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Abstract

The Arctic contains a wealth of landforms that are governed by the diurnal and
seasonal response of permafrost to climatic and topographic forcings. Of key impor-
tance to the process rates of many periglacial landforms is the dynamic behaviour
of the active layer, which regulates the transfer of heat and moisture between the
atmosphere and permafrost. The strong dependence of periglacial process rates on
active layer dynamics makes this geomorphic system particularly sensitive to future
increases in Arctic temperatures and precipitation. These increases will continue
to degrade permafrost, affecting the distribution and rates of periglacial processes.
I develop a landform classification model on Svalbard that reveals solifluction and
scree to be the most dominant hillslope processes acting on this landscape, with sedi-
ment fluxes greatest in solifluction. A combination of landslide mapping, solifluction
modelling and slope stability analysis in Alaska reveals that landslides are coincident
with convergent topography on soliflucting hillslopes that have concentrated ground
ice at depth. Convergent topography allows for higher moisture availability that
feeds the growth, concentration, and development of a large network of ice lenses
at the permafrost/active layer boundary. The excess pore pressures generated upon
thaw reduces the shear strength of soil at the base of the active layer, causing it to
slide downslope along a planar slip surface on top of the unthawed permafrost. Due
to a warming Arctic, permafrost is expected to continue thawing, creating an ever
more dynamic and deeper active layer. Consequently, the relative regional extent of
periglacial landforms in mountainous Arctic environments is expected to change,
with Arctic hillslopes becoming more unstable during extreme summer thawing.
This will pose a greater hazard to Arctic infrastructure and act as a major force for
environmental and geomorphological change.
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Chapter 1

Introduction

1.1 Global context, rationale, and motivation

The morphology of mountainous Arctic landscapes is the result of geomorphological

processes that are driven by glaciations and the freezing and thawing of ground

over thousands of years (French 2007). These periglacial landscapes, form in areas

that are currently underlain with or have had permafrost. Today, permafrost covers

12.8 to 17.8% of the Earth’s land surface area, most of which is in the northern

hemisphere(Harris et al. 2001a; French 2007; Tarnocai et al. 2009; Zhang et al. 2000;

Gruber 2012). The diurnal and seasonal response of permafrost to climatic and

topographic forcings governs the morphology and extent of periglacial landforms

(Etzelmüller et al. 2001; French 2007; Aalto et al. 2014). Of key importance to the

process rates of many periglacial landforms is the dynamic behaviour of the active

layer, which regulates the transfer of heat and moisture between the atmosphere

and permafrost (Matsuoka 2001a). The strong dependence of periglacial process

rates on active layer dynamics makes this geomorphological system particularly

sensitive to current global warming. Future increases in Arctic temperatures and

precipitation (Stocker et al. 2013; Cohen et al. 2014) will continue to degrade
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permafrost (Osterkamp 2003; Harris et al. 2009), affecting the distribution and rates

of periglacial processes (Akerman 2005).

Currently, our understanding of how current global warming will affect periglacial

processes and their rates is in its infancy. International permafrost monitoring collab-

orations such as the Permafrost and Climate in Europe (PACE) project (Harris et al.

2001a; Harris et al. 2009) and Circumpolar Active Layer Monitoring programme

(CALM) (Brown et al. 2000; Akerman and Johansson 2008) have observed changes

in the rate of periglacial processes with a deepening active layer. Greater monitoring

is being supported by an improved quantitative understanding of periglacial processes

and how these are affected by climate (Gruber et al. 2004; Andersen et al. 2015). I

view current global warming as a process that will lead to significant changes in the

frequency of hazardous surface processes and in hillslope sediment fluxes (Bartsch

et al. 2009).

Given the challenge of gathering topographic and remotely sensed data in the

Arctic, we lack a basic understanding of the spatial extent of landforms (Aalto et

al. 2014). Quantifying the relationship between topography and landform process

is a key challenge for periglacial geomorphologists. The effect of future climate

warming on hazards and hillslope sediment fluxes depends on identifying regionally

extensive periglacial landforms that are susceptible to warmer climates. To address

this knowledge gap, periglacial geomorphologists are now turning to geographical

information systems (GIS) to measure the spatial distribution of periglacial landforms

(Luoto and Seppala 2002; Hjort and Luoto 2006; Marmion et al. 2008; Aalto

and Luoto 2014; Aalto et al. 2014). These empirical studies have driven process-

based and statistical models of topographic and environmental factors that govern

periglacial processes (Bartsch et al. 2002; Luoto and Hjort 2005; Hjort et al. 2007;

Marmion et al. 2008). However, only a few studies have been able to explore the

impact of landforms on the topography of landscapes and their sediment budgets

(Bartsch et al. 2008; Bartsch et al. 2009), the impact of current global warming on
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the occurrence and spatial extent of landforms (Aalto and Luoto 2014; Aalto et al.

2014), and topographic controls on the physical process governing hillslope stability.

In this thesis, I seek to understand the spatial distribution of key mountainous

Arctic landforms. I will use this to test hypotheses about the mechanism controlling

the process of shallow translational landsliding in permafrost called active layer

detachment (ALD) failure. This thesis focuses on two geographical areas: (1) I

utilised remotely sensed data from Spitsbergen, Svalbard to create and develop a

generalised periglacial landform model that can classify landscapes from topographic

data. I chose Svalbard because of its high density of landforms in a small area (Andre

1997; Matsuoka and Hirakawa 2000; Prick 2003; Humlum et al. 2007; Harris et al.

2011; Siewert et al. 2012) and because it has one of the fastest warming regions in the

Arctic (Harris et al. 2009). Additionally, many empirical studies provide information

about periglacial processes on Svalbard (Matsuoka 2001a; Harris et al. 2011). (2) I

used digital elevation models (DEMs) of the Brooks Range, Alaska to (i) test the

classification model developed using the Svalbard data and (ii) create a physically

based model of hillslope stability and to assess the impact of thawing permafrost on

mass-wasting processes. I chose the Brooks Range because it has a landscape similar

to Svalbard, it’s within the continuous permafrost zone, and in the past decade, it

has experienced warming events that have created mass-wasting landforms (Balser

et al. 2009; Gooseff et al. 2009; Kokelj and Jorgenson 2013; Balser et al. 2015). As

a result, I aim to test the following hypotheses:

H1: The relative spatial distribution of periglacial landforms and their impact on

sediment fluxes in mountainous Arctic landscapes can be quantified by automating

the classification of landforms using topographic parameters derived from DEMs.

Studies have shown how climate can have a profound impact on the erosion, storage,

and deposition rates of periglacial landforms, impacting the sediment budget of land-

scapes (Matsuoka 2001a; Beylich 2008; Lewkowicz and Harris 2005a). To address
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this at a regional scale, some studies have used a combination of remotely sensed

data, field studies, and statistical analysis to model the distribution of landforms.

There are few studies that have attempted to quantify the sediment flux of landforms

on Svalbard (Hjort et al. 2014). This is important because Svalbard is an Arctic

region already seeing rapid warming and geomorphological response to current

global warming (Akerman 2005). Having a tool with which to quantify current and

future sediment fluxes will help our understanding of the future topographic response

to current global warming on Svalbard. Here, I develop a new tool for identifying

periglacial landforms found in mountainous Arctic landscapes and apply this tool

to regions on Svalbard. I then combine these data with process-rate information to

estimate landform specific sediment fluxes.

H2: Active layer detachments occur in convergent topography on soliflucting hill-

slopes.

ALDs are a potentially hazardous Arctic process for which we have a limited under-

standing. Here I investigated whether there was a spatial control on the initiation of

ALDs, and whether an improved understanding of their spatial extent can help map

areas of potential ALD initiation. These shallow landslides initiate due to excess

pore pressures along a shear plane between the base of a soil layer and the top of an

impermeable layer such as permafrost or bedrock (Lewkowicz and Harris 2005b).

In permafrost landscapes, water accumulates and freezes in regions of convergent

topography known as water-tracks, where ground ice content can be found in excess

of 60% (Trochim et al. 2016a). Balser et al. (2015) observed that ALDs initiate in

water-track zones while Lewkowicz (1990) noted the occurrence of many ALDs on

Ellesmere Island, Canada in convergent topography. However, not all landscapes fail,

because there is an element of pre-conditioning relating to ground ice development

from the previous year and to soil shear strength reduction by annual plug-like

solifluction (Lewkowicz and Harris 2005a).
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H3: The spatial distribution of ground ice in the active layer and its location along

the failure plain control hillslope instability.

Hillslope instabilities such as ALDs occur in both continuous and discontinuous

permafrost zones (Lewkowicz and Harris 2005a). During autumn freezing, in areas

of continuous permafrost, the freezing front advances upward from the permafrost

leading to a high concentration of segregation ice at the active layer-permafrost

boundary (Mackay 1981; Harris and Lewkowicz 2000) with ice content of 30 and

40% by weight (Lewkowicz 1992).

After a review of key periglacial literature, the following thesis addresses the three

hypotheses in three data chapters: (i) Chapter 3 presents the results of creating a

supervised automated model for classifying DEMs into landforms found in moun-

tainous periglacial environments as well as quantifying sediment fluxes; (ii) Chapter

4 investigates the spatial controls on ALD initiation; (iii) Chapter 5 explores the

impact of different ice lens distributions in the active layer on the stability of a

hillslope during thaw.





Chapter 2

Literature review

This literature review is focussed on both the development of our understanding of

landform classification methods that form the basis of chapters 3 and 4, providing

an overview of the range of Arctic landforms that form the basis of these classifica-

tions. Finally, the literature review provides an overview of the state of our current

understanding of ALDs. This will be the basis for chapters 4 and 5.

2.1 Landform classification

2.1.1 Introduction

Being able to automate the classification of remote landscapes can provide valuable

contributions to laboratory based research (Harris et al. 2001a; Harris et al. 2001b).

Automated analysis of DEMs has provided a significantly improved understanding

of the genesis and processes that govern the spatial extent of landforms across all

geographical areas (Bolongaro-Crevenna et al. 2005; Barlow et al. 2006; Debella-

Gilo and Etzelmüller 2009; Etzelmüller et al. 2001; Nishimura et al. 2009; Abellan

et al. 2010; Prima and Yoshida 2010). Areas of permafrost and periglacial landforms

have received less research than warmer landscapes, although there has been a
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growing amount of recent work (Aalto and Luoto 2014; Hjort et al. 2014; Rudy et al.

2016; Rudy et al. 2017).

2.1.2 Historical overview of landform classification

Spatial analysis of landforms has been made possible due to (1) the availability of

remotely sensed data and the ability to process this data in large quantities, and (2)

the development of geomorphometry, the spatial modelling of topography using re-

motely sensed data and/or DEMs (Evans 1972; Dikau et al. 1995). Geomorphometry

attempts to understand the relationship between surface processes and the topo-

graphic characteristics of landforms (Pike 1988). Topographic parameters including

slope gradient, slope aspect, curvature, and topographic wetness index provide a

basis for geomorphometric classification. Geomorphometry defines topographic

regions based on different combinations of topographic parameters. These regions

represent the dominance of certain surface processes (landforms) (Etzelmüller and

Sulebak 2000; Etzelmüller et al. 2001). If an empirical or physical relationship can

be established between topographic parameters and surface processes, a landscape

can be classified into landform types (Etzelmüller et al. 2001).

Geomorphometric parameters of a landscape have been measured manually, clas-

sifying a landscape into landform features such as ‘flat’, ‘hilly’, and ‘rolling’ (Horton

1945) and are often the first or second order derivatives of elevation (Jasiewicz and

Stepinski 2013). Hammond (1964) was among the first to experiment with using a

combination of three geomorphometric parameters: (1) Percentage of area with flat

or gentle ground with slopes <8%; (2) local relief (maximum – minimum elevation);

and (3) profile type (relative proportion of flat or gently sloping terrain). From

these three geomorphometric parameters Hammond (1964) was able to classify the

continental United States into five landform features (plains, tablelands, plains with

hills or mountains, open hills and mountains, and hills and mountains).
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With the advent of GIS, Hammond’s (1964) method was automated by Evans

(1972) and Dikau et al. (1995). Pike (1988) took this further and introduced the

concept of classifying a landscape by automating the generation of geomorphometric

parameters, proposing that landform processes have a ‘geometric signature’. Pike

(1988) recognised that with the availability of DEMs and computer technology, the

field of geomorphometry can move on from the vague classifications of Hammond

(1964), to answering more fundamental questions about the processes that shape

landscapes at regional scales. Current methods of landscape classification use a

combination of geomorphometric parameters to determine the unique geometric

signature of particular landforms (Evans 1972; Pike 1988; MacMillan et al. 2003;

Jasiewicz and Stepinski 2013).

Today, geomorphometry has a variety of applications in the Earth Science com-

munity from mapping landslide distribution, groundwater movement (Armstrong

and Martz 2003), and soil type (Debella-Gilo and Etzelmüller 2009) to volcanoes

and craters on Mars (Stepinski and Vilalta 2005; Ghosh et al. 2010).

2.1.3 Pixel and object-orientated analysis

The classification of landforms using DEMs can be accomplished by using either

pixel-based or object-oriented methods. Pixel-based methods assign a classification

to each pixel, regardless of whether the classification applies to adjacent pixels (Irvin

et al. 1997; Asselen and Seijmonsbergen 2006; Burrough et al. 2015). In contrast,

object-orientated classifications group pixels by context and geometric signature,

generating objects of different shapes and scale (Dragut and Blaschke 2006; Ghosh

et al. 2010). Both methodologies rely on classifiers designed manually on the

basis of expert knowledge and empirical evidence, called supervised classification

(Iwahashi et al. 2001; MacMillan et al. 2003; Iwahashi and Pike 2007; Minar and

Evans 2008; Ghosh et al. 2010; Iwahashi et al. 2012). Jasiewicz and Stepinski (2013)
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developed a novel method using machine vision that they have termed ‘geomorphons’.

This is different to cell-based and object-based classifiers because it uses pattern

recognition and is independent of scale, similar to how a trained geomorphologist

would distinguish landform types from an aerial photograph.

2.1.4 Landform classifications of permafrost and periglacial land-

scapes

Our understanding of the interaction between process and form at a landscape scale

in periglacial landscapes has improved over the past decade (Luoto and Hjort 2004;

Hjort and Luoto 2006; Bartsch et al. 2009; Aalto and Luoto 2014). The wide

knowledge gap between our understanding of form and process was highlighted

by Barsch (1993), who described the analysis of processes as the major task in

future periglacial geomorphological research. The initial work in the 1990s focussed

on basic analysis of landforms, including understanding the altitudinal zonation of

landforms in northern Sweden (Niessen et al. 1992). Linear discriminant analysis

(LDA) of satellite imagery and DEMs was employed to provide an initial ‘slope unit’

classification for the Yukon Territory, Canada (Giles and Franklin 1998).

Analysis of different classification systems and parameters has provided a sig-

nificant insight into both the spatial distribution of periglacial landforms in Arctic

environments and the challenges and limitations of these geomorphometric methods

(Etzelmüller and Sulebak 2000; Etzelmüller et al. 2001; Romstad 2001; Romstad and

Etzelmüller 2012). This suite of papers assumed that the distribution of periglacial

landforms can be described by relief parameters, thermal regime, soil moisture, and

soil properties, all of which could be determined topographically (Etzelmüller et al.

2001). They demonstrate that by using logistic regression, solifluction could be clas-

sified based on its slope curvature, slope gradient and slope length (Etzelmüller et al.

2001). Romstad (2001) used contextual merging and iterative cluster analysis to clas-
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sify debris cones on a slope in Ny-Ålesund, Svalbard using slope, profile curvature,

planform curvature and topographic wetness index. Romstad and Etzelmüller (2012)

mapped landform features using a terrain segmentation method, which subdivides a

terrain surface into discrete ‘terrain units‘ and applied this method across watersheds

to create a mean-curvature map. The results of this method compared favourably

with landforms mapped in Bolterdalen, Svalbard.

The geomorphological process unit (GPU) classification system was developed in

Rabotsbekken, Northern Norway and Kärkevagge for Northern Sweden (Bartsch et

al. 2002; Gurney and Bartsch 2005; Bartsch et al. 2008; Bartsch et al. 2009). A GPU

is an area with homogenous processes that can be grouped on the basis of a single

geomorphometric signature. This method recognises the challenge of separating

landforms of similar geomorphometry, so each GPU can contain multiple landforms.

GPUs can be classified using a combination of fieldwork, satellite imagery and

DEMs such as slope gradient, slope aspect and profile curvature (Bartsch et al. 2002).

Bartsch et al. (2009) is the only periglacial study to date that has attempted to

quantify sediment transport processes at a catchment scale. A key finding of their

research was that 680 t a-1 of sediment is moved from beneath rockwalls and 150 t

a-1 is transported into the fluvial system.

Multiple logistic regression has been used to determine the distribution of palsas

(peat mounds with perennially frozen cores), patterned ground, earth hummocks,

sorted solifluction sheets and periglacial deflation sites (wind eroded bare ground

sites in cold climates) in Finland (Luoto and Seppala 2002; Luoto and Hjort 2004;

Luoto and Hjort 2005; Hjort and Luoto 2006; Luoto and Hjort 2006; Hjort et al.

2007; Hjort et al. 2010; Hjort and Luoto 2011; Hjort et al. 2014). Hjort et al. (2007)

used logistic regression to determine that the key predictor variables for identifying

these landforms are mean slope gradient, mean elevation, elevation-relief ratio,

topographic wetness index, mean solar radiation, slope aspect, total curvature, and

soil type. This classification was deemed successful for identifying palsas, earth
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hummocks, and sorted solifluction sheets due to a high area under the curve (AUC)

of 0.92 to 0.95. The AUC ranges from 0.5 for models with no discrimination ability

to 1 for models with perfect discrimination. For example, a value of 0.9 for AUC

means that the model can correctly discriminate between landforms 90% of the time

(Hjort and Luoto 2006). Hjort and Luoto (2006) created six models, each of which

used a different combination of topographic variables, ground type variables, and

Landsat data. They determined that the key geomorphometric parameters were mean

altitude, mean slope gradient, the proportion of concave topography, and mean of

topographical wetness index. The classification was validated by splitting the data

into a calibration set (70%) and an evaluation set (30%). Luoto and Hjort (2004)

applied another variant of the suite of linear models, the generalised linear model

(GLM). They justified the use of GLM because it enabled the analysis of non-linear

relationships and different types of statistical distributions (i.e. they allowed for

non-linearity and non-constant variance structures in data). This makes GLMs more

flexible and better for analysing spatial relationships between landforms and surface

form. They applied their classification to both satellite imagery and DEM data.

They visually defined inactive and active patterned ground from satellite images and

used five topographic parameters (mean altitude, mean slope gradient, topographic

wetness index, flat topography (<2°), and profile curvature) to classify the probability

of patterned ground occurrence. Their classifier correctly classified 76.9% of the

area. Of the geomorphological parameters in the classifier, the topographic wetness

index had the highest deviance i.e. it explained most of the variability in the classifier.

Luoto and Seppala (2002) used a combination of land cover (water % and mire %),

coordinates (north-coordinate and east-coordinate), and geomorphometric parameters

(mean altitude, lowest point, highest point, and proportion of flat surface (<2°).

They applied a multiple logistic regression to analyse the relationship between

environmental variables and the distribution of palsa mires. They then developed

a stepwise model to determine which environmental variables have the strongest
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explanatory power. These suite of papers, (Luoto and Seppala 2002; Luoto and Hjort

2004; Luoto and Hjort 2005; Hjort and Luoto 2006; Luoto and Hjort 2006; Hjort

et al. 2007; Hjort et al. 2010; Hjort and Luoto 2011; Hjort et al. 2014) identified

suggestions for future studies that utilise the relationship between landform form

and process, and including (1) testing grid-based models in different periglacial

regions, (2) testing other physically environmental variables, (3) determining the

interaction between environmental conditions and periglacial processes at different

special scales (4) determine how periglacial processes will change with current

global warming.

DEM data derived from topographic maps and/or Light Detection and Ranging

(LiDAR) have become more widely available over the past decade (Showstack 2017).

The advent of high-resolution DEM data has allowed landform-scale characterisation

of topography (McKean and Roering 2004). One of the first geomorphological

applications of high-resolution topography was the semi-automatic detection of

earthflows (McKean and Roering 2004). This study defined a new topographic

variable, which they called roughness, based on the eigenvalue ratios for the poles

to individual pixels within a DEM. They demonstrated that earthflow terrain was

rougher than the surrounding topography. Wavelet analysis has also shown significant

success as an indicator of deep-seated landslides (Booth et al. 2009). Another study

used a 2 m resolution LiDAR-derived DEM to assess the possibility of recognising

topographic differences between earthquake-induced and rainfall-induced landslides.

Iwahashi et al. (2012) calculated slope gradient and curvature at different moving

window sizes, concluding that the optimal window size for detection of rainfall

driven landslides is c.a. 30 m. Prima et al. (2006) successfully distinguish different

landforms (volcanoes, alluvial fans, alluvial plains, mountains, and hills) using DEM

derivatives (slope gradient and topographic openness). Object-oriented methods

have also been applied to recognise deep-seated and shallow landslides (Barlow et al.

2006; Van Den Eeckhaut et al. 2012).
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Nested modelling using a suite of different model structures provides insights

into the accuracy of different methods. Combining statistical and process-based

modelling approaches may provide useful insights into the relative importance of

different techniques. Marmion et al. (2009) combined eight modelling techniques

using nine environmental parameters (including geomorphometric parameters) to

predict probabilities of occurrence of twelve landform processes in a periglacial

landscape, northern Finland. Individual models produced AUC values of 0.71 to 0.76

while the proposed combined method produced values of 0.75 to 0.78 (Marmion

et al. 2009). However, the issue with these studies is that they don’t make the link

between the model output and landform processes i.e. they don’t explain why certain

geomorphometric parameters are the best predictors for some landforms and not for

others.

Hjort et al. (2014) investigated model transferability between different periglacial

landscapes. Their study tested the transferability of three statistically-based models

of the distribution of solifluction models: a generalized linear model, a generalized

additive model, and a maximum entropy model between six study sites (Advent-

dalen and Kvadehuksletta on Svalbard, Paistunturit in Finland, and Kåfjord, Nordre

Andøya, and Mållejus in Norway). They concluded that the best performing models

were those calibrated in regions with a wide range of topographic conditions, for ex-

ample, in slope gradient or elevation. This made the model sensitive to the location in

which it was developed. For solifluction, the most important predictor variables were

slope gradient, mean annual air temperature, and an index of vegetation abundance.

It seems that altitude (as a proxy for air temperature) and slope gradient (as a proxy

for potential energy) are the most commonly used geomorphometric parameters in

periglacial studies (Etzelmüller et al. 2001; Hjort and Luoto 2006). Some studies

have concluded that simple models such as generalized additive models and logistic

regression performed equally when compared to more complex machine-learning

techniques (Brenning 2005; Vorpahl et al. 2012).
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2.2 What is permafrost?

Permafrost is defined as any material (rock or soil) that remains below 0°C for more

than two consecutive years (French 2007). This is a thermal definition and there is

no relation to the absence or presence of ground ice. Ground ice can form within a

range of subzero conditions (Ballantyne and Harris 1994). Permafrost covers 12.8%

to 17.8% of Earth’s land surface area, most of which is in the northern hemisphere

(Figure 2.1) (Zhang et al. 2000; Gruber 2012).

Figure 2.1 Map showing the spatial extent of permafrost in the northern hemisphere. Per-
mafrost distribution data from Brown et al. (2002a).

The thickness of permafrost below the ground surface is influenced by the balance

between the amount incoming solar radiation at the surface and the heat loss from the

Earth’s interior (Anderson and Anderson 2010). A number of factors impact surface

temperatures; latitude, altitude, and continentality (Anderson and Anderson 2010).



16 Literature review

Figure 2.2 Cross section through permafrost in northern Canada. Permafrost thickens and
the active layer thins with increasing latitude. Adapted from (Anderson and Anderson 2010).

At higher latitudes, solar radiation passes through a greater thickness of atmosphere,

resulting in a lower mean solar radiation per unit area. Also, air temperatures decrease

with increasing altitude, known as the environmental lapse rate which averages 6.5°C

km-1 (Anderson and Anderson 2010). Hence permafrost can exist at lower latitudes,

but also at higher altitudes, for example in the Tibetan Plateau (Niu et al. 2015).

Continentality impacts the seasonal temperature distribution so that the further away

an area of land is from the ocean the greater the annual air temperature variation it

experiences. The geothermal gradient ultimately governs the depth of permafrost

and this is controlled by the thermal conductivity of the ground; on average the

geothermal gradient is 25°C km-1 (Figure 2.3) (Anderson and Anderson 2010). The

balance between the above creates a patchy development of permafrost in areas

(Figure 2.2). The continuous performs zone exists at the highest latitudes where

>90% of the land surface is underlain with permafrost. Discontinuous permafrost is

where 50% to 90% of the surface is underlain by permafrost. Sporadic permafrost

is where 10% to 50% of the land surface is underlain by permafrost and areas with

<10% permafrost are called isolated permafrost (French 2007). A general trend is for
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Figure 2.3 Plot showing the temperature profile through permafrost. Zactive is the depth of
the active layer, Tamp is the temperature amplitude from the mean annual surface temperature,
T̄s. Zbase is the base of the permafrost. Adapted from Anderson and Anderson (2010).

permafrost to thicken and become more continuous with increasing latitude (French

2007) (Figure 2.2).

