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1. Introduction

Lévy driven Ornstein-Uhlenbeck (OU) processes form a rich class of stationary pro-
cesses with mixing properties. They can have any selfdecomposable distribution as their
marginal distribution. Superpositions of OU type (supOU) processes were introduced
by Barndorff-Nielsen in [2] and [3] using a construction that was later generalized to
obtain Lévy mixing processes (see [7]). The supOU processes are stationary processes
with a flexible dependence structure. A square integrable stationary process X(t), t ≥ 0,
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is said to have short-range dependence if its correlation function is integrable and long-
range dependence if it is not integrable. It is possible for supOU processes to display
not only short-range dependence but also long-range dependence. SupOU processes have
found many applications, especially in finance where positive supOU processes are used
in models for stochastic volatility; see [9, 11, 12, 23, 32, 36, 37].

In this paper we discuss the asymptotic properties of two variants of aggregated supOU
process: the integrated process obtained from a continuously observed supOU process and
the partial sum process obtained from a discretely sampled supOU process. These are
of particular interest in finance where the integrated process represents the integrated
volatility (see e.g. [11]). When there are only finitely many OU type processes in the
superposition, the mixing property remains valid and implies the convergence of the
aggregated process to Brownian motion (see [22]). Problems arise when one considers an
infinite superposition of OU type processes. This paper provides a closer analysis to the
corresponding behavior of moments and cumulants. Several attempts have been made to
associate that behavior to rates in limit theorems but to no avail, see for example [4, 28].

Intermittency, which will be defined below, refers to this unusual behavior of moments
and cumulants. Note that our definition of intermittency will be different from the one
used in [6, 8, 34], where intermittency is associated with stochastic volatility. Here, as in
the physics literature, intermittency is associated with the behavior of moments ([14, 41]).

In order to study the asymptotic behavior of the aggregated processes, we investigate
how the cumulants and moments evolve in time. The classical limiting scheme for some
type of aggregated process Y = {Y (t), t ≥ 0} has the form{

Y (nt)

An

}
d→ {Z(t)} , (1)

with convergence in the sense of convergence of all finite dimensional distributions as
n → ∞. By Lamperti’s theorem (see, for example, [17, Theorem 2.1.1]), the normal-
izing sequence is always of the form An = L(n)nH for some H > 0 and L slowly
varying at infinity. Moreover, the limiting process Z is H-self-similar, that is, for any

c > 0, {Z(ct)} d
= {cHZ(t)}, where {·} d

= {·} denotes the equality of finite dimensional
distributions. For self-similar process, the moments evolve as a power function of time
E|Z(t)|q = E|Z(1)|qtHq. Hence, for the process Y satisfying a limit theorem in the form
(1), one expects that

E|Y (nt)|q

Aqn
→ E|Z(t)|q, ∀t ≥ 0. (2)

Therefore, E|Y (t)|q grows roughly as tHq when t → ∞. Indeed, ignoring the slowly-
varying function L and multiplicative constants, we have

E|Y (nt)|q ≈ nHqE|Z(t)|q ≈ nHqtHqE|Z(1)|q ≈ (nt)Hq,

and hence
E|Y (t)|q ≈ tHq as t→∞ (3)

(see Theorem 1 below for the precise statement).
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We study aggregated processes Y (t) arising from supOU processes with a regularly
varying correlation function and a marginal distribution having exponentially decaying
tails, so that, in particular, all moments are finite. We show that these aggregated pro-
cesses have a specific growth of moments: for a certain range of q, namely

E|Y (t)|q ≈ tq−α as t→∞. (4)

Relation (4) contradicts (3). Here α is the parameter related to the dependence structure
of the underlying supOU process (see Theorems 4 and 6 below).

We show that in our context the growth of the cumulants and moments is such that
the relation between (1) and (2) falls apart. We refer to this property as intermittency.
The term is usually used to describe models exhibiting a high degree of variability and
appears in different contexts across the literature; see e.g. [14, 15, 19, 20, 27, 41]. Inspired
by these approaches, we define intermittency as a property arising from a particular
growth of moments. A precise definition is given in Section 2. In that section, we show
that for intermittent processes a limit theorem as in (1) and convergence of moments (2)
do not work together (see Theorem 1 below).

Section 3 provides an overview of facts relevant for the definition and properties of
supOU processes. The expressions for cumulants are established for aggregated processes.
In Section 4, the growth of cumulants is analyzed and we show in Theorems 4 and 6
respectively that the integrated process and the partial sum of supOU processes can be
intermittent.

2. Intermittency

Intermittency is a property used to describe models exhibiting sharp fluctuations in time
and a high degree of variability. Terms such as multifractality, separation of scales, dy-
namo effect are often used together with intermittency. The term has a precise definition
in the theory of stochastic partial differential equations (SPDE), where it is character-
ized by the Lyapunov exponents (see e.g. [14, 15, 27, 41]). The k-th moment Lyapunov
exponent of a non-negative random field {ψ(t, x), t ≥ 0, x ∈ R} stationary in x is defined
by

γ(k) = lim
t→∞

logE (ψ(t, x))
k

t
, (5)

assuming the limit exists and is finite. A random field {ψ(t, x)} is then said to be inter-
mittent if the sequence γ(k)/k, k ∈ N is strictly increasing, that is

γ(1) <
γ(2)

2
< · · · < γ(k)

k
< · · · .

