   were 

carried out in order to obtain the appropriate template concentrations. 

For the inhibitory samples, 50, 200 and 400 ng/uL Mucin solution and 1333 mM NaOH were used 

as diluents. 



46 
 

2.2.10.2.8 Primer mutations screening assay 

Initial master mix was prepared according to the reaction mix set up shown in Appendix 12. 1468 

uL of the initial reaction mix was then split into four aliquots of 367 uL each. Final master mix 

was prepared by adding 8 uL of the appropriate version of the LAMP F primer to separate aliquots 

containing 367 uL of the initial master mix. 15 uL of the final master mix was then mixed with 5 

uL of the appropriate M. bovis template [10^4 cps/5uL] in a 96-well plate (white) followed by an 

addition of two drops of mineral oil. Samples were sealed using a clear adhesive film and loaded 

onto BISON set at 60 °C and ran for 90 min. 

Note that the loop primers were not added. 

2.2.10.2.9 Standard TB assay (50 µL reactions) 

Initial master mix was prepared according to the reaction mix set up shown in Appendix 18. 1470 

uL of the initial reaction mixes was then split into two aliquots of 735 uL each. Final master mix 

was prepared by adding 7.5 uL of MGW and 7.5 uL of either M. bovis TB template [10^4 cps/5uL] 

or IAC RNA [10^7 cps/5uL] to separate aliquots containing 735 uL of the initial master mix. 50 

uL of the final reaction mix (including templates) was then dispensed across 30 wells of a 96-well 

plate (white) covered with 2 drops of mineral oil and sealed using adhesive clear film. Samples 

were run at 60 °C for 90 min on BISON.   

2.2.10.2.10 Assessment of DNA contamination in the IAC RNA samples 

Initial master mix was prepared according to the reaction mix set up shown in Appendix 7. 

However, Maxima RNaseH+ was not added to the initial master mix. 1498 uL of the initial master 

mix was then split into two aliquots of 749 uL each followed by an addition of 1 uL of either 

Maxima RNaseH+ [200 U/uL] or MGW. 15 uL of the final master mix was then mixed with 5 uL 

of the appropriate IAC template in a 96-well plate (white) followed by an addition of two drops of 
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mineral oil. Samples were sealed using a clear adhesive film and loaded onto BISON set at 60 °C 

and ran for 90 min.  

IAC RNA and DNA concentrations of 10^8, 10^7, 10^6 and 10^5 cps/5uL, were used in this study. 

2.2.10.2.11 IAC interference study 

Master mix was prepared according to the reaction mix set up shown in Appendix 14. 15 uL of 

the master [10^6 cp/rxn IAC RNA] mix was then mixed with 5 uL of the appropriate M. bovis 

template in a 96-well plate (white) followed by an addition of two drops of mineral oil. Samples 

were sealed using a clear adhesive film and loaded onto BISON set at 60 °C and ran for 90 min.  

M. bovis 23s rRNA at concentrations 10^4, 10^3 and 100 cps/5uL were used in this study. 

2.2.10.2.12 Effects of HIV ROX-loop probes on IAC RNA amplification 

Initial master mix was prepared according to the reaction mix set up shown Appendix 15. 1482 

uL of the initial reaction mix was then split into two aliquots of 741 uL each, followed by an 

addition of either 1 uL GSP-SSD or 1.3 uL Bst large fragment. Each of the two prepared aliquots 

was then split into two smaller aliquots of 370.5 uL each. Final master mix was prepared by adding 

4 uL of either HIV probe or MGW to the separate aliquots containing 370.5 uL of the initial master 

mix with either GSP-SSD or Bst large fragment. 15 uL of the final master mix was then mixed 

with 5 uL of the IAC RNA template [10^6 cps/5uL] in a 96-well plate (white) followed by an 

addition of two drops of mineral oil. Samples were sealed using a clear adhesive film and loaded 

onto BISON set at 60 °C and ran for 90 min. 

Note: 50 mM Bicine buffer was used in this study 
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2.2.10.2.13 Effects of DNA polymerases on the performance of HIV ROX loop probe-based 

detection 

Initial master mix was prepared according to the reaction mix set up shown in Appendix 23. 1498 

uL of the initial reaction mixes was then split into two aliquots of 749 uL each. Final master mix 

was prepared by adding 1 uL of GSP-SSD [100 U/uL] or 1.3 uL Bst large fragment [160 U/uL] to 

separate aliquots containing 749 uL of the initial master mix. 15 uL of the final reaction mix was 

then mixed with 5 uL of the appropriate IAC template in a 96-well plate (white) covered with 2 

drops of mineral oil and sealed using adhesive clear film. Samples were run at 60 °C for 90 cycles 

on Strategene.  Note: each cycle was set to run for 1 min.  

2.2.10.3 HBV LAMP BART assays 

All HBV LAMP BART assays were performed using 10x Isothermal buffer and Bst 2.0 WS. 

2.2.10.3.1 Effects of BART on HBV ROX loop probe-based detection 

Initial master mix was prepared according to the reaction mix set up shown in Appendix 21-22. 

742 uL of the initial reaction mixes was then split into two aliquots of 371 uL each. Final master 

mix was prepared by adding 4 uL of either MGW or ROX-labelled loopF probe [100 uM] to 

separate aliquots containing 371 uL of the initial master mix. 15 uL of the final reaction mix was 

then mixed with 5 uL of the appropriate HBV template in a 96-well plate (white) covered with 2 

drops of mineral oil and sealed using adhesive clear film. Samples were run at 60 °C for 90 cycles 

on Strategene.  Note: each cycle was set to run for 1 min.  

 

 



49 
 

2.2.10.3.2 Effects of labelled loop probes on amplification of HBV DNA 

Master mix was prepared according to the reaction mix set up shown in Appendix 20. Note that 

Loop F primer was not added during reaction mix preparation. 1484 uL of the intial master mix 

was split into four aliquots of 470 uL each followed by an addition of 5 uL of the appropriate loop 

probe/primer. 

15 uL of the final master mix was then mixed with 5 uL of the appropriate HBV template in a 96-

well plate (white) followed by an addition of two drops of mineral oil. Samples were sealed using 

a clear adhesive film and loaded onto BISON set at 60 °C and ran for 90 min.  

2.2.10.4 miRNA LAMP BART assays 

2.2.10.4.1 Ligation-based miRNA detection assay  

Master mix was prepared according to the reaction mix set up shown in Appendix 24. 15 uL of 

the master mix was then mixed with 5 uL of the appropriate miRNA template in a 96-well plate 

(white) followed by an addition of two drops of mineral oil. Samples were sealed using a clear 

adhesive film and loaded onto “Lucy” set at 60 °C and ran for 90 min.  

2.2.10.4.2 Endonuclease-based miRNA detection assay 

Master mix was prepared according to the reaction mix set up shown in Appendix 35. 15 uL of 

the master mix was then mixed with 5 uL of the appropriate miRNA template in a 96-well plate 

(white) followed by an addition of two drops of mineral oil. Samples were sealed using a clear 

adhesive film and loaded onto “Lucy” set at 60 °C and ran for 90 min.  
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2.2.11 Ligation reactions 

Ligation reactions were performed at room temperature according to the protocols 27-30 (see 

Appendix 27-30), unless otherwise stated. All ligation reactions underwent an inactivation step 

performed at 95 °C for 20 min. 

2.2.11.1 Standard miRNA detection asay using SplintR ligase  

Initial SplintR reaction mix was prepared according to the protocol 27 (see Appendix 27). Note 

that P1, P2 and the target miRNA were not added to the initial reaction mix. 340 uL of the initial 

reactions mix (set up for 20 rxn) was split into four aliquots of 85 uL each. Final reaction mix was 

prepared by adding 1 – 5 uL P1 [1 uM] and 10 uL MGW; 2 – 5 uL P2 [1 uM] and 10 uL MGW; 3 

– 5 uL of both P1 and P2 [1 uM] and 5 uL MGW; 4 – 5 uL of both P1 and P2 [1 uM] and 5 uL 

miRNA lin-4 [100 uM].  

Reactions were incubated for 30 min followed by an inactivation step. 100x dilution of each 

ligation sample was then performed using MGW. 5 uL of the diluted ligation sample was then 

mixed with the standard LAMP BART reaction mix (see Appendix 24).  

2.2.11.2 Ligases screening assay  

Separate reaction mixes were prepared according to the appropriate ligation protocol (see 

Appendix 27-30). 

Note that 100x dilution [1 uM] of each probe was used in this study. 

Reactions were incubated for 30 min followed by an inactivation step. 100x dilution of each 

ligation sample was then performed using MGW. 5 uL of the diluted ligation sample was then 

mixed with the standard LAMP BART reaction mix (see Appendix 24).  
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2.2.11.3 Time course study 

SplintR reaction mix was prepared according to the protocol 27 (see Appendix 27). Note that 100x 

dilution [1 uM] of each probe was used in this study. 

Samples were initially incubated for 5 min followed by transferring 100 uL of the ligation mix to 

a separate tube and placed on ice. The remaining volume was left at room temperature for 

additional 25 min. Both aliquots were then transfer onto a heating block for inactivation. 100x 

dilution of each inactivated sample was performed using MGW. 5 uL of the diluted ligation sample 

was then mixed with the standard LAMP BART reaction mix (see Appendix 24).  

2.2.11.4 Probe optimisation study 

Initial SplintR reaction mix was prepared according to the protocol 27 (see Appendix 27). Note 

that probes P1 and P2 were not added to the initial reaction mix. 540 uL of the initial reaction mix 

(set up for 30 rxn) was then split into six aliquots of 90 uL each. Final reaction mix was prepared 

by adding of 5 uL of both P1 and P2 probes.  

Dilutions tested: 10, 1, 0.1, 0.05, 0.02 and 0.01 uM. Note that the final concentrations of the probes 

in the reaction mixture was 20x lower.   
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2.2.12 Restriction digest  

Restriction digest was performed according to the protocols 31-32 (see Appendix 31-32). 

Templates were prepared according to the PCR protocol 33 (see Appendix 33). 

10 uL of each restriction digest reaction was then loaded onto a SDS-PAGE and run for 85 min at 

45 V. 

2.2.13 Endonuclease heat inactivation  

Heat inactivation was performed at 95 °C for 30 min in the appropriate reaction buffer provided 

by the supplier. 

2.2.14 Pre-incubation procedure 

Nb.bsmI was pre-incubated in a modified LAMP BART reaction mix at 60 °C for 60 min followed 

by the standard endonuclease heat inactivation step.  

LAMP BART reaction mix was prepared according to the protocol 24 (see Appendix 24). Note 

that enzymes were not added.  
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Chapter 3  

3 Development of RT-LAMP assay for diagnosis of Hepatitis C 

infections 
 

3.1 Introduction  

Hepatitis C is a highly infectious disease caused by the Hepatitis C virus (HCV) that mainly infects 

the liver (Choo et al., 1989, Seeff and Hoofnagle, 2003). Initial infection usually results in very 

mild or no symptoms, which makes an early diagnosis very problematic (Zhang et al., 2016, Seeff 

and Hoofnagle, 2003). It has been estimated that an approximately 130–200 million people are 

infected with hepatitis C, worldwide (Modi and Liang, 2008, Zhang et al., 2016, Cloherty et al., 

2016). In 2013, the vast majority of the 11 million new reported cases of HCV infections, occurred 

in Africa and Central and East Asia.  In addition, that year alone, almost 800,000 deaths related to 

the chronic HCV infections, were reported (Petruzziello et al., 2016, Karoney and Siika, 2013).  

HCV can primarily be transmitted via blood-to-blood route, and is mainly associated with 

intravenous drug users, poorly sterilised medical equipment, transfusions or needle stick injuries 

amongst healthcare personnel.  However, HCV can also be transmitted from mother to child during 

birth (Tibbs, 1995, WHO, 2017, Maheshwari and Thuluvath, 2010, Pondé, 2011).  

The HCV virus persists in up to 80 % of the infected individuals and the vast majority do not 

develop any symptoms during the early stages of the disease. However, during prolonged 

infection, HCV infection leads to liver disease and in some cases cirrhosis.  In addition, patients 

with cirrhosis have an increased risk of developing liver failure, liver cancer or 

oesophageal and gastric varices (Kim, 2016, Alter, 2007, Xu et al., 2013).  
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Currently, there is no vaccine available against HCV infections. Prevention strategies involve harm 

reduction methods, amongst drugs abusing individuals, as well as extensive blood product 

screening prior to transfusions (Alter, 2007, Abdelwahab and Ahmed Said, 2016, Hagan et al., 

2011).  HCV treatment involving sofosbuvir and simeprevir, have been shown to be capable of 

curing up to 90 % of the chronic infections if diagnosed in the earlier stages of the disease (Panel, 

2015, WHO, 2017, Abergel et al., 2016).  

3.1.1 The Hepatitis C virus 

Hepatitis C is an enveloped RNA virus with a diameter of approximately 50 nm and it belongs to 

the flaviviridae family. The HCV viron consists of a single-stranded, positive sense RNA ((+) 

RNA) molecule encapsulated by an icosahedral capsid composed of the core protein and an outer 

lipid layer of host’s origin. Two key viral glycoproteins, E1 and E2, are embedded within the outer 

lipid layer and facilitate the viral attachment and entry to the host’s cell (Ashfaq et al., 2011) 

(Figure 13). 

It has been reported that the HCV virus can circulate in three main forms within the serum of 

infected individuals: a) as a free viron; b) virons bound to lipoproteins and c) non-enveloped 

nucleocapsid (Maillard et al., 2001, André et al., 2005). It has been suggested that the core protein 

functions not only as a structural protein, but it also has an effect on the host cells gene expression 

and in the regulation of apoptosis (one of the host’s defence mechanisms against viral infections) 

(Okuda et al., 2002, Su et al., 2002, Song et al., 2016, Kwak et al., 2016).    
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3.1.2 Hepatitis C genomics 

The genome of HCV is made of a positive-sense, single-stranded RNA of 9400 nt (Kato, 2000). It 

contains a single open reading frame (ORF) encoding a polyprotein of approximately 3000 amino 

acids. The ORF is flanked by 5’ and 3’ untranslated regions (UTR or NTR) of approximately 341 

and 230 nucleotides, respectively.  However, the length of the 3’UTR can vary significantly 

between different subtypes of the HCV virus, but it normally consists of a short poorly conserved 

region of approximately 28-42 nucleotides, poly-(U) / polypyrimidine (T/C) track and a highly 

conserved base element of 98 nucleotides (known as a 3’X region). The 3’X region together with 

the 52 upstream nt of the poly(U/C) domain have been reported to play a crucial role in the viral 

RNA replication (Jubin, 2001, Berry et al., 2011). 

Figure 13. Graphic representation of the Hepatitis C viral particle structure. 

Source: http://www.abcam.com/index.html?pageconfig=resource&rid=13135 



56 
 

Of the two UTRs, the 5’UTR exhibits the highest degree of conservation for all the known HCV 

genotypes. It consists of four heavily structured domains (I-IV) made of many stem-loops and 

pseudoknots. It has been reported that the domain II-IV together with the first 30 nucleotides of 

the coding region make up the internal ribosome entry sequence (IRES). IRES is responsible for 

binding to the host’s 40s ribosomal subunits and initiating the translation of the viral polyprotein 

in a cap-independent manner (Berry et al., 2011, Lukavsky, 2009). The translated polyprotein is 

subsequently co-translationally and post-translationally modified by the viral and host’s proteases 

to produce 10 mature proteins (Figure 14).  The N terminal part of the viral genome encodes for 

structural proteins: a) non-glycosylated nucleic acid-binding nucleocapsid protein, known as the 

core protein (approx. 190 aa/21kDa); b) two membrane-associated glycoproteins E1 and E2 of 190 

and 370 aa, respectively (Moradpour and Penin, 2013).  

The non-structural viral proteins include: a) NS1 (p7) thought to be involved in generation of the 

viroporin in the host’s ER membrane; b) NS2 to NS5B are involved in the modification and 

processing of the viral polyprotein as well as viral genome replication.  The post-translational 

processing of the viral polyprotein is carried out by two proteinases NS2-NS3 Zinc-dependent 

metalloproteinase and NS3 serine proteinase located at the N-terminal region of the NS3 protein. 

The NS2-NS3 proteinase is responsible for cleavage of the NS2/NS3 region of the viral 

polyprotein only. In contrast, the NS3 serine proteinase together with its cofactor NS4a releases 

the remaining proteins from the viral polyprotein complex (Moradpour and Penin, 2013, Penin et 

al., 2004, Moradpour et al., 2005).  
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Figure 14. Graphic representation of the Hepatitis C viral genome structure. The HCV genome consists of two non-translated regions (5’ 

and 3’ NTR and a single polyprotein encoding for structural (red) and non-structural (yellow) proteins. During the co- and post-

translational processing, the polyprotein is cleaved to generate ten proteins. C- structural core protein, E1 and E2 – viral glycoproteins 

responsible for attachment and entry, NS1 (p7) – viroporin, NS2-3 – viral proteinases, NS4a- NS3 cofactor, NS5b – RNA-dependant RNA 

polymerase. 

Source: http://stanford.edu/~ncho/AR_2.html 
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3.1.3 The lifecycle of Hepatitis C  

HCV enters the target cell through interactions with specific membrane receptors such as CD81 or 

SR-BI that are suggested to play crucial roles in viral binding (Figure 15). Upon attaching itself 

to the host’s receptors, the viral lipid envelope is fused with the target cell’s membrane and this is 

followed by release of the viral nucleocapsid into the cell cytoplasm. Attachment and fusion is 

mediated by viral surface glycoproteins (E1-E2) and can take place at either the host’s plasma 

membrane or inside the endosomes followed endocytosis (Kim, 2016, Kato, 2000, Barth et al., 

2006). 

As previously mentioned, Hepatitis C virus stores its genetic material in a form of single-stranded, 

positive sense RNA molecule. The HCV genome can be used as a direct template for translation 

into viral proteins. Once the viral protein synthesis is complete, the NS4b protein stimulates 

Figure 15. Graphic representation of the Hepatitis C life 

cycle. 

Source: 

http://www.abcam.com/index.html?pageconfig=reso

urce&rid=13135 
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formation of membrane vesicles, known as membranous web, which acts as a viral RNA 

replication machinery (Behrens et al., 1996, Elazar et al., 2003). The NS5b is then employed for 

the synthesis of the complementary to the viral genome, anti-sense strand ((-) RNA) which in turns 

serves as a template for synthesis of the viral ssRNA genome. Subsequently, upon synthesis of all 

the viral protein and its genetic material, assembly of new virons is carried out followed by their 

excretion from the host’s cell via exocytosis (Ashfaq et al., 2011).  
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3.1.4 Hepatitis C diversity and classification  

The HCV virus has recently been divided into seven distinct genotypes (1-7) based on the variation 

in the nucleotide sequence of all the known HCV genomes (Figure 16) (Kato, 2000, Alter, 2007). 

On average, each of these genotypes differ in 30-35% in their nucleotide sequence when the entire 

genomes where taken into consideration. It has been reported that the vast majority of the variation 

seen between different HCV genotypes are concentrated in the regions encoding for the E1 and E2 

glycoproteins (Simmonds, 1995, Simmonds et al., 1993, Cuypers et al., 2015).  

Furthermore, according to the more recent reviews of the HCV genotype / subtype classification, 

approximately 67 subtypes of the virus were identified (genotype number followed by a letter a, 

Figure 16. Graphic representation of the Hepatitis C phylogenetic tree showing all the currently known genotypes and the 

corresponding subtypes. 

Source: http://www.abcam.com/index.html?pageconfig=resource&rid=13135 
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b, c, etc.). Each identified subtype differs in at least 15 % in their coding region (or 20-25 % in 

their entire genome sequence) – variability is particularly dominant in the regions coding for the 

core, E1 and NS5B proteins. In addition, several strains of the same subtype have also been 

identified and reported to differ at less than 15 % in their genomic sequence (Timm and 

Roggendorf, 2007, Cuypers et al., 2015). 

3.1.5 Hepatitis C geographical distribution 

The geographical distribution of the HCV infections is complex. It has already been reported that 

certain subtypes including 1a, 1b, 2a and 3a are distributed globally and account for over 60 % of 

all HCV infections (Figure 17) (Timm and Roggendorf, 2007, Kato, 2000). Such a wide spread 

dispersal of these particular subtypes could potentially be explained by the adoption of blood 

transfusions that occurred in the 20th century (Simmonds, 2004, Kato, 2000). In addition, the use 

of unsterilized needles for injections and vaccinations (a practice that continues in many 

developing countries to-date), as well as needle sharing within drug user groups of industrialised 

countries. Many of the remaining subtypes are considered to be endemic strains, which are rather 

rare and have circulated for a much longer period of time in more restricted regions of the globe: 

1 and 2 – West Africa; 3 - South Asia; 4 – Central Africa and Middle East; 5 – Southern Africa; 6 

– South-east Asia. According to the most recent reports, only genotype 7 infection was reported in 

Canada where the strain was isolated form a Central African immigrant (Simmonds, 2004).   
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Globally, genotype 1 has been estimated to contribute to over 46 % (83.4 million) of all HCV 

infections with one-third cases located in East Asia followed by the HCV genotype 3 which 

contributed to over 30 % (54.3 million) of HCV incidents most of which occurred in South Asia. 

Genotypes 2, 4 and 6 are responsible for most of the remaining HCV infections and account for 

9.1 % (16.5 million), 8.3 % (15 million) and 5.4 % (9.8 million) cases worldwide, respectively 

(Simmonds, 2004).  Recent reports have shown that the genotype 5 contributed to less than 1 % of 

all the HCV infections where the vast majority occurred in Southern and sub-Saharan Africa. No 

apparent differences in the HCV structure, replication, transmission and the ability to establish a 

persistent infection have been observed between all the known genotypes. In addition, the wide 

spread of HCV infections in the human population suggests that each genotype is equally capable 

Figure 17. Graphic representation of the Hepatitis C geographical distribution with an emphasis on the most prevalent genotypes for 

each region. 

Source: (Hussain, 2013) https://www.intechopen.com/books/practical-management-of-chronic-viral-hepatitis/genomic-

heterogeneity-of-hepatitis-viruses-a-e-role-in-clinical-implications-and-treatment 
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of maintaining infections.  However, despite the phenotypic similarities between the genotypes, 

there is a growing evidence of genotype-specific differences in persistence and interactions with 

the innate cell defences and resistance to antiviral therapies. It has been shown that only 10-20 % 

and 40-50% of individuals infected with the genotype 1 HCV fully recovered when either IFN 

monotherapy or IFN (interferon-α)/ribavirin combination therapy, respectively, was used. In 

contrast, 50 % and 70-80 % of individuals infected with genotypes 2 or 3 were cured upon 

implementation of the exact same antiviral therapy (Hussain, 2013, Kato, 2000, Timm and 

Roggendorf, 2007). Furthermore, it is becoming more apparent that the variation in the coding 

regions, particularly within the E2 and NS5A, can have a significant effect in host’s immune 

responses and the resistance to the antiviral drug therapies.  

3.1.6 Molecular diagnostics of Hepatitis C 

Enzyme immunoassays (EIA / ELISA) and chemiluminescence immunoassays (CIA) have been 

the most widely used methods for screening of HCV infections in both developed and developing 

countries (Cloherty et al., 2016, Pawlotsky, 1999). Both technologies rely on detection of patient’s 

antibodies against chosen core antigens such as the core and / or NS3-5 proteins. The latest 3rd 

generation EIA/CIA, such as OraQuickHCV®, have not only been FDA-approved, but also 

recommended by the WHO to be used as the gold standard test in developing countries (Gupta et 

al., 2014). They exhibit a very high, over 95 %, accuracy and in most cases are able to detect 

antibodies within the first 2-3 weeks after the exposure (WHO, 2017). However, the success of the 

3rd generation ELI-based tests lies not only in their high sensitivity and accuracy but also can be 

contributed to their relatively low cost and simplicity in use (Abdel-Hamid et al., 2002, Marwaha 

and Sachdev, 2014). Nonetheless, due to the initial window period required for the seroconversion 
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of the infected blood prior to testing, immunoassays should not be solely relied on for blood 

screening purposes (Figure 18).  

HCV core antigen testing is yet another example of highly effective diagnostic tools for HCV 

infections. Unlike the EIA-based technologies, the diagnosis of HCV infections is performed via 

direct detection of the pathogen rather than the host’s response to infection (Freiman et al., 2016). 

In this approach, a specific matrix (either a membrane or microparticles) is coated with monoclonal 

antibodies, which are specific to the core protein that makes up the HCV nucleocapsid. Since, the 

core protein has been shown to be the most conserved protein amongst all of the HCV genotypes 

and is one of the first protein synthesised during HCV life cycle, it became the target of choice for 

the direct detection. The Architect HCV Ag assay developed by Abbott, was one of the first 

commercially available platforms in Europe that utilised this technology (Ghany et al., 2009). 

However, despite its extremely high specificity, of nearly 100%, and simplicity, it did not become 

the method of choice due to its much lower sensitivity compared to many RNA or EIA-based 

platforms. It has however, widely used as a method for confirmation of positive EIA results.      

Despite the great success of immunoassays in HCV diagnosis, nucleic acid amplification 

technologies (NAAT) have become the preferred method of choice in diagnosis of early infections, 

as well as monitoring of anti-viral therapies and been playing a crucial part in the fight against the 

spread of the disease (Ghany et al., 2009, Gupta et al., 2014).  

NAAT-based technologies rely on the detection of the circulating viral RNA and make use of 

either RT-PCR or other technologies, such as TMR or bDNA assays (Morishima et al., 2006, Chan 

et al., 2000). As previously described, the HCV genome divides into two non-translated UTR 

regions (5’ and 3’ UTRs) and a single coding open reading frame encoding for the viral 

polyprotein. The unique function of the 5’ UTR in HCV translation reflects its high conservation, 
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with nearly 90% sequence identity amongst all of the HCV genotypes (Simmonds et al., 1993, 

Kato, 2000). Thus, it is the most targeted part of the vial genome for almost all of the currently 

available commercial and in-house developed kits.  Direct detection of the viral genome, very 

much like in case of the core antigen detection technologies, enables diagnosis of pre-

seroconverted individuals. 

 

 

Figure 18. Graphic representation of the Hepatitis C screening steps. Highlighted in red are stages of the screening process where false 

negative diagnosis based on serological testing may contribute to further spread of the disease.  

Source: https://www.health.ny.gov/publications/1852/diagnosis.htm 
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Thus, greatly limiting the risks of new infections. However, unlike the direct immunoassay 

platforms, the NAAT-based detection is more accurate and highly sensitive (Firdaus et al., 2015, 

Kargar et al., 2012, Wang et al., 2011, Yang et al., 2011).  

Nonetheless, most currently available NAAT-based kits cannot fully replace the immunoassay 

screening but should rather be used in conjunction. During the development of the disease, 

particularly in the first 10 weeks of the infection, the level of HCV RNA can not only vary 

significantly, but also fall below the limit of detection of many currently available tests (Figure 

19). Thus, increasing the risks of misdiagnosis (Ghany et al., 2009, Cacopardo et al., 2009). 

   

 

Figure 19. Graphic representation of 3 main patterns of HCV viremia. A – continuous high level of detectible HCV RNA; B – spontaneous 

resolution of the disease; C – Oscillating levels of HCV RNA usually falling below the limit of detection. 

Source: http://jamanetwork.com/journals/jama/fullarticle/205592 
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In summary, HCV diagnosis begins with testing for anti-HCV markers (Figure 18) and depending 

on the result of such a test, the NAAT-based confirmation assay will be performed.    

Since even the most sensitive immunoassays available on the market, have a minimum of 2 weeks 

prior to seroconversion of the infected blood, the risks of misdiagnosis and false negative results, 

as well as asymptomatic course of the disease development, increase the risks of new infections 

and make the eradication of the disease impossible (Figure 18, red boxes)(Cacopardo et al., 2009, 

Ghany et al., 2009, Scott and Gretch, 2007). Even more so, in developing countries, such as India, 

where immunoassays are not routinely accompanied by NAAT-based tests (WHO, 2017). The 

NAAT-based platforms, could potentially generate false positive results, due to viral RNA load 

oscillations during the acute phase of the Hepatitis infection (Scott and Gretch, 2007). Thus, it is 

becoming clear that the NAAT-based platforms should be used in conjunction with immunoassays 

in order to avoid misdiagnosis and reduce the risk of new exposures.   

Several highly sensitive platforms for HCV testing have been developed with a limit of detection 

ranging between 5 to 50 IU/mL of plasma. The AMPLICOR 2.0 and Ampliscreen 2.0, both by 

Roche Diagnostics, Indianapolis, Ind as well as The VERSANT HCV RNA Qualitative Assay 

(Bayer Diagnostics, Emeryville, Calif) have been shown to reach the highest sensitivity levels in 

clinical diagnosis with over 98% accuracy. Nonetheless, due to the cost of their equipment, this 

technology cannot be utilised in most developing countries, such as India, where the HCV burden 

increases every year. Thus, despite all of the advances in HCV diagnostics, the lack of a quick, 

sensitive and affordable test continuous to be the major obstacle in the fight against HCV in the 

developing world (Suthar and Harries, 2015).     
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3.1.7 Implications of RNA structure on the efficiency of RNA assays 

3.1.7.1 Reverse transcription technology 

Reverse transcription (RT) assay, is a two-step reaction, in which RNA template is converted into 

its complementary DNA (cDNA) strand by reverse transcriptases. Subsequently, the reverse 

complimented RNA (1st strand cDNA) is then amplified by a standard LAMP reaction or other 

amplification technologies including PCR (Freeman et al., 1999, Lee et al., 2011). In addition, 

depending on the chosen RT enzyme, the initial RNA strand can either be digested during the 

cDNA synthesis by RNaseH activity (e.g. Maxima RNaseH+, ThermoFisher UK), to improve the 

yields, or remain in the assay in a form of a cDNA:RNA heteroduplex (e.g. Maxima RNaseH 

minus, Superscrip IV, THermoFisher, UK). While both methods can increase the yield of cDNA 

synthesis, they also carry disadvantages depending on the type of template and amplification 

technology used. For instance, RT enzymes with intrinsic RNaseH activity have been reported to 

reduce the overall efficiency of cDNA synthesis, when reverse transcribing longer amplicons, 

since many of those enzymes can cut RNA templates during pausing (Kotewicz et al., 1988). Thus 

resulting in premature termination and synthesis of shorter products. In contrast, enzymes lacking 

this activity have been shown to have an increased processivity and therefore the capability of 

transcribing longer, up to 20 kb, templates (Maxima RNase H minus, ThermoFisher, UK). 

However, since the initial RNA target forms highly stable cDNA: RNA hetero duplex, these 

structures can potentially impair primer invasion and thus reduce the efficiency of initiation and 

consequently the overall amplification reaction, particularly in LAMP-based assays (Lesnik and 

Freier, 1995, Chien and Davidson, 1978). PCR-based technologies are less likely to be affected by 

those structures, since each amplification cycle involves a 95 °C denaturation step.  
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Although the RT assays are two-step reactions, many of the currently available RT kits carry out 

those reactions in a single-tube format (One-Taq RT-PCR kit, NEB, UK; SuperScript III RT-PCR 

system, ThermoFisher, UK). However, despite the single-tube format, most of the RT-PCR 

reactions involve a pre-PCR isothermal reverse transcription step carried out isothermally at a 

lower, more suitable for the enzyme, temperature, followed by RT inactivation and template 

denaturation. In contrast, RT-LAMP utilises a highly stable RT enzymes capable of withstanding 

up to 65 °C thus allowing maintaining constant assay temperature throughout (Maxima RNaseH 

+/minus, SuperScript IV, ThermoFisher, UK). In addition, several dual-function enzymes have 

also been developed to further optimise and simplify the RT process. For instance Bst 3.0 recently 

developed by NEB have been shown to exhibit not only an increased displacement activity but 

also the capacity to use RNA and DNA as templates for DNA synthesis.    

3.1.7.2 RNA structures can affect the efficiency of oligonucleotide hybridisation 

The biological function of many RNA molecules, including the HCV RNA genome, relies on their 

substantial folding into secondary or even tertiary structures such as hairpins and pseudoknots as 

well as interaction between them (Smith et al., 2002, Smith and Wu, 2004). In fact, replication and 

translation of the HCV genomic RNA relies solely on the conformation of the 5’ and 3’ UTR 

regions (Smith et al., 2002, Jubin, 2001, Berry et al., 2011). While this structural function ensures 

a high degree of conservation between different genotypes and subtypes, it also simplifies the 

primer design for inclusivity, it can pose a significant barrier for primers and probes hybridisation 

greatly reducing the efficiency of amplification and detection. 

Anato et al. reported how sequence variations between different RNA hairpin structures can have 

direct effects on their thermostability (Antao et al., 1991). For instance, he demonstrated that loop 

structures containing UUCG motifs neighbouring with cytosine and guanine at the 5’ and 3’end, 
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respectively exhibited an increased thermostability with an average Tm of over 70 °C. In contrast, 

the same motif neighbouring with guanine at the 5’ end reduced the stability of this hairpin by over 

10 °C.  However, Anato and co-workers not only concluded that RNA hairpin structures varied in 

their thermal stability depending on the loop sequence but also showed that RNA hairpins are 

significantly more stable than corresponding DNA hairpins. He showed that the difference 

between thermal stability of certain RNA and DNA secondary structures could be as much as         

20 °C.   

Although, several factors can affect amplification performance including template integrity, 

chemistry or efficiency of chosen enzymes, primer binding is crucial for successful target detection 

(Forsell et al., 2015, Stadhouders et al., 2010). Thus, due to such a great variations in 

thermostability observed between different hairpin motifs, careful consideration has to be taken 

while designing primers for RT assays.  

Currently, a wide range of primer design tools are available on the market and online databases, 

but most of these tools utilise DNA template as the matrix for primer and as a consequence do not 

consider the conformational structure of the chosen target (PrimerQuest Tool, IDT, USA, 

GenScript Primer design tool). Similarly, in PCR-primer designs, the potency of secondary 

structures on the impairment of primer binding is often underestimated, as displacement is 

achieved by DNA template denaturation during the thermocycle. As most reverse transcription of 

RNA are performed between 45-60 °C the secondary and tertiary structures of the template may 

need to be negotiated in the RT primer design. This is true for PCR that goes through a denaturing 

step and isothermal amplification like LAMP that operates at assay temperatures ranging between 

60-65 °C. 
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3.2 Aims and objectives 

The main focus of this study was to develop a highly optimised RT-LAMP assay for diagnosis of 

Hepatitis C infections with a careful consideration of the target’s secondary structures and their 

implications on the primer design and the efficiency of the target detection.  
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3.3 Results 

3.3.1 HCV RT-LAMP primer design 

HCV RT-LAMP primer sets were designed according to the specifications listed in the methods 

section. The HCV sequence data retrieved from the HCV sequence database [URL: 

https://hcv.lanl.gov/content/sequence/NEWALIGN/align.html] was aligned and the region with 

the highest degree of similarity across all of the known HCV genotypes was used (Figure 20). As 

described throughout the literature, the 5’ UTR region of the HCV genome was the most conserved 

amongst all of the seven HCV genotypes and numerous subtypes characterised and deposited in 

GenBank [URL: https://www.ncbi.nlm.nih.gov/nuccore/?term=HCV] (Figure 20 – red box). 

In-depth in silico analysis of the sequence and the characterisation candidate primer binding 

positions resulted in the generation of three HCV primer sets that were analysed in terms of, 

potential primer interactions and orientation with respect to RNA template secondary structure.   

 

https://hcv.lanl.gov/content/sequence/NEWALIGN/align.html
https://www.ncbi.nlm.nih.gov/nuccore/?term=HCV
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Figure 20. Graphic representation of a HCV genome alignment containing representative sequences from all 7 genotypes and several 

subtypes. The most conserved region of the HCV genome across all of the retrieved sequences is highlighted in red.  

Source: https://hcv.lanl.gov/content/sequence/NEWALIGN/align.html 

 

https://hcv.lanl.gov/content/sequence/NEWALIGN/align.html
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Table 2 lists the HCV primer sets designed according to the parameters described in the methods 

section, along with two published sets (Nyan and Swinson, 2016, Young et al., 1993). Primer sets 

13-40 were designed in-house. For LAMP primers, two Tm were calculated, where each 

corresponds to the F/B1 and F/B2 respectively.  

primer identifier Sequence (5’->3’) Tm [°C] 

PCR-LGC-F GCAGAAAGCGTCTAGCCATGGCGT 70.5 

PCR-LGC-R ctcgcaagcaccctatcaggcagt 69.8 

   HCV001-DN3-F3 GGCGACACTCCACCATGAAT 64.6 

HCV002-DN3-R3 ctatcaggcagtaccacaaggc 64.4 

HCV003- DN3-FIP cactatggctctcccgggagTTTTCGTCTAGCCATGGCGTTAG 65.4/62.1 

HCV004-DN3-BIP GGAACCGGTGAGTACACCGGTTTTcccaaatctccaggcattga 66.1/62.5 

HCV005- DN3-LF aggctgcacgacactcata 63.3 

HCV006- DN3-LB GACCGGGTCCTTTCTTGGA 63.5 

   HCV013-LF CCTTGTGGTACTGCCTGATA 61.2 

HCV014-FIP CCGAGTAGTGTTGGGTCGggtctacgagacctccc 61.4/59.6 

HCV015-F3 aggtttaggattcgtgct 58.4 

HCV016-BIPv1 ggctgcacgacactcataACTACTGTCTTCACGC 61.7/55.2 

HCV018-B3 GAATCACTCCCCTGTG 55.6 

   HCV019-BIP caccggttccgcagaCGGGAGAGCCATAGTG 61.0/57.9 

HCV013-LF CCTTGTGGTACTGCCTGATA 61.2 

HCV014-FIP CCGAGTAGTGTTGGGTCGggtctacgagacctccc 61.4/59.6 

HCV015-F3 aggtttaggattcgtgct 58.4 

HCV020-B3 AGTATGAGTGTCGTGC 55.3 

   HCV-034 FIP TGCCTGGAGATTTGGGCccctatcaggcagtacca 62.0/60.0 

HCV-035 BIP aaaggacccggtcgtTGGTCTGCGGAACCGGTGAG 59.6/68.0 

HCV-036 LoopF GAGTAGTGTTGGGTCG 55.1 

HCV-038 F3 gtgcacggtctacgaga 60.6 

HCV-039 LoopB cctggcaattccggtgta 61.8 

HCV-040 B3 TCCCGGGAGAGCCAT 61.6 
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3.3.2 HCV 5’UTR secondary structure analysis 

Since, the Hepatitis C virus genome is a single-stranded RNA, most of the currently available 

nucleic acid amplification technologies, involve a reverse transcription step that results in the 

production of cDNA that is subsequently re-amplified by a DNA polymerase. It is well known that 

single-stranded nucleic acid molecules, particularly RNAs, have an extremely high tendency to 

fold into various stable motifs, such as hairpins or pseudoknots.  