2.2.1 Permafrost Structure

Ground underlain by permafrost can be divided into three layers: the active layer;

the transition zone; and permafrost (Shur et al. 2005) (Figure 2.4). The active

layer is the top ground layer that freezes and thaws seasonally. Its maximum depth

is defined as the depth at which the annual maximum temperature reaches 0°C

(Figure 2.3). The depth of the 0°C isotherm is dependent on the mean annual

surface temperature (Figure 2.3). However, the 0°C depth is driven by changes in
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Figure 2.4 Diagram showing the three-layer model of the active layer, transition zone, and
permafrost. The curve on the right of each figure represents the relative probability of annual
thaw depth. a) Thawing a sub-decadal to centennial timescales. b) Ice-enrichment of the
transition zone. Modified from Shur at al. (2005) and Murton (2013).

ground temperatures caused by interannual variations and climatic fluctuations in

air and ground surface temperatures (Anderson and Anderson 2010). The base of

the permafrost is reached at the depth at which ground temperature is 0°C (Figure

2.3). Where the top of the permafrost is within the range of -5°C to 0°C it is termed

’warm’ permafrost. However, if the top of the permafrost is <-5°C it is termed ’cold’

permafrost (Ballantyne 2018).

At the boundary between the active layer and permafrost, there is a region where

ground ice is concentrated, called the transition zone (Figure 2.5) (Shur et al. 2005).

The development of the transition zone is more pronounced in frost-susceptible soils

in lowland Arctic regions underlain by cold permafrost (Ballantyne 2018). Here,

this concentration of ice, called excess ice, tends to be in the form of segregated

ice. The transition zone is composed of two parts: an upper ice-rich layer called the

transient layer and, beneath this, is an even more ice-rich layer called the intermediate

layer (Figure 2.4) (Shur et al. 2005). Over sub-decadal to centennial time scales the
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Figure 2.5 Image of the ice rich transition zone of segregated ice (white). Adapted from
(Murton 2013).

transition zone alternates between being seasonally frozen ground (active layer) to

perennially frozen ground (permafrost) (Murton 2013). This occurs because of short

and long-term changes in subsurface thermal conditions caused by abnormally warm

or cold summers and/or because of changes in climate. The base of the transition

zone reflects the long-term permafrost table and is defined by thaw unconformities

such as truncated tops of ice wedges or by sudden changes in excess ground ice

content (Figure 2.4) (Murton 2013). Because of its high ground-ice content, the

transition zone acts as a thermal buffer between the active layer and the long-term

permafrost by increasing the latent heat required to thaw the ice (Ballantyne 2018).

Ice enrichment within the transition zone occurs because of a combination of

two mechanisms. First is the upward aggradation of permafrost into the active layer,

either syngenetically as sediment and organic material accumulate on the surface, or

epigenetically as atmospheric cooling or biological/hydrological changes lower the

surface ground temperature (Murton 2013). As permafrost aggrades upwards towards



20 Literature review

the surface and the permafrost table rises, ice lenses that formed at the base of the

active layer become incorporated into the top of the permafrost (Figure 2.6). Second,

is the repeated growth of segregation ice from the unequal and seasonal movement of

unfrozen water into the transition zone (Figure 2.7) (Murton 2013). During autumn

freeze-back of the active layer, water is drawn both upward by colder temperatures

at the ground surface and downward toward the permafrost to feed the growth of

segregated ice, called two-sided or bidirectional freezing (Figure 2.7). In winter,

after the active layer has frozen through, the ground surface becomes colder than the

permafrost creating a thermal gradient which encourages water migration toward

the surface by cryosuction. However, during winter, the rate of water movement

by cryosuction is limited by the low permeability of the frozen active layer (Figure

2.7). In summer, the unfrozen active layer enhances water movement because of

high hydraulic conductivity and an open hydrological system. This allows for easy

Figure 2.6 Development of the transition one during a) syngenetic and b) epigenetic per-
mafrost formation (French and Shur 2010; Murton 2013).
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downward movement of water supplied by melting ice lenses, snowmelt, rain, and

groundwater flow which saturates the base of the active layer. Colder permafrost

temperatures draw water, by cryosuction, from the base of the active layer and into

the transition zone (Ballantyne 2018). This renews and promotes ice segregation

within the upper layers of permafrost, contributing to the progressive ice enrichment

in the transition zone. The intermediate layer is more ice rich than the transient layer

because in the long term it is thermally more stable i.e. it remains cold for longer.

The transient layer on the other hand is subject to more frequent thaw events, giving

less time for ice to accumulate. In summary, the amount of water (ice) added to

the top of the permafrost during summer is greater than the amount added to the

top of the active layer during winter, which progressively enriches the transition

zone (upper layer of permafrost) in segregation ice. Evidence supporting the ice

enrichment of the transition zone comes from field experiments by Burn (1988),

who monitored ice-lens growth over a period of fifteen months in the upper 20 cm

of permafrost in the Yukon Territory, Canada. The study observed an increase in

ice content during the summer months. In addition, the study found that the rate of

water incorporation into the upper layers of permafrost during the last 8000 years

Figure 2.7 Conceptual model showing the movement of water in the active layer, transition
zone, and permafrost layers during a) autumn freeze-back, b) winter, and c) summer (Murton
2013).
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has been between 0.1 to 0.2 mm a-1. To further support the ice enrichment of the

transition zone, Burn and Micheal (1988) observed elevated tritium levels in ground

ice below the current permafrost table. The elevated tritium is a marker for nuclear

weapons testing during the 1950s and 60s, thus some ground ice must be derived

from atmospheric precipitation that migrated downward through the active layer

during this period, contributing to recent ice enrichment of the transition zone.

2.2.2 Segregation ice

Figure 2.8 Segregation ice collected by drilling into the transient zone of permafrost in
Adventdalen, Svalbard. The silt is brown material in between the opaque segregated ice.
Photo by Murton (2013).

Permafrost often contains lenses of pure ice called segregated ice lenses (Figure

2.8). These ice lenses were first recognised by Taber (1929), who demonstrated

that they develop not by the volumetric expansion of water, but by the movement of

water across an underlying frozen fringe (Figure 2.10). The mechanism driving the

formation of segregated ice lenses has been well described by Rempel et al. (2004).
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They demonstrated that a suction force was created by the forces generated at the

interface between ice and solid material (either sediment or rock). Here, van der

Walls and electrostatic forces generated at the ice surface, create a thin, unfrozen

(premelted) film of water whose thickness decreases with temperature (Rempel 2007)

(Figure 2.9). Rempel et al. (2004) calculated the force balance of the water inside

these premelted films, demonstrating that lower water pressures generated at lower

temperatures drove the suction of water through these films. Hence, segregated

ice lenses form where there is a freely available source of water and a suitably

strong temperature gradient (Rempel et al. 2004). These growing ice lenses heave

apart the adjacent soil and rock causing ice lenses to become ‘segregated’ from the

surrounding material (Murton 2013) (Figure 2.8), hence the term segregation ice. Ice

Figure 2.9 Frozen silt with ice lenses (shown as dark bands), an experiment conducted
by Taber (1930). The diagram on the right depicts the transition from unfrozen saturated
water content across the partially frozen fringe to the ice lens at the top. Tf is the freezing
temperature of water, Tl is the temperature at the base of the ice lens, and Ss is the ice
saturation, the volume fraction of the pore space occupied by ice. Figure adapted from
Anderson and Anderson (2010).
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lenses grow parallel to the freezing front making them horizontal on a flat surface and

inclined beneath a slope (Murton 2013). Their volumetric expansion and resultant

heaving pressures are exerted normal to the ground surface, i.e. in the direction of

heat flow (Murton 2013). This process is known to concentrate ice at the base of the

active layer and in the transition zone (Burn and Kokelj 2009) (Figure2.11).

The lateral extent of ice lenses depends on the homogeneity of the surrounding

soil and the uniformity of the water supply (Smith 2004). If the freezing front

advances from the surface downwards, i.e. in discontinuous permafrost zone, then

water will migrate upwards against gravity to contribute to the growth of ice lenses

near the surface (single-sided freezing) (Harris et al. 2008a) (Figure 2.20). It is

common in continuous permafrost regions, during autumn freezback, for freezing

fronts to advance from the surface down and from the top of the permafrost upwards,

called two-sided freezing (Harris et al. 2008a) (Figure 2.20). In this case, a zone of

desiccation forms in the middle of the active layer where water has migrated to both

areas of freezing at the top and bottom of the active layer (Harris and Lewkowicz

Figure 2.10 A schematic diagram of the frozen fringe. Arrows represent direction of water
movement. Adapted from Williams and Smith (1989).
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2000). Due to the growth of ice lenses moisture is re-distributed, locally increasing

the water content of the base of the active layer (Mackay 1981). As a result it is

common for the ice volumetric content to exceed pore space in areas of ice lens

growth (Harris et al. 2011) (Figure 2.11). It is the growth of these ice lenses that

causes the soil above to expand upward normal to the surface, termed frost heave

(Harris et al. 2008b). Layers of ice lenses have a range of thicknesses from <1 mm

to >10 m and can be millimetres to hundreds of metres in length (Murton 2013).

Generally, ice lenses with a thickness >1 m are termed ’massive ground ice’ (Murton

2013).

Figure 2.11 Plot showing ground ice volume as a function of depth. Note a higher volume
of ground ice near the surface c.a. 1 m. Adapted from Anderson and Anderson (2010).
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2.2.3 Frost-susceptibility

Soils that are porous and fine-grained, typically silty-clays, are prone to the growth

of segregation ice and are termed frost susceptible (Williams and Smith 1989)(Figure

2.12). A frost susceptible soil usually contains >3% silt content (Anderson and

Anderson 2010). The pore spaces in fine-grained soils such as clays and silts are

so small that they prevent pore ice from forming, like a semi-permeable membrane

(Williams and Smith 1989). Silt has a mid-range of capillarity. Capillarity controls

the amount of surface tension between the soil particles and water surface. Where

capillarity is too low water can’t migrate to growing ice lenses by cryosuction.

Permeability is the a measure of ease by which water can flow through soil and

is dependent on particle size. The bigger the particles, the larger the voids are

between them, allowing more water to migrate. Silt has a mid-range of capillarity

and permeability to allow for enough water to migrate by cryosuction to feed the

Figure 2.12 Plot showing how the hydraulic properties of different soil types impact their
susceptibility to frost action. Adapted from Table (2008)
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growth of ice lenses (Figure 2.12). In contrast, non-frost susceptible materials such

as sands and gravels exhibit low cryosuction on the larger grain surface, preventing

the movement of water by cryosuction (Anderson and Anderson 2010). In this case,

water freezes in the pore spaces, creating pore ice where no heaving occurs. In clay

soils, the growth of ice lenses is stunted because of their low permeability making it

is difficult to maintain sufficient water flux by cryosuction to the zone of freezing

(Harris 1981). The temperature range in which water remains liquid below 0°C is

greater in fine-textured soils. Sand has no unfrozen water at -4°C while clays and

silts still have liquid water (Anderson and Anderson 2010) (Figure 2.13). This means

that in permafrost regions where the ground temperature falls below 0°C there is a

supply of unfrozen water to feed the growth of ice lenses in silty soils. The movement

Figure 2.13 Plot showing the amount of water found in different soils at temperatures below
0°C. Adapted from Anderson and Anderson (2010).
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Figure 2.14 Map showing the ground ice content by volume in the upper 20 m of permafrost.
Data from Brown et al. (2002b).

of water in the active layer is unequal when comparing the freezing and thawing

season. During a summer thaw, more water migrates downwards to the bottom of

the active layer/top of permafrost than migrates upward during autumn freezback

(Williams and Smith 1989). In the summer a greater unfrozen water content exists

because of increased hydraulic conductivity and a supply of water from thawing

ice lenses, melting snow, rain, and groundwater flow (Smith 2004). By contrast

during autumn freezeback, when two-sided freezing occurs, the movement of water

is restricted upwards by reduced hydraulic conductivity from lower temperatures

and where water movement migrates against gravity by cryosuction (Anderson and

Anderson 2010). This causes a preferential accumulation of pore and segregated ice
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at the base of the active layer or top of the permafrost (Shur et al. 2005). However,

ice lenses still form at the top of the active layer (French 2003).

2.2.4 Thaw consolidation

Thaw consolidation is the time-dependent compression of soil caused by the thaw-

ing of segregated ice, and the subsequent drainage of pore water (McRoberts and

Morgenstern 1974). There are three main components to thaw consolidation: (1)

reduction in soil ice volume during melting; (2) reduction in soil pore sizes as col-

lapsing voids left by segregated ice squeeze soil grains closer together; (3) drainage

and expulsion of pore-water and excess water from soil pores generated by thawing

ice lenses. Thaw consolidation is non-existent in coarse-grained soils such as sand

because excess ice such as ice lenses are absent or minimal. In frost-susceptible

fine-grained soils such as silts, thaw consolidation occurs because of the presence of

excess ice (Ballantyne 2018).

Thaw consolidation causes a reduction in soil strength which leads to slope

instability. During a thawing event, the upper soil layers thaw first creating a low-

permeable layer that limits the rate of water drainage from the soil below. When

the rate of water released (due to thawing of excess ice) is greater than the rate

of water drainage, the weight of the overlying thawed soil (W ) is transferred from

grain-to-grain contact to trapped soil water. This raises pore-water pressure (u) and

reduces the soil’s effective stress (σ ′), and therefore its strength (McRoberts and

Morgenstern 1974)

σ ′ =W −u = γzt −u (2.1)

where γ is the unit weight of thawed soil and zt is the depth of thawed soil. The

strength of a thawing soil is therefore dependent on the ratio of the rate of water

released from melting excess ice, to the rate of water drainage through the now
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thaw-consolidated soil. This can be described using the thaw consolidation ratio (R)

(McRoberts and Morgenstern 1974)

R =
α

2
√

Cv
(2.2)

where α , a thaw parameter, is derived by (McRoberts and Morgenstern 1974)

α =
zt√

t
(2.3)

where zt is the depth of thaw and t is time passed since the onset of thaw at the

ground surface. Cv is the coefficient of consolidation and is given by

Cv =
k

pwmv
(2.4)

where k is the permeability of the thawed soil, pw is the density of water, and mv

is the coefficient of compressibility. A high value of R indicates rapid thaw and/or

slow drainage of water released from melting ice, generating high pore pressures

(Ballantyne 2018). This situation is associated with fine-grained silt or clay-rich

soils with low permeability and high excess ice content. A low value of R suggests

a slow thaw and/or rapid drainage of water, producing low pore pressures. This is

likely with uniformly coarse-grained sandy soils that contain little or no excess ice

(Ballantyne 2018).

Relatively higher R values reflect the greater likelihood of slope failure. If the

rate of thawing is fast enough and the Cv parameter sufficiently small, meltwater is

generated faster than can drain (Smith 2004). This creates a scenario where all of the

overburden pressure from the soil above is supported by pore water rather than grain-

to-grain contact (Smith 2004). This can lead to slow downslope mass-movements

(solifluction) but is also linked to rapid slope failures such as ALDs.
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2.3 Periglacial landforms

2.3.1 Blockfields

Blockfields are veneers of coarse regolith mantling plateau surfaces (Ballantyne

2010). They occupy areas of low gradient found at mountain summits or plateaus

and are formed by in situ weathering of underlying bedrock (Goodfellow 2007)

(Figure 2.15). Allochthonous blockfields comprise of material derived from up-

Figure 2.15 Blockfield on the Gruvefjellet plateau at 500 m a.s.l. Photo © Huw Mithan.

freezing of clasts in till or by the downslope movement of weathered material

(Goodfellow 2007). Autochthonous blockfields develop through weathering of

bedrock with a negligible downslope displacement of weathered debris (Ballantyne

2010). Rea (2007) demonstrated that the transport mechanism defines the character

of the landform as transport distances increase. The formation and preservation of

blockfields are controlled by slope gradient because as slope gradient increases the

downslope shear stress acting on each clast/particle increases (Rea 2007; Rixhon

and Demoulin 2013). An upper slope gradient limit of 25° was reported by Dahl

(1966), beyond which scree slopes formed. In general, plateaux blockfields form on

slope gradients of <10° (Rea 2007). As slope gradient increases blockfields become
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more open-work because of the removal of fine-grained matrix sediments (Rea et al.

1996). At lower slope gradients fine material will collect and be retained. These finer

fractions are partly derived from chemical weathering producing particle sizes below

the crystal size of the parent bedrock; these fines enriches the matrix with silt (2 to

63 µm) and clay (<2 µm) (Rea 2007).

Blockfields form in periglacial regions underlain by permafrost because of frost

cracking of bedrock (Ballantyne 2010). Drainage is impeded at the blockfield

base because of impermeable permafrost, allowing for saturation of the bedrock or

blockfield clasts. With a moisture source and low mean annual air temperatures,

ice lenses can grow by upward freezing from the permafrost (Ballantyne 2010).

However some have challenged the primacy of frost shattering because of (1) the

presence of blockfields in arid, non-periglacial environments such as the Namibian

desert (Goodfellow 2007); (2) the possible role of thermal stress and shock from

diurnal and/or seasonal variations in surface rock temperatures, (3) and possibly the

effect of chemical weathering, in providing fines that could result in movement by

plug-like deformation over impermeable permafrost (Boelhouwers 2004). Current

research indicates that there is no current formation of new blockfields from exposed

bedrock, leading to the suggestion that the majority of blockfields are pre-Quaternary

in origin (Boelhouwers 2004).

2.3.2 Bedrock exposure

The presence of bedrock is a common feature of alpine and upland Arctic landscapes,

yet is often relatively sparse, particularly in highly fractured or porous rock types

(Hales and Roering 2007). Bedrock which has a high moisture content and is highly

porous is frost susceptible (Murton et al. 2006).

Prick (2003) conducted a study on the frost weathering of an outcrop of sandstone,

siltstone, and shale bedrock exposed during the construction of a road from the airport
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Figure 2.16 Frost shattered bedrock overhanging the Endalen valley. Photo © Huw Mithan.

to Longyearbyen, Svalbard. The study found that the porosity of the sandstone in

this formation was low, making it not frost susceptible. Shattering of bedrock is

commonly seen in these landscapes, and recent work has focussed on possible

mechanisms for this (Hallet 2006). The most commonly stated hypothesis is that

shattering is driven by the 9% volumetric expansion from the in situ freezing of water

occupying joints or pore spaces. However, this requires a high saturation level of

>90% (Hallet et al. 1991). The second explanation is segregation ice growth (Walder

and Hallet 1985; Hallet et al. 1991; Hallet 2006), where ice lenses growing within

pore spaces drive strong tensile forces and growth of crack tips. For this to happen

requires an upward advance of the freezing front at the beginning of winter (low

mean annual air temperatures of between -3°C to -8°C frost cracking window), a

continuous downward water supply in the summer (from melting snow patches or

cornices) and a high porosity allowing movement of the water supply through the

bedrock too the freezing front (porous sedimentary bedrock) (Walder and Hallet

1985; Hales and Roering 2007). Field evidence in porous sedimentary bedrock and

laboratory experiments show that ice segregation is likely to be the dominant frost
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weathering mechanism responsible for shattering porous sedimentary rock (Hales

and Roering 2005; Murton et al. 2006). The volumetric expansion is thought to

be a minor influence because the growth of pore ice in an open system exerts little

outward pressure onto the pore wall (Anderson and Anderson 2010). However, some

studies have shown that the volumetric expansion of water upon freezing in cracks

is a mechanism for crack enlargement and block detachment (Matsuoka 2001b;

Matsuoka 2008).

Cornices have been identified as areas of enhanced frost weathering on mostly

snow-free rock faces (Rapp 1960a; Eckerstorfer et al. 2013). It is thought that prior

to autumn freeze-back, rain supplies moisture to the cornice backwall and maintains

moisture in the pore spaces and cracks before cornice accretion. Snow insulates the

frozen ground keeping the ground temperature stable and within the frost cracking

window (Eckerstorfer et al. 2013) (Figure 2.16). Water supplied from snow is thought

to be a significant control on bedrock weathering of rock walls (Matsuoka 1990;

Sass 2005).

Field (Prick 2003) and laboratory (Murton et al. 2000; Murton et al. 2001; Murton

et al. 2006) experiments of frost weathering have attempted to constrain frost weather-

ing processes. Frost weathering tests on blocks of local sandstone in Longyeardalen,

Svalbard demonstrated no shattering during eighteen months of exposure (Prick

2003). The short-term nature of this study demonstrated unfavourable conditions

for frost weathering, as the rocks need a longer exposure time, a greater moisture

content, and the local sandstones are low porosity making them less frost susceptible

(Prick 2003). Matsuoka (2008) demonstrated that a moisture source is important

for rockwall weathering. Boulders and bedrock were rapidly fractured along lakes

and streams because these rocks were saturated before seasonal freezing (Matsuoka

2008). The intensive shattering of rocks occurs along lakes and streams where high

moisture availability promotes ice segregation (Matsuoka 2008). Matsuoka (1990)

concluded that moisture was insufficient for frost shattering on Svalbard.
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2.3.3 Allochthonous material and scree

Scree, or talus, are landfroms representing the accumulation of rockfall debris

(Kirkby and Statham 1975) (Figure 2.17). The proximal scree slopes are rectilinear,

with slope gradients ranging from 30° to 40° and become concave and shallower at

the distal end of the scree slope between 20° to 10° (Sanders 2010). As scree slopes

Figure 2.17 Allochthonous and scree material on the east-facing slopes of Endalen. Note
the bedrock at the top of the slope and gullying of deposited material © Huw Mithan.

aggrade, they steepen at the proximal end and prograde at the distal end (Sanders

2010). Their surface is composed of angular-cobble to boulder-sized clasts. There is

a sorting gradient of finer surficial material at the top and coarser surficial material

at the bottom caused by fall sorting (Statham 1976). (Kirkby and Statham 1975;

Statham 1976) . Once supply of upslope material reduces, scree slopes become

vegetated. Rapp (1960b) noted that vegetation grew on scree slopes because of

moisture form upslope, micro-climate and development of fine-grained soil cover.

Rockfall is the primary process producing scree slopes (Fisher 1866). Rockfall

onto talus slopes is either primary, i.e. triggered by freeze-thaw activity on the rock

face and subsequent downslope transfer of newly detached material, or secondary, i.e.
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rockfall debris is dislodged by later rockfall events, snow avalanches, water runoff,

debris flows, or even cornice collapse (Hales and Roering 2007; Hales and Roering

2009; Eckerstorfer et al. 2013). Rock-cliff faces are often dissected and complex,

resulting in debris being channelled into accumulation corridors that open downslope

into talus cones (Siewert et al. 2012). Smaller rocks and finer material deposited onto

the talus slope surface are washed or trapped in the interstitial voids between larger

clasts (Hinchliffe et al. 1998). Other mechanisms of downslope sediment transfer

include rockfall impact, dry avalanching, translational sliding, solifluction, snow

avalanches, debris flows, and surface runoff (Anderson and Anderson 2010). The

fine material can also be moved downslope by needle-ice creep and upper rectilinear

slopes are often reworked by debris flows (Hinchliffe et al. 1998).

On Svalbard, Akerman (1984) found that scree accumulations were made of a

layer of coarse debris overlying a poorly sorted diamicton with an abundance of

fine-grained sediments. In Longyeardalen, Svalbard these accumulations ranged

from 18 m to 34 m (Siewert et al. 2012). The finer sediment within scree originated

from granular disaggregation (flaking and granular weathering) of the rockwall above

(Curry and Black 2003; Hinchliffe et al. 1998; Hinchliffe and Ballantyne 1999).

2.3.4 Alluvial fans and braided rivers

Alluvial fan activity in the Arctic is limited to the spring and summer months

because fan surfaces are frozen during winter (Haas et al. 2015) (Figure 2.18).

Geomorphological activity is highest during the melting season from snowmelt,

glacier melt, rainfall, thawing ground ice (Haas et al. 2015).

The supply of material for alluvial fans includes outwash from glaciers, re-

sedimentation of glaciogenic deposits and debris from frost weathered bedrock

cliffs (Anderson and Anderson 2010). Arctic alluvial fan sedimentation involves

streamflow, debris flow processes, and sporadic snow avalanches. De Haas et al.
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Figure 2.18 An alluvial fan at the mouth of Kosladalen, Svalbard. Note the braided river
system and floodplain of Adventdalen in the bottom right. Photo © Huw Mithan.

(2015) identified three types of ‘fans’ on Svalbard: (1) Colluvial fans formed by

snow avalanches and rockfalls; (2) alluvial fans dominated by debris flows; and

(3) alluvial fans formed by fluvial flows. In this study I will focus on alluvial fans

formed by fluvial flows (Haas et al. 2015).