This property can be shown to imply under some assumptions that the random field has
large peaks at different values of the space coordinate (see [27, 31] for details).

We define intermittency as a property which indicates that the moments of the stochas-
tic process do not have a typical limiting behavior. Our focus will be on the behavior
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of the moments of the process in time as characterized by the scaling function defined
below. The Lyapunov exponents are suitable for measuring the growth rate of random
fields that have moments that grow exponentially in time. On the other hand, the scal-
ing function is tailored for cumulative processes, e.g. partial sum process, whose limiting
behavior is investigated.

For a process Y = {Y (t), t ≥ 0}, let (0, q(Y )) denote the range of finite moments,
that is

q(Y ) = sup{q > 0 : E|Y (t)|q <∞ ∀t}.

Definition 1. The scaling function at point q ∈ (0, q(Y )) of the process Y is

τY (q) = lim
t→∞

logE|Y (t)|q

log t
, (6)

assuming the limit exists and is finite.

Note the difference between (5) and (6). In our context, it is the scaling function (6)
which is relevant. It can be shown that τY is always convex and q 7→ τY (q)/q is non-
decreasing ([22]). Using the scaling function we characterize intermittency as a strict
increase in the mapping q 7→ τY (q)/q.

Definition 2. A stochastic process Y = {Y (t), t ≥ 0} is intermittent if there exist
p, r ∈ (0, q(Y )) such that

τY (p)

p
<
τY (r)

r
. (7)

If Y is a H-self-similar process, then τY (q) = Hq, and τY (q)/q is constant, therefore
the process is not intermittent. The following theorem shows that when the process
Y is not self-similar but has a typical limit behavior as described in the theorem (in
particular, convergence to a self-similar process after suitable normalization) and if the
corresponding moments converge, then its scaling function τY turns out to be the same
as for the self-similar process, namely τY (q) = Hq for some H > 0.

Theorem 1. Let Y = {Y (t), t ≥ 0} and Z = {Z(t), t ≥ 0} be two processes such that
Z(t) is nondegenerate for every t > 0 and suppose that for a sequence (An), An > 0,
limn→∞An =∞, one has {

Y (nt)

An

}
d→ {Z(t)} , (8)

with convergence in (8) in the sense of convergence of all finite dimensional distributions
as n→∞. Then there exists a constant H > 0 such that for every q > 0 satisfying

E|Y (nt)|q

Aqn
→ E|Z(t)|q, ∀t ≥ 0, (9)

the scaling function (6) of Y at q is

τY (q) = Hq. (10)



The unusual properties of supOU processes 5

Proof. By Lamperti’s theorem (see, for example, [17, Theorem 2.1.1]), (8) implies the
process Z is H-self-similar with H > 0 and An is of the form An = nHL(n) for some
function L slowly varying at infinity. It follows from (9) that

log
E|Y (nt)|q

Aqn
= logE|Y (nt)|q − log(nHL(n))q

= log n

(
logE|Y (nt)|q

log nt

log nt

log n
− q

log
(
nHL(n)

)
log n

)
→ logE|Z(t)|q as n→∞.

Thus the factor in the parentheses that multiplies log n in the above equation must
tend to zero as n→∞. Since log nt/ log n→ 1 as n→∞, by [13, Proposition 1.3.6(i)]

lim
n→∞

logE|Y (nt)|q

log nt
= lim
n→∞

q
log
(
nHL(n)

)
log n

= Hq + lim
n→∞

q
logL(n)

log n
= Hq.

Hence τY (q) = Hq.

Remark 1. Assumption (8) is the typical form in which limit theorems appear with
Y being a partial sum process or an integrated process. The limiting process is always
self-similar, and the normalizing sequence is regularly varying. If in addition to (8) conver-
gence of moments holds, then Y has a linear scaling function (10) and is not intermittent.
Therefore, in the intermittent case either (8) or (9) or both must fail to hold.

Remark 2. Notice that the scaling function involves only the one-dimensional marginal
distributions of the process. Moreover, the conclusion of Theorem 1 holds if we assume
that convergence in (8) holds only for one-dimensional marginals. Indeed, from the proof
of Lamperti’s theorem [17, Theorem 2.1.1]) this is enough to imply that An = nHL(n),
and the same argument as in the proof of Theorem 1 applies.

Remark 3. The relation between (8) and (9) is a well known problem. In one direction,
for a sequence of random variables convergence of moments implies weak convergence if
the limiting distribution is uniquely determined by its moments. The question whether
this is true is known as the moment problem (see e.g. [38, Section 11.] and references
therein). On the other hand, for a sequence of random variables convergence of moments
is implied by the weak convergence if the appropriately transformed sequence is uniformly
integrable.

Depending on the problem considered, it may be easier to establish intermittency by

considering cumulants instead of moments. For m ∈ N and t ≥ 0, let κ
(m)
Y (t) denote the

m-th order cumulant of Y (t). The corresponding cumulant variant of the scaling function
can be defined as

σY (m) = lim
t→∞

log
∣∣∣κ(m)
Y (t)

∣∣∣
log t

, m ∈ N, (11)
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assuming κ
(m)
Y (t) 6= 0 and the limit exists and is finite. When the form of σY is established,

the relation between moments and cumulants can be used to obtain the expression for
τY . Note, however, that both (6) and (11) involve absolute values.