The secondary structure of the 5’UTR sequence, typical of HCV genotype 1 was assessed in silico, 

to understand any imposition that could interfere with primer annealing, particularly the proposed 

FIP and reverse displacement priming positions necessary for the initiation of reverse transcription. 

Figure 21 shows a graphic representation of the secondary structure of the first 400 nucleotides of 

the 5’UTR region. An online software was applied in order to generate the most probable 

secondary structure output of the chosen fragment at the assay temperature (60 °C). The data was 

displayed in a form of a graphical model and a colour-coded sequence alignment.  
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The 5’UTR region of the HCV genome is highly structured with numerous hairpins and 

pseudoknots exhibiting various levels of stability. According to the colour-coded sequence, highly 

stable secondary structures are dispersed throughout the UTR region. Each colour represents the 

probability of a stable base pairing with the warmer (Red, orange and yellow) colours being the 

Figure 21. Graphic representation of  the HCV 5’UTR folding prediction performed by Vienna online RNA folding tool. A – 2-D RNA folding 

structure with double-stranded stems and open loops highlighted in green and blue/orange, respectively. B – HCV 5’ UTR sequence output  

(5’  3’ ) with highlighted probabilities of forming secondary structures. Red, orange and yellow represent highly structured regions whereas 

green, and blue indicate the likelihood of open loop formation.    

Source: http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi  

 

GCCAGCCCCCUGAUGGGGGCGACACUCCACCAUGAAUCACUCCCCUGUGAGGAACUACUGUC 

UUCACGCAGAAAGCGUCUAGCCAUGGCGUUAGUAUGAGUGUCGUGCAGCCUCCAGGACCCCC

CCUCCCGGGAGAGCCAUAGUGGUCUGCGGAACCGGUGAGUACACCGGAAUUGCCAGGACGAC

CGGGUCCUUUCUUGGAUAAACCCGCUCAAUGCCUGGAGAUUUGGGCGUGCCCCCGCAAGACU

GCUAGCCGAGUAGUGUUGGGUCGCGAAAGGCCUUGUGGUACUGCCUGAUAGGGUGCUUGCGA

GUGCCCCGGGAGGUCUCGUAGACCGUGCACCAUGAGCACGAAUCCUAAACCUCAAAGAAAAACC

AAAC 

A

B

http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi
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most stable. The position of red and orange bases are indicative of structures extremely difficult 

to melt and invade by primers that rely solely on the displacement activity of the polymerase. A 

substantial amount of open and weak secondary structures indicated by the green and blue bases 

were also be detected. This analysis is rarely afforded by primer design tools, and was enabling 

allowing for RT primer designs that would not only account for inclusivity, but also consider the 

efficiency of primer binding with respect to target structure. 

3.3.3 Effects of secondary structures on HCV 5’UTR RT-LAMP-BART 

Three in-house designed HCV RT-LAMP primers sets (Table 2 – Set 13-18; 13-20 and 34-40) 

were designed to be highly inclusive for all of the known HCV genotypes with a particular 

emphasis on the genotypes 1-3 due to their high clinical relevance. Prior to experimental 

assessment, each primer set was analysed in silico in order to determine potential primer 

interactions that could result in mis-amplification.  

Despite the fact that the in silico analysis of the primer interactions did not predict any significant 

primer-dimers, only the HCV 34-40 primers amplified the target RNA sequence specifically 

(Figure 22A-B). Consequently, the binding positions of each primer set was analysed with respect 

to the RNA secondary structure of the UTR template, in order to determine the possible cause of 

amplification failures. Similar analysis was then performed on two published primer set for 

reference purposes.   

Figures 23-24 show a colour-coded output of the in silico sequence analysis using the Vienna 

software for the first 400 nt of the 5’UTR region. Primer binding positions were underlined for 

visual clarity.  
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Figure 22.  LAMP-BART profiles generated using in-house designed HCV LAMP primers. A – HCV assay using 10^4 cps of synthetic 5’UTR 

DNA and the 34-40 primer set; B – HCV assay using 10^4 cps HCV 5’UTR RNA fragments and the 34-40 primer set; C – HCV assay using 

10^4 cps HCV 5’UTR RNA fragments and the 13-18 primer set; D – HCV assay using 10^4 cps HCV 5’UTR RNA fragments and the 13-20 

primer set. 

Note that red curves represent the reactions containing the target template. Black profiles were generated from the NTC control 

reactions (no Template) 

Refer to protocol 2 
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Figure 23. HCV 5’ UTR sequence output (5’  3’) generated by the Vienna RNA fold software with highlighted probabilities of forming 

secondary structures. Red, orange and yellow represent highly structured regions whereas green, and blue indicate the likelihood of 

open loop formation. A – HCV 5’ UTR sequence output with highlighted published DN3 primer binding sites. Each separate primer 

binding site was highlighted in bold and underlined in a specific order: 5’ – B3, B2, LoopB, B1, F1, LoopF, F2, F3 – 3’. Note that certain 

sites were separated by a “-“ for visual clarity due to the proximity to the other recognition sites.  B -  HCV 5’ UTR sequence output with 

highlighted published LGC primer binding sites in a specific order : 5’ – Forward, Reverse primer – 3’   

Source: http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi  

 

GCCAGCCCCCUGAUGGGGGCGACACUCCACCAUGAAUCACUCCCCUGUGAGGA

ACUACUGUCUUCACGCAGAAAGCGUCUAGCCAUGGCGUUAGUAUGAGUGUCGU

GCAGCCUCCAGGACCCCCCCUCCCGGGAGAGCCAUAGUGGUCUGCGGAACCGG

UGAGUACACCGGAAUUGCCAGGACGACCGGGUCCUUUCUUGGAUAAACCCGCU

CAAUGCCUGGAGAUUUGGGCGUGCCCCCGCAAGACUGCUAGCCGAGUAGUGUU

GGGUCGCGAAAGGCCUUGUGGUACUGCCUGAUAGGGUGCUUGCGAGUGCCCCG

GGAGGUCUCGUAGACCGUGCACCAUGAGCACGAAUCCUAAACCUCAAAGAAAA

ACCAAAC 

A

B

GCCAGCCCCCUGAUGGGGGCGACACUCCACCAUGAAUCACUCCCCUGUGAGGA

ACUACUGUCUUCACGCAGAAAGCGUCUAGCCAUGGCGUUA-

GUAUGAGUGUCGUGCAGCCUCCAGGACCCCCCCUCCCGGGAGAGCCAUAGUGG

UCUGCGGAACCGGUGAGUACACCGGAAUUGCCAGGACGACCGGGUCCUUUCUU

GGAUAAACCCGCUCAAUGCCUGGAGAUUUGGGCGUGCCCCCGCAAGACUGCUA

GCCGAGUAGUGUUGGGUCGCGAAAGGCCUUGUGGUACUGCCUGAUAGGGUGCU

UGCGAGUGCCCCGGGAGGUCUCGUAGACCGUGCACCAUGAGCACGAAUCCUAA

ACCUCAAAGAAAAACCAAAC 

http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi
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As expected, all of the publish RT-LAMP primer sets that were analysed here, known to target the 

least structured regions of the 5’UTR amplified very efficiently. Both, the F3 and FIP primers of 

the RT-LAMP DN3 primer set, as well as the reverse RT-PCR primer of the LGC set, landed 

GCCAGCCCCCUGAUGGGGGCGACACUCCACCAUGAAUCACUCCCCUGUGAGGA

ACUACUGUCUUCACGCAGAAAGCGUCUAGCCAUGGCGUUAGUAUGAGUGUCGU

GCAGCCUCCAGGACCCCCCCUCCCGGGAGAGCCAUAGUGGUCUGCGGAACCGG

UG-AGUACACCGGAAUUGCCAGG-

ACGACCGGGUCCUUUCUUGGAUAAACCCGCUCAAUGCCUGGAGAUUUGGGCGU

GCCCCCGCAAGACUGCUAGCCGAGUAGUGUUGGGUCGCGAAAGGCCUUGUGGU

ACUGCCUGAUAGGGUGCUUGCGAGUGCCCCGGGAGGUCUCGUAGACCGUGCAC

CAUGAGCACGAAUCCUAAACCUCAAAGAAAAACCAAAC 

GCCAGCCCCCUGAUGGGGGCGACACUCCACCAUGAAUCACUCCCCUGUGAGGA

ACUACUGUCUUCACGCAGAAAGCGUCUAGCCAUGGCGUUAGUAUGAGUGUCGU

GCAGCCUCCAGGACCCCCCCUCCCGGGAGAGCCAUAGUGGUCUGCGGAACCGG

UGAGUACACCGGAAUUGCCAGGACGACCGGGUCCUUUCUUGGAUAAACCCGCU

CAAUGCCUGGAGAUUUGGGCGUGCCCCCGCAAGACUGCUAGCCGAGUAGUGUU

GGGUCGCGAAAGGCCUUGUGGUACUGCCUGAUAGGGUGCUUGCGAGUGCCCCG

GGAGGUCUCGUAGACCGUGCACCAUGAGCACGAAUCCUAAACCUCAAAGAAAA

ACCAAAC 

GCCAGCCCCCUGAUGGGGGCGACACUCCACCAUGAAUCACUCCCCUGUGAGGA

ACUACUGUCUUCACGCAGAAAGCGUCUAGCCAUGGCGUUAGUAUGAGUGUCGU

GCAGCCUCCAGGACCCCCCCUCCCGGGAGAGCCAUAGUGGUCUGCGGAACCGG

UGAGUACACCGGAAUUGCCAGGACGACCGGGUCCUUUCUUGGAUAAACCCGCU

CAAUGCCUGGAGAUUUGGGCGUGCCCCCGCAAGACUGCUAGCCGAGUAGUGUU

GGGUCGCGAAAGGCCUUGUGGUACUGCCUGAUAGGGUGCUUGCGAGUGCCCCG

GGAGGUCUCGUAGACCGUGCACCAUGAGCACGAAUCCUAAACCUCAAAGAAAA

ACCAAAC 

C

B

A

Figure 24. HCV 5’ UTR sequence output (5’  3’) generated by the Vienna RNA fold software with highlighted probabilities of forming 

secondary structures. Red, orange and yellow represent highly structured regions whereas green, and blue indicate the likelihood of 

open loop formation. A – HCV 5’ UTR sequence output with highlighted in-house designed 34-40 primer binding sites. Each separate 

primer binding site was highlighted in bold and underlined in a specific order: 5’ – B3, B2, LoopB, B1, F1, LoopF, F2, F3 – 3’. Note that 

certain sites were separated by a “-“ for visual clarity due to the proximity to the other recognition sites.  B - HCV 5’ UTR sequence 

output with highlighted in-house designed 13-18 primer binding sites. Each separate primer binding site was highlighted in bold and 

underlined in a specific order: 5’ – B3, B2, LoopB, B1, F1, LoopF, F2, F3 – 3’. C - HCV 5’ UTR sequence output with highlighted in-house 

designed 13-20 primer binding sites. Each separate primer binding site was highlighted in bold and underlined in a specific order: 5’ – 

B3, B2, LoopB, B1, F1, LoopF, F2, F3 – 3’. 

Source: http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi  

 

http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi
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within either very mild secondary structures or open regions of the target (Figure 23A-B). 

Interestingly, the reciprocal priming positions for the RT-LAMP DN3 (BIP) and LGC RT-PCR 

forward primer, did show mild to heavy secondary structure. Similarly, the current HCV 34-40 

RT-LAMP primer set, which showed satisfactory amplification efficiency, (Figure 22A-B), 

annealed to sequence devoid of secondary structure. In fact, it was shown that both key reverse 

transcribing LAMP primers avoided RNA secondary structure altogether (Figure 24A). 

In contrast, primer sets 13-18 and 13-20, both landed within either mild or heavily structured 

regions of the 5’ UTR (Figure 24B-C). In both cases, the sequences targeted by the FIP and BIP 

primers showed increased folding probability. Initial evaluation of these sets, under the same 

amplification chemistry as the HCV 34-40 primer set, showed no detection of the target RNA 

(Figure 22C-D).  
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3.3.4 HCV assay optimisation 

Amongst all of the novel RT-LAMP primer sets designed for this study, only the HCV 34-40 set 

showed satisfactory performance during the initial evaluation, thus it was moved forward for 

further assay optimisation studies.  

3.3.4.1 Effect of DNA polymerases on the RT-LAMP HCV assay performance 

The performance of two different versions of the Bst DNA displacement polymerase (isolated 

from Bacillus stearothermophilus), ‘Bst 2.0’ and ‘Bst 2.0 Warm Start’ (from NEB), and GSP-SSD 

(isolated from Geobacillus sp.) (from Optigene) enzyme were compared in this study.  

The results presented in the Figure 25A-C shows RT-LAMP-BART profiles generated using 

appropriate DNA polymerases and various amounts of the target 5’UTR HCV RNA template. 

Among all the DNA polymerases tested, the assays containing the GSP-SSD enzyme performed 

noticeably better, regardless of the amount of the target RNA used. However, a significant 

reduction in the time-to-max (TTM) was observed with increasing copy number per reaction, when 

the GSP-SSD was compared with the other two enzymes assessed here (p value < 0.05, t-test). In 

contrast, at a lower copy numbers, no significant difference in TTM was detected between the 

GSP-SSD and Bst 2.0 (p values > 0.05, t-test; table 3). However, a slight increase in mis-primed 

amplifications was observed when utilising the Bst 2.0 enzyme.   

Inclusion of Bst 2.0 WS had a detrimental effect on the performance of the HCV assay with a 

significant increase in TTM and a significant reduction in the overall RT-LAMP sensitivity, when 

compared to the other two displacement polymersaes at the same specific activity; only reactions 

containing higher copy numbers of the HCV template amplified (p value < 0.05; figure 25C). On 
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average, a 13 min increase in TTM was detected at the 10^4 copies (final copy number of IVT in 

the assay) when the Bst 2.0 WS enzyme was used (Table 3).  

The sensitivity of the chosen DNA polymerases were also assessed by scoring amplification 

frequencies at various copy numbers and determining the number of false positive reactions 

detected during a pre-determined time-frame. The initial comparison of Bst 2.0 and the GSP-SSD 

polymerase did not show any significant effect on the amplification frequencies and the 

reproducibility of the HCV test, regardless of the copy number of the target RNA used (p value > 

0.05, t-test; table 3). In contrast, when the reactions containing the Bst 2.0 WS were assessed, a 

dramatic reduction in both sensitivity and reproducibility of the test was observed with respect to 

the other enzymes tested. No detection below 1000 copies of the target was achieved and a 

significant deterioration in reproducibility was observed between the replicates analysed at both 

10^ 4 and 10^3 copies of IVT per assay.   
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Figure 25.  Comparison of LAMP-BART profiles generated using HCV 5’UTR RNA fragments, 34-40 primer set and three chosen DNA 

polymerases. A – HCV assay using Bst 2.0 DNA polymerase; B – HCV assay using GSP-SSD DNA polymerase; C – HCV assay using Bst 2.0 

WarmStart DNA polymerase. 

Note that each concentration of the HCV RNA used was colour coded as follows: Red – 10^4 cps; Orange – 10^3 cps; Green – 10^2 cps; 

Blue – 50 cps; Yellow – 10 cps; Black – NTC (No template) 

Refer to protocol ## 
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Table 3 showing summary of the data presented in the figure 25. Each set of reactions was 

analysed using average TTM (Mean), reproducibility (STDev) and sensitivity (Amp.Freq). 

 

 

Similar observations were made when the chosen DNA polymerases were tested on a TB assay 

developed by ERBA Molecular, targeting 23s ribosomal RNA (rRNA).  

Figures 26-27 show LAMP-BART profiles generated using four different DNA polymerases 

according to the protocol 8 (see Appendix 8). 

Note that the number of units of each of the tested DNA polymerases differed due to differences 

in unit’s definition used by the manufacturer. For each comparison assay the most optimal amount 

of each DNA enzyme was used according to the previous optimisation studies performed by 

Lumora LTD (data not shown).   

As expected, the reactions utilising the GSP-SSD DNA polymerase performed noticeably better 

than all the other assays tested, in terms of both the sensitivity and amplification speed (Figure 

DNA polymerase RNA [cp/rxn] Mean [min] STDev Amp. Freq. [%]

10^4 16 0.6 100

10^3 17 0.0 100

10^2 21 0.5 100

50 20 3.9 100

10 26 2.5 100

NTC 90 100

10^4 30 3.3 100

10^3 42 9.7 100

10^2 0

50 0

10 0

NTC 117 100

10^4 18 1.1 100

10^3 20 0.9 100

10^2 23 0.5 100

50 25 2.7 100

10 30 4.0 100

NTC 88 100

GSP

BST WS

BST 2.0
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26A, C). Amplification of the M. bovis genomic DNA (gDNA) was significantly faster when GPS-

SSD was used in comparison with the assays containing Bst Large fragment and Bst 2.0 WS 

(Figure 27C), regardless of the amount of the target present (p value < 0.05, t-test). On average, 

the GSP-SSD reactions amplified the target 2 min faster than those containing Bst 2.0WS and Bst 

Large fragment. However, no significant difference in the reaction speed was noticed when Bst 

2.0 DNA polymerase was assessed (p value > 0.05, t-test). Nonetheless, the overall performance 

of the assays utilising the GSP-SSD enzyme was better when the sensitivity data was taken into 

consideration.  

All of the tested assays achieved full detection of the target DNA when 1000 cp/rxn was added. 

However, at 100 cp the reactions utilising Bst 2.0 failed to detect 1 out of 6 replicates whereas all 

other assays reached 100 % detection (Table 4).  
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Figure 26.  Comparison of LAMP-BART profiles generated using TB assay model system. A – TB assay using GSP-SSD DNA polymerase 

and M. bovis gDNA; B – TB assay using Bst Large fragment DNA polymerase and M. bovis gDNA; C – TB assay using GSP-SSD DNA 

polymerase and M. bovis 23s rRNA; D – TB assay using Bst Large fragment DNA polymerase and M. bovis 23s rRNA. 

Note that each concentration of the M. bovis NA used was colour coded as follows: Orange – 10^3 cps; Green – 10^2 cps; Black – NTC 

(No template) 

Refer to protocol ## 
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Similarly, when the RNA assays were assessed, the reactions utilising GSP-SSD enzyme 

performed noticeably better (Figure 26C). On average, the GSP-SSD assays detected the target 2 

min faster than those using Bst LF and Bst 2.0 when 1000 cp of the RNA was added. However, 

GPS-SSD reactions performed significantly faster when compared to the Bst LF assays only (p 

value < 0.05, t-test, table 4A). In contrast, at 100 cp of the target RNA, no significant difference 

in the amplification speed was noticed when Bst LF, Bst 2.0 and GSP-SSD assays were assessed. 

However, the reactions utilising the GSP-SSD enzyme generated data with noticeably higher 

reproducibility than all the other DNA polymerases tested. 

Furthermore, the assay sensitivity data showed that only the reactions utilising the Bst LF and the 

GSP-SSD enzymes reached satisfactory level of overall sensitivity. Both, GSP-SSD and Bst LF 
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Figure 27.  Comparison of LAMP-BART profiles generated using TB assay model system. A – TB assay using Bst 2.0 DNA polymerase and 

M. bovis gDNA; B – TB assay using Bst 2.0WS DNA polymerase and M. bovis gDNA; C – TB assay using Bst 2.0 DNA polymerase and M. 

bovis 23s rRNA; D – TB assay using Bst 2.0WS DNA polymerase and M. bovis 23s rRNA. 

Note that each concentration of the M. bovis NA used was colour coded as follows: Orange – 10^3 cps; Green – 10^2 cps; Black – NTC 

(No template) 

Refer to protocol ## 
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assays managed to amplify 83 and 100 % of the target RNA when 100 and 1000 cps were added, 

respectively (Table 4A). In contrast, the reactions containing the Bst 2.0 detected 1 out of 6 

replicates containing 100 cps and 6 out of 6 with 1000 cps of the target. In addition, the assays 

utilising the Bst 2.0 WS enzyme failed to detect any level of the target RNA (Table 4B).  

 

Table 4 showing summary of the data presented in the figure 26-27. Each set of reactions was 

analysed using average TTM (Mean), reproducibility (STDev) and sensitivity (Amp.Freq). 

 

  

 

 

 

DNA pol. Template NA conc. [cp/rxn] TTM [min] Stdev Amp.Freq. [%]

1000cp 9 0.6 100

100cp 10 0.6 100

1000cp 11 0.4 100

100cp 14 2.1 83

1000cp 11 0.6 100

100cp 12 0.6 100

1000cp 13 0.0 100

100cp 16 3.6 83

GSP-SSD

DNA

RNA

Bst LF

DNA

RNA

DNA pol. Template NA conc. [cp/rxn] TTM [min] Stdev Amp.Freq. [%]

1000cp 10 0 100

100cp 11 0.6 83

1000cp 13 2.3 100

100cp 14 17

1000cp 11 0.4 100

100cp 12 0.4 100

1000cp 0

100cp 0

DNA

RNA

Bst 2.0

DNA

RNA

Bst2.0WS

A

B
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3.3.4.2 Effect of reverse transcriptases on the RT-HCV assay performance 

In this evaluation, two versions of Maxima reverse transcriptase (Maxima RNaseH- and Maxima 

RNaseH+), as well as a new Superscript IV reverse transcriptase, were assessed for utility in the 

isothermal RT-LAMP reactions. The three scripts were assessed in terms of their impact on 

amplification speed, reproducibility and sensitivity.  

Figure 28-29, shows RT-LAMP-BART profiles generated using GSP-SSD DNA polymerase and 

all three reverse transcriptases.  

The overall performance of the assays containing Maxima RNaseH- were deemed to amplify more 

efficiently than the other enzymes tested. The speed and reproducibility was improved in Maxima 

lacking the RNaseH, resulting in a significant reduction in both the TTM and improved 

reproducibility at each of the RNA copy numbers tested (p values < 0.05, t-test; figure 28B). The 

overall difference in speed of each tested set up increased with reducing quantities of 5’UTR RNA 

was marked, demonstrating the importance in choice of enzyme on the amplification of HCV 

RNA. At lower copy numbers (10 copies RNA / assay), the sensitivity of detection with Maxima 

RNaseH (-) was greater than similar assays performed with Maxima H (+) (Table 5). This could 

be attributed to the overall amplification efficiency and speed that also resulted in greater numbers 

of mis-primed amplifications that were also associated with the use of Maxima RNaseH(+) enzyme 

(Figure 28A).  
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Table 5 showing summary of the data presented in the figure 28. Each set of reactions was 

analysed using average TTM (Mean), reproducibility (STDev) and sensitivity (Amp.Freq). 
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Maxima RNA [cp/rxn] Mean [min] STDev Amp. Freq. [%]

10^4 23 0.4 100

10^3 27 0.6 100

10^2 40 9.9 100

50 43 10.2 100

10 77 5.7 50

NTC 122 41.7

10^4 21 0.0 100

10^3 24 0.6 100

10^2 32 0.9 100

50 33 1.3 100

10 41 8.7 83

NTC 115 50
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Figure 28.  Comparison of LAMP-BART profiles generated using HCV 5’UTR RNA fragments, 34-40 primer set and two chosen Reverse 

transcriptases. A – HCV assay using Maxima RNase H +; B – HCV assay using Maxima RNase H - 

Note that each concentration of the HCV RNA used was colour coded as follows: Red – 10^4 cps; Orange – 10^3 cps; Green – 10^2 cps; 

Blue – 50 cps; Yellow – 10 cps; Black – NTC (No template) 

Refer to protocol 4 
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Table 6 showing summary of the data presented in the figure 29. Each set of reactions was 

analysed using average TTM (Mean), reproducibility (STDev) and sensitivity (Amp.Freq). 

 

 

 

 

 

Figure 29.  Comparison of LAMP-BART profiles generated using HCV 5’UTR RNA fragments, 34-40 primer set and two chosen Reverse 

transcriptases. A – HCV assay using Maxima RNase H -; B – HCV assay using SuperScript IV 

Note that each concentration of the HCV RNA used was colour coded as follows: Orange – 10^3 cps; Green – 10^2 cps; Yellow – 10 cps; 

Pink – 1 cps; Black – NTC (No template) 
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Since all experiments with Maxima reverse transcriptase demonstrated that the HCV RT-LAMP 

had a preference for the RNaseH deficient version of this reverse trascriptases, a new version of 

SuperScript RT enyme SuperScript IV also deficient in reverse transcriptase was tested. According 

to the supplier (Thermofisher), SuperScript IV was highly resistant to inhibition from various 

matrixes, and possessed a wider thermal range that may also be suited to this assay (45-60 °C).  

Figure 29, shows the RT-LAMP-BART profiles generated using the chosen reverse transcriptases 

and GSP-SSD DNA polymerase. Assays performances were compared with respect to 

amplification sensitivities, speed, reproducibility and specificity.  

No significant difference in the performance of the tested assays were observed (p value < 0.05, t-

test; figure 29). Neither the sensitivity, reproducibility nor the speed of the assays using the 

SuperScript IV were affected when compared to amplifications benchmarked using the standard 

HCV LAMP protocol, which utilised the Maxima RNaseH- RT enzyme; both scripts achieved the 

same sensitivity of 10 copies / reaction with 100% amplification and single copy detection was 

achieved in 55% of the amplifications tested (Table 6).  
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3.3.4.3 Effects of different assay chemistries on the amplification performance. 

In this study, two different reaction buffers (i.e. Thermopol and Isothermal buffer), suitable for 

isothermal amplification, were compared. Figure 30 shows the LAMP-BART profiles generated 

using GSP-SSD DNA polymerase and both reaction buffers on HCV assay.  

In this experiment, a range of HCV 5’ UTR RNA dilutions was used to assess the performance of 

the HCV LAMP assay in terms of both the speed and sensitivity as well as NTCs formation, under 

different buffering conditions. Firstly, 100 % amplification frequency was achieved for all of the 

RNA titrations tested, regardless of the reaction buffed used. However, the reactions containing 

the Isothermal buffer showed a significant improvement in both the speed of amplification and the 

reproducibility (p values < 0.05, t-test). All of the reactions containing 10 cp of the template 

amplified under 30 min when the Isothermal buffer was used whereas nearly 40 min was required 

for the corresponding template concentration to be amplified under the Thermopol buffering 

conditions.  

Moreover, on average, over 9 min difference in TTM was detected between the two assessed 

reaction set ups, regardless of the amount of the template used. However, the differences in TTM 

between the two tested reaction set ups was noticed to increase with reducing amount of the 

template used.  

In addition, the STDev was noticeably lower, for the reactions utilising the Isothermal buffer, 

showing a much higher reproducibility. However, unlike the Isothermal buffer, the reactions under 

the Thermopol buffering conditions showed no NTCs throughout the run. 
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Table 7 showing summary of the data presented in the figure 30. Each set of reactions was 

analysed using average TTM (Mean), reproducibility (STDev) and sensitivity (Amp.Freq). 
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Figure 30.  Comparison of LAMP-BART profiles generated using HCV 5’UTR RNA fragments, 34-40 primer set and two chosen reaction 

buffers. A – HCV assay using Thermopol buffer; B – HCV assay using Isothermal (ISO) buffer. 

Note that each concentration of the HCV RNA used was colour coded as follows: Red – 10^4 cps; Orange – 10^3 cps; Green – 10^2 cps; 

Blue – 50 cps; Yellow – 10 cps; Black – NTC (No template) 

 

RNA [cp/rxn] Mean [min] STDev Amp. Freq. [%]

10^4 16 0.0 100

10^3 18 0.0 100

10^2 21 0.6 100

50 23 0.4 100

10 26 2.0 100

NTC 93 100

10^4 25 0.6 100

10^3 29 0.7 100

10^2 35 1.6 100

50 35 2.9 100

10 38 3.4 100

NTC 0

ISO buffer

Thermo Buffer
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3.4 Discussion 

3.4.1 Impact of RNA structure on assay performance 

Although, formation of secondary and tertiary structures by most RNA genomes and transcripts 

can often be attributed to biological function, very limited consideration is given to possible steric 

hindrance, in commercial software packages used to design, RT-PCR and RT-LAMP primers 

(Jubin, 2001, Lukavsky, 2009). Moreover, despite a wide range of bioinformatics tools available 

for RNA folding analysis, such as Vienna or RNAFold, secondary structure analysis prior to 

primer design for RNA amplifications is not yet common practice. Several publications have 

reported formation of highly stable RNA hairpins, with melting temperatures (Tm) of 70 °C or 

more (Antao et al., 1991, van der Werf et al., 2013, Chen and García, 2013). Despite the 

widespread understanding of the thermostability of such RNA structures, the impact of this on 

reverse transcribed priming is limited in the scientific press. Although, it is often assumed that RT-

PCR assays are immune to this limitation in primer design, these assays must also undergo a low 

temperature RT step, therefore, cannot make the use of the denaturation step characteristic for this 

type of DNA amplification. cDNA synthesis by reverse transcription occurs isothermally, 

irrespective of the technology used and reverse transcription cannot make use of high melting 

temperatures to delineate RNA secondary structures. Since the RT step initiates all subsequent 

activity in RT-PCR amplifications it is of paramount importance to nurture this activity with 

respect to RNA secondary structure that can now be more reliably predicted with software as was 

observed.  

In this study, we attempted to assess the effects of RNA structure on the performance of HCV 

RNA detection by using an online RNA folding software, Vienna. Our in silico analysis of 5’ UTR 

RNA folding showed a high degree of secondary structures predicted by the software. This was to 
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be expected, since the initiation of the HCV RNA translation relies on formation of IRES. 

Nonetheless, certain regions of the sequence used also showed mild to no folding indicated by the 

green and blue colour code (see the Vienna alignment), thus these regions of the sequence were 

more suited for primer design. All of the designed RT-LAMP primer sets performed efficiently, 

where the RNA secondary structure with respect to primer design had been careful considered and 

negotiated (Set 34-40). Both, the F3 and FIP primers of the 34-40 primer set, landed in a highly 

open region of the HCV UTR sequence. Conversely, the B3 and BIP primer targeted fragments 

with mild folding. All primers of RT-LAMP designs 13-18 and 13-20, were annealed to RNA with 

a high level of complexity, and performance suffered as a consequence. In an RT- LAMP 

amplification, the FIP and F3 are crucial primers for initiating reverse transcription, since they 

bind to the target RNA directly. Both set primer sets 13-18 and 13-20 shared common F3 and FIP 

primers and since no amplification was observed in any of the reactions utilising those primers, 

one could conclude that the heavily structured region of the HCV 5’UTR RNA targeted by the F3 

and FIP were simply inaccessible. The same RT primers of RT-LAMP set 13-20 utilised B3 and 

BIP primers targeting significantly more open regions of RNA than those used by the 13-18 primer 

set. However, since the B3 and BIP binding relied on the first strand cDNA synthesis, no difference 

in performance between those primer sets, was observed. Thus, we concluded that the FIP and F3 

binding positions were crucial for the initiation and therefore fundamental to the success when 

amplifying from RNA.  

Furthermore, we also assessed the role of B3 and BIP primers in the overall performance of RT-

LAMP. Both, published DN3 and currently designed 34-40 primer sets, amplified the target HCV 

RNA with satisfactory performance. However, to our knowledge, the 34-40 set performed 

noticeably better and achieved a higher degree of sensitivity. We contributed this increased 
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performance to the role of B3 and BIP primers. We noticed that both B3 and B2 part of the 

published BIP primer (DN3) landed within highly structured region of the HCV 5’UTR, whereas 

our designed primer set targeted more open structures at these annealing positions. We concluded 

that the accessibility of the BIP and B3 primers to the template may affect the amplification 

performance but to a much lower extent and limited to DNA templates. We assume that once the 

first cDNA strand is synthesised from FIP and F3 extension, it can either be displaced or the 

original RNA template is digested resulting in formation of a single-stranded cDNA fragment. 

Thus, due to the single-stranded nature of the generated target, one could also conclude that folding 

of this structure would also occur; although the affinity of bases may not be quite the same as the 

original template RNA (Antao et al., 1991). DNA secondary structures are known to be less stable 

than their corresponding RNA hairpins, primer invasion by B3 and BIP may not be impaired by 

structure to the same extent as the FIP and F3 on the original RNA target (Chen and García, 2013).  

Although, many factors affect performance of polymerisation, the in silico analysis does not 

always reflect the true primer interactions, on template and with each other; our study indicates 

that RNA folding must be considered in the RT-PCR / RT-LAMP design as it can significantly 

impair reverse transcribed polymerisations.  

3.4.2 Optimisation of the HCV RT-LAMP amplification  

Since changes in the chemistry of any amplification technology can have a dramatic effect on their 

performance and sensitivity, a lot of effort has been put into creating highly optimised methods for 

nucleic acid synthesis, a wide and growing range of enzymes and their buffers is constantly being 

developed and improved upon (Freeman et al., 1999, Godfrey and Kelly, 2005, Estes et al., 2012). 

It is often the case that different amplification mechanisms and reporter systems require completely 

different chemistries (Balmer, 20072007, Kramer and Coen, 2006). In this study, two versions of 
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the Bst large fragment DNA polymerase were compared to ‘a new, highly displacing enzyme, 

GSP-SSD’ to evaluate any differences in performance that could be attributed to displacement 

polymerases in an RT-LAMP amplification. 

In general, the Bst DNA polymerases used (i.e. Bst 2.0 and 2.0 Warm Start) have been shown to 

be much more active and less sensitive to inhibitory substances such as potassium and sodium salts 

when compared to the Bst large fragment (NEB [URL: https://www.neb.com/products/m0537-bst-

20-dna-polymerase]). The kinetics, as well as inhibitor sensitivity, were factors most likely 

changed, by either introducing alternate amino groups into the original version of the DNA 

polymerase or by coupling the enzyme with additional subunits (e.g. DNA binding proteins or 

nucleic acid aptamers) giving the new version of the enzyme additional or improved properties 

(Elshawadfy et al., 2014, Lahr and Katz, 2009, Bedford et al., 1997). For example, according to 

the supplier’s specifications, the active site of the Bst 2.0 Warm Start was modified by a reversible 

binding of additional components in order to maintain the enzyme inactive at room temperature. 

Furthermore, improved performance of the Bst 2.0 have been shown to have a tremendous impact 

on the overall time of amplification reactions, where over 10 % decrease in TTM values between 

Bst 1.0 and 2.0 were recorded (data not shown). This work does not substantiate the supplier’s 

claims; Rather than the improved assay performance promised by the supplier, the utilisation of 

Bst 2.0 Warm Start had a negative impact on the overall performance of both the HCV RT-LAMP-

BART and TB RT-LAMP-BART assays. It was previously described that the warm start version 

of the Bst 2.0 could significantly increase the performance of DNA synthesis under isothermal 

conditions, as this version of the enzyme would help to control unwanted primer extensions 

(Tanner and Evans, 2014, Tang et al., 2016). Indeed, we saw an improvement in amplification 

kinetics of the reactions containing the WS version of Bst 2.0 when compared to the performance 

https://www.neb.com/products/m0537-bst-20-dna-polymerase
https://www.neb.com/products/m0537-bst-20-dna-polymerase
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of the Bst Large fragment (Table 4). However, the nucleic acid detection of both HCV and TB 

assays was significantly impaired by the addition of the modified DNA polymerase. It was 

assumed that the poor performance on RNA amplifications was attributed to the aptamer 

introduced into Bst 2.0 as this enzyme was demonstrated to amplify efficiently when used in its 

absence. It was very evident that the aptamer only inhibited the reverse transcription process as 

the TB DNA assay remained unaffected.   

Of all of the DNA polymerases tested, GSP-SSD proved to be the most optimal for the current 

RT-LAMP HCV assay. This polymerase not only increased the kinetics of the amplification, but 

also generated far fewer NTCs compared to Bst 2.0. Primer dimerization, is a very well-known 

cause of such non-template amplification events and when combined with increased enzyme 

activity, increased rates of non-specific amplification are more likely to occur (Friedberg et al., 

2000, Poritz and Ririe, 2014). Despite GSP-SSD higher polymerisation efficiency, priming 

specificity was maintained, which would tend to contradict Friedberg et al. However, the disparity 

between the polymerisation efficiency and the observed NTC formation could be contributed to 

the reduced activity of the GSP-SSD at lower temperatures. In contrast, the Bst 2.0 enzyme is well 

known to retain partial activity at room temperature which drove the development of Bst 2.0WS. 

Nonetheless, it is highly likely that an improved RT-LAMP for HCV diagnosis could be developed 

if the GSP-SSD polymerase is used. Most of polymerases used in isothermal nucleic acid 

amplifications, utilise enzyme that can either synthesise DNA from DNA templates (DNA 

polymerases) and enzymes that reverse transcribe RNA into a cDNA (RT enzymes). GSP-SSD as 

well as other recently developed dual-function enzymes including Bst 3.0 (NEB) or rtTh Taq 

(Cosmo Bio) are unique enzymes, possessing both polymerase activities, which allows initiation 

of amplification from RNA and recopying of cDNA and higher order amplification products 
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(Optigene [URL: http://www.optigene.co.uk/reagent_type/dna-polymerase-enzymes/]). GSP-SSD 

was the most optimal for the RT-LAMP-BART. 

Evaluation of three reverse transcriptases was also performed to determine the most suitable 

enzyme for the RT-LAMP HCV chemistry. As shown in Figure 28B, the Maxima RNaseH- was 

proven to be the most optimal generating significantly faster and more reproducible amplification 

kinetics regardless of the RNA concentration tested. DNA synthesis via LAMP utilise a 

displacement polymerase to open up the DNA in preparation for synthesis, unlike PCR that uses 

denaturing temperatures to melt the double helix. We therefore hypothesised that RNaseH 

deficient reverse transcriptase’s would preserve the original RNA molecule throughout the 

synthesis process, and increase in performance of the RT-LAMP amplification. Since the original 

RNA molecule would not be digested during the reverse transcription process, it would remain 

available for cDNA synthesis throughout the duration of the assay. Utilising these RNaseH 

negative enzymes could potentially result in an accumulation of cDNA, which would benefit the 

assay sensitivity. In addition, the inherited ability of LAMP to strand invade and displace, would 

then ensure production of single-stranded DNA molecules required for the cycling and elongation 

steps without compromising on the overall performance of the assay. Furthermore, it is well known 

that the reverse transcriptase enzymes with intrinsic RNAseH activity can prematurely terminate 

cDNA synthesis as a consequence of template restriction and polymerase pausing (Kotewicz et al., 

1988). This could also be the cause of the observed differences in performance between the reverse 

transcriptases tested.  

