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Summary

ENRICHED FINITE ELEMENT METHODS: ADVANCES &

APPLICATIONS

This thesis presents advances and applications of the eXtended Finite Element Method
(XFEM). The novelty of the XFEM is the enrichment of the primary variables in the

elements intersected by the discontinuity surface by appropriate functions. The enrich-
ment scheme carries the local behaviour of the problem and the main advantage is that the
method does not require the mesh to conform to the internal boundaries. But this flexibility
comes with associated difficulties: (1) Blending problem; (2) Numerical integration of en-
richment functions and (3) sub-optimal rate of convergence.

This thesis addresses the difficulty in the numerical integration of the enrichment functions
in the XFEM by proposing two new numerical integration schemes. The first method re-
lies on conformal mapping, where the regions intersected by the discontinuity surface are
mapped onto a unit disk. The second method relies on strain smoothing applied to discon-
tinuous finite element approximations. By writing the strain field as a non-local weighted
average of the compatible strain field, integration on the interior of the finite elements is
transformed into boundary integration, so that no sub-division into integration cells is re-
quired.

The accuracy and the efficiency of both the methods are studied numerically with prob-
lems involving strong and weak discontinuities. The XFEM is applied to study the crack
inclusion interaction in a particle reinforced composite material. The influence of the crack
length, the number of inclusions and the geometry of the inclusions on the crack tip stress
field is numerically studied. Linear natural frequencies of cracked functionally graded ma-
terial plates are studied within the framework of the XFEM. The effect of the plate aspect
ratio, the crack length, the crack orientation, the gradient index and the influence of cracks
is numerically studied.
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© Sundararajan Natarajan
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1
Introduction

This thesis deals with problems in linear elastic fracture mechanics (LEFM) and prob-

lems with internal geometries or moving boundaries. The thesis presents advances

and applications of the partition of unity method (PUM), in particular, the extended finite

element method (XFEM).

Chapter 2 introduces the basics of PUM, with particular focus on the XFEM. A detailed dis-

cussion on some of the difficulties associated with the XFEM are discussed. The thesis is

motivated by one such difficulty, i.e., numerical integration over the elements intersected

by the discontinuity surface.

Chapter 3 presents two new numerical integration techniques to numerically integrate over

enriched elements in the XFEM. The first method relies on conformal mapping for arbitrary

polygons that can be used for the elements intersected by a discontinuity surface in 2D.

In case of elements intersected by a discontinuity surface, each part of the element is con-

formally mapped onto a unit disk. Cubature rule on this unit disk is used to obtain the

integration points. The proposed method (is applicable to 2D cases only) eliminates the need

for a two level isoparametric mapping. The secondmethod is based on the strain smoothing

method (SSM). The SSM was originally proposed for meshless methods and later extended

to the finite element method (FEM). The resulting method was coined as the Smoothed Fi-

nite Element Method (SFEM). In Chapter 3, Section 3.2.2, SSM is combined to the XFEM,

to construct the Smoothed eXtended Finite Element Method (SmXFEM). The smoothing

allows to transform the volume integration into surface integration in the case of 3D and

surface integration into contour integration in the case of 2D by the divergence theorem, so

that the computation of the stiffness matrix

• is done by boundary integration, along the smoothing cells’ boundary,

• does not require the computation of derivatives of the shape functions (spatial differ-

entiation is replaced by multiplication by the normal to the cells’ boundary),

1



• does not require any iso-parametric mapping.

The accuracy, the efficiency and the robustness of the proposed methods are illustrated

with numerical examples involving weak and strong discontinuities in Chapter 4. The re-

sults are compared with the conventional XFEM and with analytical solutions wherever

available. The crack inclusion interactions in an elastic medium are numerically studied.

Both the inclusion and the crack are modelled within the XFEM framework by appropriate

enrichment functions. A structured mesh is used for the current study and the influence of

crack length, number of inclusions on the crack tip stress field is numerically studied. The

interaction integral for non-homogeneous materials is used to compute the stress intensity

factors ahead of the crack tip. The accuracy and the flexibility of the XFEM to study crack

inclusion interactions is demonstrated by various numerical examples.

In Chapter 5, the linear free flexural vibration of cracked functionally gradedmaterial plates

is studied using the XFEM. A 4-noded quadrilateral plate bending element based on field

and edge consistency, with 20 degrees of freedom per element is used for this study. The

natural frequencies and mode shapes of simply supported and clamped, square and rect-

angular plates are computed as a function of the gradient index, the crack length, the crack

orientation and the crack location. The effect of thickness and the influence of multiple

cracks is also studied.

Finally, Chapter 6 contains the conclusions of this work, as well as suggestions and remarks

about future work.
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2
Partition of Unity Methods

Partial differential equations (PDEs) play an important role in a wide range of disci-

plines. They emerge as the governing equations of problems arising in different fields

of Science, Engineering, Economy and Finance. Closed form or analytical solutions to these

equations are not obtainable for most problems. Hence, scientists and engineers have de-

veloped numerical methods, such as the finite difference method (FDM) [119], the finite el-

ement method (FEM) [12, 166], meshless methods [68, 85], spectral methods [29], boundary

element methods [130], discrete element methods [106], Lattice Boltzmann methods [140]

etc.,

A popular and widely used approach to the solution of PDEs is the FEM. FEM based com-

putational mechanics plays a prominent role in all fields of science and engineering. FEM

does not operate on the differential equations; instead, the continuous boundary and ini-

tial value problems are reformulated into equivalent variational forms. The FEM requires

the domain to be subdivided into non-overlapping regions, called the elements. In FEM,

individual elements are connected together by a topological map, called a mesh and local

polynomial representation is used for the fields within the element. The solution obtained

is a function of the quality of mesh and the fundamental requirement is that the mesh has

to conform to the geometry (see Figure 2.1). The main advantage of the FEM is that it can

handle complex boundaries without much difficulty. Despite its popularity, FEM suffers

from certain drawbacks. This is illustrated in Table 2.1 along with some solution method-

ologies that have been proposed to overcome the limitations of the FEM. Note that some

solution methodologies aim at addressing more than one limitation of the FEM, for exam-

ple, meshfree methods [68, 85] and the recently proposed Smoothed Finite Element Method

(SFEM) [28, 87, 110].

It has been noted that the FEM with piecewise polynomials are inefficient to deal with sin-

gularities or high gradients in the domain. One strategy is to enrich the FEM approximation

basis with additional functions [136]. Some of the proposed techniques can be combined

with enrichment techniques to solve problems involving high gradients or singularities.

3



2.1. GOVERNING EQUATIONS AND VARIATIONAL FORM

The idea of enriching the finite element (FE) approximation basis will be revisited in Chap-

ter 3 Section 3.2.2 in the context of strain smoothing as applied to the enriched FEM. This

thesis focusses on enrichment techniques for finite elements. Also, enrichment techniques

are available in meshfree methods [27, 109, 123], but these will not be discussed in this

study. The term ‘enrichment’ in this thesis implies augmenting or supplementing a ba-

sis of piecewise polynomial ‘finite elements’ by appropriate functions chosen to accurately

represent the local behaviour.

(a) FEM (b) XFEM/GFEM/PUFEM

Figure 2.1: Domain with internal boundaries: (a) conventional FEMdiscretization, themesh
conforms to the internal boundaries and (b) XFEM/GFEM/PUFEM approach, the mesh is
independent of the internal boundaries.

This chapter is organized as follows. The governing equations for 2D elasticity problem

and corresponding variational form is given in the next section. Section 2.2 presents the

basics of the FEM. A brief summary of different enrichment techniques proposed since 1970

is discussed in Section 2.3. Section 2.4 gives an overview of the eXtended Finite Element

Method (XFEM). The flexibility provided with the XFEM comes with associated difficulties.

A brief discussion is presented on some of these difficulties. Simple numerical examples

involving weak discontinuities are presented in Section 2.5, followed by a summary in the

last section.

2.1 Governing equations and Variational form

The governing equilibrium equations for a 2D elasticity problem with internal boundary,

Γc defined in the domain Ω and bounded by Γ is

∇T
s σ + b = 0 in Ω (2.1)

where ∇s(·) is the symmetric part of the gradient operator, 0 is a null vector, σ is the stress

4



2.1. GOVERNING EQUATIONS AND VARIATIONAL FORM

Table 2.1: Drawbacks of the FEM and solution methodologies.

Area of con-
cern

Finite Element Method Solution Methodologies

Element
shape

Mapping and co-ordinate
transformation is involved
in the FEM and hence the
element cannot take arbi-
trary shape. A necessary
condition for a 4-noded
isoparametric element is
that no interior angle is
greater than 180◦ and the
positivity of the Jacobian
should be ensured.

• SFEM [28, 87, 110]

• Meshfree methods [68, 85, 123]

• Polygonal FEM [43, 141, 142]

• Voronoi cell FEM [62, 63]

Large defor-
mation

Large deformation may re-
sult in severe mesh distor-
tion leading to drastic dete-
rioration in the accuracy.

• SFEM [88]

• Meshfree methods [68, 85, 123]

High gra-
dients or
cracks or
discontinu-
ities

Requires a very fine dis-
cretization leading to
increased computational
time.

• Meshfree methods [36, 76, 86]

• Special elements & mesh overlay
techniques [16, 52, 54, 107]

• Enrichment techniques [10, 15, 22,
136, 138]

• Wavelet FEM [37, 122, 147]

Interpolation
fields

FEM interpolation fields
are primarily Co functions.
Higher order interpolation
fields are difficult to con-
struct. For example, gradi-
ent elasticity, plate theories

• Meshfree methods [5, 18, 89]

• Iso-geometric analysis [73]

• Spectral methods [29, 120]

Geometry
representa-
tion

Piecewise polynomials are
normally used to represent
the geometry

• Iso-geometric analysis [73]

• Implicit representation [101]

5



2.1. GOVERNING EQUATIONS AND VARIATIONAL FORM

Ω

Γc

Γ

Γu

n

t

Γt

Figure 2.2: Two-dimensional elastic body with a crack.

tensor and b is the body force. The boundary conditions for this problem are:

σ · n = t on Γt

u = u on Γu

σ · n = t on Γc (2.2)

where u = (ux, uy)
T is the prescribed displacement vector on the essential boundary Γu; t =

(tx, ty)
T is the prescribed traction vector on the natural boundary Γt and n is the outward

normal vector. In this study, it is assumed that the displacements remain small and the

strain-displacement relation is given by:

ε = ∇su (2.3)

The constitutive relation is given by:

σ = D : ε (2.4)

where D is a fourth order elasticity tensor. Equation (2.1) is called the ‘strong form’ and

computational solutions of Equation (2.1) rely on a process called ‘discretization’ that con-

verts the problem into system of algebraic equations. The first step in transforming Equa-

tion (2.1) into a discrete problem is to reformulate Equation (2.1) into a suitable variational

equation. This is done by multiplying Equation (2.1) with a test function. Let us define,

6



2.2. GALERKIN FINITE ELEMENT METHOD

U =
{
u ∈ H1(Ω) such that u|Γu = u

}

V =
{
v ∈ H1(Ω) such that v|Γu = 0

}
(2.5)

The space U in which we seek the solution is referred to as the ‘trial’ space and the space V

is called the ‘test’ space. Let us define a bilinear form a(·, ·) and a linear form ℓ(·),

a(u,v) : =

∫

Ω

σ(u) : ε(v) dΩ

ℓ(v) =

∫

Γt

v · t dΓ (2.6)

whereH1(Ω) is a Hilbert spacea with weak derivatives up to order 1. The weak formulation

of the static problem is then given by:

find u ∈ U such that ∀v ∈ V a(u,v) = ℓ(v) (2.9)

2.2 Galerkin Finite Element Method

In the variational weak form given by Equation (2.9), U and V are infinite dimensional

subspaces of the Hilbert space H . To get an approximate solution, a finite dimensional

subspace, i.e.,Uh ⊂ U and V
h ⊂ V is chosen. The weak formulation of the static form is then

given by:

find uh ∈ U
h such that ∀vh ∈ V

h a(uh,vh) = ℓ(vh) (2.10)

where h is a discretizaton parameter. The above discretization is called the ’Galerkin’ equa-

tion. The key property of the Galerkin approach is that error (en = u − uh, the differ-

ence between the solution of original problem given by Equation (2.9) and the solution of

aThe function space L2(Ω) with the inner product

(u, v)L2(Ω) =

∫

Ω

uv dΩ u, v ∈ L2(Ω) (2.7)

and with associated norm ||u||L2(Ω) =
√

(u, u)
L2(Ω)

, where L2(Ω) consists of functions that are square inte-

grable:

L2(Ω) =







f :

∫

Ω

f2 dΩ <∞







(2.8)

.
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2.3. ENRICHMENT TECHNIQUES: JOURNEY THROUGH TIME

Galerkin equation given by Equation (2.10)) is orthogonal to the chosen subspaces. FEMs

are distinguished by the manner in which the approximation subspaces Uh and Vh are cho-

sen. In a Bubnov-Galerkin or Ritz-Galerkin method, both the approximation subspaces are

chosen from the same finite-dimensional subspaces, while in Petrov-Galerkin method, they

are chosen from different subspaces. Let,

uh = Niu
i

vh = Niv
i, i = 1, 2, · · · ,M (2.11)

where ui, vi are the unknown coefficients, M is the total number of functions and Ni are

the shape functions that span the subspaces. In FEM, it is a space of piecewise polynomial

functions. Substituting Equation (2.11) into Equation (2.10), for arbitrary vh, we get the

following discretized form:

M∑

j=1

vj

(
M∑

i=1

Kijui − fj

)
= 0 (2.12)

where

Kij = a(Ni, Nj)

fj = 〈ℓ,Nj〉 (2.13)

where 〈·, ·〉 is an inner product vector spaceb. In matrix form,

Ku = f (2.15)

where u is the vector containing the unknown coefficients, K is called the stiffness matrix

and f is called the force vector.

2.3 Enrichment Techniques: Journey through time

Despite its robustness and versatility, FEM’s efficiency to model cracks or discontinuities or

large gradients has always been considered an area for improvement, since early 1970’s [136,

bThe inner product space of two functions is:

〈f, g〉 : =

b
∫

a

f(t)g(t) dt (2.14)

8



2.3. ENRICHMENT TECHNIQUES: JOURNEY THROUGH TIME

155]. This is because ‘finite element’ methods using piecewise polynomials as approximat-

ing functions are inefficient to model such features. A modification (augmentation, enrich-

ment) of the finite element spaces will improve the behaviour. As we will see in this section,

the concept of ‘enrichment’ dates back to 1970’s and an intensive research over the past 3 - 4

decades has led to some of the robust methods available to model cracks or discontinuities

or large gradients, for example XFEM/Generalized FEM (GFEM)/ (Partition of Unity FEM

(PUFEM) [10, 15, 138], hp-cloud [60] to name a few. Earlier work on enrichment [22, 56, 136]

aimed at improving the approximation of singular solutions. Enriched methods can be

broadly classified into three categories: (i) local enrichment; (ii) global enrichment and (iii)

mesh-overlay techniques.

Table 2.2: Different enrichment techniques.

Local enrichment Global enrichment Mesh-over lay techniques

• Generalized isopara-
metric element [4, 22,
30, 117, 149]

• Enrichment with cut-
off function [136]

• Quarter point ele-
ments [11]

• FEM for localized
problems [115]

• Embedded localiza-
tion [16]

• XFEM [15]

• GFEM [138]

• Discrete enrichment
method [57]

• Hansbo and
Hansbo [69]

• Elemental enrich-
ment (E-FEM) [114]

• Higher-order
Rayleigh Ritz [55, 56]

• Whiteman and
Akin [158]

• PUM [9, 10, 92, 93]

• Global-local FEM [100]

• Hybrid-element ap-
proach [148]

• Spectral overlay tech-
niques [17, 53]

• s- FEM [52]
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2.3. ENRICHMENT TECHNIQUES: JOURNEY THROUGH TIME

2.3.1 Global enrichment strategies

One strategy to improve the performance of the finite elements using picewise polynomials

to represent the singularities or high gradients or problems with oscillatory solutions is to

enrich the FE approximation basis globally as done in the work of Fix et al., [56], Fix [55],

Wait and Mitchell [155], Whiteman and Akin [158] and Babuška et al., [10]. Fix et al., [56]

and Fix [55] augmented FE approximation basis with singular functions to approximate ac-

curately the eigenfunctions near re-entrant corners (for example, L-shaped problem). Their

study showed that the convergence rate of the Rayleigh-Ritz approximations using piece-

wise functions without singular functions is much slower than when the approximation

basis is augmented with the singular functions. Wait and Mitchell [155] and Whiteman and

Akin [158] proposed to add singular functions to approximate the displacement field near

the singularity. The addition of singular functions destroyed the band structure of the stiff-

nessmatrix and led to an ill-conditioned systemwhen the basis functions are nearly linearly

dependent. The work of Babuška et al., [10] and Melenk and Babuška [93] proposed special

FEs to solve problems with non-smooth coefficients and highly oscillatory solutions. The

method was referred to as PUMFEM or the partition of unity method (PUM). Melenk [92]

showed for Helmholtz’s equation that if these functions (i.e., enrichment functions) have

the same oscillatory behaviour as the solution, the convergence of the FEM is improved.

This work involved using harmonic polynomials for Laplace and Helmholtz’s equations.

The PUM was referred to as the GFEM in [138].

2.3.2 Local enrichment techniques

Although, global enrichment serves the purpose of enhancing the performance of the finite

elements for problems with non-smooth coefficients, the addition of enrichment functions

has following difficulties:

• Increases the conditioning numberc of the stiffness matrix.

• Destroys the band structure of thematrix and leads to increased storage requirements.

• The number of additional unknowns is proportional to the mesh parameter, h.

More importantly, regions of high gradients or cracks or discontinuities are local phenomenon

and therefore it is sufficient to enrich the FE approximation basis in the vicinity of regions of

interest. The term ‘local’ refers to the space in the vicinity of such features. Local enrichment

can be used to capture strong discontinuities and singularities, whichwill be discussed next.

cThe condition number associated with the linear equation Ax = b gives a bound on how inaccurate the
solution x is for small perturbations in b.
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2.3. ENRICHMENT TECHNIQUES: JOURNEY THROUGH TIME

Strong discontinuities

Ortiz et al., [115] proposed a method to model strain localization using isoparametric ele-

ments, which involved augmenting the FE approximation basis with localized deformation

modes in the regions where localization is detected. The method was applied to study

strain localization in both nearly incompressible and compressible solids. The additional

degrees of freedom (dofs) due to the localized deformation modes are eliminated at the el-

ement level by static condensation. Note that these localized modes do not form partition

of unity. By modifying the strain field, Belytschko et al., [16] proposed a method to model

localization zones. The jumps in strain are obtained by imposing traction continuity. Both

these approaches use bifurcation analysis to detect the onset of localization. One of the

distinct differences between these two methods is that the width of the localization band

is smaller than the mesh parameter, h, in case of the method proposed by Belytschko et

al., [16], whereas the localization band width is of the same size as the mesh parameter in

the method by Ortiz et al., [115]. A very fine mesh is required to resolve the localization

band in case of the method by Ortiz et al., [115].

By using overlapping elements, Hansbo and Hansbo [69] suggested a method to model

strong and weak discontinuities. In their method, when a discontinuity surface cuts an

element e, another element, e is superimposed and the standard FE displacement field is

replaced by

uh(x) =
∑

I∈e
N e
I (x)H(x)qeI +

∑

J∈e
N e
J(x)(1 −H(x))qeJ (2.16)

where NI are the standard FE shape functions, H is a step function and qI and qJ are the

nodal variables associated with node I and node J , respectively. Areias and Belytschko [1]

showed that Hansbo and Hansbo’s approximation basis is a linear combination of the

XFEM basis. In their method, the crack kinematics is obtained by overlapping elements

and this does not introduce any additional dofs, see Figure 2.3. This has some advantages

with respect to the implementation of the method in existing FE codes.

In the discontinuous enrichment method (DEM) [57], the FE approximation space is en-

riched within each element by additional non-conforming functions. This method also does

not introduce additional dofs. The dofs associated with the enrichment functions are con-

densed on the element level prior to assembly. Lagrange multipliers are used to enforce the

continuity across element boundaries and to apply Dirichlet boundary conditions.

In the embedded element method (EFEM) [91, 113], the enrichment is at the element level

and is based on assumed enhanced strain. The additional dofs are condensed at element

level leading to a global stiffness matrix with the bandwidth same as that of the FEM. Piece-

wise constant and linear crack opening can be modelled using EFEM. Oliver et al., [114]

11
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u−

[[u]]

u+

N2(x)(H(x) −H(x2))

N1(x)(H(x) −H(x1))

1 2
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u+

u−
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2

Interface

1 4

23
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N1(x)

N4(x)

N2(x)
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∑
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3

Figure 2.3: The representation of the discontinuity: (a) Std. XFEM and (b) Hansbo and
Hansbo method to model discontinuities. ‘Open’ circles denote real nodes and ‘filled’ cir-
cles are called the phantom nodes.

presented a comparison between the XFEM and EFEM. Their study claimed the following:

• the convergence rates of both methods are similar;

• when implemented on same the element type, both methods yield identical results;

• the computational cost of XFEM was slightly greater than that of the EFEM;

• for relatively coarse meshes, EFEM obtained more accurate results when compared to

that of the XFEM.

Singularities

Singularities can be captured by locally enriching the approximation space with singular

functions [15, 22, 30, 117, 149] or by using quarter-point elements [11]. In case of the quarter-

point elements, the singularity is captured by moving the element’s mid-side node to the

position one quarter of the way from the crack tip. This was considered to be a major

milestone in applying FEM for LEFM, although sophisticated methods such as addition of

singular functions were developed during the same period.

In order to improve the approximation of singular functions, Strang and Fix in their well

known book [136], proposed to add singular functions to approximate the displacement
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2.3. ENRICHMENT TECHNIQUES: JOURNEY THROUGH TIME

field near the singularity. The singular functions are defined locally near each singularity.

The transition from the singular zone to the smooth zone is handled by a cut-off function

that has polynomial coefficients. The polynomial coefficients are chosen as to merge the

coefficient r1/α̃, α̃ > 1 smoothly into zero. Benzley [22] developed an arbitrary quadrilateral

element with a singular corner node by ‘enriching’ a bilinear quadrilateral element with

singular terms. According to Benzley, the displacement approximation is written as:

u =

4∑

I=1

NIqI +R

{
KI

(
Q1k −

4∑

I=1

NIQ1Ik

)
+KII

(
Q2k −

4∑

I=1

NIQ2Ik

)}
(2.17)

where KI ,KII intensities of singular terms, Qℓk, ℓ, k = 1, 2 are the specific singular func-

tions, QℓIk is the value of singular function evaluated at node I , NI are the standard FE

shape functions and R is a ramp function that equals 1 on enriched elements and on the

boundaries adjacent to ’enriched’ elements and equals 0 on boundaries adjacent to stan-

dard element. Tracey [149] and Atluri et al., [4] proposed a new element that has inverse

square root singularity near the crack. The main advantage of this element is that the SIF

can be computed more accurately.

Based on the seminal work of Babuška et al., [10], Babuška and Melenk [9], Belytschko’s

group in 1999 [15] selected one of the enrichment functions as discontinuous function,

thereby leading to a method able to model crack propagation and strong discontinuities

in general with minimal remeshing. The resulting method, known as the XFEM is classified

as one of the partition of unity methods (PUMs). A detailed discussion on XFEM is given

in Section 2.4.

The main idea of the GFEM [138] is to combine the classical FEM and the PUM, so as to

retain the best properties of the FEM. The GFEM can be interpreted as an FEM augmented

with non-polynomial shape functions with compact support.

The main difference between the enrichment methods used in 1970’s and the PUMs is that

earlier methods still required the mesh to conform to internal boundaries, while the current

methods can handle internal geometries without a conforming mesh (see Figure 2.1). The

salient features of the XFEM/EFEM/GFEM/DEM are:

• the ability to include arbitrary a priori (includes experimentally determined and nu-

merically determined enrichments) knowledge about the local behaviour of the solu-

tion in the approximation space;

• the finite element mesh need not conform to internal boundaries.
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2.4. EXTENDED FINITE ELEMENT METHOD

2.3.3 Mesh overlay methods

Mote [100] introduced the idea of ’global-local’ finite element. In this method, a priori

known shape functions are added to enrich the local finite element method. The formula-

tion also includes singular elements in fracture mechanics. Tong et al., [148] used a hybrid-

element concept and complex variables to develop a super-element to be used in combi-

nation with the standard FE for problems in fracture mechanics. Belytschko et al., [16]

proposed the spectral overlay method for problems with high gradients. This is accom-

plished by superimposing the spectral approximation over the finite element mesh in re-

gions where high gradients are indicated by the solution. Based on this work, Fish [52]

proposed s-version of the FEM. This method consists of overlaying the FE mesh with a

patch of higher-order hierarchical elements in the regions of high gradients.

Hughes [71] and Hughes et al., [72] introduced the variational multiscale method (VMM)

to solve problems involving multiscale phenomena. The idea is to decompose the displace-

ment field into two parts: a coarse scale and a fine scale contribution. The fine-scale contri-

bution incorporates the local behaviour, which is determined analytically. Hettich et al., [70]

combined XFEMwith multiscale approach to model failure of composites using a two scale

approach. Based on this work, Mergheim [96] applied VMM to solve propagation of cracks

at finite strains. Both scales are discretized with finite elements.

2.4 eXtended Finite Element Method

XFEM is classified as one of the PUMs. A partition of unity in a domain Ω is a set of

functions NI such that

∑

I∈Nfem

NI(x) = 1, x ∈ Ω (2.18)

where Nfem is the set of nodes in the FE mesh. Using this property, any function ϕ can

be reproduced by a product of the PU shape functions with ϕ. Let uh ⊂ U, the XFEM

approximation can be decomposed into the standard part uhfem and into an enriched part

uhenr as:

uh(x) = uhfem(x) + uhenr(x)

=
∑

I∈Nfem

NI(x)qI +
∑

J∈Nenr

N †
J(x)̺(x)ãJ (2.19)

whereNfem is the set of all the nodes in the FEmesh,Nenr is the set of nodes that are enriched

with the enrichment function ̺. The enrichment function ̺ carries with it the nature of
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2.4. EXTENDED FINITE ELEMENT METHOD

the solution or the information about the underlying physics of the problem, for example,

̺ = H , is used to capture strong discontinuities, where H is the Heaviside function. These

are discussed in detail in the following sections. NI and N
†
J are the standard finite element

shape functions (not necessarily identical), qI and ãJ are the standard and the enriched

nodal variables associated with node I and node J , respectively. In this study, NI and N
†
J

are assumed to be identical, unless otherwise mentioned.

The displacement approximation given by Equation (2.19) is called ‘extrinsic’ global en-

richment (i.e., FE approximation basis is augmented with additional functions and all the

nodes in the FE mesh are enriched with ̺). This does not satisfy the Kronecker-δ property

(i.e., NI(xJ ) = δIJ ) which renders the imposition of essential boundary conditions and the

interpretation of results difficult, expect for the phantom node method [124, 134]. In most

cases, the region of interest is localized, for example, cracks or material interfaces and hence

the enrichment could be restricted closer to the region of interest. This type of enrichment

is called ’local enrichment’. Moreover, a global enrichment is computationally demanding

because the number of degrees of freedom is proportional to the number of nodes and the

number of enrichment functions and the resulting system matrix is not banded. A ’shifted

enrichment’ is used to retain the Kronecker-δ property, given by:

uh(x) = uhfem(x) + uhenr(x)

=
∑

I∈Nfem

NI(x)qI +
∑

J∈Nenr

NJ(x) [̺(x)− ̺(xJ )] ãJ (2.20)

where ̺(xJ) is the value of the enrichment function evaluated at node J . Figure 2.4 illus-

trates the result of this shifting for 1D when ̺(x) = |φ(x)| = |x−xb|, where xb is the location

of the interface from the left end. See § 2.4.4 for different enrichment functions proposed

in the literature to capture strong and weak discontinuities arising in different problems in

mechanics.

Substitute Equation (2.20) into Equation (2.10) to get:


 Kuu Kua

Kau Kaa








q

a



 =





fq

fa



 (2.21)

where Kuu,Kaa and Kua are the stiffness matrix associated with the standard FE approxi-

mation, the enriched approximation and the coupling between the standard FE approxima-

tion and the enriched approximation, respectively. The modification of the displacement

approximation does not introduce a new form of the discretized finite element equilib-

rium equations, but leads to an enlarged problem to solve. In this study, extrinsic and

local enrichment with mesh based shape functions is considered and is referred to as the
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Figure 2.4: Enrichment function along the length of the bar. Note that the enrichment func-
tion without shifting does not go to zero at the nodes. This poses additional difficulty in
imposing essential boundary conditions.
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2.4. EXTENDED FINITE ELEMENT METHOD

‘conventional XFEM’ or the ‘Standard XFEM (Std. XFEM)’. This thesis focusses on mod-

elling the material interfaces and cracks in a body independent of the underlying mesh. A

generic form for the displacement approximation in case of the weak discontinuity is given

by [19, 99, 146]:

uh(x) =
∑

I∈Nfem

NI(x)qI +
∑

L∈Nint

NL(x)Ψ(x)cL (2.22)

where Nint is the set of nodes whose support is cut by the material interface, Ψ is the en-

richment function chosen such that its derivative is discontinuous. Some common types of

enrichment functions used in the literature are discussed in Section 2.4.4. For the case of

linear elastic fracture mechanics (LEFM), two sets of functions are used: a jump function

to capture the displacement jump across the crack faces and asymptotic branch functions

that span the two-dimensional asymptotic crack tip fields (3Dmethods have been proposed

in [42] and applied to real life damage tolerance assessment [24, 160]). The enriched approx-

imation for LEFM takes the form [15, 25, 26]:

uh(x) =
∑

I∈Nfem

NI(x)qI +
∑

J∈Nc

NJ(x)ϑ(x)aJ +
∑

K∈Nf

NK(x)

n∑

α=1

Ξα(r, θ)b
α
K , (2.23)

where Nc is the set of nodes whose shape function support is cut by the crack interior (‘cir-

cled’ nodes in Figure 2.5) and N
f is the set of nodes whose shape function support is cut by

the crack tip (‘squared’ nodes in Figure 2.5). ϑ and Ξα are the enrichment functions chosen

to capture the displacement jump across the crack surface and the singularity at the crack

tip (see Section 2.4.4 for details) and n is the total number of asymptotic functions. aJ and

bαK are the nodal degrees of freedom corresponding to functions ϑ and Ξα, respectively. n

is the total number of near-tip asymptotic functions and (r, θ) are the local crack tip coordi-

nates. Equation (2.23) is a generic form of the displacement approximation to capture the

displacement jump across the crack faces and to represent the singular field. In the litera-

ture, Ξα is denoted as Bα in case of the 2D continuum (see Section 2.4.4) and is denoted as

Gℓ and Fℓ in case of the plate theory (see Section 5.4).