In the next section, we review basic facts about the supOU processes. These provide
great flexibility in modeling of stationary phenomena. This is becuse a supOU process
can be chosen to have any selfdecomposable distribution as its marginal distribution
and a variety of correlation structures. Some particular choices will lead to intermittent
cumulative processes.

3. SupOU processes

In order to define superpositions of OU type processes we introduce some notation and
review basic facts about random measures and OU type processes.

3.1. Preliminaries

Let
κY (ζ) = C {ζ ‡ Y } = logEeiζY

denote the cumulant (generating) function of a random variable Y and, assuming it

exists, κ
(m)
Y for m ∈ N will denote the m-th cumulant of Y , that is

κ
(m)
Y = (−i)m dm

dζm
κY (ζ)

∣∣
ζ=0

.

If κY (·) is analytic around the origin, then

κY (ζ) =

∞∑
m=1

(iζ)m

m!
κ
(m)
Y . (12)

For a stochastic process Y = {Y (t)} we write κY (ζ, t) = κY (t)(ζ), and by suppressing t
we mean κY (ζ) = κY (ζ, 1), that is the cumulant function of the random variable Y (1).

Similarly, for the cumulants of Y (t), we use the notation κ
(m)
Y (t) and κ

(m)
Y for κ

(m)
Y (1).

Recall that the cumulant function of an infinitely divisible random variable Y has the
Lévy-Khintchine representation

C {ζ ‡ Y } = iaζ − b

2
ζ2 +

∫
R

(
eiζx − 1− iζ1[−1,1](x)

)
µ(dx), ζ ∈ R

where a ∈ R, b > 0, and the Lévy measure µ is a deterministic Radon measure on R\{0}
such that µ ({0}) = 0 and

∫
R min

{
1, x2

}
µ(dx) <∞. The triplet (a, b, µ) is referred to as

the characteristic triplet. A stochastic process {L(t), t ≥ 0} with stationary, independent
increments and continuous in probability (L(t)→P 0 as t→ 0) has a càdlàg modification
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which we refer to as a Lévy process. For any infinitely divisible random variable Y , there
is a corresponding Lévy process {L(t), t ≥ 0} such that Y =d L(1).

An infinitely divisible random variable X is selfdecomposable if its characteristic func-
tion φ(θ) = EeiθX , θ ∈ R, has the property that for every c ∈ (0, 1) there exists a
characteristic function φc such that φ(θ) = φ(cθ)φc(θ) for all θ ∈ R. This means that
that X has the same distribution as cX +Zc, where X and Zc and independent, and Zc
has the characteristic function φc. In this case, X can be represented as

X =

∫ ∞
0

e−sdL(s), (13)

where L = {L(t), t ≥ 0} is a Lévy process whose law is determined uniquely by that of
X. The process L is called the background driving Lévy process (BDLP) corresponding
to the infinitely divisible random variable X. The cumulant functions of X and L(1) are
related by

κX(ζ) =

∫ ∞
0

κL(e−sζ)ds. (14)

From [26, Corollary 1] κX is differentiable for ζ 6= 0, ζκ′X(ζ)→ 0 as 0 6= ζ → 0 and

κL(ζ) = ζκ′X(ζ). (15)

The BDLP L can be extended to a two-sided Lévy process by putting for t < 0, L(t) =

−L̃(−t−) where {L̃(t), t ≥ 0} is an independent copy of the process {L(t), t ≥ 0}
modified to be càdlàg. The Ornstein-Uhlenbeck type (OU) process is a process {X(t), t ∈
R} defined by

X(t) = e−λt
∫ t

−∞
eλsdL(λs) =

∫
R
e−λt+s1[0,∞)(λt− s)dL(s), (16)

where λ > 0. It can be shown that {X(t), t ∈ R} is strictly stationary with the stationary
distribution equal to the selfdecomposable law of X corresponding to the BDLP L. When
X(t) has a finite second moment, the correlation function is r(τ) = e−λτ , τ ≥ 0 ([3]).
Alternatively, starting with a Lévy process L satisfying E log (1 + |L(1)|) < ∞, one can
define an OU type process as a stationary solution of the stochastic differential equation

dX(t) = −λX(t)dt+ dL(λt).

We now turn to supOU processes. To define them, we need some basic facts about
infinitely divisible independently scattered random measures (i.d.i.s.r.m.). Let S be a Borel
subset of Rd and let S be a σ-ring of S (i.e. countable unions of sets in S belong to S
and if A and B are sets in S with A ⊂ B, then B\A ∈ S). A collection of random
variables Λ = {Λ(A), A ∈ S} defined on a probability space (Ω,F , P ) is said to be an
independently scattered random measure if for every sequence {An} of disjoint sets in S,
the random variables Λ(An), n = 1, 2, ... are independent and if

Λ

( ∞⋃
n=1

An

)
=

∞∑
n=1

Λ(An) a.s.
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whenever
⋃∞
n=1An ∈ S. We will be interested in the case when Λ is infinitely divisible,

that is, for each A ∈ S, Λ(A) is an infinitely divisible random variable whose cumulant
function can be written as