Comparisons of the Maxima RNaseH- and the Superscript IV showed no significant difference in 

performance. This was likely due to the fact that both enzymes were deficient in RNase H activity. 

http://www.optigene.co.uk/reagent_type/dna-polymerase-enzymes/
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However, according to the supplier, the latter had the potential to be highly resistant to a wide 

range of inhibitory substance and perform better in a wider range of temperatures. 

Furthermore, additional optimisation of the HCV LAMP-BART assay involved comparison of two 

commonly used reaction buffers: Thermopol and Isothermal buffer. As predicted, the reactions 

containing the isothermal buffer performed significantly faster, generating highly reproducible 

peaks. However, an increase in NTCs formation was observed when the isothermal buffer was 

used whereas no non-specific amplifications were detected with the thermopol buffer. The 

difference in performance could be contributed to the fact that isothermal buffer contains 40 mM 

more KCl than the thermopol buffer. It has previously been reported that the amount of salt can 

significantly affect the overall Tm of given primers, where a positive correlation between the 

concentration and the Tm was described. Since an increase in Tm of given primers, would result 

in a stronger binding their target, it could also result in a stronger non-specific binding of the 

primers either to the target DNA or the primers themselves which in turns could lead to an increase 

in NTCs formation.    
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3.5 Perspective 

This research has demonstrated the importance of not only highly optimised chemistry and the 

right choice of enzymes but also showed the requirement for choosing RT primers that negotiate 

RNA secondary structure and polymerases which can adequately displace RNA and DNA 

molecules in isothermal reactions. This work resulted in a RT-LAMP assay that was highly 

sensitive and capable of detecting, as little as 40 copies of 5’UTR through the workflow with an 

analytical LoD of less than 5 cps. Despite this success further evaluations are needed to optimise 

this assays chemistry and to assess its performance when challenged with RNA extracted from 

clinical samples, and when challenged with classical polymerase chain inhibitors. 
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Chapter 4 

4 Inhibition of RT-LAMP assays 

4.1 Introduction 

4.1.1 PCR inhibition 

One of the major drawbacks of PCR amplification is its sensitivity to inhibitory substances which 

can result in either a reduction in the efficiency of amplification or a complete failure in detection 

(Bustin and Nolan, 2004, Schrader et al., 2012). Thus inhibitory substances pose a real risk, 

particularly in the field of molecular diagnostics, where an amplification failure can lead to a 

misdiagnosis and have a direct effect on patients’ wellbeing (Huggett et al., 2008, Drosten et al., 

2002).  

PCR inhibitors’ are highly heterogeneous substances that can originate from the tested sample 

itself or be introduced during sample processing and nucleic acid extraction procedure (Lim et al., 

2016, Schrader et al., 2012). Matrixes such as faeces or soil samples, may contain a wide range of 

inhibitory substances from inorganic salts to more complex organic constituents, such as humic 

acid. Additionally, many of these inhibitors can be found in a variety of different matrices (Sidstedt 

et al., 2015, Braid et al., 2003, Bessetti, 2007).  

The most well-known and encountered inhibitors are organic compounds such as bile salts, urea, 

phenol, sodium dodecyl sulphate, collagen, haem, polysaccharides and carrier nucleic acid (Opel 

et al., 2010, Wilson, 1997, Gieffers et al., 2000). However, commonly found inorganic inhibitors 

affecting PCR like inorganic salts or calcium ions also affect many isothermal amplification 

technologies (Gieffers et al., 2000, Bessetti, 2007).  
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The concentration of these inhibitory compounds play a crucial role in their inhibitory effect.  For 

instance, potassium chloride is widely used for preparation of amplification buffers, however at 

concentrations exceeding 100 mM it is documented to be inhibitory to PCR and LAMP 

(Montgomery and Wittwer, 2014, Bessetti, 2007). In addition, collagen and calcium ions are 

components of connective tissue and bone and are often co-extracted from food samples but only 

significantly inhibits PCR amplification when their concentration is too great (>8 µg/rxn) to be 

overcome by the polymerases activity (Opel et al., 2010, Kim et al., 2000, Bickley et al., 1996a). 

Isothermal amplification-based assay inhibition has not been as widely studied, although inhibitory 

effects similar to PCR have been reported. LAMP has been shown to exhibit an increased 

resistance in inhibition when compared to the standard PCR assays (Kiddle et al., 2012, Edwards 

et al., 2014).  

4.1.1.1 Mechanism of inhibition 

Inhibitory substances can interfere with several components of an amplification reaction including 

nucleic acids, enzymes or other constituents such as Mg ions or dNTPs (Bessetti, 2007). For 

instance, DNA can be absorbed onto the polymeric surfaces of the reaction tubes used during 

sample processing and nucleic acid extraction, resulting in a loss of sensitivity due to poorer yields 

(Butot et al., 2007, Fox et al., 2007). DNA or RNA templates can also be severely degraded by 

nucleases if the samples were not properly preserved and the extraction procedure failed to remove 

any such activity (Zhang et al., 2010b, Kreader, 1996a, Wiedbrauk et al., 1995). Thus, many 

nucleic acid extraction methods include a Proteinase K step in order to ensure the inactivation of 

any residual nuclease activity originating from the sample (Hilz et al., 1975, Rossen et al., 1992). 

However, if co-extracted into the final reaction mixture, it can inactivate any enzymatic activity 
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required to carry out successful amplification reaction (Rossen et al., 1992, Powell et al., 1994, 

Wilson, 1997, Mertens et al., 2014).   

Several publications have reported that phenolic compounds can not only denature polymerases 

and other protein-based reaction components, but also can cross-link RNA under oxidising 

conditions and thus impair RNA isolation (Smart et al., 1999, Schrader et al., 2012).  In addition, 

it has also been found that the presence of polysaccharides during purification of sample extracts 

can significantly reduce the efficiency of RNA re-suspension, affecting the final yield and 

subsequently reducing detection sensitivity (Sipahioglu et al., 2006, Schrader et al., 2012).  

Annealing of the primers have also been reported to be affected by certain inhibitory substances, 

such as humic acid (HA), that are capable of binding to DNA, thus obstructing the binding sites 

(Opel et al., 2010). Opel et al. (2010) found that primers with higher melting temperatures were 

less affected by the inhibition, suggesting that the nucleic acid sequence may have a direct effect 

on inhibition and indicates the competitive nature of nucleic acid hybridisation. 

Although amplification inhibition is thought to be the result of many factors, research has mainly 

focused on the inhibition of DNA polymerase function (Opel et al., 2010, Al-Soud and Rådström, 

2001). 

To date, a wider range of inhibitory substances affecting DNA polymerases have been 

characterized and include substance that either affect the enzymatic activity directly by interfering 

with the template or indirectly via other reaction components (Opel et al., 2010, Schrader et al., 

2012, Bessetti, 2007).  As mentioned previously, proteases (like proteinase K) and detergents can 

denature DNA polymerases, RT enzymes and BART components. For instance, urea and phenols 

have been shown to directly interfere with DNA polymerases by degrading the enzyme whereas 
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collagen, calcium or haematin inhibit its activity (Opel et al., 2010, Khan et al., 1991, Wilson, 

1997). Melanin has been shown to bind to DNA polymerases and RT enzymes in a reversible 

manner causing competitive inhibition (Opel et al., 2010, Eckhart et al., 2000). Polysaccharides 

have been found to indirectly affect the activity of DNA polymerases by mimicking DNA 

structures thus resulting in sequestration of the enzymes (Kiddle et al., 2012, Opel et al., 2010, 

Schrader et al., 2012). Humic acids have been found to have a dual function as inhibitory 

compounds (Tebbe and Vahjen, 1993, Opel et al., 2010). Their phenolic structures have been 

shown to directly bind to the DNA polymerases causing denaturation of the protein. It has also 

been reported that HA can interact with the templates obstructing amplification reactions causing 

premature termination or initiation failure by competing for the primer binding sites (Opel et al., 

2010, Zipper et al., 2003, Saeki et al., 2011).    

Other substances have been found to react with co-factors of DNA polymerases or RT enzymes. 

High concentrations of calcium ions can compete with magnesium for the binding sites of both 

proteins, disrupting their ability to carry out their enzymatic reactions (Bickley et al., 1996a, 

Funes-Huacca et al., 2011). In contrast, tannic acids or bicine can act as a chelating agent and thus 

deplete the magnesium available (Nakon and Krishnamoorthy, 1983, L. Lawson et al., 2003). 

Nonetheless in both cases the amount of free magnesium binding to the enzyme is greatly impaired, 

resulting in a reduction of amplification efficiency or a complete failure.  

Nucleic acids themselves can also act to inhibit the amplification of a target.  High concentrations 

of nucleic acid can sequester polymerases and primers, thus inhibiting amplification.  This puts an 

upper limit on the total amount of nucleic acid that can be added to an amplification reaction.   
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Substrate(s) Inhibitor(s) Mode of inhibition Facilitator(s) Reference 

     

Faeces and plants 
Bile salts and complex 

polysaccharides 
Interaction with DNA template (sequestration of DNA) BSA, gp32, sample dilution 

(Rouhibakhsh et al., 2008) 
(Radstrom et al., 2004) 

Bones and connective 
tissues 

Collagen Binds to DNA template 
Sample purification, use of less 

sensitive Taq polymerases, addition of 
Mg2+ 

(Burkhart et al., 2002)    
(Opel et al., 2010) 

Bones Calcium ions Competitive inhibitor of Mg2+ required for Taq activity 
Sample dilution, chelation, addition of 

Mg2+ 
(Opel et al., 2010)      

(Bickley et al., 1996b) 

Clothing dyes (e.g. indigo) Dyes 
Affects DNA template by incorporating into DNA 

structure. 
Sample purification, 

(Larkin and Harbison, 
1999) 

Lactoferrin and 
haemoglobin(Blood) 

Iron ions (From 

lactoferrin and 
Heamoglobin) 

Competitive inhibitor of Mg2+ required for Taq activity 
Sample dilution, chelation, addition of 

Mg2+ 
(Radstrom et al., 2004) 

Blood Haem 
Binds to Taq polymerases causing dissociation of the 

DNA-polymerase complex 
BSA, gp32 

(Kreader, 1996b)            
(Akane et al., 1994) 

Hair and skin Melanin Binds to DNA Sample purification, sample dilution 
(Opel et al., 2010)      

(Eckhart et al., 2000) 

Soils and bones Millard Products 
DNA trapped in complex polysaccharide-rich matrix 

(inaccessible to Taq polymerases) 
Sample purification (repeated silica 

extraction) 
(Alaeddini, 2012) 

Environmental samples 
containing soil 

Phenolic compounds (e.g. 
humic, fulvic and tannic 

acids) 

Chelating with  Mg2+ , 

Humic acids have also been reported to directly affect 

Taq polymerases and DNA through sequence specific 
binding of DNA, reducing the amount of amplifiable 

template 

Retardation of phenolic migration in 

PVP-containing agarose gel 
electrophoresis, sample dilution, 

addition of Mg2+, ion-exchange 
chromatography, 

(Mayer and Palmer, 1996) 

(Herrick et al., 1993)    

(Tebbe and Vahjen, 1993) 
(Tsai and Olson, 1992) 

Semen swabs from sexual 
assaults, microorganisms 

found in environmental 

samples 

Vaginal microorganisms, 
non-target DNA 

DNA sequestration, reduction of primer concentration 
by non-specific binding to non-target DNA molecules 

Sample dilution, gel filtration, (Lienert and Fowler, 1992) 

Urine Urea Denaturation of Taq polymerases Sample dilution, addition of Taq 
(Abu Al-Soud and 
Radstrom, 1998) 

Table 8. Common inhibitory substances and their mode of inhibition encountered during DNA amplification as well as methods of overcoming PCR inhibition. 
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4.1.2 Current methods of nucleic acid purification for molecular diagnostics assays 

Currently most molecular diagnostic kits rely on the quality and purity of extracted DNA or 

RNA for successful diagnosis of disease (Wink, 2011). Due to the wide range of potentially 

inhibitory substances present nucleic acid purification has become one of the most routinely 

used procedures in molecular biology and the diagnostic field (Rudi and Jakobsen, 2006, 

Niemz et al., 2011).  In general, every nucleic acid extraction procedure known to date, can be 

divided into four main steps: 1) cell disruption; 2) removal of protein and lipid membranes, 

other cell components and non-target nucleic acid; 3) binding/purification of the target nucleic 

acid and 4) nucleic acid release and concentration (Tan and Yiap, 2009).  

Cell disruption is the break down the membranes and cell walls enabling release of the cell 

content and can be achieved via either physical or chemical means (Tan and Yiap, 2009, Brown 

and Audet, 2008). Disruption procedures vary and are often dependent on the type of sample 

used where physical methods might be more suited than chemical means, and vice versa. For 

instance, many nucleic acid extraction kits from plant tissue involve physical cell disruption 

step such as grinding, due to the highly resistant cellulose-based cell wall (Tsugama et al., 

2011). In contrast, most purification methods used for nucleic acid extraction from blood or 

cell cultures involve chemical lysis to prevent shearing of the target (Robe et al., 2003). Those 

methods often combine chemical lysis using detergents such as sodium dodecyl sulphate 

(SDS), chaotropic agents like salts and enzymes as well as elevated temperatures to facilitate 

the process (Tan and Yiap, 2009, Krsek and Wellington, 1999). 

In most cases, cell disruption and the break down of cellular debris and protein occurs 

simultaneously, where one reaction component might be suitable for both steps. Proteinases 

have been widely used to facilitate not only disintegration of the cell membranes by disrupting 

protein components, but also to liberate nucleic acids from their protective protein coating such 

as histones (Goldenberger et al., 1995). Lithium dodecyl sulphate (LDS) has also been used 
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commercially to improve cell lysis as well as inactivate cellular nucleases ensuring the integrity 

of the extracted nucleic acids (Cook, 1984)(ERBA Molecular, UK).  

The Phenol/chloroform method is one of the oldest techniques in molecular biology for the 

purification of nucleic acids (Chomczynski and Sacchi, 1987, Sambrook and Russell, 2006). 

The technique/methodology takes advantage of the differences in the solubility of DNA, RNA, 

protein and other cellular components. In principle, due to the organic hydrophobic nature of 

phenol-chloroform mixture, once mixed with aqueous solution containing cellular lysates, two 

distinct phases are formed upon centrifugation. The upper aqueous phase contains the cellular 

nucleic acids and other soluble components, whereas the bottom organic phase consists mostly 

of hydrophobic lipids and precipitated proteins (Figure 31). Furthermore, by modulating the 

pH of the aqueous phase, either a total pool of nucleic acid can be extracted or a preferential 

purification of RNA can be performed in acidic conditions.      

      

 

 

 

 

Figure 31. Graphic representation of phenol:chloroform nucleic acid purification procedure.  

Source: https://www.genetargetsolutions.com.au/product/5prime-phase-lock-gel/ 



111 
 

However, due to the time consuming and toxic nature of this technique, phenol/chloroform 

extraction is no longer the method of choice in molecular diagnostics (Lahiri and Nurnberger 

Jr, 1991, Tan and Yiap, 2009). 

Most of the currently used purification kits rely on binding of DNA or RNA to a solid matrix, 

such as silica membranes, followed by various wash steps introduced to remove protein, 

cellular debris and inhibitory substances (Vandeventer et al., 2012). Many industry standard 

kits (Qiagen) utilise spin columns with a silica based sieve to capture nucleic acids of certain 

size during the centrifugation process followed by nucleic acid release using various 

reconstitution buffers (Figure 32). Other methods employ magnetic beads coated with silica 

matrix enabling automation of the entire sample preparation procedure, greatly reducing the 

risks of sample contamination as well as increase productivity and throughput (MagJET, 

ThermoFisher; MagAttract, Qiagen) (Berensmeier, 2006).  

Although such methods have been proven to be extremely useful, depending on a sample type 

used, they might pose severe disadvantages. For instance, extraction of total nucleic acid 

carried out by either spin columns of silica based magnetic beads, from sputum samples may 

cause severe inhibition of RNA detection due to significant content of non-target DNA or RNA 

(He et al., 2017, Adams et al., 2015).  
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Thus, some researchers prefer a more selective method of nucleic acid purification offered by 

capture probes. In general, a capture method involves labelling of a solid phase with an 

oligonucleotide probe that is complementary to the target of interest. Thus the vast majority of 

extracted nucleic acid consists of the target of interest by ensuring conditions favouring 

hybridisation (Figure 33). While this method generates lower yields, the specificity of the 

target extraction have been reported to significantly increase the overall sensitivity of a 

diagnostic assay, particularly in the samples containing large amounts of non-target nucleic 

acids.      

 

 

Figure 32. Graphic representation of a typical spin-column based nucleic acid purification technique.  

Source: https://shop.roche.com/wcsstore/RASCatalogAssetStore/Articles/HTML%20Articles/High-Pure-Technology.html 
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4.1.3 Summary 

Although co-extraction of inhibitory substances and their mode of DNA polymerisation 

inhibition have been widely studied and reported throughout the literature, little is known about 

the effects of those substances on the reverse transcription, a key step in most RNA detection 

kits. 

Furthermore, nucleic acid extraction procedures have been reported to significantly improve 

the quality and purity of isolated nucleic acid. However, since different types of samples such 

as faeces, blood or sputum can significantly differ in their biochemical composition, a careful 

consideration should be taken as to what nucleic acid extraction procedure is most suitable.     

Figure 33. Graphic representation of a magnetic bead with capture probes- based nucleic acid purification methods.  

Source: http://pubs.rsc.org/en/content/articlelanding/2001/an/b106343j/unauth#!divAbstract 
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4.2 Aims and objectives 

The main focus of this study was to determine the inhibitory effects of key components of 

sample preparation chemistries associated with the extraction of DNA or RNA from samples. 

In particular, the work focused on in-house technologies for the extraction of TB, HIV, HBV 

and HCV where the associated buffers had potassium and sodium salts and LDS as key 

components.  Further, the nature of the clinical samples means that significant amounts of non-

target nucleic acids could be present.  The aim was to quantify the effects of these substances 

on the RT-LAMP assay using HCV and TB model assays.  
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4.3 Results 

4.3.1 Effects of inhibitory substances on the performance of nucleic acid amplification 

Co-extraction of inhibitory substances during nucleic acid purification is the most common 

cause of amplification failure when a sufficient amount of the target template is present. 

However, the choice of DNA polymerase and RT enzyme or the nature of the target and the 

detection method can react to inhibitory substances differently.  

4.3.1.1 Effects of sample-prep derived inhibitors on the performance of NAAT assays.  

In this study, the effects of various components of the in-house developed nucleic acid 

purification method(s), on the performance of TB detections, was assessed.  

Figure 34 shows LAMP-BART profiles generated using a standard TB assay challenged with 

various amounts of LDS detergent according to the protocol 9 (see Appendix 9). 

As expected, the TB assay was inhibited by the presence of LDS detergent (Figure 34B-C). 

However, unlike most inhibitory substances, LDS affected the amount of light emitted to a 

much higher extent than the amplification itself, and is reflected by a reduction in peak heights. 

At 0.05 % LDS, the amount of emitted light was reduced by over 50 %, in comparison with 

the non-inhibited samples, without significantly affecting the average TTM for the reactions 

containing 1000 copies of the TB target RNA (p value > 0.05, t-test) (Figure 34A and C) 

(Table 9). In addition, an apparent decline in the base line was observed at 0.05 % LDS, 

suggesting that BART was affected/ inhibited irrespective of the DNA polymerase and RT 

performance.  
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Table 9 showing summary of the data presented in the figure 34. Each set of reactions was 

analysed using average TTM (Mean), reproducibility (STDev) and sensitivity (Amp.Freq). 
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LDS [%] TB RNA [cp/rxn] TTM [min] Stdev Amp.Freq. [%]

0% 1000cp 22 7 100

100cp 22 1 50

0.01% 1000cp 25 11 83

100cp 21 17

0.05% 1000cp 20 5 50

100cp 0

Figure 34. LAMP-BART profiles generated using the TB assay model system and various amounts of M. bovis positive control 23s 

rRNA. A – amplification profiles generated with non-inhibited reactions; B – amplification profiles generated with reactions 

containing 0.01 % LDS; C – amplification profiles generated with reactions containing 0.05 % LDS.  

Note: orange curves correspond to the reactions containing 1000 cps of the target; green curves show reactions containing 100 cps of 

the target; black curves represent NTC (No template control)  
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As previously shown in this study, buffers can affect amplification kinetics (p. 94) and different 

amplification chemistries can significantly affect the performance of nucleic acid synthesis or 

NTC formation. However, the choice of reaction buffer can modulate the inhibitory effect of 

LDS on assay kinetics.  

Figure 35 shows LAMP-BART profiles generated using a modified TB protocol where either 

12.5 or 125 mM bicine buffer was used in the absence of both loop primers. 

Similarly to the previous LDS inhibition data (p. 115), the addition of 0.05 % LDS to the TB 

reactions caused a significant reduction in light emission without affecting the average TTM, 

regardless of the buffer used  (p value > 0.05, t-test) (Figure 35E). The characteristic decline 

of the base line was also observed in the challenged samples confirming the previous findings. 

Nonetheless, when the average peak heights of the challenged and un-challenged samples were 

compared, the inhibitory effect of LDS was more apparent in the reactions utilising the 12.5 

mM bicine buffer. However, it was also observed that the non-inhibited reactions containing 

the 12.5 mM bicine buffer generated less light than those with the higher concentration of 

bicine thus a direct comparison between the two buffers could not be performed. Nevertheless, 

the relative difference in light emission, between the two buffers with either presence or 

absence of inhibition, revealed interesting effects of buffering on the impact of LDS on BART 

(Table 10).  
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Figure 35. LAMP-BART profiles and summary bar charts generated using the TB assay model system various amounts of M. bovis 

positive control 23s rRNA under two different buffering chemistries. 

 A – amplification profiles generated with non-inhibited reactions and 125 mM 1x Bicine buffer; B – amplification profiles generated 

with non-inhibited reactions and 12.5 mM 1x Bicine buffer; C – amplification profiles generated with reactions containing 0.05 % LDS 

and 125 mM 1x Bicine buffer; D – amplification profiles generated with reactions containing 0.05 % LDS and 12.5 mM 1x Bicine 

buffer; E – bar chart showing the effects of LDS and chosen reaction buffers on the average peak height. 

Note: orange curves correspond to the reactions containing 100000 cps of the target; green curves show reactions containing 10000 

cps of the target; black curves represent NTC (No template control)  
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Table 10 showing summary of the data presented in the figure 35. Each set of reactions was 

analysed using average TTM (Mean), reproducibility (STDev) and sensitivity (Amp.Freq) (A) 

as well as light emission (RLU) (B). 

 

In the non-inhibited samples utilising 100,000 copies of the target TB RNA, the average peak 

height generated by 125 mM bicine was 1.4 x higher than those with the low bicine. Similarly, 

when the reactions containing 10,000 copies of the target were assessed, in the absence of the 

inhibitor, the reactions utilising the 125 mM bicine produced peaks 1.35 x brighter. However, 

when the challenged samples were evaluated, the reactions containing 125 mM bicine buffer 

generated 1.7 and 1.95 x brighter peaks than those utilising lower bicine for 100,000 and 10,000 

copies of the target RNA, respectively.  

 

 

 

 

 

Inhibitor Bicine Buffer RNA conc. [cp/rxn] Mean [min] Stdev Amp.Freq.[%]

10000 39 9.7 83

100000 24 1.2 100

10000 34 3.6 100

100000 27 1.6 100

10000 29 1.0 100

100000 25 1.0 100

10000 33 1.8 100

100000 27 0.8 100

0.05% LDS

No LDS

12.5 mM 

125 mM 

12.5 mM 

125 mM 

Inhibitor Bicine Buffer RNA conc. [cp/rxn] Mean [RLU] Stdev 

10000 2335 882.4

100000 4700 461.7

10000 4561 840.9

100000 7897 1622.6

10000 12703 1371.8

100000 13785 1045.5

10000 17190 3323.5

100000 19653 1018.9

0.05% LDS

12.5 mM 

125 mM 

No LDS

12.5 mM 

125 mM 

A

B
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In this study, the effects of three inorganic salts; sodium chloride, potassium chloride and 

potassium acetate, were assessed on the performance of nucleic acid amplification. Figure 36 

shows LAMP-BART profiles generated using HCV RNA assay challenged with various 

amounts of potassium chloride and potassium acetate, in addition to salts already present in the 

assay. The assays were prepared according to the protocol 6 (see Appendix 6). 
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Figure 36. LAMP-BART profiles generated using the HCV assay model system, 2000 cps of HCV 5’UTR RNA fragments and two chosen 
DNA polymerases challenged with various amounts of KCl and KAc. 

 A – amplification profiles generated with reactions containing Bst 2.0 and various amounts of KCl; B – amplification profiles 
generated with reactions containing GSP-SSD and various amounts of KCl; C – amplification profiles generated with reactions 
containing Bst 2.0 and various amounts of KAc; D – amplification profiles generated with reactions containing GSP-SSD and various 
amounts of KAc. 

Note: red curves correspond to the non-inhibited reactions; black curves show reactions containing 10 mM additional potassium salt; 
orange curves represent reactions containing 31.25 mM additional potassium salt; blue curves shows reactions challenged with 50 
mM additional potassium salt.   
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Inhibition of the nucleic acid synthesis was observed for both assays regardless of the inhibitor 

used. The reactions utilising the DNA polymerase GSP-SSD were more sensitive to higher 

concentrations of the salts tested (Table 11). However, the inhibition coming from potassium 

chloride (KCl) affected these assays to a much higher extent when compared to the reactions 

containing potassium acetate (KAc). A 5 minute increase in TTM was observed when 50 mM 

of KCl was added whereas only 2 minute difference was detected in the reactions containing 

50 mM of the KAc salt. In contrast, only 3 and 2 minute increases in TTM was detected in the 

reactions containing the Bst 2.0 DNA polymerase, when challenged with the same amounts of 

the KCl and KAc salts, respectively (Table 11). 

Interestingly, the addition of 10 mM of either salt improved the speed of the assay, when 

utilising the Bst 2.0 DNA polymerase, by at least one minute. However, a similar improvement 

on the amplification speed of the assay containing the GSP-SSD DNA polymerase was only 

seen upon the addition of 10 mM KAc.    
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Table 11 showing summary of the data presented in the figure 6. Each set of reactions was 

analysed using average TTM (Mean), reproducibility (STDev) and sensitivity (Amp.Freq). 

Note that the concentrations of the tested potassium salts shown, correspond to the amounts of 

additional salt added, not the final concentration used in the assay (Isothermal buffer used 

contained 50 mM KCl at 1x concentration). 

 

 

 

 

 

 

 

 

 

DNA pol Salt conc. [mM] Mean [min] STDev Amp. Freq. [%] Inhibitor

0 17 0.44 100

10 16 0.44 100

31.25 17 0.44 100

50 20 0.55 100

0 16 0.00 100

10 16 0.00 100

31.25 17 0.44 100

50 21 0.00 100

0 17 0.00 100

10 16 0.44 100

31.25 17 0.44 100

50 18 0.59 100

0 16 0.00 100

10 15 0.44 100

31.25 16 0.00 100

50 18 0.56 100

Bst2.0

GSP-SSD

KCl

Bst2.0

GSP-SSD

KAc
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Furthermore, the initial assessment of the effects of sodium chloride on the HCV assay 

performance revealed similar responses to inhibition when GSP-SSD and Bst 2.0 DNA 

polymerases were tested.  

Figure 37 shows LAMP-BART profiles generated using HCV assay utilising either Bst 2.0 or 

GSP-SSD DNA polymerases, challenged with various amounts of sodium chloride, again in 

addition to the salt already present within the assay.  

 

 

 

 

The assay when utilising the DNA polymerase GSP-SSD was more sensitive to the tested salt, 

as the addition of 30 mM NaCl resulted in an increase in TTM by at least 1 minute. In contrast, 

no sign of inhibition was observed for the reactions using Bst 2.0 when 10-30 mM of sodium 

chloride (NaCl) was added. In addition, a 3 minute increase in TTM was observed when 50 

mM of NaCl was added to the reactions containing the GSP-SSD enzyme, whereas only 2 

minute difference was detected in the reactions utilising Bst2.0 when compared to the non-

inhibited samples (p value < 0.05, t-test)(Table 12).  
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Figure 37. LAMP-BART profiles generated using the HCV assay model system, 2000 cps of HCV 5’UTR RNA fragments and two chosen 
DNA polymerases challenged with various amounts of NaCl. 

 A – amplification profiles generated with reactions containing GSP-SSD and various amounts of NaCl; B – amplification profiles 
generated with reactions containing Bst 2.0 and various amounts of NaCl;  

Note: red curves correspond to the non-inhibited reactions; black curves show reactions containing 10 mM additional potassium salt; 
orange curves represent reactions containing 30 mM additional potassium salt; blue curves shows reactions challenged with 50 mM 
additional potassium salt.   
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In contrast to the previous experiment, addition of 10 mM NaCl did not result in improvement 

in the assay kinetics, regardless of the DNA polymerase used.  

 

Table 12 showing summary of the data presented in the figure 37. Each set of reactions was 

analysed using average TTM (Mean), reproducibility (STDev) and sensitivity (Amp.Freq). 

Note that the concentrations of the tested NaCl shown, correspond to the final concentration 

used in the assay. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DNA pol. Salt conc. [mM] Mean [min] STDev Amp. Freq. [%] Inhibitor

0 18 0.55 100

10 18 0.00 100

30 18 0.00 100

50 20 0.00 100

0 16 0.00 100

10 16 0.57 100

30 17 0.55 100

50 19 0.00 100

Bst2.0
NaCl

GSP-SSD
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4.3.1.2 Effects of sample-derived inhibitors on the performance of NAAT assays. 

In this study the effect of variety of different inhibitory substances, found in blood and sputum, 

on the performance of NAAT assays, was assessed. In particular we looked at non target 

nucleic acids commonly abundant in most samples. 

Figures 38 show LAMP-BART profiles generated using the TB RNA and DNA assays 

challenged with various amounts of carrier DNA (salmon sperm DNA). 

As expected, all assays managed to detect the target, regardless of the type of nucleic acid 

tested. However, full detection was seen only when M. bovis gDNA was used at 1000 and 100 

copies. In the non-inhibited samples, a slight reduction in sensitivity was detected when RNA 

was used for amplification. At 100 copies of the target RNA only 5 out of 6 replicates showed 

positive amplification profiles whereas full detection was observed when DNA template was 

used. Moreover, similarly to our previous data, an increase of 2-3 minute in TTM was observed 

in the assays containing the positive control RNA when compared with the same reactions 

utilising gDNA target.  

Furthermore, addition of 1000 ng of carrier DNA caused severe inhibition of the TB assay 

regardless of the type of template used. However, the RNA assay was observed to be far more 

sensitive to inhibition than the reactions utilising gDNA as the template for amplification. 

Firstly, the presence of carrier DNA significantly impeded the amplification of gDNA (p value 

< 0.05, t-test). On average, a 3 and 7 minute delay in detection was observed in the challenged 

reactions containing 1000 and 100 copies of the DNA target, respectively (Table 13). 

However, no effects on the assay sensitivity was observed, even at limit of detection of 100 

copies of the gDNA.  
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Table 13 showing summary of the data presented in the figure 38. Each set of reactions was 

analysed using average TTM (Mean), reproducibility (STDev) and sensitivity (Amp.Freq). 
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Template Carrier DNA [ng/rxn] NA conc. [cp/rxn] TTM [min] Stdev Amp. Freq. [%]

0 ng 1000 cps 13 0.6 100

1000 ng 1000 cps 16 0.9 100

0 ng 100 cps 17 0.9 100

1000 ng 100 cps 24 4.5 100

0 ng 1000 cps 16 0.8 100

1000 ng 1000 cps 19 17

0 ng 100 cps 19 1.4 67

1000 ng 100 cps 24 17

gDNA

rRNA

Figure 38. LAMP-BART profiles generated using the TB assay model system and various amounts of M. bovis positive control 23s rRNA 

or genomic DNA (gDNA). A – amplification profiles generated with non-inhibited reactions containing gDNA template; B – 

amplification profiles generated with non-inhibited reactions containing 23s rRNA template; C – amplification profiles generated with 

reactions containing gDNA template and 1000 ng of salmon sperm carrier DNA; D – amplification profiles generated with reactions 

containing 23s rRNA template and 1000 ng of salmon sperm carrier DNA.  

Note: orange curves correspond to the reactions containing 1000 cps of the target; green curves show reactions containing 100 cps of 

the target; black curves represent NTC (No template control)  
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Nonetheless, the overall performance of the DNA assay was noticeably impaired due to both, 

reduction in amplification speed and reproducibility at 100 copies.  

Secondly, carrier DNA had similar effects on amplification speed and sensitivity when the 

target nucleic acid was RNA rather than gDNA. However, the observed inhibition was far more 

severe than that of the previously showed DNA assays.   

Similarly to the DNA assays, addition of the carrier DNA caused significant amplification 

delays, regardless of the amount of target TB RNA used (p value < 0.05, t-test). On average, 3 

and 7 minute delays in detection were observed when 1000 and 100 copies of the target RNA 

was used. However, unlike the inhibition of the TB DNA assays, the sensitivity of RNA 

detection in the presence of the carrier DNA was greatly reduced, regardless of the amount of 

template used. At both 1000 and 100 copies of the target, only 1 out of 6 replicates showed 

positive amplification profiles when challenged with the inhibitor.  

Note that full detection of 100 copies of the target RNA, in the non-inhibited conditions, was 

not achieved. Nonetheless, clear reduction in the assay sensitivity was still observed when 

compared to the non-inhibited reactions.   
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4.4 Discussion 

Amplification inhibitors are highly heterogeneous substances that can act on different 

components of a diagnostic test leading to either reduction in the sensitivity of the assay or a 

complete amplification failure (Bessetti, 2007, Zhang et al., 2010b, Schrader et al., 2012, 

Huggett et al., 2008, Speers, 2006).  For instance, we showed that both the carrier DNA and 

LDS could reduce the overall sensitivity of the TB assay leading to a number of false negative 

results. However, the observed inhibitory mechanism differed significantly between the two 

tested substances. LDS showed to have no effect on the speed of amplification, regardless of 

the amount of template and inhibitor used. We suggest LDS interferes with the BART 

components rather than the polymerisation reaction, since a significant reduction in the light 

output was detected in the inhibited samples. It is likely that the observed inhibition of light 

was a direct result of the sensitivity of the Luciferase enzyme to either LDS or pH changes 

caused by the detergent (Kitayama et al., 2003, Gabriel and Viviani, 2014, Imani et al., 2010).  

In contrast, carrier DNA caused significant delays in amplification of the target M. bovis RNA 

without affecting the light emission. Although, the presence of high amounts of non-target 

DNA is unlikely to directly interfere with the enzymatic properties of the polymerases or RT 

enzymes, it has been reported that sequestration of enzymes and primers onto non-target 

templates can significantly reduce assay performance (Kiddle et al., 2012, Morata et al., 1998, 

Rohrman and Richards-Kortum, 2015). In addition, several researchers have shown that DNA 

molecules can bind magnesium ions in order to stabilise their own structure, therefore resulting 

in a reduction of the amount of free magnesium available for DNA polymerase and RT enzyme 

activity (Robinson et al., 2000, Serec et al., 2016).  

Furthermore, we have also demonstrated that the assay chemistry and the type of target nucleic 

acid can impact the inhibitory effects of certain substances such as LDS or carrier DNA.  LDS 

was showed to reduce the overall light emission by 60 % in the reactions utilising the 125 mM 
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1x bicine buffer. In contrast almost 70 % reduction in the light intensities was observed in the 

samples containing the 12.5 mM 1x bicine buffer. Since LDS is a highly potent acidic 

detergent, the most likely explanation for the observed behaviour of BART could be simply 

associated with a lower buffering capacity of the 12.5 mM bicine buffer. Nonetheless, our data 

indicates that the choice of reaction chemistries can play a key part in the extent of inhibition.  

Furthermore, our analysis on the effects of carrier DNA on amplification of both DNA and 

RNA templates, revealed interesting correlations between the type of nucleic acid and the 

degree of inhibition coming from non-target nucleic acids. Although, carrier DNA inhibition 

has been widely reported across the literature, limited consideration have been made in regards 

to the effects of such contaminants on RNA assays. We demonstrated that despite a significant 

increase in the TTM of the reactions containing genomic M. bovis DNA, the presence of carrier 

DNA had no effect on the overall assay sensitivity, regardless of the amount of template used 

for each reaction. In contrast, almost 90 % reduction in detection was observed when the M. 

bovis rRNA target was being amplified in the presence of the same inhibitor and inhibitor load.   

Reverse transcription, a crucial step in most RNA detection systems, has been reported to be a 

less efficient process when compared to the DNA synthesis step (Bustin and Nolan, 2004, 

Sanders et al., 2013). Thus, one can conclude that inhibitory substances can further impact this 

process. As mentioned previously non-target DNAs can sequester primers and enzymes 

including RTs thus further reduce the efficiency of reverse transcription. In addition, RT steps 

have been reported to have an increased requirement for magnesium ions, thus can be highly 

sensitive to changes in the amounts of available free magnesium (Goldschmidt et al., 2006). 

Consequently, the choice of nucleic acid purification method can have a significant effect on 

the performance of the downstream detection. As mentioned previously, more a selective 

purification using target capture technology, could prevent RT inhibition by favouring 
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extraction of the target RNA over other carrier nucleic acids (Chandler et al., 2000, Wu et al., 

2015).   

