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ABSTRACT

This paper analyzes the influence of unsaturated soil properties and groundwater flow on the 

performance of ground source heat pump (GSHP) systems. A mathematical model of GSHP 

systems, which considers the influence varying unsaturated soil thermal properties, groundwater 

table depth and saturated groundwater flow, is introduced and coupled to a heat pump model to 

consider dynamically-changing loads due to specific heat pump coefficient of performance (COP) 

characteristics. The model is validated against experiment results and an analytical model reported 

by others. Finally, numerical simulations are performed to investigate the effect of inclusion of a 

heat pump, moisture content variations, groundwater table fluctuations and groundwater flow 

rates on the performance of the GSHP system. Results show that neglecting variations in moisture 
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content in unsaturated soil could lead to underestimating the heat transfer capacity of the soil. A 

rising groundwater tables is beneficial to the operation of the GSHP system. The influence of 

groundwater table fluctuation should be considered, otherwise could result in a maximum error 

of 3.78% on the outlet fluid temperature. When calculating the influence of groundwater flow 

rates on the performance of the GSHP system, the effect of groundwater tables should also be 

considered.

1. Introduction

Ground source heat pump (GSHP) systems are a promising and highly efficient renewable 

energy technology for space heating and cooling in buildings. This is due to the ground being able 

to provide a lower temperature, relative to the building space, when cooling is required, and a 

higher temperature when heating is required. Interseasonal temperature fluctuations in the soil 

are also smaller than that in the ambient air temperature [1,2]. A typical GSHP system generally 

consists of a geothermal heat pump and a ground heat exchanger (GHE). Typical GHE 

configurations can be classified into either horizontal or vertical types. Compared to horizontal 

types, vertical types (also known as borehole heat exchangers) are widely used especially in 

crowded urban areas, because their efficiency is much higher whilst also occupying less land [3]. 

However, installation cost for borehole heat exchangers (BHEs) is typically much higher, with 

drilling often accounting for half of the GSHP system installation cost [4]. A further consideration 

is that the efficiency of the heat pump is strongly dependent on the correct sizing of BHEs. Thus, 

correct analysis of heat transfer in BHEs is important in achieving optimum performance with 

minimum costs [5].

Over the years, many analytical and numerical models have been developed to estimate the 
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heat transfer capacity of BHEs. Classic analytical solutions often used are the line and cylindrical 

source models [6,7]. Based on the cylindrical source model, Bernier et al. [8] presented a multiple 

load aggregation algorithm to calculate the yearly performance of a BHE system subjected to 

hourly load variations. Eskilson [9] proposed a finite line source model for a BHE with finite length 

by using the finite-difference method. Subsequently, Zeng et al. [10] improved this approach by 

imposing a constant temperature at the ground surface to the finite line source model. In recent 

years, with the development of computers and numerical methods, numerical simulation studies 

are widely used. These studies are mainly based on finite difference, finite volume and finite 

element methods [11-13].

Generally, all or part of a BHE is located above the groundwater table [14,15]. Also in some cases, 

groundwater flow may be present in the saturated regions, which has the potential to greatly 

influence the heat transfer behavior of BHEs [16,17]. However, most existing models either regard 

the heat transfer between BHEs and their surrounding ground as a pure heat conduction process 

or assume the ground to be a fully saturated homogeneous porous. Few reported models consider 

the effect of layered ground conditions on the heat transfer of BHEs, especially when BHEs are 

partially located below the groundwater table where groundwater seepage is occurring [18,19]. In 

such cases, the combined effect of unsaturated soil properties above the groundwater table and 

groundwater flow below should be considered. Furthermore, in practice the location of the 

groundwater table may vary, due to seasonal changes in infiltration, runoff, evapotranspiration, 

agricultural irrigation or other factors [20], which will affect the heat transfer behavior of BHEs. 

However, this issue has not been widely considered or quantified in the literature.

Studies have shown that the initial distribution of undisturbed ground temperature, axial heat 
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transfer and ground surface temperature fluctuations have a significant influence on the 

performance of BHEs [21], especially for short borehole depths and long-term operation [22]. 