C {ζ ‡ Λ(A)} = iζm0(A)− ζ2

2
m1(A) +

∫
R

(
eiζx − 1− iζ1[−1,1](x)

)
Q(A, dx),

where m0 is a signed measure, m1 is a positive measure and for every A ∈ S, Q(A, dx) is a
measure on B(R) without atom at 0 such that

∫
R min

{
1, x2

}
Q(A, dx) <∞. In this case

we say that Λ has the Lévy characteristics (m0,m1, Q) and Q is called the generalized
(deterministic) Lévy measure. An important object in characterizing the class of non-
random functions that are integrable with respect to Λ is the control measure m defined
as

m(A) = |m0| (A) +m1(A) +

∫
R

min
{

1, x2
}
Q(A, dx).

The conditions for integrability of functions with respect to Λ can be found in [3] and
[35]. If function f on R+ × R is integrable with respect to the random measure Λ, then
the cumulant function of the random variable

∫
A
fdΛ is

C

{
ζ ‡
∫
A

fdΛ

}
=

∫
A

κL(ζf(w))M(dw) (17)

where κL is the cumulant function associated with the Lévy basis Λ. More details on
integration can be found in [35].

In defining the stationary supOU processes we will be interested in the homogeneous
case where the characteristic triplet is of the form

m0 = aM, m1 = bM and Q(dw, dx) = M(dw)µL(dx),

where a ∈ R, b > 0, µL is a Lévy measure and M is a measure on S. Note that M and
µL are deterministic. Then the cumulant function of the random variable Λ(A) is

C {ζ ‡ Λ(A)} = M(A)κL(ζ) (18)

where κL is the cumulant function associated with the triplet (a, b, µL), i.e.

κL(ζ) = iζa− ζ2

2
b+

∫
R

(
eiζx − 1− iζ1[−1,1](x)

)
µL(dx). (19)

For more details see also [7, 10, 11, 18] where such measures are also referred to as Lévy
bases.

3.2. SupOU processes

Although OU type processes provide a rich class of stationary models, their correlation
structure is rather limited from the modeling perspective. On the other hand, superposi-
tions of OU type processes introduced in [3] provide far more flexibility and can exhibit
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long-range dependence. They are obtained by randomizing the parameter λ in (16), using
a probability measure π with support in R+. The probability measure π will affect the
dependence structure. We present basic facts about these processes following [3] and [18]
(see also [7]).

Suppose Λ is a homogenous infinitely divisible independently scattered random mea-
sures on S = R+ × R such that (18) holds with M = π × Leb being the product of a
probability measure π on R+ and the Lebesgue measure on R. We say that (a, b, µL, π) is
the generating quadruple ([18]) and the corresponding independently scattered random
measure Λ will be referred to as the Lévy basis.

The following result gives the existence of a superposition Ornstein-Uhlenbeck process;
see [3, Theorem 3.1]. We denote the points in R+×R as w = (ξ, s) and Λ(dw) = Λ(dξ, ds).

Theorem 2. Let κX be the cumulant function of some selfdecomposable law, (a, b, µL)
be the characteristic triplet of the associated BDLP with cumulant function κL and let
π be a probability measure on R+. Define the Lévy basis Λ on R+ × R with generating
quadruple (a, b, µL, π) and set

X(t) =

∫
R+

e−ξt
∫ ξt

−∞
esΛ(dξ, ds) =

∫
R+

∫
R
e−ξt+s1[0,∞)(ξt− s)Λ(dξ, ds). (20)

Then X = {X(t), t ∈ R} is a well-defined, infinitely divisible and strictly stationary
process. Moreover, for t1 < · · · < tm, the joint cumulant function of (X(t1), · · · , X(tm)
is

C {ζ1, . . . , ζm ‡ (X(t1), . . . , X(tm))}

=

∫
R+

∫
R
κL

 m∑
j=1

1[0,∞)(ξtj − s)ζje−ξtj+s
 ds π(dξ). (21)

In particular, since X = {X(t), t ∈ R} is stationary,

C {ζ ‡X(t)} = κX(ζ),

and assuming that X(t) has finite second moment, its correlation function is given by

r(τ) =

∫
R+

e−τξπ(dξ), τ ≥ 0. (22)

Definition 3. The process X = {X(t), t ∈ R} defined by (20) in Theorem 2 is called
a superposition Ornstein-Uhlenbeck (supOU) process.

Relation (22) is obtained by setting m = 2 in (21), taking derivatives with respect to
ζ1 and ζ2 and letting them tend to 0. By comparing the definition of superposition (20)
with the standard OU type process (16), one can see the supOU process is obtained by
randomizing the parameter λ in (16) according to the probability measure π. A choice
of π will play an important role. Taking π as in (24) below will make X long-range
dependent.
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Remark 4. Here is a summary of the measures involved. The supOU process X(t) in
(20) is defined through an integral involving the random measure Λ(dξ, ds). For a fixed
t, the corresponding cumulant function is

κX(ζ) = C {ζ ‡X(t)} =

∫
R+

∫
R
κL
(
1[0,∞)(ξt− s)ζe−ξt+s

)
ds π(dξ)

where κL given in (19) is associated with the Lévy basis Λ and involves the Lévy measure
µL. The cumulant function κX thus involves the corresponding deterministic measure

Q(dw, dx) = M(dw)µL(dx) = π(dξ)Leb(ds)µL(dx),

where w = (ξ, s).