Furthermore, we showed that not only the type of inhibitory substances present but also its 

concentration are key elements of the overall potency of the inhibitory effect. As an example, 

we showed different responses of our model HCV assay to certain salts such as NaCl, KCl or 

KAc. We showed that all assays containing greater than 100 mM of total salt were significantly 

inhibited, regardless of the type of salt tested. However, when 10 mM additional salt (total 60 

mM) of either KCl or KAc was added to the assays, a noticeable improvement of the 

amplification speed was observed. Since KCl and similarly KAc, have been reported to 

stabilise the primer-template interaction by reducing the repulsion of negatively charged DNA 

backbones, one could conclude that the observed improvement was caused by optimisation of 

this effect through increasing of the salt concentration. However, whilst optimal salt 

concentration can facilitate primer binding and therefore improve the initiation step of 

amplification reactions, greater salt amounts have also been shown to significantly increase the 

Tm of longer DNA molecules. Although, higher salt concentrations have been shown to be 

beneficial when very short sequences are targeted, it can also impede primer invasion due to 

increased stability of DNA helixes and secondary structure of RNA molecules (de Vega et al., 

2010). Moreover, the counter ion chlorine has also been suggested to negatively affect DNA 

polymerases by binding to their active sites, leading to temporary inactivation and thus 

resulting in impaired binding to the target templates.  
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4.5 Perspective 

Although, we demonstrated different nature of chosen inhibitory substances and their effects 

on detection of DNA and RNA templates, our amplification models have not been challenged 

with some key inhibitory substances commonly found in biological samples such as haem or 

heparin, due to time limitations. Moreover, since RT assays rely on the performance of both 

DNA polymerases and RT enzymes, the observed inhibitory effects were most likely a 

combined inhibitory effect of the two enzymes rather than solely contributed to the RT 

efficiency.   

In addition, since very little is known about the direct effects of inhibitory substances on reverse 

transcriptases, it would be of great benefit to screen a wider range of inhibitors in regards to 

their effects on different RTs.  

Moreover, it has been reported in this study, that assay chemistry could potentially affect the 

potency of certain inhibitors, thus it is recommended to further test this hypothesis using a 

wider range of buffers including Thermopol and Isothermal buffers (NEB, UK).  
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Chapter 5 

5 Development of internal amplification controls for RT-LAMP 

assays 

5.1 Introduction 

During the last 20 years, nucleic acid purification technologies have advanced dramatically, 

resulting in significant improvements that affect the reliability of down-stream applications 

that are dependent upon quality preparations (Tan and Yiap, 2009). Despite these 

improvements. co-extraction of inhibitory substances affecting nucleic acid amplifications 

(NAAT) and reporter chemistries can still occur (Bessetti, 2007, Bickley et al., 1996a, Funes-

Huacca et al., 2011, Opel et al., 2010). Thus, it has becoming more common to control 

polymerised chain reactions by qualifying the inhibitory nature of the extracted samples in 

order to eliminate the risks of misdiagnosing false negative amplifications (Hoorfar et al., 

2004b, Hoffmann et al., 2006).  

In any NAAT-based diagnostic approach, a negative result could be unreliable if such an 

inhibitor control is not included in the test; as this result could be due to amplification failure 

caused by inhibitory substances, sub-optimal amplification efficiency, problematic detection 

chemistries, or faulty equipment (Rådström et al., 2008). In general, amplification controls 

(IACs) should consist of a pre-defined input copy number of nucleic acid or microorganism, 

and the amplification should run in parallel with the true positive (Rosenstraus et al., 1998, 

Hoorfar et al., 2004b, Malorny et al., 2003). By comparing the detection parameters of these 

controlled amplifications, with those performed under non-challenged conditions, an 

estimation of the inhibitory nature of the samples can be made.  In practice, two main types of 

controls can are used – external and internal amplification controls (Lion, 2001). 
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The external control is added at the very start of the sample preparation and purification 

process. Thus, controlling the extraction processes such as cell lysis, nucleic acid binding and 

recovery, as well as the amplification (Kalle et al., 2013). External controls for microorganisms 

can be ‘synthetic mimics’ comprising of encapsulated nucleic acid (such as Armoured RNA or 

DNA), that resemble the true target organism, and are extracted from the same matrix (Meng 

and Li, 2010, Yu et al., 2008, Pasloske et al., 1998). These controls are used to simplify a 

single-tube assay design and reduce the complexity of primer design (often a problem 

encountered for IAC) and the risks of potential, unwanted interactions (Hoorfar et al., 2004b). 

The external controls can be extremely beneficial for evaluating integrated workflows of 

diagnostic assays, where sample preparation, nucleic acid purification and detection are 

performed in a single module / device or consumable (Hata et al., 2011). However, these 

controls provide no information with respect to the cause of potential detection failure.  

In contrast, internal amplification controls (IACs), are added to the amplification chemistry, 

and control for the amplification and its detection. The IAC, therefore gives meaningful 

information about the cause of amplification failure and can be used to effectively judge the 

nature of inhibition with respect to the sample and its effect on the polymerase activity. There 

are currently two main strategies adopted for use of IACs in molecular diagnostic assays, and 

each depends on the level of competition between the target diagnostic chemistry and the 

detection of IAC targets.  
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5.1.1 Competitive vs. non-competitive IAC systems 

Generally, a non-competitive IAC system relies on separate primer sets targeting the IAC 

template and the target of interests, and can be performed together with the target amplification 

or in a separate tube (Selvey et al., 2001).  Some commercial platforms, such as Illumigene, 

adopted this approach, where each tested sample is ran as a set of two reactions; one for 

detection of the potential disease and one IAC (Lucchi et al., 2016). However, this approach 

increases the overall cost of an assay as well as require an increased amount of the biological 

sample to accommodate the IAC reactions.  

In contrast, the competitive IAC involves the utilisation of a single primer set that can amplify 

the true target and IAC template simultaneously in the same tube. Both strategies are somewhat 

similar, and competitive inhibition of the true amplification can occur if a single tube is used 

for both true and IAC reactions. There is always a risk that the IAC amplification will compete 

for the amplification precursors, (dNTPs / primers) and enzymes required for the true 

amplification (Hoorfar et al., 2004b, Dingle et al., 2004). This competition would be reported 

regardless of the detection system used. As many isothermal amplifications require the use of 

multiple and long primers (such as LAMP) that span large template regions, the use of 

additional primer sets for IACs may be necessary to reduce competitive inhibition, but this 

poses challenges related to non-specific priming (Kiddle et al., 2012, Lee et al., 2015). All IAC 

strategies require precise optimisations that favour the detection of the true target without 

compromising the overall sensitivity of the control assay (Abdulmawjood et al., 2002, Cubero 

et al., 2002, Kleiboeker, 2003). 
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5.2 Aims and objectives 

The main focus of this study was to develop a reverse transcribed internal amplification control 

for RT-LAMP assays that used delayed competitive IACs. We aimed to reduce the level of 

competition for primers, enzymes and precursors by impeding the amplification of the IAC 

with respect to limiting copy numbers of true target nucleic acid. This would be achieved by 

using a synthetic template, akin to the target of interest, albeit with eliminated and altered 

primers annealing positions designed to hinder amplification. Manifestations of this IAC would 

be reportable by BART and a specific probe that would allow differentiation between positive 

amplifications and those initiated from the IAC. 
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5.3 Results 

5.3.1 Development of Internal Amplification Control for monitoring assay inhibition 

In this section, a step-by-step approach for generating a single-tube IAC will be realised.  It has 

been demonstrated that certain primers and modifications can perturb amplification kinetics. 

These primer modifications were exploited as a way of impeding the initiation and propagation 

of IAC amplifications, thereby reducing the competition with the core RT-LAMP.   

5.3.1.1 Impeded RT-LAMP assay as a model for IAC generation 

As shown in a different study, loop primer elimination and LAMP primer mutations with 

respect to the true target, could cause severe delays in amplification without affecting the 

sensitivity of the assay (see Appendix 39). Thus, it was decided to explore similar approaches 

in this study.  

Figure 39 shows LAMP-BART profiles generated using the standard TB assay as a model. 

Since it is well established that loop primers significantly improve the amplification speed, 

they were removed from the RT-AMP TB 23S primer set used in this study (Nagamine et al., 

2002).  

In addition, the number of introduced mismatches differed depending on the LAMP primer 

used. It was necessary to maintain similar melting temperatures for complementary regions, to 

enable direct comparison of the effects of mutated primer melting temperatures and priming 

positions on the performance the TB assay.  
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Table 14 shows all of the tested versions of the TB LAMP primers with introduced mismatched 

bases highlighted in red. The shown Tm values represent the melting temperatures of the 

mutated priming regions that maintained complementarity with the target, unless otherwise 

stated.  

 

The introduced mismatches significantly affected the amplification of the M. bovis positive 

control rRNA (p value < 0.05, t-test) (Figure 39). In general, the lower Tm’s of the mutated 

LAMP primers impeded the amplification from target RNA; the more bases mutated the greater 

the observable impact. However, the biggest impact on amplification kinetics was seen when 

using the MutFIPv2-4 and MutBIPv2-4 (Table 14-15). These primers generated both highly 

delayed and reproducible amplifications. Over a 15 to 30 min delay in time-to-peak was 

achieved with the MutFIPv2 and MutBIPv2 primers. Interestingly, despite the differences to 

which the amplification times were delayed, the Tm of these primers are calculated to be highly 

similar (separated by 1 °C). Furthermore, the reactions containing the MutFIPv3-4 and 

MutBIPv3-4 produced peaks at 82-64 min and 70-74 min, respectively (Figure 39A, C). 

However, the reproducibility of those reactions suffered a noticeable loss in amplification 

efficiency when compared to either the assays utilising the WT primers or version 2 of the RT-

LAMP primers tested (Table 15). The standard deviation in time to maximum varied between 

Primer Tm [°C]
WT BIP B1-60.2 B2-61.4

WT FIP F1-58.6 F2-65.2

M utFIPv2 F1-44.0 F2-65.2

M utFIPv3 F1-37.3 F2-65.2

M utFIPv4 F1-30.2 F2-65.2

M utFIPv5 F1-58.6 F2-58.0

M utFIPv6 F1-58.6 F2-46.8

M utFIPv7 F1-58.6 F2-37.7

M utBIPv2 B1-45.5 B2-61.4

M utBIPv3 B1-37.3 B2-61.4

M utBIPv4 B1-29.0 B2-61.4

M utBIPv5 B1-60.2 B2-50.6

M utBIPv6 B1-60.2 B2-45.4

M utBIPv7 B1-60.2 B2-36.9

ACTCGCAGGCTCATTCTTTTTaggGGAGGAGGGTGG

ACTCGCAGGCTCATTCTTTTTaggcGAGGAGGGTGG

ACTCGCAGGCTCATTCTTTTTaggcctGGAGGGTGG

5'→3' sequence

AAGGTTAACCCGTGTGGTTTTgcgcacaGGGTCGCC

ACTCGCAGGCagtaagaTTTTTCCGGAGGAGGGTGG

ACTCGCAGGgagtaagaTTTTTCCGGAGGAGGGTGG

ACTCGCAGcgagtaagaTTTTTCCGGAGGAGGGTGG

ACTCGCAGGCTCATTCTTTTTTCCGGAGGAGGGTGG

AAGGTTAACCCGTGTGGTTTTCGCGTGTGGGTCGCC

AAGGTTAACCCGacaccTTTTCGCGTGTGGGTCGCC

AAGGTTAACCgcacaccTTTTCGCGTGTGGGTCGCC

AAGGTTAACCCGTGTGGTTTTgcCGTGTGGGTCGCC

AAGGTTAACCCGTGTGGTTTTgcgcaGTGGGTCGCC

AAGGTTAACCCcacaccTTTTCGCGTGTGGGTCGCC
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5 to 10 min, whereas only 2 min difference was observed in the average TTM of reactions 

performed with version 2 primers. LAMP primer, variants 5-7 also caused significant delays 

in amplification (p value < 0.05, t-test) (Table 15). Together with the overall delay in 

amplification caused by LAMP primers, there were also noticeable differences in the assays 

performance between the affected BIP and FIP primers.  

Mutagenesis resulting in the reduction in Tm of the B2 position within the back inchworm 

primer (BIP; MutBIPv5-7) caused mild delays in amplification speed, compared with all the 

other reactions tested (Figure 39D). Surprisingly, only a 7 min difference in the time to 

maximum light output (TTM) was detected between reactions containing the WT and the 

mutant versions (v5-7) of the BIP (Table 15). MutBIPv5 and v7 generated BART curves with 

similar TTM although reactions utilising the MutBIPv7, suffered a noticeable reduction in 

reproducibility. The overall reproducibility of the TB amplification, was highly comparable 

between the above BIP variants. The MutBIPv6 and the MutBIPv2 designs resulted in almost 

identical calculated Tm but showed a prominent difference in amplification performance. 

When mismatches were introduced to the B1 site of the BIP primer a 30+ min delay in 

amplification was achieved, whereas only a 4 min difference in TTM was observed when the 

B2 side was mutated by the same temperature difference (Figure 39C).  

Similar reductions in the Tm on the F2 region of the forward inchworm primer (FIP), had a 

completely different impact on the assay (Figure 39B). On average, these reactions amplified 
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10 min slower than those containing similar mutations within the BIP. The amplification 

reproducibility was affected to a much greater extent than any of the mutated variants tested.  

 

Table 15 showing summary of the data 

presented in the figure 39. Each set of 

reactions was analysed using average 

TTM (Mean), reproducibility (STDev) 

and sensitivity (Amp.Freq). 

 

 

 

 

 

Primer Mean [min] Stdev Amp.Freq.[%]

TB mutFIPv2 51 2.2 100

TB mutFIPv3 82 6.9 100

TB mutFIPv4 64 6.5 83

WT FIP 35 1.1 100

TB mutFIPv5 46 6.3 100

TB mutFIPv6 45 11.0 83

TB mutFIPv7 48 15.9 33

WT FIP 32 0.5 100

TB mutBIPv2 61 2 100

TB mutBIPv3 70 10 83

TB mutBIPv4 74 5 50

WT BIP 31 1 100

TB mutBIPv5 37 0.8 100

TB mutBIPv6 34 0.6 100
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Figure 39. Comparison of LAMP-BART profiles generated using mutated versions of TB LAMP primers. A – amplification profiles 

generated suing FIP primer with altered F1 site; B – amplification profiles generated using FIP primer with altered F2 site; C – 

amplification profiles generated using BIP primer with altered B1 site; D – amplification profiles generated using BIP primer with 

altered B2 site 

Each version of LAMP primers was colour-coded as follows: red – WT primer; Green – version 2; Blue – version 3; Orange – version 4; 

Black – version 5; Yellow – version 6; Purple – version 7 
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5.3.1.2 Internal amplification control template design 

In order to maintain similarity between the IAC template and true amplifications the 23s rRNA 

targeted by the RT-LAMP, was used as a template for the IAC design. Figure 40B shows the 

consensus region targeted by the 23s Mycobacterium bovis rRNA with highlighted RT-LAMP 

primers and the capture probe binding sites used for its extraction.  

Table 16 contains colour-coded primer sites corresponding to each binding position shown in 

the Figure 40.  

 

Figure 40A shows the IAC template design generated from the 23S rRNA sequence along with 

the mutated and altered primer annealing positions that were introduced (black box). 

To accommodate the proposed IAC design and reduce the cost of synthesis, the entire sequence 

was truncated to remove unnecessary bases. The loop priming positions were substituted for 

probe sites; this would serve to decelerate the amplification significantly and allow for 

alternative specific fluorescent detection of the IAC. The substitution of the loop primer 

annealing position did not affect the overall length of the target sequence. Finally, to further 

impede the IAC amplification, base substitutions were introduced to the B2 binding site, 

mimicking the alterations within the MutBIPv2.  

 

 

 

Primer sequence 5' -> 3'

LAMP B (BIP) ACTCGCAGGCTCATTCT-TTTT-TCCGGAGGAGGGTGG

LAMP F (FIP) AAGGTTAACCCGTGTGG-TTTT-CGCGTGTGGGTCGCC

Loop B CAAAAGGCACGCCATCA

Loop F CGAAAGCGAGTCTGAATAG

Displacement B (DispB) AGAGTACCTGAAACCGTG

Displacement F (DispF) ATTCACACGCGCGTAT

Capture probe CGGGTCCAGAACACGCCAC 
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F3F2LFF1B1

B3 B2

LB Capture probe

A
B

Figure 40. showing a sequence alignment using the consensus region targeted by the TB primers and the IAC design. Each corresponding primer 

binding site was colour-coded as follows: Green – B3; Teal – B2; Yellow – Loop B; Dark yellow – B1; Dark blue – F1; Orange – Loop F; Light blue – 

F2; Pink – F3; Red – capture probe binding position.  Each highlighted sequence corresponds to a fully complementary region of the TB primers. 

Black box showing the mutated region of the IAC template. Note: A – consists of two identical IAC sequence alignments; B – WT region of the TB 

consensus sequence.  
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5.3.2 Detecting assay inhibition using the RT-LAMP IAC 

In this section, the parameters affecting the performance of the standard TB assay, including 

the IAC interference study as well as inhibition, were assessed.  

5.3.2.1 Assessing the performance of the in-house developed IAC assay 

In the first instance, the performance of the newly designed IAC template was evaluated using 

the in-house freeze-dried 50 uL RT-LAMP 23S TB assay, which contained all the chemistry 

and primers required for true positive and IAC amplifications. 

Figure 41 shows LAMP-BART profiles (A) and summary bar charts (B) generated using the 

50 uL standard TB assay. 

The positive control 23s rRNA and the IAC in vitro transcribed (IVT) RNA successfully 

amplified under the RT-LAMP conditions used. However, the amplification of the IAC RNA 

was significantly delayed compared to the target 23s RNA (p value < 0.05, t-test) (Figure 41B). 

Over a 20 min difference in TTM was achieved between the two amplification mechanisms, 

good reproducibility was observed for both amplifications at the copy numbers tested. 
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Figure 41. Comparison of LAMP-BART profiles (A) and summary bar chart (B) generated using standard TB 50 uL reactions containing 

full primer set. Each tested template was colour-coded as follows: Green – 10^5 cps of 23s M. bovis rRNA; Red – 10^6 cps of the in-

house IAC RNA; Black - NTC 
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5.3.2.2 DNA contamination in the IAC IVT RNA. 

As the IAC IVT RNA was synthesised from a DNA template it was important to account for 

any contaminating DNA that may affect our interpretation of DNA and RNA polymerised 

events later in this chapter. 

Figure 42 RT-LAMP and LAMP-BART profiles generated using in the presence and absence 

of reverse transcriptase.  

All reactions conducted with Maxima RNaseH+ amplified, the reproducibility and speed was 

comparable to the previously generated data for 10^6 cp of the IAC (data not shown). 

Surprisingly, the reactions deficient in Maxima RNaseH+ also exhibited exceptionally good 

amplification efficiency, and reproducible detection at all copy numbers tested (Figure 42B). 

Reactions with RT amplified slightly faster than those deficient in this activity. In fact, 

reactions performed at 10^8 copies of IVT RNA without the RT enzyme amplified at the same 

time as RT dependent amplifications containing 10^7 copies of the target IVT (Table 17). This 

suggested the IVT RNA was contaminated with 10 % of its parental DNA template.  

In order to further confirm the DNA contamination levels, the amplification performance of 

the IAC RNA assay lacking the RT enzyme was compared with a sample standard generated 

from an IAC DNA PCR product quantified using qPCR and Agilent by ERBA Molecular (data 

not shown).  

Figure 43 shows LAMP-BART profiles generated using a standard TB assay (no 

MaximaRH+) and various amount of either IAC RNA or positive control DNA. The average 

TTM for each sample dilution was then used to estimate the contamination levels in the RNA 

samples.  
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Table 17 showing summary of the data presented in the figure 42. Each set of reactions was 

analysed using average TTM (Mean), reproducibility (STDev) and sensitivity (Amp.Freq).  
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Assay IAC RNA [cp/rxn] TTM [min] Stdev Amp.Freq. [%]

10^6 43 3.0 100

10^7 33 1.5 100

10^8 31 1.7 100

10^6 51 7.5 100

10^7 40 2.8 100

10^8 33 2.5 100

 +MaximaRH 

 -MaximaRH 

Figure 42. Comparison of LAMP-BART profiles generated using standard TB 20 uL reactions containing full primer set and various 

amounts of IAC RNA. A – represents reactions containing the reverse transcriptase (MaximaRNaseH+); B – showing amplification 

profiles generated in the absence of RT. 

Concentrations of the IAC RNA used were colour-coded as follows: Red – 10^8 cps; Blue – 10^7 cps; Green – 10^6 cps; Black - NTC 
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Table 18 showing summary of the data presented in the figure 43. Each set of reactions was 

analysed using average TTM (Mean), reproducibility (STDev) and sensitivity (Amp.Freq). 
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Figure 43. Comparison of LAMP-BART profiles generated using standard TB 20 uL reactions containing full primer set and various 

amounts of IAC targets. A – represents reactions amplifying the positive control IAC DNA; B – showing amplification profiles 

generated using the ivt IAC RNA. Note that none of these reactions contained RT enzyme. Bst Large fragment was also used.  

Concentrations of the IAC templates used were colour-coded as follows: Red – 10^8 cps; Orange – 10^7 cps; Blue – 10^6 cps; Green – 

10^5; Black - NTC 
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As expected, successful amplification of the target was achieved on both the DNA and RNA 

templates without the standard RT enzyme, confirming the presence DNA contamination 

(Figure 43A-B). Similarly to our previous findings, the contaminations levels were estimated 

to be approximately 10 %. Table 18, shows TTM values for each DNA and RNA titration used. 

In general, the amplification of IAC DNA was observed to be significantly faster than of 

corresponding RNA amount (p value < 0.05, t-test). However, the comparison of TTM between 

the samples containing the IAC DNA and a corresponding 10-fold dilution of the RNA target 

showed no significant difference in amplification speed (p value > 0.05, t-test). On average, 

the reactions containing 10^5 cps of the IAC DNA amplified in 63 min whereas 69 min was 

required to detect 10^6 cps of IAC RNA. Similarly, when the reactions utilising 10^6 cps of 

the IAC DNA were compared to the assays containing 10^7 cps of the IAC RNA, highly 

comparable amplification times were detected (Table 18). In fact, the same pattern was noticed 

across all of the DNA and RNA titrations tested.  
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5.3.2.3 RT-LAMP - IAC interference study 

Due to the single-tube format of the 23S rRNA RT-LAMP / IAC amplification and knowledge 

that the true and control reactions utilise the same primer set and substrate, it was crucial to 

determine any potential effects that the IAC amplification may have on the RT-LAMP-BART. 

Figure 44 23S rRNA RT-LAMP-BART profiles generated using the standard reaction 

conditions protocol 14 (see Appendix 14), spiked with a final load of 10^6 copies of the IVT 

IAC RNA 

No significant differences in amplification speed were perceived between those reactions 

containing purely the 23S rRNA and reactions spiked with the IAC RNA (p value > 0.05, t-

test; Table 19). Amplifications containing various titrations of 23S RNA and IAC IVT all 

amplified faster than those containing the IAC RNA alone (Figure 44A NTC+IAC). All of 

the reactions containing 100 cp of the 23S rRNA target, amplified prior to the IAC IVT RNA 

Figure 19. Interestingly, a slight improvement in true target amplification sensitivities were 

detected when the IAC IVT RNA was present in the reaction. In the spiked samples containing 

100 cps of the 23S rRNA target, 5 out of 6 replicates showed positive amplification profiles, 

whereas only 3 out of 6 reactions were detected in the absence of the IAC IVT RNA (Figure 

44B).  
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Table 19 showing summary of the data presented in the figure 44. Each set of reactions was 

analysed using average TTM (Mean), reproducibility (STDev) and sensitivity (Amp.Freq). 
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Sample RNA conc. [cp/rxn] MeanTTM [min] Stdev Amp.Freq. [%]

10000cp 14 0.9 100

1000cp 17 1.5 100

100cp 19 1.6 50

10000cp + 10^6 IAC 14 0.7 100

1000cp + 10^6 IAC 17 2.9 100

100cp + 10^6 IAC 19 5.6 83

IAC RNA 10^6 43 2.8 100

M. bovis  RNA

M. bovis  + IAC RNA

Figure 44. Comparison of LAMP-BART profiles generated using standard TB 20 uL reactions containing full primer set and various 

amounts of TB target. A – represents reactions spiked with 10^6 cps of IAC RNA; B – showing amplification profiles generated in the 

absence of IAC template.  

Concentrations of the TB target 23s rRNA used were colour-coded as follows: Red – 10^4 cps; Orange – 10^3 cps; Green – 10^2; Black 

– NTC. 
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5.3.2.4 The effects of probing on the performance of IAC and 23S RT-LAMP-BART 

As already described earlier in this chapter the TB loop priming positions were forsaken for 

non-TB probe sequences that may be used as an alternative reporter for the detection of IAC 

IVT amplification. The effect of ROX-labelled loop probes on the performance of IAC RNA 

amplification were therefore assessed.  

Figure 45 23S RT-LAMP-BART profiles and summary bar charts generated using a modified 

TB assay conditions according to the protocol 15 (see Appendix 15). Amplifications were 

tested in the presence of probe designed to target the recombinant loop position of the IAC IVT 

RNA and either BstLF (B) or GSP-SSD (A) 

A significant difference in amplification performance was detected between reactions 

containing GSP-SSD and Bst LF polymerase, irrespective of the presence of the ROX loop 

probes (p value < 0.05, t-test). On average, reactions utilising the GSP-SSD amplified over 10 

min faster than those containing the Bst LF (Table 20). In addition, over a 30 min difference 

in TTM was observed between those containing the ROX probes compared to those without. 

The presence of the ROX probes had a detrimental effect on amplification kinetics, regardless 

of the DNA polymerase used. However, the degree of inhibition realised was greater in 

reactions containing the Bst LF compared to similar reactions with GSP-SSD. On average, only 

an 11 min difference in amplification of the IAC target was observed between reactions 

containing the ROX probes and the controls (Figure 45 dotted red curves) when the GSP 

enzyme was used. In contrast, this difference increased to over 30 min when the Bst LF enzyme 

was added (Table 20).  Furthermore, the presence of the ROX-probes seemed to reduce the 

level of non-specific amplification. In general 50% NTC’s amplified in reactions containing 

the GSP-SSD and no probe compared to 15% in its presence. The same improvement was true 

for reactions with BstLF. 
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Table 20 showing summary of the data presented in the figure 45. Each set of reactions was 

analysed using average TTM (Mean), reproducibility (STDev) and sensitivity (Amp.Freq). 

Addition or ROX loop probe was indicated with “P”. 
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Figure 45. Comparison of LAMP-BART profiles generated in a presence or absence of ROX loop probe using a modified TB 20 uL 

reactions containing full primer set. A – represents reactions utilising GSP-SSD enzyme ; B – showing amplification profiles generated 

using Bst LF. 

Note that dotted lines represent the samples lacking the ROX probe (P), whereas solid curves show amplification profiles generated 

in the presence of the ROX probe. Red – samples containing 10^6 cps of IAC RNA; Black – NTC  
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5.3.2.5 Assessing the effects of inhibitory substances on the performance on 23S RT-LAMP 

and IAC RNA amplification. 

The inhibitory effect of sodium chloride, carrier DNA and RNA, humic acid and sodium 

hydroxide/mucin would be assessed on the 23S RT-LAMP / IAC. 

Figure 46 RT- LAMP-BART profiles generated using a modified assay according to the 

protocol 16 (see Appendix 16) challenged with various amounts of sodium chloride. Each 

reaction contained both the target 23S rRNA and the IAC RNA at a concentration of 10^6 cps 

per reaction, unless otherwise stated and a titration of NaCl (Ranging from 0 to 40 mM 

additional salt) 

The NaCl showed an inhibitory effect on the performance of the integrated IAC IVT RNA 

amplification and the RT-LAMP-BART designed to detect the M. bovis 23s rRNA. Overall, 

the TTM of the true positive samples (M. bovis 23S rRNA) and the IAC IVT RNA differed 

noticeably between the amounts of inhibitor used. A 5 min difference in TTM was observed 

between the uninhibited samples containing 100 copies of the target 23S rRNA (and an 

additional 10^6 copies of IAC IVT RNA) and the corresponding reactions spiked with 40 mM 

NaCl. Similarly, for the reactions containing 1000 copies of the 23S rRNA, a significant 

increase in TTM was observed between the uninhibited reactions and the samples containing 

40 mM NaCl, where over a 5min difference in amplification speed was detected (p value< 0.05, 

t-test). Interestingly, the salt did not cause reduction in the sensitivity of the 23s rRNA assay.  

A significant shift in TTM was also observed when the performance of IAC amplification was 

considered across all of the tested amounts of inhibitor (p value < 0.05, t-test) (Table 21). 

Within the time frame of the assay (60 min), full detection of IAC target was lost when assays 

were challenged with 30 and 40 mM of the NaCl (Figure 46C).  
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Table 21 showing summary of the data presented in the figure 46. Each set of reactions was 

analysed using average TTM (Mean), reproducibility (STDev) and sensitivity (Amp.Freq). 
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Figure 46. Comparison of LAMP-BART profiles generated using a modified TB 20 uL reactions containing full primer set challenged 

with various amounts of NaCl. A – represents reactions containing 100 cp of the 23s rRNA  spiked with 10^6 cps IAC RNA; B – showing 

amplification profiles generated using 1000 cps of the 23s rRNA spiked with 10^6 cps IAC RNA; C – amplification profiles generated 

using 10^6 cps of the IAC RNA. 

Amounts of NaCl added to each reaction were colour-coded as follows: Green – 0 mM; Blue – 20 mM; Orange – 30 mM; Red – 40 

mM.  
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Figure 47 RT- LAMP-BART profiles generated using a modified reaction chemistry according 

to the protocol 17 (see Appendix 17) Amplification reactions were challenged with various 

amounts of salmon sperm DNA (ranging from 0 to 1000 ng). Each reaction contained both the 

target 23S rRNA and the IAC IVT RNA at a concentration of 10^6 cps per reaction, unless 

otherwise stated.  

The salmon sperm DNA caused inhibition of the 23S RT-LAMP amplification which was very 

apparent at the lowest copy number tested here (100 copies per assay). Over 50% reduction in 

amplification detections at 100 copies per reactions were observed in the presence of 1000 ng 

salmon sperm DNA, compared to the control (Table 22). When 1000 cps of the target 23S 

rRNA, were challenged with 500 and 1000 ng of the salmon sperm DNA a significant 

deterioration in amplification kinetics was realised. The amplification profiles of the IAC IVT 

RNA were also affected by the presence of the carrier DNA. Mirroring the RT-LAMP, a 

significant decrease in amplification speed of almost 10 min was observed, between reactions 

containing 1000 ng ssDNA and the control reactions (p value < 0.05, t-test) (Figure 47C). As 

little as 500 ng of the carrier DNA was potent enough to negatively impact upon amplification 

kinetics. Contrasting with NaCl inhibition, where no effect on the assay sensitivity was 

detected, carrier DNA caused a significant reduction in detection at the lowest copy number 

tested here. On average, every 10-fold increase in the concentration of the salmon sperm DNA, 

resulted in a 15% loss of sensitivity at 100 copies. Furthermore, concentrations of carrier DNA 

that caused a failure to detect 100 copies of 23S rRNA were not reflected by a failure full detect 

the IAC IVT RNA, just a reduction in the overall amplification efficiency.  
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Table 22 showing summary of the data presented in the figure 47. Each set of reactions was 

analysed using average TTM (Mean), reproducibility (STDev) and sensitivity (Amp.Freq). 
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Figure 47. Comparison of LAMP-BART profiles generated using a modified TB 20 uL reactions containing full primer set challenged 

with various amounts of salmon sperm DNA. A – represents reactions containing 100 cp of the 23s rRNA  spiked with 10^6 cps IAC 

RNA; B – showing amplification profiles generated using 1000 cps of the 23s rRNA spiked with 10^6 cps IAC RNA; C – amplification 

profiles generated using 10^6 cps of the IAC RNA. 

Amounts of salmon sperm DNA added to each reaction were colour-coded as follows: Red – 0 ng; Green – 50 ng; Blue – 500 ng; 

Orange – 1000 ng.  



155 
 

Figure 48 23S RT-LAMP-BART profiles and bar charts generated using a modified reaction 

chemistry challenged with various amounts of tRNA.  

In this experiment, the target 23S RNA and the IAC RNA were amplified separately under the 

same inhibitory conditions.  

The 23S RT-LAMP and IAC IVT RNA amplification suffered from a reduction in performance 

when assays were challenged with 500 to 1000ng of tRNA, causing significant delays in 

amplification compared to the non-inhibited reactions (p value < 0.05, t-test) (Figure 48A-B). 

However, as was previously seen, the effects of carrier DNA, affected the 23s rRNA 

amplification to a much higher extent.   

A dramatic reduction in the sensitivity of the 23S RT-LAMP was detected when challenged 

with 1000 ng of the tRNA, yet none of the carrier RNA concentrations affected the sensitivity 

of the IAC IVT RNA amplifications. Furthermore, the reproducibility of the 23S-RT-LAMP 

containing 500 ng of carrier tRNA was compromised compared to the control reactions, 

whereas the IAC IVT RNA amplifications were unperturbed. At 50 ng of carrier tRNA, the 

amplification speed and reproducibility of 23S RT-LAMP was noticeably improved (Table 

23).  
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Table 23 showing summary of the data presented in the figure 48. Each set of reactions was 

analysed using average TTM (Mean), reproducibility (STDev) and sensitivity (Amp.Freq). 
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Figure 48. Comparison of LAMP-BART profiles generated using a modified TB 20 uL reactions challenged with various amounts of 

carrier tRNA. A – represents reactions containing 100 cp of the 23s rRNA; B – showing amplification profiles generated using 10^6 cps 

IAC RNA; C – amplification profiles generated in the absence of both the 23s rRNA and IAC template. 

Amounts of the carrier RNA added to each reaction were colour-coded as follows: Red – 0 ng; Green – 50 ng; Blue – 500 ng; Orange – 

1000 ng.  
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Figures 49 23S-RT-LAMP-BART profiles and bar charts generated using various amounts of 

mucin / sodium hydroxide. A mucin stock was prepared according to the protocol 40 

(Appendix 40), the mucin therefore contained contaminating levels of sodium hydroxide. Each 

template titration was prepared using the corresponding inhibitory solution as diluent. 

Tables 24 show the amounts of mucin used to challenge both, the TB and IAC assay and the 

concentrations of sodium hydroxide expected in each mucin titration.  

An inhibitory effect of the mucin / sodium hydroxide solution on the IAC IVT RNA 

amplification performance was detected (Figure 49A, C). At the 400ng mucin containing 

approximately 1.3 mM NaOH, reduced the amplification speed by 3 min (p value < 0.05, t-

test) (Table 24). Once more, the RT-LAMP assays were more prone to inhibition by the 

inhibitor. The mucin / sodium hydroxide caused a 40% reduction in amplification sensitivity 

without affecting the amplification speed. Both the 400ng mucin and 1.3 mM sodium 

hydroxide affected the amplifications equally suggesting the latter to be the main cause of 

inhibition.  

Further investigation of mucin inhibition showed no apparent effect on neither the TB IAC nor 

the target TB 23s rRNA amplification (Figure 50).  

In that experiment, both the target TB 23s rRNA and the IAC RNA were amplified in a single-

tube format, where the two templates were spiked directly into the reaction mix followed by 

an addition of the appropriate inhibitory solution, unlike previously described in the Figure 49.  

When challenged with as much as 700 ng of mucin solution, which contained approximately 

2.3 mM NaOH, no significant change to either assay sensitivity or kinetics was detected when 

compared to the non-inhibited samples (p value > 0.05, t-test). Both reactions generated highly 

reproducible peaks with a TTM of 13 min and reaching over 80 % detection. In fact, similar 

effects were seen across all of the mucin and NaOH amounts used.  
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Note that in this set up 20 min threshold was chosen as a cut off point for true positive 

amplification. Thus, any profiles generated after that time were scored as IAC amplification.  
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Figure 49. Comparison of LAMP-BART profiles generated using a modified TB 20 uL reactions challenged with various amounts of 

mucin / NaOH. A – represents reactions containing 100 cp of the 23s rRNA challenged with mucin solution; B – showing amplification 

profiles generated using 100 cps of the 23s rRNA challenged with NaOH only; C – amplification profiles generated using 10^6 cps of 

the IAC template challenged with mucin solution; D – amplification profiles generated using 10^6 cps of the IAC template challenged 

with NaOH only. 

Amounts of mucin added to each reaction were colour-coded as follows: Red – 0 ng; Blue – 50 ng; Orange – 200 ng; Green – 400 ng; 

Black - NTC.  

The reactions containing 1.3 mM NaOH only are shown in red. 
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Table 24 showing summary of the data presented in the figure 49. Each set of reactions was 

analysed using average TTM (Mean), reproducibility (STDev) and sensitivity (Amp.Freq). 

 

 

 

 

 

  

 

 

 

Target Mucin [ng/rxn] NaOH [uM] TTM [min] Stdev Amp.Freq. [%]

0ng 0uM 23 0.4 100

50ng 175uM 24 0.9 100

200ng 675uM 24 0.4 100

400ng 1333uM 26 1.0 100

0ng 1333uM 24 1.1 100

0ng 0uM 15 1.2 50

50ng 175uM 13 1.4 67

200ng 675uM 12 1.2 50

400ng 1333uM 13 17

0ng 1333uM 14 17
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Table 25 showing summary of the data presented in the figure 50. Each set of reactions was 

analysed using average TTM (Mean), reproducibility (STDev) and sensitivity (Amp.Freq). 
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Inhibitor Conc. TTM [min] Stdev Amp.Freq. [%]

0ng 13 1.5 80

400ng 13 1.2 80

500ng 13 1.8 100

700ng 13 1.2 100

1333 uM 12 0.6 90

1667 uM 14 1.7 100

2326 uM 13 1.7 100

Mucin

NaOH

Figure 50. Comparison of LAMP-BART profiles generated using a modified TB 20 uL reactions challenged with various amounts of 

mucin / NaOH. A – represents reactions containing 100 cp of the 23s rRNA challenged with mucin solution; B – showing amplification 

profiles generated using 100 cps of the 23s rRNA challenged with NaOH only. 

Amounts of mucin added to each reaction were colour-coded as follows: Red – 0 ng; Orange – 400 ng; Blue – 500 ng; Green – 700 ng.  

Amounts of NaOH added were colour-coded as follows: Orange – 1.3 mM; Blue – 1.7 mM; Green – 2.3 mM.  
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5.3.3 IAC detection 

In the current RT-LAMP / IAC amplifications that utilise BART, differential detection of 

multiple amplifications in the same tube is not possible. Thus, two strategies were developed 

to enable differentiation between the RT-LAMP amplification and the IAC IVT RNA 

amplification. To this end the suitability of BART or fluorescent probing, would be assessed.  

5.3.3.1 Bioluminescent Assay Real-time (BART) as a method of IAC detection 

Although, the current BART reporter cannot distinguish between two simultaneous 

amplifications, the TTM, amplification frequency or peak shape could hypothetically enable 

this differentiation.  