Bidarmaghz et al. [23] developed a 3D numerical model to investigate the effects of ground surface 

air temperature variations on BHEs. They reported that considering surface air temperature 

fluctuations may result in designed BHEs being up to 11% shorter BHEs than when ignored. Rivera 

et al. [24] expanded an existing finite line source model by implementing a more general Cauchy-

type top boundary condition to study the influence of heat fluxes at the ground surface. They 

found that the difference in the calculated borehole wall temperature due to this more correct 

consideration of different boundary conditions at the surface was generally greater than 5% for 

short BHEs (< 50 m) and so it is clear that considering these factors when calculating the heat 

transfer of BHEs will lead to more accurate analyses.

BHEs are almost always utilized as part of a GSHP system [25,26]. When the heat pump is added, 

the thermal load of the BHE is influenced by the heat pump coefficient of performance (COP) [27]. 

The COP depends on both the building heat/cold demand and the performance characteristics of 

a specific heat pump. When the heat pump operates for heating, the thermal load of the BHE is 

lower than that of the building, whilst in cooling mode the thermal load of the BHE is higher. 

Typically, the heat pump COP is not constant and depends on the condition of the heat pump, 

condensation temperature and evaporation temperature. This variation is usually represented by 

a function based on heat pump inlet fluid temperature [28].

This paper describes a mathematical model of GSHP systems, which considers the influence of 

depth varying unsaturated soil thermal properties, groundwater table depth and saturated 

groundwater movement. The initial geothermal gradient and axial heat transfer are also 
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considered. Furthermore, a heat pump model is included to consider dynamically-changing loads 

due to specific COP characteristics. The model is validated against experiment results and 

analytical model reported by others that considers multiple-layer substrates and groundwater 

flow. The validated model is then applied to perform numerical simulations to investigate the 

effect of inclusion of a heat pump, moisture content variations, groundwater table fluctuations 

and groundwater flow rates on the performance of the GSHP system.

2. Method

A general numerical model is presented which represents phenomena in occurring in a GSHP 

system. The model considers three main elements of behavior, namely: heat transfer within the 

BHE, heat transfer into and within the adjacent ground and the coupling of the BHE to a heat pump. 

Heat transfer related to the BHE is composed of heat convection between the circulating fluid and 

the pipe and heat conduction in the pipe wall. Heat transfer in the adjacent ground is described 

by a transient heat transfer model in porous media, with the thermal properties of the ground 

define by a three-phase soil model that considers variation of properties with depth. The coupling 

of the heat pump and BHE is achieved via consideration of inlet and outlet fluid temperatures and 

is described via definition of suitable boundary conditions. A diagram of a typical GSHP system 

under consideration is shown in Fig. 1.  

2.1. Model equations

2.1.1．．Heat transfer of the BHE

The energy equation for fluid flow in a pipe can be written as [29]:

   (1) 
      
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where ρf is the fluid density, Ap is the cross section area of pipe, cp,f is the fluid heat capacity, Tf is 
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the temperature of circulating fluid, t is the time, u is the circulating fluid velocity, kf is the fluid 

thermal conductivity, fD is the Darcy friction factor that can be obtained from the Moody chart, dh

is the hydraulic pipe diameter. Furthermore, Qwall indicates the heat transfer between the pipe 

and the surrounding ground and can be expressed as:

                      (2)  wall eff ext fQ h T T

where heff is the equivalent convective heat transfer coefficient of the pipe wall, Text is the 

temperature outside the pipe. For a circular pipe, heff can be described as:

                             (3)
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where ri and ro are internal and external radiuses of the pipe respectively, kp is the pipe thermal 

conductivity, hi is the convection coefficient inside the pipe that can be obtained from：
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where Nu represents the Nusselt number which has a value of 3.66 in laminar and transitional 

conditions (Re<3000), and in turbulent conditions (Re>=3000) can be calculated by the Gnielinski 

correlation [29]:

                      (5)
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where Re is the Reynolds number, and Pr is the Prandtl number.

2.1.2. Heat transfer with the adjacent ground

When circulating fluid flows through the BHE, heat energy will firstly transfer to the grout and 

then the surrounding ground. As the volume of grout is relatively small compared to the ground 

and grout thermal properties are close to those of the ground, the approach of Yoon et al [30], 
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where the properties of the grout are taken to be the same as the surrounding ground, is adopted 

here.