In Equations (2.22) and (2.23), the displacement field is global, but the support of the en-

riched functions are local because they are multiplied by the nodal shape functions. The

local enrichment strategy introduces the following four types of elements apart from the

standard elements:

• Split elements are elements completely cut by the crack. Their nodes are enriched with

the discontinuous function ϑ.

• Tip elements either contain the tip, or are within a fixed distance independent of the

mesh size, renr of the tip, if geometrical enrichment is used [21], where renr is the
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Ξα enriched element, (tip element)

ϑ enriched element (split element)

Partially enriched element (blending element)

Standard element

J ∈ Nc

K ∈ N
f

Reproducing elements

Figure 2.5: A typical FE mesh with an arbitrary crack. ’Circled’ nodes are enriched with ϑ
and ’squared’ nodes are enriched with near-tip asymptotic fields. ‘Reproducing elements’
are the elements whose all the nodes are enriched.

radius of the domain centered at the crack tip. All nodes belonging to a tip element

are enriched with the near-tip asymptotic fields.

• Tip-blending elements are elements neighbouring tip elements. They are such that some

of their nodes are enriched with the near-tip and others are not enriched at all.

• Split-blending elements are elements neighbouring split elements. They are such that

some of their nodes are enriched with the strongly or weakly discontinuous function

and others are not enriched at all.

The necessary steps involved in the implementation of the XFEM are:

1. Representation of the interface The interface or discontinuity can be represented ex-

plicitly by line segments or implicitly by using the level set method (LSM) [116, 131].

2. Selection of enriched nodes In case of the local enrichment, only a subset of the nodes

closer to the region of interest is enriched. The nodes to be enriched can be selected

by using an area criterion or from the nodal values of the level set function. See

Section 2.4.2.

3. Choice of enrichment functions Depending on the physics of the problem, different

enrichment functions can be used. See Section 2.4.4.
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4. Integration A consequence of adding custom tailored enrichment functions to the

FE approximation basis, which are not necessarily smooth polynomial functions (for

example,
√
r in case of the LEFM) is that special care has to be taken in numerically

integrating over the elements that are intersected by the discontinuity surface. The

standard Gauß quadrature cannot be applied in elements enriched by discontinuous

terms, because Gauß quadrature implicitly assumes a polynomial approximation. See

Section 2.4.3

2.4.1 Interface or discontinuity representation

Introduced by Osher and Sethian, LSM has been used to represent interfaces and cracks in

the XFEM framework [39, 46, 47, 49, 135, 145]. A brief discussion on the LSM is given in

Appendix E.

Remark: It is not necessary that the interface should be represented by level sets. In the

literature, cracks have been represented by polygons in 2D [15, 98] and by a set of connected

planes in 3D [45, 144].

Sukumar et al., [145] used the level set approach tomodel voids and inclusions in the XFEM.

The geometric interface (for example, the boundary of a hole or inclusion) is represented by

the zero level curve φ ≡ φ(x, t) = 0. The interface is located from the value of the level set

information stored at the nodes. The standard FE shape functions can be used to interpolate

φ at any point x in the domain asd:

φ(x) =
n∑

I=1

NI(x)φI (2.24)

where the summation is over all the nodes in the connectivity of the element that contains

x and φI are the nodal values of the level set function.

Example: For circular inclusions, the level set function is given by:

φI = min
x
i
c∈Ωi

C
i=1,2,···nc

{
||xI − xic|| − ric

}
(2.25)

where xic and ric are the center and the radius of the ith inclusion, φI is the value of the

level set at node I and nc is the total number of inclusions. Figure 2.6 shows the level

set function for a a circle and a complex shaped inclusion. For complex shaped inclusion

shown in Figure 2.6, ric in Equation (2.25) is replaced by:

ric(θ) = rio + ai cos(biθ) (2.26)

dAfinite difference approximation of higher order can also be used to increase the resolution of the boundary
representation
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where ro is the reference radius, ai and bi are parameters that control the amplitude and

period of oscillations for ith inclusion.

(a) Circular inclusion (b) Complex shape

Figure 2.6: Level set information for different shapes.

Stolarska et al., [135] used level sets to represent the crack as the zero level set of a function.

In this case, two mutually orthogonal level sets are required to represent the crack. For

cracks that are entirely in the interior of the domain, two level set functions, χ1 and χ2, one

for each crack tip is used. Sukumar et al., [146] combined the XFEM and the fast marching

methode [42, 131] to model three-dimensional fatigue cracks. The level set function that

represents the crack tip is defined by:

χi(x) = (x− xi) · n (2.27)

where n is the unit vector tangent to the crack at its tip and xi is the location of the ith crack

tip. The level set Υ used to represent the crack surface is a signed distance functionf.

2.4.2 Selection of enriched nodes

Interface represented by line segments

When the crack surface or interface is represented by line segments, the following ap-

proaches can be used to select the nodes for enrichment.

Strong or weak discontinuity In order to select the nodes to enrich with function ϑ to

represent the displacement jump across the crack surface or with function Ψ to represent

eThe fast marching method was introduced by Sethian [131] as a numerical method for solving boundary
value problems that describe the evolution of a closed curve as a function of time twith speed V (x).

fA signed distance function of a set S determines how close a given point x is to the boundary of S, with
that function having positive values at points x inside S and negative values outside of S.
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the weak discontinuity, an area criterion is used. Let the area above the crack be denoted by

Aabw and the area below the crack be given by Abew and Aw = Aabw +Abew , where Aw is the area

of the nodal support (see Figure 2.7). If either of the two ratios, Aabw /Aw or Abew /Aw is below

a prescribed tolerance, the node is removed from the set Nc [143].

nodal support

crack or material interface

node

Abe
w

Aab
w

Figure 2.7: Area criterion for selection of ϑ(x) or Ψ(x) enriched nodes.

Crack tip enriched nodes In the conventional XFEM, all the nodes of the tip-elements

(see Figure 2.5) are enriched with near-tip asymptotic fields. Consequently, the support of

the enriched functions vanishes as h goes to zero. In the literature alternate strategies have

been proposed, which will be discussed in the next section.

Interface represented by level sets

When the crack surface is represented as a zero level set, the nodes chosen for enrichment

can be determined from the nodal values of Υ and χ. For a bilinear quadrilateral element,

let χmin and χmax be the minimum and maximum nodal values of χ on the nodes of the

element. If χminχmax ≤ 0 and ΥminΥmax ≤ 0, then the tip lies within the element and all

the nodes of the element are enriched with near-tip asymptotic fields. Similarly, let ψmin

and ψmax be the minimum and maximum nodal values of Υ on the nodes of an element.

If χ < 0 and ΥminΥmax ≤ 0, then the crack cuts through the element and the nodes of the

element are enriched with the Heaviside function. Figure 2.8 shows the normal level set Υ

and the tangent level set χ for an edge cracked domain.

2.4.3 Integration

One potential solution for numerical integration is to partition the elements into subcells

(triangles for example) aligned to the discontinuous surface in which the integrands are
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(a) Υ (b) χ

Figure 2.8: (a) Signed distance function Υ for the description of the crack surface and (b)
second level set function χ to define the crack tip.

continuous and differentiable [15, 26]. Figure 2.9 shows a possible sub-triangulation com-

monly used in the XFEM. The purpose of sub-dividing into triangles is solely for the pur-

pose of numerical integration and does not introduce new degrees of freedom.

Although the generation of quadrature subcells does not alter the approximation proper-

ties, it inherently introduces a ‘mesh’ requirement. The steps involved in this approach

are:

• Split the element into subcells with the subcells aligned to the discontinuity surface.

Usually the subcells are triangular

• Numerical integration is performedwith the integration points from triangular quadra-

ture.

The subcells must be aligned to the crack or to the interface and this is costly and less

accurate if the discontinuity is curved [38]. Figures 2.10 and 2.11 illustrates necessary steps

to determine the co-ordinates of the Gauß points over the enriched elements.

2.4.4 Enrichment schemes and applications of the XFEM

In this section, the common types of enrichment functions used in the XFEM in the context

of solid mechanics are discussed. Tables 2.3 - 2.5 gives a summary of different enrichment

functions proposed in the literature for different classes of problems.
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Figure 2.9: Sub-triangles used in numerical integration. Solid line represents the line of
discontinuity and ‘dashed’ lines denotes the boundaries of the sub-cells.

x

y

η

ξ

ξ

η

(1,0)(0,0)

(0,1)

(1,-1)

(1,1)(-1,1)

(-1,-1)

Interface

Figure 2.10: Physical element containing the crack tip is sub-divided into subcells (triangu-
lar subcells in this case). A quadrature rule on a standard triangular domain is used for the
purpose of integration.
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Table 2.3: Examples of choice of enrichment functions for fracture mechanics.

Kind of problem Displacement Strain Enrichment

Crack body Discontinuous - Heaviside: ψ(x) = sign(φ(x))

Isotropic materi-
als

Discontinuous
for θ = ±π, √r
order

High gradient,
1√
r
order

√
r sin θ

2 ,
√
r cos θ2 ,

√
r sin θ

2 sin θ,√
r cos θ2 sin θ.

Orthotropic mate-
rials [2]

Discontinuous High gradient
√
r cos(θ12 )

√
g1(θ),

√
r cos(θ22 )

√
g2(θ),√

r sin(θ12 )
√
g1(θ),

√
r cos(θ22 )

√
g2(θ).

Cohesive
crack [97]

Discontinuous High gradient r sin(θ2 ), r
3
2 sin(θ2 ), r2 sin(θ2).

Mindlin-Reissner
plate [44]

Discontinuous High gradient

Transverse displacements,√
r sin(θ2), r

3/2 sin(θ2 ),

r
3
2 cos(θ2 ), r

3
2 sin(3θ2 ), r

3
2 cos(3θ2 );

Rotation displacements√
r sin(θ2),

√
r cos(θ2 ),

√
r sin(θ2) sin θ,√

r cos(θ2),
√
r cos(θ2 sin θ).

Kirchhoff-Love
plate [80]

Discontinuous High gradient
r

3
2 sin(3θ2 ), r

3
2 cos(θ2),

r
3
2 sin(3θ2 ), r

3
2 cos(θ2).

Incompressible
materials[84]

Discontinuous High gradient 1√
r
sin(θ2 ),

1√
r
cos(θ2).

Plastic materi-
als [50]

Discontinuous High gradient

r
1

n+1 sin(θ2 ), r
1

n+1 cos(θ2 ),

r
1

n+1 sin(θ2 ) sin(θ), r
1

n+1 cos(θ2) sin(θ),

r
1

n+1 sin(θ2 ) sin(3θ), r
1

n+1 cos(θ2 ) sin(3θ).

Thermo-elastic
material [48]

Discontinuous High gradient
Temprature field : T = −K

T

k

√
2r
π cos(θ2 );

Flux : q =
K

T√
2πr

(
cos (θ2)

sin(θ2 )

)
.

2
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Table 2.4: Examples of choice of enrichment functions for fracture mechanics.

Kind of problem Displacement Strain Enrichment

Crack aligned to the in-
terface of a material in-
terface [74]

Discontinuous High gradient
√
r cos(ǫlogr)e−ǫθ sin θ

2 ,√
r cos(ǫlogr)eǫθ sin θ

2 sin θ,√
r cos(ǫlogr)e−ǫθ cos θ2 ,√
r cos(ǫlogr)eǫθ cos θ2 sin θ,√
r cos(ǫlogr)eǫθ sin θ

2 ,√
r sin(ǫlogr)eǫθ sin θ

2 sin θ,√
r cos(ǫlogr)eǫθ cos θ2 ,√
r sin(ǫlogr)eǫθ cos θ2 sin θ,√
r sin(ǫlogr)e−ǫθ sin θ

2 ,√
r cos(ǫlogr)e−ǫθ sin θ

2 sin θ,√
r sin(ǫlogr)eǫθ sin θ

2 ,√
r sin(ǫlogr)eǫθ sin θ

2 sin θ.

Piezoelastic materi-
als [14, 157]

Discontinuous High gradient

√
rf1(θ),

√
rf2(θ),

√
rf3(θ),√

rf4(θ),
√
rf5(θ),

√
rf6(θ).

Magnetoelectroelastic
materials [129]

Discontinuous High gradient

√
rρ1 cos(

θ1
2 ),

√
rρ2 cos(

θ2
2 ),√

rρ3 cos(
θ3
2 ),

√
rρ4 cos(

θ4
2 ),√

rρ1 cos(
θ1
2 ),

√
rρ2 cos(

θ2
2 ),√

rρ3 cos(
θ3
2 ),

√
rρ4 cos(

θ4
2 ).

Complex cracks [77] Discontinuous High gradient ∆H(ξ) = 0

Hydraulic fracture [81] Discontinuous High gradient
rλ cos(λθ), rλ sin(λθ),
rλ sin(θ) sin(λθ), rλ sin(θ) cos(λθ).

Crack tip in polycrys-
tals [94]

Discontinuous High gradient ℜ[r(x)Ψ(Θ(x))]

2
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Table 2.5: Examples of choice of enrichment functions for other applications.

Kind of problem Displacement Strain Enrichment

Bi-material Continuous Discontinuous Ramp: ψ(x) = |φ(x)|

Dislocations [64, 65,
152]

Discontinuous Discontinuous

For the edge component:
bα·et
2π [(tan−1( y

′

x′ ) +
x′y′

2(1−ν)(x′2+y′2))]et,
bα·rt
2π [−( 1−2ν

4(1−ν) ln(x
′2 + y′2) + x′2−y′2

4(1−ν)(x′2+y′2))]en;

For the screw component:
b
α·(et×en)

2π tan−1( y
′

x′ )(et × en).
Topology optimiza-
tion [20]

Continuous Discontinuous Ramp: ψ(x) = |φ(x)|

Stokes flow [81] - -

Velocity field:
u1 =

1
r2
[(R2 − r2) cos2 θ + r2 ln(r/R) + (1/2)(r2 −R2)],

v1 =
1
r2
[(R2 − r2) sin θ cos θ],

u2 =
1
r2
[2(R4 − r4) cos2 θ + 3r4 − 2R2r2 −R4],

v2 =
1
r2
[2(R4 − r4) sin θ cos θ],

u3 =
1
r2
[(r2 −R2) sin θ cos θ],

v3 =
1
r2
[(R2 − r2) cos2 θ − r2 ln(r/R + (1/2)(r2 −R2))],

u4 =
1
r2 [2(r

4 −R4) sin θ cos θ],
v4 =

1
r2 [2(r

4 −R4) cos2 θ − r4 + 2R2r2 −R4];
Pressure field:
p1 = −2 cos θ

r , p2 = 8r cos θ,

p3 =
2 sin θ
r , p4 = −8r sin θ.

Solidification [40] - - Ramp: ψ(x) = |φ(x)|.
Fluid-structure interac-
tion [61]

Continuous Discontinuous Heaviside: ψ(x) = sign(φ(x)).

2
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x

y

η

ξ

ξ

η

crack tip

Interface

(1,0)(0,0)

(0,1)

(1,-1)

(1,1)(-1,1)

(-1,-1)

Figure 2.11: Physical element containing the crack tip is sub-divided into subcells (triangu-
lar subcells in this case). A quadrature rule on a standard triangular domain is used for the
purpose of integration.

Weak discontinuities

For weak discontinuities, two types of enrichment functions are used in the literature. One

choice for the enrichment function is the absolute value of the level-set function (c.f. Section

§ 2.4.1) [19, 146]g

ψabs(x) = |φ(x)| (2.28)

The other choice was proposed by Moës et al., [99] as:

ψ(x) =
∑

I∈Nc

|φI |NI(x)− |
∑

I∈Nc

φINI(x)| (2.29)

The main advantage of the above enrichment function is that this enrichment function is

non-zero only in the elements that are intersected by the discontinuity surface. Figure 2.12

shows the two choices of enrichment functions in the 1D case. For two- and three- dimen-

sional problems, the enrichment function proposed by Moës et al., [99] is a ridge centered

on the interface and has zero value on the elements which are not crossed by the interface.

gA level set of a real-valued function f of n variables is a set of the form {(x1, x2, · · · , xn)|f(x1, x2, · · · , xn) =
c}, where c is a constant.
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Nodes

Interface

ψ(x)

ψabs(x)

Enriched Nodes

Figure 2.12: Weak discontinuity: different choices of enrichment functions

Strong discontinuities and Singularity: Isotropic materials

Strong discontinuity Tomodel a strong discontinuity, the enrichment function ϑ in Equa-

tion (2.23) is chosen to be the Heaviside function H :

ϑ(x) = H(x) =

{
+1 x above the crack face

0 x below the crack face
(2.30)

The other choice of enrichment function is the sign of the level-set function φ:

ϑ(x) = sign(φ(x)) =

{
+1 x above the crack face

−1 x below the crack face
(2.31)

These enrichment functions have been proposed in [15, 98]. Iarve [75] proposed a modifi-

cation to the Heaviside function that eliminates the need to sub-triangulate for the purpose

of numerical integration (see Section § 2.4.5). Figure 2.13 shows the plot of the Heaviside

function for a straight and a kinked crack.

Singular fields For isotropic materials, the near-tip function, Ξα in Equation (2.23) is de-

noted by {Bα}1≤α≤4 and is given by:

{Bα}1≤α≤4(r, θ) =
√
r

{
sin

θ

2
, cos

θ

2
, sin θ sin

θ

2
, sin θ cos

θ

2

}
. (2.32)

where (r, θ) are the crack tip polar coordinates. Figure 2.14 shows the near-tip asymptotic

fields. Note that the first function in Equation (2.32) is discontinuous across the crack sur-

face.

Remark: The above set of enrichment functions predict global displacements accurately, but
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(a) Straight crack (b) Kinked crack

Figure 2.13: Heaviside function to capture strong discontinuities.

(a) sin θ
2

(b) cos θ
2

(c) sin θ sin θ
2

(d) sin θ cos θ
2

Figure 2.14: Near tip asymptotic fields. Note that the function sin θ
2 is discontinuous across

the crack surface. The white line denotes the discontinuity line. The crack tip is located at
(0.5,0.5).
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requires a fine discretization to capture the displacements in the vicinity of the crack tip.

Xiao and Karihaloo [162, 164] proposed an alternate approach to enrich the FE approxima-

tion with not only the first term but also the higher order terms of the linear elastic crack

tip asymptotic field. Apart from improving the local behaviour in the vicinity of the crack

tip, the approach also can determine the stress intensity factors directly without extra post-

processing.

Orthotropic materials

For orthotropic materials, the asymptotic functions given by Equation (2.32) have to be

modified because the material property is a function of material orientation. Asadpoure

and Mohammadi [2, 3] proposed special near-tip functions for orthotropic materials as:

{Bα}1≤α≤4(r, θ) =
√
r

{
cos

θ1
2

√
g1(θ), cos

θ2
2

√
g2(θ), sin

θ1
2

√
g1(θ), sin

θ2
2

√
g2(θ)

}
(2.33)

where (r, θ) are the crack tip polar coordinates. The functions gi(i = 1, 2) and θi(i = 1, 2)

are given by:

gj(θ) =

(
cos2 θ +

sin2 θ

e2j

)
, j = 1, 2

θj = arctan

(
tan θ

ej

)
. j = 1, 2 (2.34)

where ej(j = 1, 2) are related to material constants, which depend on the orientation of the

material [2]. Figure 2.15 shows the near-tip asymptotic fields in case of orthotropic material

with material orientation, θ = 45◦. The PUM has been extended to study matrix failures

and debonding in thin fibre composites [125, 132].

Cohesive cracks

In cohesive cracks, the stresses and the strains are no longer singular and the step enrich-

ment alone is suitable for the entire crack. Due to this, the XFEMapproximation cannot treat

crack tips or fronts that lie within the element and thus the crack is virtually extended to the

next element edge. Wells and Sluys [156] used the step function as an enrichment function

to treat cohesive cracks. Moës and Belytschko [97] used one of the following enrichment

functions for two dimensional cohesive crack tips:

{Bα}(r, θ) =
{
r sin

θ

2
, 3
√
r sin

θ

2
, r2 sin

θ

2

}
(2.35)
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(a) cos θ1
2

√

g1(θ) (b) cos θ2
2

√

g2(θ)

(c) sin θ1
2

√

g1(θ) (d) cos θ2
2

√

g2(θ)

Figure 2.15: Near tip asymptotic fields for orthotropic material with material orientation,
θ = 45◦. The crack tip is located at (0.5,0.5).
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Based on the generalizedHeaviside function, Zi and Belytschko [165] proposed a new crack

tip element for modelling cohesive crack growth. This method overcame the difficulty and

provided a method for the crack tips to lie within the element. Rabczuk et al., [124] devel-

oped a crack tip element for the phantom-node method to model cracks independent of the

underlyingmesh. The main idea is to use reduced integrated finite elements with hourglass

control. With this method, the crack tip can be modelled within an element. This was an

advancement to the earlier work by Song et al., [134] who used the phantom node method

to simulate dynamic crack growth and shear band propagation. In their approach, the crack

has to cross an entire element. Very recently, an isogeometric approach was combined with

XFEM to model cohesive cracks in [154].

Dynamic cracks

Réthoré et al., [126] simulated dynamic propagation of arbitrary 2D cracks using an enrich-

ment strategy for time-dependent problems. By adding phantom nodes and superposing

elements on the original mesh, Song et al., [134] proposed a new method for modelling dy-

namic crack and shear band propagation. From the numerical studies, it was observed that

the method exhibits almost no mesh dependence once the mesh is sufficiently refined to

resolve the relevant physics of the problem. This method was based on the Hansbo and

Hansbo approach [69]. XFEM has been applied to concurrent continuum-atomistic simula-

tions of cracks and dislocations by Gracie and Belytschko [67] and Aubertin et al., [6, 7].

Dislocations

Ventura et al., [152] applied the PUM concept for the solution of edge dislocations. As in

cracks, the dislocation solutions are characterized by discontinuities and singular points.

Gracie et al., [64] used the following approximation for modelling the dislocations:

uh(x) =
∑

I∈Nfem

NI(x)qI + b ·
∑

J∈Nc

NJ(x) · ψstep(x) (2.36)

where b is the Burgers vector, which is a known quantity and closed form solutions are

used for enrichment function. Note that Equation (2.36) does not introduce additional un-

knowns. At the core of the dislocation, the step function ψstep is modified and the rest of

the dislocation is modelled by a step function. Gracie et al., [67] computed the enrichment

functions by coupling the XFEM with atomistic simulations. This eliminated the need for

closed form solutions, which are available only for isotropic materials.
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2.4.5 Difficulties in the XFEM

As the method permits arbitrary functions to be incorporated in the FEM approximation

basis, the PU enrichment leads to greater flexibility in modelling moving boundary prob-

lems, without changing the underlying mesh (see Figure 2.1), while the set of enrichment

functions evolve (and/or their supports) with the interface geometry. Although XFEM is

robust and applied to a wide variety of moving boundary problems and interface problems,

the flexibility provided by this class of methods also leads to associated difficulties:

• Singular and discontinuous integrands When the approximation is discontinuous

or non-polynomial in an element, special care must be taken to numerically integrate

over enriched elements.

• Blending the different partitions of unity The local enrichment used in the conven-

tional element leads to oscillations in the results over the elements that are partially

enriched.

• Poor convergence rate In the conventional XFEM, the obtained convergence error of

XFEM remains only in
√
h [136], when linear finite elements are used, where h is the

element size.

• Stress intensity factor computation XFEM requires a post-processing stage to extract

the stress intensity factors (SIFs) from the computed displacement field. Although not

a major difficulty, but this particular point has been addressed by some researchers.

• Ill-conditioning The addition of enrichment functions to the FE approximation basis

could result in a severely ill-conditioned stiffness matrix.

• Additional unknownsWith extrinsic enrichment, additional degrees of freedom (dofs)

are introduced and the number of additional dofs depends on the number of enrich-

ment functions and the number of such enrichments required.

Blending the different partitions of unity

The regions of high strain gradients or discontinuities are local phenomena. To capture such

local phenomena, enrichment functions are added to the FE approximation basis locally (c.f.

Section §2.4). In the local enrichment, only a ‘small’ set of nodes are enriched and this leads

to three classification of elements, viz. reproducing (fully enriched), standard and blending

elements (partially enriched) (see Figure 2.5). The partition of unity is satisfied in standard

elements and in reproducing elements, while it is not satisfied in blending elements. Due

to this, the enrichment function cannot be reproduced and some unwanted terms appear in

the approximation (see Section 2.5, where the problem with blending element is discussed
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with numerical examples). This pathological behaviour has been studied in great detail in

the literature:

• Assumed strain blending elements: By using an enhanced strain for the blending

elements, Chessa et al., [41] and Gracie et al., [66] proposed new blending elements for

crack tip functions and weak discontinuities, respectively.

• Direct coupling of enriched and standard regions: Difficulties in bending elements

were circumvented by coupling the standard elements and reproducing elements di-

rectly [66, 79]. The continuity between the standard elements and reproducing ele-

ments were enforced either point wise [79] or along the interface [35] by via Lagrange

multipliers.

• Corrected orWeighted XFEM: Fries [58] suggested that bymultiplying the enrichment

function with a ramp function, the enrichment vanishes in the elements where only

some of the nodes are enriched. The corrected or weighted XFEM approximation is

given by

uh(x) =
∑

I∈Nfem

NI(x)qI

︸ ︷︷ ︸
Std. FE approx

+
∑

J∈Nfem

NJ(x) · R(x)︸ ︷︷ ︸
Ramp Function

·[̺(x) − ̺(xJ)]aJ

︸ ︷︷ ︸
Enrichment

(2.37)

where R(x) is the ramp function that equals 1 over enriched elements and linearly

decreases to 0 in the blending elements.

• Fast integration: Ventura et al., [153] suggested a non-linear form for the ramp func-

tion R(x). Given a point x ∈ Ω, let d = d(x) be the signed distance function from x to

Γ. The function R(d) is defined by:

R(d) =





1 0 ≤ |d| ≤ di

(1− g)n di < |d| < de

0 |d| > de

(2.38)

where di and de are chosen such that R = 1 for |d| ≤ di and R = 0 for any |d| > de, n

is a positive integer and g is the linear ramp function given by:

g =
|d| − di
de − di

(2.39)

Figure 2.16 shows the choice of two ramp functions to avoid blending problem.
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• Hybrid Crack Element-XFEM: By using a hybrid crack element (HCE) in the crack

tip region, Xiao and Karihaloo [162, 164] proposed a modification to the conventional

XFEM. This resulted in not only estimating the SIFs direction, but also avoided blend-

ing problems.

• Enhanced blending elements: Tranacón et al., [150] proposed to use hierarchical shape

functions for blending elements and showed that this permits compensating for the

unwanted terms in the interpolation.

• Spectral functions: Legay et al., [83] used the XFEM formalism within spectral FEs

for modelling strong and weak discontinuities. Their study illustrated that there is

no need to employ blending correction for higher order spectral elements if the shape

functions used for the local partition of unity are at least one order lower than those of

used for the basic approximation. But with lower order spectral element, the blending

problem is not alleviated.

1 2 3 4

R(d)

Enriched node

Standard node

R(x)

Blending or partially enriched element

Enriched element

1

Figure 2.16: Discretized domain in one dimension illustrates reproducing and blending
elements. The figure illustrates the choice of ramp function suggested by Fries [58] and
Ventura et al., [153]. With n = 1 in Equation (2.38) yields a linear ramp function.

Remark: Corrected or weighted XFEM shares similarities with the work of Benzley [22],

who proposed to use a function that equals 1 on boundaries adjacent to ‘enriched’ elements

and equals 0 on boundaries adjacent to ‘standard’ elements, i.e., the value of the function

decreases from 1 to 0 in the blending elements (c.f. Section 2.3.2).

Remark: Ventura et al., [153] used a non-linear form for the ramp function. This method

shares some similarities with thework of Strang and Fix [136, 137] who used polynomials to

merge the coefficients of singular functions smoothly into zero on the boundary of standard

elements (c.f. Section 2.3.2).
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Numerical integration for enriched approximations

In this section, a brief discussion on various attempts to improve the numerical integration

is presented. An additional difficulty related to numerical integration is the requirement

to integrate singular functions involving the derivatives of the shape and enrichment func-

tions (which are singular at the tip in LEFM) [79]. This will be revisited in the following

sections within the context of strain smoothing, discussed in Chapter 3, Section 3.2.2.

Polar integration The singular functions commonly used in the XFEM requires a high

density of integration points. By using polar integration, Laborde et al., [79] and Béchet et

al., [13] showed that a concentration of integration points in the vicinity of the singular-

ity improves the results significantly. This process eliminates the singular terms from the

quadrature. The idea is to sub-divide into triangles such that each triangle has one node at

the singularity. Instead of using triangular quadrature, tensor-product type Gauß points in

a quadrilateral reference element are mapped into each triangle such that two nodes of the

quadrilateral coincide at the singularity node of each triangle. Figure 2.18 shows the pro-

cedure. The proposed technique is well suited for point singularities (for example in 2D),

but in the case of 3D, such a mapping is not trivial [13, 79]. Park et al., [118] extended the

mapping method introduced by Nagarajan and Mukherjee [108] in 2D to 3D to integrate

singular integrands in 2D and 3D. The 2D mapping is given by:

TM : (ρ, θ) 7→ (ξ, η) (2.40)

where, ξ = ρ cos2 θ and η = ρ sin2 θ. The inverse mapping (T−1
M ) transforms a right triangle

into a rectangle.

Generalized Gaussian quadrature A quadrature in R
d is a formula of the form

∫

Ω
w(x)f(x) dx ≈

n∑

i=1

wif(xi) (2.41)

where Ω is the integration region in R
d, f is an integrand defined in Ω, and w is the weight

function. Table 2.6 lists the different quadrature rules based on the choice of weight func-

tion and the interval over which the integration is performed. The points xi ∈ R
d are

typically called quadrature nodes, and wi quadrature weights. It can be shown [121] that

the evaluation points are just the roots of a polynomial belonging to a class of orthogonal

polynomials.