Figure 51 23S-LAMP-BART profiles generated using a modified chemistry according to the 

protocol 18 (see Appendix 18). In this experiment, the effects of reaction volume on both 

amplification speed and reproducibility, were tested. A single reaction mix was made which 

contained 10^7 copies of the IAC IVT RNA per 50 ul. Two sets of reactions containing either 

50 or 10 uL of that reaction mix were then tested in order to determine the effects of 

concentration and reaction volume on the amplification performance.  
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The reaction volume had little effect on the speed, sensitivity or reproducibility of the IAC 

amplification. Both reaction volumes amplified in less than 20min, achieving comparable 

reproducibility and identical sensitivity. Peak height was the only parameter tested that differed 

significantly between the two sets of reactions (p value < 0.05, t-test) (Figure 51).   

When the reactions containing a challenging amount of the 23S rRNA were assessed, a 

significant effect of the reaction volume on the sensitivity and reproducibility, was observed.  

Figure 52 23S-LAMP-BART profiles and bar charts generated using a modified reaction 

chemistry according to the protocol 18 (see Appendix 18). Each reaction mix was prepared 

with 100 copies of the 23S RNA target per 50 uL. Two sets of reactions containing either 50 

or 10 uL of that reaction mix were then tested.  
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Figure 51. Comparison of LAMP-BART profiles generated using a modified TB assay and 10^7 cps/50 uL of the IAC RNA.  Red curves 

represent the reactions carried out in 50 uL volume, whereas the green lines shows amplification profiles generated in 20 uL reaction 

volume. Note that both sets of reactions contained equal concentration of the target IAC RNA (2 x 10^5 cps/uL).  
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Almost 40 % reduction in the RT-LAMP detection of 23S rRNA was observed when 10 uL 

reaction volumes were compared to 50ul reaction volumes, and although no significant change 

to TTM was seen, the reproducibility was noticeably altered by the choice of reaction volume 

tested (Figure 52D). Moreover, the variability in amplification time decreased with increased 

reaction volumes (Figure 52C).  

Since significant differences in the performance of RT-LAMP and IAC amplifications were 

observed when the 10 ul volumes were used, the effects of carrier DNA inhibition on the 

performance of a combined RT-LAMP / IAC amplification would be assessed using two 

different reaction volumes. This analysis was needed to establish whether or not the BART had 

the capacity to distinguish between the IAC and RT-LAMP amplification times and 
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Figure 52. Comparison of LAMP-BART profiles and summary bar chats generated using a modified TB assay and 100 cps/50uL of the 

23s rRNA.  A – profiles generated using 50 uL reactions; B – amplification curves generated from 10 uL reactions; C – summary data 

using average TTM; D – summary data using amplification frequencies. Note that both sets of reactions contained equal 

concentration of the target RNA (2 cps/uL).  
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frequencies, under both controlled and inhibited reaction conditions, when using a lower 

reaction volume.  

Figure 53 23S-LAMP-BART profiles and bar charts generated using a modified reaction 

chemistry according to the protocol 19 (see Appendix 19). Samples containing either the 100 

cps of the 23s rRNA spiked with 10^6 cps IAC RNA or 10^6 cps IAC only, were challenged 

with 500 ng carrier DNA (salmon sperm DNA) and run at 50 anf 10 uL volumes. 

Full detection of the IAC IVT RNA was achieved under both, inhibited and uninhibited 

conditions, regardless of the reaction volume. In addition, no significant change in TTM was 

noticed between the two tested volumes (+ or – inhibitor; p-value > 0.05, t-test; Table 26). In 

contrast, the presence of 500 ng of carrier DNA, affected the IAC RNA significantly, compared 

to the uninhibited controls (p-value < 0.05, t-test) (Figure 53A-B), where over a 30 min 

increase in TTM was detected. The opposite effect was seen when a challenging amount of the 

23s rRNA template was spiked with 10^6 copies of the IAC RNA. Firstly, a significant 

reduction in sensitivity was observed between the 50 and 10 uL reactions with the lower 

volumes amplifying less frequently under the uninhibited chemistry – over a 40 % decrease in 

sensitivity was detected (Figure 53C). Secondly, unlike the IAC RNA amplification, the 

presence of carrier DNA greatly impacted upon the sensitivity of the 23s rRNA assay, where 

over a 40 % and 25 % drop in amplification frequency was observed for the 50 uL and 10 uL 

reactions, respectively (Figure 53D, F).    

However, similarly to the IAC RNA data, no effect of reaction volume on the average TTM 

was detected in the mixed samples, regardless of the presence of carrier DNA. In addition, 

similar response to the inhibitor was observed, where a significant 10 min increase in TTM of 

the reactions amplifying the 23s rRNA was detected when compared to the mixed uninhibited 

samples.  
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Note that overall full detection was observed across all of the tested assays. However, in the 

mixed samples, the profiles generated after 50 min were scored as IAC RNA amplification 

(IAC RNA3). Both the 50 and 10 uL reactions amplifying after that time generated identical 

profiles as those observed from the samples containing the IAC RNA only.   
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Figure 53. Comparison of LAMP-BART profiles and summary bar chats generated using a modified TB assay and 100 cps/50uL of the 

23s rRNA and/or 10^6 cps IAC RNA.  A – profiles generated using 10^6 cps IAC RNA amplified at 50 (red) and 10 (green) uL volumes; B 

– profiles generated using 10^6 cps IAC RNA amplified at 50 (red) and 10 (green) uL volumes, challenged with 500 ng salmon sperm 

DNA; C – profiles generated using 100 cps of the 23s rRNA spiked with 10^6 cps of the IAC RNA and amplified at 50 (yellow) or 10 

(orange) uL volumes; D – profiles generated using 100 cps of the 23s rRNA spiked with 10^6 cps IAC RNA and amplified at 50 (yellow) 

and 10 (orange) uL volumes, challenged with 500 ng salmon sper DNA; E – summary data using average TTM; F  – summary data 

using amplification frequencies.  
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Table 26 showing summary of the data presented in the figure 53. Each set of reactions was 

analysed using average TTM (Mean), reproducibility (STDev) and sensitivity (Amp.Freq). 

Samples 1-2 represent the mixed reactions whereas sample 3 was amplified in the presence of 

IAC RNA only. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Carrier DNA Template Rxn. Vol. TTM [min] Stdev Amp.Freq. [%]

50uL 28 0.9 100

10uL 29 0.4 100

50uL 13 0.8 100

10uL 13 2.4 58

50uL 0

10uL 28 1.9 42

50uL 61 2.3 100

10uL 61 6.0 100

50uL 22 3.0 58

10uL 24 9.5 33

50uL 59 2.5 42

10uL 61 3.1 67

IAC RNA1

M. bovis rRNA2

IAC RNA3

0ng

500ng

IAC RNA1

M. bovis rRNA2

IAC RNA3
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5.3.3.2 Fluorescent probing as a method of IAC detection 

Molecular probes were assessed as novel tools for the differential detection of RT-LAMP and 

IAC. As described in the introduction to this chapter (section 1.1.5), most of the methods used 

to detect nucleic acid amplifications rely on the 5’->3’ endonuclease activity of DNA 

polymerases, which liberate digested fluorescent tag from a specific oligonucleotide (TaqMan 

probes). Hairpin loop structures are also commonly used that ensure the close proximity of 

fluorophores to the quencher (beacons). Here we describe an original method for LAMP 

detection, whereby a loop primer is labelled with rhodamine X (ROX) and the black hole 

quencher 2 (BHQ2) at the 5’ and 3’ ends, respectively. It is believed that proximity of the 

fluorophore and the quencher is maintained on the loop oligonucleotide via static interactions 

between the functional groups, which keep the ROX fluorescence low when unbound; while 

the binding of the loop probe to amplified LAMP or IAC complimentary sequences results in 

an increased distance between the functional groups, that causes a liberation of ROX 

fluorescence. The more single stranded loop amplified the greater the fluorescence signal 

achieved. This mechanism relies on the probing of single stranded amplified product such as 

the suggested loop or even stem regions of LAMP. This method can report the amplification 

in real time and is quantifiable. The following section of this Thesis explores the possibility of 

using Loop probing to detect the IAC when duplexed with the RT-LAMP-BART. The 

mechanism makes use of a specific loop sequence that can only be probed as a consequence of 

the IAC and not the RT-LAMP amplification. 

Figure 54 shows the folding predicted of the chosen loop B probe, under typical RT-LAMP 

salt (50mM) and temperatures (60oC), performed using the IDT oligo analyser tool [URL: 

https://www.idtdna.com/calc/analyzer].  

 

https://www.idtdna.com/calc/analyzer
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No secondary structure was detected in the chosen probe design. Only a small hairpin was 

predicted by the software that was thermal labile. No strong interactions were observed 

between the 5 and 3’ of this sequence. No specific design was engineered that would generate 

a highly complementary region at the 5’ and 3’ ends, which would ensure quenching of the 

probe, as is the case for molecular beacons.   

 

Figure 55 shows LAMP-ROX profiles generated using the proposed fluorescence-based 

approach, according to the protocol 21-22 (see Appendix 21-22).  

No detection of RT-LAMP amplification occurred when ROX-loop probes were eliminated 

from the amplification. BART did not cause any significant shift in the background 

fluorescence observed in the absence of the ROX-loop probes. In contrast, full detection of the 

target was achieved in all RT-LAMP amplifications that contained the ROX-loop probe, and 

Figure 54. showing a typical sequence analysis output generated using the IDT oligo analyser. The tested oligo probe showed very 

mild folding with only 2 bp stem.    
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target DNA irrespective of BART. Furthermore, BART did have an effect on the probe 

chemistry, elevating the fluorescence signal in the presence and absence of target DNA (Figure 

55D).    
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Figure 55. showing a typical LAMP-ROX profiles generated using the HBV assay model. Each reaction was amplified in either presence 

or absence of BART components.  A – amplification profiles generated in the absence of both the BART and ROX loop probes; B – 

amplification profiles generated in the presence of 0.8 uM ROX loop probe; C – amplification profiles generated in the presence of 

BART only; D – amplification profiles generated using 0.8 uM of the ROX loop probes in the presence of BART. 

Different concentrations of the HBV dsDNA used in this study were colour-coded as follows: Red – 10^4 cps; Orange – 10^3 cps; Black 

- NTC   



170 
 

Figure 56 LAMP-BART profiles and bar charts generated using the standard HBV protocol 

20 (Appendix 20). The effect of FAM and ROX labelled probes on the LAMP-BART 

performance was assessed.  

The addition of unlabelled loop primers (Figure 56 orange curves) resulted in a significant 

acceleration of amplification when compared to the reactions lacking these primers (Figure 56 

green curves). On average, a significant 4 min reduction in TTM was observed in the presence 

of unlabelled loop primers (p value < 0.05, t-test; Table 27). In contrast, a significant 5 and 6 

min increase in TTM was detected when the forward loop primer was substituted by either the 

FAM- or ROX-labelled probe, respectively (p value < 0.05, t-test). Furthermore, when 

compared to the reactions lacking both loop primers, the addition of labelled loop probes did 

not cause acceleration of amplification, but rather slowed it down, as seen previously with the 

probes tested under BART chemistry (see p.144).  
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Figure 56. showing LAMP-BART profiles (A) and summary bar chart (B) generated using the HBV model assay in a presence of 

functional Loop B and various other loop probes. Each type of loop F probes used was colour-coded as follows: Red – 5’ROX and 

3’BHQ2 labelled loop F; Blue - 5’FAM and 3’BHQ2 labelled loop F; Yellow – unlabelled loop F; Green – absence of both loop primers. 

Note that each reaction contained equal amount of the target HBV dsDNA (5 x 10^5 cps).  
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Table 27 showing summary of the data presented in the figure 56. Each set of reactions was 

analysed using average TTM (Mean), reproducibility (STDev) and sensitivity (Amp.Freq). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LoopF primer Mean [min] Stdev Amp.Freq.[%]

No loops 19 0.6 100

Fam-labelled 20 0.0 100

unlabelled 15 0.0 100

ROX-labelled 21 0.4 100
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Figure 57 IAC ROX and SYBR green detection using GSP-SSD or BstLF. The HIV ROX-

loop probe and SYBR green chemistry were used to detect 10^5, 10^6 and 10^7 copies of IAC 

RNA. 

The reactions performed with GSP-SSD performed noticeably better with SYBR green and 

ROX-labelled probe detection systems compared to those performed with BstLF. When GSP-

SSD was used full detection of 10^7 and 10^6 copies of the IAC was achieved using both 

reporters; 80% of the reactions containing the lowest copy number (10^5) were detected using 

both methods (Figure 57A, C). In contrast, reactions utilising the BstLF managed to fully 

detect the highest copy number only when the SYBR detection system was used, the sensitivity 

was compromised when using the ROX probe and only limited detection occurred in reactions 

that contained lower amounts of the IAC RNA (Figure 57B, D).  

The overall performance of the HIV probing was a lot lower than that observed in the HBV 

probed IAC (reported earlier; Figure 55), regardless of the DNA polymerase used. Both, the 

reproducibility and light output was noticeably higher when HBV loop probe was used (Figure 

56). The IAC makes use of two loop probe annealing positions, whereas in the HBV design, 

only one loop probe is used, which could account for the performance differences.  
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Figure 57. showing a typical LAMP-ROX/SYBR profiles generated using the IAC assay model. Each reaction was amplified in absence of 

BART components.  A – amplification profiles generated using GSP-SSD and SYBR dye; B – amplification profiles generated using Bst 

LF and SYBR dye; C – amplification profiles generated using GSP-SSD and 0.8 uM of the ROX HIV stem probe; D – amplification 

profiles generated using Bst LF and 0.8 uM of the ROX HIV stem probe. 

Different concentrations of the IAC RNA used in this study were colour-coded as follows: Red – 10^7 cps; Blue – 10^6 cps; Orange – 

10^5 cps; Black - NTC   
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5.4 Discussion 

One of the major limitations of NAAT diagnostic platforms, is the lack of amplification 

controls, which ensure the integrity of the detection system, and the inhibitory effects carried 

forward by the sample preparation procedures (Hoorfar et al., 2004a, Malorny et al., 2003). 

Without such controls, negative results can be highly misleading, as they are often attributed 

to faulty chemistry or inhibition of amplification and detection. Characterisation of false 

negatives is particularly important in the field of infectious disease diagnostics, where failings 

can affect patients well-being and prognosis, but also allow the increased spread of a disease 

(Chua and Gubler, 2013). Thus, in this study, we aimed to develop a non- or low-competitive 

IAC, to further our understanding of sample inhibition and to empathise the need for such 

controls in the diagnostic field.  

5.4.1 Development of the IAC model system 

Although, the loop mediated isothermal amplification (LAMP) technology has been shown to 

be an extremely useful and sensitive tool for nucleic acid amplification, one of the major 

limitations of this technology is the primer design (Kiddle et al., 2012, Lee et al., 2011). In 

order to achieve a high degree of specificity and sensitivity, LAMP employs up to six primers 

and 8 priming positions, but this causes increased complexity for primer design for singleplex 

assays, and severely limit the use of this technology for duplex or multiplexed amplifications. 

As a consequence of these limitations, we decided to adopt a competitive model for the 

development of internal amplification controls. This approach would not only limit the number 

of primers required for each assay, but also enable us to maintain a high level of similarity 

between the IAC and true targets sequence. Hence, factors such as GC-rich regions that can 

cause RT and DNA polymerase pausing or even secondary structure that are potentially 

limiting for primer and / or capture probe hybridisation, would have a similar effect on the two 

targets (Smith and Wu, 2004, Viguera et al., 2001).   
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Since LAMP is an extremely rapid amplification, several alterations were introduced into the 

IAC template that would ensure an impeded amplification, which in turn would avoid 

significant competition with the true positive amplification. Moreover, impediment of IAC 

amplification with respect to the core target was crucial for drawing a clear distinction with 

BART curves generated from late true positive amplifications.  

Since loop primers significantly accelerate LAMP, both annealing sites were substituted with 

alternative sequences for oligonucleotide probing of our IAC template design. This alteration 

to the IAC template served to confine the loop primed acceleration to the true LAMP 

amplification, but it also permitted fluorescent detection of the IAC amplification. 

Furthermore, as described earlier, the introduction of mismatches between a given LAMP 

inchworm primer (BIP or FIP) and its template resulted in amplification delays, which did not 

affect the overall reproducibility of the amplification time.   

All of the mismatches introduced into the BIP and FIP primers affected the performance of 

Mycobacterium complex 23s rRNA RT-LAMP amplification, regardless of the extent and the 

location of the mutations. Mutation introduced into specific poles of the inchworm primers (B1 

and F1) had a much greater impact on the amplification speed than corresponding alterations 

in F2 and B2. This difference could be correlated with distinct roles governed by each pole of 

the LAMP inchworm primers within the initiation and propagation of target sequence 

amplification. For example, the F2 site is crucial for the initiation of cDNA synthesis and the 

entire resultant amplification and therefore impacts upon the function of the BIP primers. Any 

alterations to the F2 region would therefore be expected to cause a severe reduction in 

amplification performance (sensitivity / kinetics). We did indeed observe significant 

amplification delays, along with a deterioration in the reproducibility of the RT-LAMP RNA 

amplification that utilised FIP primers, which had the F2 site mutated. In contrast, we did not 

see such severe effects of similar F2 mutations on DNA amplifications via LAMP (data not 
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shown). It is likely that the F2, has a more fundamental role in reverse transcribing the RNA in 

RT-LAMP, while, both the B2 and F2 sites have more equal roles in the initiation of 

amplification from DNA. Thus, we concluded that the increased variability in RT performance 

caused by impairment of the initiation step was responsible for this disparity.  

Mutations in the B2 sites of the BIP primer caused significant amplification delays, but these 

did not show the same potential to impede LAMP compared to corresponding F2 mismatches 

within the FIP, suggesting that primers involved in reverse transcribing RNA have a greater 

role in the initiation of LAMP from RNA than DNA. It could therefore be argued that first 

strand synthesis and displacement from RNA, are similar in nature to the second strand 

synthesised from cDNA and that amplification of the cDNA solely relies on the B2 site of BIP. 

Since it has been demonstrated that DNA hairpins are less stable than RNA, the effect of cDNA 

structure B2 primer hybridisation be mild compared to the effects of similar RNA structures 

on the F2 mutations (Antao et al., 1991). When primer carrying mismatches within the F2 or 

B2 sites are extended, newly formed amplicon will also contain sites exactly complementary 

to the introduced mutations, making the impact of these alterations less than those introduced 

into the other pole of the inchworms (B1 and F2), as is discussed. 

The B1 and F1 mutated sites caused significant amplification delays compared to their B2 and 

F2 counterparts without affecting the reproducibility of amplification time. The impact of these 

mutations is associated with their stabilising effect on the LAMP dumbbell intermediate, a 

molecule pivotal for propagation of these isothermal reactions. Mismatches introduced within 

the B1 and F1 persist throughout the amplification reaction, since they are incorporated into 

the freshly synthesised target amplicon (refer to LAMP figure 8). Thus, this mechanism 

guarantees the continued impaired interaction between these sites and their compliments on the 

dumbbell and extended concatemers. Furthermore, the impediment of amplification continues 
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throughout the course of the amplification, resulting in a greater impact upon the kinetics of 

amplification than mutations with the 3’ of the inchworm primers.   

After taking all experimental data and bioinformatics analysis into consideration, the IAC RNA 

template was designed, and this impacted upon loop primer binding sites, and alterations to the 

BIP B1 position, since this alteration to the BIP caused amplification impediment without 

affecting the reproducibility of amplification time.   

5.4.2 Performance of the IAC for monitoring inhibition of RT-LAMP. 

Our initial assessment of the designed IAC RNA assay demonstrated a significant delay in 

amplification time using our impeded LAMP mechanism, and also proved the potential of a 

test to report on the inhibitory nature of sample and sample preparation derived substances such 

as sodium chloride and carrier DNA, without affecting the core RT-LAMP amplification. It 

was noted that the 23S RT-LAMP assay could tolerate 10^6 copies of the IAC template without 

exhibiting any untoward effects. This proves that alterations to the LAMP priming mechanism, 

used to drive the impeded the amplification also served to sufficiently reduce the competition 

between the RT-LAMP and IAC. When challenged with sodium chloride or carrier nucleic 

acid, substantial delays in amplification times for the IAC were observed, proving these 

mechanisms responsiveness to inhibition. However, we did note that the inhibitor often 

affected the RT-LAMP amplification to a greater extent than the IAC when challenged with 

limiting amounts of RNA.  

Carrier DNA is a known inhibitor of PCR and isothermal assays that not only delayed the RT-

LAMP amplification, but also caused a significant reduction in the overall assay sensitivity and 

generation of detectable false negative results (Rohrman and Richards-Kortum, 2015, Kiddle 

et al., 2012). This effect was not observed when the IAC template was challenged by the same 

inhibitor, as all replicates of the target were detected even at the highest concentration of carrier 
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DNA used. Similar differences in the responsiveness of the RT-LAMP and IAC were observed 

for mucin, sodium hydroxide and carrier RNA. 

It is very likely that differences in inhibitor tolerance exhibited by both amplifications are 

associated with differences in the manifestation of the target nucleotide. The RT-LAMP assays 

are solely dependent on reverse transcriptase, as the template is known to be a highly pure 23S 

RNA preparation, while the IAC IVT RNA template is known to contain a mixture of RNA 

and DNA. To be certain of accurate scores of reverse transcribed inhibition the IAC template 

would have to be presented in a purer form, as it is likely that the susceptibility of different 

polymerases to all of the tested inhibitors has been inadvertently scored in these experiments. 

The nature of in vitro generated RNA templates showed to have a great impact on the 

performance and accuracy of IAC assays. We showed that using highly pure RNA IAC controls 

is required not only for controlling RT step, but also inhibitory substances that affect 

amplification of RNA compared to DNA. This work also shows that the reverse transcriptase 

is likely to be more rate limiting in our RT-LAMP amplifications that the DNA polymerase, 

and the tolerance of reverse transcriptase to classical PCR inhibitors may be a factor that 

significantly influences clinical sensitivity. 
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5.4.3 IAC detection systems 

The simplicity and affordability of the bioluminescent amplification reporter (BART) makes 

this detection highly competitive and very useful in low resource settings. It was however 

undefined whether BART could be used to differentiate between the impeded IAC and RT-

LAMP; the potential for this was assessed in this investigation.  

Reactions that contained limiting amounts of the target rRNA amplified significantly slower 

under inhibitory conditions than uncompromised RT-LAMP amplifications. Thus, a molecular 

diagnostic in the field, should be able to discriminate between RT-LAMP inhibition, false 

positive amplifications and true positive amplifications that amplify inefficiently due to low 

inputs of target nucleotide. An efficient method of differentiating between the IAC and 

inhibited and non-challenged true target amplification was crucial to avoid mis diagnosing 

samples. The major limitation of the BART reporter, is inability to discriminate between 

amplifications, as it responds to amplification per se and is not sequence dependent like probe 

based strategies for detection. Accordingly, a different approach had to be considered.  

The high concentration of IAC template used to control each amplification, were taken 

advantage of, to differentiate between this amplification and the RT-LAMP mechanism. It was 

envisaged that the two forms of amplification could be resolved by assessing amplification 

kinetics and frequency.  

A method was developed that made use of limiting amplification volumes and a greater number 

of analytical replicates to assess the impact of inhibitors.  The standard 50 ul reaction volume 

used for the RT-LAMP (which included the IAC target) was analysed and compared to the 

exact same reaction tested as 5x 10ul reactions. An assessment of BART timings (TTM) and 

amplification frequencies was then conducted in the presence and absence of inhibitor. 
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Thus, in the proposed approach, if all 5 of the 10ul reactions amplified within an early time 

frame, such a result would be deemed as truly positive and likely to contain large amounts of 

the target rRNA. Following on, if a smaller proportion of the 10ul reactions amplified with 

reduced kinetics, but still within a time frame known to be associated with RT-LAMP the 

overall result would still be scored as a positive diagnosis, but at the limit of detection. In 

contrast, where none of the reactions amplified in a time frame typical of LAMP, but 

corresponding to the IAC amplification times, such result would be deemed as a true negative. 

Thus using this approach, reactions containing limited copy numbers of the RT-LAMP or those 

compromised by inhibition are less likely to fully amplify within all 5 partitions. The Tmax as 

well as amplification frequencies generated by such partitioned reactions are less likely to be 

mistaken for the IAC detection profiles.  

In this chapter it was demonstrated that no difference in IAC amplification speed or 

amplification frequencies were detected when the volume of the reaction partition was reduced. 

It is thought that this result reflected the constant IAC concentration, despite varying copy 

numbers. Consequently, the likelihood of template-primer interactions remained constant for 

both sized reaction partitions. In contrast, when limited amounts of the RT-LAMP template 

RNA was used, a deterioration in amplification frequency was observed with the reduced 

reaction volume. This change in reaction volume did not affected the RT-LAMP amplification 

kinetics. It was concluded that the impeded nature of the RT-LAMP was caused by a limited 

amount of target available in the smaller reaction partition. Furthermore, when observing RT-

LAMP at its limit of detection performed with the IAC, similar observations were made. When 

RT-LAMP amplifications were conducted in 10 ul reactions, two populations of peaks were 

generated, indicating that the reduced volume affected sensitivity without impacting upon the 

detection of the IAC. It was also confirmed that the IAC amplification did not mask the effect 

that volume contributed to the RT-LAMP sensitivity.  
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5.4.3.1 Fluorescent detection system 

One of the major advantages of probe-based fluorescent detection technologies over BART is 

their sequence specificity that lends itself well to multiplexed PCR of two or more targets (Sint 

et al., 2012). Thus, we decided to explore this type of technology for detection of the IAC 

targets described above. We demonstrated that dually labelled loop primers (using fluorophores 

and quenchers) could be used for detection of LAMP products. We also proved that such probes 

cannot prime amplification and do not require hydrolysis via exonuclease activities to release 

fluorescent signal. This was an interesting finding which suggested that the TaqMan probes 

also do not require hydrolysis to release fluorescence, as suggested by the Roche patent, but 

could simply rely on the probe binding to its target.  

Secondary structure analysis of the loop probes demonstrated that the chosen loop primers did 

not form any significant 5’ to 3’ structure that would explain detection via a mechanism, similar 

to that described for molecular beacons. Several reports have suggested the potential static 

interactions between fluorophores and quenchers which could explain our finding.  

The Loop-probes were shown to work well in conjunction with BART and these could detect 

both DNA and RNA LAMP amplifications. The loop-probes could also discriminate between 

isothermal amplifications that had complementary loops in their target compared those targets 

deficient in the sequence. This made the loop-probed approach particularly well suited for the 

specific detection of the IAC. The loop-probes did not contribute to the amplification and 

delayed amplification times were observed from targets hybridising such probes; the probes 

therefore contribute to the impeded amplification required for the IAC.   

Together with functionality in the IAC, It is envisaged that this type of LAMP probing could 

allow for further multiplexing of true positivity and SNP detection.    
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5.5 Perspective 

It was demonstrated that the current IAC amplifies with a significant delay, compared to all 

copy numbers amplified by the RT-LAMP, this control also exhibits sensitivity to various 

inhibitory substances such as LDS, NaCl or carrier DNA. Nonetheless, despite the fact the 

current system works as an internal positive control, further optimisations are still required to 

improve upon its performance:  

a) Fluorescent probe binding site – a HIV sequence was used as a probing site in the 

current IAC TB RNA design. The use of non-human or -pathogen related sequence 

might be more suitable to avoid false positive detection from samples containing an 

abundance of this genome. 

b) IAC RNA purity – As already discussed it is important to have an IAC template specific 

for the target nucleotide of interest. Further purification of the IAC IVT is required to 

remove all DNA template, so that the full inhibitory effect on reverse transcription can 

be assessed.  

c) Further screening of inhibitory substances should be performed, including a wider 

range of substances found in clinical samples such as blood or sputum. The effect of 

these substances on reverse transcribed and DNA polymerised reactions should be 

ascertained. 

d) Although BART detection showed huge potential for differentiating between the IAC 

and RT-LAMP, further work needs to be performed, to assess this techniques limitation 

with respect to sensitivity. 
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Chapter 6 

6 Development of isothermal mechanisms of miRNA detection 

6.1 Introduction 

Micro RNA’s (miRNAs) are small, non-coding RNA molecules found in eukaryotic cells that 

average around 22 nucleotides in length (He and Hannon, 2004). These small miRNAs play a 

crucial role in regulating gene expression, in plants, animals and humans by controlling 

translation (Ambros, 2004, Bartel, 2004, Bartel, 2009). The mode of action of miRNAs as post-

transcriptional regulators involves the repression of translation, by interfering with the binding, 

promotion or the degradation of messenger RNA (mRNA) (Fabian et al., 2010, Jones-Rhoades 

et al., 2006).  

It has been reported that the human genome encodes over 1500 different miRNAs, which can 

target the translation of approximately 60% of the expressed genes (Kontomanolis and 

Koukourakis, 2015, Holland et al., 2013). miRNAs can be found in many different cell types 

and are known to regulate multiple genes associated with human cancer, neurological diseases 

and viral infections (He et al., 2012, Musilova and Mraz, 2015, Mraz and Pospisilova, 2012, 

Radhakrishnan and Alwin Prem Anand, 2016, Weber et al., 2010). Abnormal expression of 

miRNAs is commonly associated with the initiation of cancer, oncogenesis, and even tumour 

responses to treatments (Giza et al., 2014, Ardekani and Naeini, 2010, Li et al., 2016).  
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6.1.1 Function and biogenesis of miRNAs 

miRNAs are encoded in the genome in a form of long primary transcripts called pri-miRNA, 

which are mainly localised within the intron sequences of regulated genes (Rodriguez et al., 

2004, Cai et al., 2004, Weber, 2005). Although, little is known about the mechanisms of 

regulation of miRNA transcription, their localisation within the coding and non-coding regions 

of genes may indicate the host gene promotors involved in the regulation process (Rodriguez 

et al., 2004, Kim and Kim, 2007, Baskerville and Bartel, 2005).  

In animals, formation of mature miRNAs is normally carried out in two stages. Firstly, pri-

miRNAs consisting of a 5’ cap, a stem loop and a 3’ polyA tail that is transcribed by RNA 

polymerase II (Figure 58); this is then followed by cleavage events that result in the formation 

of approximately 70 bp long precursor miRNAs (called pre-miRNA), where each pri-miRNA 

may contain as much as six pre-miRNAs molecules (Lee et al., 2004, Zhou et al., 2007, Faller 

and Guo, 2008).  

The first stage of miRNA maturation occurs in the nucleus and is mediated by two core 

enzymes, Drosha and Pasha (Lee et al., 2003, Gregory et al., 2006). Pasha recognises the 

double-stranded regions of hairpin loop structures and together with an RNA restriction 

enzyme ‘Drosha’, several fragments of pre-miRNAs are formed. Each of the pre-miRNAs 

consists of a stem loop and a 2 nt long 3’ overhang, which is recognised by the Exportin-5 and 

a Ran-GTP dependent nucleo-cytoplasmic cargo transporter and translocated into the cytosol 

for further processing (Conrad et al., 2014, Auyeung et al., 2013, Ali et al., 2012, Murchison 

and Hannon, 2004).     

In the second stage of miRNA maturation, the pre-miRNA is cleaved into 20-25 nt products 

by an RNase III Dicer enzyme (Lund and Dahlberg, 2006, Park et al., 2011). The Dicer removes 

the loop structure of the pre-miRNA hairpin generating an imperfect miRNA: miRNA duplex 
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that consists of both the mature miRNA and its complementary strand. Separation of the two 

compliments is then carried out by the Dicer’s helicase domain DUF283 resulting in formation 

of single-stranded mature miRNA fragments (Mirihana Arachchilage et al., 2015, Kurzynska-

Kokorniak et al., 2016).  

 

The miRNAs main cellular function is to regulate expression of proteins via inhibition of 

translation or degradation of the target mRNAs. The exact contribution of each mechanism 

remains unclear. It is thought that post-transcriptional inhibition of translation is the most 

common mode of gene silencing found in the animal kingdom (Williams, 2008, Bazzini et al., 

2012, Maroney et al., 2006). Some reports have suggested that binding of miRNA to the 3’UTR 

regions of mRNAs affects the protein translation/release form the mRNA/ribosome complex, 

whereas others claim the disruption of translation to be the main factor (Nottrott et al., 2006, 

Petersen et al., 2006, Gu et al., 2009, Mathonnet et al., 2007).  

In plants, translational inhibition is very rare and the mode of gene silencing occurs through 

the RNA-induced silencing complex of proteins (RISC) containing Dicer and other activities 

Figure 58. Graphic representation of a typical miRNA synthesis 

pathway. 

Source:  http://www.biosyn.com/tew/gene-silencing-by-micro-

rnas.aspx 
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that facilitate the cleavage of the mRNA (Figure 59) (Zhang, 2013, Jones-Rhoades et al., 

2006). In this model, Argonaute (Ago) proteins containing PAZ and PIWI domains responsible 

for binding to the mature miRNA, help to orient the guide RNA within the RISC complex, 

which in turn binds to the target mRNA and initiates degradation (Yan et al., 2003, Schwarz 

and Zamore, 2002, Pratt and MacRae, 2009).   

It has also been suggested that the 

RISC complex plays a role in post-

transcriptional inhibition via either 

deadenylation of the 3’ polyA tail, 

thereby affecting the mRNA 

functionality, preventing translation 

factors from binding to the 5’ cap, and 

impairing the binding of the 60s 

ribosomal subunit or by encouraging 

the premature termination of 

translation (Figure 59) (Pratt and 

MacRae, 2009, Filipowicz et al., 2008, 

Wakiyama et al., 2007).  Although, miRNA-mediated mRNA degradation is well documented, 

it is still unknown whether translational repression is caused by mRNA degradation or 

inhibition of translation. 

It has recently been shown that inhibition of the translation events where the levels of mRNA 

remained unaffected, had a very modest impact on protein synthesis. In contrast, modulation 

Figure 59. Graphic representation of regulation of gene expression using 

RISC complex. 

Source:  https://www.researchgate.net/figure/miRNA-based-post-

transcriptional-gene-silencing-Briefly-endogenous-miRNA-genes-

are_fig3_235768533 
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of the mRNA stability in a miRNA-dependant manner showed a much higher reduction in the 

overall protein concentrations suggesting this mechanism  to be the main contributor in gene 

silencing (Guo et al., 2010).  

In a different study, it was found that lin-4 miRNA negatively regulated the translation of its 

lin-14 transcript without affecting its cellular concentration (Bagga et al., 2005). It was reported 

that although the lin-4 miRNA inhibited the translation of the lin-14 protein, it failed to affect 

the synthesis, polyadenylation or abundance of the lin-14 transcript. Moreover, it has also been 

proposed that depending on the level of complementarity between the miRNA and its target 

transcript, gene silencing can be achieved via translational inhibition of mRNA degradation. In 

animals, miRNAs match imperfectly with their target sequence, where typically only 2-7 

nucleotides must be conserved, to effect translational inhibition (Lewis et al., 2005, Lewis et 

al., 2003). In contrast, plants require perfect matching between the miRNA and message, in 

order to initiate degradation of the transcript (Mazière and Enright, 2007). Some miRNAs 

showed a dual function. For example, miR16 with an AU-rich element commonly found in 

unstable mRNAs, such as TMF α or GM-CSF, can either stimulate translational inhibition or 

mRNA degradation (Jing et al., 2005). It has been demonstrated that full complementarity 

between the miR16 and its target lead to mRNA degradation via Ago2 protein complex. 

However, when only partial complementarity was maintained, gene regulation was carried out 

via translational inhibition (Jing et al., 2005, Lim et al., 2003, Lim et al., 2005).  
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6.1.2 miRNAs as disease biomarkers 

Many clinically relevant human miRNAs are located within the regions associated with cancer 

or at fragile sites and control a wide range of important processes, such as cell proliferation, 

apoptosis or angiogenesis, where dysregulation of these regulatory mechanisms play a key role 

in the onset and progression of cancer (Wang et al., 2016). Numerous studies have shown 

altered miRNA profiles in a wide range of cancer types, such as breast cancer, leukaemia or 

liver cancer (Calin et al., 2004, Tam, 2008, Qi et al., 2013). In 2004, Takamizawa and co-

workers associated the levels of miRNA expression with the disease progression (Takamizawa 

et al., 2004). They found that expression of the let-7 miRNA was greatly reduced in all lung 

cancers tested and the patients exhibiting lower expression profiles had a significantly lower 

survival rate, after potentially curative resection.  

In 2005, Calin et al. showed the importance of miRNAs in diagnosing chronic lymphocytic 

leukaemia (CLL) (Calin et al., 2005).  It was reported that miRNA expression profiles could 

directly discriminate between normal B cells and the malignant disease, in patients with CLL.  

Since then, the interest in miRNA as biomarkers has grown exponentially. Although, miRNA 

biomarkers have been most widely characterised in cancer diagnostics, several reports have 

suggested the potential of miRNAs for the  diagnosis of viral infections, neurological disorders 

and even diabetes (Wang et al., 2016).  

It has been shown that miR-199a and miR-210 can reduce replication of HBV virus by binding 

to the S protein coding region (Zhang et al., 2010a). In a different study, an association between 

miR-122 and facilitation of HCV RNA replication was reported, where a knock down of miR-

122 gene caused almost complete inhibition of viral replication (Jopling et al., 2005, Scaria et 

al., 2006). Furthermore, it has been reported that over 70 % of miRNA are localised in the brain 

and frequently mutations in the miRNA processing machinery has been associated with 

numerous neurological disorders, such as amyotrophic lateral sclerosis or fragile X syndrome 
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(Cao et al., 2006). miR-9 and miR-134 have been characterised as key players regulating neural 

development (Zhao et al., 2009, Bavamian et al., 2015). It has been reported that aberrant 

expression of those miRNA significantly impaired neural differentiation and was associated 

with numerous neuro-developmental diseases such as Alzheimer’s or Parkinson’s disease, even 

schizophrenia (Perkins et al., 2007, Liu et al., 2014a). 

Upregulation of 12 miRNAs found in serum, has been linked with type 1 diabetes (Chen et al., 

2014). Similarly, miR-23a and miR-126 were reported as potential biomarkers for early 

detection of type 2 diabetes (Nielsen et al., 2012). Another three serum miRNAs, (miR-132, 

miR-29a, and miR-222), were found to be associated with gestational diabetes mellitus. miR-

278 and miR-375 were reported to regulate insulin secretion, thus these could potentially act 

as targets for pharmacological treatments of diabetes (Liu et al., 2014b, Wang et al., 2016).  
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6.1.3 miRNA detection  

Since disruption in miRNA expression profiles have been associated with a wide range of 

different diseases, efficient detection methods could provide valuable insights into disease 

progression and allow for early diagnosis.  