The ground surrounding the BHE is regarded as a porous medium that can be defined as 

consisting of three phases, namely: solid, water and air. For the ground above the groundwater 

table, it is partially saturated, whilst the soil below the groundwater table can be regarded as being 

fully saturated. When the ground is fully saturated, the effect of the groundwater flow is 

considered in the heat transfer model. Transient heat transfer in porous media can be expressed 

as follows:  

             (6)   , eff walleffp w p w w
Tρc ρ c v T k T Q
t


     



where T is the ground temperature, ρw is the density of groundwater, cp,w is the groundwater heat 

capacity, vw is the groundwater flow velocity in saturated domain, and it is set as zero in 

unsaturated zone. (ρcp)eff and keff are effective volumetric heat capacity and effective thermal 

conductivity of the ground.

The thermal properties of ground can be affected by the inherent mineralogy and relative 

proportions of the three soil phases. Studies show that the variation of soil moisture content is a 

major factor that influences thermal conductivity of soil [31-33] and its distribution in unsaturated 

soil can be associated with soil suction via the soil water characteristic curve (SWCC). Soil suction 

is generally approximated by the matric suction [34] and ignoring moisture transfer in the 

unsaturated soil and assuming a hydrostatic pressure distribution, the matric suction profile above 

the groundwater table can be expressed as [35,36] 

                        (7) a w wψ u u ρ gh  

where ψ is the matric suction, ua is the pore air pressure, uw is the pore water pressure, g is the 
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acceleration due to gravity, and h is the height above the groundwater table.

The volumetric water content can be expressed by the Van Genuchten (VG) model as a function 

of matrix suction in the following form [37]:

                       (8) 
 

 
   
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1
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where θ is the volumetric water content, θr is the residual water content, θs is the saturated water 

content, and a, n, and m are empirical fitting parameters that are related to air entry value, slope 

of curve, and shape of curve respectively. A common simplification is to assume m=1-1/n [38]. 

Thus the parameters in the model are θr ,θs , a, and n.

The volume fraction of each phase can be expressed as follows:

                                (9)solid 1χ η 

                                 (10)waterχ θ

                                 (11)air -χ η θ

where η denotes the soil porosity.

Effective thermal conductivity (keff) and effective volumetric thermal capacity ((ρcp)eff) of the 

ground can be represented by either adding the corresponding thermal properties of the different 

constituents according to their volume fraction [39] or empirical equations between soil thermal 

properties and water content [40]. In this paper they are expressed as the sum of thermal 

conductivity and heat capacity of each phase according to their volume fractions [41]:

                              (12)



3

eff
1

i i
i

k χ k

                           (13) 



3

eff
1

p i i i
i

ρc χ ρ c

2.2. Initial and boundary conditions
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2.2.1. Initial conditions

Initial conditions of the ground and circulating fluid are regarded being in equilibrium:

                       (14)   0 0, , , , , ,t f tT x y z t T x y z t 

and are taken as being defined by the following relationship for the background soil temperature 

profile T (z,t) at time t=0 [42]: 

         (15)  mean amp
0 eff 0 0 eff

2, exp cos +π πt πT z t T T z φ z
t α t t α

   
        

   

where Tmean is the annual average temperature, Tamp is the amplitude of annual temperature, t0 is 

the period of one year, αeff is effective ground thermal diffusivity, φ is phase angle.

2.2.2. Boundary conditions

Following the approach of [43] the upper (ground surface), bottom, and far field boundaries of 

the domain are fixed at the background soil temperature profile as defined by Eq. (15) and it should 

be noted that the computational soil domain should be large enough that the heat released by the 

BHE has negligible effect on the far-field boundary temperature.

                           (16)   , , , = ,T x y z t T z t

The coupling of the heat pump and the BHE is achieved through consideration of inlet and outlet 

fluid temperatures. The inlet fluid temperature of the BHE can be computed using the outlet fluid 

temperature from the preceding time step by [44]:

                            (17)  BHE
, ,

,
f i f o

f p f f

QT T
ρ c V

where Tf,i and Tf,o are inlet and outlet fluid temperatures, QBHE is the thermal load of the BHE, Vf is 

the volumetric flow rate. 