By using the point-elimination scheme with Newton’s method, a new quadrature rule was

proposed in [161] for triangular and square domains. The point-elimination scheme was
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crack tip

x

y

η

ξ

η

crack tip

Interface

ξ

(0,0) (1,0)

(0,1)

(-1,-1) (1,-1)

(1,1)(-1,1)

Figure 2.17: Physical element containing a singularity is sub-divided such that each trian-
gular sub-division contains the singular point as one of its nodes. Standard Gauß points
from a parent quadrilateral element are projected onto a triangular element.

Table 2.6: Different quadrature rules based on the choice of weight function and the interval
over which the integration is performed.

Interval w(x) Orthogonal Polynomial

[−1, 1] 1 Legendre Polynomials

(−1, 1) (1− x)α(1 + x)β, α, β > -1 Jacobi Polynomials

(−1, 1) 1√
1−x2 Chebyshev Polynomials (first kind)

[−1, 1]
√
1− x2 Chebyshev Polynomials (second kind)

[0,∞) e−x Laguerre Polynomials

(−∞,∞) e−x
2

Hermite Polynomials
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crack tip

x

y

θ

ξ

η

crack tip

Interface

ρ

(0,0) (1,0)

(0,1)

(0,0) (1,0)

(π/2,0)

Figure 2.18: Physical element containing a singularity is sub-divided such that each triangu-
lar sub-division contains the singular point as one of its nodes. Each sub-triangle is mapped
onto a standard triangle in the area co-ordinate system (ξ, η) with crack tip assigned as the
origin of the co-ordinate system. Next the triangle is transformed into a rectangular co-
ordinate (ρ, θ) system.
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later applied to devise efficient quadrature rules on arbitrary polygons [102] and then ex-

tended to integrate polynomials and discontinuous functions on irregular convex poly-

gons and polyhedra [103, 104, 105]. They called the scheme as ‘Generalized Gaussian

quadrature’ [133]. The numerical algorithm used to compute the quadrature using point-

elimination is [105]:

• Find an initial quadratureh {xi, wi} for the region of integration Ω, the class of basis

functions and appropriate weights that satisfies Equation (2.41).

• Eliminate one of the nodes (e.g., one with the minimum significant factor).

• Solve Equation (2.41) iteratively until convergence is attained. The resulting quadra-

ture now has one less node than the initial one. Continue the above until no additional

nodes can be removed. This is the final quadrature.

Equivalent polynomials One of the earlier attempts to improve the integration over en-

riched elements was by Ventura [151] who focused on the elimination of quadrature sub-

cells commonly employed to integrate strongly orweakly discontinuous and non-polynomial

functions present in the enriched FE approximation. The objective is to find a polyno-

mial that can reproduce exactly the same result as that obtained by the sub-triangulation.

The new polynomial is called ‘equivalent’ polynomial. This facilitates the use of standard

Gaussian quadrature over the entire element, but the definition of ‘equivalent’ polynomials

depends on the enrichment and element type. The proposed method is exact for triangular

and tetrahedral elements, but for quadrilateral elements, when the opposite sides are not

parallel, an additional approximation is introduced.

Higher order shape functions With the conventional Heaviside function, the integration

over enriched elements is done by sub-triangulating the intersected domain. Iarve [75]

by using a polynomial B-spline approximation, proposed a modification to the Heaviside

function. The main advantage is that it does not require modification of the integration

domain and the implementation involves integration of the products of the original shape

function and its derivatives.

Other integration schemes The elements for which all nodes of the element are enriched,

i.e., reproducing elements, Ventura et al., [153] proposed a contour integration for crack and

dislocation enrichments in the framework of linear elasticity. In case of 2D, the domain

integrals are transformed to contour integrals and in case of 3D, the surface integrals are

transformed to domain integrals. The method is only applicable to reproducing elements.

Adaptive integration for elements with singularities was used in [90, 138, 163].

hThe initial quadrature could be the conventional Gaussian quadrature
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Improving the convergence rate and direct estimation of SIFs

With the addition of singular fields to the finite element basis, the underlying physics of the

problem is captured, but the obtained convergence rate remains in
√
h in the conventional

XFEM. The loss of accuracy in the XFEM occurs in the transition layer between enriched

zone and the rest of the domain. Also, to extract the SIFs from the computed displacement

field, post-processing is required. This section summarizes the modifications done to the

conventional XFEM to improve the convergence rate and to evaluate directly and accurately

the SIF.

Higher order XFEM Béchet et al., [13] and Laborde et al., [79] independently proposed a

modification to the conventional XFEM approximation in order to improve the convergence

rates in the classical XFEM. Béchet et al., called the resulting modification as ‘geometric en-

richment’, while Laborde et al., called it as ‘fixed-area enrichment’. In classical XFEM, only

the nodes of the element that contains the crack tip are enriched; due to this, as the mesh

size h approaches ’zero’, the influence of the additional basis functions vanishes. The main

idea behind this strategy is to enrich a whole fixed area around the crack tip. Figure 2.19

shows a schematic representation of the conventional XFEM and the XFEM with ‘geomet-

ric’ enrichment or ‘fixed-area’ enrichment. It was shown in [79] that the convergence rate is

improved.

R

(a) (b)

Figure 2.19: Different enrichment strategies in the XFEM: (a) Enrichment with a fixed area
for singular functions or ‘geometric’ enrichment, where R is the enrichment radius ; (b)
Topological enrichment. The solid line denotes the crack. The ‘circled’ nodes are enriched
with the Heaviside function and the ‘squared’ nodes are enriched with the near-tip asymp-
totic fields.

Hybrid crack element with XFEM Xiao and Karihaloo [164] proposed to combine the

highly accurate Hybrid Crack Element (HCE) and the XFEM to improve the accuracy of the
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SIFs. They proposed to use HCE for the crack tip region and XFEM formalism in rest of the

domain. The XFEM is used tomodel the crack faces with jump functions. In their approach,

the HCE represents the region in the neighbourhood of the crack by only one super-element,

which is connected compatibly with the other elements. Some of the distinct advantages of

this approach are the following:

• avoids blending problem;

• integration is done on the boundary of the HCE, i.e., a contour integration in case of

2D LEFM problems;

• post-processing is not necessary because the SIFs are computed directly from the co-

efficients of approximating functions.

In its traditional form, the HCE is generally assigned first at the crack tip and then the

rest of the domain is meshed by conforming the boundaries of the element to the domain

boundary and to the HCE. Xiao and Karihaloo [163] have demonstrated that an HCE ele-

ment can be constructed from the existing FE background mesh. The degrees of freedom of

the unused nodes in the FE mesh are taken care of during the solution process.

Hybrid Analytic XFEM Réthoré et al., [127] in the spirit of the XFEM, proposed a new

numerical method to estimate the SIFs directly from the numerical solution. The method

relies on partitioning the domain of interest into two overlapping domains Ω1 and Ω2, as

shown in Figure 2.20. In regionΩ1, the conventional XFEM formalism is adopted to approx-

imate the displacement field, while in region Ω2, the displacement field is approximated by

an analytical form, given by Williams‘ series [159] expansion for a straight crack. The cou-

pling between these two regions is established by matching the energy. The displacement

approximation in region Ω1 is given by:

uh1(x) =
∑

I∈Nfem

NI(x)qI +
∑

J∈Nc

NJ(x)H(x)aJ (2.42)

The displacement field in the vicinity of the crack tip (region Ω2 in Figure 2.20) is given by:

uh2(x) =
1

2µ
√
2π

∑

n∈[0,nmax]

(ΦnI (x)pn +ΦnII(x)qn) (2.43)

where ΦI and ΦII are the reference fields
i that form the complete set of linear elastic fields

satisfying a zero traction condition along the crack path, µ is Lamé‘s constant, pn and qn are

the degrees of freedom associated with mode I andmode II functions and nmax is an integer

iObtained fromWilliams‘ series expansion for a straight crack [159].
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Ω1

Ω12

Ω2

Figure 2.20: HA-XFEM: schematic description, where in Ω1, finite elements are active and
the XFEM formalism is used to represent the discontinuity across the crack face, analytical
expressions based on Williams’ series [159] are used to represent the displacement field
in Ω2 [127, 128] and Ω12 is the coupling zone. The coupling between the two zones is
established by partitioning the energy.

that defines the maximum order in the interpolation. When n = 1, the stress intensity

factors KI and KII are computed directly from p1 and q1 [127, 128]. Numerical results

presented in [127] show higher accuracy than the conventional XFEM and the method has

been applied to crack growth problems [128]. This shares some similarities with the HCE-

XFEM proposed by Xiao and Karihaloo [164].

XFEM with cut-off function In order to improve the convergence properties and robust-

ness of the XFEM, Chahine et al., in a series of papers, proposed the following alternatives

to the conventional XFEM. The main idea is to use a cut-off function [136, 137] (c.f. Chapter

8 of the book) to enrich a whole area around the crack tip. The cut-off function, χ satisfies

the following property:





χ(r) = 1 if r < ro

0 < χ(r) < 1 if ro < r < r1

χ(r) = 0 if r1 < r

(2.44)

where ro, r1 are two parameters, that control the size of the cut-off function radius. In their

study, χ was chosen to be a fifth degree polynomial. The cut-off function aids is making

a smooth transition between the enriched and nonenriched elements [31, 136, 137]. The
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enriched approximation of the XFEMwith cut-off function takes the form [31, 32]:

uh =
∑

I∈Nfem

NIqI +
∑

J∈Nc

NJHaJ +
∑

K∈Nf

NK

4∑

α=1

Bαχb
α
K , (2.45)

By using the cut-off function, the singular fields are restricted in a region close to the crack

tip. Although the method is restricted to 2D, the error in the energy norm and in the dis-

placement norm are improved significantly when compared to the conventional XFEM,

that the conditioning number of the system is improved and most importantly a priori error

estimate showing the optimality of the convergence

Spider XFEM The main idea of Spider XFEM [33] is to approximate the nonsmooth be-

haviour around the crack tip by another overlapping mesh. To represent the displace-

ment jump across the crack surface, the conventional XFEM is adopted, similar to HAX-

FEM [127] and HCE-XFEM [163]. For the region in the vicinity of the crack tip, a circular

mesh is adopted and the cut-off function makes a smooth transition between the enriched

and the nonenriched regions. The difference between the XFEM with cut-off function [31]

and the spider XFEM [33], is that in case of the spider XFEM, an overlapping mesh is used

to approximate the displacement fields in the vicinity of the crack tip. The important point

is that the enrichment function may be known only partially, i.e., in the radial but not tan-

gential direction.

Reduced basis XFEM Noor and Peters [112] introduced amethod that uses pre-computed

generic solutions as basis functions for the approximation. Based on this work, Chahine et

al., [34] introduced the Reduced Basis-XFEM (RB-XFEM) [34]. The displacement approxi-

mation in the RB-XFEM is given by:

uh =
∑

I∈Nfem

NIqI +
∑

J∈Nc

NJHaJ +

2∑

K=1

wKχbK (2.46)

where wK are the pre-computed enrichment functions. This variant of the XFEM is partic-

ularly useful when the asymptotic fields ahead of the crack tip are unknown.

Integral matching XFEM It has been shown in [111] that although XFEMwith cut-off [31,

32] obtains an optimal convergence rate, the fixed-area enrichment [79] is better than XFEM

with a cut-off function. The loss of accuracy is due to the cut-off function itself. Chahine

et al., [35] proposed the integral matching XFEM. The idea is to use an integral matching

condition on the interface between the enriched zone and the rest of the domain similar to

mortar techniques [23]. Note that, Laborde et al., [79] proposed a similar strategy, but the
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condition is enforced point-wise. The method yields optimal convergence rate in the dis-

placement norm and in the energy norm with a decrease in the error level when compared

with the Std. XFEM and XFEMwith fixed-area or geometrical enrichment.

Numerically determined enrichment functions As seen above, special enrichment func-

tions can be added to the FE approximation base that carry information about the local or

global behaviour. This requires that these enrichment functions be known in advance in an

analytical form. To circumvent this problem, Menk and Bordas [94], proposed a numerical

procedure to compute these enrichment functions, especially for anisotropic polycrystals.

Although computationally expensive, this method gives a systematic procedure to compute

the enrichment functions when their analytical form is not known a priori. The objective of

this work closely matches the objective of the RB-XFEM proposed by Chahine et al., [34], in

a sense that both approaches aim at applying the XFEM to the problems involving internal

boundaries, when their exact nature is not known a priori. It is interesting to note that the

idea of cut-off function has been mentioned as early as 1973 by Strang and Fix [136, 137].

The book also provides a discussion on the analytical derivation of the asymptotic fields in

the presence of a crack and Kellogg in 1971 [78] studied the crossing of two interfaces.

XS-FEM Lee et al., [82] proposed an alternate formalism by combining the XFEMwith the

s-method proposed by Fish [52]. The main idea is to use an overlapping mesh consisting

of quarter point elements in the region close to the crack tip and to use XFEM for the crack

away from the tip. The mesh superposition technique is used to match the near-tip fields

with discontinuous displacement field of the underlying mesh.

Ill-conditioning

By incorporating additional functions, the enriched FE basis can model singularities or

internal boundaries. The consequence of this is that the stiffness matrix can become ill-

conditioned [8, 56, 95, 136]. Various approaches have been developed in the literature to

address this issue. Strang and Fix [136], Fix et al., [56] and Béchet et al., [13] applied Cholesky

decompositions to submatrices of the stiffness matrix. These submatrices are associated to

the degrees of freedom of the enriched nodes. The effect of numerical instability are iso-

lated in the smaller matrices. Strouboulis et al., [138, 139] perturbed the stiffness matrix

by an identity matrix of size ε and an iterative method was used to solve the perturbed

system. Menk and Bordas [95] proposed a preconditioning technique based on domain

decomposition. The method applies the idea of domain decomposition only to the subma-

trix associated with the enriched degrees of freedom and shares similarity with the finite

element tearing and interconnecting (FETI) method [51].
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Suppressing additional unknowns

In case of the extrinsic enrichment, the approximation introduces additional unknowns (for

example aJ , b
α
K , see Equation (2.23)). These additional unknowns may increase the com-

putational effort. Fries and Belytschko [59] proposed a method that does not use additional

unknowns. They called the method the intrinsic XFEM. The main idea is to use special

shape functions in the vicinity of discontinuities that captures the physics of the problem.

The moving least-squares (MLS) method is used for the construction of the special func-

tions. In this method, the domain is discretized into overlapping subdomains and on each

subdomain, a set of shape functions are constructed by means of the MLS technique or

by using the standard FE shape functions. A ramp function is used to couple these two

domains. Although very appealing, the construction of the MLS approximation increases

the computational effort significantly. Song et al., [134] and Rabczuk et al., [124] developed

crack tip elements for the phantom-node method. In the phantom-node method, the crack

kinematics is captured by overlapping elements. This shares similarities with the proposed

by Hansbo and Hansbo [69]. The appealing feature of this method is that no additional

degrees of freedoms are involved and is easier to implement into existing FE codes.

2.5 Numerical Examples

In this section, the XFEM is illustrated with examples involving weak discontinuities (ma-

terial interfaces) to introduce the reader to the concept of enrichment and facilitate the read-

ing and understanding of the following chapters. The first example is a one-dimensional

bi-material bar in tension, where imposition of boundary conditions are discussed with

and without a shifted approximation basis. The problem with blending elements is also

discussed. In the next example, a one-dimensional bar with two interfaces is solved us-

ing XFEM, followed by a two dimensional circular inhomogeneity problem, wherein it is

illustrated that by using blending correction, optimal convergence rate can be obtained.

2.5.1 One dimensional bi-material bar

To illustrate the solution procedure, the effectiveness and the limitations of the XFEM, a 1D

bimaterial bar is considered. The left edge of the bar is clamped and a unit force F = 1 N

is prescribed at the right end. The material interface is located at x = xb = L/2. Young’s

moduli for x ∈ [0, xb] and x ∈ [xb, L] are E1 = 1 N/m2 and E2 = 2 N/m2, respectively. The

area of cross-section for x ∈ [0, xb] and x ∈ [xb, L] are A1 = 1 m2 and A2 = 1 m2, respectively.

The total length of the bar is L = 1 m.
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L/2 L/2

E1 E2

F

x

1 2

Nodes

(a)

(b) Interface

Figure 2.21: Bimaterial bar with a unit force prescribed at the right end: (a) geometry and
(b) Finite element.

The effect of nodal subtraction

XFEM without shifting The standard XFEM approximation for the displacement field

without shifting is given by:

u(x) = N1(x)u1 +N2(x)u2 +N3(x)a1 +N4(x)a2 (2.47)

where u1, u2 are the standard degrees of freedom and a1, a2 are the enriched degrees of

freedom associated with nodes 1 and 2, respectively. The enrichment functions, N3 and N4

are given by:

N3(x) = N1(x)|φb(x)|, N4(x) = N2(x)|φb(x)| (2.48)

where φ(x) = x − xb is the enrichment function that has information regarding the local

behaviour of the problem. With the two additional functions N1φ and N2φ, the L2 element

has four shape functions: standard shape functions (NI)1≤I≤2 and enriched shape func-

tions (NIφ)1≤I≤2. Associated with these four shape functions come four nodal unknowns:

standard unknowns u1, u2 and enriched unknowns a1, a2. Figure 2.4 shows the variation of

the enrichment functions along the length of the bar.

As the first derivative of the solution is discontinuous at xb = L/2, the domain is split into

two regions:

∫ L

0
f(x)dx =

∫ b

0
f(x) dx+

∫ L

b
f(x)dx (2.49)
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The total stiffness matrix for the problem under consideration is given by:

K = K1 +K2, (2.50)

whereK1 and K2 are given by:

K1 =

∫ b

0
BT

1E1A1B1 dx, K2 =

∫ L

b
BT

2E2A2B2 dx. (2.51)

and B1 and B2 are given by:

∀x ∈ [0, xb], B1(x) =
[
−1 1 (x− 1− φ(x)) (−x+ φ(x))

]

∀x ∈ [xb, L], B2(x) =
[
−1 1 (−x+ 1− φ(x)) (x+ φ(x))

]
(2.52)

Since the enrichment function does not go to zero at the nodes and also because the enrich-

ment function is non-zero within the element, extra effort is required to compute the force

vector. The force corresponding to the enriched degrees of freedom has a non-zero entry in

the force vector. The elemental force vector can be written as:

f e =

∫

Ωe

NTb dx

︸ ︷︷ ︸
feΩ

+NTAet|Γe
t︸ ︷︷ ︸

feΓ

(2.53)

where f eΩ is the body force vector, f eΓ is the external local vector, b is the body force and t is

the traction on the boundary. The boundary conditions are: the displacement at the left end

(x = 0) = 0 and a unit force applied at the right end (x = L). As the enrichment function is

not zero at the nodes, Dirichlet boundary conditions are enforced via Lagrange multipliers.

The condition is derived as follows. We require u(x)|x=0 = 0, so,

u(x)|x=0 = N1(x)|x=0u1 +N2(x)|x=0︸ ︷︷ ︸
=0

u2 +N3(x)|x=0a1 +N4(x)|x=0︸ ︷︷ ︸
=0

a2

= N1(x)|x=0u1 + N3(x)|x=0︸ ︷︷ ︸
=(|x−xb|N1(x)|)x=0 = 1

2
N1(x)|x=0

a1

=⇒ u(x)|x=0 = 0 = u1 + (1/2)a1 (2.54)
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The complete system of equations with Lagrange multipliers is given by:




1.50 −1.50 0.50 −1.00 1.00

−1.50 1.50 −0.50 1.00 0.00

0.50 −0.50 0.625 −0.125 0.50

−1.00 1.00 −0.125 1.125 0.00

1.00 0.00 0.50 0.00 0.00








u1

u2

a1

a2

λ





=





0

1

0

1/2

0





(2.55)

and the solution is given by:





u1

u2

a1

a2

λ





=





0.125

0.875

−0.250

−0.250

1





(2.56)

Note that the displacement vector obtained by solving the system of equations does not

correspond to the nodal values and the actual nodal values are computed by substituting

the solution into Equation (2.47).

Computation of true nodal displacements Substituting the functional form for the shape

functions and the computed unknown displacements, the actual displacement field is given

by:

u(x) = 0.125 (1− x) + 0.875x − 0.25 (1− x) |x− xb| − 0.25x|x − xb| (2.57)

XFEMwith shifting The XFEM displacement approximation at a point x ∈ [0, 1] writes

u(x) = N1(x)u1 +N2(x)u2 +N3(x)a1 +N4(x)a2 (2.58)

where u1, u2 are the standard degrees of freedom and a1, a2 are the enriched degrees of

freedom associated with nodes 1 and 2, respectively. The enrichment functions, N3 and N4

are given by:

N3(x) = N1(x) (|φb(x)| − |φb(x1)|) , N4(x) = N2(x) (|φb(x)| − |φb(x2)|) (2.59)

where φb(x) = x−xb is the level set function in 1D. Figure 2.4 shows the variation of enrich-

ment functions along the length of the bar. As the solution’s first derivative is discontinuous
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at xb = 0.5, the domain is split into two regions:

∫ L

0
f(x)dx =

∫ b

0
f(x)dx+

∫ L

b
f(x)dx (2.60)

The total stiffness matrix for the problem under consideration is given by:

K = K1 +K2, (2.61)

whereK1 and K2 are given by:

K1 =

∫ b

0
BT

1 E1AB1 dx, K2 =

∫ L

b
BT

2E2AB2 dx. (2.62)

and B1 and B2 are given by:

∀x ∈ [0, xb], B1(x) =
[
−1 1 (x− φb(x)− 1/2) (φb(x)− 1/2− x)

]
,

∀x ∈ [xb, 1], B2(x) =
[
−1 1 (3/2 − x− φb(x)) (φb(x)− 1/2 + x)

]
. (2.63)

The assembled equations after imposing boundary conditions (u1 = 0, F2 = 1) are:




1.50 0.25 0.25

0.25 0.50 0.25

0.25 0.25 0.50








u2

a1

a2





=





1

0

0





(2.64)

and the solution is u2 = 0.75, a1 = −0.25, a2 = −0.25. The displacement along the length

of the bar is given by, ∀x ∈ [0, 1]:

u(x) = 0.75x − 0.25(1 − x)(|x− xb| − |x1 − xb|)− 0.25x(|x − xb| − |x2 − xb|) (2.65)

Blending correction

Next, the problem with the blending elements is discussed for the one-dimensional bi-

material bar. To study the influence of partially enriched elements, let the domain be dis-

cretized with 3 two-noded 1D finite elements, as shown in Figure 2.22, with the material

interface located in the second element. The elements on either side of the element contain-

ing the interface is partially enriched.

With the displacement approximation given by Equation (2.58), the strain approximation
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Interface

Enriched node

Standard node

Reproducing element or fully enriched element

Blending element or partially enriched element

Figure 2.22: Bi-material bar discretized with 3 two-noded 1D finite elements.

in the blending element to the left of the material interface is given by:

εx =
du

dx
=

2∑

I=1

dNI

dx
uI +

dN2

dx
ψa2 +N2

dψ

dx
a2 (2.66)

The terms ψ and dψ
dx in Equation (2.66) cause the zig-zag behavior seen in Figure 2.23. With

a small modification as proposed by Fries [58], it can be seen from Figure 2.23 that the zig-

zag behaviour in the blending elements is removed. And with the increase in the number

of elements, the performance is improved. The rate of convergence of the XFEM with and

without blending correction is studied for a two-dimensional problem, discussed as a last

example in this section.

2.5.2 One dimensional multiple interface

In this example, a one-dimensional bar with two material interfaces is considered. The

material interfaces are located at x = xa = 1/4 and x = xb = 3/4, as shown in Figure 2.24.

The left edge of the bar is clamped and a unit force F = 1 is prescribed at the right end.

Young’s moduli for x ∈ [0, xa), x ∈ (xa, xb) and x > xb are 1 N/m2, 2 N/m2 and 1 N/m2,

respectively. The total length of the bar is L = 1.
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Figure 2.23: Blending problem for the bimaterial bar: strain along the length of the bar.
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L1 L2 L3

x

E1 E3E2

F = 1

1 2

φ2(x)

φ1(x)

xbxa
Enriched node Enriched node

Figure 2.24: One-dimensional bar with multiple interfaces, where xa and xb are the location
of the material interfaces and L1, L2 and L3 are the length of each segment. A unit force is
prescribed at the right end.

The XFEM displacement approximation at a point x ∈ [0, 1] writes:

u(x) =
[
N1(x) N2(x) N3(x) N4(x) N5(x) N6(x)

]





u1

u2

a1

a2

b1

b2





(2.67)

where u1, u2 are standard degrees of freedom and a1, a2, b1, b2 are enriched degrees of free-

dom associated with nodes 1 and 2. N1, N2 are the standard FE shape functions, N3, N4, N5

and N6 are the enriched shape functions, given by, ∀x ∈ [0, 1]:

N3(x) = N1(x) (|φ1(x)| − |φ1(x1)|)
N4(x) = N2(x) (|φ1(x)| − |φ1(x2)|)
N5(x) = N1(x) (|φ2(x)| − |φ2(x1)|)
N6(x) = N2(x) (|φ2(x)| − |φ2(x2)|) (2.68)

where φ1(x) and φ2(x) are level set functions for the two material interfaces.

φ1(xi), φ2(xi), i = 1, 2 are the values of the level set function evaluated at nodes 1 and 2.
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φ1(x) = x − xa is the level set function in 1D and xa is the location of the first interface

from the left end and φ2(x) = x − xb is the level set function for the second interface. An

absolute value of the level-set function, given by Equation (2.28) is used as an enrichment

function (see Figure 2.24 for a schematic representation). As the solution’s first derivative

is discontinuous at two locations along the length of the bar, xa = 1/4 and xb = 3/4, the

domain is split into three regions:

∫ L

0
f(x) dx =

∫ xa

0
f(x) dx+

∫ xb

xa

f(x) dx+

∫ L

xb

f(x) dx. (2.69)

The total stiffness matrix for the problem under consideration is given by

K = K1 +K2 +K3, (2.70)

whereK1,K2 and K3 are given by

K1 =

∫ b

0
BT

1 E1AB1 dx

K2 =

∫ L

b
BT

2 E2AB2 dx

K3 =

∫ L

b
BT

3 E3A B3 dx, (2.71)

and Bi, i = 1, 2, 3 are the strain-displacement matrices. The terms in Equation (2.71) are

computed as outlined earlier for the bi-material problem. The assembled system of equa-

tions is given by:




1.5 0.25 0 0 −0.25

0.25 0.5 0 0.0208 −0.2708

0 0 0.3750 0.3542 0.0208

0 0.0208 0.3542 0.3750 0

−0.25 −2708 0.0208 0 0.5








u2

a1

a2

b1

b2





=





1

0

0

0

0





(2.72)

with boundary conditions u1 = 0, F1 = 1. The solution is given by u2 = 0.75, a1 =

−0.25, a2 = −0.25, b1 = 0.25, b2 = 0.25. The displacement function is given by:

∀x ∈ [0, 1], u(x) = 0.75N2(x)− 0.25N3(x)− 0.25N4(x) + 0.25N5(x) + 0.25N6(x) (2.73)

Figure 2.25 shows the displacement along the length of the bar for the XFEM and for the

conforming FEM. In the case of the FEM, three elements are used to solved the problem.

Thanks to the local PU and enrichment functions, the XFEM with one element is able to
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capture the weak discontinuities along the length of the bar. Note that, the number of

unknowns in case of the XFEM is 6 (two standard dofs and four enriched dofs) while in the

case of the FEM, its only 4 (one for each node). Although the number of unknowns in case

of the XFEM is increased, the advantage is that the mesh does not conform to the material

interface. Hence, the influence of the location of thematerial interface on the solution can be

solved without changing the underlying mesh by using appropriate values of the location

of the interfaces xa and xb while evaluating the integrals given by Equation (2.71).
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Figure 2.25: Displacement along the length of the bar. Three elements are used in case of
the FEM, while one element is used in case of the XFEM. xa and xb denote the material
interfaces.

2.5.3 Two dimensional circular inhomogeneity

In this example, the enriched finite element solutions for the elastostatic response of a cir-

cular material inhomogeneity under radially symmetric loading, as shown in Figure 2.26

is examined within the framework of the XFEM. The effect of modifying the approxima-

tion in the blending elements is studied. Plane strain conditions are assumed. The material

properties are constant within each domain, Ω1 and Ω2, but there is a material discontinuity

across the interface, Γ1(r = a). The Lamé constants in Ω1 and Ω2 are: λ1 = µ1 = 0.4 and

λ2 =5.7692, µ2 =3.8461, respectively. These correspond to E1 =1, ν =0.25 and E2 =10,

ν2 =0.3. A linear displacement field: u1 = x1, u2 = x2 (ur = r, uθ = 0) on the bound-

ary Γ2(r = b) is imposed [41, 58, 145]. The governing equations, the exact displacement

solutions, the strain and the stress fields are given in Appendix A.

For the present numerical study, a square domain of size L × L with L = 2 is considered.
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Figure 2.26: Bi-material boundary value problem

Along the outer boundary, closed-form displacements are imposed. Meshes with charac-

teristic element sizes of h ∈ {0.2, 0.1, 0.05, 0.025} are used. Figure 2.27 shows the rate of

convergence in the displacement norm (L2) and in the energy norm. It can be seen that the

XFEMwithout blending corrections achieves sub-optimal convergence rates, i.e., 0.95 in L2

and 0.71 in the energy norm. By using the enrichment function proposed by Fries [58], the

method achieves a convergence rates of 1.80 in the L2 norm and 1.16 in the energy norm.

The error level is also smaller than the XFEMwithout blending correction.

2.6 Summary

This chapter gave an overview of the partition of unity methods and the XFEM in particular.

The usefulness of the enrichment technique and the way the system matrices are modified

due to the addition of new functions is discussed in detail using the one-dimensional bi-

material bar example. The effect of nodal subtraction and blending corrections were also

discussed in a didactic manner to help the reader appreciate the essential points required

to understand the basis of the method.