Remark 5. In [18], a supOU process is defined as

X̃(t) =

∫
R+

∫
R
e−ξ(t−s)1[0,∞)(t− s)Λ̃(dξ, ds), (23)

where Λ̃ has generating quadruple (ã, b̃, µ̃L, π̃) such that ρ :=
∫
R+
ξ−1π̃(dξ) < ∞.

However, the two approaches are equivalent. Taking a = ρã, b = ρb̃, µL = ρµ̃L and
π(dξ) = ρ−1ξ−1π̃(dξ) in Theorem 2, we obtain a process which has the same law as the

process X̃ defined in (23) (see [18, Proposition 2.1]).

Example 1. If the measure π in (21) is degenerate such that π ({λ}) = 1 for some
λ > 0, then it follows from (21) that the finite dimensional distributions of X are the
same as for the standard OU type process (16), that is

C {ζ1, . . . , ζm ‡ (X(t1), . . . , X(tm))} =

∫
R
κL

 m∑
j=1

1[0,∞)(λtj − s)ζje−λtj+s
 ds.

Example 2. Suppose π in (21) is a discrete probability measure such that π ({λk}) =
pk, k ∈ N and λk > 0. Then we have that

C {ζ1, . . . , ζm ‡ (X(t1), . . . , X(tm))} =

∞∑
k=1

∫
R
pkκL

 m∑
j=1

1[0,∞)(λktj − s)ζje−λktj+s
 ds.

Thus in this case X has the same distribution as the infinite discrete type superposition{ ∞∑
k=1

X(k)(t), t ∈ R

}
,

where {X(k)(t), t ∈ R}, k ∈ N are independent standard OU type processes correspond-
ing to parameter λk and BDLP with cumulant function pkκL, k ∈ N. In the case of finite
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second moment, such discrete type superposition is well defined in the sense of L2 and
a.s. convergence (see [22]), and from (22) the correlation function is

r(τ) =

∞∑
k=1

e−λkτpk, τ ≥ 0.

By appropriate choices of probability measure π one can achieve different correlation
structures of the supOU processes. We will use the notation f ∼ g if f(x)/g(x) → 1 as
x→ 0 or x→∞. It follows from (22) that the correlation function can be considered as
the Laplace transform of π. Using Karamata’s Tauberian theorem [13, Theorem 1.7.1′]
one can easily obtain the following result ([18]).

Proposition 1. Suppose X is a square integrable supOU process with correlation func-
tion r, L is a slowly varying function at infinity and α > 0. Then

π ((0, x]) ∼ L(x−1)xα, as x→ 0 (24)

if and only if
r(τ) ∼ Γ(1 + α)L(τ)τ−α, as τ →∞. (25)

The bigger the mass of π is near the origin, the slower is the decay of the correlation
function at infinity. Hence, in view of (25), if α ∈ (0, 1) the correlation function is not
integrable, and supOU process exhibits long-range dependence. We will denote

α = 2H = 2(1−H)

with H as the long-range dependence parameter. Hence α ∈ (0, 1) corresponds to H ∈
(1/2, 1). More details on the dependence structure in specific examples can be found in
[5].

Example 3. Suppose X is a supOU process such that π is Gamma distribution with
density

f(x) =
1

Γ(α)
xα−1e−x1(0,∞)(x),

where α > 0. Then

π((0, x]) =
γ(α, x)

Γ(α)
, x > 0,

where γ(α, x) =
∫ x
0
uα−1e−udu is the incomplete Gamma function. From the asymptotic

expansion of γ ([1, Eq. 6.5.4 and Eq. 6.5.29]) we have that

π((0, x]) ∼ 1

Γ(α+ 1)
xα, as x→ 0.

By Lemma 1 the correlation function has the property

r(τ) ∼ τ−α, as τ →∞.
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In this case, we can explicitly compute from (22) that

r(τ) =

∫ ∞
0

e−τx
1

Γ(α)
xα−1e−xdx = (1 + τ)−α

1

Γ(α)

∫ ∞
0

xα−1e−xdx = (1 + τ)−α.

Note that for α ∈ (0, 1] the correlation function exhibits long-range dependence, while
for α > 1 short-range dependence.

Example 4. If π is the Mittag-Leffler distribution, then the correlation function of the
supOU process is

r(τ) = (1 + τα)−1, 0 < α < 2.

The supOU process obtained in this way is long-range dependent for α ∈ (0, 1] and
short-range dependent for α ∈ (1, 2).

Example 5. Another long-range dependent example can be obtained with r(τ) =
Eα(−τγ), γ ∈ (0, 1), α ∈ (0, 1) where

Eα(z) =

∞∑
k=0

zk

Γ(αk + 1)
, z ∈ C,

is the Mittag-Leffler function. In this case

r(τ) ∼ τ−γ

Γ(1− α)
, as τ →∞.

See [5, Example 4] for details.

In our study of intermittency we will be concerned with the cumulant properties of
integrated and partial sum process of supOU process. Tractable expressions for cumulant
functions in both cases are established in the following subsections.