In heating mode, the thermal load of BHE (QBHE) is lower than that of the building and it can be 
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expressed as:

                      (18)
 

   
 

heating
BHE Building

heating

11
COP

Q Q

and in cooling mode it can be expressed as:

                      (19)
 

   
 
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BHE Building

cooling

11
COP

Q Q

Normally, the COP of a specific heat pump is not constant and is often represented as function 

of the heat pump inlet fluid temperature. In this work the relationship between the outlet fluid 

temperature of BHE and COP is assumed to be as defined by [45]:

                        (20) 2
, ,COP ' ' 'f o f oa T b T c  

2.3. Numerical solution

The numerical model is developed using an existing software platform [46] utilizing the finite 

element method for spatial discretization and a backward difference time stepping scheme. The 

coupling of each part of the proposed model and the calculation process are shown in Fig. 2.

3. Model verification and validation

The proposed numerical model is verified and validated against the experiment results and the 

analytical model proposed by Hu [47], in which the multiple-layer substrates and groundwater 

flow are considered. The experiment conducted by Hu was located in an area with a relatively 

complex geological structure, consisting of three layers from the top to the bottom, namely, 

backfill soil, clay and fine sand. The thickness of the three layers are 20, 18 and 25 m respectively, 

the groundwater table was at the ground surface. As reported in [47] there was no obvious 

groundwater flow in experiment area according to the geological report, the groundwater flow 

velocity was taken as 0 m·s-1. The borehole radius is 0.14 m. A U-shape BHE is installed inside the 
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borehole and its length, internal pipe radius, external pipe radius and pipe shank spacing are 63, 

0.013, 0.016 and 0.06 m respectively. Details of the parameters of test site are shown in Table 1. 

As the analytical model used in the literature neglected the thermal capacity of the grout, it is 

assumed that the thermal capacity of the grout is equal to the arithmetic mean of the surrounding 

soil (2.71 MJ·m-3·°C-1) and thermal conductivity of the grout is 1.5 W·m-1·°C-1. Following the 

approach of Hu heat transfer in the grout is regarded as being purely conductive.

Fig. 3(a) shows the outlet fluid temperature calculated by proposed numerical model and the 

result reported by Hu [47]. Compared to the experiment result, the greatest relative error occurs 

at the beginning of the simulation, with the differences becoming smaller with time. Compared 

to the result calculated by Hu’s model, the result calculated by present model is slight lower 

especially at the beginning the simulation. The reason for this phenomenon could be due to the 

consideration of the thermal capacity of the grout. As reported in the literature, the maximum 

error was less than 0.3 °C between Hu’s model and the experiment result except for that of the 

first eight hours. The maximum error between proposed model and the experiment result is also 

less than 0.3 °C.

The proposed model is further verified against Hu’s analytical model when groundwater flow 

is considered. A groundwater flow rate of 6e-7 m·s-1 is assumed in lower two soil layers and no 

groundwater flow is assumed the upper backfill soil layer. The inlet fluid temperature is held 

constant at 30 °C and all other parameters used are as used in the previous analysis. Fig. 3(b) 

shows that the proposed model is in good agreement with results from Hu’s analytical model, 

with the largest variation between the two results being below 0.1 °C. From Section 2 it can also 

be seen that the proposed model has the benefit over alternative analytical solutions to be able 
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to consider a much wider range of problems, which are not constrained by limiting assumptions 

that are necessary to allow the analytical solution to be developed.

4. Investigation of system performance under some influence factors

In this section, numerical simulations are performed to investigate the effects of i) heat pump 

inclusion, ii) variations on moisture content, iii) groundwater table fluctuation and iv) groundwater 

flow in saturated soil on the performance of the GSHP system. As shown in Fig. 4, the 

computational soil domain is 20, 20, and 61 m in the x, y, and z (depth) directions respectively. The 

top of the U-shape BHE is 1 m beneath the ground surface and its length, internal pipe radius, 

external pipe radius and pipe shank spacing are 50, 0.014, 0.016 and 0.06 m respectively. As the 

pipeline exhibited a steep temperature gradient a relatively fine mesh was used near the pipe with 

a total of 44021 4-noded tetrahedral elements used. Spatial and temporal convergence of the 

solution was checked via trial and error with a time step of 1 hour found to be suitable. The ground 

is assumed to consist of a thick strata of silty loam and model parameters for the SWCC are taken 

from the UNSODA database [48]. Initial ground temperature profile and far-field boundary 

temperatures are represented by Eq. (14) and (16). The circulating fluid is water and parameters 

used in the numerical analysis are shown in Table 2. The resulting relationships defining the 

variation of thermal conductivity and heat capacity with volumetric water content are illustrated 

in Fig. 5.