Motivation The salient feature of the XFEM is that known information can be added to the

FE approximation basis to improve the performance of the finite elements using piecewise

polynomials. If the enrichment functions are not smooth or polynomial functions, addi-
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Figure 2.27: Bi-material circular inhomogeneity problem: the rate of convergence in L2 and
in the energy norm. m is the rate of convergence. It can be seen that the rate of conver-
gence in both the displacement norm and in the energy norm increases by using a ramp
enrichment.
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tional care has to be taken in numerically integrating over the elements that are intersected

by the discontinuity surface (for example,
√
r in case of the LEFM). Significant amount

of work has been done to improve the integration as discussed in Section 2.4.5. Some of

these methods eliminate the singularities present in the XFEM stiffness matrix in the LEFM,

for example, polar integration [79] and special mapping techniques [118]. Numerical inte-

gration techniques using adaptive methods were proposed, but an adaptive control of the

integration error is very time-consuming [163]. Note that, all the above techniques still re-

quire a sub-triangulation of the polygonal region intersected by the discontinuity surface.

Other methods proposed in the literature, focussed on integrating over the elements that

are intersected by the discontinuity surface but do not contain the crack tip. For example,

replacing the product of the shape functions and the enrichment functions by an equivalent

polynomial [151] or by using higher order shape functions [75].

This study is motivated by the need to improve numerical integration over enriched ele-

ments. Two new methods are proposed in Chapter 3. The accuracy of the proposed meth-

ods is discussed in Chapter 4.
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3
Advances in numerical integration techniques

for enriched FEM

This chapter presents some advances in numerical integration over enriched elements

in XFEM. Two new numerical integration techniques are presented in this chapter that

can complement the conventional XFEM. The first method relies on conformal mapping

and is restricted to 2D problems, while the second method relies on strain smoothing. Both

methods are unrelated in their spirit, but aim at improving numerical integration in the

conventional XFEM. The development of both methods is motivated by the following:

• Decreasing the complexity of sub-integration in the XFEM

– by conformally mapping the enriched elements onto a unit disk and using cu-

bature on this unit disk.

– by integrating over the boundary of the elements intersected by the discontinu-

ities (material interfaces, cracks, voids).

• Avoiding the need to integrate the singular functions present in the XFEM stiffness

matrix in the LEFM.With the strain smoothing technique, the derivatives of the shape

functions are no longer necessary, hence, the 1/r [3, 24, 32] term does not appear in

the integral.

This chapter is organized as follows. Section 3.1 discusses the basic idea behind using the

conformal mapping to integrate over any arbitrary polygon and over enriched elements.

After giving a brief overview of the strain smoothing in the FEM, the coupling of the strain

smoothing technique with partition of unity enrichment is developed in Section 3.2. The

resulting method is called the Smoothed eXtended Finite Element Method (SmXFEM). The

salient features of the proposed methods are summarized in the last section.
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3.1. NUMERICAL INTEGRATION BASED ON CONFORMAL MAPPING

Figure 3.1: A rectangular grid (top) and its image under a conformal map f (bottom). It can
be seen that f maps pairs of lines intersecting at 90◦ to pairs of curves intersecting at 90◦. In
general, a conformal map preserves oriented angles.

3.1 Numerical integration based on conformal mapping

In this section, a new numerical integration technique based on a conformal mapping for

arbitrary polygons that can be used for the elements intersected by a discontinuity surface

is presented. The proposed method eliminates the need to sub-triangulate the polygonal

region intersected by the discontinuity or to sub-triangulate the polygonal element. A con-

formal maps transforms any pair of curves intersecting at a point in the region so that the

image curves intersect at the same angle (see Figure 3.1).

3.1.1 Conformal mapping

Definition: A mapping that preserves the angles between the intersecting arcs when map-

ping one open region in the complex plane C onto another by a function which is analytic

and one-to-one and has a ‘nonzero’ derivative everywhere is called a conformal map.

This follows from the Riemann mapping theorem, which states that:

Riemann mapping theorem: If U is a non-empty simply connected open subset of the complex

number plane C, then there exists a biholomorphic (bijectivea and holomorphicb) mapping

ais a function f from a set X to a set Y with the property that, for every y in Y , there is exactly one x in X
such that f(x) = y.

bAlso called analytic function, regular function, differentiable function, complex differentiable function and
holomorphic map [23]. The word derives from the Greek ‘holos’, meaning ’whole’.
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3.1. NUMERICAL INTEGRATION BASED ON CONFORMAL MAPPING

f from U onto the open unit disk D.

D = {z ∈ C : |z| < 1} (3.1)

Corollary: Any two simply connected open subsets of the Riemann Sphere c can be confor-

mally mapped into each other.

A map

w = f(z) (3.2)

is called conformal at a point zo if it preserves oriented angles between the curves through

zo.

Example A conformal map can be used to convert a circular cylinder into a family of

aerofoil shapes. This transformation is called the Joukowsky transform and finds important

applications in the study of two-dimensional potential flow around aerofoils. The transform

is given by:

w = f(z) = z +
1

z
(3.3)

where z = x+ iy is a complex variable in the transformed space and w = ξ+ iη is a complex

variable in the physical space and ξ = ξ(x, y), η = η(x, y).

Jacobian of an analytic function of a complex variable

Consider a general function of a complex variable w = f(z)where z = x+iy andw = ξ+iη.

In a region where the function f is analytic, the Jacobian of the transformation is given by:

∣∣∣∣∣∣∣

ξ,x ξ,y

η,x η,y

∣∣∣∣∣∣∣
= |f(z),z|2 (3.4)

where subscript ‘comma’ represents the partial derivative with respect to the spatial co-

ordinate succeeding it.If f is analytic in a region, then it satisfies Cauchy-Riemann equa-

tions, given by:

ξ,x = η,y

ξ,y = −η,x (3.5)

cNamed after mathematician Bernhard Riemann, is the sphere obtained from the complex plane by adding
a point at infinity.
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Thus, ∣∣∣∣∣∣∣

ξ,x ξ,y

η,x η,y

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

ξ,x ξ,y

−ξ,y ξ,x

∣∣∣∣∣∣∣
= |f(z),z|2 (3.6)

It follows that the transformation is one-to-one in regions where f(z),z = df(z)
dz 6= 0. The

Riemann mapping theorem [9] describes an existence of such a mapping but does not tell

us how to explicitly construct the mapping. The recipe for such a mapping is given by the

Schwarz-Christoffel transformation, discussed next.

3.1.2 Schwarz-Christoffel Conformal Mapping (SCCM)

The Schwarz-Christoffel formula was proposed independently by Christoffel in 1867 [8]

and Schwarz in 1869 [41]. The Schwarz-Christoffel transformation is based on the following

postulate:

Theorem: Let U be the interior of a polygon Γ having vertices w1, w2, · · · , wn and interior

angles πα1, πα2, · · · , παn in counter-clockwise order. Let f be any conformal map from the

unit diskD to U , then the Schwarz-Christoffel formula for a disk is given by:

w = f(z) = A+ C

z∫

0

n∏

k=1

(
1− ς

zk

)αk−1

dς (3.7)

where A and C are complex constants (C 6= 0). Here z = x + iy corresponds to a point in

the complex plane and w = ξ+ iη is its correspondingmap in the complex polygonal plane.

The function f maps the unit disk in the complex plane conformally onto a polygonal plane

U (see Figure 3.2). An inverse mapping also exists [44, 45] and since the map is conformal,

the positivity of the Jacobian is ensured.

For example, n = 1 is a line with vertex w1 = ∞ and α1 = −1. Applying the Schwarz-

Christoffel formula, given by Equation (3.7), leads to:

w = f(z) = A+ C

z∫

0

(
1− ς

zk

)−2

dς = A− C

1− z
z1

(3.8)

The above equation maps the interior of the disk onto a half-plane and this is a Möbius

transformationd. There are two degrees of freedom still unspecified, for example, the com-

plex constants A and C . The SCCM is semi-explicit since the pre-vertices are not given and

cannot in general be found analytically [40, 44]. A conformal map between the two domains

is not unique unless these constants are fixed (e.g., A and C). Two common choices are to

dAlso called bilinear, linear functional transformation. A transformation of the form w = az+b
cz+d

is called a
Möbius transformation, where ad− bc 6= 0 and a, b, c, d are complex numbers
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πα7

πα4πα3

πα5

πα1
πα2

πα6

z1
w1w2

z2

w3

z3

z4

w4

z5

w5 z6
w6

w7

z7

Inverse map, g(w)

Forward map, f(z)

Figure 3.2: Notational conventions of the SCCM.

fix any three pre-vertices, e.g., z1 = −1, z2 = −i and z3 = 1 or to fix the conformal center,

f(0) = w and f ′(0) > 0. For problems with more vertices, unless the polygon is symmetric,

in general, the SCCM integral in Equation (3.7) has no closed-form solution [1, 43, 44, 45].

In such cases, the SCCM involves the following three numerical steps:

1. Finding points zk (see Figure 3.2), known as parameter problem; these unknown pa-

rameters can be found by solving a system of non-linear equations that assert that the

side lengths of the polygon are correct.

2. Calculating the SCCM integral in Equation (3.7). Numerical evaluation of the integral

is done by a Compound Gauß Jacobi quadrature.

3. By using Newton iterations, the inverse of the map is computed.

The steps involved in the numerical conformal mapping are illustrated in Figure 3.3. All

these numerical steps are implemented in the open sourceMATLAB toolbox [14]. Figure 3.4

shows a conformal mapping of an arbitrary polygon onto a unit disk. Themapping is made

with respect to a point in the complex plane, which forms the conformal center. Either the

geometric center of the polygon is specified or it could be user specified.

Jacobian of the mapping Let the conformal mapping be given by Equation (3.2) and the

Schwarz-Christoffel formula given by Equation (3.7). The differential form of the Schwarz-
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Figure 3.3: Steps involved in the implementation of numerical conformal mapping.
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Figure 3.4: Mapping of the physical domain onto a unit disk. This picture was produced
with the MATLAB SC toolbox [14]. The SCCM maps the interior of the polygon onto the
disk. A pair of lines intersecting at an angle in the polygon is mapped to a pair of lines
inside the disk, intersecting at the same angle.
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Christoffel formula is given by [14]:

df(z)

dz
= C

n∏

k=1

(
1− ς

zk

)αk−1

. (3.9)

The Jacobian of the mapping can be computed by inverting Equation (3.9). The numerical

implementation of this inversion is discussed in [15] and implemented in the toolbox [14].

3.1.3 Numerical integration rule

In this section, cubature rules based on midpoint rule [13] and product rule [38] on the unit

disk are discussed.

Midpoint Rule

De and Bathe [13] proposed a simple quadrature rule by subdividing the disk into concen-

tric circles and radial lines and implemented a midpoint quadrature rule for the interior of

the disk. The integral is evaluated on each of the subdomains as the area of the subdomain

multiplied by the integrand evaluated at the centroid of the subdomain (see Figure 3.5). To

integrate f(x, y) on a disk (Ω) of radius Ro,

∫ ∫

Ω
f(x, y)dxdy ≃

nθ∑

i=1

nr∑

j=1

Ajf(rj cos θi, rj sin θi) (3.10)

where nθ is the number of sectors in which the disk is partitioned and nr is the number of

radial sub-divisions. Here,

rj =
j2 − j + 1/3

j − 1/2
∆r; θi = (i− 1/2)∆θ

∆r =
Ro
nr

; ∆θ =
2π

nθ
; Aj =

(
j − 1

2

)
∆θ(∆r)2 (3.11)

where r and θ are the polar coordinates and Aij is the corresponding weight of the integra-

tion point.
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y

x

Ro

θ

(a) Midpoint rule

Ro

y

xθ

(b) Gauß - Chebyshev rule

Figure 3.5: Quadrature rule on a disk.

Gauß-Chebyshev Rule

Peirce [38] proposed the following approximation to evaluate the integral over a planar

annulus based on Legendre polynomialse and Chebyshev nodesf:

∫ ∫

Ω
f(x, y)dxdy ≃

4(m+1)∑

i=1

m+1∑

j=1

Ajf(rj cos θi, rj sin θi) (3.12)

where

1. θi =
iπ

2(m+1) , i = 1, 2, · · · 4(m+ 1), m = 0, 1, 2, · · ·

2. Aj =
π

4(m+1)P ′

m+1r
2
j

R2
0∫

0

Pm+1r2

r2−r2j
dr, j = 1, 2, · · · ,m+ 1

3. r2i are the m + 1 zeros of Pm+1(r
2), the Legendre polynomial in r2 of degree m + 1,

orthogonalized on
[
0, R2

o

]
(Ro defined in Figure 3.5).

where θi are the Chebyshev nodes. The integration points are on equally spaced radii and

the weights are independent of the angular position. The distributions of the integration

eLegendre polynomials are defined by the following recurrence relation: Po(x) = 1, P1(x) = x and (n +
1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x).

fChebyshev nodes are the roots of the Chebhyshev polynomial of the first kind. The Chebyshev polynomials
of the first kind are defined by the following recurrence relation: To(x) = 1, T1(x) = x and Tn+1(x) = 2xTn(x)−
Tn−1(x)
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points for the midpoint quadrature and for the Gauß-Chebyshev quadrature are illustrated

in Figure 3.5. For all the numerical examples presented in this work, a midpoint quadrature

rule is used. Other cubature rules on a unit disk based on orthogonal polynomials are given

in [10, 11, 25, 39].

3.1.4 Numerical integration over polygons and discontinuous elements

The SCCM combined with the midpoint quadrature can be used to integrate over arbi-

trary polygons and over the elements intersected by the discontinuity. This basic idea is

discussed in this section.

Integration over arbitrary polygons

In the context of polygonal finite elementsg, one potential solution for the purpose of nu-

merical integration over arbitrary polygons as described by Sukumar and Tabaraei [42] is to

sub-divide the physical element into triangles and then usewell-known quadrature rules on

a triangle. In this study, this method is called the sub-triangulation method. As described

in [42], the purpose of sub-dividing into triangles is solely for the purpose of numerical

integration and does not introduce new degrees of freedom.

P

ξ2

Ωe

η

ξ

NFEM

y

ξ1

Po

Ωo

φ

J2

P ′

J1

x

Figure 3.6: Numerical integration based on the partition of the physical element, where J1
and J2 are the Jacobian that corresponds to the two level mapping.

The sequence of transformations used is illustrated in Figure 3.6. For a polygon with n >4,

where n is the number of sides of the polygon, the centroid of the element is used to par-

gIn polygonal finite elements, the number of sides of the element is not limited to four in 2D [33, 42].

78



3.1. NUMERICAL INTEGRATION BASED ON CONFORMAL MAPPING

tition it into n triangles. The method involves two levels of isoparametric mapping. By

using the SCCM, an arbitrary polygon can be mapped onto a unit disk and cubature rules

described above can be used for the purpose of numerical integration. This eliminates the

need for sub-dividing the polygon and the need for a two level isoparametric mapping.

Figure 3.7 shows the location of the integration points on different polygonal elements for

the sub-triangulation method and the SCCM combined with the midpoint quadrature rule.

The efficiency of the proposed numerical integration technique is illustrated by computing

the integral of a few polynomial functions over different polygonal domains. The numerical

results are given in Table 3.1 and are compared with the sub-triangulation method. It can be

seen that for low order polygons such as quadrilaterals, the relative error in the computed

value between the sub-triangulation and the SCCMmidpoint rule is about 4%, but with the

increase in the number of sides of the polygon, the error between the methods decreases

and is within 2%. Natarajan et al., [33] used SCCM to integrate over arbitrary polygons

in the context of polygonal FE and applied it to solve elasticity problems. Some results

pertaining to this study are presented in Appendix B.

Table 3.1: Numerical Integration of polynomial functions over polygonal domains: com-
parison between the sub-triangulation method and the SCCM combined with midpoint
quadrature rule. A total of 20 integration points for both methods is used in evaluating the
integral.

Region Method Polynomial function

1 x2 (xy)2 (x+ y)2

Quadrilateral
Triangulation 4.0000 1.3333 0.4630 2.6667

Midpoint 3.9483 1.2860 0.4010 2.5472

Hexagon
Triangulation 2.5981 0.5413 0.0744 1.0825

Midpoint 2.5946 0.5404 0.0752 1.0822

Octagon
Triangulation 2.8284 0.6381 0.0944 1.2761

Midpoint 2.8286 0.6381 0.0954 1.2745

Decagon
Triangulation 2.9389 0.6880 0.1054 1.3759

Midpoint 2.9379 0.6870 0.1073 1.3766

Integration over enriched elements

In the conventional XFEM, the numerical integration over the elements intersected by the

discontinuity is done by sub-dividing the elements in to sub-domains (triangular sub-domains

in this case). This poses two problems:
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(a) Quadrilateral (b) Hexagon

(c) Octagon (d) Decagon

(e) Undecagon (f) Dodecagon

Figure 3.7: The distribution of integration points on different polygonal elements, ’×’ de-
notes the location of the integration points for the sub-triangulation method and ’◦’ denotes
the location of the integration points for the SCCM combined with mid point quadrature
rule.
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• The sub-triangulation introduces a ‘mesh’ requirement (c.f. Section 2.4.5).

• Involves two level isoparametric mapping.

By employing the SCCM, the above two steps can be circumvented. By conformally map-

ping each part of the element intersected by the discontinuous surface, the ‘mesh’ require-

ment is suppressed. Figure 3.8 illustrates the above idea for the split and the tip element.

Conformal (same form or shape) mapping is an important technique used in complex anal-

ysis and has many applications in different physical solutions. Trukrov and Novak [46]

computed the effective elastic properties of materials with irregular shaped heterogeneities

using a numerical conformal mapping. Ishikawa and Kohno [21] have used the conformal

mapping to analyse the stress singularity at the corner of a rigid square inclusion in an in-

finite plate. Tiwary et al., [43] analysed the stress distribution in the microstructures having

arbitrary shaped heterogeneities using the numerical conformal mapping combined with

the Voronoi cell finite element method. In their work, the shape based stress functions were

computed by the Schwarz-Christoffel Conformal Mapping (SCCM). Markovic et al., [31]

used SCCM to determine the 2D magnetic field in a square magnetic circuit. By trans-

forming the pipe into a strip using SCCM, Fyrillas [17] optimized the conduction rate in

a solid slab embedded in a pipe of general cross-section. Elcart and Hu [16] used SCCM

combined with electrostatic measurements to detect surface and interior cracks. SCCM

techniques have been used to generate FE meshes in two-dimensional fracture mechanics

problems [18] andmultiple connected regions [26]. Wu et al., [50] reduced themixed bound-

ary value problem of interfacial crack between two elastic strips to the standard Riemann-

Hilberth problem using a conformal mapping technique. Barra et al., [2] used conformal

maps to study the geometrical characteristics of quasistatic fractures in brittle materials. In

this study, the conformal mapping will be used to integrate over arbitrary polygons and

over the enriched elements. A detailed discussion on the effectiveness and the robustness

is presented in Chapter 4.

3.2 Strain smoothing in FEM and XFEM

Stabilized Conformal Nodal Integration (SCNI) [7] was constituted to suppress the insta-

bilities arising in nodally integrated mesh-free methods by avoiding the computation of

the derivatives of the shape functions, which vanish at the nodes. Liu et al., [27] extended

the idea of SCNI to finite element approximations and named the resulting method the

Smoothed Finite Element Method (SFEM). In this section, after recalling the basics of strain

smoothing in the FEM, the basic theory behind the coupling of the SSM with partition of

unity enrichment is presented.

hare a class of problems that arise in the study of differential equations in the complex plane.
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crack

crack

(a)

(b)

SC mapping

SC mapping

SC mapping

Figure 3.8: Integration over an element with discontinuity (Solid line): (a) with kinked
discontinuity, representing the split element and (b) strong discontinuity, representing the
tip element. In the case of split element, each sub-polygon is mapped conformally onto the
unit disk and in case of the tip element, the resulting polygon is mapped conformally onto
the unit disk using Schwarz-Christoffel conformal mapping.
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3.2.1 Strain smoothing in the FEM

By incorporating the SSM into the FEM, Liu et al., have formulated a series of SFEMs named

as cell-based SFEM (CS-FEM) [6, 12, 27, 36], node-based SFEM (NS-FEM) [30], edge-based

SFEM (ES-FEM) [29], face-based SFEM (FS-FEM) [35] and alpha-FEM [28].

Since the inception of the SFEM in 2006, the convergence, the stability, the accuracy and

the computational complexity of this method was studied in [6, 27, 36]. The CS-FEM has

been applied to various problems in mechanics such as plates [37], shells [34], acoustic

problems [20, 52], nonlinear analysis [48], fluid-structure interactions [19] and heat transfer

analysis [22, 49] . Yet, to date, all work on the CS-FEM has been restricted to linear complete

bases and bi-linear shape functions. Some preliminary results on the extension of SSM to

higher order elements is given in Appendix C.

The smoothing allows to transform the volume integration into surface integration in case

of 3D and surface into contour integration in case of 2D by the divergence theoremi. It is

observed that when the SSM is applied to a linear triangular element, the CS-FEM yields

identical results to its FEM counterpart, irrespective of the number of smoothing cells. This

is true for any linear approximation (2 noded bar element, 4 noded tetrahedron element,

etc.,). For a bi-linear element, the solution of the SFEM differs from that of the FEM, be-

cause the gradient of the shape functions is not a constant. On the contrary, other smooth-

ing methods, such as, the ESFEM and the FSFEM are shown to improve the accuracy of

the triangular or tetrahedral elements [29, 35]. However, the bandwidth of the stiffness

matrix in case of the NS-FEM, ES-FEM and FS-FEM is found to be greater than the FEM,

while the band width of CS-FEM is the same as that of the FEM. Other advantages of strain

smoothing include a low sensitivity to mesh distortion and absence of volumetric locking.

These nice propertiesmotivated the study of the behaviour of strain smoothing for enriched

approximation (see Section 3.2.2) and [4, 5].

Description of the theory

In the SCNI, the strain field used to construct the stiffness matrix is written as the diver-

gence of a spatial average of the standard (compatible) strain field –i.e. symmetric gradient

of the displacement field. Elements are divided into subcells, as shown in Figures (3.9),

(3.10) and (3.11). Different numbers of smoothing cells per element confer the method with

different properties [6, 12, 27, 36]. The strain field ε̃hij , used to compute the stiffness matrix

is computed by a weighted average of the standard strain field εhij . At a point x
C
in an

element Ωh,

iIf F is a continuously differentiable vector field defined on a neighbourhood of V, then we have
∫

V
∇ ·

F dV =
∮

S

F · n dS, where V ⊂ R
n.
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σ1

σ2

σ4

σ3

Figure 3.9: Stress field in a smoothedfinite element. The stress is constant over each smooth-
ing cell, but discontinuous across cells. On the contrary, the displacement field is continuous
within an element. σi, i = 1, 2, 3, 4 are the stresses within each subcell.

Φ

Ω1

Ω2

Ω3

Ω4

Φ = 0

Φ = 0

Φ = 0

Φ =
1
Ac

Figure 3.10: The weight function or the smoothing function is defined for each subcell as
constant equal to the inverse of the area of the subcell and zero elsewhere. This permits
transforming the domain integral into a boundary integral over the boundary of the subcell.
If a single subcell is used, integration over the boundary of the finite element is recovered.
This figure shows the weight function Φ used for subcell Ω

C
.
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Ω4 Ω3

Ω1 Ω2

Ωh = Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4

K̃e =
4∑

C=1

B̃T
CDB̃CAC

B̃1 = 1

A1

∫
Γ1

nTNI(x) dΓ

n1

n4

Γ1

Ω1

n3

n2

Figure 3.11: Calculation of the smoothed discretized gradient operator. The integration is
performed along the boundary of each subcell. The smoothing cells are represented by
dashed lines, where n is the unit outward normal to the smoothing cell Ω

C
. The location of

the integration point is represented by a filled circle.
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ε̃hij(xC
) =

∫

Ωh

εhij(x)Φ(x− x
C
)dx, (3.13)

where Φ is a smoothing function that generally satisfies the following properties [53] (See

Figure 3.10):

Φ ≥ 0 and

∫

Ωh

Φ(x)dx = 1. (3.14)

One possible choice of Φ is given by:

Φ =
1

A
C

in Ω
C

and Φ = 0 elsewhere. (3.15)

where A
C
is the area of the subcell. To use Equation (3.13), the subcell containing the point

x
C
must first be located in order to compute the correct value of the weight function Φ. The

discretized strain field is computed, through the smoothed discretized gradient operator or

the smoothed strain-displacement operator, B̃, defined by (see Figure 3.11 for a schematic

representation of the construction):

ε̃
h(x

C
) = B̃

C
(x

C
)q (3.16)

where q are the unknown displacements coefficients defined at the nodes of the finite el-

ement, as usual. The smoothed element stiffness matrix for element e is computed by the

sum of the contributions of the subcells (Figure 3.11)j:

K̃e =

nc∑

C=1

∫

Ω
C

B̃T
C
DB̃

C
dΩ =

nc∑

C=1

B̃T
C
DB̃

C

∫

Ω
C

dΩ =

nc∑

C=1

B̃T
C
DB̃

C
A

C
(3.17)

where nc is the number of the smoothing cells of the element. The strain-displacement

matrix B̃
C
is constant over each Ω

C
and is of the following form:

B̃
C
=
[
B̃

C1
B̃

C2
B̃

C3
B̃

C4

]
(3.18)

where for all shape functions I ∈ {1, . . . , 4}, the 3× 2 submatrix B̃
CI

represents the contri-

bution to the strain displacement matrix associated with shape function I and cell C and

writes (see Figure 3.11),

∀I ∈ {1, 2, . . . , 4},∀C ∈ {1, 2, . . . nc}B̃
CI

=

∫

ΓC




nx 0

0 ny

ny nx


 (x)NI(x)dΓ (3.19)

jThe subcells Ω
C
form a partition of the element Ωh.
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or, since Equation (3.19) is computed on the boundary ofΩ
C
and oneGauß point is sufficient

for an exact integration (in the case of a bilinear approximation):

B̃
CI
(x

C
) =

1

A
C

nb∑

b=1




NI

(
xGb
)
nx 0

0 NI

(
xGb
)
ny

NI

(
xGb
)
ny NI

(
xGb
)
nx


l

C
b (3.20)

where n = (nx, ny) is the outward normal to the smoothing cell ΩC , nb is number of edges

of the subcell, xGb and lCb are the center point (Gauß point) and the length of ΓCb , respec-

tively. Figure 3.12 shows a possible subdivision of a quadrilateral element into subcells and

the location of the integration points. The general procedure for the SFEM consists of the

following steps:

Figure 3.12: SFEM: description of the subcells and the integration points. The boundary of
the subcell is denoted by dashed lines.

1. Discretize the problem into finite elements.

2. Create a displacement field through the construction of the shape functions. The dis-

placement approximation in case of the SFEM is identical to that of the FEM.

3. Construct the smoothed strain field over the elements. This is computed by integrat-

ing over the boundaries of the subcells.

4. Using the weak form of the governing differential equations, establish the discrete

linear algebraic system of equations.

5. Impose essential boundary conditions, which is exactly the same as in the FEM.

6. Solution methodologies and post-processing are the same as in the FEM.
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It can be seen that the only difference between the conventional FEM and the SFEM is in

the computation of the stiffness matrix. For SFEM, the need for an isoparametric mapping

is eliminated and a non-mapped shape function is used to compute the smoothed stiffness

matrix. To compute the smoothed stiffness matrix, the underlying FE mesh is sub-divided

into non-overlapping smoothing domains. The smoothing domains can be quadrilateral or

triangular in shape (see Figure 3.13).

Ω2

Ω1

Ω4

Ω3 Ω3

Ω1

Ω2

Ω4

(b)(a)

Figure 3.13: Division of a quadrilateral element into smoothing domains: (a) quadrilat-
eral smoothing cells and (b) triangular smoothing cells, where Ωi(i = 1, 2, 3, 4) are the
smoothing cells. The property of the element depends on the number of smoothing
cells [6, 12, 27, 36].

Basic properties of the SFEM

The following are a few properties of the cell based SFEM:

• A priori error bounds were derived for linear triangular elements [51].

• The resulting matrix is symmetric positive definite and sparse.

• No isoparametric mapping is required, since integration is performed on the bound-

ary of the smoothing cells. In the case of bilinear shape functions, one integration

point on each edge is sufficient.

• The shape functions need to be computed along the edges of the smoothing cells. This

is done by simple linear interpolation of the underlying element shape functions [6,

36]. Shape functions can also be computed in the physical space by using Wachspress

interpolants [6, 47]. This lack of isoparametric mapping confers SFEMswith a relative

insentivity to mesh distortion.
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3.2. STRAIN SMOOTHING IN FEM AND XFEM

• If the shape functions of the underlying element are linear (two-noded bar, three-

noded triangle, four-noded tetrahedron), SFEM coincides exactly with FEM [27].

• The one-subcell version of the four-noded quadrilateral (Q4) SFEM is equivalent to an

under integratedQ4 [27] and to a quasi-equilibrium element. It is therefore insensitive

to locking, but exhibits zero-energymodes, while improving the accuracy of the stress

field.

• In the limit where the number of subcells goes to infinity, the SFEM tends toward the

standard displacement-based FEM.

3.2.2 Strain smoothing in the XFEM

In this section, the strain smoothing discussed above is combinedwith the enrichment in the

FEM presented in Chapter 2 to construct the Smoothed eXtended Finite Element Method

(SmXFEM). The SmXFEM uses a similar approximation for the displacement field as the

XFEM, given by Equation (2.23) (c.f Chapter 2.4 Section 2.4). As in the SFEM, subcells are

employed to smooth the strain field and calculate the stiffness matrix. All elements are

divided into a number of subcells, which can vary from element to element. Typically,

elements that are split by a discontinuity (weak or strong) will be divided into only two

subcells, one on either side of the discontinuity. Elements in which non-polynomial ap-

proximations are present are divided into a larger number of subcells, similar to the case of

the standard XFEM.

The Heaviside function for the SmXFEM is as follows:

H(x) =

{
+1 if the center of the subcell is above the crack face,

−1 if the center of the subcell is below the crack face.
(3.21)

Given a point x, the center of the subcell, we name x∗ the closest point on the crack to

x (Figure 3.14). At x∗, construct the tangential vector, es and the normal vector en to the

curve. The Heaviside function is then given by the sign of the scalar product (x− x∗) · en.