3.3. Integrated process

Suppose X is a supOU process defined in (20) and let X∗ = {X∗(t), t ≥ 0} be the
integrated process

X∗(t) =

∫ t

0

X(s)ds. (26)

For a, b ∈ R, let

ε(a, b) =
1

b

(
1− e−ab

)
and recall that κX∗(ζ, t) and κ

(m)
X∗ (t) denote the cumulant function and the m-th order

cumulant of X∗(t), respectively.
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Proposition 2 (Theorem 4.1 in [3]). The cumulant function κX∗ of X∗(t) satisfies

κX∗(ζ, t) = ζ

∫ ∞
0

∫ t

0

κ′X (ε(s, ξ)ζ) ds π(dξ), (27)

where κX(ζ) is the cumulant function of X(1).

Proposition 3 (Theorem 4.2 in [3]). Assume that κX is analytic in a neighborhood of
the origin. The cumulants of X∗(t) are then given by

κ
(m)
X∗ (t) = κ

(m)
X mIm−1(t) (28)

where the κ
(m)
X are the cumulants of X(1),

Im−1(t) =

∫ ∞
0

(
am−1 + tξ +

m−1∑
k=1

(−1)k−1
(
m− 1

k

)
1

k
e−ktξ

)
ξ−mπ(dξ) (29)

with

am−1 =

m−1∑
k=1

(−1)k
(
m− 1

k

)
1

k
. (30)

The analyticity of the κX in Proposition 3 ensures the existence of all the cumulants of
the marginal distribution of the underlying supOU process X. Note also that analyticity
does not depend on the measure π since the choice of π does not affect the one-dimensional
marginal distribution of X. The following is a useful criterion [29, Theorem 7.2.1] for
checking analyticity of the cumulant function.

Lemma 1. The characteristic and cumulant functions are analytic in a neighborhood
of the origin if and only if there is a constant C such that the corresponding distribution
function F satisfies

1− F (x) + F (−x) = O(e−ux), as x→∞,

for all 0 < u < C.

It follows from Lemma 1 that the cumulant function of X(t) is analytic in the neigh-
borhood of the origin if there exists a > 0 such that Eea|X(t)| < ∞. This implies in
particular that all the moments and cumulants of X(t) exist. This condition is satisfied
for many selfdecomposable distributions.

Example 6. The inverse Gaussian distribution IG(δ, γ), γ > 0, δ > 0 with density

fIG(δ,γ)(x) =
δ√
2π
eδγx−3/2 exp

{
−1

2

(
δ2x−1 + γ2x

)}
1(0,∞)(x)
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is selfdecomposable and hence, for any choice of probability measure π, there exists a
supOU process X with IG(δ, γ) stationary distribution. Since exponential moments are
finite, the cumulant generating function is analytic in a neighborhood of the origin and
has the form

κX(ζ) = δ
(
γ −

√
γ2 − 2iζ

)
.

Example 7. The normal inverse Gaussian distribution NIG(α, β, δ, µ) with param-
eters α ≥ |β|, δ > 0, µ ∈ R is another example of selfdecomposable distribution. The
density of NIG(α, β, δ, µ) distribution satisfies (see [2])

fNIG(α,β,δ,µ)(x) ∼ C|x|−3/2e−α|x|+βx, as x→ ±∞.

Hence, there is a > 0 such that Eea|X(t)| < ∞, the cumulant generating function is
analytic in a neighborhood of the origin and has the form

κX(ζ) = iµζ + δ

(√
α2 − β2 −

√
α2 − (β + iζ)

2

)
.

Other examples of supOU processes satisfying conditions of Proposition 3 can be
obtained by taking the marginal distribution to be gamma, variance gamma, tempered
stable, Eulers gamma, or z-distribution. See [5] and [22] for more details. On the other
hand, the Student’s t-distribution T (ν, δ, µ), ν > 0, δ > 0, µ ∈ R whose density is

fT (ν,δ,µ)(x) =
Γ
(
ν+1
2

)
δΓ
(
1
2

)
Γ
(
ν
2

) (1 +

(
x− µ
δ

)2
)− ν+1

2

, x ∈ R,

provides an example of a self-decomposable distribution for which the cumulant function
is not analytic around the origin since E|X|q =∞ for q > ν (see e.g. [24]).

It is worth noting that one can obtain expressions for cumulants without assuming
analyticity. In fact, taking derivatives with respect to ζ in (27) and letting ζ → 0, one re-
covers the formula (28). This approach can be used to investigate cumulants and moments
when they exists only up to some finite order, as in the case of Student’s distribution. In
this paper we assume analyticity in order not to complicate the exposition.

3.4. Partial sum process

In addition to the integrated process, we also consider partial sums of a discretely sampled
supOU process. Let

X+(t) =

btc∑
i=1

X(i) (31)

and define

η(a, b) = e−b
1− e−ab

1− e−b
. (32)
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The following two propositions establish the cumulant function and cumulants for the
partial sum process. The proofs are given in the supplemental article [21].

Proposition 4. The cumulant function κX+ of X+(t) satisfies

κX+(ζ, t) =

∫ ∞
0

 btc∑
k=1

(
κX
(
eξη (k, ξ) ζ

)
− κX

(
η (k, ξ) ζ

))
+ κX

(
η (btc, ξ) ζ

)π(dξ),

(33)
where κX(ζ) is the cumulant function of X(1).