The building load for the 50-m BHE is represented in a simplified way by a regular sinusoidal 

load with a period of one year, with unbalanced winter and summer loads, which following the 

approach of [49], can be expressed as:  
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                 (21)Building 0 0
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3 2 1 2sin - ' sin - '
4 4

π πQ A t φ A t φ
t t

   
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where A0 is the highest magnitude of the load in each year and is taken as 3000 W, φ’ is phase 

angle to control the beginning time of the system operation and is taken as zero here. The building 

load (Eq. (21)) and ground surface temperature (T(0,t)) are shown in Fig. 6 with a positive load 

value representing a cooling load. It should be noted that the peak cooling load and peak surface 

temperature occur at month 3 (as shown in Fig. 6), whilst peak heating load and lowest surface 

temperature occurs at 9 months.

In order to ensure convergence a mesh independence study was undertaken, Fig. 7 presents the 

highest outlet fluid temperatures from four different meshes with increasing element densities 

(with 30576, 36722, 40021 and 44021 elements respectively). The highest outlet temperature is 

used for comparison as this occurs when the building load is at its greatest and the outlet 

temperatures and the difference between them (for the 4 meshes considered) are also greatest. 

According to the test results, the highest outlet temperature tends to converge toward a constant 

value when the number of mesh elements exceeds 44021. The outlet temperature difference 

between the last two cases is about 0.01 °C. Therefore, the mesh with 44012 elements was 

selected in this study.

4.1 Comparison between results with and without the heat pump

When a heat pump is included in the GSHP system, the load for the BHE will not be equal to the 

building load. In order to investigate the effect of inclusion of a heat pump on the performance of 

GSHP system, inlet and outlet fluid temperatures of the two cases (one with and another without 

the heat pump) are compared. In this analysis it is assumed that the groundwater table is at the 

mid height of the BHE, that is, the bottom half of the BHE is below the groundwater table, and that 

the groundwater flow rate is zero.

Comparison results are shown in Fig. 8. It can be seen that inlet and outlet fluid temperatures 
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are higher when the heat pump is considered no matter under cooling load or heating load. This 

is because the electricity consumed by the heat pump results in a temperature rise in the 

circulating water, which is detrimental to cooling but conductive to heating. To be more specific, 

the highest and lowest outlet fluid temperatures with and without considering the effect of heat 

pump are 33.55, 13.73 and 30.90, 12.36 °C respectively in a year. Without considering the effect 

of heat pump could underestimate the highest and lowest outlet temperature by 2.65 and 1.37 °C. 

Thus, ignoring the effect of heat pump could result in the designed total length of the BHE being 

either shorter or longer than the requirements of the building if based on the cooling or heating 

load. 

4.2 Effect of moisture in unsaturated soil

Moisture is a major factor influencing the soil thermal conductivity. When the soil porosity is 

constant, neglecting variations in moisture content distribution will underestimate the soil thermal 

conductivity, which could result in error when calculating the heat transfer of the BHE. Fig. 9 shows 

the outlet fluid temperatures and the corresponding heat pump COP when three cases for the 

distribution of moisture content are considered (groundwater table is defined as being at the mid 

height of the BHE for all cases): i) fully dry above the groundwater table (GWT), ii) varying moisture 

content (Eq. (8)) above the groundwater table and iii) fully saturated above the groundwater table 

(equivalent to the groundwater table at the ground surface). In order to study the effect of 

moisture on short BHEs, the performance of a 25-m BHE is also studied with a building load for the 

25-m BHE being half that considered for the 50-m BHE. The depth of the 25-m BHE computational 

domain is 36 m (the number of 4-noded tetrahedral elements in the mesh is reduced to 25980 

accordingly). It can be seen that for the 50-m BHE, the highest outlet fluid temperatures are 34.16, 
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33.56, 31.74 °C and the corresponding lowest heat pump COP are 4.196, 4.284 and 4.539 

respectively in the three cases. Thus, neglecting the moisture in unsaturated soil could lead to 

overestimating outlet fluid temperatures in cooling season and making the designed BHE length 

longer than needed, therefore increasing initial investment. A similar conclusion can be found 

through analyzing the lowest outlet fluid temperatures.