Remark: As in the XFEM, apart from standard elements, four types of elements should be

considered (c.f. Chapter 2, Section 2.4, Figure 2.5).

Computation of the stiffness matrix

Let us now derive the enriched stiffness matrix of the SmXFEM, assuming all nodes in

Nenr are enriched with function ̺. Denote by εh = εhij the discretized enriched strain field

deduced by differentiation of Equation (2.23), given by:
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x′

H = +1

H = -1

y′

(a)

en

es

S x

Center of the subcell

x∗

(b)

x′

y′

r1

x2

θ1

θ2
r2

x1

(c)

Figure 3.14: (a) The value of the Heaviside function. The solid line represents the crack or
discontinuity in general. The circled nodes are enriched with the Heaviside function and
the squared nodes are enriched with the near-tip asymptotic fields. The Heaviside function
takes the value +1 above the crack and −1 below the crack. The local co-ordinate (x′, y′) is
centered at the crack tip; (b) Normal and tangential coordinates for the crack and (c) Local
polar coordinates (r, θ) at the crack tip.
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3.2. STRAIN SMOOTHING IN FEM AND XFEM

ε
h(x) =

∑

I∈Nfem

BIfem(x)qI +
∑

J∈Nenr

BJenr(x)aJ = [Bfem|Benr][q]

ε
h(x) = [Bxfem][q] (3.22)

where N
fem is the set of all nodes in the finite element mesh, Nenr is the set of nodes that

are enriched with Heaviside function and near tip asymptotic fields. The Bxfem matrix in

Equation (3.22) includes two terms Bfem and Benr corresponding to the standard nodes

and the enriched nodes. The Bfem term contains the first derivatives of the standard finite

element shape functions:

Bfem =




∂NI

∂x 0

0 ∂NI

∂y

∂NI

∂y
∂NI

∂x


 . (3.23)

TheBenr term is composed of the first derivatives of the product of the finite element shape

functions with the enrichment functions:

Benr =




∂
∂x [NJ (̺(x)− ̺(xJ))] 0

0 ∂
∂y [NJ(̺(x) − ̺(xJ))]

∂
∂y [NJ(̺(x) − ̺(xJ))]

∂
∂x [NJ(̺(x) − ̺(xJ))]



. (3.24)

The smoothed strain field at an arbitrary point xC is defined as for the standard SFEM:

ε̃
h
ij(xC) =

∫

Ω
εhij(x)Φ(x − xC) dx, (3.25)

where Φ is a smoothing function defined exactly as in the SFEM:

Φ ≥ 0 and

∫

Ω
Φ(x) dx = 1,

Φ (x− xC) =

{
1/A

C
, x ∈ Ω

C

0, x /∈ ΩC

. (3.26)

Substituting Equation (3.22) into Equation (3.25) and using Equations (3.23), (3.24) and

(3.26), we obtain:

ε̃
h(x

C
) =

∫

Ω
Bxfemq Φ(x− x

C
) dx = B̃xfemq , (3.27)
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3.2. STRAIN SMOOTHING IN FEM AND XFEM

where the smoothed matrix B̃xfem in Equation (3.27) is defined by:

B̃xfem =
1

A
C

∫

Ω
C

Bxfem(x) dx. (3.28)

The B̃xfem in Equation (3.28) includes two terms: B̃fem and B̃enr corresponding to the stan-

dard nodes and enriched nodes. The B̃fem term is given by:

B̃Ifem =
1

A
C

∫

Ω
C




∂NI

∂x 0

0 ∂NI

∂y

∂NI

∂y
∂NI

∂x


 dΩ. (3.29)

By using the divergence theorem and noting n = (nx, ny) the outward normal to the

smoothing cell Ω
C
and Γ

C
, Equation (3.29) can be written as:

B̃Ifem =
1

AC

∫

Γ
C




nxNI 0

0 nyNI

nyNI nxNI


 dΓ. (3.30)

Performing the same operations for B̃enr, we obtain:

B̃Jenr =
1

AC

∫

Ω
C




∂
∂x [NJ(̺(x)− ̺(xJ ))] 0

0 ∂
∂y [NJ (̺(x)− ̺(xJ))]

∂
∂y [NJ(̺(x)− ̺(xJ ))]

∂
∂x [NJ(̺(x)− ̺(xJ ))]


 dΩ. (3.31)

Using the divergence theorem to transform area integration into line integration, we obtain:

B̃Jenr =
1

A
C

∫

Γ
C




nx[NJ(̺(x) − ̺(xJ))] 0

0 ny[NJ(̺(x) − ̺(xJ))]

ny[NJ(̺(x)− ̺(xJ ))] nx[NJ (ψ(x) − ψ(xJ)]


 dΓ. (3.32)

The smoothed enriched stiffness matrix for subcell C , K̃C
xfem is computed by

K̃C
xfem =

∫

Ω
C

B̃T
C
DB̃

C︸ ︷︷ ︸
=constant

dΩ = B̃T
C
DB̃

C
A

C
(3.33)

where B̃C ≡ B̃xfem and A
C
is the area of the subcell. The smoothed enriched element

stiffness matrix K̃e
xfem is the sum of the K̃C

xfem, for all subcells, C

K̃e =

nc∑

C=1

B̃T
C
DB̃

C

∫

Ω
C

dΩ =

nc∑

C=1

B̃T
C
DB̃

C
A

C
(3.34)
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where C ∈ {1, 2, · · · nc} is the number of subcell Ω
C
, A

C
=
∫
Ω

C
dΩ is the area of the subcell

Ω
C
. Note that in Equation (3.34), the stiffness matrix is rewritten as the sum of the contri-

butions from the individual subcell, because all the entries in matrix B̃
C
are constants over

each subcell Ω
C
- each of these entries are line integrals calculated along the boundaries of

the subcells.

Remark: It is clear from Equations (3.32) and (3.34) that the derivatives of the shape func-

tions are not needed to compute the stiffness matrix. Intuitively, this leads to believe that

strain smoothing could find applications where higher order derivatives are needed (e.g.

gradient elasticity). Moreover, when
√
r enrichment is used, the singular terms normally

present in the stiffness matrix integrand (c.f Chapter 2.4 Section 2.4) disappear.

Numerical Integration

The XFEM allows the mesh to be independent of the geometry. Hence, special care has to

be taken while numerically integrating over the elements intersected by the discontinuity

(c.f. Chapter 2, Section 2.4.5). For the elements that are enriched, the standard Gaussian

quadrature is not appropriate and the integration scheme has to be adapted to properly

integrate the enriched terms. Figure 3.15 shows the process of numerical integration in the

conventional XFEM and in case of the strain smoothing. To locate the integration point in

the tip elements, the following procedure is adopted:

Figure 3.15: Integration in an element with a straight discontinuity (solid line). (left) Stan-
dard decomposition of an element for integration of a discontinuous weak form for XFEM:
Gauß points are introduced within each (dotted lines) triangle to ensure proper integration
of the discontinuous displacement field. (right) Absence of decomposition allowed by the
strain smoothing technique.
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3.3. SUMMARY

The co-ordinates of the Gauß points on the boundary of the subcells for tip elements are

computed in the following way:

1. The Newton-Raphsonmethod is used to determine the position of the crack tip in the

natural co-ordinate system.

2. For each Gauß point along the edge of the subcell, the natural co-ordinate η′ and its

corresponding weightW are determined in one dimension.

3. This one-dimensional co-ordinate is then transformed into the local two-dimensional

natural co-ordinate system (ξ1, η1) on the subcell edge.

4. Depending on the position of the subcell edge in this local natural co-ordinate system,

the values of (ξ, η) in the two-dimensional natural co-ordinate system are determined

based on the triangular element.

Figure 3.16 illustrates the necessary steps to determine the co-ordinates of the Gauß points

on the boundary of the subcells.

3.3 Summary

In this chapter, two new numerical integration techniques were presented. One method is

based on the conformal mapping of the elements intersected by the discontinuity surface

onto a unit disk and then using the cubature rule on the unit disk to evaluate the terms

in the stiffness matrix. The other method, coined as the SmXFEM, relies on smoothing the

compatible strain field. Both methods aim at improving the integration in the conventional

XFEM. Some of the key features of the proposed techniques are listed below.

SCCM By conformally mapping the polygonal sub-domain obtained by the intersection

of the discontinuity with the element onto a unit disk, the need for sub-triangulation is

eliminated. The positivity of the Jacobian is always ensured. Additionally, quadrature rules

of any order can be easily generated. A toolbox (in FORTRAN and MATLAB) to carry out

the conformal mapping is available as an open source [14, 15] and can be easily combined

with any existing FE code.

SmXFEM The method is a result of combining the strain smoothing technique and the

XFEM. The SmXFEM shares properties both with the SFEM and the XFEM. By using the

divergence theorem, the derivatives of the shape and the enrichment functions are replaced

by products with normals, which suppresses the need to compute and integrate singular
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y

x

crack tip

Crack

(1,1)

(1,-1)(-1,-1)

(-1,1)

η

ξ

η1

ξ1

(0,1) (1,0)

(0,0)

η′ = -1

η′ = 0

η′ = 1

Figure 3.16: Necessary steps in computing the Gauß points along the boundaries of a sub-
cell. The solid line denotes the crack face.
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3.3. SUMMARY

functions usually appearing in the stiffness matrix in linear elastic fracture mechanics ap-

plications of the XFEM.Additionally, since the integration is performed along the boundary

of the finite elements or the smoothing cells, the need for an isoparametric mapping is elim-

inated. In this method, the weak form is integrated on the boundary of the smoothing cells,

forming a partition of the element. For elements split by a weak or strong discontinuity,

one subcell above and below the interface are sufficient, and thus lead to the suppression of

integration using triangular subcells. The formulation as presented here is restricted to the

case of bi-linear quadrilateral element.

The efficiency and accuracy of the proposedmethods are discussed in detail with numerical

examples involving weak and strong discontinuities in Chapter 4.
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4
Enriched FEM to model strong and weak

discontinuities

In this chapter, the application of the XFEM and the SmXFEM to problems in small dis-

placements, two-dimensional elastostatics, in the absence of body forces, involving weak

discontinuities (e.g., material interfaces) and strong discontinuities, (e.g., plate with a crack)

is presented. The numerical integration over the elements intersected by the discontinuity

is done with the conventional sub-triangulation method, the SCCM and the SmXFEM (c.f.

Chapter 3). The relative merits of the different numerical integration techniques are dis-

cussed. In all the numerical examples, a bi-linear quadrilateral element with 4 nodes and

with two degrees of freedom per node is used. The numerical results from the two new

techniques are compared with the conventional XFEM and with the analytical solutions

wherever available.

4.1 Numerical integration over the enriched elements

In the following examples, the sub-triangulation method (denoted as Std. XFEM), the

SCCM (denoted as XFEM + SC Map) and the SmXFEM are employed to numerically in-

tegrate over the elements intersected by the discontinuities. The following conventions are

used for the purpose of numerical integration, unless otherwise mentioned.

XFEM with SCCM Each subdomain of the intersected element is conformally mapped

onto a unit disk and the cubature rule on a unit disk is used. The SCCM is applied only to

the enriched elements. Figure 3.8 shows the mapping of the split element and the element

containing the crack tip onto a unit disk using the SCCM. For standard elements, a 2× 2

integration rule is used.

101



4.2. NUMERICAL EXAMPLES

Std. XFEM The conventional sub-triangulation is employed to numerically evaluate the

terms in the stiffness matrix.

SmXFEM The elements intersected by the discontinuities are subdivided into subcells. In

this study, for weak discontinuity problems, three variants of subcells are used:

• One subcell above and below the interface (denoted by SmXFEM 1 subcell).

• Two subcells above and below the interface (denoted by SmXFEM 2 subcell).

• Four subcells above and below the interface (denoted by SmXFEM 4 subcell).

Figures 4.1 and 4.2, show a schematic representation of the subdivision of an element inter-

sected by a discontinuity in case of the split element and the element containing the crack

tip, respectively. The integration rules used for the current study are given in Table 4.1

the interface
the interface the interfaceOne subcell above and below

Four subcells above and belowTwo subcells above and below

Figure 4.1: SmXFEM: A schematic partition of split element into subcells. The solid line
represents the discontinuity and the dashed lines denote the boundaries of the subcell (c.f
Chapter 3 Section 3.2.2).

4.2 Numerical Examples

The error in the displacement norm is measured in terms of ||L2|| norm and is defined as:

||u||L2 =
√

(uh − uex) · (uh − uex) (4.1)
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Six subcellsOne subcell

Figure 4.2: SmXFEM: A schematic partition of elements intersected by a discontinuity into
subcells (tip element). The solid line represents the discontinuity and the dashed lines de-
note the boundaries of the subcell (c.f Chapter 3 Section 3.2.2).

Table 4.1: Integration rules for enriched and non-enriched elements. In the SmXFEM trian-
gular subcells with four Gauß points along each edge of the subcell are used.

Element Type Std. XFEM XFEM + SC Map SmXFEM
(Gauß points) (Gauß points) (Subcells)

Non-enriched element 4 4 4
Tip element 13 per triangle 80 1, 6, 12
Tip blending element 16 16 4
Split element 3 per triangle 6 2
Split blending element 4 4 4
Split-Tip blending element 4 per triangle 8 2
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The relative error in the energy norm is defined by:

||u||e =
√∫

Ω
(εh − εex) : D : (εh − εex) dΩ (4.2)

where uex and uh in Equations (4.1) and (4.2) are the exact and the numerical displacement

solution, respectively. In this study, the domain integral method [18, 19], in conjunction

with the interaction energy integrals is used to determine the mixed-mode stress intensity

factors (SIFs). A detailed description is given in Appendix D. In this chapter, the following

classes of problems are considered:

• Weak discontinuities: multi-material problems.

• Strong discontinuities and singularities: linear elastic fracture mechanics (LEFM).

• A combination of the above problems: crack-inclusion interaction in an elastic medium.

• Crack growth around an inclusion.

4.2.1 Weak Discontinuity

One-dimensional: Bi-material problem

As a first example, consider a 1D bi-material bar in tension (see Figure 4.3). The problem

is solved with the SmXFEM and a step-by-step solution procedure is presented. The XFEM

solution to this problem is given in Chapter 2, Section 2.5.1. The left edge of the bar is

clamped and a unit force is prescribed at the right end. The total length of the bar is L(=

L1 + L2) = 1. The material interface is assumed to be at x = xb = 0.5. Young’s moduli

for x < xb and x > xb are E1 = 1 and E2 = 2, respectively. For the current study, a 1D

two-noded element with each node having one degree of freedom is considered.

SmXFEM solution The displacement approximation for the SmXFEM is identical to that

of the XFEM. For a two-noded element, the XFEM/SmXFEM displacement approximation

at a point x ∈ [0, 1] writes:

u(x) = N1(x)u1 +N2(x)u2 +N3(x)a1 +N4(x)a2 (4.3)

where u1, u2 are the standard degrees of freedom and a1, a2 are the enriched degrees of

freedom associated with nodes 1 and 2, respectively. The enrichment functions, N3 and N4

are given by:

N3(x) = N1(x) (|φb(x)| − |φb(x1)|) , N4(x) = N2(x) (|φb(x)| − |φb(x2)|) (4.4)
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L/2 L/2

E1 E2

F

x

1 2

Nodes

(a)

(b) Interface

Figure 4.3: Bi-material bar: (a) geometry and boundary conditions and (b) finite element.

where, φb(x) = x− xb is the level set function in 1D. One of the main ideas in the SFEM or

the SmXFEM, is to change the boundary integral to a line integral by the using the diver-

gence theorem. In 1D, this reduces to evaluating the function at the domain boundary. The

influence of the number of subcells on the solution of the bi-material problem is studied

next.

One subcell In this case, the entire domain is treated with only one subcell. The mate-

rial discontinuity is embedded within the subcell. The corresponding strain-displacement

matrix is given by:

B̃ =
1

L

[
N1 N2 N3 N4

]
|x=Lx=0 , (4.5)

where, in Equation (4.5) the shape functions are evaluated at the domain boundary. The

strain-displacement matrix for one subcell is given by:

B̃ =
1

L

[
−1 1 0 0

]
. (4.6)

It is clear that the contribution from the enriched shape functions to the strain-displacement

matrix is ‘zero’, because the enriched shape functions are ‘zero’ on the boundary of the

subcell. This leads to a singular stiffness matrix, K̃.

Two subcells Now the bi-material bar is split into two subcells, with the subcell boundary

conforming to the material interface. The strain displacement matrix for each subcell is

given by:
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B̃1 =
1

L

[
−1 1 −L/2 −L/2

]
, along L1

B̃2 =
1

L

[
−1 1 L/2 L/2

]
, along L2, (4.7)

where, L1 and L2 are the lengths of the corresponding subcells. It can be easily verified that

the above strain-displacement matrices lead to a singular stiffness matrix, K̃. The stiffness

matrix is given by:

K̃ =




1.50 −1.50 −0.25 −0.25

−1.50 1.50 0.25 0.25

−0.25 0.25 0.375 0.375

−0.25 0.25 0.375 0.375



. (4.8)

Next, instead of subdividing into an ‘odd’ number of subcells, the domain is divided into

an ‘even’ number of subcells and such that the subcell boundaries conform to the material

interface. With an odd number of subcells, the analytical integration of the strain displace-

ment matrix is not a difficulty, but assigning the proper material property to the subcell

is not straight forward. This can be handled by using the numerical integration. This is

implemented for higher dimensions.

Four subcells Here, the bi-material bar is split into four subcells. The strain-displacement

matrix for each of the subcell is computed as outlined earlier. The assembled equations are:




1.50 −1.50 −0.25 −0.25

−1.50 1.50 0.25 0.25

−0.25 0.25 0.468 0.281

−0.25 0.25 0.281 0.468








u1

u2

a1

a2





=





F1

F2

0

0





(4.9)

with the boundary conditions u1 = 0 and F2 = 1, the solution is u2 = 0.75, a1 = −0.25, a2 =

−0.25.

Remark From the above test cases, it is clear that there is a minimum number of subcells

required. And the following can be concluded:

• One subcell and two subcells lead to a singular K̃ matrix.

• Four subcells :

– Lead to a proper K̃ matrix, i.e., avoid spurious zero energy modes.
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– The solution is identical to the analytical solution.

– The XFEM stiffness matrix, K and the SmXFEM stiffness matrix, K̃ are not the

same, but both lead to identical solutions.

• Increasing the number of subcells (beyond 2) and keeping this number evenly dis-

tributed in each subdomain has no effect on the solution.

Two-dimensional: Bi-material problem

Next, consider a one-dimensional bi-material bar discretized with 2D quadrilateral ele-

ments. A two-dimensional square domain Ω = Ω1 ∪ Ω2 of length L = 2 with the material

interface Γ located at b is considered for this study, as shown in Figure 4.4. The Young’s

modulus and Poisson’s ratio in Ω1 = [−1, b] × [−1, 1] are E1 = 1, ν = 0, and that in

Ω2 = [b, 1] × [−1, 1] are E2 = 10, ν = 0. The exact displacement solution in the absence

of body forces is given in Appendix A. The left end of the bar is clamped and a unit force is

prescribed at the right end.

Ω2

b

Γ

Ω1

x

y

F = 1

Figure 4.4: Bi-material bar problem. The material interface is located at a distance b from
the left end.

Numerical results are computed on a regular 11 × 11 finite element mesh with six different

locations of the interface: b = 0, 0.01, 0.05, 0.1, 0.15 and 0.19. From Table 4.2 it can be seen

that the smoothed XFEM and the XFEM with SCCM both yield comparable results to the

conventional XFEM.

Bi-material boundary value problem - elastic circular inhomogeneity

In this example, the enriched finite element solutions for the elastostatic response of a cir-

cular material inhomogeneity under radially symmetric loading, as shown in Figure 4.5 is
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Table 4.2: Relative error in the energy norm for the bi-material bar problem for a regular 11
× 11 finite element mesh and material interface parallel to the mesh lines.

Interface location Std. XFEM XFEM+SCCM SmXFEM

b 1 subcell 2 subcell 4 subcell

0.00 8.7 × 10−8 8.7 × 10−8 3.9 × 10−8 8.3 × 10−8 3.3 × 10−8

0.01 4.8 × 10−8 4.8 × 10−8 1.9 × 10−8 2.9 × 10−8 3.8 × 10−8

0.05 1.4 × 10−8 1.4 × 10−8 9.6 × 10−8 7.6 × 10−8 1.1 × 10−8

0.10 2.3 × 10−8 2.3 × 10−8 6.8 × 10−8 7.5 × 10−8 4.6 × 10−8

0.15 7.1 × 10−8 7.1 × 10−8 5.4 × 10−8 4.8 × 10−8 6.2 × 10−8

0.19 3.9 × 10−8 3.9 × 10−8 7.9 × 10−8 1.4 × 10−8 9.7 × 10−8

examined within the framework of the XFEM and the SmXFEM. Plane strain conditions are

assumed. Thematerial properties are constant within each domain, Ω1 andΩ2, but there is a

material discontinuity across the interface, Γ1(r = a). The Lamé constants in Ω1 and Ω2 are:

λ1 = µ1 = 0.4 and λ2 =5.7692, µ2 =3.8461, respectively. These correspond toE1 =1, ν =0.25

and E2 =10, ν2 =0.3. A linear displacement field: u1 = x1, u2 = x2 (ur = r, uθ = 0) on the

boundary Γ2(r = b) is imposed [9, 12, 22]. The governing equations, the exact displacement

solutions, the strain and the stress fields are given in Appendix A. In this study, the prob-

lem due to partially enriched elements are alleviated by using the corrected or weighted

XFEM [12] (c.f Section 2.4.5).

For the present numerical study, a square domain of size L × L with L = 2 is considered.

Along the outer boundary, closed-form displacements are imposed. Meshes with character-

istic element sizes of h={0.2, 0.1, 0.05, 0.025} are used and the results are shown in Figures 4.6

and 4.7. These figures show the decrease in the error in the displacement and the energy

for the following different cases:

• eXtendedFinite element solutionwith sub-domain integration (denoted as Std. XFEM)

with blending correction [12].

• eXtended Finite element solution with SCCM (denoted as XFEM with SCCM) with

blending correction.

• Smoothed XFEM solution (with blending correction) with 1,2 and 4 subcells above

and below the material interface (see Figure 4.1) (denoted as SmXFEM 1 subcell,

SmXFEM 2 subcells and SmXFEM 4 subcells)(see Figure 4.1).

From Figures 4.6 and 4.7, it may be seen that the convergence rate is not constant and both

the Std. XFEM and the XFEM with SCCM obtains an average convergence rate of 1.22 in
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λ2, µ2

Γ1

Γ2

t1 = t2

λ1, µ1

u1 = u2

on Γ1

x2

Ω2

Ω1
x1

b

a

Figure 4.5: Bi-material boundary value problem
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Std. XFEM (m=1.79)

XFEM + SC Map (m=1.79)

SmXFEM 1 subcell (m=1.69)

SmXFEM 2 subcell (m=1.79)

SmXFEM 4 subcell (m=1.71)

Figure 4.6: Bi-material circular inhomogeneity: the rate of convergence. The error is mea-
sured in displacement L2 norm. Note that the behaviour of the XFEM + SC Map is approx-
imately identical to the conventional XFEM.m is the average slope.
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Figure 4.7: The convergence rate in the energy norm for the bi-material circular inhomo-
geneity problem. m is the average slope.

the energy norm and 1.79 in L2. The SmXFEM with one, two and four subcells obtains an

average convergence rate of 1.32, 1.31 and 1.26 in the energy norm and 1.69, 1.79 and 1.71

in L2, respectively. The number of subcells does not have a significant influence on the

average convergence rate. Based on the above two examples on weak discontinuities, it can

be concluded that the behaviour of the SSM is very close to that of the conventional XFEM.

On the other hand, the XFEMwith SCCM yields identical results to the conventional XFEM.

The main advantage of the strain smoothing and the SCCM is that sub-triangulation of the

elements intersected by the discontinuity is eliminated.

4.2.2 Strong discontinuities

Infinite plate with a center crack under tension

As a first example, let us consider an infinite plate containing a straight crack of length a

and loaded by a remote uniform stress field σ, as shown in Figure 4.8. Along ABCD, the

closed-form near-tip displacements are imposed. The closed-form stress fields in terms of

polar coordinates in a reference frame (r, θ) centered at the crack tip are given in Appendix

A. All simulations are performed with a = 100 mm and σ = 104 N/mm2 on a square mesh

with sides of length 10 mm.

Before illustrating the efficiency and the accuracy of the XFEMwith SCCM and the SmXFEM,

the influence of the following parameters on the numerically computed SIF is studied:
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Figure 4.8: Infinite plate with a center crack under remote tension: geometry and loads.

• the number of integration points in the tip element in case of the XFEMwith SCCM ;

• the number of integration points along each edge of the subcell and the number of

subcells in the tip element in case of the SmXFEM.

For other elements, the integration rule given in Table 4.1 is used. A structured quadrilateral

mesh (60 × 60) is used for the study. The number of integration points and the number of

subcells are varied until the difference between two consecutive computations is less than

a specified tolerance.

XFEMwith SCCM: The convergence of the numerical SIF with the number of integration

points in the tip element is shown in Figure 4.9. It is seen that with the increase in the

number of integration points, the SIF reaches a constant value beyond 60 integration points.

In this study, 80 integration points for the tip element are used (see Table 4.1).

SmXFEM: Figure 4.10 shows the influence of the number of integration points and the

number of subcells on the numerical SIF. It can be seen that increasing the number of in-

tegration points beyond 2, along each edge of the subcell has very little influence on the

numerical SIF, whereas, increasing the number of subcells in the tip element, increases the

numerical SIF. In this example, the accuracy of the SmXFEM is studied for different number

of subcells in the tip element, for example, 1, 2 and 6 subcells (see Table 4.1).

The rate of convergence of the relative error in the displacement (L2) norm and the rel-

ative error in the SIF is shown in Figure 4.11 for the two numerical integration methods

proposed in Chapter 3, along with the XFEM with sub-triangulation. It is seen that for

the same number of integration points, the XFEM with SCCM outperforms (although only
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Figure 4.9: Griffith problem: the convergence of the numerical SIF with the number of
integration points in the tip element. A structured quadrilateral mesh (60 × 60) is used.
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Figure 4.10: Griffith problem: the influence of the number of subcells in the tip element
and the number of integration points along each edge of the subcell on the numerical stress
intensity factor. Four subcells are used for standard elements and one subcell above and
below the crack face is used for the split elements.
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Figure 4.11: Infinite plate under far field tension: Convergence results in L2 and in the SIF.
The rate of convergence is also given in the figure.
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slightly) the conventional XFEM. The SmXFEM on the other hand, leads to slightly supe-

rior convergence rates, the error in the solution is greater than its XFEM counterpart. It

can also be observed that with an increase in the number of subcells in the tip element, the

error in the solution increases. But with decreasing mesh size, both techniques of numerical

integration, viz., SmXFEM and XFEM with SCCM, approach the analytical solution.

Examining Figure 4.11 shows that the convergence rates in the SIFs and in the displacement

norm (L2) are suboptimal for the XFEM with standard integration, the XFEM with SCCM

and the SmXFEM. This is because in this study only the tip element is enriched (topological

enrichment) [2, 14, 24], which asymptotically reduces the XFEM approximation space to the

standard FEM approximation space, this limits the optimal convergence rate to 0.5 in the

presence of a square root singularity.

Themain idea behind the strain smoothing is towrite the strain field as a non-local weighted

average of the compatible strain field. When strain smoothing is employed to smooth func-

tions, the method outperforms the conventional FEM [5, 10, 16, 17]. In case of the weak

discontinuity problem, the SmXFEM performs at least as well as the conventional XFEM.

When applied to the functions of the form r
1
λ , λ > 1, the SSM eliminates the singularity

by the use of the divergence theorem and the choice of the weighting function. To under-

stand the influence of the enrichment functions of the form rλ sin(λθ), a similar problem

(to the above) is solved without these enrichment functions. In this case, the discontinu-

ity cuts through the element and the crack tip falls on the element edge (see Figure 4.12).

The elements that are cut entirely by the crack faces are identified as split elements and

Heaviside enrichment is used to capture the jump across the crack faces. One subcell above

and below the crack face are used for the split elements. For the tip element, the number

of subcells is varied, for example, in this study, 1, 6 and 12 subcells are used. The con-

vergence of the relative error in the displacement norm and the energy norm is shown in

Figures 4.13 and 4.14. It can be seen that in general, the SmXFEM very slightly outperforms

the conventional XFEM. Both methods with vanishing mesh size, converge to the analyti-

cal solution. It can also be observed that, with the increase in the number of subcells, the

SmXFEM approaches the conventional XFEM solution, as seen in case of the SFEMwithout

enrichment [5, 10, 16, 17] (see Figures 4.13 and 4.14).

From the above example, it can be seen that some of the basic properties of the SFEMa

(c.f. Section 3.2) are recovered when only discontinuous (weakly or strongly) enrichment is

used. The main advantage is that sub-triangulation of the elements intersected by the dis-

continuity is eliminated and for the elements that are completely cut by the crack faces, one

subcell above and below is sufficient. To make use of the salient features of the SmXFEM,

the SmXFEM is combinedwith the SCCM and the resulting technique is denoted as SmXFEM

with SCCM. For the rest of this study, the strain smoothing is performed over the regions

afor example, by increasing the number of subcells, the FEM solution is recovered.
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Line of discontinuity

Split Element

Tip Element

Figure 4.12: Domain discretized with finite elements. The red line denotes the crack face,
the ’circled’ nodes are enriched with Heaviside function. No near-tip asymptotic fields are
used.

which are not enriched with asymptotic functions and the following convention is used for

the purpose of numerical integration, unless stated otherwise:

• Split elements: SmXFEM, with one subcell above and below the crack face.

• Tip element: XFEM with SCCM.

• Tip-blending elements: standard XFEM.

• Split-blending elements: standard XFEM.

• Standard elements: SFEMwith four subcells [17].

Edge crack under tension

In the next example, consider a plate of dimension 1× 2, subjected to a tensile load, σ = 1.