2.3.5 Solifluction

The term ‘solifluction’ (Figure 2.19) was originally coined by Andersson (1906) to

describe the slow downslope movement of saturated soil. Washburn (1980) coined

the term ‘gelifluction’ to describe the movement of the saturated active layer after

and during a seasonal thaw. Solifluction also incorporates frost creep driven by the

growth and thawing of segregated ice (Washburn 1980). The landform associated

with solifluction sediment in this study is usually termed a solifluction sheet.

The growth of segregated ice causes the ground to heave normal to the slope

during the winter, and consolidate vertically during thaw while at the same time

causing saturated downslope movement of the active layer (Harris 1981). Therefore,

the common definition of solifluction is the slow (several mm to cm per annum)

downslope movement of the active layer resulting from the annual freezing and



38 Literature review

Figure 2.19 Solifluction (regions of green) at the mouth of Endalen. Note the tilting white
poles in the centre left of the image. This is caused by soil moving downslope due to annual
solifluction. In the center far-left is the solifluction monitoring station put in place by Harris
et al. (2011). Photo © Huw Mithan.

thawing of soils (Ballantyne and Harris 1994; Matsuoka 2001a). Two processes

contribute to this movement: (1) Frost creep which is the heaving of the active layer

perpendicular to the slope during autumn freeze-back as a result of growing ice lenses,

followed by near-vertical resettlement during the spring thaw; (2) Gelifluction which

is the elasto-plastic deformation of thawed active layer material downslope during

spring thaw (Harris 1981; Matsuoka 2001a; Harris and Smith 2003). Both processes

can vary depending on the soil properties, stress history, ice lens concentration, and

other environmental factors (Harris and Davies 2000; Harris et al. 2008a).

As a result, four types of mechanisms exist that can be considered solifluction.

Firstly, needle-ice creep is a diurnal process that occurs when the upper centimetre

of soil is lifted by ice needles and falls back onto the slope during thaw. This is a

nocturnal process occurring on alpine terrain when the freezing plane advances less

than a few centimetres into the soil (Matsuoka 2001a). Secondly, frost creep is both

a diurnal and seasonal process by which the soil heaves normal to the slope due to

expansion caused by the growth of segregated ice (Figure 2.20). Thirdly, gelifluction
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Figure 2.20 Diagrams showing a) the impact of one-sided freezing on the distribution of ice
lenses in the active layer. b) two-sided freezing. c) Movement velocity profile caused by one
sided freezing. d) Velocity profile caused by two-sided freezing. Adapted from Matsuoka
(2001a).

occurs when the water content of the soil is greater than the plastic soil limit. Here

the soil layer undergoes elasto-plastic deformation (Harris et al. 2003) (Figure 2.21).

During thaw, the soil consolidates under its own weight because of the collapsing

voids left by thawed ice lenses (Morgenstern and Price 1965). The expulsion of

water from the voids and into the pore spaces of the soil matrix can create pore-water

pressure in excess of hydrostatic (Harris et al. 2001b). Excess water can come

from thaw consolidation of thawing ground or by inflow from melting snow, ice, or

rainwater from the surface (Matsuoka 2001a). Thus the amount of gelifluction is

strongly dependent on the amount of segregated ice in the soil (Harris et al. 2003).

However, gelifluction movement is restricted to the upper soil layers where soil shear

strengths are low (Harris et al. 2003). Finally, plug-like deformation is exclusive
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to regions of continuous cold permafrost where two sided-freezing occurs (Mackay

1981). During summer thaw the ice-rich transitional layer undergoes thaw settlement

creating a zone of plastic deformation of basal sediment, involving the full thickness

of the active layer (Harris et al. 2008a). As a result, plug-like deformation tends to

produce the greatest volumetric velocities. Matsuoka (2001a) found that because

of plug-like deformation a soil mass with a depth of 110 cm produced volumetric

displacements of 200 cm3 cm-1 a-1.

The strong relationship between frost heave and solifluction rates have led nu-

merous studies to attempt to understand the topographic, climatic, and temporal

controls on ground ice distribution (Harris et al. 2011). As ground ice is difficult

to measure, these studies often look to understand the distribution of pore water

within soil active layers (Harris et al. 2008b; Harris et al. 2011). One focus has been

the distribution of snow cover, which provides a source of water to the active layer.

Snow cover reduces soil freezing rate, thus promotes ice-lens growth (Matsuoka

2001a). The spatial and temporal variability in snow cover has been correlated with

rates of downslope soil transport by gelifluction (Jaesche et al. 2003; Harris et al.

2008c; Harris et al. 2009). Other studies have emphasised the indirect effects of

precipitation, length of snow cover, snow depth, and timing of autumn freezing as

controlling frost heave rates (Ridefelt and Boelhouwers 2006; Ridefelt et al. 2011).

Vegetation may also increase the rates of solifluction, where it traps snow to provide

added water (Ridefelt et al. 2011). At a regional scale, lee-side accumulation of snow

leads may increase pore water concentrations on west-facing slopes (Ridefelt and

Boelhouwers 2006; Ridefelt et al. 2010).

Solifluction on slope gradients as low as 1° but as high as 36° (Washburn 1980;

Matsuoka 2001a). This happens because of the dominance of gelifluction and

plug-like deformation caused by two-sided freezing (Matsuoka 2001a; Harris et al.

2008c; Harris et al. 2011). Harris and Smith (2003) found that gelifluction was

strongly influenced by slope gradient, creating flow-slide slope failure at gradients
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Figure 2.21 Movement of freezing and thawing soil. P1 - P2 Path of the target during frost
heaving. P1 - P2 - P5 Path of target if only vertical settlement occurred during thaw. P2 - P3
Path of the target during gelifluction. P3 - P4 Path of the target with a settling of the ground.
PFC is the horizontal component of potential frost creep, assuming vertical resettlement of
the soil grains. G is the horizontal component of gelifluction. R is the horizontal component
of retrograde movement. Adapted from Harris and Davies (2000).

above 16°. Contrary to this, a more recent study found that slope gradient only

had a minor influence on solifluction (Harris et al. 2008a). Instead, the rate of

soil movement appears to be sensitive to small changes in clay content and stress

history (Harris et al. 2008a). Smith (2004) isolated slope gradient and found that the

self-weight shearing stress increased with slope gradient. Matsuoka (2001a) found

that solifluction velocity varies widely with gradient within a single study site, as

did Harris and Smith (2003) during their laboratory simulations of gelifluction. A

study of solifluction lobes in the Yukon found that lobes are larger at the foot of the

hillslope and on shallower slope gradients (Hugenholtz and Lewkowicz 2002).
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The material properties of the soil that control the formation of ice lenses also

affect solifluction rates. Matsuoka (2011) proposed that the thickness of fine material

increases downslope with decreasing slope gradients, favouring seasonal frost heave

and thaw consolidation aided by increasing moisture content from convergent mois-

ture sources. Soil macro fabric analysis has suggested that frost heave is dominant on

shallow slopes because clast orientations are steeper than the slope gradient (Millar

2006). Clasts undergoing freeze-thaw action tend to rotate to a positon where their

long axis is perpendicular to the direction of the freezing front (Washburn 1980).

The impact of vegetation at the regional scale is subsidiary to other factors

such as topography and climate (Aalto and Luoto 2014). However, the effect of

vegetation is more apparent at smaller scales, Eichel et al. (2016) demonstrated

a strong relationship between vegetation cover and the occurrence of solifluction

processes because the mat of vegetation trapped fine sediment and stored moisture

in the soil, facilitating the development of ground ice in the active layer.

Long-term monitoring studies of solifluction rates on Svalbard and in Arctic

Sweden have demonstrated that as the active layer deepens due to increasing summer

temperatures, rates of solifluction have increased (Akerman 2005; Ridefelt et al.

2009; Harris et al. 2011). However, for the Swiss Alps, Matsuoka (2010) concluded

that warming in discontinuous permafrost regions such as the Alps will reduce the

seasonal depth of freezing thus limiting the rate of slope movement. Interestingly, a

35-year record of downslope soil movement in the Scottish Highlands demonstrated

that solifluction processes can occur in non-permafrost regions with mild winter air

temperatures and shallow ground freezing with volumetric velocities similar to those

recorded in high-alpine environments (Ballantyne 2013).
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2.3.6 Paraglacial environment

The term ’paraglacial’ refers to landform processes and systems that are conditioned

by former glaciation and deglaciation (Ballantyne 2002). Much of the alluvial fan

deposits in glaciated regions are likely to have formed due to the reworking of

glaciogenic sediment left by retreating valley glaciers at the end of the last glaciation,

creating what’s called paraglacial alluvial landsystems (Ballantyne 2002). The

movement of glacial and hillslope-derived sediment by solifluction on, for example ,

Svalbard is part of a wider glacier foreland land system model (Ballantyne 2002).

2.4 Active Layer Detachments (ALDs)

2.4.1 Summary

Figure 2.22 A compact ALD at the base of a solifluction lobe in Adventdalen, Svalbard ©
Huw Mithan.

ALDs (Figure 2.22) are mass-wasting events characterised by shallow transla-

tional landslides that initiate in areas of continuous and discontinuous permafrost

(Mackay 1981; Harris and Lewkowicz 2000; Leibman et al. 2003; Lipovsky et al.

2006; Gooseff et al. 2009; Lafreniere and Lamoureux 2013; Lamoureux et al. 2014;

Niu et al. 2015). ALDs are thought to form by a reduction in shear strength at the
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base of the active layer caused by a sudden increase in excess pore pressure from

thawing of an ice-rich zone of segregated ice (Mackay 1981; Harris and Lewkowicz

1993). During a failure event, the active layer-mass slides along a slip plane. Physical

modelling of ALDs have shown that the stress history, clay content, and the coherent

nature of the soil are important geotechnical characteristics for the likelihood of

ALD initiation (Harris et al. 2008c). Field measurements suggest that ALDs initiate

in frost-susceptible silty clays but that high pore pressures are key for ALD initiation

(Lewkowicz and Harris 2005b). However, high pore-water pressures alone cannot

generate ALDs. If ground ice is sporadic or ice lenses are at shallow depth, the loss of

shear strength during thaw may not be enough to exceed earth pressure or cohesion

and create a through-going slip plane. Therefore, there may be more creep-like

failure or solifluction. Hence, understanding which the ground ice conditions that

promote the development of ALDs rather than solifluction remain an open question.

The distribution of ground ice varies through time as a function of soil moisture

and temperature conditions. In regions of cold permafrost, ground ice distribution is

governed by two-sided freezing (Mackay 1981). Here, a downward (from the surface)

and upward (from the permafrost) freezing causes liquid water to migrate towards the

surface and base of the active layer, leaving a desiccated central zone and an ice-rich

zone at the base of the active layer. In a given year, the volume of segregated ice in

a soil column is governed by pre-conditioning of the active layer via high summer

rainfall prior to autumn freeze-back, which concentrates ice at the base of the active

layer (Leibman 1995; Lewkowicz and Harris 2005a). During periods of average

temperature conditions, a high moisture content in the active layer encourages strong

ice lens development through time due to a thermally induced migration of unfrozen

water to the basal zone (Lewkowicz 1990; Lewkowicz and Harris 2005b). Similarly,

areas of high topographic convergence such as water-tracks, have greater summer

water contents and greater winter ice development (Balser et al. 2009; Lamoureux

and Lafreniere 2009). Extreme climate events that drive heat beyond the average
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active layer depth and into the ice-rich basal zone can be caused by early thaw, thick

winter snow depths, extremely high summer temperatures, and high rainfall (Dyke

2004; Lewkowicz and Harris 2005a; Balser et al. 2015). Non-climatic mechanisms

for ALD initiation include forest fires, lateral river erosion, and civil engineering

projects (Harris and Lewkowicz 2000; Jolivel and Allard 2013; Wang et al. 2014).

Apart from the undercutting mechanisms, all ALD initiations depend on heat and the

rate at which it moves through the active layer. In chapter 5, I explore this further

by modelling the range of ground ice contents and thawing rates that promote ALD

initiation.

2.4.2 Geographic extent

Much of our current understanding of ALDs comes from studies in the northern Cana-

dian Arctic (McRoberts and Morgenstern 1974; Lewkowicz 1990; Lewkowicz 1992;

Harris and Lewkowicz 1993; Kokelj and Lewkowicz 1999; Kokelj and Lewkowicz

1999; Couture 2000; Harris and Lewkowicz 2000; Lewkowicz and Kokelj 2002;

Lewkowicz and Harris 2005a; Lewkowicz 2007; Favero 2009; Cannone et al. 2010;

Lafreniere et al. 2013; Lamoureux et al. 2014; Rudy et al. 2017). Other sites include

northern Alaska (Mackay 1981; Bowden et al. 2008; Balser et al. 2009; Gooseff et al.

2009; Swanson 2014; Balser et al. 2015). The Yamal Penninsual, Russia (Leibman

1995; Leibman et al. 2003; Ukraintseva and Leibman 2007). Svalbard (Larsson

1982) (Figure 2.23).

2.4.3 Morphology

Lewkowicz and Harris (2005a) categorised ALDs into three morphological types: (1)

‘compact’ where the detachment only moves a few metres to tens of metres, found

at the footslopes bordering a floodplain or incised river bank; (2) ‘elongate’ types

can initiate anywhere on a hillslope the mass of displaced material can be hundreds
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Figure 2.23 Map showing locations of selected ALD field studies in the northern hemishpere.

of metres away from the headscarp; and (3) ‘complex’ types which comprise of

successive movements over multiple days, and the headscarp will continue to expe-

rience retrogressive failure (Figure 2.24). ALDs have run-out lengths of between

20 m to 1 km. They are typically 20 m to 30 m wide and up to 1.5 m deep (Harris

and Lewkowicz 1993; Balser et al. 2015) (Figure 2.25). Failures exhibit an arcuate

upslope scar, a runout zone with blocks of detached active layer on the surface, and

a compressional zone of active layer material bounding the landslide at the toe and

edges. Failures initiate from the toe upward, at the headwall, or along the runout

zone (Harris and Lewkowicz 1993).

Whether a slide will move downslope as a cohesive block or as a viscous fluid

depends on the geotechnical properties and cryo-history of the active layer (1993).

An active layer with a low liquid limit (moisture content at which a soil begins to
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behave as a liquid) and a high silt content will behave as a viscous fluid (Harris

et al. 2008c). If the liquid limit and clay content are high, the soil will become more

cohesive and shear planes will develop. This allows for blocks or entire regions

of the active layer to slide downslope (Harris et al. 2008a; Harris and Lewkowicz

1993). During two-sided freezing of the active layer, water migrates from the centre

to the top and bottom of the active layer, forming a central desiccated zone. As ice

lenses thaw rapidly at the base of the active layer the water released is in excess

of the liquid limit of the adjacent soil, forming a liquefied sediment layer of a few

millimetres to centimetres thick. This causes a rigid block of active layer material to

slide ‘en masse’ downslope across the underlying liquefied soil reaching speeds of 2

m h-1 to 9 m h-1 downslope (Lewkowicz 2007).

Swanson (2014) mapped 2246 ALDs in the Noatak National Preserve, Alaska.

ALDs were most common on north-west facing slope aspects, on slope gradients

ranging from 4.5° to 21.3°. ALDs can initiate on slope gradients as low as 1° to

2° (McRoberts and Morgenstern 1973; Leibman 1995). Lewkowicz and Harris

(2005a) analysed the preferred aspect of ALDs relative to the valley orientation,

Figure 2.24 Conceptual diagram of an ALD and it’s key characteristics. Adapted from Rudy
et al. (2013).
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providing some insight into the controls on ALD initiation. In the Mackenzie Valley,

ALDs initiated on north-facing slopes (2005a). They found that north facing slopes

were more likely to fail because: (1) lower amounts of solar radiation allow for

permafrost to be more widespread and encourages greater amounts of ground ice,

especially in the transition zone (Lewkowicz and Harris 2005a; Shur et al. 2005);

(2) organic mats are thicker on north facing slopes allowing for a greater degree of

thermal disturbance during forest or tundra fires; (3) variation in the thickness of frost

susceptible glaciolacustrine silty clays within the valley meant that the likelihood

of failure was greater in regions with greater thicknesses of frost susceptible soil

(Lewkowicz and Harris 2005b). However, slope aspect might not be as important

as other factors controlling the initiation of ALDs. At Big Top Creek on Ellesmere

Island, ALDs initiated on east-facing slopes while at Hot Weather Creek on Ellesmere

Island ALDs initiated on west-facing slopes (Lewkowicz and Harris 2005a). Both

slope aspects recieve equal amounts of solar radiation (Lewkowicz and Harris 2005a).

Lewkowicz and Harris (2005a) found that the slopes with the greater number of

failures, regardless of aspect, had relatively greater ground-ice. Rudy et al. (2016)

found that ALDs preferentially initiated on north-facing slopes and attributed this to

preferential snow accumulation due to snow drifting, allowing for more moisture to

accumulate in the soil during thaw.

2.4.4 Paleo ALDs

ALDs re-vegetate within five to fifteen years, becoming almost indistinguishable

from adjacent topography (Swanson 2014; Balser et al. 2015). However, shear

planes from paleo ALDs have been found within slopes consisting of clays in

southern Britain (Hutchinson 1991; Ballantyne and Harris 1994), suggesting that

these now stable slopes were once susceptible to active layer failure over ice-rich

permafrost. In south-west France, remnants of a Pleistocene landslide have been
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Figure 2.25 Satellite image taken in 2005 of an ALD (68.42 N, 158.54 W), 21 km to the
north west of Feniak Lake, Alaska. Note the brown failure scar and the toe of damming the
stream, forming a pool upstream and causing increased turbidity downstream. The image is
orientated so that up is north. The length of the ALD is 200 m from head scarp to toe. Image
from Google Earth.

observed within a 0.5 m layer of clay overlain by colluvium on a 3° slope (Bertran

and Fabre 2005). The colluvium contained evidence of ice wedges, indicating

past permafrost conditions (Bertran and Fabre 2005). Bertran and Fabre (2005)

conducted slope stability analysis and determined that the slope could only have

failed during undrained conditions similar to that of ALDs in the Canadian Arctic

e.g. (Lewkowicz and Harris 2005b). The study by Bertran and Fabre (2005) show

that ALDs occurred as far south as 45°N and that these mass-wasting processes may

have been an indicator of a warming climate and an important geomorphological

agent of denudation during the Pleistocene.
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2.4.5 Triggers

Rapid late summer thaw

Swanson (2014) observed that ALDs mapped in Noatak National Preserve initiated

during the unusually warm summer of 2004. Air temperature data showed that 2004

was the warmest summer on record (1950 to 2013). When Swanson (2014) compared

the 2004 satellite imagery to 2007, he observed no more ALD activity. This could

imply that ALDs require a pre-conditioning time period to allow segregated ground-

ice to accumulate in the lower active layer/upper permafrost (Lewkowicz and Harris

2005a). Lewkowicz and Harris (2005a) demonstrated that late rapid summer thaw

coincided with rapid thaw near the basal part of the active layer and ALD initiation.

However, Lewkowicz and Harris (2005b) didn’t attribute this as the sole cause. The

thaw consolidation theory states that the rate of thaw should be the controlling factor

for ALD initiation. However, Harris and Lewkowicz (2005b) observed high thaw

rates at depth but no ALD initiation. This led to the conclusion that other factors

contribute to the initiation of ALDs. These include: (1) pre-conditioning of the

soil over consecutive years by plug-like solifluction which creates shear fabrics at

the base of the active layer, reducing shear strengths close to residual values; (2) a

development of an ice-rich layer at the base of the active layer from annual migration

of moisture to the basal zone during autumn freeze-back (Harris and Lewkowicz

1993).

Forest/tundra fire

Lewkowicz and Harris (2005a) found that ALDs initiated weeks to months after the

removal of forest and the insulating organic mat by fire. The removal of the organic

mat allowed the thaw front to penetrate deeper into the active layer, reaching the

ice-rich transition zone (Lewkowicz and Harris 2005b). In the Yukon, Lipovsky et al.

(2006) found that the burning of the organic mat reduced surface albedo, and surface
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shading from the tree canopy. Both act to increase the solar radiation absorbed

into the ground surface. When comparing burnt and unburnt slopes, Lipovsky et al.

(2006) demonstrated that burnt slopes were 3°C warmer. The absence of vegetation

has another impact in that it reduces evapotranspiration and increases surface runoff,

increasing the supply of moisture for the growth of ice lenses (Lipovsky et al. 2006).

Swanson (2014) observed the presence of ALDs in satellite imagery after a forest

fire in 2004 in the Yukon-Charley Rivers National Preserve.

Heavy rainfall

High rainfall can cause excess pore water pressures, an increase in soil moisture

content, and thermal erosion. It can also act to precondition the active layer for failure

the following summer. If rainfall occurs at the end of the summer and infiltrates

to the base of the active layer then it won’t completely drain away prior to autumn

freezback. In this case, the concentration of ice lenses increases because there is

a substantial source of moisture to feed their development. During the following

summer, these ice lenses thaw releasing excess pore pressures greater than the

capacity of the soil resulting in failure (Favero 2009).

Persistent and heavy rainfall in the Canadian high Arctic triggered mass-movements

on slopes in the locality of Vendom Fiord in the eastern Queen Elizabeth Islands

in July 1973 (Cogley and McCann 1976). On July 22, 49.4 mm of precipitation

fell, with a total of 54.6 mm during the three-day storm. Mass-movements occurred

on the margins of old alluvial terraces where the laminated silts were ideal for the

production of thin lenses of ground ice. The exposure of massive ice and their

subsequent melting led to a series of mass-movements, failing at the frost table

(Cogley and McCann 1976). Other early studies noted the importance of summer

precipitation for triggering mass-movements (Rudberg 1961; Pissart 1967). Larsson
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(1982) observed multiple mass-movements on the slopes of the Longyear Valley,

Svalbard after heavy precipitation in July 1972.

2.4.6 Importance of ALDs

Threat to infrastructure

An ALD in the village of Salluit, northern Quebec in September 1998 hit a new

urban construction centre causing developers to abandon and remove twenty new

houses (Allard et al. 2012). Longyearbyen (largest settlement on Svalbard) and is

situated in the Longyeardalen glacial valley. In June 1982 a rainstorm event initiated

80 debris flows and multiple ALDs. No mass-movements reached Longyearbyen, but

the close proximity of such mass-wasting events to a population centre demonstrated

that extreme events such as rainfall could prove hazardous. In northern Canada,

studies have highlighted the risk of ALDs to surface infrastructure for the transport

of natural gas and oil, with some failures initiating beneath pipelines (Hanna et al.

1998; Lewkowicz and Harris 2005a).

Terrestrial carbon cycle

Permafrost contains twice the amount of carbon than that in the atmosphere (Zimov

et al. 2006; Tarnocai et al. 2009). The top three metres is thought to contain 1,035+-

150 Pg (1Pg = 1 billion tons) (Hugelius et al. 2014) (Figure 2.26). This carbon comes

from the accumulation of plant and animal debris over millennia. In permafrost,

carbon is stored as soil organic carbon (SOC) and is released during the summer by

microbial decomposition as CO2 and CH4. Alarmingly, the Arctic is warming twice

as fast as the global average (Stocker 2014). This is causing more frozen ground

to thaw, and greater rates of organic matter decomposition and SOC release. The

release of just a fraction of the stored CO2 and CH4 could increase the rate of future

climate warming (Schuur et al. 2008; Schuur et al. 2015). Current research has
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demonstrated the importance of thermokarst features such as ALDs as a mechanism

by which permafrost carbon can become mobile (Jorgenson et al. 2006; Pautler

et al. 2010). With a predicted increase in ALD frequency with a warming Arctic

(Lewkowicz and Harris 2005a), ALDs are set to make a significant contribution to

the release of carbon from permafrost. First, the movement of material from the top

of the permafrost exposes that permafrost to warmer air temperatures. The thawing

of the exposed permafrost encourages microbial activity. Second, the release of

nutrients from permafrost into the Arctic stream network stimulates the growth of

microbial activity (Pautler et al. 2010).

Figure 2.26 Map of soil organic carbon (SOC) in the top three metres of northern hemisphere
permafrost. Data from Hugelius et al. (2013).
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Sediment budget

ALDs are the dominant mass wasting-process on Arctic hillslopes in northern Canada

(Lewkowicz and Harris 2005b). Transport rates are comparable to debris flows and

slushflows in higher mountain environments (Lewkowicz and Harris 2005b). A

study by Lamoureux and Lafreniere (2009) demonstrated that ALDs can have a

significant impact on the sediment yield of two Arctic catchments in Cape Bounty,

Canada. They found that ALDs act to dam river channels causing turbid pools of

water to form upstream and along the slide track front. Measurements of water

quality downstream showed that turbidity increased two to three days after the ALD

event as each interconnected turbid pool broke through the soft sediment of the

failed material and entered the stream network. Even though the area of mapped

ALDs was small relative to the total catchment area, they had an observable impact

on the sediment yield at the catchment scale Lamoureux and Lafreniere (2009).

Furthermore, the slide tracks of ALDs expose permafrost to the ambient air. This

encourages further thawing of the permafrost, generating secondary mudflows. The

track depressions left by ALDs act as a trap for snow, enhancing the accumulation of

snow. This results in greater meltwater and runoff, which increases soil erosion by

surface wash (Kokelj and Lewkowicz 1999; Lewkowicz and Kokelj 2002).