From Fig. 9, it can also be seen that the highest outlet temperatures are 37.60, 36.74 and 34.63 

°C for the 25-m BHE in the three cases. These results are higher than the corresponding ones for 

the 50-m BHE. Although heat fluxes per unit length are same for them. This could be due to shallow 

soil is susceptible to the ground surface temperature, the heat transfer rate for short BHEs is 

poorer than that for longer BHEs. Furthermore, it can also be concluded that the effect of ground 

surface temperature and moisture change on short BHEs is greater than long BHEs.

4.3 Performance at different levels of groundwater table

The effect of the groundwater table on the performance of GSHP system is investigated with 

Fig. 10 comparing outlet fluid temperatures and heat pump COP under three different positions 

of the groundwater table: i) groundwater table (GWT) below the BHE, ii) groundwater table at mid 

height of the BHE (Case ii in Section 4.2) and iii) groundwater table at the ground surface (Case iii 

in Section 4.2). Groundwater flow velocity is set as zero. The varying moisture content (Eq. (8)) 

above the groundwater table is considered in the first two cases in this section.

Taking the fluid temperature in cooling mode as an example, it can be seen that higher 

groundwater table leads to lower outlet temperature and higher heat pump COP. That is, the rise 

of groundwater table is beneficial to the operation of GSHP system. This is because the rising 

groundwater table results in the increase of soil thermal conductivity. When in heating mode, 
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higher groundwater table can also result in higher heat pump COP. Although, at the very beginning 

of the heating mode, the heat pump COP is the highest when the groundwater table is below the 

BHE. 

4.4 Influence of groundwater table fluctuation

From above analysis, it can be seen that groundwater table could have much influence on the 

performance of GSHP system. However, groundwater table is not constant in a year in real cases. 

It may vary due to seasonal changes such as precipitation and evapotranspiration. Agricultural 

irrigation can also have an impact on the groundwater table. In order to study the impact of time-

varying groundwater table on the performance of GSHP system, similarly to the building load (Eq. 

(21)), the groundwater table is simplified to a cosinusoidal shape curve [20]:

                                   (22)GT 1 1
0

2cos ''πH A B t φ
t

 
   

 

where A1 is the annual average groundwater table, B1 is the amplitude of groundwater table, φ’’

is phase angle.

Fig. 11 shows four kinds of groundwater table fluctuation curves in different places. i) 

groundwater table (GWT) is constant and is at mid height of the BHE (Case ii in Sections 4.2 and 

4.3). Case ii, Case iii and Case iv are groundwater tables changing with time. The annual average 

groundwater tables are -26 m (equal to Case i), and the amplitudes are 20 m in the three cases. 

Case ii represents a lower groundwater table during the cooling season and a higher groundwater 

table during the heating season due to the evaporation and agricultural irrigation. Case iii 

represents that the highest and lowest groundwater tables occur in transition seasons due to 

seasonal rainfall. Case iv is the opposite of Case ii for snow melt.

Fig. 12 shows the outlet fluid temperatures and heat pump COP of four cases under unbalanced 
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load (Eq. (21)). It can be seen that although the average groundwater tables are same in four cases, 

there are big differences in the outlet temperatures and heat pump COP. For example, the highest 

outlet temperatures of four cases are 33.56, 34.33, 33.20, 32.29 °C and the corresponding lowest 

heat pump COP are 4.2845, 4.1708, 4.3365 and 4.4643 respectively. The outlet temperature of 

Case ii is 2.29 % higher than Case i, and Case iv is 3.78 % lower than Case i. The reason for it is that 

the varying groundwater table makes the ground thermal properties changing with time. Without 

considering the groundwater table fluctuation, the outlet temperature could be underestimated 

or overestimated. Therefore, when designing the BHE, the impact of groundwater table fluctuation 

should also be considered.

4.5 Effect of groundwater flow rates considering groundwater tables

Groundwater flow has a big influence on the heat transfer of BHEs. However, existing studies 

seldom consider the influence of groundwater table when studying the effects of groundwater 

flow. Fig. 13 shows the outlet fluid temperatures and heat pump COP under different groundwater 

flow rates. The effect of groundwater tables is also considered in two cases: groundwater table 

(GWT) at mid height of the BHE and groundwater table at ground surface. 