The geometry, loading and boundary conditions are shown in Figure 4.15. The reference

mode I SIF is given by [1, 7]:

KI = F
( a
W

)
σ
√
πa (4.10)

where a is the crack half-length,W is the plate width, L is the length of the plate and F ( aW )

is an empirical function given as (For ( aW ) ≤ 0.6)

F
( a
W

)
= 1.12 − 0.231

( a
W

)
+ 10.55

( a

W

)2
− 21.72

( a

W

)3
+ 30.39

( a
W

)4
(4.11)
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Figure 4.13: Infinite plate under far field tension: Convergence results for the relative error
in the displacement norm (L2) without the near-tip asymptotic functions: (a) the rate of
convergence and (b) a zoomed in view. Note that as the number of subcells is increased, the
strain smoothing approaches the XFEM solution. The rate of convergence (m) is also given
in the figure.
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Figure 4.14: Infinite plate under far field tension: Convergence results for the relative error
in the SIF without the near-tip asymptotic functions: (a) the rate of convergence and (b) a
zoomed in view. The rate of convergence (m) is also given in the figure.
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Figure 4.15: Plate with an edge crack under tension.

The convergence of the mode I SIF with mesh size and the rate of convergence of the SIF

for a plate with an edge crack is shown in Figure 4.16. It is seen that with decreasing mesh

size, both methods approach the analytical solution. Also, the proposed method performs

slightly better than the standard XFEM with sub-triangulation.

In the above two examples, the background FE mesh is made up of regular quadrilateral

elements. The numerical integration of the stiffness matrix over regular quadrilateral ele-

ments is not a difficult task. The real challenge is when the background mesh is made up of

polygons or when the crack faces are irregular, i.e., when the crack faces cut the elements in

such a way that at least one of the sub-domains, created by the intersection of the geometry

with the mesh, is a polygon with more than 4 edges. To demonstrate the usefulness of the

proposed integration technique, let us consider the problem of an inclined crack in tension

with bi-linear quadrilateral element as background FE mesh. In the forthcoming examples,

the results are presented only for the SmXFEMwith SCCM.

Inclined crack in tension

Consider a plate with an angled crack subjected to a far field uni-axial stress field, σ (see

Figure 4.17). In this example, mode I and mode II SIFs, KI and KII , respectively, are ob-

tained as a function of the crack angle β. For the loads shown, the analytical stress intensity

factors are given by [20]:
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Figure 4.16: Edge crack problem: the convergence of the numerical stress intensity factor to
the analytical stress intensity factor and the convergence rate.
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KI = σ
√
πa cos β cos β, KII = σ

√
πa cos β sin β. (4.12)

β

σ

σ

W

W

2a

Figure 4.17: Inclined crack in tension.

The influence of the crack angle, β on the SIFs is shown in Figure 4.18. A structured mesh

(100×100) is used for the study. For crack angles, 0◦ < β < 90◦, the crack face intersects the

elements in such a way that one region of the split elements (either above or below the crack

face) is a polygon. It is seen from Figure 4.18 that the numerical results from the proposed

techniques are comparable with the analytical solution.

Multiple cracks in tension

In the next example, consider a plate with two cracks. The geometry and the boundary

conditions of the problem are shown in Figure 4.19. The material properties are: Young’s

modulus E = 3× 107 N/mm2 and Poisson’s ratio, ν = 0.3. A mesh size of 72× 144 is used

for the current study with crack size, 2a1 = 0.2. The length of the other crack 2a2 is varied.

Figure 4.20 shows the variation of the mode I SIF for differentHx/Vy ratios and for different

ratio of the crack lengthsb with θ1 = 0 and θ2 = 0, where θ1 and θ2 are the angles subtended

bcrack length ratio = 2a2

2a1
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Figure 4.18: Variation of stress intensity factors KI andKII with crack angle, β.

by the crack faces with the horizontal (see Figure 4.19). The normalized mode I SIFc is

plotted for the point A in Figure 4.19. This is done to non-dimensionalize the results. Also,

the value ofKIanalytical is taken as the value for a plate with a center crack given by:

KI = σ

√
πa sec

(πa
2w

)
(4.13)

where a is the half crack length, w = W
2 is the half width of the plate, and σ is the far field

tensile load.

It can be seen that with the increase in the Hx/Vy ratio, the interaction between the cracks

decreases, which is as expected. It is also seen from Figure 4.20 that as the ratio of the crack

lengths increases, the normalized mode I SIF increases. And as the Hx/Vy ratio increases,

the influence between the cracks decreases and the numerical SIF approaches a value that

corresponds to a plate with a center crack.

Next, the influence of the relative angle between the cracks on the mode I and the mode II

SIF for a crack length of 2a1 = 2a2 = 0.2, with the distance between the cracks: Hx = 0.1

and Vy = 0.2 is studied. Figure 4.21 shows the variation of mode I and mode II SIF with the

angle subtended by the cracks to the horizontal axis. It is seen that with an increase in the

cKInormalized
=

KInumerical
KIanalytical
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Figure 4.19: Plate with multiple cracks: geometry and loads. The length of the cracks are
2a1 and 2a2. θ1 and θ2 are the angles subtended by the crack faces with the horizontal.
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Figure 4.20: Influence ofHx/Vy ratio and the ratio of crack lengths, 2a2/2a1 on the numerical
mode I SIF.
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Figure 4.21: Plate with two cracks: the variation of mode I SIF and mode II SIF with respect
to angle between the cracks for crack lengths 2a1 = 0.2 and 2a2 = 0.2. The distance between
the cracks are Hx = 0.1 and Vy = 0.2.

crack angle, (θ1 and θ2), the mode I SIF decreases and approaches zero for θ1 = θ2 = 90◦.

While the mode II SIF, initially increases with an increase in the crack angle and reaches the

maximum for the crack angle θ1 = θ2 = 45◦ and then decreases with further increase in the

crack angle. Note that when θ1 = θ2 = 90◦, the crack is aligned to the loading direction.

4.2.3 Inclusion-crack interaction

As a last example in this chapter, the interaction between a crack and an inclusion in parti-

cle reinforced composite is numerically studied. Both the crack and the inclusion are repre-

sented independent of the backgroundmesh using level sets (c.f. Chapter 2, Section 2.4) and

appropriate enrichment functions are used to capture the underlying physics. The enriched

approximation for this problem, takes the following form:

uh(x) =
∑

I∈Nfem

NI(x)qI+

∑

J∈Nc

NJ(x)H(x)aJ +
∑

K∈Nf

NK(x)
4∑

α=1

Bα(x)b
α
K

︸ ︷︷ ︸
for cracks

+
∑

L∈Ninc

NL(x)Ψ(x)cL

︸ ︷︷ ︸
for inclusions

(4.14)

where N
fem is the set of all nodes in the finite element mesh, Nc,Nf and N

inc are the set of

nodes enriched with a Heaviside function, the near-tip asymptotic fields and the absolute

value function. aJ and bαK are the nodal degrees of freedom corresponding to the Heaviside

function H and the near-tip functions, {Bα}1≤α≤4, given by Equations (2.30) and (2.32). cL
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Figure 4.22: A plate with a horizontal crack in the neighbourhood of a circular inclusion:
geometry and boundary conditions.

is the nodal degrees of freedom that corresponds to the absolute value function,Ψ, given by

Equation (2.28) to capture the material discontinuity. The SIFs are computed by using the

domain form of the interaction integral. The conventional form is modified to account for

the material discontinuity. The main advantage of the new form is that it does not require

any derivative of the material property parameters [25]. This is discussed in Appendix D.

Effect of the distance between the crack and the inclusion

Figure 4.22 shows a square plate of side W with a horizontal crack of length 2a in the

neighbourhood of a circular inclusion of radius R. The following parameters are chosen

for the current study: W = 100; a/W = 0.01; b/a = (3, 4, 6, 8, 10);R = 2a;E1 = 1, E2 =

104; ν1 = ν2 = 0.35;σo = 1;Ko = σo
√
πa. Tables 4.3 and 4.4 show the variation of the crack

tip SIF (normalized SIF)d as a function of the distance to the center of the circular inclusion.

It can be seen that as the distance between the crack and the inclusion increases, the effect of

the inclusion on the crack tip SIF decreases. In other words, the crack tip SIF increases with

increasing distance from the inclusion. The results show good agreement with the results

available in the literature [23, 25].

dNormalized SIF =Knumerical/Ko
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Table 4.3: Normalized SIFs at left tip (A) for a plate with a crack and a circular inclusion
under far field tension σo.

b/a KI KII

Ref [23] Ref [25] Present Ref [23] Ref [25] Present

3 0.5810 0.5908 0.5916 0.0636 0.0652 0.0592

4 0.8199 0.8174 0.8185 -0.0661 -0.0671 -0.0646

6 0.9506 0.9505 0.9517 -0.0368 -0.0373 -0.0359

8 0.9787 0.9785 0.9798 -0.0173 -0.0179 -0.0172

10 0.9878 0.9877 0.9889 -0.0091 -0.0101 -0.0117

Table 4.4: Normalized SIFs at right tip (B) for a plate with a crack and a circular inclusion
under far field tension σo.

b/a KI KII

Ref [23] Ref [25] Present Ref [23] Ref [25] Present

3 0.7995 0.8011 0.7916 -0.0733 -0.0711 -0.0684

4 0.9068 0.9065 0.8957 -0.0560 -0.0568 -0.0555

6 0.9684 0.9687 0.9572 -0.0252 -0.0255 -0.0245

8 0.9842 0.9844 0.9727 -0.0125 -0.0129 -0.0124

10 0.9901 0.9903 0.9924 -0.0069 -0.0076 -0.0069
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Figure 4.23: Normalized crack tip SIF (mode I) (KItip/KIo) at point A as a function of ratio
of Young’s modulus (Ep/Em).

Effect of the mismatch in the Young’s modulus

Figure 4.23 shows the normalized crack tip SIF as a function of the mismatch of Young’s

modulus between the inclusion and the matrix for different distances between the crack tip

and the center of the inclusion. For a particular distance from the crack tip to the inclusion,

with increase in the mismatch of the Young’s modulus, the SIF decreases. The decrease in

the crack tip SIF is due to the presence of the inclusion and this decrease in SIF indicates

toughening due to the shielding of the inclusion.

Crack tip shielding & amplification

Next, the crack tip shielding in the presence of an inclusion is studied. When the inclusion is

perfectly bonded to the matrix, the crack deflection is a prominent toughening mechanism.

The crack deflection depends on the inclusion size, the inclusion eccentricity, the number of

inclusions surrounding the crack, the orientation of crack, to name a few. A rigid inclusion

in a relatively compliant matrix shields the crack tip as it is approached. Also, shielding

depends on the aforementioned factors. The geometry and boundary conditions are shown

in Figure 4.24. The radius of the inclusion, R = W/20 is considered, whereW is the width

of the plate.

The variation of the energy release rate (ERR), G with respect to the crack length and the

elastic moduli is studied. The ratio of the elastic moduli Ep/Em is varied from 2 to 8 as

in the literature [8, 13], where Ep is the Young’s modulus of the inclusion and Em is the

Young’s modulus of the matrix. The ERR, G is calculated using the SIFs by the following
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Figure 4.24: A plate with a horizontal edge crack in the neighbourhood of a circular inclu-
sion: geometry and boundary conditions.

equation:

G =
κ+ 1

8µ
(K2

I +K2
II) (4.15)

where the Kolosov coefficient, κ is (3 − 4ν) for plane strain and (3 − ν)/(1 + ν) for plane

stress. The Poisson’s ratio for the inclusion and the matrix are assumed to be ν = 0.33

and 0.17, respectively. The variation of the nondimensional ERR, G/Go for different crack

lengths and the elastic moduli is shown in Figure 4.25, where Go is the ERR for the matrix

without the inclusion. With an increasing ratio of the elastic moduli, the nondimensional

ERR decreases. From Figure 4.25, it can been that the crack senses the rigid inclusion in-

front of it at least from a distance of ≈ 5 times the radius of the inclusion [8, 13]. The

observed variation of the ERR agree with the results reported in the literature.

Effect of a pair of inclusions

The effect of a pair of circular inclusions in the crack path on the ERR is studied next. A

symmetrically located pair of inclusions with respect to the crack, as shown in Figure 4.26

leads to crack growth under mode I conditions. The length of the crack is a and the inclu-

sions are located at p/W = 0.25 from the crack tip. The separation distance ‘s′ between

the inclusions is varied betweenW/8 to W . Figure 4.27 shows the variation of the ERR as

a function of the crack length for various position of the inclusions. It can be seen that by

increasing the crack length, the ERR decreases indicating the crack shielding and maximum
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Figure 4.25: Variation of non-dimensionalized ERR for various ratio of elastic moduli,
Ep/Em, where Ep is the Young’s modulus of the inclusion and Em is the Young’s modu-
lus of the matrix. It can be seen that the crack senses the inclusion at a distance of≈ 5 times
the radius of the inclusion [8, 13].
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Figure 4.26: A plate with a horizontal edge crack in the neighbourhood of symmetrically
located two circular inclusions, geometry and boundary conditions.
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shielding occurs when the crack tip is approximately at a distance ofW/2 in front of the cen-

ter of the inclusion. With further increase in the crack length, the crack shielding decreases

and approaches unity when the crack length approaches p/W (the center of the inclusions).

And with further increase, an amplification of the ERR can be seen. This is because, when

the crack length, a is greater than p/W , the effect of the inclusion below the crack is small,

as the crack experiences the majority of the far field tension. The amplification decreases

with further increase in the crack length. The observed crack shielding/amplification ef-

fects agree well with the results reported in the literature [8, 13, 15].

4.2.4 Crack growth

In this section, the proposed method is applied to study a quasi-static crack growth. The

crack growth is governed by the maximum hoop stress criterion [11], which states that the

crack will propagate from its tip in the direction θc where the circumferential (hoop) stress

σθθ is maximum. The critical angle is computed by solving the following equation:

KI sin(θc) +KII(3 cos(θc)− 1) = 0 (4.16)

Solving Equation (4.16) gives the crack propagation angle [21]:

θc = 2arctan




−2
(
KII

KI

)

1 +

√
1 + 8

(
KII

KI

)2


 (4.17)

In this study, the amount by which the crack advances at each step is fixed in advance, as

opposed to being computed at each step based on some crack growth law.

Double cantilever beam

In this example, the crack growth in a pre-notched double cantilever beam (DCB) subjected

to an end load is studied. The dimensions of the DCB (see Figure 4.28) are 6 × 2 m and the

initial pre-crack with length of a = 2.05 m is considered. The material properties are taken

to be Young’s modulus, E = 100 N/m2 and Poisson’s ratio, ν = 0.3. And the load P is

taken to be unity. By symmetry, a crack on the mid-plane of the beam is under pure mode

I and the crack would propagate in a straight line, however, due to small perturbations in

the crack geometry, the crack takes a curvilinear path [3].

The crack growth increment, ∆a is taken to be 0.15 for this study and the crack growth is

simulated for 8 steps. The domain is discretized with a structured mesh consisting of 1200

elements. The crack path is simulated using both methods and is shown in Figure 4.29. The

crack path qualitatively agrees with the published results [3].
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Figure 4.28: Geometry and loads of a double cantilever beam

Crack inclusion interaction

In this example, crack growth in presence of an inclusion is studied. Consider a plate of

dimension 4 × 8, subjected to a tensile load, σ = 1. The geometry, loading and boundary

conditions are shown in Figure 4.30. The plate is pre-notched and has an off-centered in-

clusion. Let Eratio = Ematrix/Einclusion be the ratio of Young’s modulus between the matrix

and the inclusion. The crack growth around the inclusion is studied for two different ratios

of Young’s modulus: (a) soft inclusion (Eratio = 0.1) and (b) hard inclusion (Eratio = 10).

A mesh size of 100 × 100 is used for the current study. Figure 4.31 shows the calculated

crack path for the soft inclusion and for the hard inclusion using both the methods, i.e., Std.

XFEM and SmXFEM + SCCM. It can be seen that both methods yield identical crack paths.

In case of the soft inclusion, the crack is attracted towards the inclusion, on the other hand,

the crack is deflected in the presence of a hard inclusion. The obtained results are consistent

with the results available in the literature [4, 6]

4.3 Conclusions

In this chapter, the accuracy and the efficiency of the methods proposed in Chapter 3 are

illustrated by solving a few problems involving weak and strong discontinuities. Both

methods yield comparable results to their counterpart standard XFEM with sub-domain

integration. The interaction between a crack and an inclusion is numerically studied. The

crack tip energetics such as ‘shielding’ and ‘amplification’ effects are captured accurately.

SmXFEM is shown numerically that as long as only discontinuous (weak or strong) en-

richment, i.e., discontinuities in the unknown, the smoothed version of the XFEM performs
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Figure 4.29: Double cantilever beam: (a) comparison of crack path between the two numer-
ical integration methods and (b) a zoomed in view
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Figure 4.30: Crack inclusion interaction: geometry and boundary conditions.
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Figure 4.31: Numerically computed crack path using the Std. XFEM and the SmXFEM +
SCCM. The top curve denotes the case of the hard inclusion while the lower curve corre-
sponds to the soft inclusion.
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at least as well as the XFEM. The potential advantages of the smoothed XFEM are that no

subdivision of the split elements is required and that the derivatives of the shape functions

(including the enrichment functions) is not required. In the case of enrichment schemes for

LEFM enrichment, however, numerical examples indicate that while the convergence rate

obtained with SmXFEM is equal or superior to that of the XFEM, the error level is greater.

But with reducing mesh size, the SmXFEM approaches the analytical solution.

XFEM with SCCM eliminates the need to sub-divide the elements cut by strong or weak

discontinuities or containing the crack tip. It is seen that for similar number of integra-

tion points, the XFEMwith SCCM slightly outperforms the convention integration method

based on sub-division. With mesh refinement, the XFEMwith SCCM provides convergence

of the SIFs to the analytical SIFs. Owing to its simplicity, the XFEM with SCCM can be eas-

ily integrated in any existing code.

To improve the efficiency of the smoothed XFEM, a new technique is proposed that makes

use of the best of all the three methods, i.e., the XFEM with SCCM for tip elements, the

XFEM with sub-domain integration for blending elements, the SmXFEM for split elements

and the SFEM for standard elements. The resulting technique, in this thesis, is named as

the SmXFEM + SCCM. The method yields comparable results to that of the conventional

XFEM. The main advantage is that the sub-triangulation of elements intersected by the

discontinuity is eliminated.
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5
Free vibration analysis of cracked plates

In this chapter, the dynamic characteristics of cracked Functionally GradedMaterial (FGM)

plates based on the First order Shear Deformation Theory (FSDT) is studied. The crack

geometry is modelled independent of the underlying mesh by using the XFEM (c.f. Chap-

ter 2, Section 2.4) [4, 7, 8]. The numerical integration over the elements intersected by the

discontinuity surface is performed using the new integration technique, i.e., SmXFEMwith

SCCM (c.f. Chapter 4, §4.2.2). In the presence of flaws such as through-the-thickness cracks,

the fundamental frequency will decrease with an increase in the flaw size. This severely af-

fects the performance of plate structures. A crack in a vibrating structure results in stiffness

decrease, which is a function of the crack location and the crack size. Earlier studies on the

vibration of cracked plates using the FEM [23, 32] were restricted to a limited number of

configurations, because the mesh has to conform to the geometry. The flexibility provided

by the XFEM in handling internal discontinuities is exploited here to study the influence of

the cracks on the fundamental frequency of the plate structure. This chapter is organized

as follows. The next section presents a short summary of the different numerical methods

and the different plate theories used to study the dynamic characteristics of FGM plates.

Section 5.2 will give an introduction to FGMs. A brief overview of the FSDT, also called the

Reissner-Mindlin plate theory is presented in Section 5.3. Section 5.4 illustrates the basic

idea of the XFEM as applied to plates. A systematic parametric study on the influence of

the various parameters, such as the gradient index, the boundary conditions, the crack and

the plate geometry on the natural frequencies of the FGM plates using the 4-noded shear

flexible element based on the field and the edge consistency approach [42] is presented in

Section 5.5, followed by concluding remarks.

5.1 Background

Engineeredmaterials, such as laminated composites are widely used in the automotive and

aerospace industry due to their excellent strength-to and stiffness-to-weight ratios and the
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possibility of tailoring their properties to optimize their structural response. But due to the

sudden change in thematerial properties between the layers in laminated composites, these

materials suffer from premature failure or the decay of the stiffness characteristics because

of delaminations and chemically unstable matrix and lamina adhesives. The emergence of

FGMs [21, 22] has revolutionized the aerospace and the aerocraft industry. FGMs used ini-

tially as thermal barrier materials for aerospace structural applications and fusion reactors

are now developed for general use as structural components in high temperature environ-

ment. FGMs are manufactured by combining metals and ceramics. These materials are

inhomogeneous, in the sense that the material properties vary smoothly and continuously

in one or more directions. FGMs combine the best properties of metals and ceramics. FGMs

are characterized by the volume fraction of its constituent materials, which depends on the

gradient index n. In the literature, n = 0, corresponds to a pure ceramic material, n = ∞,

corresponds to a pure metal and any other value of n corresponds to a mixture of a ceramic

and a metal. FGMs are strongly considered as a potential material candidate for a certain

class of aerospace structures exposed to a high temperature environment.

5.1.1 Dynamic characteristics of FGMs

It is seen from the literature that the amount of work carried out on the vibration char-

acteristics of FGMs is considerable [11, 14, 24, 26, 28, 46, 47, 54]. Vel and Batra [46] have

accounted for the variation of material properties through the thickness according to a

power-law distribution and studied the thermoelastic deformation of thick FGMplates. The

locally effective material properties were obtained using the Mori-Tanaka homogenization

scheme [27]. He et al., [14] presented a finite element formulation based on the thin plate

theory for the vibration control of FGM plates with integrated piezoelectric sensors and ac-

tuators under mechanical load. Liew et al., [24] have analysed the active vibration control

of plates subjected to a thermal gradient using the shear deformation theory. Ng et al., [28]

have investigated the parametric resonance of plates based on Hamilton‘s principle and

the assumed mode technique. Yang and Shen [53] have analysed the dynamic response of

thin FGM plates subjected to impulsive loads using a Galerkin procedure coupled with the

modal superposition method. Yang and Shen [54] studied the transient response of FGM

plates in a thermal environment based on the shear deformation theory with temperature

dependentmaterial properties. Their study concluded that temperature affects the dynamic

response of FGM plates. Qian et al., [33] studied the static deformation and the vibration of

FGM plates based on the higher-order shear deformation theory using the meshless local

Petrov-Galerkin method (MLPG). Matsunaga [26] presented analytical solutions for simply

supported rectangular FGM plates based on the second-order shear deformation theory.

Vel and Batra [47] proposed three-dimensional solutions for vibration of simply supported
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rectangular plates. Reddy [36] presented a finite element solution for the dynamic analysis

of a FGM plate and Ferreira et al., [11] performed a dynamic analysis of FGM plates based

on the higher order shear and normal deformable plate theory using the MLPG. Akbari et

al., [34] studied two-dimensional wave propagation in FGM solids using theMLPG. It is ob-

served that, in general, increasing the gradient index decreases the fundamental frequency

due to the increase in the metallic volume fraction.

5.1.2 Vibration of cracked plates

It is known that cracks or local defects affect the dynamic response of a structural member.

This is because, the presence of a crack introduces local flexibility and anisotropy. More-

over, the crack will open and close depending on the vibration amplitude. The vibration of

cracked plates was studied as early as 1969 by Lynn and Kumbasar [25], who used a Green’s

function approach. Later, in 1972, Stahl and Keer [43] studied the vibration of cracked rect-

angular plates using elasticity methods. The other numerical methods that are used to

study the dynamic response and the instability of plates with cracks or local defects are: (1)

the Finite Fourier series transform [41]; (2) the Rayleigh-Ritz Method [19]; (3) the harmonic

balance method [50]; and (4) the FEM [23, 32]. FGM plates or in general plate structures,

may develop flaws during manufacturing or after they have been subjected to cyclic load-

ing. Hence it is important to understand the dynamic response of a FGM plate with an

internal flaw. Recently, Huang et al., [15] proposed solutions for the vibrations of side-

cracked FGM thick plates based on Reddy‘s Third-order Shear Deformation Theory (TSDT)

using the Ritz technique. Kitipornchai et al., [20] studied the non-linear vibration of an edge

cracked functionally graded Timoshenko beams using the Ritz method. Yang et al., [52]

studied the non-linear dynamic response of FGM plates with a through-width crack based

on Reddy’s TSDT using a Galerkin method. Very recently, the XFEM has been applied to

study the vibration of cracked isotropic plates [1, 2, 45]. An enriched 4-noded mixed inter-

polated tensorial components (MITC4) [3] element was used to compute the fundamental

frequencies. Their study focussed on centre and edge cracks with simply supported and

clamped boundary conditions.

5.2 Functionally GradedMaterials

Consider a rectangular FGM plate with co-ordinates x, y along the in-plane directions and

z along the thickness direction as shown in Figure 5.1. The material on the top surface (z =

h/2) of the plate is ceramic and is graded to metal at the bottom surface of the plate (z =

−h/2) by a power-law distribution. The homogenized material properties are computed

using the Mori-Tanaka Scheme [5, 27].
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b

h

a
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x

y

Figure 5.1: Co-ordinate system of a rectangular FGM plate, where a, b and h are the length,
the width and the thickness of the plate, respectively.

Estimation of mechanical and thermal properties

Based on the Mori-Tanaka homogenization method, the effective bulk modulus K and the

shear modulus G of the FGM are evaluated as [5, 9, 27, 33]:

K −Km

Kc −Km
=

Vc

1 + (1− Vc)
3(Kc−Km)
3Km+4Gm

G−Gm
Gc −Gm

=
Vc

1 + (1− Vc)
(Gc−Gm)
Gm+f1

, (5.1)

where

f1 =
Gm(9Km + 8Gm)

6(Km + 2Gm)
. (5.2)

Here, Vi (i = c,m) is the volume fraction of the phase material. The subscripts c andm refer

to the ceramic and the metal phases, respectively. The volume fractions of the ceramic and

the metal phases are related by Vc + Vm = 1, and Vc is expressed as:

Vc(z) =

(
2z + h

2h

)n
, n ≥ 0 (5.3)

where n in Equation (5.3) is the volume fraction exponent, also referred to as the gradient

index in the literature. The variation of the volume fraction of the ceramic phase in the

thickness direction is shown in Figure 5.2. It can be seen that with the increase in the gradi-

ent index n, the metallic volume fraction increases and by tailoring the gradient index, n, a

suitable FGM can be designed for a particular application.
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Figure 5.2: Through the thickness variation of the ceramic volume fraction. A higher value
of gradient index n corresponds to a metallic plate.

The effective Young’s modulus, E and Poisson’s ratio, ν are computed from the following

expressions:

E =
9KG

3K +G

ν =
3K − 2G

2(3K +G)
. (5.4)

The effective mass density, ρ is given by the rule of mixtures as [47]:

ρ = ρcVc + ρmVm. (5.5)

The effective heat conductivity coefficient κ and the coefficient of thermal expansion α is

given by [13, 38]:

κ− κm
κc − κm

=
Vc

1 + (1− Vc)
(κc−κm)

3κm

α− αm
αc − αm

=

(
1
K − 1

Km

)

(
1
Kc

− 1
Km

) (5.6)
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The material properties P a that are temperature dependent can be written as [37]:

P = Po(P−1T
−1 + 1 + P1T + P2T

2 + P3T
3) (5.7)

where Po, P−1, P1, P2, P3 are the coefficients of the temperature T and are unique to each

constituent material phase. The temperature variation is assumed to occur in the thickness

direction only and the temperature field is considered to be constant in the xy-plane. In

such a case, the temperature distribution along the thickness can be obtained by solving the

following steady state heat transfer equation:

− d

dz

[
κ(z)

dT

dz

]
= 0, T = Tc at z = h/2; T = Tm at z = −h/2 (5.8)

The solution of Equation (5.8) is obtained by means of a polynomial series [51] as:

T (z) = Tm + (Tc − Tm)η(z, h) (5.9)

where,

η(z, h) =
1

C

[(
2z + h

2h

)
− κcm

(n+ 1)κm

(
2z + h

2h

)n+1

+

κ2cm
(2n+ 1)κ2m

(
2z + h

2h

)2n+1

− κ3cm
(3n + 1)κ3m

(
2z + h

2h

)3n+1

+
κ4cm

(4n + 1)κ4m

(
2z + h

2h

)4n+1

− κ5cm
(5n + 1)κ5m

(
2z + h

2h

)5n+1
]
;

(5.10)

C = 1− κcm
(n+ 1)κm

+
κ2cm

(2n + 1)κ2m
− κ3cm

(3n + 1)κ3m

+
κ4cm

(4n + 1)κ4m
− κ5cm

(5n + 1)κ5m

(5.11)

where κcm = κc − κm and Tc, Tm denote the temperature of the ceramic and the metallic

phases, respectively.