2.5 Slope stability

Mass-wasting events occur because the forces trying to pull material downslope are

greater than the forces resisting movement. Shear stresses are forces that act to pull

material downslope, these are called the driving forces. Shear strength is a material’s

ability to resist the shearing forces, these are called resisting forces (Figure 2.27).

The ratio between the driving and resisting forces is called the factor of safety (Fo f S)

and can be expressed simply as
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Fo f S =
sum of resisting forces (τr)
sum of driving forces (τd)

(2.5)

If the Fo f S is >1 then the slope is considered stable. When the Fo f S is <=1 a slope

is thought to be unstable. Many properties of soil on a slope can impact its likelihood

of failure such as the stress history, soil type, soil thickness, geotechnical properties,

water content, and slope gradient. In periglacial environments a further dimension of

complexity is added because of thawing ice and the pore pressures generated.

Figure 2.27 Resisting and driving forces acting on a slope. Adapted from Millar (2013).

Given the simple geometry of ALDs i.e. shallow and translational, it is possible

to use an infinite slope model developed by Skempton and DeLory (1957) to assess

the properties of thawing soils on slope stability. The shear stress of the soil acting

parallel to the slope is given by

τd = zγ sinβ cosβ (2.6)

where z is the depth of the slip surface, γ is the unit weight of soil (γ = ρg where ρ

is the soil density and g is the gravitational acceleration), and β is the slope gradient.
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The pressure of the soil acting perpendicular to the slip surface is called the normal

stress (σ )

σ = γzcos2 β (2.7)

To incorporate pore pressure generated by the weight of the soil:

σ ′ = σ −µ (2.8)

Where σ ′ is the effective normal stress and µ is the pore water pressure. The unit

weight of water (γw) and the height of the water table above the slip surface (h) is

included into the effective normal stress:

σ ′ = (γz− γwh)cos2 β (2.9)

The water table height can be expressed as a ratio of the height of the water table

(m) above the slip surface (h) to the depth of the slip surface (z)

m =
h
z

(2.10)

Therefore the effective normal stress can be re-written as

σ ′ = z(γ −mγw)cos2 β (2.11)

The shear stresses are opposed by forces that try to stop movement, the shear strength

of the soil τr (Figure 2.28). This is calculated based on the Mohr-Coulomb equation

(Anderson and Richards 1987)

τr = c′+σ ′ tanφ ′ (2.12)
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Where c′ is the effective cohesion, σ ′ is the effective normal stress and tanφ ′ is the

angle of friction with respect to the effective normal stress. The Fo f S equation in

this study is expressed as

Fo f S =
c′+ z(γ −mγw)cos2 β tanφ ′

zγ sinβ cosβ
(2.13)

Figure 2.28 Shear stresses, including pore pressure, acting on a unit of soil on a slope.
Adapted from (Millar 2013).

Cohesion (c′) in the soils is created by the physio-chemical bonds between individual

silicate minerals. Roots can offer some cohesion, but it has been observed that

the failure plains of ALDs occur beneath the rooting depth of Arctic vegetation

(Lewkowicz and Harris 2005b). Although, rooting systems can offer lateral cohesion.

Sands and silts have no cohesion because the larger grain sizes have a smaller surface

area thus there is less grain on grain contact. Friction is created by the interlocking

of grains (Anderson and Richards 1987).





Chapter 3

Automated mapping of landforms in

high Arctic mountains, Svalbard

3.1 Summary

A warming Arctic will lead to substantial changes in the rates and occurrences

of the surface processes that generate and move sediment. The remote nature of

mountainous Arctic landscapes leads to significant challenges in understanding the

spatial distribution of these geomorphological processes. In this chapter, I develop

a simple topographic classification of the geomorphological processes acting on

Svalbard and use it to measure their spatial extent. I used Linear discriminant

analysis (LDA) to determine the suite of topographic parameters that could most

simply describe processes acting on the landscape. I validated and tested my results

against detailed geomorphological mapping of two catchments in Svalbard (Endalen

and Ringdalen). I found that slope gradient, relative position on the hillslope, and

landscape roughness best described the spatial distribution of landforms in the area.

Bedrock, solifluction, and blockfields were readily distinguished using this approach,

with bedrock outcrops modelled at a higher resolution than was possible to map

via remote sensing. Scree slopes were difficult to distinguish from the ubiquitous
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vegetated allochthonous slopes, suggesting a similar origin for these deposits. The

mapping demonstrates that in the region, solifluction and scree slope development

are the dominant hillslope processes acting on this landscape and that sediment

fluxes are greatest in solifluction.

3.2 Introduction

Arctic landscapes are particularly sensitive to changes in Earth’s climate, as warmer

temperatures, changing precipitation patterns, and more frequent extremes of precip-

itation and temperature (Jorgenson et al. 2006) can induce thawing of permafrost and

increased rates of surface processes (Bonnaventure and Lamoureux 2013; Harris et al.

2009; Harris et al. 2001b; Lawrence and Slater 2005). For example, model predic-

tions suggest that a 1°C increase in average monthly temperatures will reduce surface

process rates by up to 33% in Finland (Aalto et al. 2014). Observations of recent

significant hillslope erosion events have occurred because of extremes in weather,

such as heatwaves or intense precipitation (Lamoureux et al. 2014). On Svalbard,

solifluction rates increased in response to a particularly warm summer, where the

active layer thickened such that ice lenses in the transient layer melted, and increased

downslope sediment fluxes (Harris et al. 2011). Lamoureux and Lafreniere (2014)

measured ALDs caused by exceptionally warm temperatures. Hence, the problem of

sediment fluxes within Arctic landscapes relies upon both better understanding of

erosion rates and the spatial distribution of the suite of processes that generate and

transport sediment through these landscapes. Here, I seek to develop a method for

automating the identification of different erosional processes in mountainous high

Arctic landscapes, to identify the spatial distribution of each landform.

Identification of the spatial patterns of erosion across high Arctic landscapes

has its genesis in the work of Anders Rapp (Rapp 1960b). The advent of readily

available digital topographic models in GIS (Dikau et al. 1995; Evans 1972; Pike
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1988) has allowed more detailed analysis of the shapes and spatial distribution of

Arctic processes (Niessen et al. 1992) using a wide range of analytical methodologies

such as statistical modelling approaches, including LDA (Giles and Franklin 1998;

Hjort et al. 2014), logistic regression (Etzelmüller et al. 2001), and machine learning

techniques, such as artificial neural networks (Aalto and Luoto 2014; Aalto et

al. 2014; Hjort et al. 2014). These papers highlight the significant challenges

associated with identifying and classifying landforms, particularly beyond the local

scale. Therefore, wide ranges of topographic classifiers have been used to identify

landforms, including elevation, slope gradient, slope curvature (and the many other

elevation-based topographic derivatives), drainage area (and topographic wetness),

slope aspect (and solar radiation) (Bartsch et al. 2002; Etzelmüller et al. 2001;

Romstad 2001; Rudy et al. 2016) often used in combination with other remotely

sensed information such as temperature measurements and vegetation characteristics

(Aalto and Luoto 2014; Hjort et al. 2014).

Most classifications of the distribution of landforms tend to focus on one or a

small number of processes and/or combining topographic data with climatic data and

satellite-based imagery. I seek to develop a more generalised methodology, where I

attempt to understand the spatial distribution of the major non-glacial geomorpho-

logical processes acting on a mountainous Arctic landscape and quantify the flux of

sediment within the system.

Studies have shown how climate can have a profound impact on the erosion,

storage, and deposition rates of periglacial landforms, impacting the sediment budget

of landscapes (Matsuoka 2001a; Beylich 2008; Lewkowicz and Harris 2005a). To

address this at a regional scale some studies have used a combination of remotely

sensed data, field studies, and statistical analysis to model the distribution of land-

forms. There are few studies that have attempted to quantify the sediment flux of

landforms on Svalbard (Hjort et al. 2014). This is important because Svalbard is

an Arctic region already seeing rapid warming and geomorphological response to
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current global warming (Akerman 2005). Having a tool with which to quantify

current and future sediment fluxes will help our understanding of the future the

topographic response to current global warming on Svalbard. In this chapter, I aim

to combine field-based literature studies with my landform classification model to

quantify the sediment flux in two glacial valleys on Svalbard, Endalen and Ringdalen.

To do this I developed a landform classification model using topographic data only,

to avoid issues with the interpolation of climate data and the interpretation of satellite

imagery. I test the model against the geomorphological mapping of two catchments

in Svalbard, Endalen and Ringdalen.

3.3 Study site

The 10 km2 study sites are located in the Colesdalen and Adventdalen valleys,

Svalbard (Figure 3.1). Svalbard is a high-Arctic semi-arid desert, with a mean

annual temperature of -6.8°C (1961 to 1990, Svalbard Airport) and a mean annual

precipitation of 190 mm. Permafrost is continuous outside of the glacier covered

areas (Harris et al. 2009) and is typically 100 m thick in the valley bottom and 400

to 500 m thick at higher elevations (Humlum et al. 2003). The study area contains

early Cretaceous to Eocene near-horizontally bedded sandstones, siltstones, shales

and coal (Major et al. 2001). I developed the topographic model in Endalen, a

north-east facing tributary valley to Adventdalen, 4 km south-east of Longyearbyen.

I tested the model in Ringdalen, a west facing tributary valley to Colesdalen, 15

km south of Longyearbyen. These sites were chosen because a wide range of

geomorphological studies provide information about the rates and mechanisms of

the processes governing the development of Svalbard including studies of rockfall

retreat (Akerman 1984; Andre 1997; Rapp 1960b; Siewert et al. 2012), debris flows

and active layer detachments (Larsson 1982), solifluction (Akerman 2005; Harris
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Figure 3.1 Study site location maps. a) Svalbard, satellite image from Google Earth. b)
Endalen and Ringdalen, satellite image from Norsk Polar Institute. c) View of Endalen valley,
image © Huw Mithan.

et al. 2011; Jahn 1967; Matsuoka and Hirakawa 2000) and alluvial and colluvial

deposits (Haas et al. 2015).

Summit areas (600 to 700 m.a.s.l.) are typically flat plateaux composed of

blockfields and patterned ground. Frost weathered sedimentary bedrock at plateau
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edges (Eckerstorfer et al. 2013) lead downslope to steep planar (30° to 40°) deposits

of scree and debris fans. Shallow (5° to 25°) concave slopes of solifluction sheets are

found at the base of many hillslopes. Valley floors contain braided rivers that deposit

sediment at valley mouths to form alluvial fans.

3.4 Materials and methods

I developed a method for automatically identifying landforms based on three readily

available topographic parameters. This involved detailed geomorphological mapping

of a catchment in Svalbard (Endalen and Adventdalen) to provide training and

validation datasets. Deriving topographic metrics using LDA, I then validated the

methods by applying them to an adjacent catchment in Svalbard (Ringdalen).

3.4.1 Geomorphology mapping

I created a 5 m resolution geomorphological map of Endalen to train the topographic

model, then I mapped a smaller area of Ringdalen to use as a validation dataset. I

first digitised a 1:100,000 scale geomorphological map of Svalbard (Tolgensbakk

et al. 2000). However, I found the resolution of the mapping to be lower than was

necessary for accurate identification of subtle landforms, such as bedrock outcrops.

Instead, I mapped the same geomorphological units as Tolgensbakk et al. (2000)

using higher resolution imagery (NPI 2014). In each photo, I focussed on the non-

glacial landforms, defining each polygon using a reasonably coarse classification

system of the following landforms; bedrock outcrops, floodplain, alluvial fan, block-

field, scree/talus, solifluction, and allochthonous material. The coarse classification

matches that used by Tolgensbakk et al. (2000) and are very similar to other classifi-

cations (Giles and Franklin 1998). I identified floodplains based on their multiple

weaving channels caused by braided river incision. The floodplain boundary some-
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times included a steep ridge or bank. Alluvial fans contained braided rivers but were

arcuate with a distributary channel system located at the exit of a valley. The lateral

margins are defined by a change in colour of the landform material and incised fluvial

channels, respectively. Blockfields were flat areas found on the summit plateaus.

Some individual angular blocks can be seen through the satellite imagery. Bedrock

outcrops tend to be found at the margins of summit plateaus bounded by scree slopes.

In imagery, bedrock is darker in colour and often contains significant shadow due to

the steep nature of outcrops and low sun angle. Solifluction is found at the base of

hillslopes, is vegetated and contains lobate deposits (Matsuoka 2001a). The areas of

mapped ’solifluction’ are zones of potential solifluction, and incorporate some lower

slopes where debris cones fed by recurrent debris flows are the dominant landform.

The area identified as ’solifluction’ (or ’solifluction sheet’) is, therefore, a maximum.

Scree/talus slopes are non-vegetated deposits of blocky material located midway

down a hillslope below exposures of bedrock. These deposits were either planar or

slightly fan-shaped. Allochthonous material is defined simply as material that has

moved downslope and is generally termed debris mantled slope. I identified this as

the transition from active (grey in imagery) to a less active material (yellow-green in

imagery) (Figure 3.2).

Tolgensbakk et al. (2000) used this term to indicate material that was found on

side slopes that could not be obviously tied to a specific landform or process. I have

continued to use this definition.

3.4.2 Topographic Analyses

I analysed the distribution of topography associated with the landforms described on

the geomorphological map using initially a wide range of topographic descriptors,

then used LDA to identify the most important topographic metrics for discriminating

landforms. The analysis was carried out on a 5 m photogrammetry-derived DEM



66 Automated mapping of landforms in high Arctic mountains, Svalbard

Figure
3.2

a)L
andform

s
used

to
train

the
classification

m
odel.Satellite

im
age

from
the

N
orsk

PolarInstitute.b)Insetm
ap

show
ing

m
apped

bedrock
in

m
ore

detail.



3.4 Materials and methods 67

(NPI 2014). From the DEM I removed anthropogenic infrastructure, water bodies,

artefacts, pixels that were within the shadow shown in the satellite image, pixels that

correspond to snow cover in the satellite image, glaciers and their features, and filled

sinks in the raster surface.

I defined a range of topographic metrics that are commonly used in topographic

analysis including ArcGIS-derived slope aspect, slope gradient, planform curvature,

profile curvature, total curvature, topographic wetness index, as well as topographic

openness (Yokoyama et al. 2002), a measure of roughness based on the directions of

poles to planes on the surface (McKean and Roering 2004), and a relative local relief

metric. Relative local relief (RLR) is the relative elevation of a pixel to the maximum

and minimum elevation values within a 5 km diameter circular neighbourhood. RLR

values vary from 0 (lowest elevation) to 1 (highest elevation) as

RLR =
x− xmin

xmax − xmin
(3.1)

where x is the elevation of a pixel, xmin and xmax are the minimum and maximum ele-

vations within a 5 km circular window. I used the topographic roughness method of

McKean and Roering (2004), which has been demonstrated as an effective method for

identifying landslide material (McKean and Roering 2004) and bedrock (Milodowski

et al. 2015). The method uses the statistical variability in the poles to each DEM

pixel within a square window of fixed size (in this case 3 x 3 pixels). I used the SR1

eigenvalue ratio (McKean and Roering 2004).

3.4.3 Automated analysis of landforms

I used the LDA method to automatically identify landforms. LDA is commonly used

as a supervised machine learning tool and as a statistical method for dimensionality

reduction (Giles and Franklin 1998). LDA finds the best linear combination of

topographic parameters that (1) maximise the distance between the means of two or
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more classes, while (2) minimising the scatter around the mean, within each class.

LDA projects this information onto a new axis called LD1, LD2, etc. with LD1

representing the best linear combination of variables that fulfil (1) and (2).

LDA is useful because it has been widely and successfully applied to classify

landforms, including a number of Arctic applications (Brenning 2009; Giles and

Franklin 1998), and it is possible to compare the linear relationship with my expecta-

tions based on my physical understanding of the processes governing each landform.

There are some weaknesses in the method. Firstly, it does not account well for

processes with a non-linear relationship between variables, and secondly, there is

an assumption that covariables follow multivariate normal distributions (Brenning

2009)

Using landform polygons from Endalen and Adventdalen I trained the classi-

fier. For each landform polygon, I extracted its pixel values from the topographic

parameter rasters. In order to assess the classifier’s performance, I split the landform

dataset into a 70% training set and a 30% testing set and evaluated the classification

using an ‘accuracy’ metric (the ratio of the number of correctly predicted landforms

divided by the total number of landforms multiplied by 100). I repeated this train/test

split procedure ten times on different segments of the landform dataset and took the

average accuracy score, a process called k-fold cross-validation. I used this test to

ensure that the classifier didn’t perform differently after being trained on different

segments of the landform dataset. I used the training set in the LDA classifier module

in Python’s Scikit-Learn machine learning programme (Pedregosa et al. 2011) to

train the LDA classifier.

I performed a recursive feature elimination analysis to automatically determine

which three topographic parameters contribute the most to the predictive power

of the LDA classifier. By recursively removing topographic parameters, recursive

feature elimination analysis uses the model accuracy metric to identify the best

combination of topographic parameters. This method helps to reduce over-fitting,
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improve accuracy, and reduces training and testing time. I found that relative

local relief, topographic roughness, and slope gradient to be the best performing

topographic parameters.

I performed two further tests to assess the accuracy of the model. First, I tested the

model in Ringdalen. I input the three 10 km2 topographic parameter rasters (relative

local relief, topographic roughness, and slope gradient) into the trained classifier.

The classifier iterates through each x-y coordinate, taking the corresponding relative

local relief, slope gradient, and topographic roughness pixel values and calculating

their position on the linear discriminant (LD) axes. Where they are plotted on the

LD axes determines which landform type is assigned to the group of three pixels.

Once all iterations are complete, the product is a 10 km2 raster where each pixel has

a landform classification.

3.4.4 Accuracy, recall, and precision

To assess the quality of the classifier I used three metrics; accuracy, recall, and

precision. Accuracy is the proportion of correct classifications (true positives and

negatives from the overall number of cases.

Accuracy =
Tp +Tn

Tp +Tn +Fp +Fn
(3.2)

Recall is the proportion of correct positive classifications (true positives) from the

cases that are actually positive

Recall =
Tp

Tp +Fn
(3.3)

Precision is the proportion of correct positive classifications (true positives) from

cases that are predicted as positive
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Precision =
Tp

Tp +Fp
(3.4)

where Tp are the true positives, Tn are the true negatives, Fp are the false positives,

and Fn are the false negatives. Therefore, the accuracy scores tells us how well the

model performs overall. Precision answers the question, of all the landforms labelled

as landform ’x’, how many were actually landform ’x’? Recall answers the question

of all landforms that are truly x, how many did the model label as x? (Figure 3.3).

Figure 3.3 Conceptual diagram of precision and recall. Adapted from Walber (2017)
.
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3.5 Results

3.5.1 Landform topography

Because of their similar genesis, floodplains and alluvial fans have similar topogra-

phies occurring on valley floors (average relative local relief of 0.04 for floodplain,

0.05 for alluvial fans), with rough channelized surfaces (average topographic rough-

ness values of 0.02 for floodplain and 0.69 for alluvial fans), and shallow slopes

(average values of 1°) (Figure 3.4 and Table 4.1). The significant number of summit

plateaus meant that these landforms were easily distinguishable as features of low

slope gradient (average value of 3.8°) located in the higher parts of the landscape

(average relative local relief of 0.80), with an average roughness of 0.59. Bedrock is

also found at higher elevations (average relative local relief of 0.59) on very steep

slopes (average value of 56.8°) with average roughness values of 1.42. Solifluction

lobes are found on lower parts of hillslopes (average relative local relief of 0.12) with

low slopes (average value of 6.43°) and a roughness of 1.58. Scree/talus slopes and

allochthonous slopes had very similar topography typically found mid-slope (average

relative local relief of 0.23 for scree and 0.31 for allochthonous slopes) with similar

slopes (average slope gradient) of 27.3° for scree and 25.7° for allochthonous) and

smooth slopes (average topographic roughness values of 2.33 for scree and 2.24 for

allochthonous slopes) (Figure 3.4 and Table 4.1).

3.5.2 Model training results

The LDA results show that more than 95% of the proportion of separation between

landforms is caused by a combination of the LD1 (65.78%) and LD2 (33.63%) axes

(Figure 3.5a). Relative local relief controls 98.87% proportion of separation between

landforms along the LD1 axis. Along the LD2 axis slope gradient (10.14%) and topo-

graphic roughness (8.27%) have a greater influence but relative local relief remains
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Figure 3.4 Box plots of landforms and their topographic parameters. a) Relative local relief.
b) Topographic roughness. c) Slope gradient.
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Table 3.1 Landform training data statistics. Relative local relief (RLR), topographic rough-
ness (TRgh), Slope gradient (SGr).

RLR TRgh SGr (°)

Landforms Polygons [km2] mean SD mean SD mean SD

Allochthonous 11 1.59 0.31 0.12 2.24 0.51 25.68 9.12
Alluvial fan 5 8.44 0.05 0.02 0.69 0.39 2.12 1.28
Bedrock 23 0.01 0.59 0.15 1.42 0.46 56.83 4.30
Blockfield 5 4.46 0.8 0.10 1.45 0.59 3.78 2.30
Floodplain 8 10.58 0.04 0.03 0.02 0.27 1.34 0.90
Scree 15 0.16 0.23 0.08 2.33 0.41 27.27 5.72
Solifluction 4 0.53 0.12 0.03 1.58 0.51 6.43 2.40

dominant (81.59%) (Figure 3.5b). These results demonstrate that a considerable

amount of the predictive power of the model lies with a small number of variables,

relative local relief, slope gradient, and topographic roughness. Relative local relief

and slope gradient are the strongest landform separators when used together (Figure

3.6). How the LDA model defines linear boundaries between landforms after being

trained is seen in (Figure 3.7).

Figure 3.5 LDA results. a) Influence of each linear discriminant axis on landform separation.
b) Impact of each topographic parameter on LD1 and LD2. c) How LD1 and LD2 separate
landforms.

3.5.3 Model implementation and internal testing - Endalen

Initial internal testing of the model with a 70% training and 30% test datasets

produced a mean accuracy score of 77.3 (± 0.2)%. More detailed analysis of
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Figure 3.6 Plots showing how the training dataset relates to the three topographic parameters.
a) Slope gradient against relative local relief. b) Topographic roughness against relative local
relief. c) Topographic roughness against slope gradient.

Figure 3.7 Bivariate plots showing how the model classified the test dataset. Polygons
represent model landform boundaries. a) Slope gradient against relative local relief. b)
Topographic roughness against relative local relief. c) Topographic roughness against slope
gradient.

the recall (the ratio of true positives against true positives + false negatives) and

precision (defined as the ratio of true positives against true positives + false positives

and is a measurement of uncertainty) of the analysis demonstrates that reductions in

accuracy are related to the misclassification of geomorphological units with similar

topographies. The model performs best when predicting blockfields, solifluction,

allochthonous areas. Blockfields have 100% recall and precision, suggesting a very

accurate classification of these features. Solifluction sheets were also accurately

identified (recall of 81%, precision of 95%), with the most common misidentification
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being alluvial fans (recall of 18%). Allochthonous areas have a recall of 85% and a

precision of 91% and were most commonly misidentified as scree. Bedrock has a

high recall (100%) but low precision (54%) suggesting that the model classified most

of the bedrock pixels within the test dataset, but 46% of the pixels it identified as

bedrock pixels were mapped as allochthonous areas. Alluvial fans have a low recall

(53%) and a high precision (74%) suggesting that the classification misidentifies

alluvial fan pixels as either floodplain or solifluction. Scree has a very low recall

(14%) and a low precision (9%) because the model usually misidentifies scree slopes

as allochthonous surfaces.

The similarity in the topographies of alluvial fans, which are composed of

sediment deposited predominantly by braided rivers, and floodplains themselves

is not particularly surprising for a pixel-based classification. Similarly, a confused

classification of areas of active scree slope and allochthonous material, which is

typically found on similar slopes to scree and is mostly differentiated by vegetative

cover. To test the effect of differentiating these similar landforms on classification

accuracy, I ran the LDA classification for a dataset where floodplains and alluvial fans

were combined into a “valley bottom” unit and allochthonous areas and scree slopes

were combined into a “loose hillslope material” unit, the accuracy of this model

increased to 99.1%. The low precision for bedrock areas may in some part be because

the classification is better able to recognise bedrock that the geomorphological

mapping missed. Bedrock outcrops are small, often a few pixels wide and are

sometimes difficult to recognise on the aerial imagery I used to map them.

3.5.4 Model validation - Endalen test

A classified map for a 10 km2 sample area portion of Endalen produced using the

trained LDA model has an overall accuracy of 81.69%. The map demonstrates
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Figure 3.8 Maps of Endalen. a) Satellite image from the Norsk Polar Institute. b) Author’s
landform map. c) Model’s landform map. d) Relative local relief. e) Topographic roughness.
f) Slope gradient. Contours are in metres. Maps are underlain with a hillshade. Grey regions
have no data.
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the success of the classification scheme in identifying the spatial distribution of

landforms within these areas (Figure 3.8).