Taking the groundwater table at mid height of the BHE as an example (black, red and blue lines), 

it can be seen that outlet fluid temperatures decrease and heat pump COP increases with the 

increase of groundwater flow rate in cooling mode (1 month to 6 month). However, at the 

beginning of the following heating mode (6 month to around 9 month) (enlarged part in the figure), 

it can be seen that higher groundwater flow rate leads to a lower outlet temperature, and lower 

heat pump COP. Thenceforth, the outlet fluid temperature and heat pump COP rise quickly with 

high groundwater flow rate (1e-6 m·s-1) overpassing those with low groundwater flow rates (1e-7 
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and 5e-7 m·s-1). The reason for this phenomenon is that higher groundwater flow rates spreads 

the released heat downstream and the ground temperature tends to recover to its initial condition, 

which does not favor the operation of GSHP systems at the beginning of the opposite mode. 

It can also be seen that when groundwater flow rates are 1e-7 and 5e-7 m·s-1, the highest outlet 

fluid temperatures for the two groundwater tables are 33.53, 32.75 and 31.70, 30.40 °C 

respectively. Higher groundwater table leads to a lower outlet temperature, and a better 

performance. Analyzing the lowest outlet fluid temperature, we can get the same conclusion. Thus, 

when calculating the influence of groundwater flow on the performance of GSHP system, the 

influence of groundwater tables should also be considered.

5. Conclusion

In this paper, a general numerical model of GSHP system is introduced. The model considers 

relevant factors that influence the operation characteristics of GSHP systems. The model is 

validated against experiment results and analytical model in literature. Numerical simulations are 

carried out to investigate some factors that influence the operation of the GSHP systems. Main 

conclusions are as follows:

(1) As noted by others the effect of heat pump COP should be considered when analyzing the 

operation of the GSHP systems. If it is not considered the calculated inlet and outlet fluid 

temperatures will be underestimated and result in the designed total length of the BHE being 

either shorter or longer than necessary for the requirements of the building.

(2) Neglecting the moisture content in unsaturated region of the soil could lead to an 

underestimation of the heat transfer capacity of the soil and making the designed BHE length 

longer than needed. The effect of ground surface temperature and moisture change on short 
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BHEs is greater than long BHEs

(3) The rising of groundwater table is beneficial to the heat transfer of the BHE and the operation 

of the GSHP system.

(4) The influence of groundwater table fluctuation on the performance of BHEs should be noticed. 

The varying groundwater table makes the ground thermal properties changing with time, 

which could result in underestimate or overestimate of the outlet fluid temperature.

(5) When calculating the influence of groundwater flow rates on the performance of GSHP system, 

the influence of groundwater tables should also be considered.
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Nomenclature

A0 highest magnitude of load (W)

A1 annual average groundwater table (m)

Ap cross section area of pipe (m2)

a fitting parameter of matrix suction function

a’ coefficient of COP function

B1 amplitude of groundwater table (m)

b’ coefficient of COP function

c’ coefficient of COP function

cp,f circulating fluid heat capacity (J·kg-1·°C-1)

cp,w groundwater heat capacity (J·kg-1·°C-1)

dh hydraulic pipe diameter (m) 

fD Darcy friction factor

g acceleration of gravity (m·s-2)

HGT position of groundwater table (m)

h height above groundwater table (m)

heff equivalent convective coefficient of pipe wall (W·m-2 ·°C-1)

hi convection coefficient inside pipe (W·m-2 ·°C-1)

keff effective ground thermal conductivity (W·m-1·°C-1)

kf fluid thermal conductivity (W·m-1·°C-1)

kp pipe thermal conductivity (W·m-1·°C-1)

Nu Nusselt number



27

m fitting parameter of matrix suction function

n fitting parameter of matrix suction function

Pr Prandtl number

QBHE thermal load of BHE (W)

QBuilding building load (W)

Qwall heat flux through pipe wall (W·m-2)

Re Reynolds number

ri internal radius of pipe (m)

ro external radius of pipe (m)

T ground temperature (°C)

Tamp amplitude of annual temperature (°C)

Text temperature outside pipe (°C)

Tf temperature of circulating fluid (°C)

Tf,i inlet fluid temperature (°C)

Tf,o outlet fluid temperature (°C)