5.3 Reissner-Mindlin Formulation

Using the Mindlin formulation, the displacements u, v, w at a point (x, y, z) in the plate

(see Figure 5.1) from the medium surface are expressed as functions of the mid-plane dis-

aThematerial propertyP could be the Young’smodulus,E, Poisson’s ratio ν, the Bulk modulusK, the shear
modulus G, the mass density ρ, the coefficient of thermal expansion α or the coefficient of heat conductivity κ.
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placements uo, vo, wo and independent rotations βx, βy of the normal in yz and xz planes,

respectively, as

u(x, y, z, t) = uo(x, y, t) + zβx(x, y, t)

v(x, y, z, t) = vo(x, y, t) + zβy(x, y, t)

w(x, y, z, t) = wo(x, y, t), (5.12)

where t is the time. The strains in terms of the mid-plane deformation can be written as:

ε =

{
εp

0

}
+

{
zεb

εs

}
. (5.13)

The mid-plane strain εp, the bending strain εb, the shear strain εs in Equation (5.13) are

written as:

εp =





uo,x

vo,y

uo,y + vo,x





, εb =





βx,x

βy,y

βx,y + βy,x





,

εs =





βx + wo,x

βy + wo,y




, (5.14)

where the subscript ‘comma’ represents the partial derivative with respect to the spatial

coordinate succeeding it. The membrane stress resultants,Nst and the bending stress resul-

tants, Mst can be related to the membrane strain, εp and the bending strain, εb through the

following constitutive relations:

Nst =





Nxx

Nyy

Nxy





= Aeεp +Bbeεb

Mst =





Mxx

Myy

Mxy





= Bbeεp +Dbεb, (5.15)

where the matrices Ae = Aij ,Bbe = Bij and Db = Dij ; (i, j = 1, 2, 6) are the extensional,
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the bending-extensional coupling and the bending stiffness coefficients. These stiffness co-

efficients are defined as:

{Aij , Bij, Dij} =

∫ h/2

−h/2
Qij

{
1, z, z2

}
dz. (5.16)

Similarly, the transverse shear force Q = {Qxz, Qyz} is related to the transverse shear strain

εs, through the following equation:

Qij = Q̃ijεs (5.17)

where Q̃ = Q̃ij =
∫ h/2
−h/2Qijυiυj dz; (i, j = 4, 5) is the transverse shear stiffness coefficient,

υi, υj are the transverse shear correction factors for the non-uniform shear strain distribu-

tion through the plate thickness. The stiffness coefficients Qij are defined as:

Q11 = Q22 =
E

1− ν2
; Q12 =

νE

1− ν2
; Q16 = Q26 = 0;

Q44 = Q55 = Q66 =
E

2(1 + ν)
, (5.18)

where the modulus of elasticity, E and Poisson’s ratio, ν are given by Equation (5.4). The

strain energy function U is given by:

U(δ) =
1

2

∫

Ω

{
ε
T
pAeεp + ε

T
pBbeεb + ε

T
bBbeεp + ε

T
bDbεb + ε

T
s Q̃εs

}
dΩ (5.19)

where δ = {uo, vo, wo, βx, βy} is the vector of the degrees of freedom associated to the dis-

placement field in a finite element discretization. Following the procedure given in [35, 55],

the strain energy function U given by the Equation (5.19) can be rewritten as:

U(δ) =
1

2
δ
TKδ, (5.20)

whereK is the linear stiffness matrix. The kinetic energy of the plate is given by:

T (δ) =
1

2

∫

Ω

{
Io(u̇

2
o + v̇2o + ẇ2

o) + I1(β̇
2
x + β̇2y)

}
dΩ, (5.21)

where Io =
∫ h/2
−h/2 ρ(z) dz, I1 =

∫ h/2
−h/2 z

2ρ(z) dz and ρ(z) is the mass density that varies

through the thickness of the plate, given by Equation (5.5). The Lagrangian equations of

motion is given by:

d

dt

[
∂(T − U)

∂δ̇

]
−
[
∂(T − U)

∂δ̇

]
= 0 (5.22)
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.

Substituting Equations (5.20) - (5.21) in the Lagrangian equations ofmotion, Equation (5.22),

the following governing equation is obtained:

Mδ̈ +Kδ = 0, (5.23)

where M is the consistent mass matrix. After, substituting the characteristic of the time

function [12, 55] δ̈ = −ω2δ, the following generalized eigenvalue problem is obtained:

[
K− ω2M

]
δ = 0. (5.24)

where ω is the natural frequency. In solving for the eigenvalues, the QR algorithm, based

on the QR decomposition is used [49].

5.4 Field consistent quadrilateral element

The plate element employed here is a C
0 continuous shear flexible field consistent element

with five degrees of freedom (uo, vo, wo, βx, βy) at four nodes in a 4-noded quadrilateral

(QUAD-4) element. The displacement field within the element is approximated by:

{ueo, veo, weo, βex, βey} =

4∑

J=1

NJ{uoJ , voJ , woJ , βxJ , βyJ}, (5.25)

where uoJ , voJ , woJ , βxJ , βyJ are the nodal variables and NJ are the shape functions for the

bi-linear QUAD-4 element, given by:

N1(ξ, η) =
1

4
(1− ξ)(1− η), N2(ξ, η) =

1

4
(1 + ξ)(1− η)

N3(ξ, η) =
1

4
(1 + ξ)(1 + η), N4(ξ, η) =

1

4
(1− ξ)(1 + η). (5.26)

where −1 ≤ ξ ≤ 1 and −1 ≤ η ≤ 1. If the interpolation functions, given by Equation

(5.26) for a QUAD-4 are used directly to interpolate the five variables (uo, vo, wo, βx, βy) in

deriving the shear strains and the membrane strains, the element will lock and show oscil-

lations in the shear and the membrane stresses. The oscillations are due to the fact that the

derivative functions of the out-of plate displacement, wo do not match that of the rotations

(βx, βy) in the shear strain definition, given by Equation (5.14). To alleviate the locking phe-

nomenon, the terms corresponding to the derivative of the out-of plate displacement, wo

must be consistent with the rotation terms, βx and βy . The different techniques by which

the locking phenomenon can be suppressed are:

• Retain the original interpolations given by Equation (5.26) and subsequently use an
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optimal integration rule for evaluating the bending and the shear terms;

• Mixed interpolation technique [3];

• Use field redistributed substitute shape functions [12, 42];

• Discrete shear gap method [6];

• Stabilized conforming nodal integration [48], i.e., strain smoothing, SFEM [29, 30].

• Enhanced assumed strain method [39] ;

• Use p-adaptivity, for exampleMoving Least Square approximations [18] orNon-Uniform

Rational B-Splines [17].

In this study, field redistributed shape functions are used. The field consistency requires

that the transverse shear strains and the membrane strains must be interpolated in a consis-

tent manner. Thus, the βx and βy terms in the expressions for the shear strain εs have to be

consistent with the derivative of the field functions, wo,x and wo,y. If the element has edges

which are aligned with the coordinate system (x, y), the section rotations βx, βy in the shear

strain are approximated by [42]:

βex =
4∑

J=1

Ñ1JβxJ

βey =

4∑

J=1

Ñ2JβyJ (5.27)

where βxJ and βyJ are the nodal variables, Ñ1J and Ñ2J are the substitute shape functions,

given by [42]:

Ñ1(η) =
1

4

[
1− η 1− η 1 + η 1 + η

]

Ñ2(ξ) =
1

4

[
1− ξ 1 + ξ 1 + ξ 1− ξ

]
. (5.28)

It can be seen that the field redistributed shape functions, given by Equation (5.28) are con-

sistent with the derivative of the shape functions, given by Equation (5.26) used to approx-

imate the out-of plate displacement, wo. Note that, no special integration rule is required

for evaluating the shear terms. A numerical integration based on the 2 × 2 Gaussian rule is

used to evaluate all the terms.
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Enriched Q4 element

Consider a mesh of field consistent Q4 elements and an independent crack geometry as

shown in Figure 2.5. The following enriched approximation proposed by Dolbow et al., [10]

for the plate displacements are used:

(uh, vh, wh) (x) =
∑

I∈Nfem

NI(x)(u
s
I , v

s
I , w

s
I) +

∑

J∈Nc

NJ(x)H(x)(buJ , b
v
J , b

w
J )+

∑

K∈Nf

NK(x)

(
4∑

l=1

(cuKl, c
v
Kl, c

w
Kl)Gl(r, θ)

) (5.29)

The section rotations are approximated by:

βhx (x) =
∑

I∈Nfem

Ñ1I(x)β
s
xI

+
∑

J∈Nc

Ñ1J(x)H(x)bβxJ +
∑

K∈Nf

Ñ1K(x)

(
4∑

l=1

cβxKlFl(r, θ)

)
,

βhy (x) =
∑

I∈Nfem

Ñ2I(x)β
s
yI +

∑

J∈Nc

Ñ2J (x)H(x)b
βy
J +

∑

K∈Nf

Ñ2K(x)

(
4∑

l=1

c
βy
KlFl(r, θ)

)
. (5.30)

where N
fem is a set of all the nodes in the finite element mesh, Nc is a set of nodes that

are enriched with the Heaviside function and N
f is a set of nodes that are enriched with

near-tip asymptotic fields. In Equations (5.29) and (5.30), (usI , v
s
I , w

s
I , β

s
xI , β

s
yI ) are the nodal

unknown vectors associated with the continuous part of the finite element solution, bJ is

the nodal enriched degree of freedom vector associated with the Heaviside (discontinuous)

function, and cKl is the nodal enriched degree of freedom vector associated with the elastic

asymptotic near-tip functions. The asymptotic functions, Gl and Fl in Equations (5.29) and

(5.30) are given by ([10]):

Gl(r, θ) ≡
{√

r sin

(
θ

2

)
, 3
√
r sin

(
θ

2

)
, 3
√
r cos

(
θ

2

)
, 3
√
r sin

(
3θ

2

)
, 3
√
r cos

(
3θ

2

)}
,

Fl(r, θ) ≡
√
r

{
sin

(
θ

2

)
, cos

(
θ

2

)
, sin

(
θ

2

)
sin (θ) , cos

(
θ

2

)
sin (θ)

}
. (5.31)

Here (r, θ) are the polar coordinates in the local coordinate system with the origin at the

crack tip.
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Discretized equations for the enriched Q4 plate element

Now, substituting the displacement field approximated by Equations (5.29) - (5.30) in Equa-

tion (5.19) and Equation (5.21), the following modified generalized eigenvalue problem is

obtained:

(
K̃− ω2M̃

)
δ̃ = 0, (5.32)

where K̃ is the enriched stiffness matrix, M̃ is the enriched mass matrix and δ̃ is the vector

of nodal unknown vector consisting of the continuous part of the finite element solution,

(usI , v
s
I , w

s
I , β

s
xI , β

s
yI ) and the enriched degrees of freedom, bJ and cKl. The nodes, whose

support is intersected by the discontinuous surface are selected based on the procedure out-

lined in Chapter 2, Section 2.4. The numerical integration technique presented in Chapter 3

is used to numerically integrate over the elements that are intersected by the discontinuity

surface and the following convention is used:

• Split elements: SmXFEM, with one subcell above and below the crack face.

• Tip element: XFEM with SCCM.

• Tip-blending elements: standard XFEM.

• Split-blending elements: standard XFEM.

• Standard elements: SFEMwith four subcells.

For the elements that are not enriched, a standard 2 × 2 Gaussian quadrature rule is used.

5.5 Numerical Examples

Based on the above formulation, a MATLAB code is developed and a systematic parametric

study is performed to study the influence of the following parameters on the fundamental

frequency of the cracked FGM plate:

• Plate thickness (a/h) - three different ratios (10, 20, 100) are chosen;

• Boundary conditions - simply supported and clamped condition;

• Gradient index, n - five different gradient indices (0, 1, 2, 5, 10) are chosen;

• Crack geometry - crack length (d), crack location (cy), crack orientation (θ) and num-

ber of cracks.
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The temperature of the ceramic and the metallic phase is assumed to be constant and for

this study, the temperature is taken as Tc = Tm = 300K. The ambient temperature Tamb is

also assumed to be at 300K. The material properties are evaluated at this temperature using

the expression given in Equation (5.7). In all the cases, the non dimensionalized free flexural

frequencies, unless specified otherwise is presented as:

Ω = ω

(
b2

h

)√
ρc
Ec

(5.33)

where Ec, νc are the Young’s modulus and Poisson’s ratio of the ceramic material, and ρc is

the mass density of the ceramic phase. In order to be consistent with the existing literature,

properties of the ceramic phase are used for normalization. Based on a progressive mesh

refinement, a 33×33 structured mesh is found to be adequate to model the full plate for the

present analysis (see Figure 5.3). The convergence of themode 1 and themode 2 frequencies

for a square isotropic plate with and without a crack is shown in Figure 5.4. The material

properties used for the FGM components are listed in Table 5.1.
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1

Figure 5.3: A typical finite element mesh used for this study. ’Solid line’ denotes the crack.

Before proceeding with the detailed study on the effect of different parameters on the natu-

ral frequency, the formulation developed herein is validated against the available results

pertaining to the linear frequencies of cracked isotropic and FGM plates with different

boundary conditions. The computed frequencies for the cracked isotropic simply sup-
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Figure 5.4: Convergence of the mode 1 and the mode 2 frequency with increasing mesh
density for a ceramic plate with and without a crack. The crack is assumed to be at the
center of the plate and horizontally oriented with a simply supported boundary condition.
The other parameters of the plate are: n = 0, a/b = 1, a/h = 10.
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ported rectangular plate is given in Table 5.3. Tables 5.4 and 5.5 gives a comparison of

the computed frequencies for a simply supported square plate with a side crack and a can-

tilevered plate with a side crack, respectively. It can be seen that the numerical results from

the present formulation are found to be in good agreement with existing solutions.

The FGMplate considered here consists of silicon nitride (Si3N4) and stainless steel (SUS304).

The material properties are considered to be temperature dependent and the temperature

coefficients corresponding to Si3N4/SUS304 are listed in Table 5.2 [37, 44]. The mass den-

sity (ρ) and thermal conductivity (K) are: ρc=2370 kg/m3, Kc=9.19 W/mK for Si3N4 and

ρm = 8166 kg/m3,Km = 12.04W/mK for SUS304. Poisson’s ratio ν is assumed to be constant

and taken as 0.28 for the current study [31, 44]. Here, the modified shear correction factor

obtained based on energy equivalence principle as outlined in [40] is used. The boundary

conditions for the simply supported and the clamped condition are (see Figure 5.5):

Simply supported boundary conditions:

uo = wo = θy = 0 on x = 0, a

vo = wo = θx = 0 on y = 0, b (5.34)

Clamped boundary conditions:

uo = wo = θy = vo = θx = 0 on x = 0, a

uo = wo = θy = vo = θx = 0 on y = 0, b (5.35)

Table 5.1: Material properties of the FGM components. †Ref [15], ∗Ref [37, 44]

Material Properties

E(GPa) ν ρ (kg/m3)

Aluminum (Al)† 70.0 0.30 2702

Alumina (Al2O3)
† 380.0 0.30 3800

Zirconia (ZrO2)
† 200.0 0.30 5700

Steel (SUS304)∗ 201.04 0.28 8166

Silicon Nitride (Si3N4)
∗ 348.43 0.28 2370
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Table 5.2: Temperature dependent coefficients for material SI3N4/SUS304, Ref [37, 44].

Material Property Po P−1 P1 P2 P3

SI3N4

E(Pa) 348.43e9 0.0 -3.070e−4 2.160e−7 -8.946e−11

α (1/K) 5.8723e−6 0.0 9.095e−4 0.0 0.0

SUS304
E(Pa) 201.04e9 0.0 3.079e−4 -6.534e−7 0.0

α (1/K) 12.330e−6 0.0 8.086e−4 0.0 0.0

Table 5.3: Comparison of frequency parameters, ω(b2/h)
√
ρc/Ec for a simply supported

homogeneous rectangular thin plate with a horizontal crack (a/b = 2, b/h = 100, cy/b =
0.5, d/a = 0.5, θ = 0).

mode Ref [43] Ref [16] Ref [15] Present

1 3.050 3.053 3.047 3.055

2 5.507 5.506 5.503 5.508

3 5.570 5.570 5.557 5.665

4 9.336 9.336 9.329 9.382

5 12.760 12.780 12.760 12.861

Table 5.4: Non-dimensionalized natural frequency for a simply supported square Al/Al2O3

plate with a side crack (a/b = 1, a/h = 10). Crack length d/a = 0.5.

gradient Mode 1 Mode 2 Mode 3

index, n Ref [15] Present Ref [15] Present Ref [15] Present

0 5.379 5.387 11.450 11.419 13.320 13.359

0.2 5.001 5.028 10.680 10.659 12.410 12.437

1 4.122 4.122 8.856 8.526 10.250 10.285

5 3.511 3.626 7.379 7.415 8.621 8.566

10 3.388 3.409 7.062 7.059 8.289 8.221
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Table 5.5: Fundamental frequency, ωb2/h
√
ρc/Ec for a cantilevered square Al/ZrO2 FGM

plates with a horizontal size crack (b/h = 10, cy/b = 0.5, d/a = 0.5).

a/b Mode gradient index, n

0 0.2 1 5 10

1

1
Ref [15] 1.0380 1.0080 0.9549 0.9743 0.9722

Present 1.0380 1.0075 0.9546 0.9748 0.9722

2
Ref [15] 1.7330 1.6840 1.5970 1.6210 1.6170

Present 1.7329 1.6834 1.5964 1.6242 1.6194

3
Ref [15] 4.8100 4.6790 4.4410 4.4760 4.4620

Present 4.8231 4.6890 4.4410 4.4955 4.4845

5.5.1 Plate with a center crack

Consider a plate of uniform thickness, h and with length and width as a and b, respectively.

Figure 5.5 shows a plate with all the edges simply supported and with a center crack of

length d, located at a distance of cy from the x−axis.

x a

b

d

y

cy

Figure 5.5: Simply supported plate with a center crack. The dotted line denotes the support.

Effect of the crack length, the crack orientation and the gradient index

The influence of the crack length d/a, the crack orientation, θ and the gradient index, n

on the fundamental frequency for a simply supported square FGM plate with thickness

a/h =10 is shown in Tables 5.6 and 5.7. It is observed that as the crack length increases,

the frequency decreases. This is due to the fact that increasing the crack length increases

the local flexibility and thus decreases the frequency. Also, with an increase in the gradient

index n, the frequency decreases. This is because of the stiffness degradation due to the
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increase in themetallic volume fraction. It can be seen that the combined effect of increasing

the crack length and the gradient index is to lower the fundamental frequency. Further, it is

observed that the frequency is lowest for a crack orientation, θ = 45o. The frequency values

tend to be symmetric with respect to a crack orientation, θ = 45o. This is also shown in

Figure 5.6 for the gradient index n = 5 and the crack length d/a = 0.8.

Table 5.6: Fundamental frequency, ω(b2/h)
√
ρc/Ec for a simply supported Si3N4/SUS304

FGM square plate. †denotes change in trend.

gradient Crack Crack length, d/a.

index, n orientation, θ 0 0.4 0.6 0.8

0

0 5.5346 5.0502 4.7526 4.5636

10 5.5346 5.0453 4.7386 4.5337

20 5.5346 5.0379 4.7043 4.4509

30 5.5346 5.0278 4.6640 4.3528

40 5.5346 5.0207 4.6370 4.2849

45† 5.5346 5.0173 4.6342 4.2754

50 5.5346 5.0204 4.6370 4.2849

60 5.5346 5.0278 4.6640 4.3528

70 5.5346 5.0380 4.7043 4.4509

80 5.5346 5.0453 4.7384 4.5337

90 5.5346 5.0503 4.7527 4.5636

1

0 3.3376 3.0452 2.8657 2.7518

10 3.3376 3.0422 2.8571 2.7337

20 3.3376 3.0376 2.8362 2.6833

30 3.3376 3.0315 2.8117 2.6237

40 3.3376 3.0271 2.7953 2.5825

45† 3.3376 3.0252 2.7936 2.5767

50 3.3376 3.0270 2.7953 2.5824

60 3.3376 3.0315 2.8117 2.6237

70 3.3376 3.0377 2.8363 2.6833

80 3.3376 3.0422 2.8571 2.7337

90 3.3376 3.0452 2.8657 2.7518

Effect of crack location

Next, the influence of the crack location on the natural frequency of a square plate with

thickness, a/h = 10 and the crack length, d/a = 0.2 is studied. In this case, the crack is

assumed to be horizontal, i.e., θ = 0. The results are presented in Figure 5.7. It is observed
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Table 5.7: Fundamental frequency, ωb2/h
√
ρc/Ec for a simply supported Si3N4/SUS304

FGM square plate. †denotes change in trend.

gradient Crack Crack length, d/a.

index, n orientation, θ 0 0.4 0.6 0.8

2

0 3.0016 2.7383 2.5769 2.4747

10 3.0016 2.7356 2.5692 2.4583

20 3.0016 2.7315 2.5504 2.4130

30 3.0016 2.7259 2.5283 2.3594

40 3.0016 2.7220 2.5136 2.3223

45† 3.0016 2.7202 2.5120 2.3170

50 3.0016 2.7219 2.5135 2.3222

60 3.0016 2.7259 2.5283 2.3594

70 3.0016 2.7315 2.5504 2.4130

80 3.0016 2.7356 2.5692 2.4583

90 3.0016 2.7383 2.5770 2.4747

5

0 2.7221 2.4833 2.3371 2.2445

10 2.7221 2.4809 2.3302 2.2297

20 2.7221 2.4772 2.3131 2.1887

30 2.7221 2.4722 2.2932 2.1402

40 2.7221 2.4686 2.2798 2.1067

45† 2.7221 2.4670 2.2785 2.1019

50 2.7221 2.4685 2.2798 2.1066

60 2.7221 2.4722 2.2932 2.1402

70 2.7221 2.4772 2.3132 2.1887

80 2.7221 2.4809 2.3301 2.2297

90 2.7221 2.4833 2.3371 2.2445
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Figure 5.6: Variation of the fundamental frequencywith orientation of the crack for a simply
supported square FGM plate, a/h = 10.

that the natural frequency of the plate monotonically decreases as the crack moves along the

edges and towards the center of these edges. The natural frequency of the plate is maximum

when the damage is situated at the corner. As the crack moves along the center lines of the

plate from the edges and towards the center of the plate, the natural frequency increases

up to a certain distance and then decreases. When the crack is situated at the center of the

plate, the frequency is minimum.

Effect of the aspect ratio, the thickness and the boundary conditions

The influence of the plate aspect ratio b/a, the plate thickness a/h and the boundary condi-

tion on a cracked FGM plate with a horizontal center crack is shown in Table 5.8. Two types

of boundary conditions are studied: Simply Supported (SS) and Clamped Condition (CC).

For a given crack length and for a given crack location, decreasing the plate thickness and

increasing the plate aspect ratio, increases the frequency. The increase in the stiffness is the

reason for the increase in the frequency when the boundary condition is changed from SS

to CC for a fixed aspect ratio and the plate thickness.
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Figure 5.7: Variation of the fundamental frequency as a function of crack position for a sim-
ply supported square FGM plate. The crack orientation, θ is taken to be 0◦, i.e., horizontal
crack.
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Table 5.8: Effect of the plate aspect ratio b/a, the plate thickness a/h and the boundary
condition on the fundamental frequency, ωb2/h

√
ρc/Ec for Si3N4/SUS304 FGM plate with

a horizontal center crack (cy/b = 0.5, d/a = 0.5). †Simply Supported, ∗Clamped Condition.

b/a a/h Mode 1 Mode 2

SS† CC∗ SS† CC∗

0.5

10 1.1205 2.2202 2.1586 2.8588

20 1.1974 2.5043 2.5482 3.4621

100 1.2625 2.6748 2.6593 4.0903

1

10 2.4051 4.1624 5.2792 6.6286

20 2.4831 4.4592 5.8338 7.6464

100 2.5473 4.6311 6.2765 8.5774

2

10 6.6864 12.7513 10.5295 15.9115

20 6.8101 13.4551 10.8647 17.0301

100 6.8847 13.7540 11.0392 17.6030

5.5.2 Plate with multiple cracks

Figure 5.8 shows a plate with two cracks with lengths a1 and a2 andwith orientations θ1 and

θ2 they subtendwith the horizontal. The effect of the crack orientations on the fundamental

frequency for a simply supported FGM plate is numerically studied. The horizontal (Hx)

and the vertical (Vy) separation (see Figure 5.8) between the crack tips is set to a constant

value,Hx = 0.2 and Vy = 0.1, respectively. Table 5.9 shows the variation of the fundamental

frequency for a plate with a gradient index n = 5 and the crack lengths a1 = a2 = 0.2 as

a function of the crack orientations. Figure 5.9 shows the variation of the frequency as a

function of orientation of one of the crack for different orientations of the other crack. It

can be seen that with an increase in the crack orientation, the frequency initially decreases

until it reaches a minimum at θ = 45o. With further increase in the crack orientation, the

frequency increases and reaches maximum at θ1 = θ2 =90o. The frequency value at θ = 0o

is not the same as that at θ = 90o as expected. This is because when θ1 = θ2 = 90o, the crack

is located away from the center of the plate and the presence of the crack disturbs the mode

shape slightly.
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θ2
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θ1
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Vy
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Figure 5.8: Plate with multiple cracks: geometry. Hx and Vy are the horizontal and the
vertical separation between the crack tips, a1, a2 are the crack lengths and θ1, θ2 are the
crack orientations they subtend with the horizontal.
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Figure 5.9: Variation of the fundamental frequency for a simply supported square
Si3N4/SUS304 FGM plate with a center crack as a function crack orientation with Hx =
0.2, Vy = 0.1 and a/h = 10 (see Figure 5.8).
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Table 5.9: Fundamental frequency, ωb2/h
√
ρc/Ec for a simply supported Si3N4/SUS304 FGM square plate, gradient index, n = 5.

†denotes change in trend.

Crack Crack orientation, θ2.

Orientation, θ1 0 10 20 30 40 45 50† 60 70 80 90

0 2.6149 2.6122 2.6077 2.6034 2.5997 2.5988 2.5981 2.5993 2.6023 2.6066 2.6098

10 2.6122 2.6094 2.6049 2.6006 2.5969 2.5960 2.5953 2.5964 2.5994 2.6037 2.6068

20 2.6077 2.6049 2.6004 2.5961 2.5924 2.5914 2.5907 2.5919 2.5948 2.5991 2.6022

30 2.6034 2.6006 2.5961 2.5918 2.5881 2.5871 2.5864 2.5876 2.5905 2.5948 2.5979

40 2.5997 2.5969 2.5924 2.5881 2.5844 2.5835 2.5827 2.5839 2.5868 2.5910 2.5941

45 2.5987 2.5959 2.5914 2.5871 2.5834 2.5825 2.5818 2.5829 2.5858 2.5901 2.5931

50† 2.5980 2.5952 2.5907 2.5864 2.5827 2.5818 2.5811 2.5822 2.5851 2.5893 2.5924

60 2.5992 2.5964 2.5918 2.5876 2.5839 2.5829 2.5822 2.5834 2.5863 2.5905 2.5935

70 2.6022 2.5993 2.5948 2.5905 2.5868 2.5858 2.5851 2.5863 2.5891 2.5933 2.5963

80 2.6065 2.6036 2.5990 2.5947 2.5910 2.5900 2.5893 2.5904 2.5933 2.5974 2.6004

90 2.6098 2.6069 2.6022 2.5979 2.5942 2.5932 2.5924 2.5935 2.5964 2.6005 2.6035

1
6
1
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5.5.3 Plate with a side crack

Consider a plate of uniform thickness, h, with length and width as a and b, respectively.

Figure 5.10 shows a cantilevered plate with a side crack of length d, located at a distance

of cy from the x−axis and at an angle θ with respect to the x−axis. The influence of the

plate thickness, the crack orientation and the gradient index on the fundamental frequency

is shown in Table 5.10 and in Figure 5.11. With an increase in the gradient index n, the

frequency decreases for all crack orientations and for different plate thickness. With an

increase in the crack orientation from θ = −60◦ to θ = 60◦, the frequency initially decreases

until θ = −40◦ and then reaches the maximum when the crack is horizontal. And with

further increase in the crack orientation, the frequency decreases. This is because, when the

crack is horizontal (θ = 0), the crack is aligned to the first mode shape and the response

of the plate is similar to a cantilevered plate without a crack. The frequency of the plate

without a crack is greater than a plate with a crack. Figures 5.12 and 5.13 shows the first

twomode shapes for a cantilevered plate with andwithout a horizontal crack. As explained

earlier, the frequency and the first mode shape for a plate with and without a crack are very

similar. For any other crack orientation, the mode shape is influenced by the presence of

the crack. Figures 5.14 and 5.15 shows the first mode shape of a cantilevered plate with a

side crack with orientations, θ = ±40◦ and θ = ±60◦, respectively.

b

a

cy

d

θ

x

y

Figure 5.10: Cantilevered plate with a side crack: geometry

5.6 Conclusions

The natural frequencies of a cracked FGMplate is studied using the XFEM. The formulation

is based on the FSDT and the 4-noded shear flexible, field consistent enriched element is
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Table 5.10: Fundamental frequency, ωb2/h
√
ρc/Ec for a cantilevered square plate

Si3N4/SUS304 FGM plate with a side crack (cy/b = 0.5, d/a = 0.5) as a function of crack
angle and gradient index. †denotes a change in trend.

a/h crack gradient index, n

angle, θ 0 1 2 5 10

10

-60 0.9859 0.5918 0.5322 0.4838 0.4610

-50 0.9840 0.5906 0.5312 0.4829 0.4601

-40† 0.9838 0.5905 0.5311 0.4828 0.4600

-30 0.9862 0.5919 0.5323 0.4840 0.4611

-20 0.9900 0.5943 0.534 0.4859 0.4630

-10 0.9936 0.5964 0.5364 0.4876 0.4646

0† 0.9951 0.5973 0.5372 0.4884 0.4653

10 0.9936 0.5964 0.5364 0.4876 0.4646

20 0.9900 0.5943 0.5344 0.4859 0.4630

30 0.9862 0.5919 0.5323 0.4840 0.4611

40† 0.9838 0.5905 0.5311 0.4828 0.4600

50 0.9840 0.5906 0.5312 0.4829 0.4601

60 0.9859 0.5918 0.5322 0.4838 0.4610

20

-60 0.9949 0.5972 0.5371 0.4883 0.4653

-50 0.9927 0.5959 0.5359 0.4872 0.4643

-40† 0.9924 0.5957 0.5357 0.4871 0.4641

-30 0.9944 0.5969 0.5368 0.4881 0.4651

-20 0.9979 0.5989 0.5387 0.4898 0.4667

-10 1.0011 0.6009 0.5404 0.4913 0.4682

0† 1.0024 0.6016 0.5411 0.4920 0.4688

10 1.0011 0.6009 0.5404 0.4913 0.4682

20 0.9979 0.5989 0.5387 0.4898 0.4667

30 0.9944 0.5969 0.5368 0.4881 0.4651

40† 0.9924 0.5957 0.5357 0.4871 0.4641

50 0.9927 0.5959 0.5359 0.4872 0.4643

60 0.9949 0.5972 0.5371 0.4883 0.4653
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Figure 5.11: Variation of the fundamental frequency for a cantilevered square
Si3N4/SUS304 FGM plate with a side crack as a function of crack orientation. d/a = 0.5,
cy/a = 0.5.

164



5.6. CONCLUSIONS

(a) Without crack, Ω1 = 0.4885 (b) With crack, Ω1 = 0.4883

Figure 5.12: First Mode shape for a cantilevered plate with a side crack with θ = 0◦, n =
5, cy/b = 0.5, d/a = 0.5, a/h = 10, b/a = 1.

(a) Without crack, Ω2 = 1.1608 (b) With crack, Ω2 = 0.8223

Figure 5.13: Second Mode shape for a cantilevered plate with a side crack with θ = 0, n =
5, cy/b = 0.5, d/a = 0.5, a/h = 10, b/a = 1.