Occupying the flat plateaus of Endalen are blockfields, and is the most extensive

landform covering 3 km2 (Figure 3.9). Bedrock is modelled at the plateau edge,

contouring the top of the hillslopes but also 100 m downslope from the plateau edge.

Bedrock covers the smallest area of c.a. 0.2 km2. The mid-slopes are dominated by

allochthonous material and are the second largest landform c.a. 2.1 km2. Its upslope

boundary is defined by the plateau edge, bounding solifluction at its downslope

margin. Solifluction occupies an area of 1.1 km2 the third most extensive landform.

The downslope boundary of solifluction borders the braided river and alluvial fan.

Solifluction is most extensive at the mouth of the valley. At the mouth of Endalen

scree is classified on the slopes between solifluction and the alluvial fan. These

classifications coincide with an area of steep slopes on the valley floor. As a result,

scree only occupies 0.3 km2 of the study area. Areas of solifluction adjacent to

the centre of the valley contain pixels classified as alluvial fan. The extent of this

increases toward the north-east. In the centre, running from the south-west to north-

east is a mixture of pixels classified primarily as a floodplain but some are incoherent

clusters of alluvial fan material (Figure 3.10).

3.5.5 Model validation - Ringdalen test

A classified map for a 10 km2 of Ringdalen had an overall accuracy of 76.63% (Figure

3.10). This is lower than Endalen but still a successful application of the model

(Figure 3.9). Blockfields and flat plateaus are less of a prominent feature, occupying

an area of c.a. 0.4 km2 (Figure 3.9). The occurrence of bedrock is restricted to the

top of cirques in the north-east and small ridges 500 m to the west. Allochthonous

material is the dominant landform occupying c.a. 5.3 km2, and is extensive on

north and south facing slope, extending 700 m downslope. Unlike in Endalen, the
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Figure 3.9 Maps of Ringdalen. a) Satellite image from the Norsk Polar Institute. b) Author’s
landform map. c) Model’s landform map. d) Relative local relief. e) Topographic roughness.
f) Slope gradient. Contours are in metres. Maps are underlain with a hillshade. Grey regions
have no data.
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Figure 3.10 Confusion matrices comparing how the model performs against the author’s
landform map. a) Recall matrix for Endalen. b) Recall matrix for Ringdalen. c) Precision
matrix for Endalen. d) Precision matrix for Ringdalen.

allochthonous material in Ringdalen doesn’t reach the valley floor. Its downslope

boundary is with solifluction, the second most dominant landform occupying nearly

3 km2 of the study area. The model predicts solifluction to occupy the lower half of

the hillslopes in the centre of Ringdalen and less in the south. Clusters of alluvial

fan material are found on the mid to lower reaches of the solifluction material. These

clusters become denser at the mouth of Ringdalen. Patches of solifluction occupy

relatively flat sections of hillslope in the centre north. Scree slopes are absent on

the upper slopes below bedrock outcrops. Instead, scree is found at the downslope
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Figure 3.11 Plotting recall against precision for each landform in the Endalen and Ringdalen
models. The grey dashed lines are f-measure contours, which is the weighted average of
precision and recall: F-measure = 2 * (precision * recall) / (precision + recall).

boundary between solifluction and the braided river in the centre and east side of

Ringdalen. Scree slopes either occupy the banks of the floodplain or the bounding

slopes of the alluvial fan. Pixels classified as braided river are found in the central

channel of Ringdalen and in the south-west corner. However, these channels are

bounded by scree but also occupying where the alluvial fan should be. There appears

to be less alluvial fan material where the alluvial fan should be and instead is found

on adjacent solifluction slopes. Allochthonous material, solifluction and blockfield

cluster in the top right corner of a precision-recall plot, demonstrating that the model

is good at classifying these landforms (Figure 3.11).
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3.6 Discussion

The model provides an insight into which topographic parameters best classify

periglacial landforms. I observed that the combination of relative local relief and

slope gradient had the greatest influence on the model. The results of the analysis

suggest that the model can successfully classify bedrock, solifluction, allochthonous

material, and blockfields. These results provide an insight into the direct and indirect

influence of the chosen morphometric parameters on processes controlling the forma-

tion of periglacial landforms. Relative local relief and slope gradient are the drivers

of the model, while relative local relief has the greatest impact on the model. This

is expected because elevation governs environmental factors such as temperature

and water availability, where and how sediment is formed and deposited, and the

erosional history of a landscape, all of which help to control the processes forming

landforms (Harris et al. 2011).

On Svalbard, blockfields are veneers of coarse regolith representing a non-glacial

surface. They are areas of low gradient found at mountain summits or plateaus and

are exposed to periglacial processes such as frost shattering. In Endalen there is

evidence for the existence of a past glaciation on the plateaus (Landvik et al. 1998).

Although, blockfields can remain undisturbed beneath cold-based glaciers but only

form during periglacial conditions (Ballantyne 2010). The blockfields on Svalbard

autochthonous because they form from in situ weathering of underlying bedrock

(Goodfellow 2007) on the summits of mountains (Ballantyne 2010). Allochthonous

blockfields are material derived from up-freezing of clasts in till or by the downslope

movement of weathered material. According to Rea (2007) the transport mechanism

defines the character of the landform as transport distances increase. The formation

and preservation of blockfields are controlled by shallow slope gradient at high

elevations (Rea 2007; Rixhon and Demoulin 2013).
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Bedrock is exposed on the plateau edges of Svalbard because of a plucking mech-

anism caused by collapsing cornices formed from the accumulation of windblown

snow by prevailing winds across the blockfields (Eckerstorfer et al. 2013). The

annual removal of material maintains a steep rock surface. Bedrock has a high recall

and low precision in Endalen and Ringdalen (Figure 3.10). This suggests that the

model is classifying more bedrock than is actually there. I attribute this to mapping

error because (1) many exposures are c.a. 10 m in length on the satellite imagery

and therefore difficult to observe due to resolution, and (2) bedrock is mistaken

for allochthonous material during interpretation of satellite imagery. Bedrock is

frequently misclassified as allochthonous (Figure 3.10). Areas which have been iden-

tified as bedrock by the model are areas of steep slope where allochthonous material

shouldn’t form because regolith can’t be retained on the hillslope (Figure 3.10). The

main control on separating bedrock from other landforms is slope gradient (Figure

3.4). Studies by DiBiase (2012), Heimsath et al. (2012), Marshall and Roering

(2014) have used a slope threshold to extract bedrock from high resolution elevation

models. Milodowski et al. (2015) claim that a combination of topographic metrics

such as slope gradient and topographic roughness can be used as a more robust

feature extraction of bedrock from high-resolution data. Contrary to Milodowski et

al. (2015) I found that topographic roughness had a small influence relative to slope

gradient and relative local relief at classifying bedrock. However, in (Figure 3.8e)

bedrock is detected to have low topographic roughness values on the slopes at the

mouth of Endalen. This agrees with McKean and Roering (2004) observation that

their roughness algorithm using the same eigenvector ratio as this study showed the

presence of bedrock outcrops.

Of all landforms, the model couldn’t classify scree correctly. In Endalen and

Ringdalen scree is misclassified as solifluction and allochthonous material. Scree and

solifluction share similar values of relative local relief and topographic roughness

(Figure 3.4e). The classifier uses slope gradient to separate scree and solifluction.
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Both scree and solifluction have different ranges in slope gradient (Figure 3.4).

Despite this, the model can’t distinguish between the two because their topographic

positions are the same. In figure (3.10) the areas of solifluction which are classified

as scree by the model are steep banks next to rivers. This is probably due to over-

steepening of material by fluvial incision. Plug-like deformation is the dominant

way in which solifluction moves in regions of continuous permafrost, and velocities

decrease where gradient decreases downslope resulting in a pile-up of material

(Matsuoka 2001a). The combination of similar hillslope gradient position and steep

terrain are surface characteristics of scree, not discernible from solifluction.

I believe that active scree is being classified as allochthonous material and propose

that these landforms are vegetated scree slopes (Figure 3.10). Both landforms share

similar ranges of relative local relief, slope gradient, and topographic roughness

values (Figure 3.12). Vegetated scree slopes have been observed in Tempelfjorden

and have developed there because of a loss of source material, moisture, and fine-

grained material from upslope (Rapp 1960a). Other studies have observed no

difference in slope gradient between vegetated and non-vegetated scree (Hales and

Roering 2005). The angle at which scree slopes form is dependent on the angle of

residual shear of the parent material ranging from 30° to 40° (Sanders 2010). The

location and activity of scree on a hillslope is dependent on a source of material

from the bedrock above and therefore must occur lower on the slope. Rockfall is the

primary process producing scree slopes. Rockfall onto scree slopes is either primary

i.e. triggered by freeze-thaw activity on the rock face and subsequent downslope

transfer of newly detached material i.e. rockfall. Secondary rockfall is where rockfall

is dislodged by other rockfall, snow avalanches, water runoff or even cornice collapse.

The cliff faces are dissected with channels that channel debris into accumulation

corridors that open downslope into talus cones. Smaller rocks and finer material

deposited onto the talus slope surface are washed or trapped in the interstitial voids

between larger clasts.
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Figure 3.12 Box plots of landforms and their topographic parameters from the Endalen and
Ringdalen models. a) Relative local relief. b) Topographic roughness. c) Slope gradient.
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I found that the model could classify solifluction consistently well (Figure 3.10)

and (Figure 3.11). Solifluction is classified at the base of hillslopes on low slope

gradients (Figure 3.4), similar to field studies of solifluction on Svalbard (Akerman

2005; Harris et al. 2011; Matsuoka 2001a; Matsuoka and Hirakawa 2000; Akerman

1996). Other classification studies have found a slope and elevation niche for

solifluction (Bartsch et al. 2002; Ridefelt et al. 2010) while others believe that slope

is an important predictor because it is related to the potential energy and drainage

patterns of the hillslope (Aalto and Luoto 2014). Relative local relief and slope

gradient are closely linked to the mechanisms driving solifluction. Solifluction is

more likely to occur where: (1) the substrate is a frost-susceptible non-cohesive soil.

Bedrock above the solifluction sheets are composed of early Cretaceous sandstones,

clay ironstones, and shales (Harris et al. 2011). The weathering of this bedrock

produces large boulders/clasts and finer material of sand and silt. This weathered

material is graded downslope so that the coarser material remains higher up the

hillslope to form scree (Hinchliffe et al. 1998) while the finer material and some

larger clasts are washed downslope to form a sandy-silt diamicton containing some

sandstone clasts. This silty clay regolith is known to be frost-susceptible (Harris

et al. 2011). A frost-susceptible soil is key for providing a medium for the growth

of ice lenses; (2) Sufficient moisture is available for ice segregation and soil plastic

limit. Soil moisture is dependent on the soil properties, ground ice accumulation, and

surface/subsurface runoff (Matsuoka 2001a). With a shallow slope gradient, water

doesn’t drain away quickly and can accumulate. This has two effects, (a) continual

water supply for ice lenses growth during autumn freeze back and (b) saturating

the regolith to its plastic limit thus reducing the shear strength of the soil allowing

it to deform downslope under its own weight; (3) Slope gradient is steep enough

to initiate downslope self-weight shear stress. This has two effects on solifluction

(a) it regulates the volume of sediment that can move and (b) controls the rate of

sediment movement. During experimental simulations of solifluction it was found
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that for a given slope gradient there is a positive correlation between the surface

thaw settlement and surface downslope movements (Harris et al. 1996; Harris et al.

2008a; Harris and Smith 2003; Harris et al. 2008b). Too steep and the saturated

soil will fail along a shear plane, become a debris flow, or water will drain away

too quickly removing all the fine material and leaving the coarser material. Too

shallow or no gradient and there will be an absence of the deformation component

of gravity acting parallel to the slope i.e. no downslope movement. Therefore the

soil will become waterlogged resulting in the possible formation of pore ice or other

periglacial landforms. However solifluction has been found on gradients of up to 1°

to 2° (Washburn 1980) while on Svalbard solifluction has been found to occur on

slopes of between 2° and 36° (Matsuoka 2001a).

Alluvial fans and floodplains are indistinguishable according to the model. This

is no surprise because both landforms exhibit similar topographic characteristics. The

fluvial channels dissecting the surface of an alluvial fan are similar to the channels

on floodplains. Both are at the base of the hillslope and have shallow slopes. The

distinguishable characteristic between the two is their shape. Alluvial fans are fan

shape while floodplains are linear. The classification model is pixel based and so to

classify by shape requires an object-orientated analysis, which has proven successful

in other studies (Dragut and Blaschke 2006; Ghosh et al. 2010).

The data shows that solifluction is one of the most extensive landforms within

Endalen and Ringdalen (Figure 3.13). These study sites are favourable to solifluction

because of regolith made of a frost-susceptible material, the wet environment caused

by saturated ground encourages heaving during autumn freezback, and deep snow in

the winter causes low-temperature gradients. Berthling et al. (2002) and Bartsch et al.

(2002) believe it is an important mass-wasting process in cold environments, moving

sediment through a catchment. The model is simple and uses parameters that reflect

the important topographical controls on solifluction. Solifluction, a slow and con-

tinuous mass-wasting process, occurs in areas of continuous permafrost (Matsuoka
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Figure 3.13 Bar chart showing the area occupied by each landform in the Endalen and
Ringdalen models.

2001a). Back of the envelope calculations have shown that solifluction moves the

greatest amount of material annually (Figure 3.15). I attribute this to a deeper active

layer in Endalen (Harris et al. 2011). There are multiple ways in which the model

can be improved. First, generalising the model by combining similar landforms

into larger units. I briefly tested this by merging floodplains and alluvial fans into

‘’valley bottom” material and allochthonous material and scree into “loose hillslope”

material. This improved model accuracy but at the expense of distinguishing more

landforms. Second, additional landforms can be added by re-training the model.

Other landforms which may be of interest to other researchers include moraines,

debris cones, ice-wedge polygons, and avalanche deposits. However, adding more

landforms would create more complexity. Third, I would add a step to remove

misclassified pixels using a moving window to determine if the pixels surrounding

the central pixel are the same. Nonetheless, the model developed in this chapter has

a practical application for reconnaissance geomorphological mapping of large areas

of unmapped terrain.
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3.6.1 Sediment fluxes from Arctic landforms

Sediment flux was calculated using contact lengths that were >500 m between the

landforms: (1) blockfield to allochthonous, (2) allochthonous to scree, (3) scree to

solifluction, and (4) solifluction to fluvial (braided river and alluvial fan) (Figure

3.14). I used the following formula to calculate sediment flux

S f = DVC (3.5)

where S f is sediment flux (m3 a-1), D is depth of movement (metres), V is veloc-

ity (m a-1), and C is contact length between two landforms (metres); blockfields-

allochthonous, allochthonous-solifluction and solifluction-alluvial fan/floodplain.

In my calculation, I assume that sediment flux is caused by slow mass movement

processes. At the blockfield-allochthonous contact, I chose a movement rate of

0.0025 m a-1 and a regolith thickness of 1 m, the average velocity and thickness of

regolith on a blockfield in Wyoming (Anderson 2002).

To represent velocity and depth at the allochthonous-solifluction boundary I used

a depth of 0.2 m and a creep velocity of 0.01 m a-1 (Rapp 1960a). For the solifluction-

fluvial boundary I used a depth of 1.06 m and a velocity of 0.022 m a-1 (Harris et al.

2011). The data show that sediment flux increases downslope. Solifluction moves

ten times the amount of sediment compared to other landform processes, making it a

major denudating process (Figure 3.15). Studies in other periglacial regions have

also found the same result concluding that solifluction is as important in sub-Arctic

periglacial regions as mass-wasting processes are in alpine regions (Berthling et al.

2002; Ridefelt et al. 2010; Matsuoka 2001a). Other processes are known to transport

sediment from blockfields such as cornice falls (Eckerstorfer et al. 2013) or from

bedrock at the plateau edge (Siewert et al. 2012). There is a combination of processes

such as bedrock fracturing by frost processes, avalanche falls, cornice falls, and

fluvial erosion during summer months moving material to the lower slopes (Rapp
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Figure 3.14 Series of maps comparing contact boundaries >500 m created from the author’s
maps and the model. a) Endalen author’s map. b) Endalen model’s map. c) Ringdalen
author’s map. d) Ringdalen models’s map.

1960a), and rockfall caused by paraglacial debutressing (Ballantyne 2010) which I

haven’t taken into account in my calculations. These calculation are therefore an

underestimate but still provide an insight into sediment routing in the Arctic. The

major question is how can high fluxes of solifluction be sustained if the movement of

sediment from upslope is so small? This could be because the deposit is glacial till

with some input from periglacial erosion of bedrock. However, bedrock exposures

are small according to the model and alone can’t account for the large deposits

today. Possibly frost-cracking was more intense in the past with more exposures
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Figure 3.15 Bar charts comparing the sediment fluxes of each landform in Endalen and
Ringdalen. a) Author’s map. b) Model’s map.

of bedrock at the top of the hillslopes. Other mechanisms can contribute to the

flux of sediment downslope from allochthonous material and solifluction such as

sheet slides, mudflows, slope wash, and rill erosion. I would expect that the flux of

sediment to be greatest on the steepest slope i.e. in the allochthonous material.

The sediment moved by solifluction is greater in the model when compared

to the author’s map. The author’s map generalises boundaries between landforms

and assumes each landform as a uniform unit. The model classifies each pixel;

therefore each landform unit isn’t uniform and can contain clusters of pixels of a

different landform, increasing the contact length between landforms. This exposes

a weakness of the model. Conversely, these calculations are preliminary and an

indicative estimate of sediment flux because they are based on velocity and depth

estimates of uncertain representativeness.

3.7 Conclusion

The aim of this study was to create a simple and automated landform classification

model using topographic parameters that reflect processes and quantify the spatial

extent of landforms, and demonstrate that solifluction is an important denudating

process in a mountainous periglacial environment. From this study I draw the

following conclusions:
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1. A combination of relative local relief, slope gradient, and topographic rough-

ness in an LDA were the three topographic parameters that could best classify

the study sites in Endalen and Ringdalen.

2. The model performed best at distinguishing blockfields, allochthonous ma-

terial, bedrock, and solifluction. Scree couldn’t be distinguished from the

vegetated allochthonous material, suggesting a similar genesis for both land-

forms. Bedrock was mapped by the model at a higher resolution compared to

manual mapping.

3. Distinguishing between alluvial fans and floodplains was problematic for the

model. However, this could be resolved by combining the model with an

object-orientated analysis to separate theses landforms based on shape.

4. In Endalen and Ringdalen solifluction and scree slope development are the

most important denudating processes. However, this is based on preliminary

sediment flux calculations and can only be an indicative estimate of sediment.

5. The model was a qualified success rather than an outright success and could be

improved by applying a moving window filter to remove misclassified pixels

or by lumping certain landform categories.

6. This work has the potential as a reconnaissance geomorphological mapping

tool for large areas of mountainous Arctic landscapes.

7. Future work should focus on applying the model to a landscape in other

continuous permafrost regions to find areas of solifluction and narrow search

areas for ALDs.





Chapter 4

Spatial controls on the distribution of

active layer detachments, Alaska

4.1 Summary

The Arctic is warming at twice the global average, bringing warmer and wetter

weather, which facilitates the propagation of thaw fronts quicker and deeper into

the ice-rich layers of cold permafrost. The thawing of ground ice at depth generates

excess pore pressures which reduce the shear strength of soils causing failure along

the thawing plane permafrost boundary. The frequency of these failures, called

ALDs, are expected to increase in the future. In this chapter, I investigate the

topographic constraints of ALDs and other landforms. To do this, I applied the

landform classification model from chapter 3 to the Brooks Range, Alaska. I then

developed a 2-D slope stability model to assess the impact of pore pressures on

landscape stability. I found that the classification model performed well in regions

of high relief but underperformed in low relief settings. Interestingly, mapped ALDs

are coincident with convergent topography on soliflucting hillslopes. This suggests

that the higher moisture availability feeds the growth of ice lenses, increasing ground
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ice content. ALDs are more likely to initiate as thaw fronts reach deeper into cold

permafrost.

4.2 Introduction

With the Arctic warming at twice the rate of the global average (Cohen et al. 2014) it

is believed that more frequent extreme warming and precipitation events will occur

in the Arctic (Lewkowicz and Harris 2005a; Bintanja and Andry 2017). Permafrost

is thawing rapidly and the active layer has deepened across the Arctic (Akerman

2005; Pastick et al. 2015). Warmer and wetter weather facilitates the quicker and

deeper propagation of thaw fronts into the ice-rich basal layer of the active layer

causing rapid thaw of ground-ice and increasing hillslope instability (Lewkowicz

and Harris 2005a). As a result, it is predicted that the frequency of landslides will

increase with a warming Arctic (Lewkowicz and Harris 2005a). Understanding the

spatial distribution of landslides in the Arctic is in its infancy, but may provide a

useful tool for understanding how future warming may affect the spatial distribution

of ALDs.

Statistical analysis and modelling of landslides is common in regions experi-

encing coseismic landsliding (Parker et al. 2017) and/or high rates of precipitation

(Westen et al. 2008). In the Arctic, translational landslides called ALDs initiate in

the summer after a long period of warm weather and/or high rainfall (Lewkowicz

and Harris 2005b). Recent studies have discussed the topographic constraint on

ALDs. Rudy et al. (2016) found that ALDs on Melville Island, Canada were more

likely to occur on slopes of between 3° and 10° and on north-facing slopes. Balser

et al. (2015) created an ALD suitability map of the Brooks Range in Alaska using

landscape properties such as geomorphology, vegetation, topography, surficial geol-

ogy, and lithology. They found that ALDs form on smooth low relief hillslopes with

silty clay colluvium and in water tracks. Swanson (2014) mapped 2246 ALDs in the
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Brooks Range and found that the majority occurred on slopes of between 5° and 39°

on north-west facing slopes in glacial and solifluction deposits.

This chapter seeks to understand the distribution of ALDs across mountainous

Arctic landscapes. I seek to test two hypotheses, (1) that ALDs are more likely

to occur in areas of solifluction, and (2) that most ALDs form in areas of high

topographic convergence, where ground ice concentrations are likely to be highest.

To do this I modified the landform classification system I developed in chapter 3 for

the Brooks Range, a region that has a historical record of ALD activity (Swanson

2014). Comparison of the landform model with the mapped distribution of ALDs

allowed for the assessment of possible topographic characteristics that govern ALD

initiation. After identification of areas of potential solifluction in the Brooks Range, I

assessed the relationship between the channel network and the distribution of ALDs.

Finally, I modelled the potential for ALDs in the topography of the Brooks Range

using a slope stability model. In the model, I assumed that areas within the channel

network had a higher ground ice content, and therefore higher excess pore pressures

during warming.

4.3 Study area

4.3.1 Study area: Brooks Range

The Brooks Range, Alaska has a historical record of ALDs that have been part of

a number of studies (Bowden et al. 2008; Balser et al. 2009; Gooseff et al. 2009;

Osterkamp et al. 2009; Mann et al. 2010; Kokelj and Jorgenson 2013; Balser et al.

2015; Blais-Stevens et al. 2015) (Figure 4.1). Permafrost is continuous (Jorgenson

2009) and annual air temperatures are -8.2°, recorded at the Remote Alaska Weather

Station (Swanson 2014). Much of the Brooks Range is mountainous with U-shaped
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glacial valleys and steep topography. The topography is highest in the east and

decreases in elevation and relief towards the west.

The central Brooks Range has low relief topography with gentle sloping hillslopes

of sandstone, marine shale, limestone and chert (Wilson et al. 2015). To the north

is the gently sloping and marshy Arctic coastal plain, which extends to the Arctic

Ocean. Much of the Brooks Range was glaciated during the late Pleistocene c.a. (2.6

ma to 0.117 ma), with the most recent glacial event depositing till and lacustrine

sediment on the valley sides and floor (Hamilton 2009). On steeper slopes a regolith

of scree and glacial till exists, forming colluvium (Balser et al. 2015). Vegetation

is absent or sparse on steeper terrain where scree production is active (Balser et al.

2015). On shallower terrain, vegetation is primarily alpine and sparse (Mann et al.

2010). On lower slopes where regolith is thicker, shrub and Arctic tundra vegetation

often exists (Trochim et al. 2016a). I investigated two sites in the Brooks Range. The

first, Saviukviayak (Figure 4.1), has a similar topography to Svalbard which provides

an opportunity to test the landform classification model developed in chapter 3 to a

different landscape. The second, Nukatpiat (Figure 4.1), is an area of extensive ALD

formation. A limiting factor for choosing study sites in the Brooks Range was the

availability of high-resolution satellite imagery and DEM coverage.

Study area 1 - Saviukviayak

The Saviukviayak study site is located in the eastern half of the Brooks Range (66.77°

N 147.48° W) (Figure 4.1). The landscape is mountainous, with 600 m of relief

and a wide range of mountain landforms (Figure 4.1). It is a mountain range that

is qualitatively similar to Endalen and Ringdalen, Svalbard. A braided river system

called Saviukviayak traverses the valley with steep slopes rising from the valley floor

from 845 m to 1445 m at the ridge summits (Figure 4.1). Bedrock is mainly chert
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and limestone with superficial deposits of glacial drift and colluvium (Wilson et al.