 

Northern blotting, quantitative real-time PCR and microarrays are currently the standard 

methods used for the detection of miRNAs (Válóczi et al., 2004, Chen et al., 2005, Li and 

Ruan, 2009). Most of these technologies have limitations, such as low sensitivity, poor 

reproducibility questionable specificities, and most are time consuming and require large 

numbers of samples.  

6.1.3.1 miRNA detection using Northern blotting 

Before the implementation of PCR or microarray hybridisations, northern blotting had been 

the most widely used method for analysis of RNA expression (Kevil et al., 1997). In principle, 

the technology relies on the separation of RNA molecules by electrophoresis. Following RNA 

separation, capillary transfer of the RNA bands to a nitrocellulose membrane is proceeded by 

a probe hybridisation and detection steps (Figure 60). Probes used in northern blot analysis 

can be either single-stranded DNA or RNA molecules that are complementary to the RNA of 

interest. Usually detection of the bound probes occurs through radioactive labelling (32P) or via 

a chemiluminescence reaction, in which alkaline phosphatase or horseradish peroxidase 

metabolise their substrates to generate a weak light signal that can be detected digitally or by 

using X-ray films.   



191 
 

 

 

A major drawback of the northern blot technique is its low sensitivity to low abundance RNAs. 

Consequently, large amounts of total RNA are required, which might be problematic when the 

cells or the source of tested tissue are limited (Streit et al., 2009, Koscianska et al., 2011).   

 

 

 

 

 

 

 

 

Figure 60. Graphic representation of a typical Northern blot workflow.  

Source:  

https://en.wikipedia.org/wiki/Northern_blot#/media/File:Northern_blot_diagram.png 
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6.1.3.2 qPCR microRNA detection 

Ever since its discovery, PCR has become one of the most widely used molecular techniques 

for studying nucleic acids, including miRNAs (Chen et al., 2005). Current PCR-based methods 

target the mature miRNA or their precursors and most commonly involves the detection of 

amplified product using Taqman probes (Benes and Castoldi, 2010, Mitchell et al., 2008). In 

principle, the miRNA molecules are targeted by stem loop primers containing a 3’-overhang 

complementary to the 5’ end of the target miRNA (Figure 61). Reverse transcription results in 

the formation of a cDNA-stem loop structure that can be detected by Taqman probing. Taqman 

probes are designed to complement the stem loop and the miRNA of interest. In the second 

step, a forward primer binds to the cDNA molecule, which initiates synthesis of the 

complementary strand and amplification results in the hydrolysis of the Taqman probe and 

emission of the fluorescent signal.  

The use of fluorescence-based systems and 

expensive thermocyclers for miRNA detection can 

significantly increase the overall cost of analysis.  

 

 

 

 

 

 

Figure 61. Graphic representation of a typical real-time PCR for 

detection of miRNAs using Taqman probes and stem-loop primer.  

Source:  https://www.researchgate.net/figure/7455286_fig1_Schematic-

description-of-TaqMan-miRNA-assays-TaqMan-based-real-time-

quantification-of 
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6.1.3.3 miRNA detection using isothermal amplification methods 

Several isothermal miRNA amplification methods have been developed over the years since 

PCR was invented, such as RCA-, SDA- or the duplex-specific nuclease-based techniques 

(Jonstrup et al., 2006, Zheng et al., 2016, Zhang et al., 2015).  Due to LAMPs complicated 

priming mechanism, the use of this technology has been greatly limited to the amplification of 

larger DNA and RNA molecules and it has not been exploited for miRNA detection, with the 

exception of Li et al, who reported a successful use of the LAMP amplification for the detection 

of miRNA (Figure 62). Li et al used the miRNA to replace a displacement primer on one 

amplification symmetry and claimed the miRNA was necessary to initiate the amplification 

within this mechanism, it was also claimed the published method was capable of discriminating 

between different miRNAs and that it could even detect SNPs (Li et al., 2011). This result is 

quite surprising, as it is well documented that LAMP FIP and BIP primers are predominating 

primers required for a successful amplification. The Loop and displacement primers only 

accessorise the LAMP amplification serving to accelerate or increase the overall sensitivity of 

these assays. Thus, it remains unclear whether the presented method was selective and would 

be able to detect low abundance miRNAs. 

  

 

 

 

Figure 62. Graphic representation of a LAMP-based miRNA detection 

approach.   

Source:  

http://pubs.rsc.org/en/content/articlelanding/2011/cc/c0cc03957h/una

uth#!divAbstract 
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6.2 Aims and objectives 

Main focus of this study was to develop an isothermal BART assay for more affordable and 

accessible detection of miRNAs.  

In this section, three alternative in-house designed methods of miRNA detection have been 

explored using loop-mediated isothermal amplification approach.  
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6.3  Results 

In this study, three in-house developed miRNA detection methods utilising the LAMP 

technology were assessed.  

6.3.1 Ligation-mediated miRNA detection 

As shown in Figure 63, the probe ligation-based miRNA detection technology involves two 

separate single-stranded probes - each containing a sequence complementary to the target 

miRNA molecules. Binding of the miRNAs to the probe results in the generation of RNA-

DNA heteroduplex with the annealed DNA stem loop probes being separated by a single 

nucleotide. The DNA stem loops can then be ligated 

to one another using SplintR ligase, which exhibits 

increased affinity for heteroduplex templates. Once 

ligated, the probes take on a dumbbell-like 

confirmation, which is an intermediate product 

generated during LAMP. Upon addition of the LAMP 

primers, the dumbbell can be propagated further 

generating pyrophosphate (PPi), which is 

subsequently detected by BART. 

 

 

Figure 63. Graphic representation of a in-house 

designed ligation-based miRNA detection method 

utilising LAMP technology.   

In this design, two probes (P1 and P2) containing the 

target miRNA recognition sites in the stem regions 

(yellow) are linked together using a heteroduplex 

bridge formed between the RNA and the probes. The 

generated nick is then sealed by a ligase resulting in 

formation of a complete dumbbell structure.  

Note that each probe consists of either forward or 

backward LAMP primer binding sites.   

 

 

P2 P1
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6.3.1.1 Assessment of the performance of the in-house developed ligation-mediated miRNA 

detection system 

Figure 64 shows LAMP-BART amplification curves generated using the detection probes and 

CAMV 35Sp LAMP primers. Each reaction component was tested in the presence or absence 

of the SPLINT R ligase (Appendix 26).   

The initial analysis showed no amplification of product in the absence of ligation (no ligation 

control (NLC)), regardless of the reaction component tested (Figure 64A). In contrast, positive 

amplifications were achieved by reactions that were successfully ligated (Figure 64B). No 

peaks were detected in the P1 and P2 reactions where only one type of the probe was used for 

each assay (Figure 64B).  Samples containing both probes gave positive peaks regardless of 

the presence of the target miRNA, where a 10 min delay was observed between the true and 

the false positives samples. 

 

 

Despite New England Biolabs clear product specification, stating that SplintR ligase, cannot 

perform ligation of single-stranded DNA molecules, it was evident that ligation of both P1 and 

P2 probes occurred in a miRNA independent manner. Nonetheless, SDS-PAGE analysis did 
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Figure 64. LAMP-BART profiles generated using the ligation-based miRNA approach. A – amplification profiles produced by the 

reactions lacking SPLINTR ligation step; B – amplification profiles produced by the reaction that undergone ligation in the presence of 

SPLINTR ligase.  

Note: blue peaks – reactions containing P1 template probe; green – reactions containing P2 template probe; orange – reactions 

containing P1 and P2 template probe; red – reactions containing P1 and P2 template probe as well as the target miRNA; black - NTC   
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not show any ligation products in the samples lacking miRNA (see Appendix 35). However, 

the amount of the ligation product generated in a miRNA-independent manner might have not 

been sufficient enough to visualise on the PAGE gels.  

6.3.1.2 Optimisation of the ligation-mediated miRNA detection system 

The initial analysis of the ligase-mediated miRNA detection system showed that non-specific 

ligation of the probes occurred in a miRNA independent manner. Thus, several ligases were 

tested in an attempt to improve the specificity of this reaction. 

Figure 65 shows the LAMP-BART profiles generated using the ligation-mediated miRNA 

method under different chemistries. Once more, no amplification profiles were generated in 

reactions deficient in ligase, proving that no prior contamination of the probes had occurred 

with the post-ligation products (Figure 65E). Only the reactions utilising Ampligase did not 

generate false positive amplifications (Figure 65D) in the absence of miRNA, within the time 

frame of analysis. The amplification observed with ampligase was significantly delayed 

compared to reactions performed with either T4 or SplintR ligase (Figure 65A-B; p values < 

0.05, t-test). The reactions containing T7 ligase showed no significant difference in observed 

polymerisation rates, whether the miRNA was included or excluded from the reaction. The T4 

and SplintR-mediated ligations worked most efficiently in the presence of the target miRNA, 

generating positive results within 17 min (Figure 65A-B). The assays utilising the SplintR 

ligase generated the quickest rates of true amplification, but also a greater delay in non-specific 

amplification (Figure 65B). In contrast, a slight difference in amplification times were noted 

between miRNA dependent and independent controls, when the T4 ligase was used (Figure 

65A).  
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Figure 65. LAMP-BART profiles generated using the ligation-based miRNA approach comparing performance of four chosen ligase 

enzymes. 

 A – T4 ligase; B – SplintR ligase; C – T7 ligase; D – Ampligase; E – No ligation control (NLC) 

Note: red curves represent reactions containing the target miRNA; orange curves shows amplification profiles generated in the 

absence of the miRNA target.    
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In this section, various attempts were made to further improve the ligation of probes, in a 

manner that was dependent on miRNA.  

Figure 66 shows BART reported LAMP amplifications during a time course study.  In this 

study, the reactions have undergone ligation (using the SplintR ligase) at room temperature for 

5 or 30 min.  

 

 

The no ligation control (NLC) reactions and the samples containing separate P1 and P2 probes 

did not generate any BART reported amplification, regardless of the duration of ligation. When 

a mixture of P1 and P2 underwent a ligation, positive BART profiles were observed, indicating 

amplification, and presumably successful ligation, although this was not dependent on the 

presence of the miRNA template (Figure 66A-B).  Moreover, when the miRNA was added to 

the ligation reactions, a 10 min reduction in the amplification time was observed, compared to 

reactions lacking the target miRNA template (p value < 0.05, t-test), suggesting an increase in 

efficiency of ligation. The duration of the ligation step did not affect the amplification kinetics 

when the probes and miRNA were present together in the reaction chemistry (p value > 0.05, 

t-test). However, a 2 min increase in the rates of positive amplification was observed between 
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Figure 66. LAMP-BART profiles generated using the ligation-based miRNA approach. A – amplification profiles produced by the 

reactions containing samples that undergone 5 min ligation using SplintR; B – amplification profiles produced by the reaction 

containing samples that undergone 30 min ligation using SplintR. 

Note: blue peaks – reactions containing P1 template probe; green – reactions containing P2 template probe; orange – reactions 

containing P1 and P2 template probe; red – reactions containing P1 and P2 template probe as well as the target miRNA; black - NLC   
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the 5 and 30 min ligation time (p value < 0.05, t-test); the increased ligation time therefore 

improves the rate of amplification (Table 28). To further increase the time differential in 

amplification kinetics observed between true and false positive polymerisations, the 

concentration of probe used in the reaction was optimised.  

Table 28 showing summary data presented in the figure 66. Each set of reactions was analysed 

using average TTM (Mean), reproducibility (STDev) and sensitivity (Amp.Freq). 

 

Figure 67 shows a summary bar chart of the probe concentrations used in this study. 

It may be of interest to note that the probe concentrations shown, represent the final 

concentration of each probe in the ligation reactions.   

The probe concentration did have an effect on the amplification kinetics, but this was 

independent of the template miRNA. False positive reactions were also affected by probe 

concentrations to a much greater extent than true positive reactions (Figure 67).  

A significant reduction in amplification speed of 3 min was observed for the true positive 

amplifications, between 500 nM and all the other concentrations tested (p value < 0.05, t-test) 

(Table 29). Reactions containing 1 to 50 nM of each probe did not show any significant 

difference in amplification kinetics for the miRNA dependent reaction (p value > 0.05, 

ANOVA). A further reduction in probe concentrations to 0.5 nM, did reduce the miRNA 

Ligation time [min] Sample TTM [min] Stdev Amp.Freq. [%]

P1 N/A N/A 0

P2 N/A N/A 0

P1+P2 27.2 0.6 100

P1+P2+microRNA 15.8 0.6 100

P1 N/A N/A 0

P2 N/A N/A 0

P1+P2 25.8 0.0 100

P1+P2+microRNA 15.0 0.0 100

5

30
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dependent amplification speed by 8 min compared to all other concentrations tested (p value < 

0.05, t-test).   

  

 

Table 29 showing summary data presented in the figure 67. Each set of reactions was analysed 

using average TTM (Mean), reproducibility (STDev) and sensitivity (Amp.Freq). 
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Figure 67. Summary bar chart generated using the ligation-based miRNA approach with various amounts of the P1 and P2 probes 

added during the ligation stage.  

 

Probes conc. [nM] Sample TTM [min] Stdev Amp.Freq. [%]

 +microRNA 14.18 1.40 100

 -microRNA 19.86 0.59 100

 +microRNA 17.36 0.44 100

 -microRNA 25.93 1.85 100

 +microRNA 20.61 1.97 100

 -microRNA 31.16 4.18 100

 +microRNA 17.20 7.86 100

 -microRNA 37.60 0.96 100

 +microRNA 19.53 2.30 100

 -microRNA 51.02 1.39 67

 +microRNA 28.34 0.96 100

 -microRNA 47.21 6.49 80

1

0.5

500

50

5
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Similarly, when the probe concentration was reduced below 500 nM, false positive reaction 

rates reduced. Unlike the miRNA dependent amplifications, which did not show any significant 

reduction in assay kinetics between 1 and 50nM, the false positive reaction was slowed-down 

by decreasing the concentration of probe used.  

Additional reductions in probe concentration did not show any further improvements with 

respect to amplification kinetics or specificity. The probe concentration therefore significantly 

affects the rate of positive and negative amplification and reducing the amount of probe serves 

to reduce positive amplification rates, but also improves the ability to differentiate between 

BART timings resulting from true positive and nonspecific reactions. 

In summary, amongst all of the probe concentrations tested, the biggest time difference 

between the true and false amplification of over 30 min was observed in the reactions 

containing 1 nM of each probe, whereas, on average, only 5, 8, 11 and 19 min difference was 

detected in the reactions utilising 500, 50, 5, 2.5 and 0.5 nM of each of the probes, respectively.  

The sensitivity of the ligation-mediated miRNA detection system was assessed on a range of 

miRNA template concentrations (Figure 68). This experiment successfully detected as little as 

125 fM of the target miRNA; a clear difference in amplification time (of 8 min) was observed 

between the lowest copy number of miRNA tested and the template independent amplification 

time. The amplification time also decreased with increasing copies of miRNA tested, and all 

amplifications times were very reproducible at each respective concentration tested. It is also 

interesting to note that the given sensitivity represents detectible concentrations of the miRNA 

in the final LAMP-BART assay. The true analytical LoD of the ligation reaction was 50 pM 

(125 fM in the assay).  
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Figure 68. LAMP-BART profiles generated using the ligation-based miRNA approach and various amounts of the target miRNA.  

Note: red curves – 500 nM miRNA; orange – 50 nm miRNA; blue – 5 nM miRNA; purple – 500 pM miRNA; green – 50 pM miRNA; 

black – no miRNA control. 

The concentrations of target miRNA shown represent the amounts of target added to each ligation reaction not the final assay 

concentration. Analytical (assay) sensitivity is 400 x higher taking into account 100 and 4 fold dilutions of ligation mix and sample 

additions to the LAMP-BART master mix.      
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6.3.2 Endonuclease-mediated miRNA detection 

Figure 69 shows the restriction enzyme mechanism of miRNA detection in a closed-tube 

format, which involves binding of the target miRNA to a single-stranded dumbbell probe with 

the target recognition site at the 3’ end, followed by its extension by the Bst DNA polymerase. 

Synthesis of the complementary strand then generates a restriction site (between the miRNA 

and the F2 site of the forward loop; black striped rectangle), LAMP primer binding site (green 

striped rectangle); as well as the displacement primer binding site (brown striped rectangle).  

Restriction of DNA using BstUI ensures that the product of strand invasion by the LAMP 

primer will terminate at an exact predefined position, in-order to prevent miss-folding of the 

generated dumbbell structure.   

 

Figure 69. Graphic representation of an in-house designed endonuclease-based miRNA detection method utilising LAMP technology.  

Synthesis of the complementary strand is initiated by the target miRNA hybridisation to the recognition site (red rectangle). Once a 

double-stranded product is generated, the restriction site between the miRNA and the F2 binding sites (black rectangle) is recognised 

by a specific restriction enzyme (BstUI)(green arrow). The restriction digest results in generation of a double stranded DNA product 

with both LAMP and displacement binding sites (green and brown striped rectangles). Strand invasion by the two primers results in a 

formation of single stranded dumbbell. 
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6.3.2.1 Assessment of the performance of the in-house designed restriction endonuclease-

mediated miRNA detection system 

 

Performance of the restriction enzyme-mediated miRNA detection system, was assessed in this 

study. Various restriction enzymes (BssKI, BstUI, BstWI and BsaWI) were tested, in order to 

determine the most suitable candidate enzyme to couple with the LAMP-BART reaction.  

Figure 70 shows polyacrylamide gel results of a 10 min restriction digest performed using four 

restriction enzymes.  The restriction digest was tested using both, LAMP-BART and NEB 

buffering conditions in this study.  The performance of each enzyme was assessed by looking 

at the brightness of the DNA bands and fragmentation before and after digestion. Surprisingly, 

all of the restriction enzymes performed more efficiently under the LAMP-BART chemistry 

compared to NEBs recommended conditions. (Figure 70 lanes E-H). BssKI restricted the 

DNA more efficiently than the other enzymes tested under NEB recommended conditions 

(Figure 70 lanes B and F); under the LAMP-BART buffering conditions, the BstUI enzyme 

was found to be the most efficient.  

 

 

After digestion, very little evidence was left of the initial template on the polyacrylamide gel, 

with only 2 lower molecular weight bands evident, and this indicated complete digestion of the 

LGFEDCBA H

50 bp

Figure 70. Polyacrylamide gel electrophoresis showing restriction digest of 4 in-house designed double-stranded DNA probes.  

Lanes A-D show restriction digests carried out in recommended buffers; lanes E-H shows restriction digest performed under LAMP-

BART chemistry (enzyme constituents of LAMP-BART were not added). Lanes A and E – BstUI; lanes B and F – BssKI; lanes C and G – 

BsaWI; lanes D and H – BstNI; lane L contained 50bp ladder (NEB). Refer to Appendix 42 for undigested controls.         
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original template DNA. BssKI and BstWI were the least efficient of the restriction enzymes 

tested (Figure 70 lanes B and F, D and H). BsaWI generated good quantities of digested 

product but was not considered for the miRNA amplification due to its non-specific restriction 

cutting, reflected in the observed star activity and the generation of a small MW 4th band 

(Figure 70 lane G).  

Figure 71 shows LAMP-BART profiles generated using the BstUI-mediated (endonuclease) 

miRNA detection system.  

Surprisingly, positive amplification profiles were detected whether the miRNA was included 

in the reaction or not. The same amplification rates were also detected in the NTC samples, 

suggesting possible contamination of the reagents.  

 

 

A similar experimental set up, using the same aliquots of reagents, was then performed and 

comparable observations were made.  
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Figure 71. LAMP-BART profiles generated using the endonuclease-based miRNA detection system. Red curves represent the 

reactions containing the target miRNA; orange curves show profiles generated in the absence of the target miRNA; black curves 

represent reactions lacking both the miRNA and the detection probe. Note that all of the reactions contained 8 U of BstUI restriction 

enzyme and 1.6 and 0.8 uM LAMP and displacement primer, respectively. 
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Figure 72 shows LAMP-BART profiles generated using BstUI mediated miRNA detection 

chemistry. Note that the amount of enzyme in each reaction, was 5x lower than previously 

used. In addition, no BstUI was added to the NTC control samples.  

No difference in TTM was detected between the true and false positive profiles, generated 

using BstUI. Reducing the BstUI 2-fold, caused a 5 min delay in amplification time compared 

to assays utilising 1.6 U (Figure 72A-B). Despite the reduced speed no discrimination between 

miRNA dependent and independent amplifications was possible.  

 

 

 

Interestingly, when BstUI was completely eliminated, no amplification was observed in the 

reactions lacking the miRNA, yet the true positives were successfully detected (Figure 73). 

The amplifications are therefore working independently of the restriction enzyme. 
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Figure 72. LAMP-BART profiles generated using the endonuclease-based miRNA detection system. Red curves represent the 

reactions containing the target miRNA; orange curves show profiles generated in the absence of the target miRNA; black curves 

represent reactions lacking both the miRNA and the detection probe as well as the restriction enzyme. A – amplification profiles 

generated with the reactions containing 1.6 U BstUI; B – amplification profiles generated using 0.8 U BstUI 
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Figure 73. LAMP-BART profiles generated using the endonuclease-based miRNA detection system. Red curves represent the 

reactions containing the target miRNA; orange curves show profiles generated in the absence of the target miRNA; black curves 

represent reactions lacking both the miRNA and the detection probe. Note that the BstUI restriction enzyme was not present. 
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6.3.3 Nickase-mediated miRNA detection 

As shown in figure 74, the nicking enzyme mediated method is very similar to the previously 

described miRNA detection technique (Figure 69). Instead of removing the fragment of 

miRNA bound to the dumbbell probe, a single-stranded nick is generated between the miRNA 

and the F2 site (red and black striped rectangles, respectively (Figure 74)). DNA polymerase 

then binds to the nick site and proceeds with extension and displacement of the synthesised 

strand which now contains the LAMP and the displacement binding sites. From this point 

onwards, the DNA synthesis proceeds as described in the endonuclease-mediated miRNA 

detection method (see above for details). In contrast with the previous method, nicking enzyme 

should allow continuous generation of single-stranded complementary to the probe DNA 

fragments that can be targeted by the LAMP and displacement primers. This could increase the 

sensitivity of the entire system since several dumbbell structures could be generated from a 

single miRNA binding event.  
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Figure 74. Graphic representation of an in-house designed nickase-based miRNA detection method utilising LAMP technology.  

Synthesis of the complementary strand is initiated by the target miRNA hybridisation to the recognition site (red rectangle). Once a 

double-stranded product is generated, the nickase recognition site between the miRNA and the F2 binding sites (black rectangle) is 

recognised by the chosen enzyme (green arrow) which introduces a single stranded break (a nick). Bst DNA polymerase binds to the 

nicks initiating synthesis of the complementary strand resulting in generation of a double stranded DNA product with both LAMP 

and displacement binding sites (green and brown striped rectangles). Strand invasion by the two primers results in a formation of 

single stranded dumbbell. This process can potentially be repeated throughout the duration of the assay since the miRNA 

recognition site is not removed upon nicking. 
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6.3.3.1 Assessment of the performance of the in-house developed nickase-mediated miRNA 

detection systems  

The performance of the nicking enzyme-mediated miRNA detection was then tested. The 

mechanism described earlier is known to be similar to the restriction mediated miRNA 

mediated detection method that could not differentiate between the reactions containing 

miRNA and the false positives (see Figure 75). 

 

Figure 76 shows LAMP-BART profiles generated using the standard nickase-mediated 

miRNA reactions prepared in the presence or absence of the Nb.BsmI nicking enzyme. All 

reactions contained equal amounts of detection template. Amplifications were not observed in 

the NTCs (no detection template, no nicking enzyme), nor in the reactions lacking the Nb.BsmI 

nickase. In contrast, reactions containing the miRNA were detected when nickase was added.  
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Figure 75. LAMP-BART profiles generated using the nickase-based miRNA detection system. Red curves represent the reactions 

containing the target miRNA; orange curves show profiles generated in the absence of the target miRNA. Note that each 

amplification reaction was performed in the presence of 1 U of Nb.bsmI nickase. 
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Figure 77 shows LAMP-BART profiles generated using the standard nickase-mediated 

miRNA assay. In this experiment, the nicking enzyme was heat-inactivated in order to exclude 

possible contamination. No amplification was observed suggesting the requirement for an 

active nicking enzyme to generate false positive amplification profiles.  

Further investigations demonstrated that the false positive amplification profiles was nickase-

dependant, but also required a DNA polymerase. In addition, false positive amplification was 

found to be independent of primer, detection template and miRNA.  

Figure 78 shows LAMP-BART profiles generated using the nickase-mediated miRNA assay 

in either the presence or absence of the Bst2.0 DNA polymerase. All assays were performed in 

the absence of miRNA. No detectable amplification was observed in reactions lacking Bst 2.0 

DNA polymerase; this data suggests that the formation of the false positive amplifications 

requires the both the nickase and DNA polymerase.    
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Figure 76. LAMP-BART profiles generated using the nickase-based miRNA detection system. Red curves represent the reactions 

containing the target miRNA and 1 U Nb.bsmI nickase; orange curves show profiles generated with the reactions containing miRNA in 

the absence of the nicking enzyme; black curves represents reactions lacking both the miRNA and the nicking enzyme.   
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Figure 77. LAMP-BART profiles generated using the nickase-based miRNA detection system. Red curves represent the reactions 

containing the target miRNA and 1 U of heat-inactivated Nb.bsmI nickase; orange curves show profiles generated with the reactions 

containing miRNA in the absence of the nicking enzyme; black curves represents reactions lacking both the miRNA and the nicking 

enzyme.   
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Figure 78. LAMP-BART profiles generated using the nickase-based miRNA detection system. Red curves represent the reactions 

containing Bst 2.0 DNA polymerase and 1 U Nb.bsmI nickase; orange curves show profiles generated with the reactions containing 

the nicking enzyme only. 
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Figure 79 shows LAMP-BART amplification curves generated using further controls of the 

nickase-mediated miRNA assay, where no detection template, primers and the target miRNA 

was added to the reactions.  

 

In this study, the nicking enzyme was pre-incubated in a LAMP-BART reaction mixture, in 

the absence of Bst2.0, for 60 min at 60 °C followed by a heat-inactivation step. Two sets of 

reactions were then investigated, under a standard LAMP-BART set up (including Bst 2.0) 

where either the non-treated or the inactivated version of the nickase was used. It was already 

demonstrated, the reactions containing the non-treated version of the nickase showed typical 

amplification profile generated in a template- and miRNA-independent manner. Interestingly, 

positive amplifications were also detected in the samples utilising the heat-treated version of 

the nickase, although the amplification profiles differed considerably. The amplification in 

these controls were not only noticeably delayed, but also exhibited much slower assay kinetics 

with only gradual increases in BART over the course of the assay. In contrast, the BART switch 

off was extended with respect to a typical BART when the active version of the nickase was 

used.  
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Figure 79. LAMP-BART profiles generated using the nickase-based miRNA detection system. Red curves represent the reactions 

containing active Nb.bsmI nicking enzyme; orange curves show profiles generated with the reactions containing the inactive version 

of the nicking enzyme that undergone pre-incubation; black curves represent reactions lacking Nb.bsmI nickase 
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Due to the non-specific effect that BstUI and Nb.BsmI nickase had on the BART reporter, a 

number of different endonucleases were tested under non-primer and detection template 

conditions. 

Figure 80A-B demonstrates LAMP-BART profiles generated using the endonuclease / 

nickase-mediated miRNA assay using either Bst 1.0 (A) or Bst 2.0 (B) and six chosen 

endonucleases.  

All of restriction and nicking enzymes showed similar non-specific activities to that already 

observed. Despite the lack of primers and the detection template, all of the reactions containing 

these enzymes generated positive amplification profiles, and this was also regardless of the 

type of the Bst DNA polymerase used. In addition, the reactions containing the DNA 

polymerase only (NTC) or lacking both the endonucleases and DNA polymerases (NEC), 

showed no signs of reactivity.    

 

 It was evident from this data that the type of DNA polymerase used did not affect the potential 

of each restriction or nicking enzyme to cause mis-amplification events. However, small 

differences in kinetics were observed between the profiles generated using Bst 1.0 and Bst 2.0 

with the latter producing slower and shorter peaks. 
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Figure 80. LAMP-BART profiles generated using the endonuclease-based miRNA detection system. A – represents the reactions 

utilising Bst large fragment and various endonucleases; B – represents reactions containing Bst 2.0 and various endonucleases. 

Tested endonucleases were colour-coded as follows : yellow – BsaWI; orange – BssKI; dark blue – BstNI; red – BstUI; green – Nb.bsmI; 

light blue – Nt.bstNBI; black solid curves – No enzyme control (NEC); black dashed lines – no endonuclease 
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6.4 Discussion 

Recent advances in nucleic acid amplification technologies have resulted in a wide range of 

isothermal techniques being commercialised as molecular diagnostic assays (Craw and 

Balachandran, 2012). Of all the well-known isothermal amplification technologies, LAMP 

assays are the most prolific and well suited for a variety of diagnostic applications (Kiddle et 

al., 2012, Njiru, 2012, Li et al., 2011). The very design of the LAMP, and its reliance on a 

number of priming positions, makes this technology highly specific for the target of interest, 

but paradoxically prone to false positive backgrounds that can be caused by non-template 

amplifications (Tan et al., 2008). LAMP is highly sensitive and capable of detecting very small 

amounts of target template and is not prone to interference from non-template carrier DNA 

present in extracted samples, which makes this technology particularly suitable for GM 

detection, where the target concentration can be very limiting in high backgrounds of DNA 

(Kiddle et al., 2012). Since traditional LAMP requires a highly complex primer design, the 

adaption of this technology for miRNA screening has been immensely challenging, as will be 

discussed.  

6.4.1 Ligation-based miRNA detection system 

The results presented earlier demonstrate that it is possible to generate a LAMP intermediates 

(dumbbell-like structure) via a probe ligation-mediated strategy. This not only eliminates the 

need for a complex primer design, but also affords this technique reasonable analytical 

sensitivity. To test the viability of this and other miRNA detection systems lin-4 miRNA (one 

of the first discovered miRNA expressed by Caenorhabditis elegans) was selected and 

artificially synthesized as a model template (Esquela-Kerscher, 2014). Although the initial 

assessment of the ligation detection method showed this technology capable of detecting the 

target lin-4 microRNA, false positive results were routinely obtained. 
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It was demonstrated that the amplification efficiency and specificity was dependent on the 

efficiency of the ligation, the ligase used and the amount of probe in the reaction. The time 

difference of the LAMP-BART profiles generated by the true and the false positive samples 

ranged between 4 to 6 min, which had a significant impact on the dynamic range of this 

amplification mechanism. Several steps were taken to determine the cause of the false positive 

amplifications and to design methods for their control. Figure 64 shows LAMP-BART profiles 

generated using different ligation reactions containing various combinations of the probes. It 

was demonstrated that only when both probes (with or without the target miRNA) were present 

during the ligation step, false positive peaks could be detected, suggesting the possibility of 

ligation events occurring in the absence of miRNA. As the proposed mechanism was entirely 

dependent on a miRNA driven ligation further work was undertaken to improve the specificity 

of the technique. Reducing the concentrations of each probe had a significant effect on the mis-

amplification (Figure 67), a result that may be explained by the effect of molecular crowding 

on probe proximity and efficiencies of the miRNA independent ligation. Dilution of the probes 

prior to the ligation step had little effect on the detection time for the samples containing the 

target miRNA and this consequently increased the dynamic range of the method (Figure 67-

68).  

Our current probe ligation-mediated methodology, successfully detected as little as 125 fM of 

the target RNA within 40 min. Despite the analytical sensitivity demonstrated, biological 

samples, such as blood will pose additional problems for this type of technology, as the amount 

of available miRNA may be far more limiting than tested here (Parasramka et al., 2012). This 

technology may however afford increased resistance to inhibition compared to PCR based 

approaches, as LAMP and its associated displacement polymerase tolerate classical sample 

derived PCR inhibitors, such as haem, collagen or salts far more effectively than Taq 

polymerase (Kiddle et al., 2012).  
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In 2016, a ligation-based LAMP miRNA detection method was published by Du et al. that was  

based on a very similar ligation approach (Du et al., 2016). In his design, the dumbbell structure 

was also generated via ligation of two separate probes using a miRNA target, as a linker 

template. However, unlike our design, Du’s method required the reverse transcription of the 

miRNA in order to successfully carry out the ligation. Thus, this method incorporated an 

additional step into the workflow, which increased the overall time required for detection 

compared to our assays.  Similarly, to our findings, false positive results were also obtained in 

the reactions containing LAMP probes only suggesting miRNA-independent ligation events 

have occurred.   

Although we showed that our current probe ligation-based system can successfully detect 

picomolar concentrations of miRNAs further optimization is required in order to enhance its 

sensitivity and specificity, as well as establishing its performance on template extracted from 

relevant biological samples.  

6.4.2 Endonuclease-based microRNA detection 

Unfortunately, both the restriction endonuclease and nickase-mediated methods for miRNA 

detection assessed failed to detect the target miRNA within a satisfactory time frame. Both 

restriction and nicking enzyme methods generated false positive results regardless of the 

presence of the miRNA.   

Nonetheless, our work has shown a unique feature of both DNA polymerases when used in 

conjunction with endonucleases, as this coupling of activities appears to be capable of de novo 

DNA synthesis in the absence of templates and primers. There are several reports in the press 

regarding the same de novo synthesis, although it is unclear how the process is initiated 

(Antipova et al., 2014, Liang et al., 2004). For instance, Liang et al, suggested a potential 

mechanism of de novo amplification. In his model, short DNA fragments containing 
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palindromic repetitive sequences are de novo synthesised and then elongated by strand 

displacing DNA polymerases, which form long repetitive stretches of double-stranded DNAs. 

Those long molecules are then subjected to restriction or nicking digest that in turn generates 

more substrate for elongation. In concordance with our findings, Liang and co-workers have 

shown that DNA synthesis was not affected by nuclease treatment of any of the components 

used, suggesting a de novo origin of the template rather than a result of a pre-existing 

contamination of the enzymes used. Liang hypothesised that the DNA polymerase used in his 

studies was responsible for the de novo synthesis. Consequently, he showed that incubation of 

Vent DNA polymerases in the presence of dATP and dTTPs for 3 days could generate 

detectible amounts of short DNA fragments. Moreover, Ramadan et al. found that human DNA 

polymerase λ or deoxyribonucleotidyl transferase could synthesise DNA fragments de novo 

even in a presence of a single type of nucleotide such as dTTP (Ramadan et al., 2004).   

The rate of de-novo synthesis described was extremely slow and could not explain the kinetic 

profiles generated in our experiments. Furthermore, each of the tested endonucleases required 

a unique recognition site in order to initiate either double- or single-stranded breaks. Even if 

we assume that the de novo synthesis originates from the DNA polymerase through synthesis 

of random stretches of repetitive sequences, the likelihood of synthesising perfect recognition 

sites in a quick and efficient manner that would allow generating such fast amplification 

profiles, is rather low. There is however a real possibility that due to imperfect chemical 

conditions, each of the tested endonucleases exhibited a star activity that resulted in non-

specific cutting.  

In contrast with the previously mentioned reports regarding de novo synthesis, our findings 

suggest an alternative origin of the synthesised DNA. However, it is evident that the native 

version of endonuclease enzyme is needed for this artefact, as we saw no amplification profiles 

when a heat-denatured version of the Nb.bsmI nickase was used. However, when the chosen 
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nickase was pre-incubated in typical LAMP buffering conditions, containing a full set of 

dNTPs, prior to heat-denaturation, amplification profiles were detected.  

Following on, if Ling et al postulation that DNA polymerases were indeed responsible for de 

novo DNA synthesis observed in our experiments, we would expect to see no difference in 

amplification performance between reactions that utilise a heat-inactivated nickase and those 

that have undergone a pre-incubation step utilising nickase prior to heat denaturation. Instead, 

we saw full detection in the reactions containing the pre-incubated, inactive nicking enzyme. 

It is evident from this work that DNA is more likely to have originated from the endonuclease 

solution and/or the LAMP-BART components present during the pre-incubation step, which 

then was readily amplified by the DNA polymerases and this accelerated the overall miRNA 

detection mechanism in an unpredicted manner. In fact, we saw distinctly different BART 

amplification curves, when comparing reactions using the native nickase, compared to control 

reactions containing the denatured enzyme; this suggests that both are required for efficient 

amplification of the generated DNA.   

Furthermore, to our understanding, the de novo synthesis phenomena was not limited to a few 

endonucleases, but is rather a common feature amongst of these enzymes, as over 10 different 

restriction and nicking enzymes were tested, all demonstrating a capacity for de novo DNA 

synthesis.  Further work is now needed to prove our hypothesis. Particularly since successful 

incorporation of strand displacement DNA polymerases and nicking enzymes have been 

reported (SDA, EXPAR). However, most of these technologies utilise probe-based detection 

systems thus are immune to the non-specific backgrounds.    
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Chapter 7 

7 Discussion and conclusions 

7.1 Development of RT-LAMP assays 

The advent of reverse transcription technologies has empowered scientists to study gene 

expression and these have proved extremely useful in the field of molecular diagnostics. 

However, despite their widespread use, there is little working knowledge of their optimisation 

in the literature. It is well established that all single stranded RNA molecules are prone to a 

high degree of secondary and tertiary structure that is often attributed to biological function, 

yet primer design rarely accounts for RNA folding (Jubin, 2001, Lukavsky, 2009), and to-date 

no specific RT primer design software is publicly or commercially available. 

In chapter 3, different factors affecting reverse transcribed LAMP is explored, including 

enzymology, reaction chemistry and primer design. This research demonstrated the importance 

of a highly optimised chemistry and the right choice of enzymes, but also highlighted the need 

for bespoke RT primers that could negotiate RNA secondary structure and DNA polymerases, 

which could adequately displace the primed entities of the initiated DNA propagators of these 

reactions. 

Following on, it was shown that RNA structure could impede the performance of the 5’ UTR 

HCV RT-LAMP. In silico analysis of 5’ UTR RNA showed a high degree of secondary 

structure, predicted by the Vienna RNA folding software. Even so, there were certain domains 

of the RNA sequence that showed only a moderate level of folding, and thus these regions were 

predicted to be more suited for primer annealing positions that could initiate amplification via 

reverse transcriptase. All of the designed RT-LAMP primer sets performed efficiently when 
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the RNA secondary structure was negotiated (Set 34-40), while LAMP RT primers targeting 

highly structured regions of the HCV 5’UTR failed to amplify (13-18 and 13-20) altogether. 