Proposition 5. Assume that the cumulant function κX of X(t) is analytic in a neigh-
borhood of the origin. The cumulants of X+(t) are then given by

κ
(m)
X+ (t) = κ

(m)
X Jm−1(t)

where the κ
(m)
X are the cumulants of X(1) and

Jm−1(t) =

∫ ∞
0

((
1− e−mξ

)
(btc − 1) +

(
1− e−mξ

) m∑
j=1

(
m

j

)
(−1)je−jξ

1− e−j(btc−1)ξ

1− e−jξ

+
(

1− e−btcξ
)m) 1

(1− e−ξ)m
π(dξ).

(34)

4. Intermittency of integrated and partial sum
process

In this section we establish asymptotic properties of cumulants and moments of the
integrated supOU process X∗ defined in (26) and the partial sum process X+ defined in
(31). The underlying supOU process will be assumed to have a power law decay of the
correlation function, which can be achieved with the appropriate choice of the probability
measure π, as given by Proposition 1. In the case of long-range dependence, we will show
that both variants of cumulative processes can be intermittent. Before doing that, we
provide examples where asymptotic normality easily follows.

Example 8. Consider a supOU process from Example 2 such that π is a discrete
probability measure with finite support {λk : k = 1, . . .K} and π({λk}) = pk. In this case,
supOU process has the same distribution as the finite superposition X = {X(t), t ∈ R}
defined by

X(t) =

K∑
k=1

X(k)(t),
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where {X(k)(t), t ∈ R}, k = 1, . . . ,K are independent standard OU type processes
corresponding to parameter λk and BDLP with cumulant function pkκL, k = 1, . . . ,K.
Suppose E|X(1)|2+δ < ∞ for some δ > 0 and let {S(t), t ≥ 0} denote the centered
partial sum process

S(t) =

btc∑
i=1

(X(i)− EX(i)) .

Each OU type process {X(k)(t), t ∈ R}, k = 1, . . . ,K satisfies the strong mixing property
with an exponentially decaying rate of mixing coefficients ([30]), and so does a sequence
X(i), i ∈ N as a finite sum of these processes. Application of the invariance principle for
strong mixing sequences ([16]; see also [33]) shows that

S(nt)

σ
√
n
⇒ B(t), t ∈ [0, 1],

as n → ∞, where {B(t), t ∈ [0, 1]} is a Brownian motion, σ positive constant and the
convergence is weak convergence in Skorokhod space D[0, 1]. In particular, (8) holds with
Y being the partial sum process and for every t ∈ [0, 1]

S(nt)

σ
√
n

d→ N (0, t),

as n→∞. If q > 2 is such that E|X(1)|q <∞, then by the result of [40], the q-th absolute
moment of S(nt)/(σ

√
n) converges to that of N (0, t). Then by Theorem 1 the scaling

function of the partial sum process S(t) is τS(q) = q/2, and there is no intermittency.

Example 9. Let {X(t), t ≥ 0} be a Gaussian supOU process, that is a supOU process
with the generating quadruple (0, σ2, 0, π) where σ2 > 0 and π is a probability measure.
One can check from (21) that X is indeed a Gaussian process with zero mean. Suppose
further that π satisfies (24) for some α > 0 so that the correlation function satisfies (25).

Let X+(t) =
∑btc
i=1X(i) be the corresponding partial sum process.

When α < 1, long-range dependence is present, and from [39, Lemma 5.1], the nor-
malized partial sum process

1

nH
√
L(n)

X+(nt)

with H = 1 − α/2, converges in Skorokhod space D[0, 1] to a process that is fractional
Brownian motion with Hurst parameter H up to a multiplicative constant. The par-
tial sum X+(t) is a mean zero Gaussian random variable with the variance satisfying

E (X+(t))
2 ∼ Cbtc2HL (btc) (see the proof of [39, Lemma 5.1]). Since the q-th absolute

moment of a Gaussian distribution is proportional to the q-th power of the standard
deviation, it follows that τX+(q) = Hq, and there is no intermittency.

If α > 1, then the variance of X+(t) is of the order t1/2, and the finite-dimensional
distributions of

1

n1/2
X+(nt)
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converge to those of the Brownian motion, see [25, Theorem 2.3.1]. In the case α = 1, the
limit is also Gaussian with an extra factor of a slowly varying function in the variance
and in the normalizing sequence of the partial sum, see [25, Theorem 2.3.2]. The same
argument as in the case α < 1 shows that the scaling function is τX+(q) = q/2, and there
is no intermittency.

To show that the integrated supOU process X∗(t) =
∫ t
0
X(s)ds can be intermittent,

we first establish the form of the cumulant based scaling function σX∗(m) defined in (11).

Recall that κ
(m)
X denotes the m-th cumulant of X(t). In particular, κ

(1)
X = EX(t). The

proof is given in the supplemental article [21].

Theorem 3. Suppose that the stationary supOU process X defined in (20) satisfies the
conditions of Proposition 1 and satisfies (24) with some α > 0. Further, suppose that
κX is analytic in a neighborhood of the origin and let σX∗ be the cumulant based scaling

function (11) of the integrated process {X∗(t), t ≥ 0}. If the mean κ
(1)
X 6= 0, then

σX∗(1) = 1.