2015).

Study area 2 - Nukatpiat

The Nukatpiat (68.01° N 155.85° W) study site is 105 km south-east of Feniak Lake

(Figure 4.1). It is a region of low relief with rounded hillslopes dissected by stream

networks (Swanson 2010; Swanson 2014; Balser et al. 2015). In the 100 km2 region

topography rises from 645 m in the north-east to 1245 m in the south, although there

are variations in relief across the area (Balser et al. 2014; Swanson 2014). Steeper

slopes and higher relief exist as ‘islands’ amongst the smoother, lower gradient

terrain. Lakes are spread out across the region and are found at the base of valleys

(Balser et al. 2015). Vegetation consists of low shrub tussocks with water tracks of

wet sedge meadow (Balser et al. 2015). An exceptionally warm summer in 2004

was measured at central Noatak National Preserve (Swanson 2014). This summer

is thought to have triggered 2246 ALDs (Swanson 2014). No unusual precipitation

event preceded ALD initiation (Swanson 2014), therefore I assume that ALDs in

Nukatpiat initiated exclusively by pore pressures generated from the thawing of ice

lenses.

4.4 Methods and materials

I investigated the spatial distribution of ALDs and solifluction by using the model

developed in chapter 3. Observational evidence from Arctic landscapes suggests that

areas of solifluction are particularly prone to ALD initiation (Harris and Lewkowicz

2000; Lewkowicz and Harris 2005b). I extracted areas of solifluction and developed

a method for identifying ALDs using drainage area thresholds.
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4.4.1 Topographically based landform modelling

To model the distribution of landforms as a function of topography, I used the

LDA-based landform identification model from chapter 3. While the details are

discussed in the previous chapter, I summarise the key elements here. I trained the

LDA classifier using mapped polygons from Endalen and Adventdalen, Svalbard.

Using the extracted pixel values for each landform, I ran the LDA classifier on a

training dataset composed of 70% of the pixel values and validated it both on the

remaining 30% of the training areas and across broader sections of Svalbard.

Using a five-metre resolution Interferometric Synthetic Aperture Radar (IFSAR)

derived DEM (USGS 2015), I applied the model with the parameter values extracted

from Svalbard. For the landform classification analysis of Saviukviayak, I used a

10 km2 area (Figure 4.1). For the landform classification analysis of Nukatpiat, I

sampled a 10 km2 area from within the 100 km2 area (Figure 4.1). I made one minor

modification for the analysis in Nukatpiat; rather than use relative local relief, I used

an absolute local relief metric (Ar), which is calculated as

Ar = x− xmin (4.1)

where x is the elevation of a particular landform pixel and xmin is the minimum

elevation within a 5 km radius of the focal point. The purpose of the absolute relief

metric is to better represent the elevation dependent processes, particularly block-

fields, which found at higher elevations in Arctic mountains and are not common in

lower relief landscapes.

4.4.2 Analysis of ALD locations within Arctic drainage network

I tested the hypothesis that ALDs were more likely to initiate within or immediately

upstream of the channel network by comparing the mapped extent of ALDs with
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different drainage networks defined by different drainage thresholds (i.e. using the

assumption that channel networks initiate at consistent drainage areas, Montgomery

and Dietrich (1992)). This involved the derivation of a drainage network and mapping

of ALDs for comparison with the distribution of channels.

First, I mapped 150 ALDs using 2008 satellite imagery from Google Earth within

the Nukatpiat study area (Figure 4.1 and 4.5). An ALD was defined as a region of

exposed earth, brown in comparison to the green vegetation, with a runout zone

of compressed regolith. I mapped both the runout and exposed earth as one ALD

polygon. The mapped ALDs represent those initiated during a single event that

occurred during an unusually warm summer in 2004 (Swanson 2012; Swanson

2014). This is evidenced by the lack of change in the ALD count for images from

2006 and 2007.

I then assessed whether ALDs were more likely to occur within areas of conver-

gent topography by comparing the distribution of ALDs with drainage networks of

different sizes (Figure 4.2). I created a drainage area raster using the D8 flow algo-

rithm in ArcMap (ArcGIS 2013). The D8 flow algorithm directs the flow down the

steepest path in one of eight cardinal directions. I then used the threshold drainage

area method (Montgomery and Dietrich 1994) to derive a stream network. I created

stream networks using ten different drainage area thresholds from 12,500 m2 to

125,500 m2. ALDs have a width that is greater than the channel network, so to ac-

count for the proportion of the ALDs that is outside the channel network I introduced

a buffer of varying widths to the channel network. I applied buffers around each

stream network, varying in width from 10 m to 100 m in increments of 10 m.

For a given buffer and drainage area I calculated the total area of ALDs and study

are captured.
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Figure 4.2 a) Contour plot showing the percentage area of the DEM captured by the buffer
(in colour), and the percentage are of ALDs captured by the buffer (black lines). b to e) show
varying buffer and drainage sizes, see ’a)’ for their locations on the contour plot. Each is
underlain with a satellite image from Google Earth.
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4.4.3 Slope stability analysis

Once I had identified the distribution of ALDs relative to the channel network, I

sought to understand whether the upper part of the channel network (I define as

the ‘buffer’) was more prone to failure than other parts of the landscapes. Hence, I

derived a spatially distributed slope stability model for ALDs, where I solved the

infinite slope equation in space and varied the pore pressure as a function of presence

or absence of a drainage network.

The planar infinite slope model is an effective tool for modelling ALDs, where

the depth of the slide is small relative to the length of the slide plane (Skempton and

DeLory 1957). The infinite slope model is governed by the balance of shear stress

and shear strength and is commonly formulated as follows

Fo f S =
c′+ z(γ −mγw)cos2 β tanφ ′

zγ sinβ cosβ
(4.2)

where Fo f S is the factor of safety, c′ is effective cohesion, termed cohesion from

this point onwards, (ML-1T-2), z is depth of the slip surface (L), γ and γw are the unit

weight of soil and water respectively (ML-2T-2), β is the slope gradient, φ ′ is the

effective angle of friction. The term m is the ratio of the height of the water table

above the slip surface to the depth of the slip surface and is the representation of

pore pressure

m =
h
z

(4.3)

I vary m to simulate the excess pore pressures due to ice (essentially setting m to be

up to 1.5).

I calculated Fo f S across the landscape using a spatial distribution of parameter

values that depended upon landform type and degree of topographic convergence.

First, the landform model identified parts of the landscape that were likely to be
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soliflucted material and those that were likely to be something else (usually bedrock,

scree, or other allochthonous material). These generally contain coarse-grained

sediments that cannot develop ice lenses (Harris and Lewkowicz 2000) and are

unlikely to generate excess pore pressures. Whereas areas of solifluction can develop

excess pore pressures, of up to 1.5 time hydrostatic (Harris and Lewkowicz 2000).

Secondly, the distribution of excess pore pressures within solifluction varied as a

function of convergence. Areas within the channel network (buffer), defined using

a 20 m buffer and 25,000 m2 minimum drainage density (Figure 4.2), were able

to generate excess pore pressures of either 1 (static pore pressure), 1.2 (calculated

from Harris et al. (2011)) or 1.5 (calculated from Harris and Lewkowicz (2000)).

Those pixels that were identified as solifluction but were outside the channel network

(buffer) were given values of 1, 1.032, and 1.29. The reduction of excess pore

pressure reflects the observation of a 14% reduction in pore pressure for a soliflucting

slope when compared with a slope at failure (Harris et al. 2011). Prior to analysis, I

removed pixels from all rasters that included water bodies such as lakes and visible

water channels in the satellite image (Figure 4.5).

I created a series of controlled experiments to assess the relationship between the

amount of excess pore pressure generated from thawing ice lenses and the depth of

ice lens thaw for different values of cohesion (Table 4.1). I then tested the difference

in the distribution of Fo f S as a function of thaw depth and excess pore pressure

for different values of cohesion. Material parameters were kept constant across

the landscape, based on measurements made by Harris and Lewkowicz (2000) and

Harris et al. (2011). The material parameters given to each ‘landform’ is summarised

in (Table 4.1).
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Table 4.1 Model input parameters. Allochthonous values from aLacerda et al. (2004) and
solifluction values from bHarris and Lewkowicz (2000) and cHarris et al. (2008c)

Parameter Unit Allochthonous Buffer Solifluction

Cohesion in scenario 1 kPa 10a 0 0
Cohesion in scenario 2 kPa 10a 2b 2b

Cohesion in scenario 3 kPa 10a 4.8c 4.8c

Internal angle of friction ◦ 37a 19b 19b

Unit weight of soil kN/m3 16.46a 19.62c 19.62c

Unit weight of water kN/m3 9.8 9.8 9.8
Static pore pressure factor - 1 1 1
Excess pore pressure factor 1 - 1 1.2 1.032
Excess pore pressure factor 2 - 1 1.5 1.29

4.5 Results and discussion

4.5.1 Landform Classifications: Svalbard versus the Brooks Range

The spatial classification of mountainous Arctic landscapes developed in Svalbard

(chapter 3) performs extremely well when compared with a similar mountainous

landscape, Saviukviayak, Brooks Range (Figure 4.3). I used the same classifiers

in Saviukviayak as in Ringdalen and Endalen, which suggests that landforms in

Arctic mountains are governed by processes that generate similar topography, re-

gardless of the specific geography. Furthermore, the success of the classification

across mountains that form in different climatic and tectonic settings, although with

similar lithologies, suggests that topography can provide a useful first-order tool

for understanding the distribution of Arctic landforms. However, the classification

underperformed in Nukatpiat (Figure 4.4), where the terrain is shallower and rounded.

This is likely one of scale, in that a classification designed for mountainous regions is

choosing from a large number of potential landforms. When the number of landforms

is reduced, the classifier still looks to classify a wide range of landforms when only

one or two might exist. I will examine the details of the classification in each of the

two locations in more detail.
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In Saviukviayak (Figure 4.3), the spatial classification modelling results were

very similar to those in Svalbard. Initially, when the model was run, separating

landforms of similar topographies (e.g. allochthonous material and scree) the model

performed poorly with an overall accuracy of 17.44%. This poor result is primarily

because of the misclassification of 85.25% of mapped scree slopes as allochthonous

material (Figure 4.3). The LDA model is only effective at separating first-order

differences in developing a classification, so it will always have difficulty separating

Figure 4.3 Saviukviayak results. a) Confusion matrix. b) Satellite image from Google Earth.
c) Author’s landform map. d) Model’s landform map. Contours are in metres. Figures c and
d are underlain with a hillshade. ‘nan’ are no data values.
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these two parameters. When I pool allochthonous and scree classifications, the

overall model accuracy increases to 70.32%. A surprising result of the model was

the identification of blockfields, which in the geomorphological mapping are thought

to be arêtes. Areas identified as blockfields are narrower than those on Svalbard

but connect mountain peaks, suggesting that they may be an extant feature. As

discussed in chapter 3, identification of bedrock from satellite imagery is challenging

due to shadows and glare. The topographic roughness that defines bedrock may

be a better indicator of the distribution of this landform. In Saviukviayak I found

bedrock primarily amongst scree and allochthonous material (Figure 4.5). The

model identifies bedrock within 500 m of the summit blockfields and ridges but

none are found below the 1045 m contour which could depict a past glacial trimline

(McCarroll and Ballantyne 2000) or the upper runout limit of weathered bedrock

from the upper slopes. Bedrock is modelled at the top or on the side of cwms/gullies

where I find the deposits of allochthonous and scree material. Solifluction sheets are

the dominant landform on the lower slopes in the Brooks Range. However, in the

mapping area solifluction was less common than in Svalbard. The model identified

fluvial deposits at the base of the valley. However, 66.26% of the mapped floodplain

deposits are misclassified as alluvial fan deposits and the other 10.75% as solifluction

(Figure 4.3), because in the centre-right are areas of low slope and low roughness

which is characteristic of floodplain and alluvial fan landforms.

The classification of landforms within the lower relief Nukatpiat site was less

successful with an overall accuracy of 61.1%. The model misclassified 59.33%

of the solifluction area as blockfield and 55.34% of the mapped allochthonous

material as blockfield within the 10 km2 study area. The geomorphological mapping

identified two major landforms; solifluction and allochthonous material. In contrast,

the classification included all of the major landforms except bedrock. This highlights

a clear challenge of using a pixel-based classifier that is calibrated for a high-relief

region on areas of lower relief. One of the obvious reasons for misclassification is
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the reliance of the classifier on the relative local relief metric, which calculates the

landform type based on the elevation of a pixel relative to the elevation of all pixels

within a study area. There are four reasons for this: Firstly, this metric is the strongest

driver of the classification of blockfields and fluvial landforms, forcing classification

of the highest and lowest pixels of any landscapes as these landforms; Secondly, the

relative local relief parameter was trained on Svalbard where topography is steeper

and relief is greater, a contrast to Nukatpiat Mountain where topography is smoother

with lower relief. Hence, many of the landforms identified on Svalbard do not exist

in Nukatpiat Mountain; Thirdly, the model needs to classify every landform; Finally,

the lack of an alluvial river system in Nukatpiat Mountain, means that channels

cannot be readily identified.

Hence there is a challenge in comparing a mountainous, glaciated landscape,

with cold permafrost landscapes with a history of continental glaciation. In the case

of Nukatpiat Mountain the ‘valley bottoms’ are dissected by 5 m wide channels

cutting into colluvium or glacial till and the valley sides are gradual, low gradient

slopes.

I modified the classification system to adjust for the misclassifications caused by

using an absolute local relief parameter. Pixels were classified based on their position

relative to the total local relief (defined as the difference between the minimum and

maximum elevations in a circular area with a 5 km radius), after Montgomery and

Greenberg (2000).

The change in relief characteristics improved model performance by removing

the need for the model to place blockfields at the highest elevations. The model

correctly identified 73.92% of the mapped area of solifluction (Figure 4.4). However,

24.67% of the mapped solifluction is identified as alluvial fan deposits by the model,

with the rest being floodplain (Figure 4.4). This issue of misidentifying lower pixels

as alluvial fans and floodplains, when they should be solifluction near the base of

hillslopes still exists. Beyond reclassifying this landscape to account for the lack
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Figure 4.4 Nukatpiat results. a) Confusion matrix. b) Satellite image from Google Earth). c)
Author’s landform map. d) Model’s landform map. Contours are in metres. Figures c and d
are underlain with a hillshade. ‘nan’ are no data values.

of an alluvial river system, the impact of these misclassifications is small as they

always misclassify solifluction pixels.

When I applied the model to an expanded, 100 km2 area around Nukatpiat

Mountain (Figure 4.1) the classifications became less accurate. At this scale, the

total local relief of the area is of similar magnitude to Svalbard, despite being of

lower relief. Hence, areas of solifluction were classified as blockfield. This is

probably because in the north-east corner is a braided river system at an elevation
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of c.a. 645 m (Figure 4.1). The highest point is at c.a. 1245 m, an elevation

difference of 600 m (Figure 4.1). To improve the accuracy of the classifications for

this area future researchers could re-train the model for a broad shallow gradient

landscape or remove the elevation dependent variables and use elevation derivatives,

such curvature, topographic openness (Prima and Yoshida 2010), slope aspect, and

topographic wetness (Beven and Kirkby 1979). However, this would add more

complications to the model and in chapter 3 I tested, by using a recursive feature

elimination analysis, many topographic parameters and found that the top three were

relative local relief, topographic roughness, and slope gradient. Due to this, I created

my own geomorphology map of the 100 km2 study area and used this in any further

analysis (Figure 4.5).

4.5.2 Spatial Distribution of ALD

The purpose of utilising the landform classification model is to try and understand the

distribution of ALD across the Brooks Range. A pixel-based classification for ALD is

Figure 4.5 Nukatpiat 100 km2. a) Mapped active layer detachments by the author. Satellite
image from Google Earth. b) Landform map created by the author. The white area represents
no data. Both maps are underlain with a hillshade.
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difficult for three reasons: Firstly ALDs have a particular shape, many being elongate

but also compact (Lewkowicz and Harris 2005a). A pixel-based classification cannot

identify shapes, and would require an object-orientated analysis instead (Dragut and

Blaschke 2006; Asselen and Seijmonsbergen 2006). However, in this study my aim

was to understand the topographic controls on landforms rather than replicate their

shapes; thus I didn’t pursue the object-orientated method. Secondly, Swanson (2014)

notes that many ALDs in the Brooks Range initiated during a warm period in the

summer of 2004, re-vegetating within five years. The satellite imagery I used to

map the ALDs are from 2008, while the IFSAR derived DEM is a combination of

multiple IFSAR collections from 2006 to 2013. Therefore, some areas of mapped

ALDs may have initiated after the DEM was captured. In addition, the topographic

impression of ALDs is below the vertical resolution of the DEM, with failure scars

only at maximum 3.5 metres depth (Balser et al. 2015). Finally, ALDs have similar

topographic characteristics as solifluction at the pixel scale, making a pixel-based

method inefficient for classifying ALD. The similar topographic characteristics

combined with observations from satellite imagery, suggests that ALDs initiate on

soliflucting hillslopes as observed in field studies (Lewkowicz and Harris 2005a).

A common observation in field studies of ALD initiation is that they have a

tendency to form in areas of topographic convergence (Lewkowicz 1990). Hence,

I compared the distribution of ALDs with the distribution of channels within the

Nukatpiat Mountain area. This analysis demonstrated a strong spatial correlation

between the channel network and the location of ALDs (Figure 4.2). Because the

D8 method of deriving a channel network creates a network that is composed of

individual pixels, I introduced a buffer around the drainage network. The buffer

accounts for the width of ALDs being greater than a single pixel in the DEM. If

ALDs are more common in the drainage network than outside of it, I would expect

that the buffer width would be small, on the order of the width of an individual

ALD (20 m to 50 m). In contrast, if ALDs were more common on hillslopes rather
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than channels, then buffer widths would be high or the threshold drainage areas to

create the drainage network would be low. Figure 4.2 presents a sensitivity analysis

that compares the distribution of mapped ALDs relative to the critical drainage

threshold and buffer width that is chosen. Unsurprisingly, as the critical drainage

area increases fewer ALDs coincide with the channel network. This is because a

lower critical drainage threshold is more likely to coincide with fluvial sediment

transport, which is demonstrated by the coincidence of the channel network with

evidence for channelization in the satellite imagery. At critical drainage thresholds of

below 75,000 m2 and low buffer widths, small changes in critical drainage area result

in large changes in the number of ALDs that are found within the drainage network.

For a given drainage area, increasing the buffer width does not cause a significant

increase in the number of ALDs found within the drainage network. Taken together,

the sensitivity analysis suggests that ALDs have a greater propensity to form in the

upper part of the drainage network on soliflucting slopes.

Why would areas of topographic convergence be more likely to initiate ALDs? A

similar relationship between convergence and landslide initiation can be seen in shal-

low landsliding systems in warmer climates (Montgomery and Dietrich 1994; Pack

et al. 1999; Montgomery et al. 2000; Talebi et al. 2008). In these warmer climates,

during prolonged, intense rainfall events, convergent topography drives a larger

amount of throughflow (flow through the soil), which accumulates in unchannelised

valleys and increases pore pressures within the soil column and drives landslide

triggering (Montgomery and Dietrich 1994). As rainfall is only a secondary driver of

ALD initiation, it is unlikely that this mechanism is the reason of a greater number

of ALDs in convergent areas. I suggest that there are two possible mechanisms that

could explain why convergent topography could enhance the propensity of ALD

initiation. Firstly, melting of permafrost along a hillslope drives an enhanced through-

flow that increases pore pressures in convergent topography, or secondly, increasing

ground ice concentration in areas of convergence over time and when melted rapidly
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by an extreme weather event generates excess pore pressures that drives failure. The

key difference between these mechanisms is whether thawing permafrost across a

hillslope and the movement of water towards the landslide initiation site generates

the excess pore pressures, or whether the excess pore pressures are generated in-situ

by melting ice that has accumulated progressively over a number of years.

Field evidence suggests that convergent topography is important for ALD ini-

tiation, but as ALD initiations are rare, the exact triggering conditions are poorly

understood. For example, Balser et al. (2015) found that ALDs near Feniak Lake

would initiate in water tracks, curvilinear stripes of saturated soil, usually 1 m thick,

confined to shallow depths by the impermeable permafrost (McNamara et al. 1999;

Trochim et al. 2016a).

Relatively recent studies have shown that other mechanisms of slope erosion,

such as gullying, develops in water tracks from thermal erosion (Bowden et al. 2008;

Gooseff et al. 2009). Ground ice contents of water tracks are extremely high with

measured ice contents, from 50 to 90% (Ping et al. 2008; Trochim et al. 2016a). The

field evidence lends support to the second hypothesis that high ground ice contents

in areas of convergent topography drive ALD initiation.

Further support of the second hypothesis comes from the repeated mapping

of ALD through many seasons. In Feniak Lake, ALD mapping occurred after

the exceptional warm summer in 2004. Another warm summer occurred there

in 2007 where the thaw front reached the same depth, yet no new ALDs were

observed (Swanson 2012). This suggests that ice needs time to reform and/or the

annual shearing by solifluction has not had long enough to reduce the shear strengths

characteristics of the new active layer/permafrost boundary (Lewkowicz 1990; Harris

and Lewkowicz 2000; Leibman et al. 2003).

I have demonstrated that drainage networks are important locations for ALD

initiation sites. However, other factors such as aspect are also important. Research

found that the distribution of ALDs were skewed towards north-facing slopes because
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of less solar radiation (Swanson 2014; Niu et al. 2015; Rudy et al. 2017). This is

attributed to uneven melting patterns causing less snow to thaw on north-facing

slopes, insulating the permafrost below for longer from cold temperatures, allowing

a deeper advance of a thaw front in the summer. On the other hand, north-facing

slopes have been found to accumulate more transient layer ice (Shur et al. 2005).

Despite this, our data show that the correlation of ALD with the drainage network

greatly outweighs any aspect control.

4.5.3 The spatial distribution of ALD slope stability

I sought to understand whether it was possible to produce a spatially distributed

model of slope stability that is appropriate for ALD initiation. I developed an infinite

slope-based spatial model, in which I primarily varied the cohesion (and hence the

depth of failure). The model assumes a buffer of 20 m and a minimum drainage

threshold of 25000 m2 and increases pore pressures within the channel network

relative to the adjacent hillslopes.

I tested three scenarios (Table 4.1): Scenario 1, cohesion is 0 kPa (Harris and

Lewkowicz 2000) representing residual conditions (Figure 4.6); scenario 2, cohesion

is 2 kPa (Harris and Lewkowicz 2000) representing near peak conditions (Figure 4.7);

and scenario 3, cohesion is 4.8 kPa (Harris et al. 2008b) for peak conditions (Figure

4.8). I kept the internal angle of friction at 19° (Harris and Lewkowicz 2000) for all

scenarios. For each scenario, I produced a sensitivity analysis by varying the excess

pore pressure generated in the channel network and the thaw depth (representing the

potential depth of the flow). I generated a range of excess (elevated) pore pressure

based on experimental values (Harris et al. 2008b), because there is no field data for

the pore pressures generated by melting ice lenses. Field evidence does suggest that

excess pore pressures are important for initiating ALD (Harris and Lewkowicz 2000).

They suggest that high excess pore pressure would be required to generate slides on
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Figure 4.6 Scenario 1. a) Contour plot showing the percentage area of solifluction with
a factor of safety (F of S) <=1, the threshold for failure (in colour). Black lines represent
the percentage area of the buffer with an F of S <=1. b) Map showing the areas of failure
(allochthonous, solifluction, and buffer) with an excess factor of 1 and a thaw depth of 0.25
m. c) Map showing areas of failure with an excess factor of 1.5 and a thaw depth of 1.5 m.
Both b) and c) are underlain with a hillshade.

shallow slopes that maintain high internal angles of friction, which is typically 31°

in silty-clay soils (Harris et al. 2008b; Nater et al. 2008). A study of ALD in the

Brooks Range found ALD to initiate on slopes of between 6° to 24° (Swanson 2014).

Even though excess pore pressures are associated with the gelifluction component of

solifluction (Harris et al. 2011) these pressures need to be sufficiently high enough

over a continuous area to reduce the basal shear strength of the active layer to initiate

failure (Lewkowicz and Harris 2005b).
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In all the scenarios, the spatial distribution of factors of safety below one does not

correlate particularly well with the distribution of ALD. Consistent with predictions

of the infinite slope model, scenario 1 (Figure 4.6) demonstrates that with no cohesion

there is no depth dependence on slope stability. Spatially, there is a tendency for

producing low stability values in the mid slopes, with very little dependence on the

location of the channel network (Figure 4.6). In scenario 2 (Figure 4.7) with greater

shear strengths significantly less of the landscape will fail for example at 1.5 excess

Figure 4.7 Scenario 2. a) Contour plot showing the percentage area of solifluction with
a factor of safety (F of S) <=1, the threshold for failure (in colour). Black lines represent
the percentage area of the buffer with an F of S <=1. b) Map showing the areas of failure
(allochthonous, solifluction, and buffer) with an excess factor of 1.2 and a thaw depth of 0.75
m. c) Map showing areas of failure with an excess factor of 1.5 and a thaw depth of 1.5 m.
Both b) and c) are underlain with a hillshade.
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factor and 1.5 m depth only 16% of the buffer will fail. Adding shear strength to the

soil of both solifluction and buffer produces a non-linear relationship between the

excess factor and thaw depth. Spatially, this model does the best job of producing

low slope stability values within the channel network (buffer). The reason for this is

that the non-linear relationship between stability and depth exacerbates the effects of

the excess pore pressures that are generated within the channel network (buffer). The

final scenario (Figure 4.8) likely represents too much cohesion for this landscape.