Tmean annual average temperature (°C)

t time (s)

t0 period of one year (s)

u circulating fluid velocity (m·s-1)

ua pore air pressure (Pa)

uw pore water pressure (Pa)

vw groundwater flow velocity (m·s-1)
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Vf volumetric flow rate (m3·s-1)

Greek Letters

αeff effective ground thermal diffusivity (m2·s-1)

η soil porosity

θ volumetric water content

θr residual water content

θs saturated water content

ρf fluid density (kg·m-3)

ρw groundwater density (kg·m-3)

(ρcp)eff effective volumetric heat capacity (J·m-3·°C-1)

φ phase angle (rad)

Χair volume fraction of air

Χsolid volume fraction of solid

Χwater volume fraction of water

ψ matric suction (Pa)

Abbreviations

BHE borehole heat exchanger

COP  coefficient of performance

GSHP ground source heat pump
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Table Captions

Table 1. Parameters of the test site in literature.

Table 2. Parameters used in the numerical study.

Figure Captions

Fig. 1. Diagram of the ground source heat pump system.

Fig. 2. Calculation flow chart of the proposed numerical model.

Fig. 3(a). Comparison of the outlet fluid temperature calculated by proposed numerical model 

and reported by Hu [47].

Fig. 3(b). Comparison between proposed numerical model and Hu’s model [47] when 

groundwater flow is considered.

Fig. 4. Schematic of the computational soil domain, dimensions in (m).

Fig. 5. Effective soil thermal conductivity and heat capacity with volumetric water content.

Fig. 6. The building load and ground surface temperature.

Fig. 7. Results of the grid independent test.

Fig. 8. Inlet and outlet fluid temperatures with and without heat pump.

Fig. 9. Effect of moisture in unsaturated soil: (a) Outlet fluid temperatures for two BHE lengths, 

(b) Heat pump COP for two BHE lengths.

Fig. 10. The performance of GSHP system at different groundwater tables: (a) Outlet fluid 

temperatures, (b) Heat pump COP.

Fig. 11. Four typical groundwater table fluctuation curves.

Fig. 12. Impact of groundwater table fluctuation on the GSHP system: (a) Outlet fluid 

temperatures, (b) Heat pump COP.
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Fig. 13. Effect of groundwater flow rates on the performance of GSHP system considering 

groundwater tables: (a) Outlet fluid temperatures, (b) Heat pump COP.
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Table 1. Parameters of the test site in [47].

Item Value

Soil thermal conductivity (backfill soil, clay, 

fine sand), k
2.12, 1.20, 1.61 W·m-1·°C-1

Soil thermal capacity (backfill soil, clay, fine 

sand), ρc
1.71, 3.74, 2.77 MJ·m-3·°C-1

Initial ground temperature, T 15.5 °C

Thermal conductivity of pipe wall, kp 0.45 W·m-1·°C-1

Fluid thermal conductivity, kf 0.60 W·m-1·°C-1

Fluid thermal capacity, ρfcp,f 4.20 MJ·m-3·°C-1

Fluid velocity inside BHE, u 0.38 m·s-1

Table 2. Parameters used in the numerical study.

Item Value

Ground components thermal conductivity 

(air, water, soil particle), ki

0.026, 0.56, 4 W·m-1·°C-1

Ground components thermal capacity (air, 

water, soil particle), ρici

0.00125, 4.2, 2.08 MJ·m-3·°C-1

Thermal conductivity of pipe wall, kp 0.6 W·m-1·°C-1

Fluid velocity inside BHE, u 0.4 m·s-1

Residual water content, θr 0.061

Saturated water content, θs 0.43
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VG model parameter, a 0.012

VG model parameter, n 1.39

Annual average temperature, Tmean 18.2 °C

Amplitude of annual temperature, Tamp 19.8 °C

Phase angle, φ -π/2 rad

-0.003, 0.056, 5.784 for coolingCOP function coefficients a’, b’, c’

-0.001, 0.133, 3.257 for heating
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Fig. 1. Diagram of the ground source heat pump system.
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Inlet fluid temperature, Tf,i
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Outlet fluid temperature, Tf,o
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Eq. (17)

Fig. 2. Calculation flow chart of the proposed numerical model.
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Fig. 13. Effect of groundwater flow rates on the performance of GSHP system considering 

groundwater tables: (a) Outlet fluid temperatures, (b) Heat pump COP.