(a) θ = 40◦ (b) θ = -40◦

Figure 5.14: First Mode shape (Ω1 = 0.4828) for a cantilevered plate with a side crack with
n = 5, cy/b = 0.5, d/a = 0.5, a/h = 10, b/a = 1.
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(a) θ = 60◦ (b) θ = -60◦

Figure 5.15: First Mode shape (Ω1 = 0.4838) for a cantilevered plate with a side crack with
n = 5, cy/b = 0.5, d/a = 0.5, a/h = 10, b/a = 1.

used. The material is assumed to be graded only in the thickness direction. Numerical

experiments have been conducted to bring out the effect of various parameters, such as

the gradient index, the crack geometry, the boundary condition and the plate geometry on

the natural frequency of the FGM plate. Also, the influence of multiple cracks and their

relative orientation on the natural frequency is studied. From the detailed numerical study,

the following can be concluded:

• Increasing the crack length decreases the natural frequency. This is due to the reduc-

tion in the stiffness of the material structure. The frequency is lowest when the crack

is located at the center of the plate.

• Increasing the gradient index, n decreases the natural frequency. This is due to the

increase in the metallic volume fraction.

• Decreasing the plate thickness, a/h and increasing the aspect ratio, b/a increases the

fundamental frequency.

• For a cantilevered plate with a side crack, the frequency is maximum when the crack

is horizontal, i.e., θ = 0. The response of the plate is symmetric with respect to this

crack orientation and the trend changes at θ = ±40◦.

• Crack orientation, θ = 45◦ has been observed to be a critical angle. At this crack

orientation, the frequency changes its trend for a square plate.

• Increasing the number of cracks, decreases the overall stiffness of the plate and thus

decreases the frequency. The frequency is lowest when both the cracks are oriented at

θ = 50◦.
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6
Conclusions

Detailed conclusions were drawn at the end of each chapter. Some important conclu-

sions and contributions are summarized below.

6.1 Conclusions & Future Work

This thesis presented two new numerical integration techniques (c.f. Chapter 3) to inte-

grate over the elements intersected by a discontinuity surface. The first method relies on

SCCM, where the regions intersected by the discontinuity surface are mapped onto a unit

disk and cubature rule on this unit disk is used to numerically evaluate the system matri-

ces, i.e., the stiffness matrix, the mass matrix and the force vector. The same technique is

also applied to integrate over arbitrary polygons in the context of polygonal finite element

method. One of the main advantage of this technique is that this eliminates the need for a

two level iso-parametric mapping and suppresses the need for ‘mesh’ alignment with the

discontinuity surface, which is inevitable in other techniques such as discussed in Chapter

2, Section 2.4.5. Additionally, the positivity of the Jacobian is ensured and quadrature rules

of any order can be easily obtained. The flexibility provided by the method also suffers

from the following drawback: (i) the SC mapping technique, with current state-of-the-art,

remains to two-dimensional problems and (ii) the integration points have to be computed

for each polygonal element in the domain.

The second method relies on strain smoothing applied to discontinuous finite element ap-

proximations. By writing the strain field as a non-local weighted average of the compatible

strain field, integration on the surface of the finite elements is transformed into contour

integration. A sub-division is still required for the elements that are intersected by the

discontinuity surface, but with strain smoothing, the integration is performed along the

boundaries of the subcells. One of the potential advantages of the smoothed XFEM is that

no subdivision of the split elements is required.
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The efficiency and the accuracy of both methods are illustrated with numerical examples

involving weak and strong discontinuities in Chapter 4. From the numerical examples

presented, it can be seen that the numerical integration performed with SCCM slightly out-

performs the conventional integration method based on sub-division. However, for the

SmXFEM, the numerical examples presented for the case with asymptotic enrichment, in-

dicate that the convergence rate obtained with SmXFEM is equal or superior to that of the

XFEM, but the error level is greater. This can be attributed to the asymptotic fields. To

make use of the salient features of the strain smoothing, the SmXFEM is combined with

the SCCM. This eliminates the need to sub-triangulate the elements completely cut by the

crack. It can be inferred from the numerical examples that the proposed technique behaves

at least as well as the Std. XFEM. The XFEM is applied to crack growth problems, where

the results obtained from the numerical study qualitatively agrees with the published re-

sults. The linear free flexural vibrations of cracked FGM plates are studied in Chapter 5.

The crack geometry is modelled independent of the underlying mesh and the influence of

the crack geometry on the fundamental frequency is numerically studied.

Application to 3D The method based on SC mapping for numerical integration is re-

stricted to 2D, as there is no such mapping available in case of the 3D. In case of the 2D,

it eliminates the need for sub-division of elements interested by the discontinuous surface.

The second method alleviates the need to integrate singular functions, but the error level is

greater compared to that of the XFEM. A combination of both the techniques could work

in 3D. The idea would be use strain smoothing to convert the volume integral to surface

integral and then the SC mapping subsequently to integrate along the boundary of the in-

terior and exterior subregions. Since each of these boundaries is composed of the union of

polygons, the SC mapping (or any other method integrate numerically on polygons) can be

used to evaluate the systemmatrices.

Cohesive cracks Note that a non-polynomial crack tip enrichment is commonly omitted

when XFEM is used in combination with cohesive zone models and hence the SmXFEM

is expected to perform at least as well as the Std. XFEM for cohesive cracks. By using a

constant weight function and by applying the divergence theorem, the surface integration

in 2D is transformed into line integration around the boundary. With SSM, no isoparamet-

ric mapping is required and the shape functions need to be computed along the edges of

the smoothing cells in the physical space. This provides the flexibility of integrating on the

line of discontinuity in the physical space without having to map it to parent element as

normally done in the conventional XFEM. The cohesive cracks can be modelled with func-
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tions of the form rλ, λ ≥ 1. The accuracy of the displacements in the vicinity of the crack

tip can be improved by enriching with higher order terms in the expansion, despite the fact

that there is no singularity. With strain smoothing the derivatives of such functions are no

longer necessary.

Numerical integration in Element Free Galerkin Method (EFGM) The idea of SCCM

can be used to locate the integration points in case of the EFGM which uses background

cells for the purpose of numerical integration. Instead of using quadrilateral elements as

background cells, a Voronoi tessellation can be done over the distributed nodes. Then each

polygon can be mapped onto a unit disk to locate the integration points.

6.2 Publications

The following is the list of articles published in journals and presented at various national

and international conferences.

Journal Publications
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3. S. Bordas, S. Natarajan, P. Kerfriden, C. Augarde, D. R. Mahapatra, T. Rabczuk, S.

D. Pont. On the performance of strain smoothing for quadratic and enriched finite element

approximations (XFEM/GFEM/PUFEM), International Journal for Numerical Methods
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A
Analytical Solutions

A-1 One-dimensional Bi-material problem

With no body forces, the exact displacement solution with uy = 0 at y = −1 and uy = 1 at

y = 1 is given by:

u(y) =





(y + 1)α, −1 ≤ y ≤ b,

1 + E1
E2

(y − 1)α, b ≤ y ≤ 1

, (A-1)

where,

α =
E2

E2(b+ 1)− E1(b− 1)
. (A-2)

A-2 Bi-material boundary value problem - elastic circular inho-

mogeneity

The governing equation in polar coordinates is

d

dr

[
1

r

d

dr
(rur)

]
= 0 (A-3)

The exact displacement solution is written as

ur(r) =





[(
1− b2

a2

)
β + b2

a2

]
r, 0 ≤ r ≤ a,(

r − b2

r

)
β + b2

r , a ≤ r ≤ b,

uθ(r) = 0. (A-4)
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where

β =
(λ1 + µ1 + µ2)b

2

(λ2 + µ2)a2 + (λ1 + µ1)(b2 − a2) + µ2b2
(A-5)

The radial (εrr) and hoop (εθθ) strains are

εrr(r) =





(
1− b2

a2

)
β + b2

a2 , 0 ≤ r ≤ a,(
1 + b2

a2

)
β − b2

a2
, a ≤ r ≤ b,

εθθ(r) =





(
1− b2

a2

)
β + b2

a2
r, 0 ≤ r ≤ a,(

1− b2

r2

)
β + b2

r2 r, a ≤ r ≤ b.
(A-6)

and the radial (σrr) and hoop (σθθ) stresses are

σrr(r) = 2µεrr + λ(εrr + εθθ),

σθθ(r) = 2µεθθ + λ(εrr + εθθ). (A-7)

where the appropriate Lamé constants are to be used in the evaluation of the normal stresses.

A-3 Bending of a thick cantilever beam

The exact solution for displacements and stresses for the bending of thick cantilever beam

is given by:

u(x, y) =
Py

6EI

[
(6L− 3x)x+ (2 + ν)(y2 − D2

4
)

]

v(x, y) = − P

6EI

[
3νy2(L− x) + (4 + 5ν)

D2x

4
+ (3L− x)x2

]
(A-8)

where I , the moment of inertia (second moment of area) is given by: I = D3

12 . and E and ν

in Equation (A-8) are given by

E =





E (plane stress),

E
1−ν2 (plane strain)

ν =





ν (plane stress),

ν
1−ν (plane strain).

The stresses corresponding to the displacements in Equation (A-8) are given by
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σxx(x, y) =
P (L− x)y

I
;

σyy(x, y) = 0;

σxy(x, y) = − P

2I

(
D2

4
− y2

)
. (A-9)

A-4 Analytical solutions for infinite plate under tension

The closed form solution in terms of polar coordinates in a reference frame (r, θ) centered

at the crack tip is:

σx(r, θ) =
KI√
r
cos

θ

2

(
1− sin

θ

2
sin

3θ

2

)

σy(r, θ) =
KI√
r
cos

θ

2

(
1 + sin

θ

2
sin

3θ

2

)

σxy(r, θ) =
KI√
r
sin

θ

2
cos

θ

2
cos

3θ

2
(A-10)

The closed form near-tip displacement field is:

ux(r, θ) =
2(1 + ν)√

2π

KI

E

√
r cos

θ

2

(
2− 2ν − cos2

θ

2

)

uy(r, θ) =
2(1 + ν)√

2π

KI

E

√
r sin

θ

2

(
2− 2ν − cos2

θ

2

)
(A-11)

In the two previous expression KI = σ
√
πa denotes the stress intensity factor (SIF), ν is

Poisson’s ratio and E is Young’s modulus.
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B
Numerical integration with SCCM

In polygonal finite elements, the use of elements with more than four sides can provide

greater flexibility and better accuracy. The polygonal elements can be used as a transition

element and simplify meshing or to describe the microstructure of polycrystalline alloys in

a rather straight forward manner. The use of polygonal element also necessitates the need

to compute shape functions that satisfy all of the following properties: Non-negativeness,

interpolation, partition of unity and linear completeness. Mathematically,

0 ≤ NI(x) ≤ 1, NI(xJ ) = δIJ ,

n∑

I=1

NI(x) = 1, NI(η)xI = x(η). (B-1)

where NI is the shape function. In this section, two methods to construct shape functions

on a polygonal finite element are discussed, viz., Laplace interpolants and Wachspress in-

terpolants.

Definition: The Voronoi tessellation is a fundamental geometrical construct to get a polygo-

nal mesh covering a given domain. Figure B-1 shows a Voronoi diagram of a point P . The

Voronoi diagram is a sub-division of the domain into regions V (pi), such that any point

in V (pI) is closer to node pI than to any other node. In mathematical terms, the Voronoi

polygon TI is defined as

TI = {x ∈ R
2 : d(x,xI) < d(x,xJ ), ∀J 6= I, } (B-2)

where d(xI ,xJ), the Euclidean matrix, is the distance between xI and xJ .

B-1 Laplace Interpolants

The Voronoi diagram and its dual the Delaunay triangulation, which are used in the con-

struction of the natural neighbour interpolant, are useful geometric constructs that define

an irregular set of points. The Laplace interpolant is also called natural neighbour inter-
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polants and it also provides a natural weighting function for irregularly spaced nodes.
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Figure B-1: Voronoi diagram of a point P .

In Figure B-1, the Voronoi cell for point P is shown. If the Voronoi cell for P and that of node

Pi have a common Voronoi edge, then the node pi is called a natural neighbour of the point

P . Let tIJ be the Voronoi edge that is common to VI and VJ in Figure B-1 andm(tIJ) denote

the Lebesgue measure of tIJ . If PI and PJ do not have a common edge, then m(tIJ) = 0.

For the point P with n natural neighbours, the Laplace shape functions for node PI can be

written as:

φI(x) =
αI(x)∑n
j=1 αJ(x)

, αJ (x) =
sJ(x)

hJ(x)
, x ∈ R

2 (B-3)

where αI(x) is the Laplace weight function, sI(x) is the length of the Voronoï edge associ-

ated with p and node pI , and hI(x) is the Euclidean distance between p and pI (Figure B-1).

In a general d-dimensional setting, the computational of the Laplace basis function depends

on the ratio of a Lebesgue measure of R2 divided by linear dimension.

The Laplace interpolant satisfies all properties as indicated in Equation (B-1) and the essen-

tial boundary conditions within a Galerkin procedure are treated as in the finite elements.

On a bi-unit square, the Laplace, theWachspress, and the finite element shape functions are

identical. And on regular polygons, the Laplace and the Wachspress shape functions are

the same.

B-2 Wachspress interpolants

Wachspress, by using the principles of perspective geometry, proposed rational basis func-

tions on polygonal elements, in which the algebraic equations of the edges are used to

ensure nodal interpolation and linearity on the boundaries. Wachspress proved that for

an n-gon the shape functions are rational polynomials. In general, for an n-sided convex
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polygon, a Wachspress shape function N
(n)
I (x, y) is a rational polynomial of the following

form:

Nn
I (x, y) =

P
n−2(x, y)

Pn−3(x, y)

P
(m)(x, y) : m− degree polynomial in x, y (B-4)

Wachspress shape functions have the following essential features:

• Each function is positive in the convex domain;

• Each function is linear on each side of the convex n-gon;

• The set of functions exactly interpolates an arbitrary linear field.

In this section,Wachspress interpolants over a quadrilateral is presented. Consider the four-

sided quadrilateral, as shown in Figure B-2. Let ℓ1, ℓ2, ℓ3 and ℓ4 be the equations of the lines

corresponding to each of the four sides of the quadrilateral, (A−B,B−C,C −D&D−A),

respectively, and be written in parametric form as

ℓ1(x, y) = a1x+ b1y + c1 = 0

ℓ2(x, y) = a2x+ b2y + c2 = 0

ℓ3(x, y) = a3x+ b3y + c3 = 0

ℓ4(x, y) = a4x+ b4y + c4 = 0 (B-5)

4

1 2

3

ℓ1

ℓ3

ℓ4

x

y

ℓ2

Figure B-2: A sample quadrilateral

where ai, bi and ci for i =1,2,3,4 are real constants. The wedge functions corresponding to

each node, wi, are defined so that they vary linearly along the edges adjacent to each node
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and vanish at the remaining nodes as:

w1(x, y) = κ1ℓ2ℓ3

w2(x, y) = κ2ℓ3ℓ4

w3(x, y) = κ1ℓ4ℓ1

w4(x, y) = κ1ℓ1ℓ2 (B-6)

where the κi are constants. In order that the Wachspress interpolantsNi, satisfy te partition

of unity requirement, it is defined as:

NI(x, y) =
wI(x, y)∑
wI(x, y)

(B-7)

In a more general form, the wedge functions can be expressed as:

wI =
J=n∏

J 6=I,I+1

ℓJ(x, y) (B-8)

B-3 Numerical Example

An example in linear elasticity is taken to illustrate the effectiveness of the proposed nu-

merical integration rule, which is referred to as SCCM. The results are compared to the

analytical solution and the sub-triangulation method. In this study, the number of inte-

gration points per element is kept approximately the same between the sub-triangulation

method and the proposed method. In case of the sub-triangulation method, an n− gon is

divided into triangles and 13 integration points per triangles are used. The total number of

integration points is then computed by:

Total number of integration points = Number of integration points per triangle× n (B-9)

where n is the number of sides of an element.

B-3.1 Bending of thick cantilever beam

A two-dimensional cantilever beam subjected to a parabolic load at the free end is examined

as shown in Figure B-3. The geometry is: length L = 10, height D = 2. The material

properties are: Young’s modulus E = 3 × 107, Poisson’s ratio ν=0.25 and the parabolic

shear force P = 150. The exact solution to this problem is available as given in Appendix A.
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L

D

y

x

P

Figure B-3: Geometry and loading of a cantilever beam

In this problem, a structured polygonal mesh is generated. To get a structured polygo-

nal mesh with hexagons, first a regular lattice of equilateral triangles is constructed and

then the corresponding Voronoi diagram is generated to obtain the polygonal mesh. Fig-

ure B-4 illustrates a structured polygonal mesh. Figure B-5 shows the rate of convergence

in the energy norm for the two numerical integration methods. It is seen that for the same

number of integration points, the SCCM outperforms the conventional integration by sub-

triangulation. Andwith decreasing mesh size, both methods converge to the exact solution.

An estimation of the convergence rate is also shown.

184



Appendix B

Figure B-4: Domain discretization of cantilever beam with structured polygonal mesh.
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Figure B-5: The convergence of numerical strain energy to the exact strain energy and con-
vergence rate in the energy norm for structured polygonal meshes: (a) Strain energy and
(b) the convergence rate. The error is measured by theH1 (energy) norm.
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C
Strain smoothing for higher order elements

In this section, the strain smoothing is applied to higher order elements. The SFEM proce-

dure for higher order elements is described in detail with a 1D example and is then extended

to a two dimensional problem.

C-1 One dimensional problem

To illustrate the solution procedure by the SFEM for quadratic approximations, let us first

consider a 1D bar shown in Figure C-1. The left edge of the bar is clamped and unit force

is prescribed at the right end. The total length of the bar is L(= L1 + L2)=1. First the

conventional FEM solution is given for completeness and then the SFEM solution is studied

in detail. For the current study, consider a 1D three-noded element and with one degree of

freedom per node.

FEM solution The assembled system of equations in case of the FEM is given by:

1

3




7 −8 1

−8 16 −8

1 −8 7








u1

u2

u3





=





F1

0

F3





(C-1)

with boundary conditions, u1 = 0 and F2 = 1, the solution is given by u = {0, 1/2, 1}.

SFEM solution

F = 1

L2 = 1/2L1 = 1/2

u = 0 23

1

Figure C-1: One dimensional problem
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One subcell In this case, the entire domain is treated with only one subcell. The internal

node is embeddedwithin the subcell. Because of this, the stiffness matrix has no knowledge

of the internal node. The corresponding strain-displacement matrix is (see Equation (3.19)):

B̃ =
1

L

[
N1 N2 N3

]
|x=Lx=0 (C-2)

where in Equation (C-2) the shape functions are evaluated at the domain boundary. The

strain displacement matrix for one subcell thus writes:

B̃ =
1

L

[
−1 1 0

]
. (C-3)

It is clear from the above equation that the contribution from the interior node to the strain

matrix is ‘zero’, because the shape function of the interior node is zero at the other two

nodes. This leads to a singular stiffness matrix, K̃.

Two subcells Now the bar is split into two subcells, with the subcell boundary conform-

ing to the interior node. The strain displacement matrix for each of the subcells is given

by:

B̃1 =
1

L/2

[
−1 1 0

]
, along L1

B̃2 =
1

L/2

[
0 −1 1

]
, along L2 (C-4)

The assembled system of equations for SFEM is thus:




2 −2 0

−2 4 −2

0 −2 2








u1

u2

u3





=





F1

0

F3





(C-5)

with boundary conditions, u1 = 0 and F2 = 1, the solution is given by u = {0, 1/2, 1}.

Remark: From the above discussion, it can be seen that there is a minimum number of sub-

cells required in case of the SFEM. This is very similar to the number of Gauß points re-

quired to properly integrate the stiffness matrix in the FEM. For a three noded 1D element,

the order of the polynomial is n = 2 and we would need m = 2 (2m − 1 = n) integration

points for proper integration. Similarly, in case of the SFEM, a minimum of 2 subcells is

required to avoid any spurious energy modes. It is interesting to note that the stiffness ma-

trices from the two methods are not identical, but yield the same solution. This only means

that det|K− K̃| = 0. It can also be verified that increasing the number of subcells, does not

change the solution.
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Conclusion For a three noded one dimensional element, the following can be concluded

• One subcell leads to a singular K̃matrix.

• Two subcells

– Lead to a proper K̃matrix (i.e., avoid spurious zero energymodes). The solution

is identical to the analytical solution,

– The FEM stiffness matrix,K and the SFEM stiffness matrix, K̃ are not the same,

but yield identical solution.

• Using an even number of subcells (beyond 2), yields identical results to the 2 subcell

version.

• With 3 subcells, the stiffness matrix is not singular, but produces erroneous results.

This is because with odd number of subcell division, the subcell boundary will not

conform to the interior node. In this case of odd number of subcells, the contribution

from the interior nodes to the stiffness matrix is incorrect. But with an increase in the

number of subcells, it approaches the analytical solution.

C-2 Two dimensional problems

From the previous discussion on the one dimensional element, we concluded that there is

a minimum number of subcells required in the case of the SFEM to avoid spurious energy

modes. Before proceeding with the two dimensional analysis, we will find the minimum

number of subcells required for higher order two dimensional elements. This is done by

computing the energy eigenmodes of the stiffness matrix. The element considered for this

study is 8 noded quadrilateral element (labelled ‘Q8’). The coordinates of the element cho-

sen for this study are shown in Figure C-2. The Q8 element is divided into a number of

subcells and for each subdivision, the element energy eigenmode is computed. Table C.1

shows the number of zero energy eigenmodes for Q8 element as a function of the number

of subcells along the x− and y− directions. It can be seen that a minimum of 4 subcells

is required to avoid spurious energy modes. The boundaries of the 4 subcells contains the

mid-side nodes. This behavior is analogous to the 1D example previously studied.

Higher order patch test

The higher order patch test is performed on a Q8 element. In Figure C-3 a two-element

patch of quadratic isoparameteric quadrilaterals is shown. For the FEM, a 3×3 Gaussian

quadrature is used and for the SFEM, the number of subcells is varied. For each subcell
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y
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(a)

y

x

(b)

Figure C-2: (a) Q8 element and (b) subdivision of Q8 element by quadrilateral subcells. The
dotted lines denote the subcell boundaries. Note that these boundaries contain themid-side
nodes. In this case, there are four subcells.

Table C.1: Q8 element energy eigenmodes for different number of subcells in each direction.
The right number of vanishing eigenvalues for the elementary stiffness matrix should be 3
and it can be seen that a minimum of 4 subcells or a minimum of 2 in one direction and 4 in
the other direction is required to avoid the spurious energy modes.

Number of subcells

in x− in y−
1 2 4 6 8 10

1 13 10 8 8 8 8

2 10 4¯ 3 3 3 3

4 8 3 3 3 3 3

6 8 3 3 3 3 3

8 8 3 3 3 3 3

10 8 3 3 3 3 3
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A

B

15

15

x

y

L = 10

D = 2

Figure C-3: Patch test for 8- noded isoparametric elements.

Table C.2: Higher order patch test. vA is the displacement at pointA in the y− direction and
uB , vB are the displacements at point B along the x− and y− direction, respectively.

Method Quadrature rule Subcells vA uB vB

Exact - - 0.75 0.15 0.75225

FEM 3×3 - 0.74999 0.14999 0.752249

SFEM

- 1 1.00000 0.20000 1.003000

- 4 0.84375 0.16875 0.846282

- 9 0.80000 0.16000 0.802400

- 16 0.78125 0.15625 0.783593

variation, the solution at points A and B are monitored. From the results shown in Ta-

ble C.2, it is seen that the SFEM does not pass the patch test.

Cantilever Beam problem

A two dimensional cantilever beam subjected to a parabolic load at the free end is examined

as shown in Figure C-4. The geometry is: length L = 8, height D = 4 and thickness t = 1.

The material properties are: Young’s modulus E = 3 × 107, and the parabolic shear force

P = 250. The exact solution to this problem is available as given in Appendix A.

Under plane stress conditions and for a Poisson’s ratio ν = 0.3, the exact strain energy is

0.039833333. Figure C-5 shows the rate of convergence in the displacement norm and rate

of convergence in the energy norm of elements built using the present method compared

with those of the standard FEM Q8 element. It can be seen that the nice properties of the
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Figure C-4: A cantilever beam and boundary conditions.

strain smoothing, which were seen in the Q4 element are not seen in higher order elements.

Although, with increase in the mesh density, the results converge to the analytical solution,

the convergence rate is not optimal.
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Figure C-5: Cantilever beam: (a) convergence rate in the displacement (L2) norm and (b)
the convergence rate in the energy (H1) norm with Q8 mesh. SCkQ8 (k = 4, 16, 36) denotes
the number of subcells. m is the average slope.
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D
Stress intensity factor by interaction integral

The energy release rate for general mixed-mode problems in two dimensions is written as:

G =
1

Ẽ
(K2

I +K2
II) (D-1)

where Ẽ is defined as:

Ẽ =

{
E

1−ν2 plane strain

E plane stress
(D-2)

Consider a crack in two dimensions. Let Γ be a contour encompassing the crack tip and n

be the unit normal vector (see Figure 2.2). The contour integral J is defined as:

J = lim
Γo→0

∫

Γo

[
Wdx2 − Ti

∂u

∂x1
dΓ

]
= lim

Γo→0

∫

Γo

[
Wdx2 − σij

∂u

∂x1
njdΓ

]
(D-3)

Co

C+

C−

+n

Γ

−n

Crack

Figure D-1: Contours and domain for computation of mixed mode stress intensity factors.

where Γo = Γ ∪Co ∪C+ ∪C−(see Figure D-1). Physically, the J integral can be interpreted

as the energy flowing per unit crack advance, i.e., it is equivalent to the energy release rate.
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Two states of the cracked body are considered, viz., the current (denoted as State 1) and the

auxiliary state (referred to as State 2). The J integral given by Equation (D-3) is written as a

superposition of these two states as:

J (1+2) = lim
Γo→0

∫

Γo

[
1

2
(σ

(1)
ij + σ

(2)
ij ))(ε

(1)
ij + ε

(2)
ij )δ1j − (σ

(1)
ij + σ

(2)
ij )

∂(u
(1)
i + u

(2)
i )

∂x1

]
nj dΓ (D-4)

By re-arranging the terms in Equation (D-4), we get:

J (1+2) = J (1) + J (2) + I(1+2) (D-5)

where I(1+2) is called the interaction integral for the states 1 and 2 and is given by:

I(1+2) = lim
Γo→0

∫

Γo

[
1

2
(σ

(1)
ij ε

(2)
ij + σ

(2)
ij ε

(1)
ij )− σ

(1)
ij

∂u
(2)
i

∂x1
− σ

(2)
ij

∂u
(1)
i

∂x1

]
nj dΓ (D-6)

or,

I(1+2) = lim
Γ→0





∫

Γ∪Co∪C+∪C−

[
W (1,2)δ1j − σ

(1)
ij

∂u
(2)
i

∂x1
− σ

(2)
ij

∂u
(1)
i

∂x1

]
q nj ds





(D-7)

For a combined state, Equation (D-1) can be re-written as:

J (1+2) = J (1) + J (2) +
2

Ẽ
(K

(1)
I K

(2)
II +K

(2)
I K

(1)
II ) (D-8)

By comparing Equation (D-5) and Equation (D-8), we get:

I(1+2) =
2

Ẽ
(K

(1)
I K

(2)
II +K

(2)
I K

(1)
II ) (D-9)

In order to facilitate the numerical implementation of the interaction integral, it is advanta-

geous to recast the contour integrals into equivalent domain integrals. The equivalent do-

main form of the interaction integral is obtained by defining an appropriate test or weight-

ing function and applying the divergence theorem. In this study, the weighting function is

chosen to take a value of unity on an open set containing the crack tip and vanishes on an

outer prescribed contour. By applying divergence theorem, to Equation (D-7), the interac-

tion integral in domain form is given by:

I(1+2) =

∫

Ω

[
−W (1,2)δ1j + σ

(1)
ij

∂u
(2)
i

∂x1
− σ

(2)
ij

∂u
(1)
i

∂x1

]
∂q

∂xj
dΩ (D-10)
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Remark: It is assumed that the crack faces are straight and traction free.

D-1 Interaction integral for non-homogeneous materials

The interaction integral for non-homogeneous materials and materials with discontinuities

is:

I (1,2) =

∫

Ω

[
σ
(1)
ij

∂u
(2)
i

∂x1
+ σ

(2)
ij

∂u
(1)
i

∂x1
−W (1,2)δ1j

]
∂q

∂xi
dΩ

+

∫

Ω
σ(1)ij

[
S
tip
ijkl − Sijkl(X)

]
σ(2)kl,1 q dΩ

(D-11)

To employ the interaction integral in the XFEM, Equation (D-11) is discretized as:

I =
N∑

n=1

M∑

m=1

{
(σ

(1)
ij

∂u
(2)
i

∂x1
+ σ

(2)
ij

∂u
(1)
i

∂x1
− σ(2)jk εjkδ1j)

∂q

∂xi

σ(1)ij

[
S
tip
ijkl − Sijkl(X)

]
σ(2)kl,1 q

}
det|J |wp

(D-12)

whereN is the number of elements in the integral domainΩ;M is the number of integration

points in one element; det|J | is the determinant of Jacobian matrix and wp corresponds to

the weight at the integration point.

196



E
Level Set Method

The level set method (LSM) is a numerical technique proposed by Osher and Sethian for

tracking moving interfaces. It is based upon the idea of representing the interface as a level

set curve of a higher dimensional function φ(x, t). In general, a moving interface Γ ⊂ R
2 is

formulated as the level set curve of a function φ(x, t) : R2 × R → R, where,

Γ(t) =
{
x ∈ R

2 : φ(x, t) = 0
}

(E-1)

The resulting equation for the evolution of φ is given by:

φt + F ||∇φ|| = 0, φ(x, t) = 0 given (E-2)

where F is the velocity of the front. The initial condition on φ are typically defined as the

signed distance to the interface as:

φ(x, t) = ±minx∈Γ(t)||x− x|| (E-3)

The plus sign and minus sign are chosen on either side of the interface. In the LSM, the so-

lution of Equation (E-2) is approximated on a grid or on a mesh by computational schemes.
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