There is a similar spatial pattern to scenario 2, but less of the landscape failing.

Importantly, you cannot generate failure depths of less than 0.75 m, regardless of the

excess factor (Figure 4.7).

Our spatial modelling demonstrates that Arctic soils are likely to have a relatively

small amount of cohesion. Cohesionless soils produce spatial patterns of ALD

that are inconsistent with the distribution of mapped ALD. The importance of

soil cohesion in initiating ALD has been discussed in the literature. Harris and

Lewkowicz (2000) suggested that residual condition is caused by annual plug like

solifluction that re-orientate clay particles and soil grains within the zone of annual

shearing.

If this is true then there must be an element of pre-conditioning of the soil by

annual solifluction before any failure can occur. Cohesion controls the failure depth,

with solifluction depths of up to 1.06 m on Svalbard (Matsuoka 2001a; Harris et al.

2011). According to Balser et al. (2015) the depth of the active layer of an ALD

failure in Fauna Creek, Noatak Basin was 1.1 m, similar to the maximum solifluction

depths on Svalbard (Matsuoka 2001a; Harris et al. 2011) but deeper than the depth

on Ellesmere Island of c.a. 0.75 m (Harris and Lewkowicz 2000). These relatively

shallow initiation depths suggest that cohesion is low. For this particular example,

I have modelled beyond 1.1 m, these scenarios may represent future scenarios in

warmer climate (Akerman 2005). There are a number of interesting questions in this

respect, including is there a depth limit to ALDs? and do the mechanisms of failure
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Figure 4.8 Scenario 3. a) Contour plot showing the percentage area of solifluction with
a factor of safety (F of S) <=1, the threshold for failure (in colour). Black lines represent
the percentage area of the buffer with an F of S <=1. b) Map showing the areas of failure
(allochthonous, solifluction, and buffer) with an excess factor of 1.2 and a thaw depth of 0.75
m. c) Map showing areas of failure with an excess factor of 1.5 and a thaw depth of 1.5 m.
Both b) and c) are underlain with a hillshade.

change at a particular depth? To consider how realistic the three scenarios are I can

look at the area of mapped ALD relative to the area of buffer and solifluction (Table

4.2). If the mapped ALDs have an area of 1 km2 then this is equivalent to c.a. 5% of

the area of the buffer and c.a. 2% of solifluction. I find that scenario 1 is unrealistic

because too much of the landscape fails. Both the ALD percentage area of buffer

and solifluction can’t be plotted on the contours of (Figure 4.6).
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Table 4.2 Geometry of landforms

Landform Area [km2]

Allochthonous 26.05
ALD 1
Buffer 18.8
Solifluction 51.27
No data 3.88

In scenario 3 the opposite is true and too little of the landscape fails relative

to the percentage area of ALDs (Figure 4.6). What is more realistic is scenario 2

(Figure 4.7). If I assume that in 2004 the maximum depth of thaw was 1.1 m, to

account for the 5% of the buffer failing would require an excess factor of 1.5 times

that of the hydrostatic which is equivalent to 16.17 kPa. Similarly, for solifluction,

the excess factor would need to be higher than 1.5 or the shear strength parameters

would need to be lower. So how realistic is 16.17 kPa? Using measurement taken by

Harris et al. (2011) for a soliflucting slope in Endalen, Svalbard I can calculate that

the excess factor at the time of thaw and which coincide with solifluction movement

was c.a. 1.2, if excess pore pressures needed to be 14% higher to cause ALD failure

(Harris et al. 2011) i.e. 15.09 kPa. However, even at shallower depths and lower

excess factors, the model shows that failures can still occur, but there will be fewer.

Figure 4.9 Factor of safety plots derived from an infinite slope analysis. a) Testing the
impact of slope gradient where c’ = 4.8, φ= 26°. b) Testing the impact of cohesion (c’) where
φ = 26°, β = 10°, and m = 1.18. c) Testing the impact of the internal angle of friction (φ ) on
the factor of safety where c’ = 4.8 kPa, β = 10°, and m = 1.18. The blue line and its colour
gradation represent the use of a slope gradient of 10°.
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If thaw fronts are expected to advance deeper into the already warming permafrost

than our model suggests it will require less excess pore pressures i.e. fewer ice

lenses to initiate failure. For example, let’s assume that a thaw front advances to

1.5 m. Therefore, scenario 2 is the most realistic scenario for the pore pressures

which caused failure during the unusually warm summer of 2004. To cause 5% of

the buffer to fail would only require an excess factor of 1.4 compared to 1.5 at 1.1 m

depth (Figure 4.7). I base the success of my model on whether the activation zone

coincides with modelled ALDs. However, scenario 1 (Figure 4.6) could offer the best

correspondence because it depicts zones of potential failure, but not all such areas

experience ALDs. This is not an anomaly, because other factors need to be taken

into account by the model such as aspect (Rudy et al. 2017), soil frost susceptibility

(Harris et al. 2008c), and thaw history (Lewkowicz and Harris 2005a). Slope aspect,

for example, can influence the likelihood of ALD failure because thaw is likely to

be greater on west, south, and east-facing slope than north-facing slopes. Further

analysis of the impact of varying resisting forces such as the internal angle of friction

and cohesion demonstrated that cohesion controls the depth of failure (Figure 4.9).

In this chapter, I have demonstrated that ALDs are associated with watercourses

(topographic convexities) which may be attributable to denser concentrations of ice

lenses in such locations. However, an alternative explanation is that some ALDs

occur along the banks of first-order streams where slope gradient is steeper. Google

Earth imagery shows that the failure zone of some ALDs in Nukatpiat extend to the

banks of first-order streams which is evidence for failure caused by steeper banks

and/or thermo-erosion from flowing water. It is known that ALDs initiate because

of thermo-erosion or bank instability caused by fluvial undercutting (Harris and

Lewkowicz 1993). However, the evidence in this chapter doesn’t support this. Firstly,

there are some ALDs that are not connected to first-order streams and have therefore

initiated in the absence of thermos-erosion or bank instability. Secondly, ALDs

caused by bank instability are thought to be pre-cursors to retrogressive thaw slumps
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(Balser et al. 2015). However, no retrogressive thaw slumps are present in Nukatpiat.

Third, the headscarp of ALDs connected to first-order streams is located over 500

m from the corresponding stream and the material from the track zone either dams

the stream or is partially removed. Finally, many of the track zones of ALDs are

interconnected and correspond to the DEM-derived stream network.

This analysis has demonstrated that to a first order, a simple, rules-based spatial

model can have predictive power in understanding the distribution of ALD across

Arctic landscapes. It would be interesting in the future to understand whether the

critical drainage threshold for ALD initiation is consistent for other geographical

areas. If so, this method could be used to develop hazard models for Arctic landscapes

that are prone to ALD initiation.

4.6 Conclusion

The landscape classification model performs well in high relief environments but

must be modified for low relief topography. Despite not being able to separate ALDs

from landforms, I have observed that ALDs are coincident in areas of solifluction.

Within areas of solifluction, regions of convergence are where I find ALDs. These

areas of convergence allow for a supply of water ice for lenses to grow. As not all

areas of convergence show ALD activity there must be a more fundamental aspect I

do not yet understand about ALD dynamics; this I will explore in the next chapter.



Chapter 5

Modelling the impact of permafrost

ice distribution on hillslope stability

5.1 Summary

Shallow permafrost landslides called ALDs threaten infrastructure and are an impor-

tant mechanism for delivering sediment, carbon, and other nutrients to Arctic streams.

Little is currently known about the ground ice conditions needed to generate ALDs

on soliflucting hillslopes. I modified a two-dimensional slope stability model to

assess the temporal and spatial impact of excess pore pressures generated by thawing

ice lenses on ALD initiation. More ice distributed along the failure plane decreased

stability, but this varied depending on the position of ice lenses. The two-dimensional

distribution of ice lenses and the thaw rate had only a minor effect on slope stability.

Our results demonstrate that ALDs are most likely to initiate a failure plane in areas

of high ground ice concentration. Therefore, I suggest that future ALD potential

may be better understood through field measurements of ground ice distribution on

Arctic hillslopes.
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5.2 Introduction

The potential for hazardous landslides is a consequence of future rapid warming of

the Arctic (Lewkowicz and Harris 2005a). Higher latitudes are warming at double

the global average rate, resulting in more frequent extreme summer temperatures

that drive heat deeper into permafrost soils and snowfall that insulates the soil from

freezing (Stocker 2014). Higher heat fluxes increase the depth of the active layer

resulting in more vigorous hillslope surface processes such as ALDs (Lewkowicz

and Harris 2005a), rockfall (Gruber et al. 2004), and solifluction (Harris et al.

2011). More active hillslope surface processes will also increase fluxes of sediment

(Lamoureux et al. 2014) and nutrients (Lamoureux and Lafreniere 2014) into Arctic

streams. Hillslope process rates are strongly governed by the interaction between

extreme temperatures and ground ice distributions in permafrost soils (Harris et al.

2011). A better understanding of the mechanics of this interaction can lead to the

generation of more robust models of Arctic hillslope processes.

This chapter focuses on understanding the conditions that generate shallow

translational landslides called ALDs (Gooseff et al. 2009; Harris and Lewkowicz

2000; Lafreniere and Lamoureux 2013; Leibman et al. 2003; Lipovsky et al. 2006).

ALDs are thought to initiate by reducing shear strength in an ice-rich zone at the

base of the active layer (Harris and Lewkowicz 1993; Mackay 1981). Excess pore

pressure that generates downslope movement occurs during the collapse of pore space

associated with the melting of ice lenses, a process known as thaw consolidation

(McRoberts and Morgenstern 1974). However, high pore pressures alone cannot

generate ALDs. If ground ice is sporadic or ice lenses are at shallow depths, the

loss of shear strength during thaw may not be enough to exceed earth pressure or

apparent cohesion and allow the establishment of a continuous slip plane. In that case,

there may be more creep-like failure or solifluction (Harris et al. 2008c). Apparent

cohesion in Arctic soils is governed by the distribution of clays, the penetration of the
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roots of Arctic vegetation, and clay alignment associated with previous downslope

movements (Harris et al. 2008c). Hence for a given soil, the difference between

whether a slope will progressively develop downslope shear strains (solifluction) or

fail catastrophically (ALDs), appears to be governed by the spatial distribution of

excess pore pressures generated on the slope.

In permafrost regions, the distribution of ground ice varies through time as a func-

tion of soil moisture and temperature conditions. In regions of permafrost, ground

ice distribution is governed by two-sided freezing (Mackay 1981), where downward

and upward freezing causes liquid water to migrate towards the surface and base

of the active layer, leaving a central desiccated zone. However, the history of tem-

perature conditions at a site is also important in governing ground ice distributions,

as relatively cool summers may see a net increase in the total ice volume in a soil,

while particularly warm summers may see a net loss in ice lenses. Lewkowicz (1990)

suggested that it is an approximately decadal cycle of ice lens accumulation and

melting that drives ALDs. Shallow groundwater conditions, such as those governed

by topographic convergence (e.g. water tracks) may also increase the total volume

of ground ice in a soil (Balser et al. 2009; Lamoureux and Lafreniere 2009).

A wide range of climatic conditions has been suggested to cause ALDs. They

are all characterized by mechanisms that drive heat beyond the average active layer

depth and into the ice-rich transitional zone. The most common mechanisms include

early thaw, thick winter snow depths, extremely high summer temperatures that

persist for days to weeks, and high rainfall (Balser et al. 2015; Lamoureux and

Lafreniere 2009; Lewkowicz and Harris 2005a). Non-climatic mechanisms for ALD

initiation include forest fires, lateral river erosion and engineering processes (Harris

and Lewkowicz 2000; Jolivel and Allard 2013; Niu et al. 2015; Wang et al. 2014).

Apart from mechanisms related to physical undercutting at the toe of a slope, all

ALD initiations depend on heat transfer within the active layer. While geotechnical

conditions are also important, the coincidence of solifluction and ALDs on the same
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hillslopes and in the same soil types points to thawing ground ice playing a key role.

Hence, I examine how differences in the distribution of ground ice may affect ALD

initiation.

5.3 Material and Methods

I sought to understand the conditions that promote ALD failure for differing ground

ice volumes, distributions of ice with depth, and rates of thaw penetration. To do

this I used a two-dimensional plane strain slope model of a thawing slope based on

well-constrained laboratory tests of ALD initiation (Harris et al. 2008c) (Figure 5.1).

I modelled a laboratory slope to avoid uncertainties in the material parameters and

failure dimensions for a natural slope. The modelled thawing slope is 15 m × 7 m

with a gradient of 24° and a maximum active layer thickness of 1.5 m (normal to

the surface), below which is permafrost (Harris et al. 2008c). I used a geotechnical

software, GeoStudio (Krahn 2004), to model the impact of temporal and spatial

distribution of excess pore pressures during thaw on the factor of safety against failure

using the limit equilibrium based Morgenstern-Price method of slices (Morgenstern

and Price 1965). For each test, I defined the permafrost layer as an impermeable rigid

material. Thawed soil had a unit weight of 19.62 kN m-3, cohesion of 3.5 kPa and an

internal angle of friction of 31° (Harris et al. 2008c). Pore pressure values measured

for thawing ice lens in (Harris et al. 2008c) experiments were on average 20% greater

than the hydrostatic pore pressure value, a value that I chose for all but one test. I

sought to understand the conditions that promote slope failure by considering how

differing ground ice conditions affected the factor of safety of our slope in three

tests: (1) a test where I varied the volume of ground ice along the permafrost-active

layer boundary, (2) a test using differing distributions of ground ice with depth in the

active layer, and (3) a test where I allowed pore pressures to dissipate, simulating

different rates of thaw front propagation. First, I tested the impact of varying ice
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lens density by calculating the factor of safety for a thaw front depth of 1.5 m. Here

I assume that thawing along the slide plane generates excess pore water pressures

(an assumption I relax for later tests) for between 0% and 100% of the slide plane.

To understand the impact of our assumption of a 20% excess pore pressure, I also

randomly varied excess pore pressures in the ice lens cells between 0 and 20% of the

hydrostatic value. For our second test, I sought to understand the role of realistic

Figure 5.1 A conceptual model showing the thawing intervals (blue dashed lines) where the
factor of safety was calculated and subsequent failure plane generated. The green striped area
represents the failure plane at 1.5 m depth along with slices used in the Morgenstern-Price
method to calculate the factor of safety. The slope gradient is 24° with an active layer
thickness of 1.5 m.

depth distributions of ground ice to failure within the model. The three common

distributions of ground ice that I tested were uniform, linear, and power law (Figure

5.2). Excess ice volumes of greater than 60% of the soil mass are rare in the field

(Allard et al. 1996; Harris et al. 2011; Kokelj and Burn 2003; Morse et al. 2009), so

I chose this as a maximum value for all tests. For each test, I assumed undrained

conditions i.e. pore pressures did not dissipate (again I relax this condition later),

and calculated slope stability when the thaw front was at various depths in the soil

column. Between 0 and 1 m, thaw depths were considered at intervals of 0.125 m

and below 1 m at intervals of 0.05 m (Figure 5.1). For each analysis, the thaw front

depth defined an interface between an upper layer of thawed soil and a lower layer of



126 Modelling the impact of permafrost ice distribution on hillslope stability

Figure 5.2 The distribution of 2230 ice lenses in our modelled hillslope for different scenarios.
a) Uniform distribution, b) linear distribution, and c) power law distribution.
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permafrost. I randomized, at any particular depth, the location of cells that represent

ice lenses termed hereafter as ice lens cells. For our uniform distribution, I randomly

assigned 60% of the cells as ice lens cells (Figure 5.2). For our linear distribution, I

increased linearly with depth the number of cells assigned as representing ice lenses

from 0% at the surface to 60% at a depth of 1.5 m (Figure 5.2). I fitted a power law

distribution function of the form:

EI = 11.841z3.9947 (5.1)

to field data from Kokelj and Burn (2003), (Figure 5.2), where z is depth (metres)

and EI is the excess ice by the soil mass (%) and is used to define the percentage

of cells assigned as representing ice lenses, (from 0% at the surface to 60% at 1.5

m). Again I randomized the location of the ice lens cells at each depth. For each of

these scenarios, two cases are considered: the first with a fixed number, 2230, of ice

lenses in the active layer; and the second with a varying number of ice lenses for

each distribution to produce 60% of cells containing ice lenses at a depth of 1.5 m.

Finally, I tested the effect of thawing and excess pore pressure dissipation rates

on the factor of safety through consideration of three separate scenarios designed to

represent no, moderate, and fast dissipation rates. In scenario 1, I assumed that the

thaw front advanced rapidly so that the pore pressures of 1.2 times that of hydrostatic

assigned to the ice lens cells did not dissipate at all. For scenario 2, the thaw front

was assumed to progress at a moderate pace, so that the region of thawed soil

where excess pore pressures have not dissipated, termed hereafter as the excess pore

pressure layer, was limited to those ice lens cells within 0.125 m of the thaw front.

While in scenario 3, the thickness of the excess pore pressure layer was decreased to

0.025 m to represent slow thaw front propagation. To contextualize the thickness of

the excess pore pressure layer data from Harris et al. (2008), figure 19b p.452, the

line labelled ‘1.3 m (lower)’ can be considered. From this, I calculated the average
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dissipation time of 43.97 hrs for excess pore pressures and combined this with the

reported average thaw rate of 1.48 mm hr-1 to predict that their experiment had an

excess pore pressure layer thickness of 0.06 m. I represented the dissipation of pore

pressure by returning pore pressures to hydrostatic values once outside of the excess

pore pressure layer.

5.4 Results and Discussion

Our analysis shows that as the proportion of ice lenses increases along the failure

plane the factor of safety decreases linearly (Figure 5.3). For slopes with a constant

excess pore pressure of 17.6 kPa, the minimum factor of safety was 1.005, while

variable excess pore pressures yielded a higher minimum factor of safety of 1.065.

To understand how the factor of safety might vary with different distributions of lens

width, I randomly varied ice lens cell location, and thereby the resulting distribution

of ice lens width (which is a function of the occurrence of collocated ice lens cells)

within five tests (shaded areas in figure 5.3). Random distributions of ice lens width

affect factor of safety most when the proportions of ice lenses along the failure plane

are between 20% and 80%. At low and high proportions the variability in ice lens

size is small, as all ice lenses are either very small (single pixels) or very large.

For intermediate proportions of ice lenses, lower factors of safety are associated

with more frequent wide ice lenses. This suggests that having wide lenses with

larger gaps between them produces lower factors of safety than evenly spaced, but

narrow ice lenses. These results highlight the importance of both the width of ice

lenses and of the values of excess pore pressures generated by the consolidation

of ice lenses. It is only when there is a large network of wide ice lenses that are

consistently generating high excess pore pressures that I generate factors of safety

close to the stability limit. This implies that slow and prolonged freezing of this

zone (which is liable to produce thicker, more continuous lenses) may precondition
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Figure 5.3 The impact of varying ice lens cover along a failure plane at 1.5 m depth. The
blue line represents a controlled distribution of ice lenses. The black line represents a mean
of five tests with ice lenses randomly distributed. The grey shaded area is the standard
deviation of the five tests. Cohesion is set at 3.5 kPa.

ALD sites to failure by increasing ice content and thus raising pore-water pressure

well above the hydrostatic. Of the three variables tested in this experiment (width,

ice lens size distribution, magnitude of excess pore pressure), the modelled slope

is most sensitive to the magnitude of excess pore pressure generated by each lens.

For example, with an average excess pore pressure value of 16.1 kPa, our random

scenario generates a factor of safety of 1.063, compared with a factor of safety of

1.005 for an excess pore pressure of 17.6 kPa. In comparison, differences in the

proportion of ice lenses along the failure plane from 0 to 100% represent a difference

of 0.056 in the factor of safety, while the difference in the distribution of ice lens

width represents an average difference of 0.002 in the factor of safety. These results

suggest the threshold for ALD failure (rather than solifluction) is extremely sensitive
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to the amount of ice along the failure plane and the excess pore pressures that it

generates. This observation is consistent with experimental evidence of Harris et al.

(2008). They found that when using a simple silty soil, ice lenses were generated

along a single layer, resulting in consistent ALD failures. To create solifluction,

Harris et al. (2008) modified the material (by adding kaolinite) to allow ice lens

generation throughout the soil column. Field evidence suggests that high excess

pore pressures are common on solifluction slopes (Harris et al. 2011), yet the slopes

where these high excess pore pressure were measured did not fail catastrophically.

The modelling evidence presented here suggests that the difference between high

excess pore pressures generating solifluction or ALD may be primarily due to the

connectivity of ice lenses.

The absolute depth of a failure, and therefore the influence of ground ice will

depend on the cohesive properties of the soil. The non-linear shape of the curve of

the factor of safety against thaw depth (Figure 5.4) demonstrates the importance of

the cohesion value in governing the depth of the failure. In our modelling effort, I fix

cohesion at 3.5 kPa to keep it consistent with the experiments of Harris et al. (2008).

However, in natural settings ALDs can initiate at shallower depths (Lewkowicz and

Harris 2005b), suggesting that apparent cohesion may be lower than 3.5 kPa in the

field. In the field, cohesion may also vary with time as annual plug-like solifluction

re-orientates soil grains and clay flakes (Harris and Lewkowicz 2000). Also, the

role of vegetation, which is often shallowly rooted in providing cohesion to Arctic

soils is uncertain, but likely to be small (Lewkowicz and Harris 2005a). Instead, soil

structure, particularly clay content may represent a significant source of cohesion

and suggest a role for geology in governing the distribution of ALD initiation (Harris

and Lewkowicz 1993). The results indicate that the depth distribution of ice lenses

has a significant role in defining the stability of high latitude hillslopes. First, I kept

the number of ice lenses constant and varied their distribution within the soil column

(Figure 5.2). When I distribute ice lenses uniformly or linearly with depth in the
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Figure 5.4 Model results showing thaw depth against the factor of safety. (a, c, and e) are
model runs that restrict the number of ice lenses in the active layer to 2230. (b, d, and f) are
model runs with varying number of ice lenses for each distribution. (a, b) are model runs
where there is no dissipation of pore pressure (scenario 1). (c, d) are model runs where the
region of thaw is 0.125 m thick (scenario 2). (e, f) are model runs where the region of thaw
is 0.025 m thick (scenario 3).
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soil column, soils are considerably more stable than when ice lenses are distributed

non-linearly (Figure 5.4a, c, e). The proportion of the failure plane covered by

ice lenses at a depth of 1.5 m is considerably less for the uniform (12%) or linear

models (25%), resulting in a lot of narrow ice lenses distributed across the failure

plane. Whereas the power law model has a greater proportion of ice lenses (60%)

where the failure plane is likely to propagate. For the next experiment, I varied the

number of ice lenses in the soil column such that each different distribution had a

maximum of 60% ice lenses at any depth (Figure 5.4b, d, f). Here, all distributions

were considerably more unstable than the no ice lens scenario and converged to a

single factor of safety at 1.5 m. What these experiments show is that it is not the

total volume of ice lenses in a soil that governs stability, instead, it is the proportion

of ice lenses found along likely failure planes. The distribution of ground ice on

hillslope soils is very poorly constrained, as are the spatial controls on the variability

in ground ice. However, a number of authors have noted the propensity for ALDs to

initiate in areas of topographic convergence (Balser et al. 2009). Areas of convergent

topography accumulate water, making them good candidate sites for high ground ice

concentrations at depth.

Finally, I examined the role of thaw propagation rates on slope stability. I did this,

by assuming that slow-moving thaw fronts will have a narrow excess pore pressure

layer. When I compare the results of our slow-moving thaw front experiments

(Figure 5.4c and d) to those with no pore pressure dissipation there is no difference

in the factors of safety. This suggests that pore pressures generated at the thaw

front govern the generation of a failure plane. Field evidence suggests that extreme

weather events cause ALD initiation, leading to a number of authors suggesting that

it is the rate of thaw penetration that causes ALDs (Lewkowicz and Harris 2005b;

McRoberts and Morgenstern 1974). For example, Lewkowicz and Harris (2005b)

measured rates of thaw propagation of >10 mm day-1 for two weeks before ALD

initiation. Our modelling evidence suggests that in this scenario the high rates of
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thaw propagation themselves did not initiate an ALD as the distribution of high pore

pressures within the soil column does not play a significant role in ALD initiation.

Instead, the high rates of thaw propagation caused the thaw front to penetrate to

deeper than average depths, where ice lenses could melt and generate a failure plane.