For every m > α+ 1 such that κ
(m)
X 6= 0, we have

σX∗(m) = m− α.

Using the relation between cumulants and moments we can now obtain the corre-
sponding asymptotic behavior of the moments. This will yield intermittency as defined
in (7). In central limit type theorems with finite variance one supposes that the mean is

zero. We shall do this here as well and thus set the first cumulant κ
(1)
X = 0. Again, the

proofs of Theorem 4 and Theorem 5 below are given in the supplemental article [21].

Theorem 4. Suppose that for the non-Gaussian supOU process X the assumptions of

Theorem 3 hold with α > 0, κ
(1)
X = 0 and κ

(2)
X 6= 0. If τX∗ is the scaling function (6) of

X∗ = {X∗(t), t ≥ 0}, then for every q ≥ q∗

τX∗(q) = q − α,

where q∗ is the smallest even integer greater than 2α. In particular, for q∗ ≤ p < r

τX∗(p)

p
<
τX∗(r)

r

and hence X∗ is intermittent.

The proof uses the following lemma.

Lemma 2. Suppose that α > 0 and f is a convex function such that f(q) = q − α for
three values of q, namely q ∈ {x, y, z}, x < y < z. Then the function f must be a straight
line segment, i.e. f(q) = q − α for any q in the interval [x, z].
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Proof. Trivially, f(q) ≤ q − α for any q ∈ [x, z]. If q ∈ (x, y), then by convexity

z − y
z − q

f(q) +
y − q
z − q

f(z) ≥ f(y).

Dividing both sides by z−y
z−q > 0 and rearranging yields

f(y) ≥ z − q
z − y

f(y)− y − q
z − y

f(z) =
z − q
z − y

(y − α)− y − q
z − y

(z − α) = q − α.

For q ∈ (y, z) convexity implies

q − y
q − x

f(x) +
y − x
q − x

f(q) ≥ f(y)

and by analogous steps we can deduce f(q) ≥ q − α.

We can now apply Proposition 5 to establish the following result for the partial sum
supOU process. The result is similar to that for the integrated process X∗. In fact, the
moments and cumulants of X+(t) and X∗(t) have the same asymptotic behavior as
t → ∞, and therefore σX+(m) = σX∗(m). The proof of Theorem 5 can be found in the
supplement [21].

Theorem 5. Suppose that the supOU process satisfies the conditions of Proposition 1
and satisfies (24) with some α > 0, κX is analytic in a neighborhood of the origin and let
σX+ be the cumulant based scaling function (11) of the partial sum process {X+(t), t ≥
0}. If κ

(1)
X 6= 0, then

σX+(1) = 1.

If m > α+ 1 and κ
(m)
X 6= 0, then

σX+(m) = m− α.

Set α = 2(1−H) with H ∈ (1/2, 1) so that α ∈ (0, 1). A special case of Theorem 5 was
proved in [22] for the specific situation of the Example 2. In the notation of Example 2, the
case considered there corresponds to a discrete type superposition X(t) =

∑∞
k=1X

(k)(t)
obtained by choosing

λk = λ/k, λ > 0 and pk = Cζ(1 + 2(1−H))/k1+2(1−H), C > 0,

where ζ is the Riemann zeta function. In addition, it is assumed that the cumulants of the
standard OU type processes {X(k)(t)} scale in a specific way. Under these conditions, the

cumulants of the centered partial sum process S(t) =
∑btc
i=1 (X(i)− EX(i)) are shown to

have the form
κ
(m)
S (Nt) = CmL(N)bNtcm−2(1−H) (1 + o(1)) ,

as N →∞, where Cm is a positive constant and L a slowly varying function.
Using the same argument as in the proof of Theorem 4, we obtain the following result

on intermittency of the partial sum process.
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Theorem 6. Suppose that for the non-Gaussian supOU process X the assumptions of

Theorem 3 hold with α > 0, κ
(1)
X = 0 and κ

(2)
X 6= 0. If τX+ is the scaling function (6) of

X+ = {X+(t), t ≥ 0}, then for every q ≥ q∗

τX+(q) = q − α.

where q∗ is the smallest even integer greater than 2α. Thus X+ is intermittent.

Remark 6. In Example 8 (finite superpositions case) and Example 9 (Gaussian case),
we have shown that there is no intermittency. Note that these two cases are clearly not
covered in Theorems 4 and 6 where we suppose a non-Gaussian process and regular
variation (24) of measure π.

On the other hand, particular examples of supOU processes satisfying conditions of
Theorems 4 and 6 can be obtained by choosing for the marginal distribution any selfde-
composable distribution with zero mean and analytic cumulant function (e.g. distribu-
tions from Examples 6 and 7) and by taking the measure π that satisfies (24) (e.g. mea-
sures given in Examples 3, 4 and 5). For any such combination we obtain an intermittent
supOU process. Under these conditions, both the integrated and the partial sum process
are intermittent. This implies that (8) and (9) cannot both hold. The study of limit the-
orems for integrated supOU processes and how they relate to the intermittency property
will appear in future work.
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