In this thesis, two versions of the recombinant Bst 2.0 DNA polymerase (Bst 2.0 / Bst 2WS) 

were compared to a highly displacing combined DNA / RT polymerase (GSP-SSD). This work 

was carried out, to appropriate evaluate any differences in performance that could be attributed 

to the displacement activity associated with polymerases. Of the DNA polymerases tested, 

GSP-SSD proved to be the most optimal for the current 5’UTR RT-LAMP HCV. This 

polymerase not only increased the kinetics of amplification, but also generated far fewer NTCs 

compared to either Bst 2.0 tested. 

Primer dimerization, is a very well-known cause of non-specific activity, and when combined 

with highly efficient DNA polymerisation, increased rates of primer-derived amplification are 

more likely to occur (Friedberg et al., 2000, Poritz and Ririe, 2014). Despite the increased 

polymerisation efficiency of GSP-SSD, primer and target derived amplification specificities 

were maintained. This may be attributed to reduced activity of the enzyme at low temperatures, 

which would prevent mis-priming events from occurring during the reaction set up, without 

affecting performance of specific priming at optimal assay temperatures. In contrast, 

amplifications tested using Bst 2.0 at similar concentrations resulted in nonspecific 

amplifications, suggesting a higher degree of activity exhibited by the enzyme at lower 

temperatures. An alternative version of Bst 2.0 (Bst 2.0 WS) designed to avoid mis-priming 

during reaction set ups makes use of aptamers attached to the active site. It was demonstrated 

that modified enzymes, such as Bst 2.0 WS, can negatively affect performance of RT-LAMP, 

but not LAMP amplifications. This was observed for both the 5’UTR HCV RT-LAMP and the 

23S TB RT-LAMP but the LAMP amplifications were unaffected. 
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This optimisations of the RT-LAMP polymerisation and RT priming resulted in highly 

sensitive reactions capable of detecting as little as 5 cps. Despite this success further 

evaluations would still be needed to optimise assay chemistry and performance when 

challenged with inhibitory / extracted RNA from clinical samples. 

7.2 Inhibition of RT-LAMP assays 

One of the major drawbacks of any NAAT amplification, is their sensitivity to inhibitory 

substances, which result in either a reduction in amplification kinetics or a complete failure in 

detection (Bustin and Nolan, 2004, Schrader et al., 2012). Thus the inhibitory substances pose 

a real risk to amplification performance, particularly in the field of molecular diagnostics, 

where a failure to detect a true positive can lead to a mis-diagnosis and have a direct effects on 

a patients’ wellbeing and the downstream disease transmission rates (Huggett et al., 2008, 

Drosten et al., 2002). Although, inhibition of amplification has been widely studied and is 

thought to be a result of many factors, research has mainly focused on the inhibition of DNA 

polymerase function (Opel et al., 2010, Al-Soud and Rådström, 2001), and not reverse 

transcription. 

The main focus of the study presented in the chapter 4 was to determine the inhibitory effect 

of the chosen and commonly encountered polymerase inhibitors, including potassium and 

sodium salts, detergents and non-target nucleic acids, on the performance of RT assays 

specifically. In this study it was demonstrated that inhibition of polymerization not only 

depends upon the type of substance but also its concentration the effects of which can 

sometimes be mitigated by the assay chemistry. A clear correlation was between the 

concentration of the inhibitory salt tested and the impact on the amplification. However, it was 

noted that LAMP assays utilizing the Bst 2.0 DNA polymerase were less affected by salt 

inhibition when compared to GSP-SSD.  Interestingly, the addition of 10 mM of either 

potassium chloride or acetate resulted in significant increases in the amplification speed for 
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both tested assay chemistries but was not observed in the reactions challenged with equal 

amounts of sodium chloride.   

The acidic detergent LDS was shown to have no effect on the polymerization. Yet a large 

impact upon BART reporting was observed. Interestingly, the choice of buffer could modulate 

the effect of LDS on BART. It was concluded that low buffering capacities of certain buffers, 

which were insufficient to overcome the low pH of LDS (4≥pH), caused the decline in the light 

emission observed. Further work is however recommended to ascertain the impact of these 

detergents on RT-LAMP enzymology.   

The inhibitory effect of carrier non-target nucleic acids was also gauged in this study. Unlike 

all other inhibitory substances tested, carrier NA showed an increased inhibitory potency 

towards RNA assays specifically. Although, a significant inhibition of amplification of both, 

DNA and RNA templates was observed when challenged with salmon sperm DNA and tRNA, 

RNA assays suffered to a much higher extent. The reaction containing RNA templates not only 

suffered a significant reduction in the amplification speed but also a dramatic reduction in the 

overall assay sensitivity. In contrast, no effect on the assay sensitivity was detected under 

identical inhibitory conditions, when DNA template were amplified. This work has 

categorically established clear differences between the effects of commonly encountered 

polymerase inhibitors and their impact on RT and DNA polymerizations.  
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7.3 Development of amplification controls for RT-LAMP assays 

The main focus of the study presented in the chapter 5, was to develop a mechanism for 

controlling RT-LAMP amplification in a single-tube format, without causing interference of 

true positive activities or preferential amplification with respect to the IAC template. 

Due to high complexity of the RT-LAMP priming mechanism, and a requirement for an 

abundance of primers to drive efficient amplification of the RNA target, a competitive IAC 

mechanism was adopted. It was demonstrated that a significant reduction in amplification 

speed can be achieved by introducing mismatches, without compromising on the 

reproducibility. As expected, all of the tested mutations introduced into the BIP and FIP 

primers affected the performance of Mycobacterium complex 23s rRNA RT-LAMP 

amplification, regardless of the extent or location of the mutations. However, mutations 

introduced into specific poles of the LAMP primers (B1 and F1) had a greater impact on the 

kinetics compared to corresponding alterations in F2 and B2. Thus, it was concluded that the 

observed differences could be correlated with distinct roles each pole of the LAMP inchworm 

primers played within the initiation and propagation of target sequence amplification.  

The impact of these mutations was associated with the ability to form stable dumbbell 

intermediates – molecules crucial for propagation of isothermal LAMP reactions. Mismatches 

introduced within the B1 and F1 persist throughout the amplification reaction, since they are 

incorporated into the freshly synthesised target amplicon, and are not directly targeted by the 

primers. In contrast, mutation in the F2 and B2 sites could only affect the initiation rather than 

propagation, since once extended, the synthesised complementary strand will retain those exact 

same mutations thus resulting in a template containing full complementarity with the primers. 

The developed IAC model was tested under various inhibitory conditions. The initial 

assessment showed a significant delay in amplification time under unchallenged conditions, 
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and proved the potential of the test to report on the inhibitory nature of sample and sample 

preparation derived substances such as sodium chloride and carrier DNA, without affecting the 

core RT-LAMP amplification. The designed IAC model responded to most of the tested 

inhibitory substances such as carrier NA or salts, proving its viability as an amplification 

control. However, significant differences in the response of RT-LAMP and the IAC to sodium 

hydroxide inhibition were also observed. The developed IAC assay remained unaffected by 

sodium hydroxide, whereas the sensitivity of 23s rRNA detection was significantly 

compromised. The difference in sensitivity of RT-LAMP and IAC to certain inhibitory 

substances poses real risks for diagnostic assays. In our model, the IAC was determined to 

contain as much as 10 % DNA contamination originating from the in vitro transcription 

process. Since the effects of sodium hydroxide on the integrity of RNA targets has been widely 

reported, the differences in the response to this inhibitor could be attributed to the presence of 

this contaminant.  

Furthermore, it was observed that certain reactions containing limiting amounts of the target 

23s rRNA amplified significantly slower under inhibitory conditions. Thus, in a molecular 

diagnostic setting where unknown samples are tested, such result could indicate amplification 

of the IAC rather than an inhibited sample, if the assessment was done solely on the basis of 

the TTM under BART detection system. It was then concluded that an efficient method of 

differentiating between the IAC and both inhibited and non-challenged true target amplification 

was crucial for this technology. However, one of the main limitations of BART is its lack of 

multiplexing capabilities. Thus, an alternative method of differentiation was explored. 

It was hypothesised that by taking advantage of the high amounts of IAC used in each assay, a 

differentiation between the two targets could be performed when taking both the TTM and 

amplification frequencies into consideration. 
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A system was proposed, where standard 50 uL reactions containing the LAMP-BART reagents 

and the tested sample (including the IAC target) were split into 5 10 uL reactions and their 

amplification monitored in real time by BART platforms. However, an assessment of TTM and 

amplification frequencies would be performed based on a collective data from all 5 reactions 

as well as each reaction individually. Thus, in the proposed approach, if all 5 reactions 

amplified in a characteristic to 23s rRNA TTM then such sample would be considered true 

positive amplification likely to contain large amounts of the target RNA. Similarly, if only 1 

out of 5 10 uL reactions showed positive amplification profiles for 23s rRNA, and 4 amplified 

significantly slower, the overall result would still lead to positive diagnosis of the disease based 

on the single positive replicate. However, since the full detection was not achieved then the 

amount of present RNA was most likely at the limit of detection. In contrast, in a scenario 

where none of the reactions amplified the target in a characteristic to the 23s rRNA manner, 

but still managed to generated late positive profiles corresponding to the IAC amplification, 

such result would then be marked as a true negative. Thus using this approach, the samples 

containing limited copy number of the core target or those compromised by inhibition are less 

likely to fully amplify in all 5 reactions. Consequently, the TTM as well as amplification 

frequencies generated by such samples are less likely to be mistaken for the IAC detection 

profiles.  

In this chapter, it was demonstrated that reaction volume had no effect on the kinetics of the 

amplification, regardless of the type and amount of the template used. However, when limited 

amounts of the RT-LAMP template RNA was used, a reduction in amplification frequency was 

observed with the reduced reaction volume. Thus, it was concluded that the observed detrition 

in sensitivity of the RT-LAMP was caused by a limited amount of target available in the smaller 

reaction partition and was most likely further affected by stochastic variation. Furthermore, 

similar observations were made when amplification of the target RNA was performed in the 
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presence of impeded IAC template. When RT-LAMP amplifications were conducted in 10 uL 

reactions, two populations of peaks were generated, indicating that IAC had no effect on the 

overall sensitivity of the target RT-LAMP RNA. Thus, enabling full discrimination between 

the amplification of the core target and the IAC template. 

Fluorescent detection using a probe-based system was also explored as an alternative to BART. 

For over a decade, PCR based technologies have benefited from the specificity and 

multiplexing capabilities of fluorescent probes, but greatly limiting their use in the isothermal 

setting. In this study, the capability of dually labelled loop primers to detect nucleic acid 

amplification in a Taq independent manner, was reported. It was shown that full detection of 

the IAC can be achieved using this technology without accelerating the amplification.  

Fluorescent detection of LAMP using such probes would not only simplify the analysis but 

also increase the specificity of detection.  
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7.4 Isothermal mechanisms of miRNA detection 

Since disruption in miRNAs expression profiles have been associated with a wide range of 

different diseases, an efficient detection method could provide valuable insights into disease 

progression and early diagnosis. The main focus of this study was to develop a LAMP-based 

miRNA detection system that would offer a cost-effective, highly accessible detection 

platform. 

Due to the complexity of LAMP primer design, the use of this technology has been limited and 

used rarely for miRNA detection (Li at el. 2013). 

In chapter 6, we present an alternative method of miRNA detection, where the LAMP target 

was generated using a ligation-mediated step dependant on miRNA as a linker. Although, the 

specificity of the amplification was poor, this method was capable of successfully detecting 

125 fM of the target miRNA.  

Alternative methods of generating the dumbbell template using restriction mediated 

approaches were also presented in chapter 6. However, these methods failed due to the extent 

of non-specific amplification observed. The fidelity of both restriction mediated methods 

appeared to be compromised as a consequence of de novo DNA synthesis caused by activities 

associated with endonuclease and displacement polymerases. Although, this de novo synthesis 

artefact has already been reported, it is still unclear how the DNA synthesis is initiated. Most 

of the published accounts suggest the DNA polymerase is responsible for activity. This study 

has shown that the synthesised DNA originated from the tested endonucleases and was most 

likely amplified by the DNA polymerase. In addition, the observed effect was not limited to a 

chosen endonuclease but was likely a common feature when combined with displacing DNA 

polymerases.  
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However, several reports have already been published where nicking enzymes and strand 

displacement polymerases were successfully used for NA amplification using EXPAR or SDA. 

Nonetheless, most of these technologies utilise probe-based detection systems, thus are 

immune to the non-specific backgrounds. 
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Appendix 1 

Protocol 1: Standard HCV LAMP-BART assay  

Reaction mix setup: 

 

Master mix was prepared according to the reaction mix set up shown above. 15 uL of the master 

mix was then mixed with 5 uL of the appropriate HCV template in a 96-well plate (white) 

followed by an addition of two drops of mineral oil. Samples were sealed using a clear adhesive 

film and loaded onto BISON set at 60 °C and ran for 90 min.  

 

 

 

 

 

 

 

 

 

 

Dispense volume [µL]: 15

F inal co nc

C o mpo nent Sto ck M ix+sample Units Spec  [µL]  A dded

M GW MS00001 464

Trehalose (25% solution) 250 75 mg/mL SS008 600

10 Isothermal Buffer 10 1 x MS00043 200

Dithiothreito l 1M 1000 10 mM SS003 20

Luciferin, 10 mg/mL solution 10 0.1  mg/mL SS0004 20

10 mM  APS 10000 250 µM MS00015 50

Ultraglow luciferase 46.6 0.05 RLU/mL MS00011 1.1

300U/ml ATP sulphurylase 300000 375 mU/mL MS00012 2.5

100 mM  dNTP mix 25000 300 µM MS00032 24

HCV BIP 100 1.6 µM 32

HCV FIP 100 1.6 µM 32

HCV F3 100 0.4 µM 8

HCV B3 100 0.4 µM 8

HCV LoopF 100 0.8 µM 16

HCV LoopB 100 0.8 µM 16

Ribolock 40 0.05 U/µl MS00042 2.5

Gsp SSD pol 100 0.1 U/µl MS00041 2

Maxima RTase H - 200 0.2 u/µl MS00030 2.0

*HPLC Purified Primers 1500 Total  volume

Eurofins
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Appendix 2 

Protocol 2: Primer screening procedure using standard HCV LAMP-BART assay 

Reaction mix set up: 

 

Initial master mix was prepared according to the reaction mix set up shown above. 1388 uL of 

the initial reaction mix was then split into four aliquots of 347 uL each. Final master mix was 

prepared by adding 2 uL of F3 and B3, 4 uL of Loop B and F and 8 uL of FIP and BIP of the 

appropriate LAMP primer sets to the aliquots containing 347 uL of the initial master mix. 15 

uL of the final master mix was then mixed with 5 uL of the appropriate HCV template [10^4 

cp/5uL] in a 96-well plate (white) followed by an addition of two drops of mineral oil. Samples 

were sealed using a clear adhesive film and loaded onto BISON set at 60 °C and ran for 90 

min.  

Note: 100 uM primer stocks were used 

 

 

 

 

 

 

Dispense volume [µL]: 15

F inal co nc

C o mpo nent Sto ck M ix+sample Units Spec  [µL]  A dded

M GW MS00001 464

Trehalose (25% solution) 250 75 mg/mL SS008 600

10 Isothermal Buffer 10 1 x MS00043 200

Dithiothreito l 1M 1000 10 mM SS003 20

Luciferin, 10 mg/mL solution 10 0.1  mg/mL SS0004 20

10 mM  APS 10000 250 µM MS00015 50

Ultraglow luciferase 46.6 0.05 RLU/mL MS00011 1.1

300U/ml ATP sulphurylase 300000 375 mU/mL MS00012 2.5

100 mM  dNTP mix 25000 300 µM MS00032 24

HCV BIP 100 1.6 µM

HCV FIP 100 1.6 µM

HCV F3 100 0.4 µM

HCV B3 100 0.4 µM

HCV LoopF 100 0.8 µM

HCV LoopB 100 0.8 µM

Ribolock 40 0.05 U/µl MS00042 2.5

Gsp SSD pol 100 0.1 U/µl MS00041 2

Maxima RTase H - 200 0.2 u/µl MS00030 2.0

*HPLC Purified Primers 1388 Total  volume

Eurofins



252 
 

Appendix 3 

Protocol 3: DNA polymerase screening procedure using standard HCV LAMP-BART 

assay 

Reaction mix set up: 

 

Initial master mixes (2x) were prepared according to the reaction mix set up shown above. 1498 

uL of each of the prepared initial reaction mixes were then split into two aliquots of 749 uL. 

Final master mixes were prepared by adding 1 uL of either GSP-SSD [100 U/uL], Bst 2.0 [200 

U/uL] or Bst 2.0WS [200 U/uL], or 1.5 uL of Bst large fragment [160 U/uL] to separate aliquots 

containing 749 uL of the initial master mix. 15 uL of the final master mix was then mixed with 

5 uL of the appropriate HCV template in a 96-well plate (white) followed by an addition of 

two drops of mineral oil. Samples were sealed using a clear adhesive film and loaded onto 

BISON set at 60 °C and ran for 90 min.  

HCV RNA at concentrations 10^4, 10^3, 100, 50 and 10 cps/5uL were used in this study. 

 

 

 

 

 

 

Dispense volume [µL]: 15

F inal co nc

C o mpo nent Sto ck M ix+sample Units Spec  [µL]  A dded

M GW MS00001 464

Trehalose (25% solution) 250 75 mg/mL SS008 600

10 Isothermal Buffer 10 1 x MS00043 200

Dithiothreito l 1M 1000 10 mM SS003 20

Luciferin, 10 mg/mL solution 10 0.1  mg/mL SS0004 20

10 mM  APS 10000 250 µM MS00015 50

Ultraglow luciferase 46.6 0.05 RLU/mL MS00011 1.1

300U/ml ATP sulphurylase 300000 375 mU/mL MS00012 2.5

100 mM  dNTP mix 25000 300 µM MS00032 24

HCV BIP 100 1.6 µM 32

HCV FIP 100 1.6 µM 32

HCV F3 100 0.4 µM 8

HCV B3 100 0.4 µM 8

HCV LoopF 100 0.8 µM 16

HCV LoopB 100 0.8 µM 16

Ribolock 40 0.05 U/µl MS00042 2.5

Gsp SSD pol 100 0.1 U/µl MS00041

Maxima RTase H - 200 0.2 u/µl MS00030 2.0

*HPLC Purified Primers 1498 Total  volume

Eurofins
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Appendix 4 

Protocol 4: Reverse transcriptases screening procedure using standard HCV LAMP-

BART assay 

Reaction mix set up: 

 

Initial master mixes (2x) were prepared according to the reaction mix set up shown above. 1498 

uL of each of the prepared initial reaction mixes were then split into two aliquots of 749 uL. 

Final master mixes were prepared by adding 1 uL of either Maxima RNaseH+ [200 U/uL], 

Maxima RNaseH+ [200 U/uL] or SuperScriptIV [200 U/uL] to separate aliquots containing 

749 uL of the initial master mix. 15 uL of the final master mix was then mixed with 5 uL of 

the appropriate HCV template in a 96-well plate (white) followed by an addition of two drops 

of mineral oil. Samples were sealed using a clear adhesive film and loaded onto BISON set at 

60 °C and ran for 90 min.  

HCV RNA at concentrations 10^4, 10^3, 100, 50, 10 and 1 cps/5uL were used in this study. 

 

 

 

 

 

 

Dispense volume [µL]: 15

F inal co nc

C o mpo nent Sto ck M ix+sample Units Spec  [µL]  A dded

M GW MS00001 464

Trehalose (25% solution) 250 75 mg/mL SS008 600

10 Isothermal Buffer 10 1 x MS00043 200

Dithiothreito l 1M 1000 10 mM SS003 20

Luciferin, 10 mg/mL solution 10 0.1  mg/mL SS0004 20

10 mM  APS 10000 250 µM MS00015 50

Ultraglow luciferase 46.6 0.05 RLU/mL MS00011 1.1

300U/ml ATP sulphurylase 300000 375 mU/mL MS00012 2.5

100 mM  dNTP mix 25000 300 µM MS00032 24

HCV BIP 100 1.6 µM 32

HCV FIP 100 1.6 µM 32

HCV F3 100 0.4 µM 8

HCV B3 100 0.4 µM 8

HCV LoopF 100 0.8 µM 16

HCV LoopB 100 0.8 µM 16

Ribolock 40 0.05 U/µl MS00042 2.5

Gsp SSD pol 100 0.1 U/µl MS00041 2

Maxima RTase H - 200 0.2 u/µl MS00030

*HPLC Purified Primers 1498 Total  volume

Eurofins
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Appendix 5 

Protocol 5: Reaction buffers screening procedure using standard HCV LAMP-BART 

assay 

Reaction mix set up: 

 

Initial master mix was prepared according to the reaction mix set up shown above. 1300 uL of 

the prepared initial reaction mixes was then split into two aliquots of 650 uL each. Final master 

mix was prepared by adding 100 uL of either Isothermal [10x] or Thermopol [10x] buffers to 

separate aliquots containing 650 uL of the initial master mix. 15 uL of the final master mix was 

then mixed with 5 uL of the appropriate HCV template in a 96-well plate (white) followed by 

an addition of two drops of mineral oil. Samples were sealed using a clear adhesive film and 

loaded onto BISON set at 60 °C and ran for 90 min. 

HCV RNA at concentrations 10^4, 10^3, 100, 50, 10 and 1 cps/5uL were used in this study. 

 

 

 

 

 

 

Dispense volume [µL]: 15

F inal co nc

C o mpo nent Sto ck M ix+sample Units Spec  [µL]  A dded

M GW MS00001 464

Trehalose (25% solution) 250 75 mg/mL SS008 600

10 Isothermal Buffer 10 1 x MS00043

Dithiothreito l 1M 1000 10 mM SS003 20

Luciferin, 10 mg/mL solution 10 0.1  mg/mL SS0004 20

10 mM  APS 10000 250 µM MS00015 50

Ultraglow luciferase 46.6 0.05 RLU/mL MS00011 1.1

300U/ml ATP sulphurylase 300000 375 mU/mL MS00012 2.5

100 mM  dNTP mix 25000 300 µM MS00032 24

HCV BIP 100 1.6 µM 32

HCV FIP 100 1.6 µM 32

HCV F3 100 0.4 µM 8

HCV B3 100 0.4 µM 8

HCV LoopF 100 0.8 µM 16

HCV LoopB 100 0.8 µM 16

Ribolock 40 0.05 U/µl MS00042 2.5

Gsp SSD pol 100 0.1 U/µl MS00041 2

Maxima RTase H - 200 0.2 u/µl MS00030 2.0

*HPLC Purified Primers 1300 Total  volume

Eurofins
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Appendix 6 

Protocol 6: Inhibitory substances screening procedure using standard HCV LAMP-

BART assay 

Reaction mix set up: 

 

Initial master mix was prepared according to the reaction mix set up shown above. 1498 uL of 

the initial reaction mixes was then split into two aliquots of 749 uL each. Final master mix was 

prepared by adding 1 uL of either GSP-SSD [100 U/uL] or Bst 2.0 [200 U/uL] to separate 

aliquots containing 749 uL of the initial master mix. 15 uL of the final master mix was then 

mixed with 5 uL of the appropriate inhibitory substance in a 96-well plate (white) followed by 

an addition of two drops of mineral oil. Samples were sealed using a clear adhesive film and 

loaded onto BISON set at 60 °C and ran for 90 min.  

Potassium and sodium chloride and Potassium acetate at concentrations 0 to 50 mM, were 

tested in this study.  

 

 

 

 

 

Dispense volume [µL]: 15

F inal co nc

C o mpo nent Sto ck M ix+sample Units Spec  [µL]  A dded

M GW MS00001 462

Trehalose (25% solution) 250 75 mg/mL SS008 600

10 Isothermal Buffer 10 1 x MS00043 200

Dithiothreito l 1M 1000 10 mM SS003 20

Luciferin, 10 mg/mL solution 10 0.1  mg/mL SS0004 20

10 mM  APS 10000 250 µM MS00015 50

Ultraglow luciferase 46.6 0.05 RLU/mL MS00011 1.1

300U/ml ATP sulphurylase 300000 375 mU/mL MS00012 2.5

100 mM  dNTP mix 25000 300 µM MS00032 24

HCV BIP 100 1.6 µM 32

HCV FIP 100 1.6 µM 32

HCV F3 100 0.4 µM 8

HCV B3 100 0.4 µM 8

HCV LoopF 100 0.8 µM 16

HCV LoopB 100 0.8 µM 16

Ribolock 40 0.05 U/µl MS00042 2.5

Gsp SSD pol 100 0.1 U/µl MS00041

HCV 5'UTR RNA 200000 100 cps/µl 2

Maxima RTase H - 200 0.2 u/µl MS00030 2.0

*HPLC Purified Primers 1498 Total  volume

Eurofins
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Appendix 7 

Protocol 7: Standard TB LAMP-BART assay (20 uL) 

Reaction mix set up: 

 

Master mix was prepared according to the reaction mix set up shown above. 15 uL of the master 

mix was then mixed with 5 uL of the appropriate M. bovi  template in a 96-well plate (white) 

followed by an addition of two drops of mineral oil. Samples were sealed using a clear adhesive 

film and loaded onto BISON set at 60 °C and ran for 90 min.  

 

 

 

 

 

 

 

 

 

 

 

Dispense volume [µL]: 15
F inal co nc

C o mpo nent Sto ck M ix+sample Units Spec  [µL]  A dded Lo t no .

M GW MS00001 325 RNBF0862

Trehalose (25% solution) 250 50 mg/mL SS008 400 1616103

Bicine Buffer 4x 1x 500 1507602

M g2SO4, 100mM 100 2 mM MS00017 40 0011202

Dithiothreito l 1M 1000 10 mM SS003 20 1605002

Luciferin, 10 mg/mL solution 10 0.1  mg/mL SS0004 20 1610501

10 mM  APS 10000 250 µM MS00015 50 001

Ultraglow luciferase 50.7 0.025 µg/mL MS00011 2.0 201098

300U/ml ATP sulphurylase 300000 375 mU/mL MS00012 2.5 0191605

100mM  dNTP mix (25mM  each)25000 300 µM MS00032 24 1436447

Bst LF DNA polymerase 160000 200 u/mL MS00029 2.5

Lamp F   TB103 100 1.6 µM 32

LAM P B TB087 100 1.6 µM 32

Loop B   TB083 100 0.8 µM 16

LoopF    TB101 100 0.8 µM 16

Disp B    TB100 100 0.4 µM 8

Disp F    TB115 100 0.4 µM 8

M axima RtaseH + 200 0.2 u/µl MS00030 2

Total Volume 1500 [µL]

M
W

G
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Appendix 8 

Protocol 8: DNA polymerase screening procedure using standard TB LAMP-BART 

assay 

Reaction mix set up: 

 

Initial master mixes (2x) were prepared according to the reaction mix set up shown above. 1498 

uL of each of the prepared initial reaction mixes were then split into two aliquots of 749 uL. 

Final master mixes were prepared by adding 1 uL of either GSP-SSD [100 U/uL], Bst 2.0 [200 

U/uL] or Bst 2.0WS [200 U/uL], or 1.3 uL Bst large fragment [160 U/uL] to separate aliquots 

containing 749 uL of the initial master mix. 15 uL of the final master mix was then mixed with 

5 uL of the appropriate TB M. bovis template in a 96-well plate (white) followed by an addition 

of two drops of mineral oil. Samples were sealed using a clear adhesive film and loaded onto 

BISON set at 60 °C and ran for 90 min.  

M. bovis nucleic acids concentrations of 1000 and 100 cps/5uL were used in this study. 

Both genomic DNA and 23s rRNA were used.  

 

 

 

 

 

 

Dispense volume [µL]: 15
F inal co nc

C o mpo nent Sto ck M ix+sample Units Spec  [µL]  A dded Lo t no .

M GW MS00001 325 RNBF0862

Trehalose (25% solution) 250 50 mg/mL SS008 400 1616103

Bicine Buffer 4x 1x 500 1507602

M g2SO4, 100mM 100 2 mM MS00017 40 0011202

Dithiothreito l 1M 1000 10 mM SS003 20 1605002

Luciferin, 10 mg/mL solution 10 0.1  mg/mL SS0004 20 1610501

10 mM  APS 10000 250 µM MS00015 50 001

Ultraglow luciferase 50.7 0.025 µg/mL MS00011 2.0 201098

300U/ml ATP sulphurylase 300000 375 mU/mL MS00012 2.5 0191605

100mM  dNTP mix (25mM  each)25000 300 µM MS00032 24 1436447

Bst LF DNA polymerase 160000 200 u/mL MS00029

Lamp F   TB103 100 1.6 µM 32

LAM P B TB087 100 1.6 µM 32

Loop B   TB083 100 0.8 µM 16

LoopF    TB101 100 0.8 µM 16

Disp B    TB100 100 0.4 µM 8

Disp F    TB115 100 0.4 µM 8

M axima RtaseH + 200 0.2 u/µl MS00030 2

Total Volume 1498 [µL]

M
W

G
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Appendix 9 

Protocol 9: Inhibitory substances screening procedure using standard TB LAMP-BART 

assay (no IAC) - LDS 

Reaction mix set up: 

 

Master mix was prepared according to the reaction mix set up shown above. 15 uL of the master 

mix was then mixed with 5 uL of the appropriate M. bovis template* in a 96-well plate (white) 

followed by an addition of two drops of mineral oil. Samples were sealed using a clear adhesive 

film and loaded onto BISON set at 60 °C and ran for 90 min.  

*- dilutions of the templates were performed using the appropriate concentrations of the tested 

inhibitors as diluents. 

M. bovis 23s rRNA at concentration 1000 and 100 cps/5uL was used in this study.  

Serial dilutions (20 uL sample + 180 uL diluent) of the 23s rRNA top stock [10^6 cps/5uL]   

were carried out in order to obtain the appropriate template concentrations. 

For the inhibitory samples, 0.01 and 0.05% LDS was used as diluents. 

 

 

 

 

 

 

Dispense volume [µL]: 15
F inal co nc

C o mpo nent Sto ck M ix+sample Units Spec  [µL]  A dded Lo t no .

M GW MS00001 325 RNBF0862

Trehalose (25% solution) 250 50 mg/mL SS008 400 1616103

Bicine Buffer 4x 1x 500 1507602

M g2SO4, 100mM 100 2 mM MS00017 40 0011202

Dithiothreito l 1M 1000 10 mM SS003 20 1605002

Luciferin, 10 mg/mL solution 10 0.1  mg/mL SS0004 20 1610501

10 mM  APS 10000 250 µM MS00015 50 001

Ultraglow luciferase 50.7 0.025 µg/mL MS00011 2.0 201098

300U/ml ATP sulphurylase 300000 375 mU/mL MS00012 2.5 0191605

100mM  dNTP mix (25mM  each)25000 300 µM MS00032 24 1436447

Bst LF DNA polymerase 160000 200 u/mL MS00029 2.5

Lamp F   TB103 100 1.6 µM 32

LAM P B TB087 100 1.6 µM 32

Loop B   TB083 100 0.8 µM 16

LoopF    TB101 100 0.8 µM 16

Disp B    TB100 100 0.4 µM 8

Disp F    TB115 100 0.4 µM 8

M axima RtaseH + 200 0.2 u/µl MS00030 2

Total Volume 1500 [µL]

M
W

G
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Appendix 10 

Protocol 10: Inhibitory substances screening procedure using standard TB LAMP-

BART assay (no IAC) – Bicine buffers comparison 

Reaction mix set up: 

 

Initial master mix was prepared according to the reaction mix set up shown above. 1000 uL of 

the initial reaction mix was then split into two aliquots of 500 uL each. Final master mix was 

prepared by adding 250 uL of either 500 mM [4x] or 50 mM [4x] Bicine buffers  to separate 

aliquots containing 500 uL of the initial master mix. 15 uL of the final master mix was then 

mixed with 5 uL of the appropriate M. bovis template* in a 96-well plate (white) followed by 

an addition of two drops of mineral oil. Samples were sealed using a clear adhesive film and 

loaded onto BISON set at 60 °C and ran for 90 min.  

*- dilutions of the templates were performed using the appropriate concentrations of the tested 

inhibitors as diluents. 

M. bovis 23s rRNA at concentration 10000 and 1000 cps/5uL was used in this study.  

Serial dilutions (20 uL sample + 180 uL diluent) of the 23s rRNA top stock [10^6 cps/5uL]   

were carried out in order to obtain the appropriate template concentrations. 

For the inhibitory samples, 0.05% LDS was used as diluent. 

 

 

 

 

Dispense volume [µL]: 15
F inal co nc

C o mpo nent Sto ck M ix+sample Units Spec  [µL]  A dded Lo t no .

M GW MS00001 325 RNBF0862

Trehalose (25% solution) 250 50 mg/mL SS008 400 1616103

Bicine Buffer 4x 1x 1507602

M g2SO4, 100mM 100 2 mM MS00017 40 0011202

Dithiothreito l 1M 1000 10 mM SS003 20 1605002

Luciferin, 10 mg/mL solution 10 0.1  mg/mL SS0004 20 1610501

10 mM  APS 10000 250 µM MS00015 50 001

Ultraglow luciferase 50.7 0.025 µg/mL MS00011 2.0 201098

300U/ml ATP sulphurylase 300000 375 mU/mL MS00012 2.5 0191605

100mM  dNTP mix (25mM  each)25000 300 µM MS00032 24 1436447

Bst LF DNA polymerase 160000 200 u/mL MS00029 2.5

Lamp F   TB103 100 1.6 µM 32

LAM P B TB087 100 1.6 µM 32

Loop B   TB083 100 0.8 µM 16

LoopF    TB101 100 0.8 µM 16

Disp B    TB100 100 0.4 µM 8

Disp F    TB115 100 0.4 µM 8

M axima RtaseH + 200 0.2 u/µl MS00030 2

Total Volume 1000 [µL]

M
W

G
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Appendix 11 

Protocol 11: Inhibitory substances screening procedure using standard TB LAMP-

BART assay (no IAC) – carrier DNA 

Reaction mix set up: 

 

Master mix was prepared according to the reaction mix set up shown above. 15 uL of the master 

mix was then mixed with 5 uL of the appropriate M. bovis template* in a 96-well plate (white) 

followed by an addition of two drops of mineral oil. Samples were sealed using a clear adhesive 

film and loaded onto BISON set at 60 °C and ran for 90 min.  

*- dilutions of the templates were performed using the appropriate concentrations of the tested 

inhibitors as diluents. 

M. bovis 23s rRNA at concentration 1000 and 100 cps/5uL was used in this study.  

Serial dilutions (20 uL sample + 180 uL diluent) of the 23s rRNA top stock [10^6 cps/5uL]   

were carried out in order to obtain the appropriate template concentrations. 

For the inhibitory samples, 1000 ng/5uL of salmon sperm DNA was used as diluent. 

 

 

 

 

 

Dispense volume [µL]: 15
F inal co nc

C o mpo nent Sto ck M ix+sample Units Spec  [µL]  A dded Lo t no .

M GW MS00001 325 RNBF0862

Trehalose (25% solution) 250 50 mg/mL SS008 400 1616103

Bicine Buffer 4x 1x 500 1507602

M g2SO4, 100mM 100 2 mM MS00017 40 0011202

Dithiothreito l 1M 1000 10 mM SS003 20 1605002

Luciferin, 10 mg/mL solution 10 0.1  mg/mL SS0004 20 1610501

10 mM  APS 10000 250 µM MS00015 50 001

Ultraglow luciferase 50.7 0.025 µg/mL MS00011 2.0 201098

300U/ml ATP sulphurylase 300000 375 mU/mL MS00012 2.5 0191605

100mM  dNTP mix (25mM  each)25000 300 µM MS00032 24 1436447

Bst LF DNA polymerase 160000 200 u/mL MS00029 2.5

Lamp F   TB103 100 1.6 µM 32

LAM P B TB087 100 1.6 µM 32

Loop B   TB083 100 0.8 µM 16

LoopF    TB101 100 0.8 µM 16

Disp B    TB100 100 0.4 µM 8

Disp F    TB115 100 0.4 µM 8

M axima RtaseH + 200 0.2 u/µl MS00030 2

Total Volume 1500 [µL]

M
W

G
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Appendix 12 

Protocol 12: Primer mutations screening procedure using standard TB LAMP-BART 

assay 

Reaction mix set up: 

 

Initial master mix was prepared according to the reaction mix set up shown above. 1468 uL of 

the initial reaction mix was then split into four aliquots of 367 uL each. Final master mix was 

prepared by adding 8 uL of the appropriate version of the LAMP F primer to separate aliquots 

containing 367 uL of the initial master mix. 15 uL of the final master mix was then mixed with 

5 uL of the appropriate M. bovis template [10^4 cps/5uL] in a 96-well plate (white) followed 

by an addition of two drops of mineral oil. Samples were sealed using a clear adhesive film 

and loaded onto BISON set at 60 °C and ran for 90 min. 

Note that the loop primers were not added. 

 

 

 

 

 

 

 

 

Dispense volume [µL]: 15
F inal co nc

C o mpo nent Sto ck M ix+sample Units Spec  [µL]  A dded Lo t no .

M GW MS00001 325 RNBF0862

Trehalose (25% solution) 250 50 mg/mL SS008 400 1616103

Bicine Buffer 4x 1x 500 1507602

M g2SO4, 100mM 100 2 mM MS00017 40 0011202

Dithiothreito l 1M 1000 10 mM SS003 20 1605002

Luciferin, 10 mg/mL solution 10 0.1  mg/mL SS0004 20 1610501

10 mM  APS 10000 250 µM MS00015 50 001

Ultraglow luciferase 50.7 0.025 µg/mL MS00011 2.0 201098

300U/ml ATP sulphurylase 300000 375 mU/mL MS00012 2.5 0191605

100mM  dNTP mix (25mM  each)25000 300 µM MS00032 24 1436447

Bst LF DNA polymerase 160000 200 u/mL MS00029 2.5

Lamp F   TB103 100 1.6 µM

LAM P B TB087 100 1.6 µM 32

Loop B   TB083 100 0.8 µM 16

LoopF    TB101 100 0.8 µM 16

Disp B    TB100 100 0.4 µM 8

Disp F    TB115 100 0.4 µM 8

M axima RtaseH + 200 0.2 u/µl MS00030 2

Total Volume 1468 [µL]

M
W

G
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Appendix 13 

Protocol 13: Assessment of DNA contamination in IAC RNA samples 

Initial master mix was prepared according to the reaction mix set up shown in appendix 7. 