Interestingly, in this example, fewer ALDs initiated in an extreme weather event

the following summer, possibly because ice lens concentrations had changed after

melting during the previous summer (Harris and Lewkowicz 2000).

Our modelling effort constrains the role of ground ice in governing ALD initia-

tions. ALDs are most commonly found in areas of solifluction (Harris and Lewkow-

icz 2000; Lewkowicz and Harris 2005b), where you find frost susceptible soils and

permafrost. However, solifluction is more frequently observed in the field than ALDs,

suggesting the conditions that ALDs initiate are not commonly found on Arctic hill-

slopes (Harris and Lewkowicz 2000; Lewkowicz and Harris 2005a). However, when

ALDs do initiate it is common to get tens to hundreds of landslides initiating in a

single event (Rudy et al. 2016). This study suggests that the conditions needed to

initiate ALDs require very high proportions of ground ice concentrated at depth in the

soil column. Where ground ice distributions have been measured, high proportions

of ground ice are relatively uncommon (Zhang et al. 1999). This suggests that the

ground ice conditions needed to initiate an ALD are also uncommon, except during

extreme events that penetrate into permafrost or an ice-rich transitional layer. Our

work suggests that a better understanding of the spatial distribution of ground ice on

hillslopes would improve our ability to estimate the susceptibility of slopes to ALD

initiation.

Improving the model would involve an additional scenario where ice lenses are

concentrated at the top and bottom of the active layer, replicating the field situation

from two-sided freezing.
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5.5 Conclusion

In this study I have focused on the impact of thawing ice lenses on the stability

of a modelled hillslope. Cohesion controls the absolute depth of failure because

the impact of ground ice will depend on the cohesive properties of the soil. Our

analysis shows that to generate factors of safety close to the stability limit, a large

network of wide ice lenses is needed along with a sufficient magnitude of pore

pressure during thawing. If ice lenses are too small or have larger gaps between

them the hillslope remains relatively stable. When I kept ice lens volume the same

I found that a uniform and linear distribution of ice lenses produced a more stable

slope compared to a non-linear distribution. Therefore, the proportion of ice lenses

along the failure plane is more important than ground ice volume at initiating failure.

Testing the impact of thaw propagation rates showed no difference in the factors

of safety between high and low rates. Based on our model results I suggest that

the conditions required to initiate ALDs is the rapid thawing of highly concentrated

ground ice at depth. Future research should focus on field measurements of ground

ice distribution on Arctic hillslopes and their relationship with ALDs.
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Discussion and future work

6.1 Overview and synthesis

To understand what impact a warming Arctic climate (Cohen et al. 2014) will have on

periglacial landforms in permafrost regions requires quantifying their spatial extent

at a regional scale. Many insightful studies have demonstrated the mechanisms

controlling periglacial landform processes at a local scale such as the formation

of blockfields (Ballantyne 2010), movement of solifluction (Harris et al. 2008c),

formation of scree slopes (Hinchliffe et al. 1998), and other periglacial processes

(Humlum 2000; Christiansen 2005; Ross et al. 2007). However, only a few studies

have tried to quantify landforms at a regional scale in mountainous arctic landscapes

(Bartsch et al. 2008; Bartsch et al. 2009). In this thesis, I addressed the current

knowledge gap by researching (i) the role of topography, at a regional scale, in

affecting the spatial distribution of periglacial landforms and sediment fluxes (ii)

the impact of pore pressures on hillslope stability at a regional scale and within

the active layer. This research was spread over three chapters. In chapter 3, I

used digital elevation models of Svalbard to create a landform classification model

to understand the relative spatial distribution of periglacial processes and make

estimates of sediment fluxes from these landforms. In chapter 4, I applied the
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classification model in the Brooks Range, Alaska. In addition, I examined the spatial

distribution of active layer detachments to understand the topographic controls for

their initiation. In chapter 5, I examined the triggering conditions required to initiate

ALDs. I tested the following hypotheses:

6.1.1 Hypotheses

H1: The relative spatial distribution of periglacial landforms and their impact on

sediment fluxes in mountainous Arctic landscapes can be quantified by automating

the classification of landforms using topographic parameters derived from digital

elevation models.

I developed a statistical model that classified two study sites, Endalen and Ring-

dalen, into seven landform types; Allochthonous material, Alluvial fan, Blockfield,

floodplain, bedrock, scree, and solifluction, based on three topographic parameters;

relative local relief, topographic roughness, and slope gradient. I found that bedrock,

solifluction, and blockfields were readily distinguished by the model, with bedrock

outcrops modelled at a higher resolution than was possible to map via remote sensing.

Scree slopes were difficult to distinguish from the ubiquitous vegetated allochthonous

slopes, suggesting a similar origin for these deposits. My mapping demonstrates that

on Svalbard, solifluction and scree slope development are the dominant hillslope

processes acting on this landscape and that sediment fluxes are greatest in solifluction.

In the Brooks Range, the classification model performed well in a region of high

relief, similar to Svalbard. However, the model had to be modified for low relief

topography. Even then, separating the fluvial landforms and solifluction was not

possible but solifluction was successfully modelled.

H2: Active layer detachments occur in convergent topography on soliflucting hill-

slopes.
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Using an infinite slope analysis I was able to model hillslopes stability at different

depths, pore pressures, and shear strength parameters. Despite not being able to

separate ALDs from landforms using my classification model I have observed that

ALDs are coincident in areas of solifluction in Nukatpiat, Alaska. In terms of shear

strength of the active layer, low levels of cohesion are important for reducing stability

but conversely they also prevent widespread failures. ALDs in Nukatpiat strongly

correlate with the drainage network and are rarely found in isolation but cluster in

regions of convergence where solifluction occurs. Areas of convergence are known

to form water-tracks and reflect the drainage work of the region (McNamara et al.

1999). Field studies have demonstrated that water-tracks are found extensively in the

foothills of the Brooks Range; these convergent regions have elevated ice contents

of 50% to 90% (Ping et al. 2008; Trochim et al. 2016a; Trochim et al. 2016b).

Given that Nukatpiat is located in the Brooks Range with the same topographic

characteristics as other study sites in the same region e.g. (Trochim et al. 2016a),

I believe that these ALDs were caused by excess pore pressures from thawing ice

lenses and reduced shear strength form annual solifluction that reduces the effective

cohesion to near residual (Harris and Lewkowicz 2000). The model showed that

with a deeper active layer, less excess pore pressure is needed to cause instability.

H3: The spatial distribution of ground ice in the active layer and its location along

the failure plane control hillslope instability.

I tested this hypothesis by parameterising a 2-D slope stability model called GeoSlope

(Krahn 2004), which calculated slope stability using the Morgenstern and Price

method of slices (Morgenstern and Price 1965). I varied the distribution of ice lenses

and demonstrated that a power law distribution of ice lenses causes greater instability

compared to a linear increase and uniform distribution of ice lenses throughout the

active layer. I then show that the more connected ice lenses are the greater the impact
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they have on stability, this reflects the importance of soil hydrology during thaw

(Dyke 2004).

6.2 Importance and wider implications

6.2.1 ALDs and permafrost degradation by a warming climate

Across the Arctic, the rate of permafrost thaw is increasing (Osterkamp 2007). This

has been linked to a warming climate (Stocker et al. 2013; Pastick et al. 2015). A

consequence of thawing ice-rich permafrost is thermokarst which is the collapse,

subsidence and/or mass wasting of the ground surface creating landforms such as

ALDs, retrogressive thaw slumps, thermal erosion gullies, thermokarst lakes, pits and

troughs (Kokelj and Jorgenson 2013). In chapter 4, I demonstrate quantitatively that

ALDs in Nukatpiat occur in clusters and are hydrologically connected to the regional

drainage network. I attribute this observation to the tendency of drainage networks

to have wetter conditions that promote a more ice-rich transition zone between

the permafrost and active layer. This hydrological connectivity demonstrates the

potential of ALDs to impact the nutrient and sediment budget of Arctic catchments.

Balser et al. (2009) calculates that on average, each ALD near Feniak Lake (only

100 km south-east of Nukatpiat) has an area of 12,500 m2 and displaces 37,500

m3 of active layer material. Lewkowicz and Harris (2005a) found that ALDs on

Ellesmere Island generated the same amount of geomorphic work as other mass

wasting processes in high mountain environments over a period of 100 - 200 years.

ALDs are known to increase sediment yields and dissolved solutes into streams

(Lewkowicz and Kokelj 2002). However, the total mass of sediment and solute

released and the impact of such releases depends on the hydrological connectivity of

active layer soils to the stream network (Lamoureux and Lafreniere 2009; Dugan

et al. 2012; Lewis et al. 2012). Currently, Arctic rivers carry less sediment than



6.2 Importance and wider implications 139

their lower latitude counterparts (Gordeev 2006) because of more frozen ground

that prevents erosion, a higher proportion of snowfall than rainfall, fewer storms

(Syvitski 2002), and a short runoff season (French 2007). As the Arctic warms and

the ground thaws a limiting factor (frozen ground) is reduced, causing an increase in

sediment flux because greater discharge can entrain more sediment (Syvitski 2002).

A study on the paleo sequences of fluvial deposits in the Brooks Range revealed

that increased sedimentation during warmer and wetter conditions in the Pleistocene-

Holocene transition from c.a. 12.75 to 11.5 ka BP was due to increased ALD activity

caused by deeper thaw and greater precipitation (Mann et al. 2010). Mann et al.

(2010) claimed that warmer summers increased thaw depth which increased soil pore

pressure which in turn caused widespread mass wasting on hillslopes. The small

streams of the Brooks Range were overwhelmed with sediment from mass wasting

events that caused rapid aggradation (Mann et al. 2010). Despite their significant

contribution to the delivery of sediment and organic carbon to the streams, ALDs are

unaccounted for in global climate models. The slope stability model from chapter 5

can be used to assess the susceptibility of a landscape to mass-wasting events.

6.2.2 ALD and hazard

In this thesis, I have conducted a regional scale analysis of disturbances and provide

useful information to the geo-hazard community about the risks to infrastructure

development. ALDs pose a low direct threat to communities of the Arctic because

the majority of ALDs occur in the foothills of mountainous landscapes where human

habitation is low. There are exceptions of course, on the 5th of October 2016 the

slopes adjacent to Longyearbyen (inhabited by 2000 people) experienced multiple

mass-wasting events. Prior the event Svalbard had experienced milder than average

autumn temperatures and periods of heavy precipitation. On the day, precipitation

was 18 mm, triggering 5,000 m3 of material downslope onto the road on the valley
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side, damaging infrastructure (Setsa 2016). A similar event in July 1972, triggered

by prolonged heavy rainfall and warm temperatures caused 7,054 m3 of material

to move downslope onto the town of Longyearbyen (Larsson 1982). These mass-

wasting events demonstrate that landsliding in the Arctic can be triggered by high

precipitation rather than thaw. However, by developing physical models such as

the one in chapter 5 we can better understand the extent of the landslide hazard.

In Salluit, the Canadian Arctic, ALDs that initiated between 1998 and 2005 were

caused by an increase in active layer thickness due to increasing number of warmer

summers (Allard et al. 2012). On the 5th of September 1998, an ALD initiated close

to an urban development project. As a result, 20 new houses were demolished and

the land declared unsafe for habitation (Allard et al. 2012). Using slope stability

models such as the one in chapter 5 would help developers determine the potential

stability of hillslopes adjacent to infrastructure development, avoiding demolition of

infrastructure projects.

In the Brooks Range the greatest hazard that ALDs pose is to the Dalton highway

and the adjacent Trans Alaska oil pipeline. The Dalton highway is the only road that

links Prudhoe Bay on the north coast of Alaska to Anchorage on the southern coast

of Alaska. Prudhoe Bay is dependent on the highway for importing resources during

the winter. Construction of the adjacent oil pipeline began in 1975 and currently

transports 2 million barrels of oil a day (Walker et al. 2008). Mass wasting events

have been observed close to the highway and pipeline (Bowden et al. 2008; Walker

et al. 2008; Daanen et al. 2012). In Arctic Canada, near the Great Bear Lake, is

the Norma Wells pipeline that transports 30,000 barrels of oil per day (Hanna et al.

1998). Shortly after the 1994 and 1995 forest fires ALDs were observed to initiate

just downslope to the pipeline route (Hanna et al. 1998). The ground around the

ALD sites was stabilized with geoengineering techniques. Models such as the one in

chapter 5 can be used to help determine regions where the ground can be stabilised

before can ALDs occur, with a focus on infrastructure.
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6.2.3 ALDs and organic carbon

ALDs increase the input of solutes and organic carbon into the stream network during

mass wasting events (Lafreniere and Lamoureux 2013; Lamoureux and Lafreniere

2014). Much of the organic carbon in permafrost is either mineralised or released as

CO2 and CH4. If the organic carbon escapes degradation it can be eroded, transferred

to rivers and deposited in marine sediments. Here it can contribute to long-term

geological CO2 sinks (Hilton et al. 2015).

Beamish et al. (2014) found that the short-term impact of ALDs on the carbon

balance was minimal. In chapter 2, I demonstrated that regions of convergence such

as water tracks are prone to failure. As a result catchments with such areas are most

prone to experiencing greater input sediment, solute, and organic carbon potentially

causing ecological change.

ALDs act to introduce nutrients into arctic streams that provide optimal condi-

tions to stimulate microbial activity and promote the release of more CO2 and CH4

into the atmosphere, amplifying the climate change impact on the Arctic, leading to

more microbial activity and ALD activity and so a positive feedback loop is created

(Pautler et al. 2010).

6.2.4 Extent of landform processes in the Arctic

Currently, the amount of data collected by remote sensing is greater than the amount

that can be processed and analysed. The Polar Geospatial Centre in October 2017

released over 50 TB of 2 m, 5 m, and 8 m high-resolution digital elevation data for

all land area north of 60° N latitude, a dataset that is continually growing (Showstack

2017). The analysis of large datasets by professional geomorphologists can be

time-consuming, which at a regional scale is not feasible and automation is needed.

Automation allows for larger areas to be covered faster (Hjort et al. 2014). Other

benefits of automation include reducing human error (but introducing machine error),
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facilitating comparable results and model transferability, and reducing processing

time (Romstad 2001; Dragut and Blaschke 2006; Hjort and Luoto 2006). Many

studies have used statistical analyses to automate the classification of DEMs into

landform units (Etzelmüller et al. 2001; Luoto and Seppala 2002; Hjort and Luoto

2006; Prima et al. 2006; Bartsch et al. 2008; Marmion et al. 2009; Ridefelt et al. 2010;

Aalto and Luoto 2014; Hjort et al. 2014). Some use complicated algorithms (Romstad

and Etzelmüller 2012), others use multiple DEM derived topographic parameters

(Rudy et al. 2017), or have developed models that are site-specific (Luoto and Seppala

2002). In chapter 3, I developed a model that classifies a DEM into seven landforms

based on the landform’s linear relationship with three topographic parameters. I

then successfully transferred this model to a different Arctic region underlain with

cold permafrost, the Brooks Range in Alaska. Creating a transferable classification

model of multiple landforms hasn’t been attempted. Current studies have tried to fit

non-linear trends between geomorphological landforms and environmental factors

but this has produced unrealistic and complex models that are non-transferable.

Solifluction has been modelled in previous studies (Etzelmüller et al. 2001;

Ridefelt et al. 2010; Hjort et al. 2014). However, there are few studies that model

landforms to understand their spatial extent of landforms, and their role in the

sediment budget of mountainous landscapes (Bartsch et al. 2002; Bartsch et al.

2009). I demonstrated in chapter 3 the potential benefits of creating an automated

classification. Using this landform classification model I was able to quantify the

spatial extent of landforms on Svalbard and in Alaska. On Svalbard, I found that

solifluction was one of the major landforms to dominate the landscape in terms

of extent and contribution to sediment flux. Solifluction rates and processes have

been measured at a local scale (Rapp 1960a; Matsuoka 2001a; Harris et al. 2011)

but these don’t explain the regional variability of solifluction. With the ability to

map solifluction at the regional scale it will be possible to establish the quantitative

relationship between solifluction and climate (Ridefelt and Boelhouwers 2006; Aalto
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and Luoto 2014; Aalto et al. 2014). One way of accomplishing this is by repeated

topographic surveys called difference digital elevation models (DoD). DoDs can help

determine geomorphic change and estimate sediment budgets. It has been successful

at estimating denudation for rivers in the Scottish highlands (Wheaton et al. 2010),

monitoring the movement of sediment along shorelines (Brock and Purkis 2009), and

movement of sediment in Arctic mountainous environments using repeated scans

from a terrestrial laser scanner (Kociuba 2017). The landscape classification model

from chapter 3 can be used in conjunction with DoDs to quantify how landscapes

are changing over time. Therefore, establishing the impact of a warming Arctic on

landform processes rates and spatial extent.

6.2.5 GIS and Python as a tool for periglacial geomorphologists

DEMs are now freely available at 2 m and 5 m resolution for the entire Arctic

(Showstack 2017) and programming languages can process large datasets in a short

amount of time. This permits patterns of instability to be modelled at a regional

scale, limited by DEM resolution. It is now possible to expand on the knowledge of

local empirical studies e.g. (Ballantyne 2010; Harris et al. 2011; Ballantyne 2013) to

create a more precise physical model of processes at regional scales. I have shown

that it is possible to integrate freely available geospatial datasets into the free open-

source data analysis environment of Python (Van Rossum and Drake 2003), making

the spatial modelling of periglacial landforms more attractive to future researchers.
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6.3 Research opportunities and future work

6.3.1 Quantify the distribution of ground ice along a hillslope

profile

In chapters 5 and 6, I assessed the impact of the spatial distribution of ice lenses on

the stability of a hillslope based on laboratory experiments by Harris et al. (2008c).

The model demonstrated that the likelihood of landsliding increased when segregated

ice was concentrated at the active layer/permafrost boundary and when there was a

higher proportion of bigger ice lenses along the hillslope. Many studies have taken

borehole measurement to quantify ground ice concentration (Mackay 1981; Kokelj

and Burn 2005). However, there is a lack of field data on the spatial distribution of

ground ice along the length of hillslopes. Harris and Lewkowicz (2000) observed

that pore pressures were highest at mid-slopes, indicating that ice lenses are either

concentrated at the centre of the slope or that groundwater from thawing ice lenses

at the top of the slope is moving downslope and concentrating at the mid-slopes. In

addition, the head scarp of mapped ALDs from satellite imagery in chapter 3 are

located not at the top but three-quarters the way up the hillslopes. This suggests that

the lateral distribution of ground ice along a hillslope is the next step to understanding

ALDs. To do this I would suggest geophysical surveys before the summer thaw.

Geophysical surveys have the potential to be powerful tools for constraining the

thermal and structural characteristics of the active layer, because of the large contrast

between the electromagnetic properties of ice, water, and sediments (Moorman et al.

2003; Ross et al. 2007; De Pascale et al. 2008). Ground penetrating radar allows

for quantifying ground characteristics and stratigraphy over a large area in a short

amount of time. Moorman et al. (2003) used ground penetrating radar (GPR) to

map the depth of thaw along a transect parallel to the Norman Wells Pipeline. They

were able to determine that subsidence was caused by the presence of ice-rich soil.
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However, the added complication of quantifying ground ice volume in the active

layer is the addition of other materials with different resistivity’s. To prevent this I

suggest calibrating the GPR using borehole data.

6.3.2 Modelling the impact of tundra fires on ground ice thaw

and hillslope stability

In this thesis, I have modelled the impact of thawed ice lenses on slope stability.

This is the mechanism driving ALDs. However, what I have overlooked are the

triggers of this mechanism such as days of bright sunshine, warm weather, rainfall,

and tundra fires. Each of these triggers is a source of heat that can propagate a

thawing front into the active layer. Tundra fires initiate ALDs because they remove

the insulating organic mat/vegetation cover and expose the permafrost/mineral soil

beneath. This has three effects: (1) increases the surface soil conductivity; (2)

reduced surface albedo; (3) increases insolation on the ground surface (Liljedahl

et al. 2007) thus causing more heat to conduct deeper into the permafrost, reaching

the ice-rich transient layer. Some studies have observed ALDs initiating months

after a fire (Lewkowicz and Harris 2005a). Hanna et al. (1998) observed failures

adjacent to the Norman Wells pipeline in Alberta, Canada. These failures occurred

‘shortly’ after a fire in 1994 (Hanna et al. 1998), although the authors did note that

ALDs initiated during the following spring.

Mann et al. (2010) claim that as summers become warmer and drier, fire-prone

shrubs will expand across the tundra in the Brooks Range (Tape et al. 2006). This will

increase the frequency of tundra fires that remove soil organic horizons, exposing the

mineral soil beneath (Mann et al. 2010). Even though this mechanism is well known,

e.g. Liljedahl et al. (2007), there is still a research gap for quantifying the amount of

heat and ground ice required to thaw enough ground ice to cause instability. From

chapter 3 we know that a high concentration of ground ice at depth is needed but
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not how much. As it is difficult to assess the ground ice conditions prior to a slope

failure. Modelling would provide much-needed insight by allowing researchers to

quantify the amount of burning that is needed, how thick an organic mat needs to

be, and how much ground ice is needed to initiate ALDs. Nishimura et al. (2009)

modelled changing ground ice conditions in cold regions in response to climate

change. They synthesised climate change predictions, DEMs and remote sensing

data to produce regional maps of future geocryological conditions which aided in

producing regional maps of expected geohazards caused by thawing permafrost.

Nishimura et al. (2009) used a thermal finite element model to understand the

non-linear geothermal conduction caused by the soil properties, latent heat effects,

insulation effect of snow cover, and the stratigraphic variation in soil properties.

Such a study on the impact of tundra/forest fires on Arctic hillslopes would provide

an insight into their future impact with a warming Arctic climate.



Chapter 7

Thesis conclusion

I developed a landform classification model that uses a combination of three topo-

graphic parameters; slope gradient, relative local relief, and topographic roughness,

to best model the spatial distribution of periglacial landforms in the mountainous

landscape of Endalen and Ringdalen on Svalbard and the Brooks Range, Alaska.

Bedrock, blockfields, and solifluction were identified with a high degree of accuracy,

with bedrock outcrops modelled at a greater resolution than was possible to map

using satellite imagery. Scree slopes were difficult to separate from the ubiquitous

vegetated allochthonous slopes, suggesting a similar genesis for these landforms.

The model demonstrated that on Svalbard, solifluction and scree slope development

are the dominant hillslope processes acting on this landscape and that sediment

fluxes are greatest in solifluction. In the Brooks Range, the classification model

performed well in a region of high relief, similar to Svalbard. However, the model

had to be modified for low relief topography. In both Svalbard and the Brooks

Range, separating fluvial landforms from each other was problematic due to similar

topographic signatures.

There are multiple ways to improve the landform classification model. First, an

additional step is needed to remove misclassified pixels within a region of correctly

classified pixels for example by using a smoothing algorithm. Second, by the
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addition of other landforms such as debris cones. Third, by switching my pixel-based

model to an object-orientated model would increase process time. However, to

improve classification accuracy, greater concern should be given to exploring the

relationship of topographic parameters to landform shape and spatial extent. This and

other similar DEM-based models can be used for reconnaissance geomorphological

mapping of large study areas.

A combination of manual ALD mapping, solifluction modelling, and infinite

slope analysis in the Brooks Range revealed that instabilities are coincident with

convergent topography on soliflucting hillslopes. I attribute this to higher moisture

availability that feeds the growth of ice lenses at the permafrost active layer boundary,

called the transient layer. Furthermore, small amounts of cohesion in modelled active

layer soils prevent widespread hillslope failure. This implies that soil cohesion must

be reduced to near residual by annual solifluction to cause failure coincident with

mapped ALDs. As active layer depth increased, less excess pore pressures were

needed to cause failure. However, not all modelled instabilities corresponded to

mapped failures. A 2-D slope stability analysis revealed that failure can only occur

under certain ground ice conditions. When ice lenses were concentrated at the base

of the active layer hillslopes became more unstable. This type of ice lens distribution

produced a large network of wide ice lenses along the failure plain. During thaw,

this generated high levels of excess pore pressure. This suggests that the proportion

of ice lenses along the failure plain was more important than volume at initiating

instability, with cohesion acting as the limiting factor for the depth of failure. The

stability modelling results here reflect the conclusions of field-based studies (Harris

and Lewkowicz 2000; Lewkowicz and Harris 2005a; Harris et al. 2008c).

Due to a warming Arctic, permafrost is expected to continue thawing, creating

an ever more dynamic active layer. Consequently, the relative regional extent of

periglacial landforms in mountainous Arctic environments is expected to change.

Arctic hillslopes will become more unstable during summer thaw. ALDs appear to
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act as a dominant process in shaping future Arctic landscapes. ALDs will also pose

a greater hazard to Arctic infrastructure and act as a major force for environmental

change. Future research should focus on combining repeated remote sensing surveys

with landform classification models to understand what impact thawing permafrost

will have on landform processes and sediment/solute fluxes at a regional scale. I

believe that, by quantifying sub-surface ground ice conditions below convergent

topography in Arctic hillslopes with field measurements, it would be possible to

validate the models presented here and help establish the role of thawing ground ice

as a triggering mechanism for active layer detachments.
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