However, Maxima RNaseH+ was not added to the initial master mix. 1498 uL of the initial 

master mix was then split into two aliquots of 749 uL each followed by an addition of 1 uL of 

either Maxima RNaseH+ [200 U/uL] or MGW. 15 uL of the final master mix was then mixed 

with 5 uL of the appropriate IAC template in a 96-well plate (white) followed by an addition 

of two drops of mineral oil. Samples were sealed using a clear adhesive film and loaded onto 

BISON set at 60 °C and ran for 90 min.  

IAC RNA and DNA concentrations of 10^8, 10^7, 10^6 and 10^5 cps/5uL, were used in this 

study 
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Appendix 14 

Protocol 14: Standard TB LAMP-BART assay with IAC RNA at 10^6 cps/rxn 

Reaction mix set up: 

 

Master mix was prepared according to the reaction mix set up shown above. 15 uL of the master 

[10^6 cp/rxn IAC RNA] mix was then mixed with 5 uL of the appropriate M. bovis template 

in a 96-well plate (white) followed by an addition of two drops of mineral oil. Samples were 

sealed using a clear adhesive film and loaded onto BISON set at 60 °C and ran for 90 min.  

M. bovis 23s rRNA at concentrations 10^4, 10^3 and 100 cps/5uL were used in this study. 

 

 

 

 

 

 

 

 

 

 

Dispense volume [µL]: 15
F inal co nc

C o mpo nent Sto ck M ix+sample Units Spec  [µL]  A dded Lo t no .

IAC RNA 10^7 5 x 10^4 cps/µl 10

M GW MS00001 315 RNBF0862

Trehalose (25% solution) 250 50 mg/mL SS008 400 1616103

Bicine Buffer 4x 1x 500 1507602

M g2SO4, 100mM 100 2 mM MS00017 40 0011202

Dithiothreito l 1M 1000 10 mM SS003 20 1605002

Luciferin, 10 mg/mL solution 10 0.1  mg/mL SS0004 20 1610501

10 mM  APS 10000 250 µM MS00015 50 001

Ultraglow luciferase 50.7 0.025 µg/mL MS00011 2.0 201098

300U/ml ATP sulphurylase 300000 375 mU/mL MS00012 2.5 0191605

100mM  dNTP mix (25mM  each)25000 300 µM MS00032 24 1436447

Bst LF DNA polymerase 160000 200 u/mL MS00029 2.5

Lamp F   TB103 100 1.6 µM 32

LAM P B TB087 100 1.6 µM 32

Loop B   TB083 100 0.8 µM 16

LoopF    TB101 100 0.8 µM 16

Disp B    TB100 100 0.4 µM 8

Disp F    TB115 100 0.4 µM 8

M axima RtaseH + 200 0.2 u/µl MS00030 2

Total Volume 1500 [µL]

M
W

G



264 
 

Appendix 15 

Protocol 15: Standard TB IAC LAMP-BART assay with ROX-HIV probe 

Reaction mix set up: 

 

Initial master mix was prepared according to the reaction mix set up shown above. 1482 uL of 

the initial reaction mix was then split into two aliquots of 741 uL each, followed by an addition 

of either 1 uL GSP-SSD or 1.3 uL Bst large fragment. Each of the two prepared aliquots was 

then split into two smaller aliquots of 370.5 uL each. Final master mix was prepared by adding 

4 uL of either HIV probe or MGW to the separate aliquots containing 370.5 uL of the initial 

master mix with either GSP-SSD or Bst large fragment. 15 uL of the final master mix was then 

mixed with 5 uL of the IAC RNA template [10^6 cps/5uL] in a 96-well plate (white) followed 

by an addition of two drops of mineral oil. Samples were sealed using a clear adhesive film 

and loaded onto BISON set at 60 °C and ran for 90 min. 

Note: 50 mM Bicine buffer was used in this study 

 

 

 

 

 

 

 

Dispense volume [µL]: 15
F inal co nc

C o mpo nent Sto ck M ix+sample Units Spec  [µL]  A dded Lo t no .

M GW MS00001 309 RNBF0862

Trehalose (25% solution) 250 50 mg/mL SS008 400 1616103

Bicine Buffer 4x 1x 500 1507602

M g2SO4, 100mM 100 2 mM MS00017 40 0011202

Dithiothreito l 1M 1000 10 mM SS003 20 1605002

Luciferin, 10 mg/mL solution 10 0.1  mg/mL SS0004 20 1610501

10 mM  APS 10000 250 µM MS00015 50 001

Ultraglow luciferase 50.7 0.025 µg/mL MS00011 2.0 201098

300U/ml ATP sulphurylase 300000 375 mU/mL MS00012 2.5 0191605

100mM  dNTP mix (25mM  each)25000 300 µM MS00032 24 1436447

Bst LF DNA polymerase 160000 200 u/mL MS00029

Lamp F   TB103 100 1.6 µM 32

LAM P B TB087 100 1.6 µM 32

Loop B   TB083 100 0.8 µM 16

LoopF    TB101 100 0.8 µM 16

Disp B    TB100 100 0.4 µM 8

HIV probe 100 0.8 µM

Disp F    TB115 100 0.4 µM 8

M axima RtaseH + 200 0.2 u/µl MS00030 2

Total Volume 1482 [µL]

M
W

G
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Appendix 16 

Protocol 16: Inhibitory substances screening procedure using modified TB LAMP-

BART assay – Sodium chloride  

Reaction mix set up: 

 

Initial master mix was prepared according to the reaction mix set up shown above. 1480 uL of 

the initial reaction mix was then split into two aliquots of 740 uL each. Final master mix was 

prepared by adding 5 uL of both MGW and IAC RNA or 5 uL of IAC and TB RNA to the 

separate aliquots containing 740 uL of the initial master mix. 15 uL of the final master mix was 

then mixed with 5 uL of the appropriate inhibitory substance in a 96-well plate (white) followed 

by an addition of two drops of mineral oil. Samples were sealed using a clear adhesive film 

and loaded onto BISON set at 60 °C and ran for 90 min. 

Sodium chloride at concentrations 20, 30 and 40 mM was used in this study. 

 

 

 

 

 

 

 

Dispense volume [µL]: 15
F inal co nc

C o mpo nent Sto ck M ix+sample Units Spec  [µL]  A dded Lo t no .

M . bovis RNA 1000 5 cps/µl

IAC RNA 10^7 5 x 10^4 cps/µl

M GW MS00001 305 RNBF0862

Trehalose (25% solution) 250 50 mg/mL SS008 400 1616103

Bicine Buffer 4x 1x 500 1507602

M g2SO4, 100mM 100 2 mM MS00017 40 0011202

Dithiothreito l 1M 1000 10 mM SS003 20 1605002

Luciferin, 10 mg/mL solution 10 0.1  mg/mL SS0004 20 1610501

10 mM  APS 10000 250 µM MS00015 50 001

Ultraglow luciferase 50.7 0.025 µg/mL MS00011 2.0 201098

300U/ml ATP sulphurylase 300000 375 mU/mL MS00012 2.5 0191605

100mM  dNTP mix (25mM  each)25000 300 µM MS00032 24 1436447

Bst LF DNA polymerase 160000 200 u/mL MS00029 2.5

Lamp F   TB103 100 1.6 µM 32

LAM P B TB087 100 1.6 µM 32

Loop B   TB083 100 0.8 µM 16

LoopF    TB101 100 0.8 µM 16

Disp B    TB100 100 0.4 µM 8

Disp F    TB115 100 0.4 µM 8

M axima RtaseH + 200 0.2 u/µl MS00030 2

Total Volume 1480 [µL]

M
W

G
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Appendix 17 

Protocol 17: Inhibitory substances screening procedure using modified TB LAMP-

BART assay – carrier DNA  

Reaction mix set up: 

 

Initial master mix was prepared according to the reaction mix set up shown above. 1480 uL of 

the initial reaction mix was then split into two aliquots of 740 uL each. Final master mix was 

prepared by adding 5 uL of MGW and 5 uL of either IAC or TB RNA to the separate aliquots 

containing 740 uL of the initial master mix. 15 uL of the final master mix was then mixed with 

5 uL of the appropriate inhibitory substance in a 96-well plate (white) followed by an addition 

of two drops of mineral oil. Samples were sealed using a clear adhesive film and loaded onto 

BISON set at 60 °C and ran for 90 min. 

Salmon sperm DNA at concentrations 50, 500 and 1000 ng/5uL was used in this study. 

 

 

 

 

 

 

 

Dispense volume [µL]: 15
F inal co nc

C o mpo nent Sto ck M ix+sample Units Spec  [µL]  A dded Lo t no .

M . bovis RNA 1000 5 cps/µl

IAC RNA 10^7 5 x 10^4 cps/µl

M GW MS00001 305 RNBF0862

Trehalose (25% solution) 250 50 mg/mL SS008 400 1616103

Bicine Buffer 4x 1x 500 1507602

M g2SO4, 100mM 100 2 mM MS00017 40 0011202

Dithiothreito l 1M 1000 10 mM SS003 20 1605002

Luciferin, 10 mg/mL solution 10 0.1  mg/mL SS0004 20 1610501

10 mM  APS 10000 250 µM MS00015 50 001

Ultraglow luciferase 50.7 0.025 µg/mL MS00011 2.0 201098

300U/ml ATP sulphurylase 300000 375 mU/mL MS00012 2.5 0191605

100mM  dNTP mix (25mM  each)25000 300 µM MS00032 24 1436447

Bst LF DNA polymerase 160000 200 u/mL MS00029 2.5

Lamp F   TB103 100 1.6 µM 32

LAM P B TB087 100 1.6 µM 32

Loop B   TB083 100 0.8 µM 16

LoopF    TB101 100 0.8 µM 16

Disp B    TB100 100 0.4 µM 8

Disp F    TB115 100 0.4 µM 8

M axima RtaseH + 200 0.2 u/µl MS00030 2

Total Volume 1480 [µL]

M
W

G
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Appendix 18 

Protocol 18: Standard TB LAMP-BART assay (50 uL) 

Reaction mix set up: 

 

Initial master mix was prepared according to the reaction mix set up shown above. 1470 uL of 

the initial reaction mixes was then split into two aliquots of 735 uL each. Final master mix was 

prepared by adding 7.5 uL of MGW and 7.5 uL of either M. bovis TB template [10^4 cps/5uL] 

or IAC RNA [10^7 cps/5uL] to separate aliquots containing 735 uL of the initial master mix. 

50 uL of the final reaction mix (including templates) was then dispensed across 30 wells of a 

96-well plate (white) covered with 2 drops of mineral oil and sealed using adhesive clear film. 

Samples were run at 60 °C for 90 min on BISON.   

 

 

 

 

 

 

 

 

 

Dispense volume [µL]: 50
F inal co nc

C o mpo nent Sto ck M ix+sample Units Spec  [µL]  A dded Lo t no .

M GW MS00001 583 RNBF0862

Trehalose (25% solution) 250 50 mg/mL SS008 300 1616103

TB RNA 10^4 100 cp/5uL

IAC RNA 10^7 10^6 cp/5uL

Bicine Buffer 4x 1x STD 375 1507602

M gCl2, 100mM 100 2 mM MS00017 30 0011202

Dithiothreito l 1M 1000 10 mM SS003 15 1605002

Luciferin, 10 mg/mL solution 10 0.1  mg/mL SS0004 15 1610501

10 mM  APS 10000 250 µM MS00015 37.5 001

Ultraglow luciferase 50.7 0.025 µg/mL MS00011 1.2 201098

300U/ml ATP sulphurylase 300000 375 mU/mL MS00012 1.8 0191605

100mM  dNTP mix (25mM  each)25000 400 µM MS00032 24 1436447

GSP 100 0.1 U/uL MS00029 1.5

Lamp F   TB103 100 1.6 µM 24

LAM P B TB087 100 1.6 µM 24

LoopB 083 100 0.8 µM 12

LoopF    TB101 100 0.8 µM 12

Disp B    TB100 100 0.4 µM 6

Disp F    TB115 100 0.4 µM 6

M axima RtaseH + 200 0.2 u/µl MS00030 1.5

Total Volume 1470 [µL]

M
W

G
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Appendix 19 

Protocol 19: Inhibitory substances screening procedure using standard TB LAMP-

BART assay (50 uL) – carrier DNA (500ng) 

Reaction mix set up: 

 

Initial master mix was prepared according to the reaction mix set up shown above. 1470 uL of 

the initial reaction mixes was then split into two aliquots of 735 uL each followed by an 

addition of 7.5 uL either MGW or TB M. bovis RNA. The two prepared initial master mixes 

(after additions) were then split into two smaller aliquots of 371.25 uL each. Final master mix 

was prepared by adding 3.75 uL of either MGW or carrier DNA [1000 ng/uL] to separate 

aliquots containing 371.25 uL of the initial master mix with either added TB RNA or MGW. 

50 uL and 10 uL of the final reaction mix (including templates) were then dispensed across  a 

96-well plate (white) covered with 2 drops of mineral oil and sealed using adhesive clear film. 

Samples were run at 60 °C for 90 min on BISON.   

 

 

 

 

 

 

Dispense volume [µL]: 50
F inal co nc

C o mpo nent Sto ck M ix+sample Units Spec  [µL]  A dded Lo t no .

M GW MS00001 568 RNBF0862

Carrier DNA 1000 10 ng/µl
Trehalose (25% solution) 250 50 mg/mL SS008 300 1616103

TB RNA 2 x 10^3 2 cps/uL

IAC RNA 2 x 10^6 2 x 10^4 cps/uL 15

Bicine Buffer 4x 1x STD 375 1507602

M gCl2, 100mM 100 2 mM MS00017 30 0011202

Dithiothreito l 1M 1000 10 mM SS003 15 1605002

Luciferin, 10 mg/mL solution 10 0.1  mg/mL SS0004 15 1610501

10 mM  APS 10000 250 µM MS00015 37.5 001

Ultraglow luciferase 50.7 0.025 µg/mL MS00011 1.2 201098

300U/ml ATP sulphurylase 300000 375 mU/mL MS00012 1.8 0191605

100mM  dNTP mix (25mM  each)25000 400 µM MS00032 24 1436447

GSP 100 0.1 U/uL MS00029 1.5

Lamp F   TB103 100 1.6 µM 24

LAM P B TB087 100 1.6 µM 24

LoopB 083 100 0.8 µM 12

LoopF    TB101 100 0.8 µM 12

Disp B    TB100 100 0.4 µM 6

Disp F    TB115 100 0.4 µM 6

M axima RtaseH + 200 0.2 u/µl MS00030 1.5

Total Volume 1470 [µL]

M
W

G
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Appendix 20 

Protocol 20: Standard HBV LAMP-BART assay  

Reaction mix set up: 

 

Master mix was prepared according to the reaction mix set up shown above. 15 uL of the master 

mix was then mixed with 5 uL of the appropriate HBV template in a 96-well plate (white) 

followed by an addition of two drops of mineral oil. Samples were sealed using a clear adhesive 

film and loaded onto BISON set at 60 °C and ran for 90 min.  

 

 

 

 

 

 

 

 

 

 

 

 

Dispence valume 15

Final conc

C o mpo nent Sto ck M ix+sample Units Spec uL required  A dded

M GW MS00001 466

25%  w/v trehalose 250 75 mg/mL SS008 600

Isothermal buffer 10 1 x 200

1M  DTT 1000 10  mM SS003 20

Luciferin, 10 mg/mL solution 10 0.1 mg/mL SS0004 20

10 mM  APS (Bio log) 10000 250 µM MS00015 50

Ultraglow luciferase 50.7 0.05 ug/mL MS00011 2.0

300U/ml ATP sulphurylase 300000 375 mu/mL MS00012 2.5

dATP 100mM 100000 300 µM MS00008 6

dTTP 100mM 100000 300 µM 6

dCTP 100mM 100000 300 µM 6

dGTP 100mM 100000 300 µM 6

Bst 2.0 WS 200000 200 units/mL MS00010 3.0

HBV-019 (DispB) 100 1.6  µM 8

HBV-024 (DispF) 100 1.6 µM 8

HBV-021 (Bloop) 100 0.8 µM 16

HBV-023 (Floop) 100 0.8 µM 16

HBV-020 (BIP) 100 0.4 µM 32

HBV-022 (FIP) 100 0.4 µM 32

 Total Volume 1500 (µL)

Supertemplate
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Appendix 21 

Protocol 21: Modified HBV LAMP-BART assay (no BART) 

Reaction mix set up: 

 

Initial master mix was prepared according to the reaction mix set up shown above. 742 uL of 

the initial reaction mixes was then split into two aliquots of 371 uL each. Final master mix was 

prepared by adding 4 uL of either MGW or ROX-labelled loopF probe [100 uM] to separate 

aliquots containing 371 uL of the initial master mix. 15 uL of the final reaction mix was then 

mixed with 5 uL of the appropriate HBV template in a 96-well plate (white) covered with 2 

drops of mineral oil and sealed using adhesive clear film. Samples were run at 60 °C for 90 

cycles on Strategene.  Note: each cycle was set to run for 1 min.  

 

 

 

 

 

 

 

 

 

 

Dispense volume [µL]: 15

Final conc

C o mpo nent Sto ck M ix+sample Units Spec uL required  A dded

M GW MS00001 281

25%  w/v trehalose 250 75 mg/mL SS008 300

Isothermal buffer 10 1 x 100

1M  DTT 1000 10  mM SS003

Luciferin, 10 mg/mL solution 10 0.1 mg/mL SS0004

10 mM  APS (Bio log) 10000 250 µM MS00015

Ultraglow luciferase 50.7 0.05 ug/mL MS00011

300U/ml ATP sulphurylase 300000 375 mu/mL MS00012

dATP 100mM 100000 300 µM MS00008 3

dTTP 100mM 100000 300 µM 3

dCTP 100mM 100000 300 µM 3

dGTP 100mM 100000 300 µM 3

GSP 100000 200 units/mL MS00010 1.0

HBV-019 (DispB) 100 0.4  µM 4

HBV-024 (DispF) 100 0.4 µM 4

HBV-021 (Bloop) 100 0.8 µM 8

HBV-023 (Floop) 100 0.8 µM

HBV-020 (BIP) 100 1.6 µM 16

HBV-022 (FIP) 100 1.6 µM 16

 Total Volume 742 (µL)

Supertemplate
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Appendix 22 

Protocol 22: Modified HBV LAMP-BART assay  

Reaction mix set up: 

 

Initial master mix was prepared according to the reaction mix set up shown above. 742 uL of 

the initial reaction mixes was then split into two aliquots of 371 uL each. Final master mix was 

prepared by adding 4 uL of either MGW or ROX-labelled loopF probe [100 uM] to separate 

aliquots containing 371 uL of the initial master mix. 15 uL of the final reaction mix was then 

mixed with 5 uL of the appropriate HBV template in a 96-well plate (white) covered with 2 

drops of mineral oil and sealed using adhesive clear film. Samples were run at 60 °C for 90 

cycles on Strategene.  Note: each cycle was set to run for 1 min.  

 

 

 

 

 

 

 

 

 

 

Dispense volume [µL]: 15

Final conc

C o mpo nent Sto ck M ix+sample Units Spec uL required  A dded

M GW MS00001 234

25%  w/v trehalose 250 75 mg/mL SS008 300

Isothermal buffer 10 1 x 100

1M  DTT 1000 10  mM SS003 10

Luciferin, 10 mg/mL solution 10 0.1 mg/mL SS0004 10

10 mM  APS (Bio log) 10000 250 µM MS00015 25

Ultraglow luciferase 50.7 0.05 ug/mL MS00011 1.0

300U/ml ATP sulphurylase 300000 375 mu/mL MS00012 1.3

dATP 100mM 100000 300 µM MS00008 3

dTTP 100mM 100000 300 µM 3

dCTP 100mM 100000 300 µM 3

dGTP 100mM 100000 300 µM 3

GSP 100000 200 units/mL MS00010 1.0

HBV-019 (DispB) 100 0.4  µM 4

HBV-024 (DispF) 100 0.4 µM 4

HBV-021 (Bloop) 100 0.8 µM 8

HBV-023 (Floop) 100 0.8 µM

ST 35-2 100 1.6 µM 16

ST 37-2 100 1.6 µM 16

 Total Volume 742 (µL)

Supertemplate
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Appendix 23 

Protocol 23: Standard fluorescent TB LAMP assay   

Reaction mix set up: 

 

Initial master mix was prepared according to the reaction mix set up shown above. 1498 uL of 

the initial reaction mixes was then split into two aliquots of 749 uL each. Final master mix was 

prepared by adding 1 uL of GSP-SSD [100 U/uL] or 1.3 uL Bst large fragment [160 U/uL] to 

separate aliquots containing 749 uL of the initial master mix. 15 uL of the final reaction mix 

was then mixed with 5 uL of the appropriate IAC template in a 96-well plate (white) covered 

with 2 drops of mineral oil and sealed using adhesive clear film. Samples were run at 60 °C for 

90 cycles on Strategene.  Note: each cycle was set to run for 1 min.  

 

 

 

 

 

 

 

 

 

Dispense volume [µL]: 15
F inal co nc

C o mpo nent Sto ck M ix+sample Units Spec  [µL]  A dded Lo t no .

SYBR 10x 0.1x 20

HIV probe 10^7 5 x 10^4 cps/µl 16

M GW MS00001 416 RNBF0862

Trehalose (25% solution) 250 50 mg/mL SS008 400 1616103

Bicine Buffer 4x 1x 500 1507602

M g2SO4, 100mM 100 2 mM MS00017 40 0011202

Dithiothreito l 1M 1000 10 mM SS003 1605002

Luciferin, 10 mg/mL solution 10 0.1  mg/mL SS0004 1610501

10 mM  APS 10000 250 µM MS00015 001

Ultraglow luciferase 50.7 0.025 µg/mL MS00011 201098

300U/ml ATP sulphurylase 300000 375 mU/mL MS00012 0191605

100mM  dNTP mix (25mM  each)25000 300 µM MS00032 24 1436447

Bst LF DNA polymerase 160000 200 u/mL MS00029

Lamp F   TB103 100 1.6 µM 32

LAM P B TB087 100 1.6 µM 32

Loop B   TB083 100 0.8 µM

LoopF    TB101 100 0.8 µM

Disp B    TB100 100 0.4 µM 8

Disp F    TB115 100 0.4 µM 8

M axima RtaseH + 200 0.2 u/µl MS00030 2

Total Volume 1498 [µL]

M
W

G
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Appendix 24 

Protocol 24: Standard miRNA LAMP-BART assay   

Reaction mix set up: 

 

Master mix was prepared according to the reaction mix set up shown above. 15 uL of the master 

mix was then mixed with 5 uL of the appropriate miRNA template in a 96-well plate (white) 

followed by an addition of two drops of mineral oil. Samples were sealed using a clear adhesive 

film and loaded onto “Lucy” set at 60 °C and ran for 90 min.  

 

 

 

 

 

 

 

 

 

 

 

 

Reaction set-up

Volume/reaction [ul]: 20

Number reactions (inc. extra): 50

µl for bulk mix

142.0

100

200

5

10

33

60

10

25

10

15

40

100

750Total mix volume, ul

1.2 M KCl

5mM dNTPs (5mM of each)

10mg/ml LH2

10 mM APS (Biolog)

10x primer combinations

25U/ml ATP sulphurylase NEB*

8U/µl Bst DNA polymerase

Bulk mix

MGW

10x Thermopol buffer

25% Trehalose

0.55mg/ml rLuc Ultraglo

1M DTT

40mg/ml PVP
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Appendix 25 

Protocol 25: 10x primer combination   

Primer mix set up: 

 

Note: all primers used were stored at 100 uM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

volume added [uL]

2

2

8

8

4

4

72

100Total mix volume, ul

Loop F

MGW

Primer

F3

B3

FIP

BIP

Loop B
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Appendix 26 

Protocol 26: Reagent preparation for miRNA and LAMP assays  

1) Salmon sperm carrier DNA 

supplied by Invitrogen at 10mg/ml but NanoDrop for more accurate concentration, dilute 1/100 in serial dilution 

to ng/µl (typically 142ng/µl) use in assay at 100ng per partition, label and store at -20°C 

2) Molecular grade water 

supplied by Fisher (not Milli-Q or ELIX water), approximately 1.5ml per 2ml screw-top tube, label and store at 

-20°C 

3) 10x Thermopol buffer 

supplied by NEB at 10X concentration and used directly 

4) 25% Trehalose 

supplied by Sigma as a powder, prepare by adding 12.5g to 50ml MGW, produces approximately 80 aliquots of 

420µl per batch, label and store at -20°C 

5) 1M DTT 

supplied by Sigma as a powder, prepare by adding 1.54g to 10ml MGW, produces approximately 100 aliquots 

of 100µl per batch, label and store at -20°C 

6) 40mg/ml PVP 

supplies by Sigma as a powder, prepare by adding 0.4g to 10ml MGW, produces approximately 100 aliquots of 

100µl per batch, label and store at -20°C 

7) 1.2M KCl 

supplied by Fisher as a powder, prepare by adding 0.895g to 10ml MGW, produces approximately 80 aliquots 

of 100µl per batch, label and store at -20°C 

8) 5mM dNTPs 

supplied by Invitrogen at 100mM for each dNTP, prepare by adding 10µl of each to 160µl MGW in 8 tubes, 

produces 24 aliquots of 65µl per batch, label and store at -20°C 

9) 10mg/ml Luciferin 

D-luciferin K salt supplied by Europa Bioproducts, prepare by adding 10mg to 1ml MGW, produces 40 aliquots 

of 25µl per batch, label and store at -20°C 

10) 10mM APS 

supplied by Biolog at desired concentration, each vial produces 16 aliquots of 60µl, label and store at -20°C 

11) 0.55mg/ml Ultra-Glo Luciferase 

Ultra-glo luciferase supplied by Promega at 5.5mg/ml, prepare 100µl luciferase with 10µl 1M DTT, 100µl NEB 

Thermopol (10X) and 790µl MGW, produces 40 aliquots of 25µl per batch, label and store at -20°C 

12) 25U/ml ATP sulphurylase 

supplied by NEB at 300U/ml, dilute 4µl ATP-S with 44µl Diluent D or VENT Diluent when required 

13) 8U/ml Bst DNA polymerase 

supplied by NEB at 8000U/ml and used directly 

14) mineral oil 

supplied by Fisher, approximately 1.5ml per 2ml screw-top tube, label and store at room temperature 

15) primers 

supplied by Sigma or MWG Operon, dilute as indicated with MGW to 100µM, label and store at -20°C, enter 

details on Lab Collector 
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Appendix 27 

Protocol 27: SplintR ligation protocol 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reagent Volume [ul]

P1 [100uM] 1

P2 [100uM] 1

miRNA [100uM] 1

SplintR Buffer [10x] 2

SplintR [25 U/uL] 1

MGW 14

Total volume 20
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Appendix 28 

Protocol 28: Ampligase ligation protocol 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reagent Volume [ul]

P1 [100uM] 1

P2 [100uM] 1

miRNA [100uM] 1

Ampligase Buffer [10x] 2

Ampligase [5 U/uL] 1

MGW 14

Total volume 20
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Appendix 29 

Protocol 29: T4 ligation protocol 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reagent Volume [ul]

P1 [100uM] 1

P2 [100uM] 1

miRNA [100uM] 1

T4 Buffer [10x] 2

T4 ligase [400 U/uL] 1

MGW 14

Total volume 20
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Appendix 30 

Protocol 30: T7 ligation protocol 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reagent Volume [ul]

P1 [100uM] 1

P2 [100uM] 1

miRNA [100uM] 1

T7 Buffer [2x] 10

T7 ligase [3000 U/uL] 1

MGW 4

Total volume 20
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Appendix 31 

Protocol 31: Restriction digest protocol 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reagent Volume [ul]

Template 1

Buffer 5

Restriction Enzyme 1

MGW 43

Total volume 50
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Appendix 32 

Protocol 32: Restriction digest protocol under LAMP-BART reaction set up 

 

44 uL of the reaction mix was then mixed with 5 uL of the restriction template and 1 uL of 

the appropriate endonuclease 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

µl for bulk mix

109.6

20

40

2

2

6.4

12

5

3

200Total mix volume, ul

1.2 M KCl

5mM dNTPs (5mM of each)

10mg/ml LH2

10 mM APS (Biolog)

10x primer combinations

25U/ml ATP sulphurylase NEB*

8U/µl Bst DNA polymerase

Bulk mix

MGW

10x Thermopol buffer

25% Trehalose

0.55mg/ml rLuc Ultraglo

1M DTT

40mg/ml PVP
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Appendix 33 

Protocol 33: Preparation of restriction templates 

 

Each template was purchased from Sigma and reconstituted at 100 uM concentration 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reagent Volume [ul]

2x QI MasterMix 50 PCR cycling conditions

Lin-DNA primer 10 94 °C 3 min

Template [100uM] 10 94 °C 30 sec

MGW 30 55 °C 30 sec

72 °C 30 sec

Total volume 100 72 °C 10 min

35 cycles
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Appendix 34 

Protocol 34: SDS-PAGE protocol 

 

SDS page Gels (For 2 gels, 0.75mm plates or 1 gel, 1.5mm plates) 

10% Gel 

• 4.1ml H2O 

• 2.5ml Tris 1.5M pH 8.8 

• 3.3ml Acrylamide (33%) 

• 100ul SDS (10%) 

• 50ul APS (10%) 

• 10ul TEMED 

Run at 45 V for 85 min 
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Appendix 35 

Protocol 35: Endonuclease-based miRNA detection protocol 

Reaction set up: 

 

Master mix was prepared according to the reaction mix set up shown above. 15 uL of the master 

mix was then mixed with 5 uL of the appropriate miRNA template in a 96-well plate (white) 

followed by an addition of two drops of mineral oil. Samples were sealed using a clear adhesive 

film and loaded onto “Lucy” set at 60 °C and ran for 90 min.  

 

 

 

 

 

 

 

 

 

 

 

 

Volume/reaction [ul]: 20

Number reactions (inc. extra): 25

µl for bulk mix

50.0

50

100

5

5

BstUI 8

16.5

30

5

12.5

5

7.5

BstUI template 10

20

50

375Total mix volume, ul

1.2 M KCl

5mM dNTPs (5mM of each)

10mg/ml LH2

10 mM APS (Biolog)

10x primer combinations

25U/ml ATP sulphurylase NEB*

8U/µl Bst DNA polymerase

Bulk mix

MGW

10x Thermopol buffer

25% Trehalose

0.55mg/ml rLuc Ultraglo

1M DTT

40mg/ml PVP



285 
 

Appendix 36 

SDS-PAGE showing probe ligation via miRNA using SplintR ligase 

 

 

 

Lanes: 

L – 50 bp ladder (NEB) 

A – P1 

B – P2 

C – P1 + P2 

D – P1 + P2 + miRNA 

E – P1 + P2 

Note: lanes D and E show samples that underwent ligation reactions 

 

 

 

 

 

 

 

 

 

 

 

 

EBAL DC

50 bp
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Appendix 37 

Primer and probes sequences used in the ligation-based miRNA detection system 
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Appendix 38 

Primer and probes sequences used in the endonuclease-based miRNA detection system 

Probe (5’  3’) 

P1BstUI- TTTT-GTTCTATAGAGGAAGGGTCA-AGACTAT-TAGTCCTAGGCTGATCAGTG-TTTT-

ATATCCTGAGTGACTCCAA-CTAATGGGTCTATGT-CG-TAAGTCCAACTGGACTCCTT-TTTT-

AAGGAGTCCAGTTGGACTTA-CGCG-TCACACTTGAGGTCTCAGGGAA 

P1BsaWI- TTTT-GTTCTATAGAGGAAGGGTCA-AGACTAT-TAGTCCTAGGCTGATCAGTG-TTTT-

ATATCCTGAGTGACTCCAA-CTAATGGGTCTATGT-TAAGTCCAACTGGACTCCTT-TTTT-

AAGGAGTCCAGTTGGACTTA-CCGG-TCACACTTGAGGTCTCAGGGAA 

P1Nb.BsmI 

TTaaTTGTTCTATAGAGGAAGGGTCAAGACTATTAGTCCTAGGCTGATCAGTGTTTTATATCCTGAGcGAgacCT

tgTAATGGGTCTATGTCcattcTAAGTCCAACTGGACTCCTTTTTTAAGGAGTCCAGTTGGACTTAgaatGCattTCA

CACTTGAGGTCTCAGGGAA 

 

UUCCCUGAGACCUCAAGUGUGA- miRNA 

5’ – gttctcgctcagttgtgtt-tttt-tagaggggaagcgtaatcag – 3’ Primer L1v1 

5’-TTGGAGTCACTCAGGATAT-TTTT-TAGTCCTAGGCTGATCAGTG-3’ - Primer L1 

5’-GTTCTATAGAGGAAGGGTCA-3’- Displacement primer 
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Appendix 39 

HBV primers 

 

TB primers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Primer

HBV-019 GCTCAAGGCAACTCTATG

HBV-020 cccataggtattttgcgaaagGGATGGAAATTGCACCTG

HBV-021 caagatgatgggatgggaat

HBV-022 TCAGTGGTTCGTAGGGCccaataccacatcatccata

HBV-023 CCACTGTTTGGCTTTCAG

HBV-024 ctcaagatgctgcacag

Sequence 5' -> 3 '

Primer

 Lamp B  TB087

Lamp F   TB103

Loop B   TB083

LoopF    TB101

Disp B    TB100

Disp F    TB115

ACTCGCAGGCTCATTCTTTTTTCCGGAGGAGGGTGG

AAGGTTAACCCGTGTGGTTTTCGCGTGTGGGTCGCC

CAAAAGGCACGCCATCA

CGAAAGCGAGTCTGAATAG

AGAGTACCTGAAACCGTG

ATTCACACGCGCGTAT

5'→3' sequence
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Appendix 40 

Development of internal amplification controls for LAMP assays. 
 
Objectives: Slowing down the amplification of IC templates by mutating FIP primers.   
 
Materials and Methods 
Reaction mixture was prepared according to the “HBV set-up160916”. 1468 uL of the LAMP-BART mix was split 
into 4 aliquots of 367 uL each followed by the addition of 8 uL of the appropriate FIP primer [100mM]. 5 uL of 
the dsHBV template (LOT: 1529406) of 10000 cp/5uL was added to 15 uL of the final LAMP-BART reaction mix 
followed by an addition of mineral oil and ran for 90 min at 60°C on BISON 5.  
NOTE: HBV template was prepared by adding 500 uL of MGW into a dried HBV pellet of 10^8 cp resulting in a 
final concentration of 10^6 cp/5ul. 3 x 10-fold serial dilutions (10 uL Sample + 90 uL MGW) were prepared in 
order to achieve final concentrations of 1000 and 10000 cp/5 uL.   
   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Final conc

C o mpo nent Sto ck M ix+sample Units Spec uL required  A dded

M GW MS00001 498

25%  w/v trehalose 250 75 mg/mL SS008 600

Isothermal buffer 10 1 x 200

1M  DTT 1000 10  mM SS003 20

Luciferin, 10 mg/mL solution 10 0.1 mg/mL SS0004 20

10 mM  APS (Bio log) 10000 250 µM MS00015 50

Ultraglow luciferase 50.7 0.05 ug/mL MS00011 2.0

300U/ml ATP sulphurylase 300000 375 mu/mL MS00012 2.5

dATP 100mM 100000 300 µM MS00008 6

dTTP 100mM 100000 300 µM 6

dCTP 100mM 100000 300 µM 6

dGTP 100mM 100000 300 µM 6

Warm Start Bst 120000 200 units/mL MS00010 3.3

HBV-019 (DispB) 100 1.6  µM 8

HBV-024 (DispF) 100 1.6 µM 8

HBV-021 (Bloop) 100 0.8 µM 0

HBV-023 (Floop) 100 0.8 µM 0

HBV-020 (BIP) 100 0.4 µM 32

HBV-022 (FIP) 100 0.4 µM 0

 Total Volume 1468 (µL)

Supertemplate

HBV-019 GCTCAAGGCAACTCTATG

HBV-020 cccataggtattttgcgaaagGGATGGAAATTGCACCTG

HBV-021 caagatgatgggatgggaat

HBV-022 TCAGTGGTTCGTAGGGCccaataccacatcatccata

HBV-023 CCACTGTTTGGCTTTCAG

HBV-024 ctcaagatgctgcacag

Mut-HBV022FIPa – TCAGTGGTTCGTAGCCGccaataccacatcatccata

Mut-HBV022FIPb – TCAGTGGTTCGTTCCCGccaataccacatcatccata

Mut-HBV022FIPc – TCAGTGGTTCCATCCCGccaataccacatcatccata 
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Results 
 
 
 

 
 

 
 
 
 
 
 
 
In this experiment, the amplification slow down via template mutation idea was tested on the dsHBV template 
using mutated FIP primers. Note that in this instance, the primers were mutated rather than the primer binding 
sides on the IC template due to the cost of the template synthesis. 
 
In principle, the slow down technology is based on reduction of the Tms of the IC LAMP primers by mutating the 
F1 FIP biding side (or the primer F1 side itself) at the 3’ends. This reduction in Tm would then significantly impair 
the primer binding and folding to generate dumbbell structures thus impacting upon the amplification kinetics.  
 
In this experiment, three different mutated FIP primers were tested where 3 to 7 bp were mutated at the 3’ end 
of the F1 site. As expected, the TTMs were significantly affected regardless of the mutation introduced into the 
FIP primers. However, it was not surprising that the most significant delay in the amplification was observed in 
the reactions containing the FIP primer with 7 bp mutated. This mutation caused the most severe change to the 
Tm of the F1 site therefore impacting on the dumbbell generation most significantly.   
 
 
Conclusions 
The primer mutation experiment shows a huge promise as a potential IC method. Mutation of only one LAMP 
primer caused a major reduction in the amplification speed which could further be delayed by mutating the BIP 
primer.  
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Appendix 41 

Protocol 35: Mucin preparation 

Mucin from porcine stomach, type II, was purchased from Sigma-Aldrich, UK.  

15mg/mL of Mucin solution was prepared by adding 75 g of mucin to 3 mL of 1M NaOH 

solution and vortexed at maximum speed for 5 min. The prepared solution was then topped 

up to the final volume of 5 mL using 1M NaOH and vortexed for additional 5 min.  

The final mucin solution was stored at room temperature.  
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Appendix 42 

SDS-PAGE showing four DNA probes designed for the endonuclease-based miRNA 

detection technology.   

 

 

 

Lanes: 

L – 50 bp ladder (NEB) 

A – BstNI 

B – BsaWI 

C – BssKI 

D – BstUI 

 

AL D LCB

50 bp


